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Abstract

A new domain-independent knowledge-based inference structure is presented, specific to the task of
abstracting higher-level concepts from time-stamped data.  The framework includes a model of time,
parameters, events, and contexts.  A formal specification of a domainÕs temporal-abstraction knowledge
supports acquisition, maintenance, reuse, and sharing of that knowledge.

The knowledge-based temporal-abstraction method decomposes the temporal-abstraction task  into
five subtasks.  These subtasks are solved by five domain-independent temporal-abstraction mechanisms.
The temporal-abstraction mechanisms depend on four domain-specific knowledge types: structural,
classification (functional), temporal-semantic (logical), and temporal-dynamic (probabilistic) knowledge.
Domain values for all knowledge types are specified when a temporal-abstraction system is developed.

The knowledge-based temporal-abstraction method has been implemented in the R�SUM� system, and
has been evaluated in several clinical domains (protocol-based care, monitoring of childrenÕs growth, and
therapy of diabetes) and in an engineering domain (monitoring of traffic control), with encouraging results.
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1.  Introduction: Temporal-abstraction and the knowledge level

Many domains of human endeavor require the collection of substantial numbers of data over time, and
the abstraction of those data into higher-level concepts meaningful for that domain.  Much work had been
done in philosophy and in computer science regarding the structure of time and the nature of general
temporal reasoning.  Here, we focus on the specific task of context-sensitive abstraction and interpretation
of time-stamped data.  We investigate the nature and semantics of this task; the knowledge required for
performing it in uniform fashion in different domains; and the way that knowledge should be represented,
acquired, maintained, used, shared, and reused efficiently.  We mention briefly a computer system that
implements our theoretical framework, and that has been evaluated in several medical and engineering
domains.  Finally, we provide preliminary evidence that our approach might be generalized to linear
abstraction over other dimensions, such as space.

The examples presented in this paper focus on several subdomains of clinical medicine, in which the
task of abstraction of data over time occurs frequently for various reasons.  The ideas discussed, however,
are general, and are applicable to other domains in which data need to be abstracted over time.

Most clinical tasks require measurement and capture of numerous time-stamped patient data.
Physicians who have to make diagnostic or therapeutic decisions based on these data may be overwhelmed
by the number of data if their ability to reason with the data does not scale up to the data-storage
capabilities.  Thus, it is highly desirable for an automated knowledge-based decision-support tool that
assists physicians who monitor patients over significant periods to provide short, informative, context-
sensitive summaries, at various levels of abstraction, of time-oriented clinical data stored on electronic
media.  Meaningful summaries include abstractions that hold over both time points, such as dates when
data were collected, and time intervals, such as "5 months of decreasing liver-enzyme levels in the context
of recovering from hepatitis."  Interval-based abstractions are useful for both the physician and an
automated system for (1) planning interventions for diagnostic or therapeutic reasons, (2) monitoring
therapy plans during execution, (3) creating high-level summaries of medical records that reside on a
clinical database, (4) providing explanations, and (5) comparing a plan prescribed by one agent (e.g., a
clinical guideline) with the actions performed by another agent (e.g., a physician).  Often, overall and
intermediate goals of the plan can be described as temporal patterns to be achieved, maintained, or avoided.

Currently, most decision-support systems do not have sufficient general temporal-reasoning knowledge.
The few systems that include temporal-reasoning capability usually encode both the general temporal-
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reasoning knowledge and the temporal-reasoning knowledge specific to the particular domain in
application-specific rules and functions.  These frameworks do not make explicit the domain-independent
temporal-reasoning tasks that need to be solved, the domain-independent methods used to solve these tasks,
and the domain-specific knowledge required for applying these methods.  Application-specific approaches
enable little reuse of domain-independent temporal-reasoning knowledge for other domains; they also do
not enable sharing of domain-specific temporal-reasoning knowledge accumulated for the particular
encoded task with other tasks and problem-solving methods that involve reasoning about time in the same
domain.  In addition, due to the idiosyncratic nature of the knowledge-representation scheme of temporally
oriented knowledge used in most systems, it is difficult to acquire the required knowledge from domain
experts in a uniform, well-defined (possibly automated) way, or to maintain that knowledge, once acquired.

In this paper, we present a unifying, knowledge-level [Newell, 1982] view of the task of abstraction of
data over time.  We rely on several insights from the past decade.  Chandrasekaran [1983, 1986] defined the
concept of generic tasks.  For example, diagnosis is a generic task, that implies no particular control
structure; it can be performed by various problem-solving methods, such as the heuristic-classification
method (or, rather, inference structure, since no control structure is specified) [Clancey, 1985].  Other
methods, more specific with respect to the knowledge roles that they assume, have been defined for
diagnosis tasks (e.g., cover and differentiate [Eshelman, 1988]) and for design tasks (e.g., propose and
revise [Marcus, 1988]).  Preliminary taxonomies of problem-solving methods have been suggested
[McDermott, 1988; Chandrasekaran, 1990].  Common to all task-specific problem-solving methods is the
limitation of the potential role (e.g., creation of a context) that a domain-knowledge item (e.g., a rule) can
play, thus facilitating the use and maintenance of this knowledge [McDermott, 1988].  As the emphasis on
task-specific architectures became more pronounced, it became increasingly clear that designing a new
knowledge-based system, and acquiring the appropriate domain-specific knowledge needed to solve the
tasks defined in that domain, are primarily modeling tasks.  The modeling defines the domain's ontologyÑ
a theory of entities, their properties, and their relations in the domainÑand maps that ontology into
knowledge roles that exist in the problem-solving methods chosen for performing the particular required
tasks [Gennari et al., 1994].  Problem-solving methods are highly reusable, and can be used to model and
perform real-world tasks efficiently, by committing to a method-specific ontology [Eriksson et al., 1995].
The PROT�G�ÐII project [Musen et al., 1995; Tu et al., 1995; Eriksson et al., 1995] is an example of
development of a library of such reusable, domain-independent, problem-solving methods.  These problem-
solving methods solve tasksÑa set of inputs and outputs and semantic constraints over their relationships.
Methods decompose tasks into subtasks, which can be solved by other methods or by mechanisms, which
are defined as nondecomposable methods [Eriksson et al., 1995].  Methods and mechanisms have a control
structure and a set of knowledge roles that are instantiated by domain-specific knowledge.

1.1.  A guide to this paper

In Sections 1.2 and 1.3, we present a brief, high-level overview of the temporal-abstraction task and of
our knowledge-based approach to solving that task.  In Section 2.1, we define in technical detail the task-
specific ontology of the knowledge-based temporal-abstraction method.  In Section 2.2, using that ontology,
a knowledge-level overview is presented of the five tasks defined by that method, and of five knowledge-
based mechanisms that perform these tasks.  The description of these mechanisms and the knowledge they
require is presented in detail in Sections 2.3Ð2.7.  In Section 3, we discuss briefly the R�SUM� system, an
implementation of our knowledge-based framework, and its application to several different clinical and
engineering domains: guideline-based care, monitoring of childrenÕs growth, therapy of patients who have
insulin-dependent diabetes, and monitoring of traffic control.  Section 4 presents a higher-level, unified
summary and discussion of the framework, its computational advantages, its relationship to other temporal-
abstraction frameworks, and its implications.  Section 5 contains our final remarks.

1.2.  The temporal-abstraction task: An informal overview

The temporal-abstraction (TA) task can be viewed informally as a type of a generic interpretation
task:  Given a set of time-stamped data, external events, and abstraction goals, produce abstractions of the
data that interpret past and present states and trends and that are relevant for the given set of goals.
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For instance, in clinical domains, a final diagnosis is not always the main goal.  What is often needed is
a coherent intermediate-level interpretation of the relationships between data and events, and among data,
especially when the overall context (e.g., a major diagnosis) is known.  The goal is then to abstract the data
into higher-level concepts useful for one or more tasks (e.g., planning of therapy or summarization of a
patientÕs record).  Thus, the goal might be to create, from time-stamped input data, interval-based temporal
abstractions, such as "Grade II anemia for 3 weeks in the context of administration of the drug AZT as part
of clinical therapy protocol CCTG-522" and more complex patterns, involving several intervals (Figure 1).

A method solving the TA task encounters several conceptual and computational problems:  (1) the input
parameter values might be of several data types and at various abstraction levels (e.g., Blood-glucose level
= 192 mg/100cc; Glucose state = HIGH), and so might be the userÕs queries; (2) input data might arrive out
of temporal order, and existing interpretations must be revised nonmonotonically; (3) several alternate
interpretations might need to be maintained and followed over time; (4) parameters have domain-specific
and context-specific temporal properties, such as expected persistence of measured values; and (5)
acquisition of knowledge from domain experts and maintenance of that knowledge should be facilitated.
The method should enable reusing its domain-independent   knowledge for solving the TA task in other
domains, and enable sharing of the domain-specific knowledge with other tasks in the same domain.

1.3.  Knowledge-based temporal-abstraction theory: An informal overview

The approach that we present for performing the TA task employs an inference structure and related
required knowledge that are specific to the task of abstracting higher-level concepts from time-stamped
data in knowledge-based systems, but are independent of any particular domain.  The theory underlying the
method is specified in a general, domain-independent way by a model of time, events (e.g., administration
of a drug), parameters (e.g., platelet count), and the data-interpretation contexts that these entities create
(e.g., a period of chemotherapy effects), by a knowledge-based temporal-abstraction (KBTA) theory.

Using the KBTA theory, we define the KBTA method.  The KBTA method decomposes the task of
abstracting higher-level, interval-based abstractions from input data into five subtasks (Figure 2).  The five
subtasks are performed by five domain-independent TA mechanisms.  The TA mechanisms depend on
four domain-specific knowledge types.

The five TA mechanisms are defined in a formal, uniform, explicit way, such that the knowledge needed
to instantiate them in any particular domain and task can be parameterized and acquired from domain
experts manually, with automated tools, or by other methods (e.g., machine learning).  The domain-specific
knowledge required for instantiating the TA mechanisms is organized as four separate TA knowledge types
(or categories) to emphasize the nature of the knowledge contained in each category and the role that each
knowledge type plays in the reasoning performed by each mechanism.
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Figure 1:  Temporal abstraction of platelet and granulocyte values during administration of a prednisone/azathioprine
(PAZ) clinical protocol for treating patients who have chronic graft-versus-host disease (CGVHD).  The time line starts
with a bone-marrowÐtransplantation (BMT) external event.  The platelet- and granulocyte-count parameters and the
PAZ and BMT external event are typical inputs.  The abstraction and context intervals are typically part of the output.

¥Ê= platelet counts; D = granulocyte counts;  = event;  = open context interval;  = closed abstraction
interval; M[n] = myelotoxicity (bone-marrowÐtoxicity) grade n.
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Figure 2:  The knowledge-based temporal-abstraction (KBTA) method.  The TA task is decomposed by the KBTA
method into five subtasks.  Each subtask can be performed by one of five TA mechanisms.  The TAmechanisms depend

on four domain- and task-specific knowledge types.   = task;  = method or mechanism;  =  knowledge
type; Ñ> = DECOMPOSED-INTO relation;  = PERFORMED-BY relation; --> = USED-BY relation.

2.  Knowledge-based temporal-abstraction theory

To describe the nature of the KBTA method and mechanisms, we start by defining a formal knowledge-
based model of the TA task.  The formal model will enable us to define clearly the inputs and outputs of the
five subtasks defined by the KBTA method and of the five mechanisms performing these subtasks.  We
then describe each of the five TA mechanisms, the task that each mechanism performs, and the formal
specifications of the mechanismÕs knowledge requirements.

The KBTA method and the five TA mechanisms performing the five subtasks posed by that method
make several assumptions with respect to the underlying model of the domain.  In particular, they assume a
certain structure of time and of the propositions that can be interpreted over time.  Thus, the TA
mechanisms assume a task-specific TA ontologyÑa theory of what entities, relations, and properties exist
in any particular domain from the point of view of the TA task and, in particular, of the KBTA method.
Our goals in this section are to define ontologies of events (e.g., drug administrations), of parameters (e.g.,
blood-glucose values), and of interpretation contexts within which parameters will be interpreted and
abstracted into higher-level concepts, and to define the relationships among these ontologies.  Together,
these ontologies compose the domainÕs TA ontology.  The TA task, the KBTA method, and especially the
TA mechanisms can then be defined formally in terms of the TA ontology.  It is therefore necessary to
examine carefully the individual entities of the TA ontology.

2.1.  The temporal-abstraction ontology

In this section, we define formally the terms used by the KBTA method regarding time and propositions
that are interpreted over time, and provide some intuition regarding the siginificance of these terms and the
relations between them.  Informally, the temporal model used by the KBTA theory includes both time
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intervals and time points.  Time points are the basic temporal primitives, but propositions, such as
occurrence of events and existence of parameter values, can be interpreted (in the logical sense) only over
time intervals.  All propositions are fluents [McCarthy and Hayes, 1969], and, in our model, must be
interpreted over a particular time period (e.g., the value of the Temperature parameter at time [t, t]).

Notation:  The various types of KBTA-theory entities and propositions can be seen as logical sorts.
The set of symbols denoting each sort is usually clarified immediately; thus, the notation Òa parameter p Î
PÓ means that each individual parameter, denoted by p, will be a member of a new set of symbols P
(denoting only parameters).  Other conventions are used; for instance, relation names (e.g., PART-OF) are
denoted by small capital letters.  Parameter names (e.g., Hemoglobin) are denoted by initial capital letters; a
particular value of a parameter (e.g., LOW) is denoted by small capital letters.  Semantic properties (e.g.,
concatenable) are denoted by italics.

The KBTA theory defines the following set of entities:
1.  The basic time primitives are time stamps, Ti Î T.  Time stamps are structures (e.g., dates) that can

be mapped, by a time-standardization function fs(Ti), into an integer amount of any element of a set of
predefined temporal granularity units GiÊÎÊG (e.g., DAY).  A zero-point time stamp must exist, with
relationship to which time stamps are measured in the GiÊ units.  (Intuitively, the 0 point might be grounded
in each domain to different absolute, Òreal-world,Ó time points: the patientÕs age, the start of the therapy, the
first day of the twentieth century.)  The domain must have a time unit G0 of the lowest granularity (e.g.,
SECOND); there must exist a mapping from any integer amount of granularity units GiÊinto an integer
amount of G0.  (The time unit G0 can be a task-specific choice.)  A finite negative or positive integer
amount of Gi units is a time measure.

The special symbols +¥  and -¥ are both time stamps and time measures, denoting the furthest future
and the most remote past, respectively.  Any two time stamps must belong to either a precedence relation or
an equivalence relation defined on the set of pairs of time stamps.  The precedence relation corresponds to a
temporal order; the equivalence relation denotes temporal equivalence for the domain.  The -¥ time stamp
precedes any other time stamp; the +¥ time stamp follows (is preceded by) all other time stamps.
Subtraction of any time stamp from another must be defined and should return a time measure.  Addition or
subtraction of a time measure to or from a time stamp must return a time stamp.

Time stamps resemble the result of applying a date function to McDermottÕs [1982] states.  However,
McDermott maps states (snapshots of the world) to the real-numbers line.  The discreteness of time stamps
is due to the natures of the TA task  and of that taskÕs input (i.e., time-stamped data).  The TA mechanisms
do not rely on that discreteness.  The TA mechanisms do depend on the temporal computational properties.
Temporal uncertainty is modeled by the processing of time-stamped data, rather than by the time stamps.

2.  A time interval I is an ordered pair of time stamps representing the intervalÕs end points: [I.start,
I.end].  Time points Ti are therefore represented as zero-length intervals where I.start = I.end.  Propositions
can be interpreted only over time intervals.

As will be clear from the rest of the definitions of the TA ontology, the set of points included in a time
interval depends on the proposition interpreted over that interval.  A time interval can be closed on both
sides (in the case of state-type and pattern-type parameter propositions and interpretation contexts), open on
both sides (in the case of gradient- and rate-type abstractions), or closed on the left and open on the right (in
the case of event propositions).

3.  An interpretation context x Î X is a proposition.  Intuitively, it represents a state of affairs that,
when interpreted (logically) over a time interval, can change the interpretation (abstraction) of one or more
parameters within the scope of that time interval.  Thus, Òthe drug insulin has an effect on blood glucose
during this intervalÓ changes the interpretation of the state of the blood-glucose level, by suggesting a
different definition of the value LOW.  IS-A and SUBCONTEXT relations are defined over the set of
interpretation contexts.  Basic interpretation contexts are atomic propositions.  An interpretation context in
conjunction with one of its subcontexts can create a composite interpretation context.  Composite
interpretation contexts are interpretation contexts.  Formally, the structure <xi, xj> is an interpretation
context, if the ordered pair (xj, xi) belongs to the SUBCONTEXT relation (i.e., xj is a subcontext of xi).  In
general, if the structure <x1, x2,...xi> is a (composite) interpretation context, and the ordered pair (xj, xi)
belongs to the SUBCONTEXT relation, then the structure <x1, x2,...xi, xj> is a (composite) interpretation

context.  Generalized and nonconvex interpretation contexts are defined in Section 2.3.2.
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Intuitively, composite interpretation contexts allow us to define increasingly specific contexts (e.g., a
specific drug regimen that is a part of a more general clinical protocol), or combinations of different
contexts, for interpretation of various parameters.  Composite interpretation contexts represent a
combination of contemporaneous interpretation contexts whose conjunction denotes a new context that has
significance for the interpretation of one or more parameters.

4.  A context interval is a structure <x, I>, consisting of an interpretation context x and a temporal
interval I.  Intuitively, a context interval represents an interpretation context interpreted over a time interval;
the interpretation of one or more parameters is different within the temporal scope of that interval.  Thus,
the effects of chemotherapy form an interpretation context that can hold over several weeks, within which
the values of hematological parameters might be abstracted differently.

5.  An event proposition e  Î E (or an event, for short, when no ambiguity exists) represents the
occurrence of an external volitional action or process, such as the administeration of a drug (as opposed to a
measurable datum, such as temperature).  Events have a series ai of event attributes (e.g., dose) and a
corresponding series ni of attribute values.  (Typically, events are controlled by a human or an automated
agent, and thus neither are they measured data, nor can they be abstracted from the other input data.)

An IS-A hierarchy (in the usual sense) of event schemata (or event types) exists.  Event schemata have
a list of attributes ai, where each attribute has a domain of possible values Vi, but do not necessarily contain
any corresponding attribute values.  Thus, an event proposition is an event schema in which each attribute
ai is mapped to some value ni Î Vi.  A PART-OF relation is defined over the set of event schemata.  If the
pair of event schemata (ei, ej) belongs to the PART-OF relation, then event schema ei can be a subevent of
an event schema ej (e.g., a Clinical-protocol event can have several parts, all of them Medication events).

6.  An event interval is a structure <e, I>, consisting of an event proposition e and a time interval I.
The time interval I represents the duration of the event.

7.  A parameter schema (or a parameter, for short) p  Î P is, intuitively, a measurable aspect or a
describable state of the world, such as a patientÕs temperature.  Parameter schemata have various
properties, such as a domain Vp of possible symbolic or numeric values, measurement units, and a
measurement scale (which can be one of NOMINAL, ORDINAL, INTERVAL, or RATIO, corresponding to
the standard distinction in statistics among types of measurement1).  Not all properties need have values in
a parameter schema.  An IS-A hierarchy (in the usual sense) of parameter schemata exists.  The
combination <p, x> of a parameter p and an interpretation context x is an extended parameter schema (or
an extended parameter, for short).  Extended parameters are parameters (e.g., blood glucose in the context
of insulin action, or platelet count in the context of chemotherapy effects).  Note that an extended parameter
can have properties, such as possible domains of value, that are different from that of the original
(nonextended) parameter (e.g., in a specific context, a parameter might have a more refined set of possible
values).  Extended parameters also have a special property, a value n Î Vp.  Values often are known only
at runtime.

Intuitively, parameters denote either input (usually raw) data, or any level of abstraction of the raw data
(up to a whole pattern).  For instance, the Hemoglobin level is a parameter, the White-bloodÐcell count is a
parameter, the Temperature level is a parameter, and so is the Bone-marrowÐtoxicity level (which is
abstracted from Hemoglobin and other parameters).

The combination of a parameter, a parameter value, and an interpretation contextÑthat is, the tuple <p,
n , x> (i.e., an extended parameter and a value)Ñis called a parameter proposition (e.g., Òthe state of
Hemoglobin has the value LOW in the context of therapy by AZTÓ).  A mapping exists from all parameter
propositions and the parameter properties of their corresponding parameter (or extended parameter) schema
into specific property values.

Much of the knowledge about abstraction of higher-level concepts over time depends on knowledge of
specific parameter-proposition properties, such as persistence over time of a certain parameter with a

1Nominal-scale parameters have values that can be listed, but that cannot be ordered (e.g., color).  Ordinal-scale
parameters have values that can be ordered, but the intervals among these values are not meaningful by themselves and
are not necessarily equal (e.g., military ranks).  Interval-scale parameters have scale with meaningful, comparable
intervals, although a ratio comparison is not necessarily meaningful (e.g., temperature measured on a Celsius scale).
Ratio-scale parameters have, in addition to all these properties, a fixed zero point (e.g., height); thus, a ratio
comparison, such as Òtwice as tall,Ó is meaningful regardless of the height measurement unit.
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certain value within a particular context.  Different TA mechanisms typically require knowledge about
different parameter properties of the same parameter propositions.

Primitive parameters are parameters that play the role of raw data in the particular domain in which
the TA task is being solved.  They cannot be inferred by the TA process from any other parameters (e.g.,
laboratory measurements).  They can appear in only the input of the TA task.

Abstract parameters are parameters that play the role of intermediate concepts at various levels of
abstraction; these parameters can be part of the output of the TA task, having been abstracted from other
parameters and events, or they may be given as part of the input (e.g., the value of the state of Hemoglobin
is MODERATE_ANEMIA).  There is an ABSTRACTED-INTO relationship between one or more parameters
and an abstract parameter.  Each pair of parameters that belongs to an ABSTRACTED-INTO relation
represents only one abstraction step; that is, the ABSTRACTED-INTO relation is not transitive.  It is also
areflexive and antisymmetric.

Constant parameters are parameters that are considered atemporal in the context of the particular
interpretation task that is being solved, so that their values are not expected to be time-dependent (e.g., the
patientÕs gender, the patientÕs address, the patientÕs fatherÕs height).  There are few, if any, truly constant
parameters.  (In the discussion of temporal-semantic inference in Section 2.5.1, we suggest a representation
of constants as fluents with a particular set of temporal-semantic inferential properties, thus removing, in
effect, the traditional distinction between temporal and atemporal variables.)  It is often useful to
distinguish between (1) internal (or runtime) constants, which are specific to the particular case being
interpreted and appear in the runtime input (e.g., the patientÕs date of birth), and (2) external (or static)
constants, which are inherent to the overall task, and are typically prespecified or appear in the domain
ontology (e.g., the populationÕs distribution of heights).

8.  Abstraction functions q Î Q are unary or multiple-argument functions from one or more
parameters to an abstract parameter.  The ÒoutputÓ abstract parameters can have one of several abstraction
types (which are equivalent to the abstraction function used).  We distinguish among at least three basic
abstraction types: state, gradient, and rate.  (Other abstraction functions and therefore types, such as
acceleration and frequency, can be added).  These abstraction types correspond, respectively, to a
classification (or computational transformation) of the parameterÕs value, the sign of the derivative of the
parameterÕs value, and the magnitude of the derivative of the parameterÕs value during the interval (e.g.,
LOW, DECREASING, and FAST abstractions for the Platelet-count parameter).  The state abstraction is
always possible, even with qualitative parameters having only a nominal scale (e.g., different values of the
Skin-color parameter can be mapped into the state-abstraction value RED); the gradient and rate
abstractions are meaningful for only those parameters that have at least an ordinal scale (e.g., degrees of
physical fitness) or an interval scale (e.g., Temperature), respectively.  In addition, a special type of
abstraction function (and type) is pattern: The abstract parameter is defined as a temporal pattern of
several other parameters (e.g., a QUIESCENT-ONSET pattern of chronic graft-versus-host disease).

The q abstraction of a parameter schema p is a new parameter schema q(p)Ña parameter different from
any of the arguments of the q   function (e.g., STATE(Hemoglobin), which we usually write as
Hemoglobin_state).  This new parameter has its own domain of values and other properties (e.g., scale),
typically different from those of the parameters from which it was abstracted.  It can also be abstracted
further (e.g., GRADIENT(STATE(Hemoglobin))).

Statistics such as minimum, maximum, and average value are not abstraction types in this ontology.
Rather, these statistics are functions on parameter values that return simply a value of a parameter, possibly
during a time interval, often from the domain of the original parameter (e.g., the minimum Hemoglobin
value within a time interval I can be 8.9 gr./100cc, a value from the domain of Hemoglobin values), rather
than a parameter schema, which can have a new domain of values (e.g., the Hemoglobin_state can have the
value INCREASING).

9.  A parameter interval is a tuple <p, n, x, I>, where <p, n, x> is a parameter proposition and I is a
time interval.  If I is in fact a time point (i.e., I.start = I.end), then we can also refer to the tuple as a
parameter point.  Intuitively, a parameter interval denotes the value n of parameter p in the context x
during time interval I.  The value of parameter p at the beginning of interval I is denoted as I.start.p, and the
value of parameter p  at the end of interval I as I.end.p.
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10.  An abstraction is a parameter interval <p, n, x, I>, where p is an abstract parameter.  If I is in fact a
time point (i.e., I .start = I.end), we can also refer to the abstraction as an abstraction point; otherwise, we
can refer to it as an abstraction interval.

11.  An abstraction goal y Î Y is a proposition that denotes a particular goal or intention that is
relevant to the TA task during some interval (e.g., diagnosis).

12.  An abstraction-goal interval is a structure <y, I>, where y is an abstraction goal and I is a
temporal interval.  Intuitively, an abstraction-goal interval represents the fact that an intention holds or that
a TA goal  (e.g., the goal of monitoring AIDS patients) should be achieved during the time interval over
which it is interpreted.  An abstraction-goal interval is used for creating correct interpretation contexts for
interpretation of data.

13.  Induction of context intervals: Intuitively, context intervals are inferred dynamically (at runtime)
by certain event, parameter, or abstraction-goal propositions being true over specific time intervals.  The
contexts interpreted over these intervals are said to be induced by these propositions (e.g., by the event
Òadministration of 4 units of regular insulinÓ).  Certain predefined temporal constraints must hold between
the inferred context interval and the time interval over which the inducing proposition is interpreted.  For
instance, the effect of insulin with respect to changing the interpretation of blood-glucose values might start
at least 30 minutes after the start of the insulin administration and might end up to 8 hours after the end of
that administration.  Two or more context-forming propositions induce a composite interpretation context,
when the temporal spans of their corresponding induced context intervals intersect, if the interpretation
contexts that hold during these intervals belong to the SUBCONTEXT relation.

Formally, a dynamic induction relation of a context interval (DIRC) is a relation on propositions and
time measures, in which each member is a structure of the form <x, j, ss, se, es, ee> (see explanation later
in this subsection).  The symbol x is the interpretation context that is induced.  The symbol j Î R is the
inducing proposition: an event, an abstraction-goal, or a parameter proposition.  (An event schema is also
allowed, as shorthand for the statement that the relation holds for any event proposition representing an
assignment of values to the event schemaÕs arguments.)  Each of the other four symbols denotes a time
measure or the wildcard symbol *.  A proposition j that is an inducing proposition in at least one DIRC is a
context-forming proposition.

We can use the knowledge represented by DIRCs to infer new context intervals at runtime.  Intuitively,
the inducing proposition is assumed, at runtime, to be interpreted over some time interval I with known end
points.  The four time measures denote, respectively, the temporal distance ss between the start point of I
and the start point of the induced context interval, the distance se between the start point of I  and the end
point of the induced context interval, the distance es between the end of I and the start point of the context
interval, and the distance ee between the end point of I  and the end point of the induced context interval
(see Figure 4 in Section 2.3).  Note that, typically, only two values are necessary to define the scope of the
inferred context interval (more values might create an inconsistency), so that the rest can be undefined (i.e.,
they can be wildcards, which match any time measure), and that sometimes only one of the values is a finite
time measure (e.g., the ee distance might be +¥).  Note also that the resultant context intervals do not have
to span the same temporal scope over which the inducing proposition is interpreted.  Section 2.3.1 discusses
the advantages of the DIRC representation, which separates propositions from the contexts that they induce.

We now can clarify exactly which basic propositions and relations exist in the ontology of the KBTA
theory and problem-solving method: abstraction goals, event propositions, parameter propositions,
interpretation contexts, and DIRCs.

The set of all the relevant event schemata and propositions in the domain, their attributes, and their
subevents forms the domainÕs event ontology.  The set of all the potentially relevant contexts and
subcontexts of the domain, whatever their inducing proposition, defines a context ontology for the domain.
The set of all the relevant parameters and parameter propositions in the domain and their properties forms
the domainÕs parameter ontology.  These three ontologies, together with the set of abstraction-goal
propositions and the set of all DIRCs, define the domainÕs TA ontology.

To complete the definition of the TA task, we assume the existence of a set of temporal queries,
expressed in a predefined TA query language that includes constraints on parameter values and on relations
among start-point and end-point values among various time intervals and context intervals.  That is, a
temporal query is a set of constraints over the components of a set of parameter and context intervals, using
the parameter and context ontologies.  Intuitively, the TA language is used (1) to define the relationship
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between a pattern-type abstraction and its defining parameter intervals, and (2) to ask arbitrary queries
about the result of the TA inference process.

The TA task solved by the KBTA method is defined as follows: Given at least one abstraction-goal
interval <y, I>, a set of event intervals <ej, Ij>, and a set of parameter intervals <pk,Ênk,Êxk,ÊIk> (xk might
be the empty interpretation context in the case of primitive parameters), and the domainÕs temporal-
abstraction ontology, produce an interpretationÑthat is, a set of context intervals <xn, In> and a set of
(new) abstractions <pm,nm, xm, Im> (see Figure 1 in Section 1)Ñsuch that the interpretation can answer
any temporal query about all the abstractions derivable from the transitive closure of the input data and the
domain knowledge.

Note that, for output abstractions to be meaningful, the domain knowledge representing the relationship
between primitive and abstract parameters, such as ABSTRACTED-INTO relations, must be part of the input.

Notation:  In the rest of this paper we often use a reified representation [Shoham 1987], in which the
proposition Òthe (gradient of the) Hemoglobin value is decreasing during interval I1 in the context xÓ is
stated formally as ÒTrue(I1, DECREASING(Hemoglobin_gradient, x )),Ó thus separating the temporal
component of the sentence from the atemporal (parameter-proposition) component.  For simplicity, we
often refer to this proposition as DECREASING(I1, Hemoglobin_gradient, x), or even as
DECREASING(Hemoglobin), when no confusion is likely.  All should be read as Òthe value of the gradient
abstraction of the Hemoglobin parameter (i.e., the Hemoglobin_gradient parameter) is DECREASING
(during the relevant context and over the relevant time interval).Ó

2.2.  The temporal-abstraction tasks and mechanisms

As explained in Section 1.1, the KBTA method decomposes the TA task into five subtasks, each of
which can be performed by a TA mechanism (see Figure 2 in Section 1).  Each mechanism has its own
domain-specific knowledge requirements and its control structure.  This structure is similar to the one
employed in the PROT�G�-II framework for development of knowledge-based systems [Eriksson et al.,
1995].  Using the TA ontology of Section 2.1, we can present informally the five subtasks into which the
KBTA method decomposes the TA task, and then describe in detail the reasoning elements of the KBTA
frameworkÑthe five TA mechanisms that solve each of the TA subtasks.  The five TA subtasks are

1.  Temporal-context restriction, which involves creation of context intervals from a set of input
abstraction-goal, parameter and event intervals, thus limiting the scope of inference.

2.  Vertical temporal inference, which involves creation of abstractions by inference from
contemporaneous parameter propositions into abstract-parameter propositions.

3.  Horizontal temporal inference, which involves creation of parameter intervals by performance of
inference on parameter propositions of the same parameter (e.g., Hemoglobin_state) and interpretation
context (e.g., AIDS therapy), interpreted over intervals that are not disjoint, but that differ in temporal span.

4.  Temporal interpolation, which involves creation of parameter intervals by joining of disjoint
parameter points or parameter intervals over which are interpreted propositions of the same parameter and
interpretation context.

5.  Temporal-pattern matching, which involves creation of abstraction intervals by matching of
patternsÑconstraining parameter values and time-interval values and relationsÑover possibly disjoint
parameter intervals, associated with parameter propositions of various parameters.

The five TA mechanisms perform the five TA subtasks, given the domainÕs TA ontology (see Figure 2
in Section 1.1).  We can define their input and output values using the TA ontology (Figure 3):

1.  The context-forming mechanism creates context intervals, given abstraction-goal intervals, event
intervals, abstractions, existing context intervals, and the domainÕs TA ontology (in particular, DIRCs).

2.  The contemporaneous-abstraction mechanism creates abstraction points and intervals of type
STATE, given contemporaneous parameter points, parameter intervals, and context intervals and the
parameter ontology (including, in particular,  the ABSTRACTED-INTO relation).

3.  The temporal-inference mechanism performs two subtasks.  Temporal-horizontal inference
involves inferring a parameter proposition (e.g., NONDEC) from two given parameter propositions (e.g.,
SAME and INC) when the temporal elements over which the parameter propositions are interpreted are
disjoint.  Temporal-semantic inference involves inferring a parameter proposition given a parameter
interval and a time interval (e.g., a subinterval of that interval), interpreting a parameter proposition over
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Figure 3:  Processing of parameter points and intervals by the temporal-abstraction mechanisms.  The (primitive)
parameter points that hold at times T1 and T2 are abstracted into two abstraction points, over which a LOW(Hb) state
abstraction is interpreted, by contemporaneous abstraction; these point abstractions are joined into a LOW(Hb) interval
abstraction I1 by temporal interpolation.  Abstractions I1 and I2 are joined by temporal inference into the longer
LOW(Hb) interval abstraction I5, as are I3 and I4 into I6.  Interval abstractions I5 and I6 are joined into a LOW(Hb)
interval abstraction I7 by temporal interpolation.  A DECREASING(Hb) gradient abstraction during interval I7 can be
computed similarly, if all steps in the computation are permitted by the domainÕs temporal-abstraction properties.  Hb =

hemoglobin; ¥Ê= Hb levels;  = event interval;  = closed context interval;  = closed abstraction
interval.  The interpretation context ÒProtocol CCTG-522Ó was induced by the event ÒProtocol CCTG-522
administrationÓ and is contemporaneous with that particular event.

the time interval, thus creating another parameter interval.  The parameter and the interpretation context
parts of the input propositions must be the same.  The input also includes the parameter ontology.

4.  The temporal-interpolation mechanism joins disjoint parameter points or parameter intervals, both
with the same parameter and interpretation context.  The input also includes the parameter ontology.  The
output is a parameter interval.

5. The temporal-patternÐmatching mechanism creates new abstraction points and intervals of type
PATTERN, by matching patterns over disjoint parameter intervals or parameter points.  The patterns include
restrictions on parameter values and time-interval values and relations.  The parameters and interpretation
contexts might differ among the involved parameter propositions. Pattern classifications are represented in
the parameter ontology, which is included in the input.  The input might also include a set of runtime
temporal queries.

The TA mechanisms require knowledge (often, particular parameter properties) that is more specific
than are the general knowledge categories used for defining the TA task.  We distinguish among four
domain knowledge types used by the TA mechanisms (see Figure 2 in Section 1):

1.  Structural knowledge (e.g., IS-A, ABSTRACTED-INTO, and PART-OF relations in the domain;
parameter properties such as measurement scale and units)

2.  Classification knowledge (e.g., classification of Hemoglobin value ranges into LOW, HIGH, VERY
HIGH; classification of temporal patterns)

3.  Temporal-semantic knowledge (e.g., the downward-hereditary property [Shoham 1987] allows us
to infer a parameter proposition over any subinterval of an interval over which it is true; the concatenable
property allows us to concatenate adjacent equal-parameter intervals)
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4.  Temporal-dynamic knowledge (e.g., persistence of the truth value of LOW(Hemoglobin) when the
Hemoglobin parameter is not measured; minimal values of a significant change)

In Sections 2.3 through 2.7, we describe the five TA mechanisms, and point out the precise knowledge
that each mechanism needs to be instantiated in (applied to) a new domain.  This knowledge is usually a
specialization and combination of the four knowledge types (see Figure 2 in Section 1).

2.3.  The context-forming mechanism

Abstractions are meaningful only within the span of a relevant context interval, such as administration
of the drug AZT as part of a particular clinical protocol for therapy of AIDS.  Context intervals create a
relevant frame of reference for interpretation, and thus enable a TA mechanism both to compute the most
specific abstractions for that context and to avoid computing abstractions for irrelevant contexts.  Context
intervals are created by the context-forming mechanism.

As explained in Section 2.1, DIRCs represent relationships between context intervals and several types
of propositions that can induce these intervals (Figure 4).  Context intervals might be induced by the
existence of an abstraction-goal interval, such as Òtherapy of insulin-dependent diabetes,Ó or by the
existence of an event intervalÑthat is, an external process or action, such as treatment in accordance with a
particular clinical protocol.  A context interval can also be induced by the existence of a parameter interval
that includes a context-forming (see Section 2.1) parameter proposition <p, n, x>; namely, the value n of
the parameter p, in the context x, is sufficiently important to change the frame of reference for one or more
other parameters (e.g., the LOW value of the Hemoglobin_state abstract parameter in the context of
protocol CCTG-522 might affect the interpretation of values of the Platelet parameter).

A composite interpretation context (see Section 2.1) can be composed by the context-forming
mechanism from a conjunction of existing basic interpretation contexts that have a SUBCONTEXT relation.
The composite interpretation context would be interpreted over a context interval formed from a temporal
intersection of two or more context intervals.  For instance, a composite interpretation context is often

+2W
+4W

CCTG-522_AZT-toxicity interpretation context

AZT-administration event

(a)

+4W
+¥-6W

-2W

Hepatitis B

HB prodrome Chronic active hepatitis

(b)

CCTG-522 protocol

Figure 4:  Dynamic induction relations of context intervals (DIRCs).  (a) An overlapping direct and prospective AZT-
toxicity interpretation context induced by the existence of an AZT-administration event in the context of the CCTG-522
AIDS-treatment experimental protocol.  The interpretation context starts 2 weeks after the start of the inducing event,
and ends 4 weeks after the end of the inducing event.  Note that structural knowledge about the PART-OF relationship
between the AZT-administration subevent and the CCTG-522 protocol event and the SUBCONTEXT relationship between
the two interpretation contexts induced by these events is also required to create the interpretation context of ÒAZT-
therapyÐtoxicity within the CCTG-522 protocol.Ó  (b) Prospective (chronic active hepatitis complication) and
retrospective (hepatitis B prodrome) interpretation contexts, induced by the external assertion or internal conclusion of
a hepatitis B abstraction interval, a context-forming abstraction.  Note the temporal constraints.   = event

interval;  = closed context interval;  = open context interval;  = closed abstraction interval.
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induced by an event chainÑa connected series of events <e1, e2,...,en>, where ei+1 is a subevent of ei.  In
that case, the composite interpretation context would denote an interpretation context induced by the most
specific subevent, such as administration of a particular drug as part of a certain protocol.  The reason is
that subevents of an event typically induce interpretation contexts that have a SUBCONTEXT relation to the
interpretation context induced by the event.  This knowledge can be used as a default in the context
ontology, and can also be exploited during manual or automated knowledge acquisition, either for
knowledge elicitation or for knowledge verification and cross-validation.  In addition, interpretation
contexts can also be formed by concatenation of two adjacent, or meeting [Allen, 1984] equal-context
intervals.  (Interpretation contexts are assumed to be concatenable; see Section 2.5.)

Dynamic induction of context intervals by parameter propositions might lead to new interpretations of
existing parameter intervals, thus potentially inducing new context intervals within which another or even
the original parameter value (the input datum) might have new interpretations.  However, we can show
[Shahar, 1994] that no contradictions or infinite loops can be generated by the context-forming process.

Observation 1:  The context-forming process has no oscillation cycles among different interpretations
of the same parameter: the same parameter proposition can never be retracted and eventually reasserted.

Justification:  Parameter propositions are never retracted by the addition of a new interpretation
context.  Rather, a new interpretation is added to the set of true parameter propositions.  This addition
creates no contradiction, since the same parameter has two different interpretations within two different
contemporaneous contexts.  Thus, if a parameter proposition <p , n1, x1> induces a new interpretation
context x2 over some interval, and within the scope of that interval the parameter p is interpreted to have
another value, a new parameter proposition <p,Ên2,Êx2>would simply be inferred and added to the set of
true propositions.  The existence of two contemporaneous parameter propositions different in parameter
value creates no contradictions, since the parameter pÑor some abstraction of p (say, state(p))Ñis
interpreted within two different contexts and can thus have two different values at the same time.  o

Observation 2:  The context-forming process is finite.
Justification:  The total number of different interpretation contexts that, potentially, can be inferred

(including composite ones) is limited by an existing upper bound: the size of the context ontology and the
number of potential subcontext chains (which can form composite contexts) of interpretation contexts that
have SUBCONTEXT relations.  Furthermore, for each parameter p, the number of possible induced context
intervals is bound by the number of DIRCs in which a parameter proposition including p is an inducing
proposition.  Since observation 1 ascertained that there are no loops either, the process must end for any
finite number of input (interval-based) propositions.  o

2.3.1.  Advantages of explicit interpretation contexts and DIRCs
Explicit interpretation contexts, separate from the propositions inducing them and from abstractions

using them, have significant conceptual and computational advantages for context-specific interpretation of
time-stamped data.

1.  Since the four temporal measures of a DIRC, representing temporal constraints over an induced
context interval with respect to the start time and the end time of the inducing proposition, can be positive,
negative, or infinite time measures, the context interval induced by a context-forming proposition can have
any one of AllenÕs [1984] 13 binary temporal relations (e.g., BEFORE, AFTER, or OVERLAPS) to the time
interval over which the inducing proposition is interpreted (see Figure 4).  Thus, a context-forming
proposition interval can create a context envelope that might include, in addition to a direct context
(concurrent with the temporal scope of the propositionÕs interval), retrospective context intervals (e.g.,
potential preceding symptoms of a disease), prospective context intervals (e.g., potential complications of a
disease), or both (see Figure 4).  Intuitively, retrospective interpretation contexts represent a form of
abductive reasoning (e.g., from effects to causes, such as preceding events), whereas prospective
interpretation contexts represent a form of deductive reasoning (e.g., from an event to potential
complications).  (Note, however, that we infer only an interpretation context, rather than the actual
abstraction.)  The context-forming mechanism creates retrospective and prospective contexts mainly to
enable the use of context-specific TA functions, such as the correct mapping functions related to
ABSTRACTED-INTO relations and the relevant temporal-persistence functions [Shahar 1994], that  should
not be considered in other contexts.  Creation of explicit contexts enables the TA mechanisms to focus on
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the abstractions appropriate for particular contexts, such as potential consequences of a certain event, and to
avoid unnecessary computations in other contexts.  In addition, the ability to create dynamically
retrospective contexts enables a form of hindsight [Russ, 1989], since the interpretation of present data can
induce new interpretation contexts for the past and thus shed new light on old data.

2.  Since a context-forming proposition can be an inducing proposition in more than one DIRC, the
same proposition can induce dynamically several  interpretation contexts, in the past, the present, or the
future, relative to the temporal scope of the interval over which it is interpreted.  Thus, we can model, for
instance, several potential effects of the same action, each of which creates a different interpretation
context, or several inferences from the same temporal pattern, once detected.

3.  The same interpretation context (e.g., potential bone-marrow toxicity) might be induced by different
propositions, possibly even of different types and occurring over different periods (e.g., different types of
chemotherapy and radiotherapy events).  The domainÕs TA ontology would then be representing the fact
that, within the particular interpretation context induced by any of these propositions (perhaps with
different temporal constraints for each proposition), certain parameters would be interpreted in the same
way (e.g., we can represent the properties of the hemoglobin-state parameter within the scope of a bone-
marrowÐtoxicity context interval, without the need to list all the events that can lead to the creation of such
a context interval).  Thus, the separation of interpretation contexts from their inducing propositions also
facilitates maintenance and reusability of the TA knowledge base.

4.  Since several context intervals, during which different interpretation contexts hold, can exist
contemporaneously (that is, concurrently), it is possible to represent several abstraction intervals in which
the same abstract parameter (e.g., the state abstraction of the hemoglobin-level parameter) has different
values at the same timeÑone for each valid and relevant context (e.g., two contemporaneous abstractions,
ÒLOW hemoglobin stateÓ in the context of having AIDS without complications, and ÒNORMAL hemoglobin
stateÓ in the context of being treated by the drug AZT, which has expected side effects).  Thus, the context-
forming mechanism supports maintenance of several concurrent views of the abstractions in the resultant
abstraction database, denoting several possible interpretations of the same data.  Context-specific views are
one reason that parameter propositions (including temporal-pattern queries to the abstraction database)
must include an interpretation context: A parameter value by itself (e.g., LOW) might be meaningless.

2.3.2.  Generalized and nonconvex interpretation contexts
Additional distinctions important for the TA task are enabled by the explicit use of interpretation

contexts and DIRCs.  Usually, abstractions are specific to a particular interpretation context, and cannot be
joined (by the temporal-inference or temporal-interpolation mechanisms) to abstractions in other
interpretation contexts (e.g., two LOW(Hemoglobin_state) abstractions might denote different ranges in two
different subcontexts of the same interpretation context induced by a chemotherapy-protocol event).  This
restriction is reasonable, since the primary reason for having contexts is to limit the scope of reasoning and
of the applicability of certain types of knowledge.  A simple interpretation context is a basic (single) or a
composite interpretation context.  Our discussions till now concerned simple interpretation contexts.

It is both desirable and possible, however, to denote that, for certain classes of parameters, contexts, and
subcontexts, the abstractions are sharable among two meeting context intervals (with different
interpretation contexts).  Such abstractions denote the same state, with respect to the task-related
implications of the state, in all sharing contexts.  For instance, two meeting LOW(Hemoglobin) abstractions
might indeed denote different ranges in two different contexts, and the Hemoglobin_state parameter might
even have only two possible values in one context, and three in the other, but the domain expert still might
want to express that parameter intervals with a LOW value of the Hemoglobin_state abstraction can be
joined meaningfully to summarize a particular hematological state of the patient.  The sharable abstraction
values would be defined within a new generalized interpretation context that is equivalent to neither
either of the two shared subcontexts (e.g., those induced by two different parts of the same clinical
protocol), nor their parent context (e.g., the one induced by the clinical protocol itself, within which the
Hemoglobin_state parameter might have yet another, default, LOW(Hemoglobin) range).  This generalized
context can be viewed as a generalization of two or more subcontexts of the parent interpretation context.
For instance, FaganÕs [1980] VM system provided advice for managing patients dependent on a ventilator
machine.  VM created context-specific abstractions of clinical parameters by mapping the values of these
parameters into the same set of values (e.g., ACCEPTABLE).  These values could be aggregated regardless
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of the context in which they were formed.  In our framework, we would describe such a system as as an
extreme case in which all parameter values are sharable among all subcontexts.

Finally, note that we might want to abstract the state of a parameter such as glucose in the preprandial
(before-meals) interpretation context, over two or more temporally disjoint, but semantically equivalent,
preprandial interpretation contexts (e.g., the PRELUNCH and PRESUPPER interpretation contexts are both
PREPRANDIAL interpretation contexts).  We might even want to create such an abstraction within only a
particular preprandial context (e.g., a PRESUPPER interpretation context), skipping intermediate preprandial
contexts (e.g., PREBREAKFAST and PRELUNCH interpretation contexts).  Making this interpolation is
different from sharing abstractions in a generalized interpretation context, since the abstractions in this case
were created within the same interpretation contexts, but the interpolation operation joining them needs to
skip temporal gaps, including possibly context intervals over which different interpretation contexts hold.
The output is a new type of a parameter intervalÑa nonconvex interval, as defined by Ladkin [1986].  A
LOW(glucose) abstraction would be defined, therefore, within the nonconvex context of Òprebreakfast
episodes.Ó  Note that parameter propositions within such a nonconvex context will have different temporal-
semantic inference properties (see Section 2.5) than when the same parameter propositions are created
within a simple, convex, context.  For instance, propositions will usually not be downward hereditary
([Shoham, 1987]; see Section 2.5) in the usual sense, unless subintervals are confined to only the convex or
nonconvex intervals that the nonconvex superinterval comprises (e.g., only morning times).

Thus, the interpretation context of a parameter proposition is a combination of simple, generalized, and
nonconvex interpretation contexts.  Assume that a Gen (generalize) operator returns the generalizing-
context parent (if it exists) of a parameter proposition in the parameter-properties ontology.  Assume that a
Gen* operator, which generalizes the Gen operator, returns the least common generalizing-context ancestor
(if one exists) <p,Ên,Êxg> of two parameter propositions <p,Ên, x1>, <p,Ên, x2>, in which the parameter p
and the value n are the same, but the interpretation context is different.  Assume that an NC (nonconvex)
operator returns the nonconvex-context extension of a parameter proposition (if one exists).  Then, the
parameter proposition that represents the nonconvex join (over disjoint temporal spans) of two parameter
propositions in which only the interpretation context is different can be represented as

NC (Gen* (<p,Ên, x1>, <p,Ên, x2>).
For instance, we first look for a generalizing interpretation context for Glucose_state abstractions in the

PRELUNCH and PRESUPPER interpretation contextsÑin this case the PREPRANDIAL one.  Then, we
represent the parameter proposition Òlow preprandial glucose-state valuesÓ as the LOW value of the
Glucose_state parameter in the nonconvex extension of the PREPRANDIAL interpretation context.  We
would interpret this proposition over some time interval to form a parameter interval.  (Generalized and
nonconvex interpretation contexts are a part of the context ontology; the corresponding extended-parameter
propositions are a part of the parameter ontology).

2.3.3.  Formation of contexts and the event and context ontologies
The context-forming mechanism assumes that the domainÕs ontology includes an event ontologyÑthat

is, a theory that represents the external events in that domain (e.g., protocols, medications, specific drugs),
the relationships among them (e.g., a medication might have a PART-OF relationship with a protocol), and
any DIRCs in which event schemata and propositions are the inducing proposition (see Section 2.1).  The
event ontology can be represented as a frame hierarchy with IS-A and PART-OF relations among frames.

The event ontology includes all relevant events, subevents, and event DIRCs, which the context-
forming mechanism can use at runtime.  The default event DIRC comprises a single DIRC representing a
direct (i.e., contemporaneous) interpretation context whose name is the eventÕs nameÑthat is, the DIRC
<event name, event name, 0, *, 0, *>.  In addition, the event ontology is used by the context-forming
mechanism to disambiguate the PART-OF relationship of several coexisting events, and thus to decide when
it is reasonable to form a new, more specialized, context when two or more events coexist (e.g., when both
a CCTG-522 protocol event and an AZT event are detected), and which event is the subevent (and thus
might induce a subcontext) of the other.  Similar reasoning is useful also for acquiring a context ontology
and for maintenance of a TA ontology.

The set of all the potentially relevant interpretation contexts and subcontexts of the domain and their
properties defines a context ontology for the domain.  The context ontology, like the parameter and event
ontologies, can be represented as a frame hierarchy.  The types of semantic links among context nodes in
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the context ontology include IS-A and SUBCONTEXT relations.  The knowledge represented in the context
ontology complements the knowledge represented in the parameter ontology and the event ontology and
assists the context-forming mechanism in correctly forming composite-context intervals from several
contemporaneous context intervals.  For instance, the interpretation context induced by an event or by one
of the subevents does not necessarily bear the name of its inducing event, nor does it necessarily have the
same temporal scope; the only indication for a SUBCONTEXT relationship exists in that case in the context
ontology.  Thus, an AZT drug-administration subevent of the CCTG-522 clinical-protocol event induces a
AZT-TOXICITY interpretation context that has a different name and a different temporal scope (see Figure
4), but that has a SUBCONTEXT relationship to the CCTG-522 interpretation context induced by the CCTG-
522 protocol event.

The context ontology is also important for representing other types of knowledge.  For instance, in the
domain of monitoring therapy for insulin-dependent diabetes, the PREBREAKFAST interpretation context
(induced by a morning meal) has an IS-A relationship to the more general PREPRANDIAL interpretation
context (induced by any meal).  This relation is represented explicitly only in the context ontology of the
diabetes-monitoring domain [Shahar and Musen, 1996].  Finally, special interpretation contexts, such as
generalized contexts and nonconvex contexts, appear explicitly in the context ontology.

The rest of the TA mechanisms do not depend on the event and context ontologies.  These mechanisms
assume the existence of context intervals and of interpretation contexts as part of the parameter
propositions.  The context-forming mechanism is thus the only interface with the representation of the
domainÕs events and DIRCs, and shields the rest of the TA mechanisms from any need to know about
external events, such eventsÕ structures, or the way such events induce interpretation contexts.

In summary, the knowledge required for forming context intervals is mainly structural knowledge,
which comprises an ontology of event schemata and propositions, including the PART-OF relation; an
ontology of parameter schemata and propositions; an ontology of interpretation contexts, including the
SUBCONTEXT relation; and the set of abstraction-goal propositions; and the set of all DIRCs, a special type
of structural knowledge, based on an extension of an INDUCED-BY relation .

The rest of the TA mechanisms described in this section require various types of knowledge represented
in the parameter ontology (see Section 3 for a particular representation scheme of the parameter ontology).

2.4.  Contemporaneous abstraction

The contemporaneous-abstraction mechanism accepts as input one or more parameter points or intervals
and returns as output an abstraction point or interval of abstraction type STATE (see Figure 1 in Section 1).
The resulting conclusion holds for the intersection of the input intervals.  The time stamps of all the time
intervals of the input parameter points or intervals must be equivalent (a domain- and task-specific
definition).  For instance, if the task has DAY as the lowest granularity level, parameters measured at
different hours of the same day might be considered to have the same time stamp.

One type of knowledge required by the contemporaneous-abstraction mechanism is structural
knowledge, such as the ABSTRACTED-INTO relation (see Section 2.1).  In addition, temporal-dynamic
knowledge about the dynamic behavior of the parameters involved might be required, such as expected
persistence (validity) of a measurement both before and after that measurement was taken (see Section
2.6.2.1).  Such temporal-dynamic knowledge enables abstraction of primitive or abstract parameter values
that have been recorded as valid at different times (e.g., the Hemoglobin level was measured on Tuesday,
and the Platelet count is not known until Thursday, but a bone-marrowÐstate abstraction requires both).

Contemporaneous temporal abstraction is used for two related subtasks.  The first is classification of the
value of the parameter of an input parameter point or parameter interval.  Examples include creation of
HIGH, MEDIUM, or LOW Hemoglobin-value state abstractions.  The knowledge requirements include a list
of allowed values of the resultant state abstraction, and range tables that map primitive- or abstract-
parameter values into discrete-state values.  The classification is sensitive to the relevant interpretation
context (e.g., a chemotherapy-protocol event).  The second subtask, computational transformation, is an
extension of classification; it assumes a function that maps the values of one or more parameters into the
value of another, abstract, parameter.  For example, a transformation function might compute the
percentage of white blood cells that are lymphocytes at a specific time point, and map that value into a
predefined category.  This category might depend on the context.  Thus, computational transformation
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might use additional parameters, might involve additional computation, and might require special function
tables that are specific for the domain, the task, and the context.2

Both subtasks need vertical classification knowledge, a subtype of the classification knowledge type
that is relevant for mapping contemporaneous parameter values into another, contemporaneous value of a
new parameter.  For either subtask, we can distinguish between single-parameter contemporaneous
abstraction, which maps a single parameter directly into its state-abstraction values, and multiple-parameter
contemporaneous abstraction, which maps several parameters into one abstract value.  (Section 2.6.1
discusses the significance of this distinction.)

In summary, the knowledge required for forming contemporaneous abstractions is an ontology of
parameter schemata and propositions that includes (1) structural knowledge, which includes the
ABSTRACTED-INTO relation and appropriate interpretation contexts for applying the vertical-classification
knowledge; (2) classification knowledge, consisting of vertical-classification knowledge (i.e., the range-
classification tables and the computational-transformation functions); and (3) temporal-dynamic
knowledge, which comprises local-persistence functions.

2.5.  Temporal inference

The temporal-inference mechanism involves logically sound inference regarding interpretation of a
proposition or a combination of propositions over one or more temporal intervals.  The temporal-inference
mechanism performs two related, well-defined, inference subtasks: temporal-semantic inference and
temporal-horizontal inference.

2.5.1.  Temporal-semantic inference
Temporal-semantic inference employs a set F of domain-specific temporal-semantic properties of

parameter propositions. These properties are an extension of ShohamÕs [1987] temporal propositional
properties and are exploited by a set of temporal-inference actions performed by the temporal-inference
mechanism (actions can be seen as Òminimechanisms,Ó whose task is implicit).  The effects of temporal-
inference actions depend on the precise input arguments and on the temporal-semantic properties that apply
to the input parameter propositions.  The actions accept as input either one abstraction and a time (or
context) interval, or two abstraction intervals.  They return as output an abstraction interpreted over either
the time (or context) interval, or a newly defined superinterval of the two abstraction intervals.  The time
intervals of the two input abstractions can have, in general, any of AllenÕs [1984] 13 binary temporal
relations except BEFORE and AFTER (i.e., there must be no gap between the intervals; the case where a
temporal gap exists is discussed in Section 2.6Ñit is handled by the interpolation mechanism).  The
resulting conclusion holds for the intersection or the union of the intervals.  In the case of one abstraction
and a time interval, the relations include STARTS, FINISHES, DURING, and the inverses of these relations;
the inferred conclusion would hold for the duration of the input time interval.

For instance, certain propositions, when known at interval I1, can be inferred for every subinterval I2
that is contained in I1 (e.g., the characterization Òpatient is in comaÓ).  These propositions have the
downward-hereditary temporal-semantic property [Shoham 1987].  That is, the downward-hereditary
property of these propositions has the value TRUE.  This property, however, is not true, for instance, in the
case of the NONMONOTONIC gradient abstraction, for any parameter.  Using the TA ontology, the
downward-hereditary temporal-semantic inference action can be expressed as follows (universal quantifiers
have been dropped):

Input: abstraction <p, n1, x, I1>, time interval I2
Conditions: I2 DURING I1;  <p, n1, x> is DOWNWARD HEREDITARY; Ø [<p, n2, x, I2>, n1 ¹ n2]
Conclude: abstraction <p, n1, x, I2>

2The computational-transformation subtask is, in theory, a very general one, and might involve computing a given
black-box function.  Several measures are used in the R�SUM� system to reduce the ambiguity of such functions and
to increase the amount of potential automated reasoning possible regarding such functions [Shahar, 1994].  Examples
include the disciplined use, when possible, of classification tables with predefined semantics, and the explicit
representation of abstracted-into relations and qualitative-dependencies relations in the parameter ontology.
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The interval I2 is the temporal element of some other entity (e.g., an existing abstraction).  The negative
condition is checked to ensure consistency; if all other conditions succeed but this condition fails, the
inference returns FALSE, an indication for a contradiction (this situation will be discussed later in this
section).

To join two meeting abstraction intervals (e.g., two intervals previously classified as DECREASING for
the gradient abstraction of some parameter) into one superinterval (e.g., a longer DECREASING abstraction
of that parameter), we need another inferential propertyÑnamely, the concatenable property [Shoham,
1987].  That is, we need a TRUE value for the concatenable property of the DECREASING value of the
gradient abstraction of that parameter in that context.  A parameter proposition is concatenable if,
whenever it holds over two consecutive time intervals, it holds also over their union.  The input for the
inference action in this case includes two abstraction intervals over which the same parameter proposition
holds; the output, if the inference is relevant, is the abstraction superinterval (see Figure 3).  (When the
values of the same parameter are different for the two parameter propositions, we need horizontal-
classification knowledge, discussed later in this section).  For instance, when the proposition Òthe patient
had HIGH blood pressureÓ is true over some interval as well as over another interval that that interval
meets, then that proposition is true over the interval representing the union of the two intervals.  Note that
two meeting, but different, 9-month pregnancy episodes are not concatenable, since it is not true that the
patient had an 18-month pregnancy episode.  (The two interpretation contexts  induced by the two separate
episodes would be concatenable.)

Other common temporal-semantic properties for parameter propositions, originally defined by Shoham
[1987] for general propositions, are gestalt and solid.  A parameter proposition is gestalt if it never holds
over two intervals, one of which properly contains the other (e.g., the interval over which the proposition
Òthe patient was in a coma for exactly 2 weeksÓ is true cannot contain any subinterval over which that
proposition is also true).  A parameter proposition is solid if it never holds over two properly overlapping
intervals (e.g., Òthe patient received a full course of the current chemotherapy protocol, from start to endÓ
cannot hold over two different, but overlapping intervals).  In both cases, the input to the inference action
includes two abstraction intervals, and the conclusion is simply FALSE if a contradiction is detected.

We can define additional useful temporal-semantic properties (and implied temporal-inference actions).
One such property is universally diffusive: The parameter proposition can be inferred for any superinterval
of the proposition interval, in a particular context.  This property is assumed to have the value FALSE as a
default.  (However, the NONMONOTONIC value of the gradient abstraction proposition for all parameters
and contexts has the universally diffusive inferential property as default, since any interval that includs a
NONMONOTONIC subinterval is NONMONOTONIC for that parameter.)  Constant parameters, however
(e.g., gender), can be assumed, as a default, to have the universally diffusive property for all contexts, once
their value is set for some interval.  Constant parameters, although usually considered atemporal, can
therefore be modeled  as temporal parameters that have the universally diffusive inferential property and the
downward-hereditary property.  They can also induce corresponding interpretation-context intervals.

The universally diffusive property can be refined further.  Some propositions are naturally only
backward diffusiveÑthat is, they are true as a default only from -¥ (or at least, from the zero-point time
stamp) up to the time in which they are known to be valid (e.g., Òthe patient was living in England until
now,Ó and other propositions of the type ÒP is true until nowÓ; when asserted at any time [t, t], they hold
over the interval [-¥, t], or at least over [0, t]).  Other propositions are naturally forward diffusive; that is,
they are true as a default only from the present until +¥ (e.g., Òthe patient had a liver transplantÓ and other
propositions of the type ÒP was true in the pastÓ).  Note that the input for the temporal-inference action in
the case of the three diffusive properties includes an abstraction interval and a context interval; the output,
if the inference holds, is an abstraction interval where the scope of the temporal element varies, dependent
on the scope of the input abstraction and context intervals.

Defaults for the temporal-semantic properties of propositions exist and can be overridden for any
specific parameter, value, and context by the knowledge engineer defining the basic concepts and entities of
the task, or by the domain expert elaborating the temporal-abstraction knowledge.  The temporal-semantic
knowledge for a domain can be summarized as a relation that we call an inference-properties table, where
every tuple (p,Ên,Êf,Êt,Êx) in the relation represents that the temporal-semantic property f Î F, for value n,
of parameter p, in the context x, has the truth value t (tÊÎ {TRUE, FALSE}).  The parameter p is assumed
here to include its abstraction type.
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Most temporal-semantic properties have, as a default, values that are stable over many domains; thus,
the inference-properties table can be defined at a high, domain-independent level and modified for
particular parameters only when necessary.  Both the downward-hereditary property and the concatenable
property can be assumed to have the value TRUE as a default for most abstractions, as well as for
interpretation contexts, unless specified otherwise.  The solid and gestalt properties can be assumed to be
TRUE by default, although the values of these properties can vary.  The three diffusive properties are
assumed to have the value FALSE by default.  External events are considered, as a default, to be
nonconcatenable and solid, but interpretation contexts  are assumed, as a default, to be downward
hereditary and concatenable.

The  temporal-semantic inference subtask uses the temporal-semantic properties for two types of
conclusions:

1.  Positive inference: Creation of new abstractions, such as when the downward-hereditary property is
used to interpret a parameter proposition over a subinterval of the input abstraction interval.

2.  Negative inference: Detection of contradictions, such as when a parameter proposition for which the
gestalt temporal-semantic property has the value TRUE is detected within the temporal scope of an identical
parameter proposition.  (In that case, following the contradictory inference, we need to decide which
parameter proposition, if any, should be retracted, and how to propagate the results of such a retraction to
the rest of the abstraction database; see Section 3.3).

Performing a contemporaneous abstraction of several parameter propositions into another one often
involves performing a preliminary step of temporal-semantic inference.  If two abstractions containing two
propositions j1, j2 overlap with respect to temporal scope, and there is a vertical classification rule j1 and
j2 => j3, we cannot immediately infer that f3 holds  over the intersection interval I.  Both j1 and j2 must
be downward hereditary.  In that case, j3 is necessarily true over I at our current state of information
(unless new data invalidate that conclusion).  If j1 is gestalt, we cannot infer j3; we can infer, however,
that j1 is necessarily false over I.  Finally, if j1 is not downward hereditary and is not gestalt (e.g., the
NONMONOTONIC(blood pressure) parameter proposition), we can conclude only that j1 is possibly true
over I, or, equivalently, is possibly false.  New data can change the truth value of the proposition j1 over I
to either necessarily true or necessarily false.  Similar analysis holds for other temporal relations between
interval-based propositions, leading to a modal logic [Hughes and Cresswell, 1968] of combining
propositions over time.  Thus, answering a temporal query involving one or more inferred parameter
propositions might generate, in principle, answers such as Òthe value n  for parameter p  is possibly true
during the period denoted by interval I.Ó

2.5.2.  Temporal horizontal inference
The second temporal-inference subtask is temporal-horizontal inference.  This subtask determines the

value of the join operation (Å) of two meeting abstraction intervals in the same context, where the same
parameter has equal or different values (e.g., one over which the parameter is abstracted as INCREASING,
and one over which the parameter is abstracted as DECREASING), into an abstraction superinterval (e.g.,
with a parameter value NONMONOTONIC).  This inference action uses, apart from temporal-semantic
knowledge (i.e., whether the concatenable property of the parameter has the value TRUE), horizontal-
classification knowledge.  Note that such knowledge is a classification-type knowledge.  In general, a
horizontal-inference table should be constructed for all the task-relevant abstraction combinations, possibly
specialized also for the context.  A horizontal-inference table is a relation that includes tuples of the form
(p,Ên1,Ên2,Ên3,Êx), meaning that, for parameter p (assuming that p includes its abstraction type), when an
abstraction interval with parameter value n1 meets an abstraction interval with parameter value n2, in the
context x, the value of the parameter of the joined abstraction interval should be n3.  That is, n1 Å n2 = n3.
In a horizontal-inference table, it is assumed that concatenated abstractions are of the same typeÑfor
instance, a state abstraction type (e.g., HIGH or LOW) or a gradient abstraction type (e.g., INCREASING or
SAME).  The Å operator is the horizontal-join operator.

In the case of the gradient abstraction type, we define a default, domain-independent, horizontal-
inference table, denoting a qualitative Å operation for joining gradient-abstracted intervals [Shahar et al.,
1992].  The default Å operation assumes that the set of allowed gradient-abstraction values is
{DECREASING, INCREASING, SAME, NONINCREASING, NONDECREASING, NONMONOTONIC}.  The
abstractions SAME, DECREASING, and INCREASING are the results of primary interpolation (see Section
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2.6) from two parameter points and require only standard algebra; the rest are concluded only as the result
of secondary abstractions of abstraction intervals (e.g., DECREASING Å SAME = NONINCREASING).  The
default Å operation can be viewed as a modification of the Å operation in the Q1 algebra [Williams, 1988],
if the sign of the derivative of the parameter, whose gradient is abstracted in the Q1 algebra, is mapped in
the fol lowing fashion:  {0}Ê® ÊSAME,  { + } Ê®ÊINCREASING,  {-}Ê®ÊDECREASING,
{?}Ê®ÊNONMONOTONIC.  We have  added the NONINCREASING symbol for the set {0, -}, and the
NONDECREASING symbol for the set {0,Ê+}.  It can be easily proved that this extension still preserves
associativity (i.e., (XÊÅÊY)ÊÅÊZÊ=ÊXÊÅÊ(YÊÅÊZ)) and commutativity (i.e., XÊÅÊYÊ=ÊYÊÅÊX).  As in other
qualitative algebras, there is no additive inverse, although the values of the original input parameter
propositions remain in the knowledge base.

Most of the entries in the horizontal-inference table, for a particular application task, can exist as
domain-independent (or at least as context-independent) defaults.  Otherwise, these entries can be filled in
by the knowledge engineer; the domain expert can add more abstraction values, and then can define the
result of concatenating meeting intervals already abstracted by temporal abstractions.  As Section 2.6
shows, the horizontal-inference table also is used by the temporal-interpolation mechanism.

In summary, the temporal-inference mechanism requires an ontology of parameter propositions that
includes (1) classification knowledge, which comprises horizontal classification knowledge represented as a
horizontal-inference table, and (2) temporal-semantic knowledge, which comprises temporal-semantic
properties represented as an inference-properties table.

2.6.  Temporal interpolation

The temporal-interpolation mechanism accepts as input two parameter points, two parameter intervals,
or a parameter interval and a parameter point, and returns as output an abstraction, interpreted over a
superinterval of the inputÕs time points or intervals, interpolating over the gap between these time intervals
(see Figure 3 in Section 2.2).  For instance, we need temporal interpolation to create a DECREASING
gradient abstraction for a parameter over an interval, when the start-point parameter value in that interval is
greater than the end-point parameter value (and no parameter values of intermediate time points are
known), or when we are joining two sufficiently (temporally) close interval abstractions of
LOW(Hemoglobin) into a longer one.

We distinguish between two types of temporal interpolation, depending on the temporal component of
the input: (1) primary interpolation, which accepts two parameter points and returns an abstraction
interval, and (2) secondary interpolation, which accepts two parameter intervals (or a parameter interval
and a parameter point), and returns an abstraction superinterval.  There are three basic abstraction types
(STATE, GRADIENT, RATE); thus, there are six interpolation subtasks, or inference actions.  The following
presentation of the six temporal-interpolation subtasks uses the default gradient-abstraction values
mentioned in Section 2.5.  (Even these essentially domain-independent values can be modified.)

Primary state interpolation accepts two disjoint state-abstraction points T1, T2 for the same parameter
p (e.g., a state abstraction of p with the value LOW), and bridges the gap between them to infer a state
abstraction of p interpreted over the interval [T1, T2].  Primary gradient interpolation accepts two
parameter points T1, T2 of the same parameter p and, if certain conditions hold, infers a gradient abstraction
of p interpreted over the interval [T1, T2]  whose value is DECREASING, INCREASING, or SAME with
respect to the change in p .

Primary rate interpolation infers rate abstractions; it classifies rates of change in p (e.g., STABLE,
SLOW, or other domain-specific values) between two parameter points of the same parameter.  Secondary
state interpolation occurs when, from two state-abstraction intervals I1 and I2 of parameter p, a state
abstraction of p is inferred, interpreted over a new interval Ij = [I1.start, I2.end].  An example is joining two
sufficiently (temporally) close intervals over which the state abstraction of the Hemoglobin-level parameter
has the value LOW.

Secondary gradient interpolation infers, from two gradient-abstraction intervals of parameter p, a
gradient-abstraction superinterval of p whose default values include INCREASING, DECREASING, SAME,
NONDECREASING, NONINCREASING, and NONMONOTONIC.  Secondary rate interpolation infers, from
two rate-abstraction intervals of parameter p, a rate-abstraction superinterval of p.  Note that a parameter,
such as the Hemoglobin level, might be abstracted as INCREASING in a certain interval with respect to the



Y. Shahar:  A framework for knowledge-based temporal abstraction

20

gradient abstraction, might be abstracted as SLOW with respect to the rate abstraction in that interval, and
might be abstracted as NORMAL with respect to the state-abstraction type.  The three abstraction types are
thus mostly independent, except for a possible correlation between the gradient and the rate (e.g., a value of
the rate abstraction other than STABLE, or its domain-specific equivalent, might imply that the value of the
gradient abstraction was other than SAME).

Temporal interpolation requires that the temporal distance between the two time points or intervals be
less than a certain time gap.  Within that time gap, the characterization of the parameter, as defined by the
specific value of the given abstraction (e.g., LOW or INCREASING), can then be assumed to hold.  The
maximal allowed gap must be a domain-, task-, and context-dependent function (e.g., the maximal allowed
gap for LOW(Hemoglobin) in the domain of oncology, the task of caring for patients using certain
protocols, and the interpretation context of patients receiving X-ray therapy).  The interpretation context is
common to both joined intervals.  The arguments of the maximal-gap function for each specified context
include the parameter that we are abstracting and the specific abstraction that we have in mind.  They also
include a measure of the rate of change of the parameter before and after the time gap.  As an
approximation of the arguments affecting the rate of change, we use the length of the intervals before and
after the gap.  Thus, for every context x, we denote the maximal-gap function D as D(p,Ên,ÊL(I1),ÊL(I2),Êx) of
the specific abstracted parameter p (assuming that p includes its abstraction type) and the lengths L(I1),
L(I2) of the intervals I1 and I2, to be joined in the context x  into an interval with an abstraction value n.
The D function returns the length of the maximal temporal gap that still allows interpolation between I1 and
I2.  For instance, in any context, joining two intervals where the Hemoglobin-level state abstraction was
classified as LOW into a longer interval whose Hemoglobin-level state abstraction is classified as LOW
depends on the time gap separating the two intervals, on the properties of the Hemoglobin-level state
abstraction for the value LOW in that context, and on the length of time in which the LOW property was
known both before and after the time gap (see Figure 3 in Section 2.2).

A prerequisite to an interpolation operation is that the value n of the parameter p  has the value TRUE
for the concatenable inferential property in the context x.  This prerequisite involves temporal-semantic
knowledge represented in the inference-properties table (see Section 2.5).

Similarly, deciding what is the value of the resulting abstraction when joining two abstraction intervals
with different values n1 and n2 of the same parameter p requires using horizontal-classification knowledge
as represented in the horizontal-inference table (see Section 2.5).  In this case, both the temporal-semantic
knowledge (inferential property) and the temporal-dynamic knowledge (D function) that are used for
interpolation are those specific to the value n3 that is the result of joining n1 and n2, n1 Å n2.

In the following discussion, we often omit the context argument of the D function.  In addition, the value
of an abstraction (e.g., INCREASING) usually implies the abstraction type (e.g., gradient), so the type of the
abstraction usually will be omitted as well.

Primary interpolation is the initial constructor of abstraction intervals from parameter points.  A
necessary requirement for primary interpolation is that L([T1, T2]) £ D(p,Ên,Ê0,Ê0), where L(I) is the length
of I.  Primary interpolation also requires that the parameter p can be measured at least on an ordinal scale
(for gradient abstractions) or on an interval scale (for rate abstractions).

Secondary state, gradient, and rate interpolation require additional conditions, apart from an upper
bound on the gap between the intervals, to preserve consistency.  These conditions, as well as the maximal
gap specified by the maximal-gap function, can be summarized by an extension of the horizontal-inference
table, an interpolation-inference table, which defines the interpolation operation for every abstract
parameter (e.g., state(Hemoglobin)) and combination of abstraction values (e.g., INCREASING and SAME).
An interpolation-inference table represents both the horizontal-classification knowledge and the special
temporal conditions that should hold between the temporal elements of the involved abstractions.

For example, we need to check that, when we use secondary temporal interpolation to join two
DECREASING abstractions for p that are true over two intervals I1, I2 into a DECREASING abstraction for p
over a superinterval Ij , the value of p has indeed decreased, or at least has not increased above a certain
predefined threshold during the time gap [I1.end, I2.start] (see Figure 3 in Section 2.2).  In other words, we
have to check that I1.end.p ³ I2.start.pÐCp, where Cp represents a measurement variation for pÑthe
maximal increment in parameter p, below which a change in p will not be considered as an increase.  Cp
can be interpreted as a measurement error of p, or as a natural random variation of p  over time, or as a
clinically significant change of p, for a particular task, depending on the context.  Cp is a function of p,
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Äc(p), that is defined either by the domain expert or through analysis of the distribution of p.   In general,
Äc(p) might also use a context argument x and the initial value of p, I1.end.p (e.g., what is considered as a
significant variation in the value of the Hemoglobin-value parameter might be different within the
interpretation context BONE-MARROW DEPRESSION, and might be even more different when the most
recent Hemoglobin value known is abstracted as VERY LOW).

Using the Cp property, we can ignore minor absolute changes in the value of p that are less than a
certain threshold when we wish to identify general qualitative trends.  Furthermore, in the case of primary
temporal interpolation for the INCREASING gradient abstraction, we require that T2.p Ð T1.p   ³ Cp.
Similarly, in the case of primary temporal interpolation for the DECREASING gradient abstraction, we
require that T1.p Ð T2.p   ³ C p; in the case of primary temporal interpolation for the SAME gradient
abstraction, we require that |T2.pÊ-ÊT1.p|Ê£ÊCp.  In the case of secondary temporal interpolation for two
DECREASING gradient abstractions, we require the value constraint I1.end.p ³ I2.start.pÐCp, apart from the
gap requirement I2.startÐI1.end £ D(p, DEC, L(I1), L(I2)).  Similar constraints exist for other value
combinations [Shahar et al., 1992].

In certain cases, the secondary-interpolation operation also can be interpreted as follows: If parameter p
can be interpolated by primary interpolation as, for example, DECREASING over the gap interval Ig
between the two abstractions I1 and I2 (Ig = [I1.end,ÊI2.start]), then we infer a DECREASING abstraction of
p over Ig.  That is, we infer by interpolation that DECREASING([I1.end, I2.start], p).  At this point, the
temporal-inference mechanism suffices to infer DECREASING(Ij, p) by iterative joining of I1, Ig, and I2.
However, in general, an overall INCREASING or DECREASING abstraction might be created even when the
gap interval could be abstracted as SAME, since the secondary-interpolation operation as defined here also
considers the value and the temporal scope of the abstractions both before and after the gap.

The temporal-interpolation mechanism can be seen as a heuristic extension of the logically sound
temporal-inference mechanism, in which the temporal-semantic concatenate inference action joins disjoint,
but concatenable, abstractions (after horizontal classification knowledge has been used for computing the
value of the resultant joined abstraction, to check whether that value is concatenable).  Alternatively, the
temporal-semantic concatenate inference action can be modeled as a private case of temporal interpolation.
The conclusions of the temporal-interpolation mechanism often override the somewhat weaker conclusions
of the temporal-inference mechanism.  For example, a stronger conclusion of a DECREASING abstraction
might be formed for a joined interval, ignoring a potentially SAME intermediate gap interval, instead of the
weaker NONINCREASING abstraction that would be formed if the gap interval were abstracted only as
SAME (see Figure 3 in Section 2.2, for the case of the creation of interval I7 from intervals I5 and I6).

2.6.1.  Multiple-parameter interpolation
Primary gradient and rate interpolations for abstract parameters whose values are inferred by a multiple-

parameter contemporaneous abstraction are special.  There are two options regarding the semantics of the
operation.  The direct option is to consider only the values of the abstract parameter, assuming that these
values are ranked (for gradient abstractions) on an ordinal scale from lowest to highest (e.g., LOW,
MODERATE, HIGH, EXTREME).  An INCREASING value for the gradient abstraction of p during interval I
can then be equivalent to a positive change in the rank of the values I.start.p, I.end.p.  An equivalent
definition can apply to rate abstractions.  The indirect option, which we call a trend abstraction, defines
the meaning of, for instance, an INCREASING primary interpolation for parameter p as the case when all (or
at least one) of the parameters qualitatively positively proportional to p are INCREASING, and all of the
parameters qualitatively negatively to p are DECREASING (or at least are not INCREASING), even if the
value of pÕs state over the interval I has not changed.  We define the indirect (trend) abstraction recursively
[Shahar et al., 1992] using the qualitatively proportional notation introduced by Forbus [1984].  Either
option can be the default for a particular domain and task [Shahar et al., 1992].  The default semantics,
however, might be overridden by the domain expert at knowledge-acquisition time.

The qualitative-dependency relationships (e.g., POSITIVELY PROPORTIONAL and NEGATIVELY
PROPORTIONAL) between an abstract parameter and the primitive or abstract parameters defining that
parameter are part of the domainÕs structural knowledge.  These relationships are an additional aspect of the
ABSTRACTED-INTO relation over the domainÕs parameters.
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2.6.2.   Local and global persistence functions and their meaning
We distinguish between two types of persistence functions, from the aspect of temporal scope: global-

persistence (D), or maximal-gap, functions and local persistence (r) functions.  Maximal-gap (D)
functions allow interpolation between parameter points and intervals by creation of a default abstraction
during the maximal-gap interval.  They represent domain- and task-dependent knowledge regarding the rate
of change of a parameter proposition <p, n, x> over time, or the persistence of the truth of that proposition
over a temporal gap.  Local-persistence functions represent the local persistence of the truth of a parameter
proposition, given a single parameter point or interval, before or after the temporal scope of the parameter
proposition.  In some cases, global persistence functions can be inferred from knowledge of local ones.

For the purpose of the following discussion, we assume that the context x and the value of parameter p,
unless mentioned explicitly, are known and fixed (these arguments can serve as indices to a function with
fewer arguments).

2.6.2.1. Local persistence functions
Local -persistence (r) functions represent the local persistence of the truth of a parameter proposition,

given a single parameter point or interval: r(p, L(I), t), where L(I) is the length of the interval I over which
the parameter proposition is known to be true, and t is the time since that proposition was true.  The r
function returns a degree of beliefÑa probability distributionÑin the proposition <p, n> being true at time
t0Ê+Êt, given that <p , n> was true at time t0.  The r function is an extension of McDermottÕs [1982]
persistence assumption and of McCarthyÕs [1986] inertia principle, both of which include infinite
persistence as a default.  The r-function model is similar to Dean and KanazawaÕs [1988] model of
propositions that decay over time, and to de Zegher-GeetsÕs [1987] time-oriented probabilistic functions
(TOPFs) in the IDEFIX system (a TOPF represents the probability of a state or disease given a previous
identical state).  However, r functions are more general, in the sense that they extend temporally in both
directions:  to the future and also to the past.  Assuming that time t0 is a random time in which the
proposition was measured, there is no particular reason to assume that a parameter proposition was not true
before that time.  Thus, t might actually have a negative value.  We need this extension if we are to include
an approximation of the past value of a parameter, for purposes of interpretation, as opposed to forecasting
a future value of the parameter.  Thus, we can include a model of forward decay and backward decay in
belief.  The function describing this decay is equivalent to a statistical survival function.

In practice, the important question for performing an interpolation using a local persistence function is
how long t can be before the belief in the parameter proposition j Î R drops below a certain threshold jth
(Figure 5).  The threshold belief jth can be interpreted as the point when the probability of the truth value of
the proposition j in which we are interested falls below a certain threshold (say, 0.9).  The threshold has a
task- and context-specific value.

Using a threshold creates a value- and context-specific validity time for a parameter proposition, similar
to McDermottÕs [1982] lifetime of a fact and to the expected-length attribute of states in de Zegher-GeetsÕs
IDEFIX system.  (That attribute, however, was used by IDEFIX mainly for time-oriented display purposes,
and was not part of the interpretation framework [de Zegher-Geets, 1987].)

2.6.2.2.  Global persistence functions
Global-persistence (D), or maximal-gap, functions bridge the gap between two propositions.  D functions
are an extension of r functions; in special cases, as we mention in this section, they can be constructed from
the latter functions.  The D function returns the maximal time gap that still allows us to join the propositions
into an abstraction that is believed to be trueÑwith a sufficient, task-specific, predefined degree of belief in
the propositionÑduring the gap (and thus over a superinterval of the input propositions, given that both
were true for some time before and after the gap).  D functions are a global extension of the r persistence
functions, since they implicitly assume both forward and backward decay of the propositions involved.

Figure 5 presents a graphic view of the D function as an interpretation of a decay in the belief in the
truth of a proposition.  For instance, in the case that the abstractionsÕ parameter values are identicalÑthat
is, the propositions are the same before and after the gap intervalÑand the forward and backward decay
times are relatively independent, we are interested in whether, at all points inside the gap interval, either of
the values, approximated by the forward belief decay in proposition j, BELforward(j), or by the backward
belief decay, BELbackward(j), is true with a probability p ³ jth.  As the time gap Dt between the two
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Figure 5: Local and global persistence functions.  We use the maximal time gap Dt returned by a global D function to
decide whether the parameter propositions j1 and j2, interpreted over intervals I1 and I2, can be joined (possibly, if

these propositions do not denote the same value of the relevant parameter, into a new proposition j3 with a parameter

value n3 = n1 Å n2).  The time gap Dt can be interpretedÑif j1ÊºÊj2, and the truth values of the propositions are
relatively independentÑas the maximal time gap in which the belief produced by either the local forward or backward
decay (represented by a local-persistence (r) function) stays above the predefined confidence threshold jth.  Bel(j) =

degree of belief in j; jth = the task- and context-specific belief-threshold value.

abstractions increases, the belief that either the backward- or forward-decay value is true will eventually
fall below the predefined threshold value jth (see Figure 5).

If the r function is an exponential-decay survivor function, such as used in several of de Zegher-GeetsÕs
TOPFs, and the backward- and forward-decay rates are independent, then we can compute the D function.

Assume that the probability p(t) of the parameter proposition j being true is e-ltÑa function of the time t
since the reference time in which P was true, regardless of the length of the time interval I during which j
was true.  Let the forward-decay rate be l1, and the backward decay rate be l2.  It can be shown [Shahar,

1994] that
Dt £ [(l1 +l2)/(l1 *l2)] K,     K = -lnjth.

In other words, the D function for two parameter points, D(p, 0, 0), or for two parameter intervals when
the duration of the intervals has no effect on the persistence of the propositions, is a constant determined by
the forward- and backward-decay rates and by the desired level of confidence.

This analysis can be generalized.  Assume that, the longer j is known to be true in the past or in future,
the longer we are likely to keep believing it or to believe that it already existed in the past, before we
measured it (this assumption will be discussed in Section 2.6.3).  One (not necessarily the only) way to
represent that assumption would be to modify the decay rate for each proposition, li, by assuming that that
rate is inversely proportional to the length of the relevant intervals, L(Ii).

It can then be shown [Shahar, 1994] that, if exponential decay rates decrease (equally) linearly forward
and backward as a function of the duration of the proposition, then the maximal time gap allowing us to
join equal-length abstractions would be proportional to a linear function of the length of either interval,
with the rest of the factors kept constant.  The duration of the gap would be inversely proportional to the
uniform decay rate.  For instance, if l1 =l2 =l  and L(I1) = L(I2) = L, then

Dt £ [2L/l]K,    K = -lnjth.
These simplified examples serve to show that, even though the decay rates li are in general unknown,

and the decay function is perhaps difficult to compute, the resulting global D function (using a belief
threshold) might be a simple constant or polynomial, and thus can be more easily described, computed, or
acquired from domain experts than can the underlying local-persistence function.

Furthermore, if there is evidence for a particular type of decay function (e.g., logarithmic), we can
compute the latterÕs coefficients by acquiring from the domain expert a few maximal-gap valuesÑthat is,
several examples of Dt.  We might even check the expertÕs consistency (or the adequacy of the decay
function) by repeating the calculation for several other examples.  Alternatively, we can simply acquire a
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table of typical Dt values for various common L(I1) and L(I2) values, and can interpolate between these
values, or extrapolate from them, when necessary.

Note that, due to the lack of independence between the forward decay of a parameter proposition
attached to one time point and the backward decay of that proposition at a later time point, and, therefore,
an implied joint distribution of the forward and backward belief values, we usually need the actual global
(D) function, in addition to (or instead of) the local (r) function.  In practice, the domain expert often knows
several D-function values (such as what is the maximal time gap allowed for her to join two parameter
points for several parameter values in each context), even if she cannot define any particular, precise, r
function (except, possibly, for specifying the forward and backward decay times Dt corresponding to
reaching the local threshold value jth).  Knowing only the D function still enables interpolation between
two point- or interval-based parameter propositions.  In view of the preceding discussion, in many domains,
knowing only the values needed to maintain Bel(j) above the threshold value jthÑthat is, the (simpler) D
functionÑwould be common.

2.6.3.  A typology of persistence functions
Global-persistence (D) functions can have four qualitative types, depending on whether the D function

is either positive monotonic or negative monotonic, with respect to the length of the first parameter interval
L(I1), or the length of the second parameter interval L(I2) (see Figure 5).  Thus, theoretically there are

positiveÑpositive (PP), positiveÑnegative (PN), negativeÑpositive (NP), and negativeÑnegative
(NN) monotonic D functions.  We refer to these categories as qualitative persistence-function types.

Formally, PP D functions are functions such that
L(IÕ) > L(I) => "i [D(IÕ, i) ³ D(I, i) Ù D(i, IÕ) ³ D(i, I)].

NN D functions are functions such that
L(IÕ)> L(I) => "i [D(IÕ,i) £ D(I, i) Ù D(i, IÕ) £ D(i, I)],

where L(I) is the length of interval I , and D(I, i) stands for D(L(I), L(i)).
In the case of r functions, whether representing backward or forward local persistence, we can

categorize functions qualitatively into positive (P) and negative (N) categories with similar meaning (i.e.,
whether, the longer I, the longer or shorter the relevant validity interval, before or after I).

Most D functions, in practice, are of the PP type.  In other words, the longer we know that a parameter
proposition was true either before or after a time gap, the longer we would allow that gap to be while we
maintained our belief that the parameter proposition stayed true throughout that gap (i.e., that its probability
was always above a certain threshold).  (For instance, the proposition denoting the MODERATE-ANEMIA
value of the Hemoglobin_state (abstract) parameter usually would be associated with a PP D function, as
would be the proposition denoting the DEEP COMA value of the Consciousness parameter).

Negative-monotonic D functions occur when a longer duration either of I1 or of I2 lowers the

probability that the abstraction was true during the gap, and the longer the lengths, the shorter the allowed
Dt.  For instance, knowing about a longer I1 interval of an almost-fatal cardiac arrhythmia (say, ventricular

fibrillation) actually lowers the probability that the (following) gap interval had the same property, given
the same I2 interval and assuming that the patient is alive.  Most of the negative-monotonic functions

emerge from a total-length constraint on the time span of the abstraction (or an analogous probabilistic
distribution on the expected total time), or from a total cardinality constraint on the number of events.

The common PP D functions often can be assumed as a default.  Note that, the exponential-decay r
functions that were given as an example in Section 2.6.2 for local-persistence functions dependent on the
length of the parameter interval, imply, with the independence assumption, a PP-type D function.
Moreover, we can prove [Shahar, 1994] that PP D functions imply an important computational advantage.

Proposition 1: PP D functions are associative (i.e., the order of joining intervals and points cannot
change the resulting set of abstractions).  The associativity property is important to ensure, for data-driven
systems, that the final abstractions do not depend on the order of arrival of the input data.

Proof:  Assume parameter points T1, T2, and T3, in that order.  If both parameter interval [T1, T2] and
parameter interval [T2, T3] can be formed, then, if we can eventually form  the interval [T1, T3], we can do
so by forming initially  either subinterval, since the D function is PP.  That is, if we can join one point to
another, we can certainly join that pointÑforward or backward, as necessaryÑto an interval starting or
ending, respectively, with the other point.  For instance,
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L([T1, T2]) £ D(0,0) => L([T1, T2]) £ D(0, L([T2, T3])),
since the D function is PP, and therefore D(0,0) £ D(0, L([T2, T3])).

A similar argument holds for any four consecutive points.
Thus, the claim is true for any sequence of primary or secondary interpolations, since D functions are

applied only when there are no intervening points between the two intervals or points to be joined.  o
Proposition 2: NN D functions are not associative.
Proof: It is easy to construct a case for consecutive parameter points T1, T2, and T3, where, if we create

the interval [T1, T2], we no longer can join it to T3, and, if we create the interval [T2, T3], the D function
value will prevent our joining it to T1 (e.g., a total-sum constraint does not allow us to create the interval
[T1, T3] with sufficiently high probability).  o

NP and PN functions are not associative either.  Whether such functions can even exist with appropriate
semantic restrictions on the nature of D functions is doubtful, and we leave it as an open question.

Finally, another useful semantic distinction is context continuity: use of the D function within a simple
versus a nonconvex interpretation context (see Section 2.3.2).  Note that the maximal-gap D function
interpolating between two propositions within a nonconvex interpretation context might be different from
the D function used for interpolation within each convex (or simple) segment of the nonconvex
interpretation context.  In the first case, the D function would be an interphase D function (e.g., between
blood-glucose abstractions measured over different morningsÑi.e., between abstractions created within
disjoint, although similar, interpretation contexts).  In the second case, the D function would be an
intraphase D function (e.g., between blood-glucose values measured within the same continuous
prebreakfast interpretation context).

In summary, the temporal-interpolation mechanism requires an ontology of parameter propositions that
includes (1) structural knowledge, which consists of the qualitative-dependencies aspect of the
ABSTRACTED-INTO relation, and the domain-specific time units; (2) classification knowledge:, which
comprises classification of domain-specific gradient- and rate-abstraction values, and horizontal-
classification knowledgeÑthe horizontal-inference table; (3) temporal-dynamic knowledge, which includes
the maximal-gap (D) functions and the local-persistence (r) functions, the significant change values Cp, or
functions Äc(p), for the relevant parameters in various contexts, and additional temporal constraints for
completing the interpolation-inference table; and (4) temporal-semantic knowledge, which consists of the
truth values of the concatenable property for the relevant input and inferred parameters.

The temporal-dynamic knowledge about the domain does not necessarily need to include complete,
closed definitions of D functionsÑpartial tables may suffice, or actual functions might be approximated.
Knowing whether a D function is PP or NN is important for estimating the value of that function from a few
examples, or for interpolating that value from several discrete entries in a table.  This qualitative-
persistence type is easy to acquire, since domain experts usually have an excellent intuition about whether,
qualitatively, a longer duration of a parameter proposition before or after a gap increases or decreases the
probability of the proposition being true during a longer gap, even if precise probabilities are unknown.

2.7.  Temporal-pattern matching

In addition to the context-forming mechanism and the three basic TA mechanisms, a temporal-patternÐ
matching mechanism is required for abstracting more complex data patterns over time.  For instance, such a
mechanism is required for abstraction of an episode of drug toxicity from a state of a LOW(White blood-
cell) count lasting more than 2 weeks and starting within 0 to 4 weeks of a state of LOW(Hemoglobin)
lasting more than 3 weeks, in a patient who is receiving certain drugs.  Another example is recognizing a
quiescent-onset pattern of chronic GVHD (see Figure 1): a Chronic-GVHD abstraction starting at least 100
days after a bone-marrow transplantation event, but within 1 month of the end of a preceding Acute-GVHD
abstraction.  The temporal-patternÐmatching mechanism extends the temporal-inference and temporal-
interpolation mechanisms by abstracting over multiple intervals and parameters, and typically reflects
heuristic domain- and task-specific knowledge.  This mechanism solves the temporal pattern-matching task.
Output patterns are parameters interpreted over the respective time intervals.

Typically, when the temporal-patternÐmatching mechanism is used, a considerable part of the TA task,
depending on domain-specific knowledge, has already been solved by the three basic TA mechanisms and
by the context-forming mechanism.  These preliminary patterns include contemporaneous abstractions of
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different parameters, as well as horizontal inferences and interpolations, at various abstraction levels.  Thus,
the pattern-matching mechanism does not have to create abstractions, such as a significantly DECREASING
blood pressure, or to decide in what contexts the Hemoglobin level should be considered as LOW.  The
pattern-matching process can use interval-based abstractions, possibly with their end-point values.
Furthermore, the pattern-matching mechanism assumes the TA ontology semantics (e.g., it takes advantage
of the small, finite number of abstraction types, such as STATE, and the way that these abstractions are
derived, including relations such as ABSTRACTED-INTO).  Thus, the pattern-matching mechanism employs
(1) a temporal-abstraction query language that allows the expression of value and time constraints
involving parameter intervals, and (2) a temporal-abstractionÐpattern matcher that returns abstractions (or
the values TRUE or FALSE) in response to queries in that language.

The knowledge used by the temporal-patternÐmatching mechanism is mainly classification knowledge.
The input is one or more parameter points and intervals, possibly including different parameters, different
abstraction types, and different interpretation contexts.  The output is an abstraction of type PATTERN.  The
constraints on the abstractions include constraints on the parameter values of the parameter propositions
involved, and constraints on the temporal attributes of the abstractions involved.  Typically, the temporal
span of the output abstraction is the union of the temporal span of the input abstractions.

In summary, temporal-pattern matching requires (1) structural knowledge, comprising ABSTRACTED-
INTO relations from parameters to patterns, and (2) classification knowledge, comprising classification of
sets of abstraction points and intervals into PATTERN-type abstract parameters, using value and time
constraints.

3.  The R�SUM� system

The KBTA method and TA mechanisms described in Section 2 have been implemented as a computer
program: the R�SUM� system [Shahar and Musen, 1993; Shahar, 1994; Shahar and Musen, 1996].  The
R�SUM� system generates temporal abstractions, given time-stamped data, events, and the domainÕs TA
ontology of parameters, events, and contexts.  The R�SUM� system is composed of a temporal-reasoning
module (the five TA mechanisms), a static domain knowledge base (the domainÕs TA ontology), and a
dynamic temporal fact base (containing the input and output parameter points and intervals, event intervals,
and context intervals).  The temporal fact base is loosely coupled to an external database, where primitive
time-stamped patient data and clinical events are stored and updated, and where abstractions can be stored
by the R�SUM� system for additional analysis or for use by other users.  The TA mechanisms iterate
alternately, activated by the currently available data and by the previously derived abstractions.

3.1.  The parameter-properties ontology

Most of the domain-specific knowledge required by the TA mechanisms is represented in an
implemetation of the parameter ontology called the domainÕs parameter-properties ontology.  The
parameter-properties ontology represents the parameter entities in the domain (e.g., Hemoglobin,
Granulocyte-state), their properties (e.g., temporal-semantic properties, such as concatenable), and the
relations among them (e.g., ABSTRACTED-INTO).  Figure 6 shows a small part of the parameter-properties
ontology used for the task of managing patients who are being treated by clinical protocols.

The parameter-properties ontology is an IS-A frame hierarchy that specializes parameters mainly by
increasingly specific interpretation contexts (e.g., classification tables for the Hemoglobin-level parameter
might be different during administration of a certain protocol or medication).  The four knowledge types
(including structural relations) are represented as parameter properties (see Section 2.1).

An important feature of the representation scheme shown in Figure 6 is organization of abstract
parameters by four output-abstraction types (STATE, GRADIENT, RATE, and PATTERN).  Thus, the
Granulocyte_gradient_abstraction parameter is a gradient abstraction and inherits slots such as the default
set of values and interpolationÐinference table for gradient abstractions, whereas state abstractions include
properties such as their defining classification functions (mapping tables).  This structure proved flexible
for representation and modification of TA knowledge in several domains.

Pattern parameters are represented as first-class entities in the parameter ontology.  This uniformity
allows the TA mechanisms, at runtime, to perform further temporal reasoning using the derived pattern
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Figure 6:  A portion of the parameter-properties ontology in the domain of protocol-based care.  Shown in the figure is
a specialization of the temporal-abstraction properties for the Granulocyte-state abstraction (GSA) parameter in the
context of the prednisoneÑazathioprine (PAZ) experimental protocol for treating chronic graft-versus-host disease, and

in the context of each part of that therapy protocol.   = class;  = property;   = IS-A relation;

 = PROPERTY-OF relation;   = ABSTRACTED-INTO relation.

intervals, and preserves the logical dependencies of these pattern intervals on the other parameters (and
contexts) from which they were derived.  Maintaining these dependencies allows updates to the past or
present data to be propagated to all abstractions, including the temporal patterns.  Furthermore, representing
patterns as first-class entities in the ontology of the domain permits the use of uniform methods for
acquisition, maintenance, sharing, and reuse of knowledge.

3.2.  Evaluation of the R�SUM� problem solver

We tested various aspects of the R�SUM� system in several different clinical and engineering domains:
protocol-based care (and three of its subdomains) [Shahar and Musen, 1993; Shahar, 1994], monitoring of
childrenÕs growth [Kuilboer et al., 1993; Shahar, 1994], therapy of insulin-dependent diabetes patients
[Shahar and Musen, 1996], and monitoring of traffic-control actions [Shahar and Molina, 1996].  We
applied the R�SUM� methodology to each domain in varying degrees.  Sometimes, our focus was
evaluating the feasibility of knowledge acquisition (including acquisition by another knowledge engineer),
knowledge representation, and knowledge maintenance (i.e., modifications to the resultant knowledge
base).  In other cases, we emphasized application of the resultant instantiated temporal-abstraction
mechanisms to several clinical test cases.  In one domain, we applied the R�SUM� system, instantiated by
the proper domain ontology, to a larger set of clinical data.  We have therefore demonstrated most of the
expected lifecycle in the development and maintenance of a TA system.

In the subdomains of protocol-based care, we have focused mainly on the representation of knowledge
relevant for experimental therapy of patients who have AIDS, for therapy of patients who have graft-
versus-host disease, and for prevention of AIDS-related complications, in each case, working with domain
experts [Shahar and Musen, 1993; Shahar, 1994].  Typical abstractions included patterns such as Òthe
second episode of bone-marrow toxicity grade II that lasts more than 3 weeksÓ (see Figure 1 in Section 1).
As we expected, we were able to reuse easily both general TA knowledge (e.g., gradient abstractions) and
parameter-specific TA knowledge (e.g., Hemoglobin-level abstractions) using the explicit parameter-
properties ontology.  Maintenance involved mainly adding or modifying classes that represent abstractions
specialized by interpretation contexts.
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In the domain of monitoring childrenÕs growth, we collaborated with a pediatric endocrinologist to form
and maintain a growth-monitoring TA ontology [Kuilboer et al., 1993].  Running R�SUM� on a few
clinical test cases produced most of the relevant abstractions [Shahar, 1994].  The goal in the growth-
monitoring domain was not to reach a final diagnosis, but rather was only to decide whether there was any
abnormality in the growth chart that might fit a set of predefined internal patterns, or to answer multiple
user-defined external temporal queries regarding relevant intermediate-level abstractions.  An abnormality
detected by an internal or external query can call the physicianÕs attention to the need for further monitoring
of the particular child.

In the diabetes domain, we collaborated with two endocrinologists, acquiring within several meetings a
TA ontology from one of the experts [Shahar and Musen, 1996].  The two experts formed (independently)
temporal abstractions from more than 800 points of data, representing two weeks of glucose and insulin
data from each of eight patients.  The R�SUM� system created 132 (80.4%) of the 164 temporal
abstractions noted by both experts.  Examination of the output for the first three cases by one of the experts
showed that the expert agreed with almost all (97%) of the produced abstractionsÑa result similar to the
one we found in the domain of growth monitoring [Shahar, 1994].  We expected this high predictive value,
since the domainÕs TA ontology directly reflected that expertÕs knowledge about these low- and
intermediate-level abstractions.  Although these results are encouraging, we noted several difficulties in the
representation and detection of cyclical (e.g., diurnal) patterns; in the matching of absolute time to task-
specific time; in the integration of statistical and temporal queries; and in querying for patterns of events
rather than for patterns of parameters [Shahar, 1994].  Most difficulties can be solved by extensions to the
language of the temporal-patternÐmatching mechanism.

In the traffic-control domain, the R�SUM� system was used to model the task of monitoring traffic-
control actions, and to create a prototype for solving that task [Shahar and Molina, 1996].  The task of
monitoring traffic-control actions receives as input recent values of different road parameters (speed, flow,
and occupancy) measured by sensors located along several highways, and a set of recent control actions
(e.g., traffic diversion) undertaken by traffic controllers.  It returns an evaluation of the adequacy of the
control actions.  Performance of this task requires both temporal reasoning (e.g., about durations, rates, and
trends of traffic parameters over time, for a given location) and linear spatial reasoning (e.g., about queue
lengths along the highway, at a given time).  We used the R�SUM� problem solver to model and solve
both tasks.  First, we defined a spatial-abstraction ontology, using the TA ontology knowledge structures,
to describe properties of spatial parameters, such as Congestion, along the highway-distance dimension.
We used this ontology to create linear spatial abstractions in each highway zone, such as Saturation_level.
Second, we created a TA ontology to decribe properties of spatial abstractions of each location or highway
zone over time.  We used this ontology to form and detect crucial traffic-control spatiotemporal patterns.

3.2.1.  The work involved in acquisition of temporal-abstraction knowledge
In general, the minimal amount of knowledge that we needed to acquire in a new domain included (1)

the relevant primitive and abstract parameters (the latter classified into the four abstraction types: state,
gradient, rate, and pattern) and their structural relations (in particular, IS-A  and ABSTRACTED-INTO
relations); (2) a task-specific significant change for each relevant parameter, if gradient abstractions are
required; (3) the list of potential state- and rate-abstraction values for all parameters relevant to the task for
which these abstraction types are required; and (4) the maximal-gap D functions, when interpolation is
required in the task, for each relevant parameter and context.  Temporal-semantic properties, gradient-
abstraction horizontal-inference values, and interpolation-inference tables are more stable than are the
knowledge types listed, and are less dependent on the interpretation context.  Default values for these types
of TA knowledge either can be inherited through the appropriate abstraction class (e.g., gradient
abstractions), or can be acquired for only the most general parameter or extended-parameter class (e.g.,
Hemoglobin_state abstractions in the interpretation context of the overall task).  As additional applications
were designed and knowledge was shared and reused, the gain in development time was apparent (e.g., in
the protocol-based care domains).

Instantiating the TA mechanisms for a new domain would appear superficially to involve significant
amounts of knowledge acquisition.  However, the major knowledge-acquisition effort in the nontrivial
domains evaluated usually required only two to four meetings (each about 2 hours long) with the expertÑa
tenable amount of time.  The size of the resultant TA ontologies was manageable.  Maintenance of the
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resultant knowledge base by the knowledge engineer required significantly less time than would be needed
to create or modify pure programming code.  Furthermore, the knowledge-acquisition process was driven
by the KBTA method, so a methodical structure was added to the process.  For instance, the knowledge
engineer could ask if a gradient abstraction exists for a state abstraction of a known parameter.  Thus, a
certain measure of completeness was guaranteed.  Furthermore, the process can be automated by the use of
automated knowledge-acquisition tools, such as those generated automatically by the PROT�G�-II system
[Musen et al., 1995; Eriksson et al., 1996].  We have recently developed such an tool [Stein et al., 1996].
Finally, most important parameters and their values must be represented in some fashion, if we are to
perform the TA task at hand (e.g., hematological-toxicity tables must be acquired and represented in
protocols for treatment of AIDS).  Thus, most of the knowledge-acquisition work was done on organizing
in a useful architecture a significant amount of knowledge that had to be represented, implicitly or
explicitly, to perform the task.  Explicit representation has multiple additional benefits; in the experiments
that we have conducted, its cost was not prohibitive, and the results justified the effort.

3.3.  Nonmonotonicity of temporal abstractions

The five TA mechanisms create state, gradient, rate, and pattern abstractions.  Unlike input data,
however, the inferred parameter intervals are potentially refutable by any modification or addition to the
known data points or events.  The need to update past or present abstractions when older (but formerly
unavailable) data arrive was noted by Long and Russ [1983; Russ, 1986].  We refer to this activity as a
view update.  The activity of updating former conclusions and of revising assessments of former decisions
given new, present-time data is referred to as hindsight by Russ [1989].  In the first case, we need to
evaluate precisely that part of our interpretation and abstraction of the former data that is affected by the
newly added old data, such as laboratory reports that are returned a few days after the initial assessment
was done.  Thus, the past influences the interpretation of the present.  In the second case, we need to bring
to bear our current understanding of the situation on the interpretation of the former events, even if no
direct additional information about the past has been uncovered; usually, that understanding is a function of
current developments, such as the effect of a therapy plan.  Thus, the present influences the interpretation
of the past.

The effects of updates to input parameter and event intervals, which might cause deletion of existing,
previously concluded contexts and abstractions, are mediated in the R�SUM� system through a truth-
maintenance system [Shahar and Musen, 1993].  (The dynamic temporal fact base is thus essentially a
historic database [Snodgrass and Ahn, 1986].)  In addition, the temporal-semantic properties of parameter
propositions are used not only for the task of deriving further conclusions, but also for the task of detecting
contradictions in existing conclusions.  For instance, using the downward-hereditary semantic property, the
temporal-inference mechanism not only can create new conclusions for subintervals of parameter intervals,
but also can notice that parameter values for similar-type parameter propositions within those subintervals
(e.g., LOW(Hemoglobin)) actually differ from the parameter value of the parameter superinterval (e.g.,
HIGH(Hemoglobin)Ña longer interval that was created when the included interval was unknown).  Such a
difference is a contradiction (due to an explicit assumption of a mutually exclusive set of values for the
same parameter, time, and interpretation context) and requires retraction of at least one of the intervals.
When a contradiction is detected (i.e., the result of the inference is FALSE), the R�SUM� system uses
several heuristics to decide which of the parameter intervals, if any, should be retracted (e.g., primitive
input data might never be retracted, versus abstract conclusions, which might no longer be true).  Finally,
the results of retracting one or more parameter intervals should be propagated to previous conclusions that
are logically dependent on the retracted conclusions.  Similarly, when an event interval is modified, or a
context interval that depended on a no-longer-valid event or abstraction is retracted, the modification is
propagated to the rest of the temporal factbase.  Conclusions that are no longer valid are retracted and new
conclusions are asserted.

3.4.  A computational note

The parameter-properties ontology does not contain a context-specialized node corresponding to every
interpretation context.  The nonexistence of a specialization signifies that, for that particular context, the
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abstraction is not relevant, thereby cutting down on unnecessary inferences.  Furthermore, types of desired
output parameters and the type of inferences to be used can be prespecified.  Thus, several goal-oriented
mechanisms reduce the amount of abstractions generated by R�SUM� [Shahar and Musen, 1993].

Both horizontal classification and temporal interpolation are limited by reference to (two) parameter
propositions of the same parameter type, context, and (in the case of interpolation) value.  The upper bound
is thus O(N2) comparisons for N relevant parameter propositions.  Furtheremore, no more than O(N) basic-
abstraction intervals (i.e., those generated by the contemporaneous-abstraction, temporal-inference, or
temporal-interpolation mechanisms) can be generated for any given parameter, context, and abstraction
type, given N data points, since basic-abstraction intervals are convex.  Even if we also count all possible
intermediate abstractions of the same value that can be joined up recursively to one interval, there cannot be
more than O(N) intervals, because once a parameter point is made part of a parameter interval, it cannot be
used as part of another parameter interval for the same parameter and abstraction type (i.e., new parameter
intervals for the same parameter are longer than are those from which they are derived).  These
observations lead to an overall O(N3) complexity for a complete application of each basic TA mechanism.

Temporal-pattern matching can be, in the worst case, exponential in the number of parameter
propositions, event propositions, and context intervals, but most patterns, in practice, specify constraints for
only two or three intervals, and the pattern matching is highly constrained by parameter types, leading
again to a polynomial complexity.  In addition, the R�SUM� system exploits the efficient RETE pattern-
matching algorithm [Forgy, 1982].  This algorithm is employed by the CLIPS shell that we are using
[Giarratano and Riley, 1994] and fits especially well with the task of matching temporal patterns in data
arriving incrementally in some temporal order.  The RETE algorithm incorporates each new datum (in this
case, usually a parameter interval) into a network of tokens in a continuous manner.  Although complexity
is still exponential in the worst case, typical cases have linear time complexity, since patterns are being
matched partially in a continuous manner.  Data often arrive in incremental fashion and intermediate
abstractions are always cached.  Anwering queries typically involves the use of previously cached
(asserted) abstractions at several levels.

4.  Summary and discussion

The temporal-abstraction (TA) taskÑformation of meaningful, context-sensitive, interval-based
abstractions from time-stamped dataÑis important in many time-oriented domains.  The interval-based
abstractions that are the output of the TA task can be used for selection and instantiation of plans; for
monitoring plans during execution; for creation of high-level summaries of time-stamped data, for
explanation purposes; and for critiquing the execution of a plan by one agent when the planÕs overall and
intermediate goals can be described in terms of creating, maintaining, or avoiding certain temporal patterns.

The knowledge requirements for performance of the TA task are implicit in traditional domain-specific
applications.  This lack of explicit representation prevents using general principles common to performance
of that task in different domains, and sharing of knowledge common to several tasks in the same domain.

Our approach embodies a knowledge-level view of the TA task  We emphasize the importance of
enabling reuse, sharing, maintenance, and acquisition of TA knowledge for sizable knowledge-based
systems that are applied to time-oriented domains.  Our goal has been to elucidate the nature of the
knowledge that is required for solving the TA task by a knowledge-based method.

We presented a specific knowledge-based approach to the TA task:  the knowledge-based temporal-
abstraction (KBTA) method.  The KBTA method decomposes the TA task into five subtasks, each of which
is solved by a different TA mechanism (see Figure 2 in Section 1): temporal-context restriction (creation of
relevant interpretation contexts crucial for focusing and limiting the scope of the inference); vertical
temporal inference (inference from contemporaneous propositions into higher-level concepts); horizontal
temporal inference (inference from similar-type propositions attached to intervals that span different
periods); temporal interpolation (joining of disjoint points or intervals, associated with propositions of
similar type); and temporal-pattern matching (creation of intervals by matching of patterns over disjoint
intervals, associated with propositions of various types).  Four knowledge types are required for
instantiating the temporal-abstraction mechanisms in any particular domain (see Figure 2 in Section 1): (1)
structural knowledge (e.g., IS-A and PART-OF relations in the domain, QUALITATIVE-DEPENDENCY
relations, SUBCONTEXT relations); (2) classification knowledge, mostly functional (e.g., mapping of
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Hemoglobin-level ranges into LOW, HIGH, VERY HIGH; joining of INC and SAME into NONDEC; matching
of temporal patterns); (3) temporal-semantic, mostly logical, knowledge (e.g., relations among propositions
attached to intervals, and propositions attached to their subintervals, such as the downward-hereditary
property); and (4) temporal-dynamic knowledge, mostly probabilistic (e.g., local forward- and backward-
persistence (r) functions; global, maximal-gap (D) functions; significant-change functions).

The four knowledge types are sufficient to instantiate the five domain-independent TA mechanisms for
any particular application area.  The knowledge types form a declarative interface for a knowledge engineer
developing a new TA system, and support automated acquisition of knowledge from domain experts.

The R�SUM� system implements the KBTA methodÕs inference structure and, in particular, the five
TA mechanisms.  We used the R�SUM� system to model TA knowledge in several different clinical and
engineering domains, and to form in those domains temporal abstractions comparabe to those of experts.

4.1.  Related work

Researchers in philosophy, in general computer science, and in artificial intelligence have applied
several different approaches to tasks that are at least comparable to the TA task, as we defined that task in
Section 2.1.  A comprehensive review of temporal-reasoning approaches in general, and of their application
to clinical domains in particular, and a comparison of frameworks applied in clinical domains to the KBTA
method and to that methodÕs implementation in the R�SUM� system, is presented elsewhere [Shahar,
1994].  Examples of systems performing a TA task that were implemented mainly for clinical domains
include FaganÕs [1980] ventilation-management (VM) system, BlumÕs [1982] Rx system for knowledge
discovery from time-oriented clinical databases; DownsÕ [1986] summarization program for medical
records; KohaneÕs [1987] temporal utilities package (TUP); de Zegher-GeetsÕ [1988] IDEFIX system for
summarizing patient visits; RussÕ [1989] temporal control-structure system; KahnÕs [1991] TOPAZ system;
the Guardian project [Hayes-Roth et al., 1992]; Haimovitz and KohaneÕs [1993] TrenDx system; and
LarizzaÕs [1992] TA module in the M-HTP project.

Despite major differences among these systems, on close inspection most of them turn out to be solving
tasks similar to the five fundamental subtasks into which the TA task is decomposed by the KBTA method.
This decomposition, however, is never represented explictly, since it requires a task-specific approach.
Furthermore, none of the previous approaches represents explicitly and declaratively the types of domain-
specific knowledge on which the particular methods used to solve these tasks implicitly rely.  The lack of
explicit representation severely limits the reusability of these systems.  Furthermore, most of these systems
require the developer to encode the TA task as complex patterns (e.g., trend templates [Haimovitz and
Kohane, 1993]) or programming-language procedures (e.g., user-defined abstraction modules [Russ,
1989]).  These approaches leave the tasks of both domain-independent and domain-specific TA to the
developer.  Unlike these approaches, The KBTA method and its implementation as the R�SUM� system
predefine ahead of time all task-specific, domain-independent TA inferences (i.e., the TA tasks and
mechanisms), leaving the developer (possibly a domain expert) only the task of modification of arguments
for these predefined, limited inferences (i.e., editing of the domainÕs mostly declarative TA ontology).

Thus, the KBTA method also can be viewed as a general inference structure, not unlike ClancyÕs [1985]
heuristic-classification inference structure.  The KBTA method makes explicit the subtasks that need to be
solved for most of the variations of the TA interpretation task.  These subtasks have to be solved, explicitly
or implicitly, by any system whose goal is to generate meaningful interval-based abstractions from time-
oriented data.  The TA mechanisms that we presented for solution of these subtasks make explicit both the
tasks that they solve and the knowledge that they require to solve these tasks.  None of the approaches tha
we examined [Shahar, 1994] focuses on the knowledge-acquisition, knowledge-maintenance, knowledge-
reuse, or knowledge-sharing aspects of designing and building large knowledge-based TA systems.  These
approaches do not represent their inference strategy at the knowledge level [Newell, 1982], and thus might
encounter several design and maintenance problems typical of knowledge-based systems.  In particular, we
would expect difficulties when we attempt (1) to apply these approaches to TA tasks in new domains, (2) to
reuse them for related tasks in the same domain, (3) to maintain the soundness and completeness of their
associated knowledge base and its interrelated components, and (4) to acquire the knowledge required to
instantiate them in a particular domain and task in a disciplined and even automated manner.
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4.1.1.  Relationship to other knowledge-based problem-solving frameworks
It is interesting to compare the inference actions implied by the TA mechanisms with the basic

inferential components existing in other knowledge-based problem-solving frameworks.  Such a
comparison would enable us to appreciate more to what extent the KBTA method is general and potentially
sharable with frameworks substantially different from PROT�G�-II.  We collaborated with researchers in
the European KADS-II project, a newer version of the KADS methodology for development of knowledge-
based systems [Weilinga et al., 1992].  The TA mechanisms were compared with the KADS-II primitive
inference actions (PIAs) [Aben et al., 1994].  A logical inference structure was constructed in KADS-II
terms, which represented the essence of the contemporaneous-abstraction, temporal-inference, and
temporal-interpolation mechanisms.  One of the main insights that we gained was that the TA mechanisms
operate at a much higher level of inference granularity, as opposed to low-level, highly nonspecific PIAs
such as SELECT or GENERALIZE.  Thus, the KADS-II architecture has highly generalizable, low-level,
components; however, the tradeoff in using such highly modular components, and in representing all
classification functions as, for instance, a SELECT operation, is that these components are not sufficiently
task specific.   For example, representing the temporal-interpolation mechanism as a set of PIAs tends to
obscure the way that the domain-specific TA knowledge is used by that mechanism.  Also, a neutral
representation volunteers no clue to what several researchers call the knowledge-use level [Steels, 1990].
The knowledge-use level is an intermediate level between NewellÕs [1982] knowledge level and symbol
level , and is an important step towards implementing methods presented at the knowledge level.  This level
seems highly useful for bridging the gap between theoretical problem-solving methods and working
applications [Steels, 1990].  The knowledge-use level is represented explicitly by the TA mechanismsÕ
ontology of parameters, events, and contexts and the R�SUM� systemÕs knowledge structures.

4.2.  Advantages  of the R�SUM� system for the temporal-abstraction task

The KBTA method and its implementation as R�SUM� introduce several conceptual and
computational advantageous features.  Advantages can be categorized by the following aspects: (1) increase
of flexibility in the representation and use of input and output data; (2) enablement of nonmonotonic
behavior; (3) emphasis of context-sensitive interpretation; (4) support for automated planning; and (5)
facilitation of acquisition, representation, sharing, and reuse of TA knowledge.

4.2.1.  Input and output data of multiple types and at multiple  abstraction levels
The parameter ontology represents, in uniform fashion, all clinical parameters (primitive or abstract) of

all typesÑnumeric and symbolic.  The input data can be at different levels of abstraction (e.g., both raw
data, such as height measurements, and higher-level concepts, such as the height standard-deviationÐscore
abstraction).  Thus, some input data can be partially abstracted by the user, or by another computational
module, before they are entered into the R�SUM� system.  Important temporal patterns can be predefined
at knowledge-acquisition time, but the user of the application system can still query the temporal fact base
at runtime for arbitrary temporal patterns and for parameter propositions at any level of abstraction.

4.2.2.  Acceptance of input data out of temporal order
The inherent nonmonotonicity of the TA mechanisms is implemented in the R�SUM� system by the

truth-maintenance system underlying the temporal-reasoning process (see Section 3.3).  The R�SUM�
system detects contradictions by using TA task-specific semantics (e.g., temporal-semantic properties of
parameter propositions).  The truth-maintenance system retracts conclusions that are no longer true, and
propagates new abstractions to the rest of the temporal fact base.  Thus, the past can change our view of the
present; we call that process a view update.  Furthermore, new data enable the R�SUM� system to modify
past interpretations; thus, the present (or future) can change our interpretation of the past, a process referred
to as hindsight [Russ, 1989].  The hindsight task is performed by several components of the R�SUM�
systemÕs architecture: (1) the truth-maintenance system; (2) the context-forming mechanism, which can
create both prospective and retrospective contexts dynamically; and (3) the temporal-interpolation
mechanism, which has the ability to reason about both forward and backward persistence of belief in the
truth of parameter propositions.



Y. Shahar:  A framework for knowledge-based temporal abstraction

33

4.2.3.  Context-sensitive interpretation
Interpretation contexts are separated logically from the propositions inducing them by DIRCs (Section

2.1).  Abstractions are specialized in the parameter ontology by interpretation contexts.  Interpretation
contexts both reduce the computational burden and specialize the abstraction process for particular
contexts, by enabling within their temporal context the use of only the temporal-abstraction knowledge
(e.g., mapping functions) specific to the interpretation context.

Explicit interpretation contexts, separate from the propositions inducing them and from the abstractions
using them, have four significant conceptual and computational advantages for context-specific
interpretation of time-stamped data.  First, any temporal relation can hold between a context interval and
the latterÕs inducing proposition.  Interpretation contexts might be induced concurrently, in the future, and
in the past, enabling a form of foresight and hindsight.  Second, the same context-forming proposition can
induce one or more context intervals (e.g., several potential effects).  Third, the same interpretation context
might be induced by different propositions.  The separation of interpretation contexts from their inducing
propositions facilitates maintenance and reusability of temporal-abstraction knowledge.  Fourth, parameter
propositions include an explicit interpretation context, thus enabling a representation of several abstractions
in which the same abstract parameter (e.g., the Hemoglobin_state) has different values at the same timeÑ
one for each of the context intervals that holds during the relevant period.  Thus, interpretation contexts
support maintenance of several concurrent interpretations of the same data.

In addition, generalized interpretation contexts (a union of different, temporally meeting contexts) and
nonconvex interpretation contexts (interpolation between similar, temporally disjoint contexts) enable
sharing of abstractions of the same parameter among different contexts and temporal phases.

4.2.4.  Separation of interpretation from planning
The KBTA method performs an interpretation task, separate from tasks such as planning actions or

executing these actions.  Such separation is useful for knowledge-maintenance reasons and for task-specific
reasons.  For instance, although the abstractions identified by the two endocrinologists in the diabetes-
therapy domain (see Section 3.2) were remarkably similar, the therapy recommendations suggested by the
experts differed significantly [Shahar, 1994].  This observation validates a basic reason for performing the
temporal-abstraction taskÑnamely, that intermediate conclusions from the data (the interval-based abstract
concepts and patterns) are significantly more stable than are specific therapy rules predicated on these
conclusions.  Thus, knowledge about forming the intermediate patterns should be represented explicitly and
separately from knowledge about appropriate action.  The separation also allows a TA system to reason
about the data offline, accessing data directly from a temporal database (e.g., an electronic patient record).

4.2.5.  Facilitation of development, acquisition, maintenance, sharing, and reuse of TA knowledge
One of the major goals in constructing the KBTA model, and for specifying formally and explicitly the

knowledge required by each of the TA mechanisms solving the subtasks of that method, was to facilitate,
eventually, both manual and automated acquisition of that knowledge.  The explicit representation supports
acquisition of the knowledge necessary for applying the method to other domains, maintenance of that
knowledge, reuse of the domain-independent TA mechanisms, and sharing of the domain-specific TA
knowledge with other applications in the same domain.  The organization of the TA knowledge in the
R�SUM� system into parameter, event, and context ontologies plays a major role in accomplishing these
goals.  The organization of the knowledge in the parameter ontology as subclasses of the four general
abstraction types (state, gradient, rate, and pattern), with frame-based inheritance of general abstraction-
type and domain-specific properties, further enhances the ease of designing new systems, acquiring the
necessary knowledge, and maintaining the TA knowledge base.

An explicit representation of TA knowledge enables a designer to construct an automated knowledge-
acquisition tool that can be used directly by domain experts to augment the domainÕs TA ontology.
Constructing such tools, when possible, has major benefits, mainly in facilitating the acquisition of
knowledge without the intervention of a knowledge engineer.  We have automated the acquisition of TA
knowledge through the use of tools from the PROT�G�-II project [Stein et al., 1996].  PROT�G�-II is a
framework for the design of knowledge-based systems [Musen et al., 1995; Eriksson et al., 1995] and
includes tools that generate automatically (and assist in custom tailoring) a knowledge-acquisition tool.



Y. Shahar:  A framework for knowledge-based temporal abstraction

34

The input to these tools is the ontology of a problem-solving method mapped to the ontology of an
application domain (in this case, the ontology of the KBTA method and the domainÕs general ontology).

4.3.  Additional implications and extensions of the work

Many intriguing issues are raised by this investigation into the fundamental nature of temporal-
abstraction knowledge.  In this section, we describe briefly several of the most interesting practical and
theoretical issues.

4.3.1.  Implications of the nonmonotonicity of temporal abstraction
Integrating a TA system with an external database creates several computational problems.  An

especially intriguing one is the inherent nonmonotonicity of temporal abstractions.  This problem is solved
in the R�SUM� system by the use of a truth-maintenance system (see Section 3.3).  However, using a TA
system, such as R�SUM�, in conjunction with an external database might create inconsistency problems:
The R�SUM� system will update old conclusions in its temporal fact base as new data arrive; but the
database system, not having access to the dependency links and the truth-maintenance system, will also
keep the old, incorrect conclusions.  In addition, arrival of new data to the external database should be
reported to R�SUM� temporal fact base.  Thus, we need to investigate whether the temporal fact base and
the external database should be tightly coupled (each update is reflected immediately in the other database),
loosely coupled (updates are sent intermittently to the other database), or not coupled at all.  The choice
might depend on the properties of the domain and on the capabilities of the external database (e.g., object-
oriented databases handle links among entities more flexibly). The problem deserves further research.

A closely related issue is whether some, all, or none of the temporal abstractions should be saved in the
database.  Given that some of these abstractions are only intermediate, whereas other abstractions might be
changed by future data (possibly with a past time stamp or having some influence on the interpretation of
that past), it might be advisable not to save any abstractions, due to their logically defeasible nature.
However, it is obviously useful, from an efficiency point of view, to cache several key conclusions for easy
future use, either to respond to a direct query or to support another TA process.  The caching is especially
important for saving high-level abstractions, such as a significant pattern, that have occurred in the past, are
unlikely to change, and are useful for interpreting the present.  Such abstractions might be available for
querying by other users (including programs), who do not necessarily have access to the R�SUM� problem
solver or to the domainÕs full TA ontology.  One option is an episodic use of Òtemporal checkpointsÓ
beyond which past abstractions are cached, available for querying but not for modification.

4.3.2.  Implications for semantics of temporal database queries
One of the two main types of knowledge used by the temporal-inference mechanism is temporal-

semantic knowledge, an extension of ShohamÕs [1987] classification of the relationship of predicates
interpreted over one time interval to predicates interpreted over other time intervals.  The temporal-
semantic properties of parameter propositions are valuable both for inferring further abstractions and for
detecting contradictions among existing ones, leading to retraction of potentially incorrect conclusions and
to propagation of the new conclusions by the truth-maintenance system.  The temporal-semantic properties
can be useful for performing similar functions in temporal databases.  For instance, two tuples representing
a certain predicate, whose temporal attributes refer to meeting time intervals, should not necessarily be
concatenated for purposes of summarization.  In addition, queries such as Òwas p necessarily true during
time interval I?Ó or Òis it possibly true that p held over a certain time interval?Ó when I has some temporal
relation to an interval I1 over which p is true, might be answered, among other means, by the use of
temporal-semantic properties.  As mentioned in Section 2.5.1, the full use of the inferences implied by the
temporal-semantic knowledge might be viewed as a modal logic of combining propositions over time, and
representing what is possibly true and what is necessarily true.  Further research would be useful and can
elucidate several issues in the semantics of queries referred to temporal databases.

4.3.3.  Implications for visualization of time-oriented data
The ability to create meaningful, context-specific, interval-based abstractions from time-stamped data is

a prerequisite for useful graphic presentation and visualization of those data.  Such a presentation requires
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knowledge about temporal properties of the visualized primitive and abstract parameters.  For instance,
knowledge of typical persistence of parameter propositions, when data are not obtained continuously,
coupled with temporal-semantic properties, enables the creation of meaningful intervals and avoids creation
of illegitimate or simply unrealistically long intervals.

Thus, the KBTA method can provide the semantics for a temporal-abstraction graphical user
interface to a set of parameter intervals.  This interface will enable the user to manipulate the results of a
TA query.  Examples include highlighting or hiding of particular parts of the output, zooming in and
zooming out operators whose predefined semantics employ relations in the domainÕs TA ontology (e.g., IS-
A , ABSTRACTED-INTO, SUBCONTEXT), changing the temporal-granularity level (e.g., from days to
months), and focusing on particular time periods, interpretation contexts, abstraction types, or parameter
classes.  In addition, given those terms, a model specific to the userÕs preferences can be defined.  Thus, the
TA ontology can provide semantic operators that augment the syntactic time-line visualization operators
suggested by Cousins and Kahn [1991].

4.3.4.  Implications for plan recognition and critiquing
An additional potential use for the KBTA framework is the enablement of an intelligent dialog between

a human executing a plan and an automated assistant.  We can facilitate such a dialog substantially by
representing the intentions of the original designer of the plan as TA patterns (of both execution actions and
world states) that should be created, maintained, or avoided [Shahar and Musen, 1995].  For instance, a
common format in clinical domains is a clinical guideline, which embodies a set of plans for managing
patients of a particular category over time.  For enhanced support, the automated assistant needs to know
what were the intentions of the guidelineÕs author and to recognize the plans of the physician excuting the
guideline, assuming that the physician is aware of these intentions.  To recognize and support the
physicianÕs plan, the automated assistant needs a library of plans represented in a uniform execution
language that includes an expressive temporal-abstraction syntax and semantics for representation of
intentions, preferences, conditions, actions, and effects of plans and actions.  We are developing such a
language [Shahar et al. 1996].  The automated assistant also needs a library of generic execution-time plan-
revision strategies [Shahar and Musen, 1995].  Such a representation enables, in principle, a critiquing
approach to the support of planning [Miller, 1986] that realizes, given the physicianÕs plan or actual actions,
whether or not the physician is following the guidelineÕs higher-level intentions and policies, even though
she has not followed the prescribed actions literally.  Thus, the system will still be able to support
intelligently the decisions and plans of the human user.  The ability for an intelligent, goal-oriented dialog
with the user seems crucial for many knowledge-based decision-support systems.

4.3.5.  Implications for abstraction of data over other linear distance measures
The experiment in the traffic domain [Shahar and Molina, 1996] (see Section 3.2) demonstrates the high

level of reusability of the KBTA method for markedly different domains, and even for different distance
measures (space and time), as long as these are linear.  The results suggest that the KBTA method might be
generalized into a knowledge-based linear-abstraction method, which has an additional dimension
argument.  Performing the task of monitoring traffic-control actions required, in effect, two versions of this
more general method: one for reasoning about time, and another for reasoning about space.  Alternatively,
using the PROT�G�-II terminology, we might say that the knowledge-based linear-abstraction method was
mapped twice to the traffic domain: one time to the TA properties of the traffic parameters, thus creating a
TA ontology of the traffic domain, and yet another time to the spatial properties of the traffic parameters,
thus creating a spatial-abstraction ontology for that domain.  These two versions were then assembled to
create a knowledge-based spatiotemporal-abstraction method.

The linear distance measure does not need to be limited to time or space.  In a separate study, we had
shown that the TA ontology can model the task of context-sensitive information retrieval [Shahar and
Purcell, 1995].  In that task, the distance measure is position of text within a document.  Other potential
tasks exist in the biomolecular domainÑfor example, matching of patterns, at several levels of abstraction,
in DNA sequences.
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5.  Concluding remarks

One or more of the TA mechanisms that perform the five tasks into which the KBTA method
decomposes the TA task can in principle be modified, or even replaced, without changing that method.
(For instance, temporal interpolation might incorporate statistical methodologies.)  Thus, the KBTA method
can be viewed as an inference structure in the sense of ClanceyÕs [1985] heuristic-classification method.
The KBTA method and the R�SUM� system implementing it embody a philosophy of making explicit the
subtasks involved in performance of the TA task, the mechanisms performing each subtasks, and the
domain-specific knowledge required by each mechanism to perform its task.

The knowledge used by domain experts to extract meaningful temporal intervals from a set of data is
intricate and is largely implicit.  This intricacy is reflected in the complexity of the TA ontology, which
includes parameters, events, contexts, abstraction goals, and DIRCs; by the five domain-independent TA
computational mechanisms; and by the four types of domain-specific knowledge these mechanisms require.
Designers of knowledge-based systems cannot escape this complexity if they wish to support and maintain
tasks that involve significant amounts of reasoning about and abstraction of time-stamped data.  However,
the well-defined knowledge roles of the KBTA method, and the use of automated knowledge-acquisition
tools, greatly facilitate the maintenance of the domainÕs or the particular applicationÕs TA ontology.

Our discussion of the KBTA method and of the R�SUM� system suggests that both the TA task and the
methodology proposed for solving it are relevant to many application domains other than clinical medicine.
These domains are those in which interval-based abstraction of concepts from time-stamped input data is
needed, and in which most of the features described in Section 4.2 are desired.  The methodology that we
presented is especially useful when several abstraction levels and data types exist as inputs or outputs of the
TA task, when data might arrive out of temporal order, when several context-specific interpretations might
need to be monitored in parallel, and when knowledge maintenance and reuse is relevant.

Furthermore, the example of the traffic-control task suggests that the KBTA method might be
generalized to a knowledge-based linear-abstraction method, whose task-specific knowledge might be
mapped to a domain-specific (linear) distance measure (e.g., time, space).  Many of the advantages and
implications discussed in Sections 4.2 and 4.3 would then apply too.

Since the knowledge requirements of the TA mechanisms are well defined, the knowledge-acquisition
process can use either a manual methodology driven by the knowledge roles defined by the KBTA method
and the TA mechanisms, or automatically generated knowledge-acquisition tools, tailored to the domain
and to the task, such as the knowledge-acquisition tools generated by the PROT�G�ÐII system.  These
tools can be used by a developer of a  new TA system or by a domain expert maintaining that system.

Whatever the knowledge-acquisition methodology chosen, however, understanding the knowledge
required for abstracting data over time (and perhaps over other linear distance measures) in any particular
domain is a useful undertaking.  A clear specification of that knowledge, and its representation in an
ontology specific to the task of abstracting concepts over time, as was done in the architecture of the
R�SUM� system, supports the design of knowledge-based systems that perform a TA task.  The formal
specification of the TA knowledge also supports acquisition of that knowledge from domain experts,
maintenance of that knowledge once acquired, reuse of the problem-solving knowledge for TA tasks in
other domains, and sharing of the domain-specific knowledge with other problem solvers that might need
access to the domainÕs temporal-reasoning knowledge.
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