
Marius Qvam Wollamo

BusTUC - Geographic expansion

TDT4501 - Computer Science, Specialization Project, Technology. 1

Fall 2012

Department of Computer and Information Science
Faculty of Information Technology, Mathematics and Electrical Engineering

1http://www.idi.ntnu.no/emner/tdt4501/

http://www.idi.ntnu.no/emner/tdt4501/

i

Abstract

BusTUC has been a valuable resource in the bus route information domain in
Trondheim for several years. This project focuses on the steps needed to expand
the domain in BusTUC to cover a greater part of Norway. Public transporta-
tion agencies want their data to be as easy accessible as possible to reach out
to the customers. By implementing an automatic upload procedure of BusTUC
an interface for the data exchange could be evaluated. The interface needs to be
based on standard format that is supported by BusTUC. The results show that
a automatic process could be implemented in order to achieve a scalable and
modifiable solution, that could be extended in the future.

ii

Contents

1 Introduction 3
1.1 Task Description . 3
1.2 Background and Motivation 4
1.3 Goals . 5

1.3.1 Geographic Expansion of BusTUC 5
1.3.2 Automate the Schedule Update Process 5

1.4 Add Real-time Information to BusTUC 6

2 Background 7
2.1 BusTUC . 7
2.2 The RegTopp Format . 9
2.3 RegTopp Automaton . 9
2.4 The Real-time Service: MultiBRIS 11
2.5 Server . 11
2.6 Related Work . 12

2.6.1 AtB’s Travel Planner 12
2.6.2 Google Transit . 12
2.6.3 Comparison . 15

3 Method 19
3.1 Functional Requirements . 19

3.1.1 Uploading a Data Set 19
3.1.2 Converting the Data Set 20
3.1.3 Extending BusTUC . 20

3.2 Non-Functional Requirements 21

iii

iv Contents

4 Modeling 23
4.1 Automating the New Schedules Upload Process 23
4.2 Architecture . 23
4.3 Viewpoints of the Architecture 24

4.3.1 Scenarios . 24

5 Contributions 29
5.1 Development Focus . 29
5.2 RegTopp to Prolog Converter 29
5.3 Uploading and Verifying a Schedule 32
5.4 Converting Data Sets . 32
5.5 Consistency in BusTUC . 32
5.6 JSON Answers . 33
5.7 Consistent Encoding . 34

6 Results 35
6.1 Automatic Update of BusTUC 35

6.1.1 Performance . 35
6.1.2 RegTopp Automaton 35
6.1.3 RegTopp to Prolog Converter 36

6.2 Encoding . 36
6.3 BusTUC Answers . 36

6.3.1 The JSON Format . 36
6.3.2 Consistent Answers . 36

7 Discussion 39

8 Future Work 41
8.1 System Testing . 41
8.2 Extending to Other Transportation Types 41
8.3 Knowledge Base . 42
8.4 Automating Processing: New Schedules from Transport Agency 42
8.5 Adopting New Bus Stops . 42
8.6 User Testing . 43

9 Acknowledgments 45

Contents v

A A Revision of the Semantic Knowledge Base 47
A.1 Batch Test . 47

A.1.1 New Routes . 47
A.2 Updating the Knowledge Base 50

B Source Code 55

Bibliography 57

vi Contents

List of Figures

2.1 The RegTopp Automaton . 11
2.2 AtB’s Travel Planner map result 13
2.3 AtB’s Travel Planner text result 14
2.4 Google Transit result . 15

4.1 Upload and convert . 23
4.2 Logic view when uploading new data set 25
4.3 Process view of uploading . 26
4.4 Development view . 26
4.5 Deployment view . 27
4.6 Update new schedule scenario 28

5.1 Class diagram Java Converter 31
5.2 BusTUC no information answer 33
5.3 BusTUC ambiguous place name: Solbakken 33
5.4 BusTUC answer . 34

6.1 Batch test sample of result before revision 37
6.2 Batch test sample result after revision 37

vii

viii List of Figures

List of Tables

2.1 BusTUC web sites . 7
2.2 RegTopp version 1.2 . 10
2.3 Validating the RegTopp format 10
2.4 Server information for busstjener.idi.ntnu.no and busstuc.idi.ntnu.no 12
2.5 Features in BusTUC, AtB’s Travel Planner and Google Transit . 16

3.1 Functional requirements for the RegTopp Automaton 20
3.2 Functional Requirements for the Converter 20
3.3 Functional requirements for a BusTUC extension 20
3.4 Non-functional requirements 21

ix

x List of Tables

List of Tables 1

Terminology and Abbreviations

• AtB - Public transport agency in Trondheim, Norway

• BusTUC - A natural language bus route information system

• IDI - Department of Computer and Information Science

• IME - Faculty of Information Technology, Mathematics and Electrical En-
gineering

• FUIROS - The Future Ultimate Intelligent Route Information System

• JSON - JavaScript Object Notation, small data-objects for retrieving in-
formation

• MultiBRIS - Multiple-platform approach to the Ultimate Bus Route In-
formation System

• NTNU - Norwegian University of Science and Technology

• PHP - A server-side scripting language popular in web-development to
create dynamic web pages

• RegTopp - Regional Transit Information format

• SMS - Short Message Service. Allows sending short messages between
phones and other hand-held devices

• TT - Team Trafikk, former bus provider in Trondheim

• TUC - The Understanding Computer, a natural language processor devel-
oped at IDI. BusTUC is an adaption of TUC to the bus domain.

2 List of Tables

Chapter 1

Introduction

This introduction will present the task description first, before presenting the
background and motivation, and ending with the goals.

1.1 Task Description

The assignment, started by Tore Amble, was given by Rune Sætre at IDI. The
FUIROS-project aims towards being the ultimate route information system for
the future:

FUIROS - Fremtidens ultimate intelligente
ruteopplysningssystem

BusTUC is a natural language bus route system for Trondheim.
It gives information about bus schedules, and has some information
about the real passing times. AtB has installed GPS tracking on all
the buses, giving access to real passing times and delays, and not
only for Trondheim. With new smart phones arriving rapidly on the
market, there are possibilities for GPS localizations, connections
to maps and voice input. The project will be based on an exist-
ing advanced smart phone application called TABuss, developed by
four MSc students. The current Bus Oracle system should be ex-
tended from Trondheim to cover a greater part of Norway, and it
should support automatic updates whenever AtB change their regu-
lar schedules around holidays, and between winter and summer. The
system could also be extended to include information about trams,
boats, trains and airplanes.

3

4 1.2. Background and Motivation

1.2 Background and Motivation

After the initial digitizing of bus schedules, various bus route information sys-
tems have been developed worldwide, aiming to present the information in a
simple and understandable way.

”When is the next bus from Tiller to Samfundet leaving?” This question is
one of many questions BusTUC, described in Amble (2000) and Bratseth (1997),
a natural language bus route information system, has to answer daily. BusTUC
is providing answers to the bus schedules in Trondheim and if a user asks:

When does the next bus to Samfundet pass Moholt?

This question will give an answer such as:

Bus 36 passes by Moholt at 12:05 pm and at 12:35 pm and arrives
at Studentersamfundet, 8 minutes later.

This service provides the users information more efficiently than reading the
entire time table.

BusTUC strives to return an answer that is reasonable for the question given.
It has existed since 1997 and its expert knowledge makes it a valuable and intelli-
gent application for bus travelers in Trondheim. After the startup of BusTUC the
semantics2 has been specialized for the bus domain in Trondheim and the sys-
tem has been claimed to have reached a savant level of intelligence as described
in Amble (2009). As a result BusTUC is easy to use and understands simple
phrases such as: ”Solsiden Torget”. It processes that question as if the user had
written: ”When does the bus from Solsiden to Torget leave?” This is one of sev-
eral different ways of posing a question to BusTUC. The ability to understand a
problem posed in different ways, which should give the same answer, is making
BusTUC user-friendly. That is, a user does not have to learn a specific way of
querying BusTUC.

Statistics show that BusTUC answers about 3000 questions on a daily basis.
The service is accessible through the web, text message (SMS), and from various
smart phone applications, making BusTUC a source of information that many
rely on. The future vision is to extend BusTUC to give answers about trams,
boats and trains. Currently BusTUC only provides schedules from the bus route
operator AtB, but the FUIROS project aims to cover a greater part of Norway.

2http://en.wikipedia.org/wiki/Semantics

http://en.wikipedia.org/wiki/Semantics

Chapter 1. Introduction 5

Therefore, to provide an automatic update of BusTUC whenever AtB change
their regular schedules, would be the start of expanding the system. To achieve
an automatic update process, several formalities have to be considered. Data sets
fed to the system should be in a supported format and use the new information
together with its current semantic knowledge base.

1.3 Goals

The goals for this project is to automate the update process whenever the sched-
ules from AtB are changed, prepare it for a geographic expansion and make this
the basis for implementing real-time information in the master thesis.

The following sections explain how this project is going to implement these
functionalities and modifications.

1.3.1 Geographic Expansion of BusTUC

The geographic expansion should provide an interface for public transportation
types such as trams, trains and boats, to exchange their schedules so they could
be used in BusTUC. To deal with other sources than AtB’s schedules, BusTUC
needs to generalize how the answers are returned. BusTUC provides answers in
both text and JSON format. To prepare BusTUC for such changes, high cohesion
and loose coupling should be the priority. The creation of JSON answers should
be modified regarding the geographic expansion.

1.3.2 Automate the Schedule Update Process

Add support for automatic updates of BusTUC whenever AtB’s schedules are
changed. This is important to provide correct and intelligent answers. Automat-
ing such a process could help eliminating any human errors and make the update
less time consuming. This process should contain a validation of schedules and
convert the given data set to interpretable Prolog files. All scenarios which could
trigger a change in schedules are likely to happen several times throughout the
year. Therefore an automated solution is a good solution.

6 1.4. Add Real-time Information to BusTUC

1.4 Add Real-time Information to BusTUC

The two goals described above should be the base for integrating real-time infor-
mation as a part of the text answer in BusTUC for the Master thesis.

The previous FUIROS project MultiBRIS made a web service which pro-
vides real-time information about when the next buses are arriving at a specified
bus station in a JSON format. This service is already accessible from the Multi-
BRIS client3 and the android application TABuss.4 A solution to integrate this
information into BusTUC could be interesting. Collecting information from dif-
ferent sources into one system could make it get more users.

3http://busstuc.idi.ntnu.no/MultiBRIS
4https://play.google.com/store/apps/details?id=test.BusTUC

http://busstuc.idi.ntnu.no/MultiBRIS
https://play.google.com/store/apps/details?id=test.BusTUC

Chapter 2

Background

This section describes the technologies used for the development.

2.1 BusTUC

BusTUC can be accessed through both Short Message Service (SMS) and the
web (see table 2.1). The answers are given as plain text or in JSON format. The
latter allows simple integration in mobile applications.

Web site number three in Table 2.1 is the commercial version hosted by AtB.
The two first web sites in Table 2.1 are used for development and testing pur-
poses, before deploying to the commercial version. Note that the commercialized
version could give different answers compared to the ones used for development.
By asking BusTUC: ”What version is running?”, the answer should be ”TUC has
version AtB-I Date 121001”. The date in this answer is date of the last update of
BusTUC.

The BusTUC system consists of several components, where each has its own
responsibility.

Web sites
1 http://busstuc.idi.ntnu.no/
2 http://www.idi.ntnu.no/˜tagore/
3 http://www.atb.no

Table 2.1: BusTUC web sites

7

http://busstuc.idi.ntnu.no/
http://www.idi.ntnu.no/~tagore/
http://www.atb.no

8 2.1. BusTUC

• Parsing the input text: This component consists of a parser that uses a
dictionary and grammar to build a representation of the input in a parse
tree. This parse tree is then evaluated to provide a semantic meaning.

• Semantical knowledge base: This database consists of a semantics net-
work that maps a word to a meaning in a specific domain.

• Logical knowledge base: This database consists of several rules that need
to be fulfilled in order to make an answer of the input.

Whenever a question is asked to BusTUC, it mus perform an analysis and a
reasoning before drawing a conclusion of what to return as an answer. BusTUC’s
interpretation relies on that TUC performs an analysis and translates a question
into a first order expression without context. The context is provided by the
semantic knowledge base in BusTUC.

First a lexical analyzer splits the question into tokens in a syntactic parse tree
if and only if the question consists of words that are recognized by the analyzer.
Each leaf node in the tree is representing the words such as a noun or a verb
phrases. For example, if the question: ”Who is superman?” is asked, the result
returned is ”Incomprehensible words: superman”. Because the word ”superman”
is not in BusTUC’s knowledge base and therefore the strict parser cannot trans-
late the question into first order logic. This is to preserve the problem domain
of BusTUC. However, if a user asks BusTUC the question “what is a man?” the
returned answer is ”I don’t know”. This is since the noun ”man” is stored in the
semantic knowledge base of BusTUC.

BusTUC translates from the tree representation to a first order logic expres-
sion called Tuc Query Logic (TQL). TQL expressions consist of predicates, func-
tions, constants and variables. It gives an interpretation of a question as under-
stood by BusTUC. The TQL expression is the input for doing a reasoning before
BusTUC is able to provide the answer.

The semantic knowledge base in BusTUC is composed of rules and facts in
Prolog. An example is when a user asks BusTUC ”When is the next bus from
downtown to Tiller leaving?” The TQL expression containing the word ”Tiller”
is recognize as a bus stop since this is a fact declared in the semantic knowledge
base of BusTUC. This approach also applies to street addresses because they are
mapped to the nearest bus stop.

The system is created to understand some misspelled words, and therefore,
these are mapped to the correct word in the knowledge base.

Chapter 2. Background 9

BusTUC supports both Norwegian and English. The language detection is
performed for each question by counting the number of words unrelated to both
the languages. The system will answer in the language with the least unrelated
words.

The reasoning in BusTUC is designed so that if a user does not specify two
bus stops, the system assumes that the user wants to leave from downtown area
of Trondheim. This assumption enables BusTUC to give a reasonable answer to
an incomplete question.

If a user asks ”From Tiller to Samfundet” and does not specify the time, an
answer with the next departures from Tiller is returned. The time plays a very
important role in the reasoning in BusTUC. When asking for a time that has
passed, the system will return routes for tomorrow. This awareness is one of the
features contributing to returning a reasonable answers to the user.

2.2 The RegTopp Format

Regional Trafikkopplysnings-format5 (RegTopp), is a standardized format which
is a result of the project ”REGTOPP” which was running in the 1990s as de-
scribed in Trafikanten (1996). It is used for exchanging transit schedules between
public transportation agencies and travel planners. This format allows the use of
different systems and still provides an understandable format when exchanging
information. Together all the files in Table 2.2 make up the RegTopp format ver-
sion 1.2 and define information such as the bus stops, where routes are going to,
and what numbers the buses have.

2.3 RegTopp Automaton

The RegTopp Automaton6 is a web site, developed by Rune Martin Andersen at
the Faculty of Information Technology, Mathematics and Electrical Engineering,
that allows a user to upload and download data sets7 in a zip-file. The purpose of
this site is to validate new data sets from AtB and make them publically available.

5http://labs.trafikanten.no/2011/4/13/dokumentasjon-av-regtopp-formatet.
aspx

6http://busstuc.idi.ntnu.no/regtopp
7Data set - The format with the current schedule from a transport agency.

http://labs.trafikanten.no/2011/4/13/dokumentasjon-av-regtopp-formatet.aspx
http://labs.trafikanten.no/2011/4/13/dokumentasjon-av-regtopp-formatet.aspx
http://busstuc.idi.ntnu.no/regtopp

10 2.3. RegTopp Automaton

Files
FORMPAR.FRM
TURIX.TIX
TURMSTR.TMS
HPL.HPL
DAGKODE.DKO
DESTNAVN.DST
MERKNADMRK
GANGVEI.GAV
SAMTFK.SAM
SONE.SON
LINJE.LIN
VOGNLØP.VLP
TABVER.TAB
PERIODE.PER
RUTEPKT.RUT

Table 2.2: RegTopp version 1.2

Step Check
1 Invalid zip file?
2 Too many data sets?
3 Missing file types in RegTopp format?

Table 2.3: Validating the RegTopp format

Before a data set gets stored at the host and ready for download, a simple
validation of the zip file is executed. This process will run through the steps in
Table 2.3 to decide if the data set should be approved or not. This validation
contributes to preserving the consistency of the RegTopp format.

The approved data sets are listed and available for download as presented in
Figure 2.1. A JSON format with the same information is also available.

Chapter 2. Background 11

Figure 2.1: The RegTopp Automaton

2.4 The Real-time Service: MultiBRIS

The real-time service MultiBRIS Andersstuen and Engell (2011) returns the ar-
rival times for all the buses and allows setting parameters as the current GPS
position, the number of bus stops, and destination of the wanted trip. MultiB-
RIS is using a SOAP web service hosted by AtB. The client and the server use
a JSON object for communication. By setting a bus stop’s real-time ID as the
input parameter, the query result should return a JSON object with information
about the five next bus arrivals for the chosen bus stop.

2.5 Server

During the development of this project the server in Table 2.4 has been used. It
provides the web service for BusTUC8 and MultiBRIS9. It also provides the web
interfaces for BusTUC10 and the RegTopp Automaton6.

8http://busstjener.idi.ntnu.no/busstuc/oracle?q=samfundet
9http://busstjener.idi.ntnu.no/MultiBRISserver/RealTime?bID=

16010495
10http://busstuc.idi.ntnu.no

http://busstjener.idi.ntnu.no/busstuc/oracle?q=samfundet
http://busstjener.idi.ntnu.no/MultiBRISserver/RealTime?bID=16010495
http://busstjener.idi.ntnu.no/MultiBRISserver/RealTime?bID=16010495
http://busstuc.idi.ntnu.no

12 2.6. Related Work

Attribute Value
CPU 2x 5.2GHz, VMware shared pool
Memory 4GB dedicated
OS Ubuntu 12.04.1 LTS

Table 2.4: Server information for busstjener.idi.ntnu.no and busstuc.idi.ntnu.no

2.6 Related Work

This section will identify similar solutions to BusTUC. BusTUC is the only nat-
ural language system that provides bus route information in Trondheim. Com-
paring the AtB Travel Planner and Google Transit could be a basis for new ideas.
AtB Travel Planner is a direct competitor of BusTUC within the same domain,
while Google Transit is a solution aimed at the entire world. This comparison
should try to identify important features and properties that BusTUC could ben-
efit from.

2.6.1 AtB’s Travel Planner

AtB’s Travel Planner11 together with BusTUC constitutes the service provided
at AtB’s web site. This system requires the user to type a start and an end station
before returning a travel plan. Both local and regional bus routes with an origin
in Trondheim are supported. The travel route is presented as a list with detailed
information of what kind of transport is possible and the departure times. An
example of this is illustrated in Figure 2.3. In addition to the list, a feature that
displays the selected route in a map can be chosen. Figure 2.2 shows a result of
this feature.

2.6.2 Google Transit

Google Transit12 is a public transportation planning tool that integrates real-time
and static transit data with the use of Google Maps13. It allows data providers to
feed their data as long as it is in the defined format specified by Google. The two
standard formats for exchanging static or real-time transit information is General

11https://www.atb.no/atbreiseplanlegger/
12http://www.google.com/intl/com/landing/transit/
13http://maps.google.no

https://www.atb.no/atbreiseplanlegger/
http://www.google.com/intl/com/landing/transit/
http://maps.google.no

Chapter 2. Background 13

Figure 2.2: AtB’s Travel Planner map result

14 2.6. Related Work

Figure 2.3: AtB’s Travel Planner text result

Chapter 2. Background 15

Figure 2.4: Google Transit result

Transit Feed Specification (GTFS)14 and GTFS-realtime15 respectively. Public
transportation agencies all around the world are the targeted data providers. Fed
data is updated once a week and allows users of Google Maps to search for this
information. If a user wants to travel from place A to B, Google Maps could
provide a result for public transportation possibilities. A search from London to
Manchester, for instance, could return the travel plan by taking the train as in
Figure 2.4.

2.6.3 Comparison

Both Google Transit and AtB’s Travel Planner have various features and in Table
2.5 these are listed and compared to BusTUC.

14https://developers.google.com/transit/gtfs/?hl=no
15https://developers.google.com/transit/gtfs-realtime/?hl=no

https://developers.google.com/transit/gtfs/?hl=no
https://developers.google.com/transit/gtfs-realtime/?hl=no

16 2.6. Related Work

Application BusTUC AtB travel planner Google Transit
Real-time No No Yes
Map No Yes Yes
Multi language support Yes No Yes
Local schedules Yes Yes Yes
Regional schedules No Yes Yes

Table 2.5: Features in BusTUC, AtB’s Travel Planner and Google Transit

The similar solutions all have different domains of interest. As Google Tran-
sit currently only provides public transportation from NSB16 in Norway, a com-
parison of bus route information could not be made. However, Google Transit
has a solution which utilizes the transit in a map. This visualizes where the sug-
gested route is going for the user. This feature is also provided in AtB’s Travel
Planner.

As the FUIROS project aims towards being the ultimate bus route informa-
tion system for the future, one of the goals is to have as many users as possible.
To keep its existing user base the answers returned should not consist of any
false information that could lead to less confidence in the system. To preserve
its current popularity, the identification of improvements has to be performed.
That is, it is necessary to figure out what makes BusTUC easier to use than any
other service. Albeit aiming for the future, BusTUC should also be backward-
compatible in the supported schedule formats. After several contributions to
the FUIROS project, BusTUC is now integrated in various smart phone applica-
tions. This strengthens its position in the market. By being an ultimate system,
it is necessary to support an import of schedules that could easily be used. The
FUIROS project has as a research project over the years brought new functional-
ity and services. As the android application TaBuss, the cross platform applica-
tion MultiBRIS, and the Speech-recognition functionality in TaBuss. However,
the knowledge base in BusTUC has not been tested thoroughly. New bus routes
and bus stops may not be updated in the semantic knowledge base.

As Google Transit17 states on their website:

”We believe that common formats for exchanging public transit
information are the answer.”

16http://www.nsb.no
17https://developers.google.com/transit/overview?hl=no

http://www.nsb.no
https://developers.google.com/transit/overview?hl=no

Chapter 2. Background 17

This quote is stating the vital part of providing a standardized and well defined
format that is easy and understandable for the transportation agencies. The for-
mat that BusTUC currently relies on is the RegTopp format. As this is used by
many transportation agencies in Norway, the reasonable choice is to keep sup-
porting it as long as it is popular. That is, BusTUC should be an application that
adapt to the environment and not the other way around, as formats come and go.

18 2.6. Related Work

Chapter 3

Method

3.1 Functional Requirements

In order to achieve a robust automatic update process several requirements are
set. These are the main focus when implementing this process. Each require-
ment is given an identifier, description and a priority for the development. The
whole process of making BusTUC up to date with new schedules depends on the
RegTopp Automaton and the converter described in Section 5.2. The functional
requirements for these two components and BusTUC are described below.

3.1.1 Uploading a Data Set

When AtB change their schedules a new data set is made. This data set must
then be imported into BusTUC. An interface between the data providers and
BusTUC will make this process simpler. The following requirements describe
the functionality the RegTopp Automaton must provide in order to achieve this
interface and initiate the automatic update process of BusTUC.

19

20 3.1. Functional Requirements

ID Description Priority
F1 The RegTopp Automaton shall execute the Converter pro-

grams
H

F2 The RegTopp Automaton shall give feedback to the user when
the upload process is complete

M

Table 3.1: Functional requirements for the RegTopp Automaton

3.1.2 Converting the Data Set

When the new data set is uploaded, a converter process needs to be initiated.
The conversion must import the information from the data set and update some
existing files. To enable this the requirements in Table 3.2 are identified.

ID Description Priority
F3 The program shall update the version of BusTUC H
F4 The program shall import the new data set in BusTUC H
F5 The program shall write all the generated files in a UTF-8 for-

mat
L

Table 3.2: Functional Requirements for the Converter

3.1.3 Extending BusTUC

By extending some functionality in BusTUC, the issue with SMS answers could
be addressed. The requirements are listed in Table 3.3.

ID Description Priority
F6 The system shall only return plain text for SMS queries M
F7 The system shall provide reasonable answers for all the bus

stops in its database
M

Table 3.3: Functional requirements for a BusTUC extension

Chapter 3. Method 21

3.2 Non-Functional Requirements

Table 3.4 identifies the non-functional requirements that the implementation of
the automation should achieve.

ID Description Priority
NF1 The RegTopp Automaton shall approve and convert an up-

loaded data set within one minute
H

NF2 All files should be in a UTF-8 encoding M

Table 3.4: Non-functional requirements

22 3.2. Non-Functional Requirements

Chapter 4

Modeling

4.1 Automating the New Schedules Upload Process

Figure 4.1: Upload and convert

Both the functional and non-functional requirements are the focus when imple-
menting the automatic update process of BusTUC in Figure 4.1. An interaction
between these components is required to achieve this solution.

4.2 Architecture

In this section the architecture of the automatic update process is presented. This
is further divided into sections that describe the different views in the architec-
ture.

The stakeholders for the architecture are listed below.

AtB

23

24 4.3. Viewpoints of the Architecture

• Useability: The RegTopp Automaton should provide the means of upload-
ing their schedules in a simple manner.

Developer

• Architecture: The upload process should set Modifiability as most impor-
tant. This will take care of possible new data set formats in the future.

4.3 Viewpoints of the Architecture

An architectural viewpoint is provided to present a broad and simple overview of
the entire automation process. The viewpoints presented in this project is using
Kruchten’s 4+1 model as described in Kruchten (1995). This method allows the
use of UML diagrams to represent the architecture and make it understandable
for the stakeholders.

1. Logic view - Figure 4.2 displays what happens when the user uploads a
new data set on the RegTopp Automaton.

2. Process View - Figure 4.3 is concerned with the steps after a new data set
is uploaded to the RegTopp Automaton.

3. Development View - Figure 4.4 shows the different components and what
kind of programming language they use.

4. Physical View - Figure 4.5 displays where the different components reside
on the server.

4.3.1 Scenarios

The use case in Figure 4.6 represents the actions the two different actors need
to carry out in order to update BusTUC with new information. The actors are
represented by the user and system. The system is representing the automatic
update process in BusTUC and the user is representing a data provider. AtB is
the user which feeds BusTUC with data sets.

• RegTopp Automaton: The user must be able to upload its data on a web-
site to let the data set be accessible and ready for an import to BusTUC.

Chapter 4. Modeling 25

Figure 4.2: Logic view when uploading new data set

26 4.3. Viewpoints of the Architecture

Figure 4.3: Process view of uploading

Figure 4.4: Development view

Chapter 4. Modeling 27

Figure 4.5: Deployment view

• Convert data set: The update system should perform a converting process
that makes a data set useful for BusTUC.

• Recompile BusTUC: The update system shall by all means initiate a re-
compilation of BusTUC to recognize and use the new data set.

28 4.3. Viewpoints of the Architecture

Figure 4.6: Update new schedule scenario

Chapter 5

Contributions

This chapter describes how the automatic update process of new data schedules
into BusTUC was performed.

5.1 Development Focus

The development part focuses on making the components in Figure 4.1 commu-
nicate with each other. A public transport agency has its own management tools
for making a schedule. If BusTUC shall cover a greater part of Norway, it is im-
portant that schedules are exchanged in a common format. This means that the
agencies feeding BusTUC with data have to use a standardized format. The Reg-
Topp format is currently the accepted and widely used in this area. Therefore,
BusTUC should accept schedules provided in a RegTopp format. The different
parts constituting the import process is described next.

5.2 RegTopp to Prolog Converter

The Converter is the program responsible for converting a data set into Prolog
predicates that is interpretable for BusTUC. It is written in Java and designed for
supporting data sets in a RegTopp format. The RegTopp format is well docu-
mented and specifies the index for each attribute. Thus, static methods are used
to store the information in the RegTopp format as strings. The class diagram
for the converter is depicted in Figure 5.1 and the coloring has the following

29

30 5.2. RegTopp to Prolog Converter

meaning:

• Orange: These two classes are developed by the author. They are neces-
sary in order to update BusTUC with a new schedule.

• Blue: These packages contain utilities and objects used when processing
the data set.

• Green: This is the program that converts the data set into Prolog predi-
cates.

The converter package consists of the three executable programs: ConvertReg-
Top, VersionUpdate and TopRegUpdate. These constitute the interface between
a RegTopp data set and the BusTUC system. A description of the programs
follows:

VersionUpdate - The purpose of this program is to update the version of
BusTUC. Since the last date of modification in BusTUC is constituting the ver-
sion, then whenever new data sets are uploaded, the current date must be stored
as well. This is performed by the VersionUpdate program. It basically creates a
new date object and overwrites the current version file in BusTUC with the new
information.

TopRegUpdate - The responsibility of TopRegUpdate is to add a predicate
that informs BusTUC of the new schedules in its database. The file topreg
consists of all the schedules in BusTUC’s database. It is important that those are
sorted by the end date. That is, to identify when new schedules should take over
for the old ones, for instance, from summer to winter routes. The TopRegUpdate
program does all of this. The imported schedule is added to topreg and then
all predicates are sorted by end date.

Both TopRegUpdate and VersionUpdate will insert a comment if given when
new schedules are uploaded at the RegTopp Automaton. This to easier under-
stand why the different schedules are uploaded, for instance, a new route or
changes in an existing route.

As these programs generate and modify files, a time stamp and the name of
program are printed at the top of all the affected files. This provides a simple
way of checking the time of the last update.

Chapter 5. Contributions 31

Figure 5.1: Class diagram Java Converter

32 5.3. Uploading and Verifying a Schedule

All the programs have been modified to generate UTF-8 encoded files to
maintain a consistent encoding throughout the system as explained in Section
5.7.

5.3 Uploading and Verifying a Schedule

The functionality of the RegTopp Automaton was extended to initiate the con-
verting process. As both the upload web page and the Converter 5.2 are hosted
on the same server an interaction is not a problem. PHP18 provides a method for
executing an external program, the exec()19 method. By making the web site
execute the Converter, the requirement F1 can be accomplished.

5.4 Converting Data Sets

Since BusTUC is written in Prolog, any new information provided must be con-
verted to Prolog facts.20 To make the Converter update BusTUC, two new classes
were created. A new class was created to update the version of BusTUC when
the new schedules were added. The other class was designed so that it could read
and generate a file containing the names of the schedules in the database sorted
by end date. This to tell BusTUC that the new schedule imported exists and is
ready to be used from the valid period specified.

5.5 Consistency in BusTUC

Until the summer of 2010, it was TT who had the responsibility for providing a
bus service for Trondheim and vicinity. After AtB took over the routes in Au-
gust 2010, the change of service provider entailed new routes, like bus 301 to
Stjørdal, Hommelvik or Brekkåsen. As BusTUC is dependent on RegTopp 2.2,
new bus stops should automatically be interpreted as bus stops. However, the
knowledge base has over the years been modified to state which places BusTUC
has no information about. The result is better presented in Figure 5.2.

18http://www.php.net/
19http://php.net/manual/en/function.exec.php
20http://en.wikipedia.org/wiki/Prolog#Rules_and_facts

http://www.php.net/
http://php.net/manual/en/function.exec.php
http://en.wikipedia.org/wiki/Prolog#Rules_and_facts

Chapter 5. Contributions 33

Figure 5.2: BusTUC no information answer

The problem was that after importing the bus stops from the data set, the
logic told BusTUC that Malvik was a foreign place. The interpretations to some
bus stops clearly has to be changed manually in the semantic knowledge base.
This could be a challenge with regard to the time consumption and by forget-
ting some bus stops. Being a trusted source of bus route information, BusTUC
should be consistent with the current bus schedule. To fix this problem a manual
revision was done giving a new answer, see Figure 5.4, to the same question as
in Figure 5.2. However, new difficulties arose. Some of the bus stop names were
ambiguous so BusTUC did not understand what the user wanted.

Figure 5.3: BusTUC ambiguous place name: Solbakken

As in the Figure 5.3 the name ”Solbakken” is a place which could refer to
several locations in the Trondheim region. The listed alternative does not display
the place Solbakken located in Hommelvik.

5.6 JSON Answers

By manually reviewing the implementation of the JSON functionality the func-
tional requirement F6 in Table 3.3 could be accomplished. BusTUC has the

34 5.7. Consistent Encoding

Figure 5.4: BusTUC answer

ability to give answers in JSON format as Figure 5.4 is showing. By default both
the text and JSON answers are built. In cases when sending an SMS, a JSON
format is not needed. The implementation of JSON in BusTUC was done ad-
hoc making the modifiability of JSON answers rather poor. Therefore, the JSON
functionality was moved to a higher level in the call stack, making it possible to
omit the JSON format.

5.7 Consistent Encoding

One of the important parts of making an automatic update process is to ensure
consistent encoding throughout the system. This means that files generated by
the Converter and files on the server should be endoded in UTF-8 encoding.
The reason for having only one encoding is to avoid problems that may occur
when building or compiling programs. Since different encodings would give
false character representations in cases where one of the Norwegian characters
æ, ø or å is used. BusTUC has previously used an ISO-8859 encoding when
running on the server furu.idi.ntnu.no. After migration to the server in Table 2.4,
the encoding was set to UTF-8. Therefore, some of the files are still in a ISO-
8859 encoding that could provoke issues when interpreting as UTF-8 encoding.

Chapter 6

Results

The following section describes the results of the development to enable a geo-
graphic expansion of BusTUC.

6.1 Automatic Update of BusTUC

6.1.1 Performance

While no automatic update solution for importing new schedules existed earlier,
the time of updating BusTUC is now taking about 2 minutes. The overall process
from the time the user hits ’approve’ when uploading a new schedule on the
RegTopp Automaton until it gets approved and converted into an interpretable
Prolog code takes less than a minute. Thus, this makes the update process more
robust and free from human typing errors. The non-functional requirement NF1
applies in the cases were only one data set is uploaded at the time.

6.1.2 RegTopp Automaton

Both the functional requirements F1 and F2 for the RegTopp Automaton were
accomplished. An AJAX call is used to execute the converter programs. The
response returned informs the user if the convert process was a success or not.

35

36 6.2. Encoding

6.1.3 RegTopp to Prolog Converter

The extended functionality in the converter did succeed in fulfilling the func-
tional requirements F3 and F4.

6.2 Encoding

After setting the language in the server 2.4 to UTF-8, all new files created were
stored in this encoding and completing the requirement NF2.

6.3 BusTUC Answers

6.3.1 The JSON Format

Due to the ad-hoc implementation of printing JSON to the screen inside a re-
cursive predicate, unwanted side effects could happen. That is because of the
impure predicates which are allowed in Prolog. A review of this implementation
was performed and it was decided to extract the entries used for the JSON format
in list formats. Then the ability to print all the JSON in one predicate was pos-
sible. This implementation omits the problems of side effects, and gives a more
modifiable approach for extending this feature. The functional requirement F6
was accomplished and BusTUC now returns only plain text for an SMS. This
helps reducing the data cost and the amount of data transferred to the client.

6.3.2 Consistent Answers

There are several examples of consistency issues with BusTUC’s answers com-
pared to the current bus schedule. When importing new schedules, information
like bus stops and places could conflict with the semantic knowledge base. There
are no procedures to detect such problems. Therefore, a test was conducted to
identify what kind of information gave incorrect answers. After executing the
test, see Appendix A.1.1, several bus stops that should have been answered did
not. An example of this answer is demonstrated in Figure 6.1. Here ”Muruvik”
should be interpreted as a valid bus stop, but the semantic knowledge has de-
clared ”Muruvik” as foreign. That is, BusTUC should not return any answer if a
user asks for this specific bus stop. This problem applied to several bus stops.

Chapter 6. Results 37

Figure 6.1: Batch test sample of result before revision

Figure 6.2: Batch test sample result after revision

After reviewing the test results, several bus stops matched the answer given
in Figure 6.1. A manual revision of the semantic knowledge base was performed
to enable BusTUC to answer the bus stops omitted, see Appendix A.2. Figure
6.2 presents the result after doing the revision.

The revision was able to detect bus stops from just one bus route since it was
a time consuming task to perform. Therefore the functional requirement is not
met for all the bus stops in BusTUC’s database.

38 6.3. BusTUC Answers

Chapter 7

Discussion

The automatic update process of BusTUC whenever AtB change their schedules
is considered to be a success. Since most of the components already existed, a
lot of time was used to learn the BusTUC system, the RegTopp Automaton and
the RegTopp to Prolog Converter to find out how they worked.

One of the main goals for this project was to make BusTUC ready for an
expansion to cover a greater part of Norway. This involves the generalization of
formats which BusTUC has to support. Currently only the RegTopp format is
supported by the upload website RegTopp Automaton. However, to provide in-
formation about bus stops and routes on a map in a format equal to that provided
by Google Transit would be of interest. Since the only customer currently is AtB
the support of a RegTopp format is expected. The process of updating BusTUC
has become more robust and scalable because of its automatic import.

Adding real-time information in BusTUC was not implemented. This has
its cause in the extra amount of time it took to get the overview of BusTUC
that was needed in order to understand where the real-time information should
be added. The MultiBRIS service which provides real-time information was
not returning any results when queried. A parsing error occurred since the real-
time information in AtB’s real-time service had changed the JSON object. This
problem was attempted to be fixed; however, the source code available was older
than the one running on the server. Therefore, this could not be solved before the
deadline of this project. However, the revision of JSON answers facilitates the
implementation of real-time and has been one of the main focuses when doing
the revision.

39

40

The RegTopp Automaton was made available to the author, which simplified
the process of building an interface with the same functionality. An advantage
is that it got documented and is a base for further improving the automation
process.

One of the advantages of this project is the new documentation of the Reg-
Topp Automaton and Java Converter which previously did not exist.

One of the issues of a geographic expansion is the already established seman-
tic knowledge base. It contains more than 100,000 lines of code. This means that
a manual revision is not a sufficient approach when introducing new schedules.
In order to make use of new information, a revision has to detect all the possible
connections a word has in the knowledge base. Making this process automati-
cally may solve these issues.

Chapter 8

Future Work

8.1 System Testing

Current testing runs a batch test containing 100 different questions. Every answer
is approved manually by a tester. A way to improve this could be to do a batch
test at least three times a day, at different times, or by simply setting BusTUC’s
clock. This could simulate the answers given in the evening/nights; mornings
and mid-day, check that they are correct and give reasonable answers. Another
way could be to try to set the specific values, such as the time, day, and holiday
to get answers for each possible outcome. In some cases, like night bus and SMS
it would not be a problem to set the values in the batch test. However, the time
could be difficult to set since it is set and checked several times while executing
the query. Also the night bus flag is triggered to be set if the question asked
implies that night bus time tables are relevant to the answer.

8.2 Extending to Other Transportation Types

The idea of extending BusTUC so it could be taken in use by other agencies
implies that the architecture needs to be modified. Such planning should con-
tain a set of requirements for what the input and the result from BusTUC should
be returned as. The vast usage of the RegTopp format in public transportation
suggests that it should be used as an input. By providing a general solution to
many different agencies, the input should always be interpreted and converted
into code, making BusTUC able to give answers in each case. Creating modules

41

42 8.3. Knowledge Base

which are responsible for each part should be considered. BusTUC has been tak-
ing this question into consideration from the beginning by preparing the Prolog
code for supporting other vehicles.

8.3 Knowledge Base

As BusTUC have been under development for several years, it has built up a
huge knowledge base. This knowledge is specialized for the bus route domain in
Trondheim. To be able to provide the same level of knowledge and intelligence
in other places or for other domains like trams and boats, loose coupling between
the parts of the system should be considered. This would allow an easy scalable
and maintainable solution for the coming years.

8.4 Automating Processing: New Schedules from Trans-
port Agency

Since the vision of BusTUC is to be a standard for all public transport infor-
mation, it needs to have proper import procedures. BusTUC has support for
importing RegTopp data sets, but in the future this format could be in a newer
version and therefore backward compatibility is vital. This is a concern along
with the probably introduction of new standard formats and that is why a general
import process should considered.

8.5 Adopting New Bus Stops

The idea that BusTUC should be extended to provide information about more
than just bus stops and other public transports outside Trondheim the import of
data sets needs to update the existing knowledge in BusTUC. By now the knowl-
edge of places is approximately at 16,000 lines. This means that performing
manual revisions each time a new data set comes along, is a too time-consuming
task for one person. An automated check to test if some of the places/bus stops
are listed as foreign should be considered to maintain consistency with current
schedules.

Chapter 8. Future Work 43

8.6 User Testing

As aiming for the future BusTUC needs to conduct a proper user test to identify
what the users like and dislike. It would be a great resource in further develop-
ment of the system.

44 8.6. User Testing

Chapter 9

Acknowledgments

I would like to thank my supervisors Björn Gambäck and Rune Sætre for their
guidance and support. Rune has been a valuable resource for his great knowledge
of the BusTUC system. I would also like to thank Rune Martin Andersen that
made the source code for the RegTopp Automaton6 available to me. I would also
like to thank the previous FUIROS students.

45

46

Appendix A

A Revision of the Semantic
Knowledge Base

In order to make a change in BusTUC’s semantic knowledge base, a batch test
or error log is the initial point of interest. When BusTUC returns answers some
bus stops or place names could be misinterpreted and give a incorrect answer. A
batch test and a manual revision could fix such errors.

A.1 Batch Test

A batch test is a text file with predefined questions that are answered in order.
Then a manual review is performed to check if the answers returned are correct
and that the functionality works properly.

A batch test should be executed after each major modification in the logic or
semantic knowledge base of BusTUC.

A.1.1 New Routes

Some bus stops are not answered by BusTUC because they are declared as unim-
portant in BusTUC’s knowledge base. Therefore, it could be a inconsistency be-
tween the answer and the official schedules. Thus, a batch test could figure out
how many of the bus stops are affected.

A test was made by asking BusTUC the question: ”Which stations is the bus
301 passing?” BusTUC then listed all the bus stops and these were imported into

47

48 A.1. Batch Test

the batch test A.1.1.

\nodebug

\set queryflag true

\set smsflag false

\starttimebatch

Hva er din versjon ?

Askeladdvegen.
Bakkegate .
Blåhammaren .
Bratsbergvegen .
Brekkåsen .
Brekkåsen snuplass .
Brubakk .
Buran .
City Syd E6 .
Dalen Hageby .
Einar Tambarskjelves gate .
Ekra .
Gildheim .
Gimse .
Gimseflata .
Gjevingåsen .
Grønberg .
Halstad .
Hansensvingen .
Haugan .
Havneveien .
Hell .
Hellsenteret .
Hommelvik høgda .
Hommelvik stasjon .
Hundhamaren .
Johan Tillers vei E6 .
Kroppanbrua .
Kvitland .

Appendix A. A Revision of the Semantic Knowledge Base 49

Leistadkrysset .
Malvik .
Melhus sentrum .
Melhus skysstasjon .
Melhusbrua .
Midtsandan .
Munkegata M4 .
Munkegata MR .
Muruvik .
Naustkleiva .
Nova kinosenter .
Olderdalen .
Presthus .
Prinsen kinosenter .
Prof Brochs gate .
Ranheim fabrikker .
Rosendal .
Rota .
Rønningsbakken .
Saksvik .
Sandmoen E6 .
Sandsiloen Rota .
Saxenborg alle .
Sjølyst .
Skottvold .
Skovgård .
Smeplassen .
Smiskaret .
Solbakken .
Solsiden .
St Olavs hospital .
Stav .
Stjørdal stasjon .
Storler .
Storsand 1 Fv950 .
Storsand 2 E6 .
Storsand 2 Fv950 .
Strandveien .
Strindheim .
Studentersamfundet .
Tempe kirke .

50 A.2. Updating the Knowledge Base

Tonstadkrysset E6 .
Torget .
Torp .
Torvet.
Stjørdal .
Travbanen .
Trøndertun .
Valøyvegen .
Vikelvveien .
Vikhammer .
Vikhammerløkka .
Vikhov .
Være .
Væresholmen .
Væsletta .
Værnesbranden .

\stoptimebatch

\set smsflag false

hvor mange spørsmål har du besvart ?

\end

A.2 Updating the Knowledge Base

The semantically knowledge base in BusTUC consists of several files that have
different responsibilities. The one in interest in this project is the Prolog file
”places.pl” that contains predicates that describe information about places. This
file should be modified if any bus stops are not returning any answers in BusTUC.

A predicate called foreign is telling BusTUC that the place is not in its do-
main. This to provide the user a reasonable error message and BusTUC will
return an answer saying that it does not have any information about this station.

After executing the test A.1.1 some modifications in places.pl was carried
out to make new bus stops interpretable. The predicates were commented out
and the green lines represent these. A differentiation of the version before and

Appendix A. A Revision of the Semantic Knowledge Base 51

after the test A.1.1 is listed below.

Index: places.pl
===
--- places.pl (revision 350)
+++ places.pl (revision 349)
@@ -3391,7 +3391,6 @@
synplace(munkvollgård,munkvoll_gård).
synplace(murens,ourens).
synplace(murevik,muruvik).
-synplace(muruvika,muruvik). %% MW-121119
synplace(museet,museum).
synplace(musikmuseum,museum).
synplace(myen,byen).
@@ -4401,14 +4400,6 @@
synplace(vikaasen,vikåsen).
synplace(vikahammer,vikhammer).
synplace(vikahmmer,vikhammer).
-synplace(vikhamar, vikhammer). %% MW-121119
-synplace(vikhamaren, vikhammer). %% MW-121119
-synplace(vikhamarn, vikhammer). %% MW-121119
-synplace(vikhammar, vikhammer). %% MW-121119
-synplace(vikhammaren, vikhammer). %% MW-121119
-synplace(vikhammarn, vikhammer). %% MW-121119
-synplace(vikhamer, vikhammer). %% MW-121119
-synplace(vikhammeren, vikhammer). %% MW-121119
synplace(vikamer,vikhammer).
synplace(vikelv,vikelvveien). %%Complicated
synplace(vikhamaråsen,vikhammeråsen).
@@ -8223,7 +8214,7 @@
foreign(brekken).
foreign(brekkerød).
foreign(brekktrøa).
-%% foreign(brekkåsen). %% MW-121119 bus301
+foreign(brekkåsen).
foreign(brekstad).
foreign(bremanger).
foreign(bremsnes).
@@ -8500,7 +8491,7 @@
foreign(gibostad).
foreign(gimle). %% ?

52 A.2. Updating the Knowledge Base

foreign(gimlekollen).
-%% foreign(gimse). %% ? = Gimle(veien) %% bus301 %%

MW-121119
+foreign(gimse). %% ? = Gimle(veien)
foreign(giæverbukta).
foreign(giske). %% Ålesund
foreign(gjelleråsen). %% oslo
@@ -8654,7 +8645,7 @@
foreign(helgeland).
foreign(helgelandsmoen).
foreign(helgeroa).
-%% foreign(hell). %% bus301 %% MW-121119
+foreign(hell).
foreign(hella).
foreign(hellandsjøen).
foreign(helleland).
@@ -8916,7 +8907,7 @@
foreign(kvinesdal).
foreign(kvinherad).
foreign(kvithamar).
-%% foreign(kvitland). %% bus301 %% MW-121119
+foreign(kvitland).
foreign(kvæfjord).
foreign(kværnerbyen).
foreign(kvål).
@@ -9116,8 +9107,8 @@
foreign(mosvika).
foreign(moum).
foreign(movik).
-%% foreign(muruvik). bus301 %% MW-121119
-%% foreign(muruvika). bus301 %% MW-121119
+foreign(muruvik).
+foreign(muruvika).
foreign(myre).
foreign(myrland).
foreign(myrvåg).
@@ -9371,7 +9362,7 @@
foreign(sagene).
foreign(sagstua).
foreign(sagvåg).
-%% foreign(saksvik). malvik bus301 %% MW-121119

Appendix A. A Revision of the Semantic Knowledge Base 53

+foreign(saksvik).
foreign(saksvikvollen).
foreign(salhus).
foreign(salten).
@@ -9434,7 +9425,7 @@
foreign(sjoa).
foreign(sjusjøen).
foreign(sjøholt).
-%% foreign(sjølyst). %% malvik bus301 %% MW-121119
+foreign(sjølyst).
foreign(sjølystveien). %% (Oslo)
foreign(sjørdal).
foreign(sjørdalen).
@@ -9519,7 +9510,7 @@
foreign(smedstua).
foreign(smertu).
foreign(smestad). %% oslo
-%% foreign(smiskaret). %% MW-121119
+foreign(smiskaret).
foreign(smøla).
foreign(smørås).
foreign(snartemo).
@@ -9574,7 +9565,7 @@
foreign(statsbygd).
foreign(statsbygda).
foreign(staubø).
-%% foreign(stav). %% malvik/hommelvik %% MW-121119
+foreign(stav). %% malvik/hommelvik
% foreign(stavanger).
foreign(stavern).
foreign(stavsjø). %% TA-110502
@@ -9629,7 +9620,7 @@
foreign(stornes).
foreign(storo). %% Oslo
foreign(storoddan).
-%% foreign(storsand). %% MW-121119 bus 301
+foreign(storsand).
foreign(storskogen).
foreign(storslett).
foreign(storsteinnes).
@@ -9780,7 +9771,7 @@

54 A.2. Updating the Knowledge Base

foreign(tonsenhagen).
foreign(tonsåsen). %% TA-100519
foreign(tornes).
-%% foreign(torp). %% MW-121119 bus301
+foreign(torp).
foreign(torshov). %% Oslo
foreign(torvastad).
foreign(torød).
@@ -9964,18 +9955,18 @@
foreign(vikeland).
foreign(vikersund). foreign(vikersundbakken).

foreign(vikersundsbakken).

-%% foreign(vikhamar). %% MW-121119 bus301
-%% foreign(vikhamaren).
-%% foreign(vikhamarn).
-%% foreign(vikhammar).
-%% foreign(vikhammaren).
-%% foreign(vikhammarn).
-%% foreign(vikhamer).
-%% foreign(vikhammer).
-%% foreign(vikhammeren).
+foreign(vikhamar).
+foreign(vikhamaren).
+foreign(vikhamarn).
+foreign(vikhammar).
+foreign(vikhammaren).
+foreign(vikhammarn).
+foreign(vikhamer).
+foreign(vikhammer).
+foreign(vikhammeren).

-%% foreign(vikhammeråsen).
-%% foreign(vikhov). %% MW-121119 bus301
+foreign(vikhammeråsen).
+foreign(vikhov).
foreign(vikvarvet).
foreign(vikran).
foreign(vilberg).

Appendix B

Source Code

The source code made under the development is available in the following SVN
repositories:

• The RegTopp Automaton and the RegTopp to Prolog Converter
http://basar.idi.ntnu.no/svn/busstuc/regtopp/prolog

• BusTUC
http://basar.idi.ntnu.no/svn/busstuc/regtopp

55

http://basar.idi.ntnu.no/svn/busstuc/regtopp/prolog
http://basar.idi.ntnu.no/svn/busstuc/regtopp

56

Bibliography

Amble, T. (2000). Bustuc: a natural language bus route oracle. In Proceedings
of the sixth conference on Applied natural language processing, pages 1–6.
Association for Computational Linguistics.

Amble, T. (2009). Bustuc–a savant level intelligent bus oracle. In Norwegian
Artificial Intelligens Symposium (NAIS). Tapir Akademisk Forlag.

Andersstuen, R. and Engell, T. (2011). Multibris: A Multiple-platform approach
to the Ultimate Bus Route Information System for Mobile Devices. Technical
report, Department of Computer and Information Science, NTNU.

Bratseth, J. S. (1997). Bustuc - a natural language bus traffic information system.
Master’s thesis, NTNU.

Kruchten, P. (1995). The 4+ 1 view model of architecture. Software, IEEE,
12(6):42–50.

Trafikanten (1996). Regtoppformatet versjon 1.2. http://labs.
trafikanten.no/media/12753/RF_1-2-1-1.pdf.

57

http://labs.trafikanten.no/media/12753/RF_1-2-1-1.pdf
http://labs.trafikanten.no/media/12753/RF_1-2-1-1.pdf

	Introduction
	Task Description
	Background and Motivation
	Goals
	Geographic Expansion of BusTUC
	Automate the Schedule Update Process

	Add Real-time Information to BusTUC

	Background
	BusTUC
	The RegTopp Format
	RegTopp Automaton
	The Real-time Service: MultiBRIS
	Server
	Related Work
	AtB's Travel Planner
	Google Transit
	Comparison

	Method
	Functional Requirements
	Uploading a Data Set
	Converting the Data Set
	Extending BusTUC

	Non-Functional Requirements

	Modeling
	Automating the New Schedules Upload Process
	Architecture
	Viewpoints of the Architecture
	Scenarios

	Contributions
	Development Focus
	RegTopp to Prolog Converter
	Uploading and Verifying a Schedule
	Converting Data Sets
	Consistency in BusTUC
	JSON Answers
	Consistent Encoding

	Results
	Automatic Update of BusTUC
	Performance
	RegTopp Automaton
	RegTopp to Prolog Converter

	Encoding
	BusTUC Answers
	The JSON Format
	Consistent Answers

	Discussion
	Future Work
	System Testing
	Extending to Other Transportation Types
	Knowledge Base
	Automating Processing: New Schedules from Transport Agency
	Adopting New Bus Stops
	User Testing

	Acknowledgments
	A Revision of the Semantic Knowledge Base
	Batch Test
	New Routes

	Updating the Knowledge Base

	Source Code
	Bibliography

