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Problem description

The assignment was given by supervisor Björn Gambäck and co-supervisor
Rune Sætre, and is a part of the FUIROS-project:

FUIROS - Fremtidens ultimate intelligente ruteopplysningssystem.

BusTUC1 is a natural language bus route system for Trondheim. It gives
information about scheduled bus route passings, but has no information
about the real passing times. This is about to change, because AtB2 has
installed GPS tracking of the buses, giving access to real passing times and
delays. Besides, with new smart phones arriving rapidly on the market,
there are possibilities for GPS localisation and connections to maps. The
project shall take a broad view, and consider all possible advanced concepts,
resulting in advanced smart phone applications.

The task at hand is to research the possibilities for a solution that combines
Automatic Speech Recognition (ASR) and context-awareness through Case-based
reasoning (CBR), for use in a bus route information system context. It is also de-
sirable to implement a proof of concept system, to be used together with TABuss
(Marcussen and Eliassen, 2011) and MultiBRIS (Andersstuen and Engell, 2011),
which are existing parts of the FUIROS-project. The end goal is to use TABuss
as a TaleTUC client, and integrate TaleTUC’s functionalities with TABuss’ main
functionality, which provides real-time updated route suggestions through Bus-
TUC and AtB’s real-time system.

The ASR module can build on existing solutions, such as Buster (Hartvigsen
et al., 2007), or on new technology, like iPhone’s SIRI3, or other suitable libraries
and tools. The main requirement for a final implementation is that it is able to
recognise Norwegian spoken bus stop names.

The context-awareness module is an extension of the work started by Mar-
cussen and Eliassen (2011), and will be designed to optimise TaleTUC.

1http://busstuc.idi.ntnu.no/
2www.atb.no
3http://www.apple.com/iphone/features/siri.html

http://busstuc.idi.ntnu.no/
www.atb.no
http://www.apple.com/iphone/features/siri.html
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Abstract

With the constant increase in smartphone sales, integrated sensors have become
available to the average user. This allows for mobile applications to utilise the
user’s context to provide more accurate information. The popularity of smart-
phones also attract developers to create audio functionalities that have earlier
been restricted to calling interfaces. There is an increasing interest for Auto-
matic Speech Recognition (ASR) services aimed at everyday tasks, where Ap-
ple’s release of SIRI is a good example of a system that has contributed to the
gained popularity.

This report describes TaleTUC, a proof of concept system for the domain
of bus route information. TaleTUC uses ASR combined with context-awareness
through Case-based Reasoning (CBR), to recognise spoken bus stop names. It is
built on a client-server architecture, where the TABuss (Marcussen and Eliassen,
2011) Android application has been extended to operate as a client. As a Tale-
TUC client, TABuss uses speech as input to its main query functionality, which
provides bus route suggestions through BusTUC and AtB’s real-time system.

Three modules have been developed server-side, where one is used for ASR,
and the two others are used for context-awareness. Testing of the three modules
combined showed improved results compared to the ASR module alone, which
indicates that context-awareness is a suitable technology to combine with ASR.

Sammendrag

Som en følge av det stadig økende salget av smarttelefoner, har integrerte sen-
sorer blitt tilgjengelige for den vanlige bruker. Gjennom disse kan mobile app-
likasjoner gi mer nøyaktig informasjon, ved å utnytte brukerens kontekst. Smart-
telefonenes popularitet gjør også at utviklere kan lage lydfunksjonaliteter som
tidligere kun har vært tilgjengelig over faste telefonlinjer. Det er en økende in-
teresse for programmer som tilbyr tale-til-tekst funksjonalitet rettet mot hverdagslige
gjøremål, der Apple’s SIRI er et godt eksempel på et system som har bidratt til
den økende populariteten.

Denne rapporten beskriver TaleTUC, et ”proof of concept” system for buss-
ruteinformasjon. TaleTUC bruker tale-til-tekst kombinert med context-awareness
gjennom Case-based Reasoning (CBR), for å gjenkjenne talte bussholdeplass-
navn. Systemet er bygget på en klient-server arkitektur, der utvidelser har blitt
laget i Android-applikasjonen TABuss (Marcussen and Eliassen, 2011) for at
den kan bli brukt som en TaleTUC-klient. TABuss bruker da tale som input
til dens hovedfunksjonalitet, som tilbyr ruteforslag gjennom BussTUC og AtBs
sanntidssystem.
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Tre moduler har blitt laget på server-siden. Én er brukt til tekst-til-tale, og de
to andre er begge brukt til CBR og context-awareness. Utførte tester på en kom-
binasjon av de tre modulene viste forbedrede resultater sammenlignet med kun
tale-til-tekst-modulen alene. Dette indikerer at context-awareness er en passende
teknologi å kombinere tekst-til-tale med .
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Preface

This master’s thesis describes the study and work done by Runar Andersstuen
and Christoffer Marcussen, in partial fulfillment of a Master of Science (MSc)
in Computer Science at the Department of Computer and Information Science
(IDI) at the Norwegian University of Science and Technology (NTNU). The re-
port is a contribution to the FUIROS-project, where earlier work related to Tale-
TUC has been conducted by Marcussen and Eliassen (2011), and Andersstuen
and Engell (2011).

Section 9.2 in the future work chapter is also found in the FUIROS project
by Engell (2012). Subsections 9.2.1 and 9.2.3 were originally written by Ander-
sstuen and Engell (2011). These have been modified by Marcussen, and were
approved by Andersstuen and Engell. Subsections 9.2.2 and 9.2.4 were origi-
nally written by Marcussen and Eliassen (2011). These have also been modified
by Marcussen, and were approved by Eliassen.
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Chapter 1

Introduction and Overview

These introduction sections first describe the background and motivation for
TaleTUC. The goals and research questions are defined, and the research method
is described. Finally, an overview of the whole report is provided.

1.1 Background and Motivation

One of the main research foundations for the work is the existing ASR system
Buster (Hartvigsen et al., 2007). Buster is a spoken dialogue system which inter-
acts with BusTUC, and provides route suggestions through a calling interface.
Buster is further described in section 2.6.2.

The work is also motivated by the previous FUIROS-projects conducted
by Marcussen and Eliassen (2011), and Andersstuen and Engell (2011). These
projects explored the possiblities with mobile bus route information systems,
and natural language through BusTUC. Reviews of Marcussen and Eliassen’s
developed application gave indications that it would be a popular choice for
bus travellers, which is a motivation to conduct future research and develop-
ment.

This report presents the development of TaleTUC, which consists of three
modules: the Automatic Speech Recognition (ASR) module, the Bus Stop Finder
(BSF) module and the Case-based Reasoning (CBR) module. TaleTUC uses a
client-server architecture, where a client prototype has been implemented for
Android1 devices. The development is performed to further explore new pos-
sibilities within the bus route information domain, and to further utilise smart-
phone capabilities.

1http://www.android.com/

http://www.android.com/
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6 Goals and Research Questions

1.2 Goals and Research Questions

Research question 1 Which ASR technologies are well suited for Android de-
vices and the task at hand?

Research question 2 Where is it most desirable to do the different parts of the
ASR? On the device or on a server?

Research question 3 Can context-awareness through CBR optimise the perfor-
mance of an ASR system?

Goal 1 Develop a prototype system based on the results from research ques-
tions 1 and 2.
The prototype system should be designed to recognise 50 bus stop names
in Trondheim, and its vocabulary should be easy to expand. The proto-
type system should also be designed modular, so that it is possible to add
additional bus stop names, and also extend to other domains than bus
route information.

Goal 2 Develop modules for context-awareness based on research question 3,
and integrate them with the prototype.
Testing the combination of ASR and context-awareness should give answers
to whether or not context-awareness can optimise the performance of the
ASR.

Goal 3 Integrate the prototype with existing parts of the FUIROS-project.
The prototype system should be integrated with the existing Android ap-
plication TABuss (Marcussen and Eliassen, 2011), where TABuss then will
operate as a TaleTUC client. It will be a part of TABuss’ main functionality,
where only a destination input is needed for the system to provide route
suggestions.

1.3 Research Method

Table 1.1 shows the roughly outlined progress plan. A more detailed plan
was designed using Trello2, where a digital board displays tasks (similar to a
Scrum3-board).

2www.trello.com
3http://www.scrum.org/

www.trello.com
http://www.scrum.org/
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Date Milestone description
01.02.2012 Initial research finished
01.03.2012 Point of no return for technology choice
01.05.2012 Prototype finished
15.05.2012 Final draft of report finished
06.06.2012 Report and other deliverables ready for delivery
08.06.2012 Delivery

Table 1.1: Progress plan

The work done followed the following steps:

Problem definition. In this step the problem was defined, and the problem de-
scription formulated. It was decided that a large amount of time was
needed for research, as the project members had no previous experience
with the domain of ASR.

Research. The research used Google Scholar4 and the digital libraries listed in
Table 1.2. For the ASR research, the key search words were:

• Mobile devices

• Architecture

• Route information

• Android

• Engines

• Feature extraction

• Noise

For the CBR research, the key search words were:

• ASR

• context-awareness

For the context-awareness research, the key search words were:

• ASR

• Route information systems

4http://scholar.google.com
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8 Research Method

• Smartphones

The research was performed in the following stages:

• Research existing ASR engines, existing ASR solutions and combina-
tions of ASR and context-awareness. Further research narrowed in on
solutions for mobile devices and the route information domain.

• Research combinations of ASR and context-awareness through CBR

• Research noise cancellation and filters in ASR

• Research the Android technologies necessary for TABuss to operate
as a TaleTUC client, and also other client possibilities

Prototype implementation. This step involved the following stages:

• Develop an ASR module

• Develop a CBR module

• Develop a module for connecting the ASR and CBR modules

• Develop a client

Testing. The tests were performed on the modules individually, and on a com-
bination of the three. Three test sets were used for testing the ASR. Two
of the test sets each contained 50 audio files, and the third contained a
combination of these (25 from each). Case bases for these audio files were
created for testing the CBR.

Thesis writing. This process was continuous. However, most of the writing
was done in two time periods. The first was in the research phase, and the
second was when the results of the prototype system were documented.

Source URL
IEEE Xplore http://ieeexplore.ieee.org/Xplore/guesthome.jsp
ACM Digital Library http://dl.acm.org/dl.cfm
Springer Link http://www.springerlink.com/?MUD=MP
CiteSeerX http://citeseerx.ist.psu.edu/
ScienceDirect http://www.sciencedirect.com/

Table 1.2: Digital libraries used
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1.4 Thesis Structure

Chapter 1 contains the introductory sections, which describe: the background
and motivation of this thesis, the defined goals and research questions, the
research method used and the thesis structure.

Chapter 2 presents the background ASR theory, and the researched ASR tech-
nologies.

Chapter 3 presents the background CBR theory, and the researched CBR tech-
nologies.

Chapter 4 presents the existing route information technologies.

Chapter 5 provides information on smartphones.

Chapter 6 describes the development of TaleTUC. This involves the develop-
ment of the ASR module, the Bus Stop Finder (BSF) module and the CBR
module, the combination of these and the prototype client.

Chapter 7 presents the development results, with figures, descriptions and screen-
shots.

Chapter 8 first discusses the development results. This chapter then provides
a review of the research questions and goals, before a conclusion is pre-
sented.

Chapter 9 provides suggestions for future work.

Chapter 10 provides the acknowledgements.
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Chapter 2

Automatic Speech Recognition
(ASR)

The following sections first give a description of the key concepts in ASR, and
the ASR architecture, before a summary of the developments in the field of ASR
is provided. Finally, ASR for mobile devices is described.

2.1 Key Concepts and ASR Architecture

The architecture of an ASR system can be viewed in figure 2.1. O is a given
observation sequence, and W is the most probable sentence. P(W) is the prior
probability, which is computed by the language model, and P(O|W) is the obser-
vation likelihood, which is computed by the acoustic model (Jurafsky and Martin,
2008). P(W|O) is the prior probability given an observation likelihood, which is
computed by the decoder.

The language model P(W) is used to restrict a word search, by defining which
words can succeed already recognised words. A popular choice for de-
signing language models is n-gram models1. These are Stochastic Language
Models (SLMs) aimed at providing adequate probabilistic information, so
that likely word sequences should have higher probability (Huang et al.,
2001).

For general-purpose speech recognition, the language model can be an n-gram
model of text learned from a corpus of written sentences. (Russell and Norvig,
2009). An n-gram model can also consist of transcripts of spoken lan-
guage, which is more accurate, and takes into account the differences be-
tween spoken and written language.

1http://www.w3.org/TR/ngram-spec/
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12 Key Concepts and ASR Architecture

In n-gram models, we assume that:

P(wi|w1, w2, ..., wi−1) (2.1)

only depends on the last n-1 words, which results in:

P(wi|w1−(n−1), w2−(n−1), ..., wi−1) (2.2)

From this we can also infer the expressions: unigram, bigram and trigram
models, based on the number of words used. This leads to:

Unigram model:
P(wi) (2.3)

Bigram model:
P(wi|wn−1) (2.4)

Trigram model:
P(wi|wn−2, wn−1) (2.5)

The acoustic model P(O|W) is a statistical representation of transcribed sound,
and is where the likelihood of the observed spectral feature vectors given
linguistic units is computed. Acoustic models play an important role in
minimising the error rates, because they are used together with the lan-
guage model in the maximisation of the posterior probabiity P(W|O). It
should take into account several factors: speaker variations, pronuncia-
tion variations, environmental variations and context-dependent phonetic
coarticulation variations. Recording of the spoken utterances for training
the acoustic model should have the same formats (i.e., sample rate and bits
per sample), as the spoken utterances to be recognised. This also means
that if the system is designed to receive input through a calling interface,
training data should be recorded in the same manner2.

To train an acoustic model, statistical representations of the sounds that
make up a word are created for each phoneme. Such a representation is
in most cases a Hidden Markov Model (HMM). The training of an acous-
tic model is known as the learning problem in HMMs. The solution to this
problem is often the Baum-Welch algorithm (Baum et al., 1970), which is
the traditional method used to train HMMs.Each phoneme has its own
HMM. Similar HMM states can be clustered into what is called a senone.

2http://cmusphinx.sourceforge.net/wiki/tutorialam
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Automatic Speech Recognition (ASR) 13

Feature extraction is the process of extracting vectors of features from frames,
where frames are summarised signal properties over time slices. The typi-
cal size of a time slice is 10 ms. The most common features in ASR are Mel-
frequency cepstral coefficients (MFCCs), which are frequency-domain fea-
tures. Computation steps have been described by among others Muda
et al. (2010) and Molau et al. (2001), where the use of Fourier transforma-
tions3 is the key, in order to express the input signal in the frequency do-
main. The next steps include approximating the frequency of the human
ear, using the Mel scale (Pedersen, 1965), before performing a discrete co-
sine transform of the log Mel spectrum. The amplitudes of the resulting
spectrum are what are called MFCCs.

The decoder is where the acoustic model is combined with the language model,
for finding the most likely sequence of words. This step originates from
Bayes’ rule, where P(O), i.e., the probability of a given observation se-
quence, is the same for all P(W):

P(W|O) = P(W)
P(O|W)

P(O)
(2.6)

P(W|O) =⇒ max P(W|O) , and (2.7)

max P(W|O) = max P(O|W)P(W) (2.8)

For decoding, the Viterbi algorithm (Forney, 1973) is often used. This al-
gorithm can be viewed as a modified forward algorithm (Rabiner, 1989),
where the forward algorithm represents the evaluation problem in HMMs.
Instead of summing the probabilities from different paths coming to the
same destination state, the Viterbi algorithm selects and remembers the
best one. This is done because the forward algorithm does not provide a
state sequence. The probability of the best path is defined by:

Vt(i) = P(Xt
1, St−1

1 , st = i|Φ) , (2.9)

where Vt(i) is the probability of the most likely state sequence at time t,
that has generated the observation Xt

1, and ends in state i. The decoding
step with the use of the Viterbi algorithm is known as the decoding problem
in HMMs.

3http://mathworld.wolfram.com/FourierTransform.html
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14 Key Concepts and ASR Architecture

Error measuring the performance of ASR systems often involves viewing the
Word Error Rate (WER) (Evermann, 1999), which is computed by:

WER = 100% × S + D + I
N

, (2.10)

where S is the number of substitutions, D is the number of deletions, I is
the number of insertions and N is the number of words in the reference
sentence. S, D and I are further described in the listing below:

Substitution - When an incorrect word is substituted for a correct one.

Deletion - When a correct word is removed from the recognised sen-
tence.

Insertion - When an uncorrect word has been added to the recognised
sentence.

From the WER the Word Accuracy (WAcc) can be calculated, which is
another metric of measuring the performance of ASR systems:

WAcc = 1−WER (2.11)

Audio input

Feature 
Extraction

O

Acoustic 
model

Language 
model
P(W)P(O|W)

Decoder

MFCCs

ASR result

W

P(W|O)

Figure 2.1: ASR architecture
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2.2 ASR Development

ASR research was conducted as early as in 1939, when Dudley (1939) of AT&T’s
Bell Labs4 proposed the speech analysis model The Vocoder (Dudley, 1939). Much
of this work was funded and developed for military work5, and was therefore
not meant for the public.

Later, in the 1970s, the ASR technology went through a major development.
A basic idea of pattern recognition technology for ASR was proposed by Itakura
(1975) and Rabiner et al. (1979). This technology was based on Linear Predic-
tive Coding (Deng and O’Shaughnessy, 2003), which many today may associate
with audio codecs.

DARPA6 established a research program for speech recognition in 19717.
This program was aimed at the development of a system that could understand
continuos speech (speech with connected words). One of the development re-
sults came from the project group at Carnegie Mellon University8, where Low-
erre (1976) published a thesis on the Harpy system. The Harpy system used
graph searching on a sequence of words or sounds, and returned the best ref-
erence match. It successfully recognised 1,011 words. During this time pe-
riod another siginificant system also emerged, which was Dragon (Baker, 1975).
Baker used Markov processes (Rabiner, 1989) as a part of the ASR, and achieved
promising test results, despite a high error rate.

Research performed in the 1980s introduced the n-gram model for word
searches. Another research area was speaker independence and dialects. Wilpon
et al. (1982) published the paper Speaker-independent isolated word recognition us-
ing a 129-word airline vocabulary, where their system was designed to cope with
different speakers, without the need for individual speaker training.

Artificial Neural Networks (ANNs) (Floreano and Mattiussi, 2008) were ac-
cording to Juang and Rabiner (2005) reintroduced to ASR during the late 1980s.
This technology however, was not able to cope with temporal variation, that is,
changes over time. On-going ANNs research for ASR did therefore not focus
on stand-alone ANNs solutions, but rather combinations of ANNs and HMM
(Rabiner, 1989).

The 1980s also saw the foundation of companies such as Dragon Systems
and SpeechWorks, which later was aquired by Nuance9 (see section 2.6.1).

4http://www.alcatel-lucent.com/wps/portal/BellLabs
5http://www.dragon-medical-transcription.com/historyspeechrecognition.html
6http://www.darpa.mil/
7http://www.dragon-medical-transcription.com/historyspeechrecognitiontimeline.

html
8http://www.cmu.edu/index.shtml
9www.nuance.com

http://www.alcatel-lucent.com/wps/portal/BellLabs
http://www.dragon-medical-transcription.com/historyspeechrecognition.html
http://www.darpa.mil/
http://www.dragon-medical-transcription.com/historyspeechrecognitiontimeline.html
http://www.dragon-medical-transcription.com/historyspeechrecognitiontimeline.html
http://www.cmu.edu/index.shtml
www.nuance.com
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For the 1990s, Juang and Rabiner states the shift from Bayesian pattern recog-
nition (Box and Tiao, 1992), to error-minimisation, as a milestone. This was ad-
dressed by Juang et al. (1997), where they stated that the traditional Bayesian
pattern recognition was suboptimal, when the real signal distribution form is
not known precisely, as with distribution functions for speech signals. Their
argument was that the goal of ASR should be to achieve least recognition error,
which is more important than following Bayes criterion.

The How May I Help You system (Gorin et al., 1996) was published during
this decade, and provided call-routing functionalities through spoken dialogue.
For the ASR, a bigram language model was used, and a vocabulary of 10 000
utterances. This system also took into account speaker variations and Out-of-
vocabulary (OOV) words.

Of the new software that was created during this time period, Sphinx (Le,
1988) should be mentioned, which showed remarkable results for large-vocabulary
continuos ASRs. Sphinx, which is further described in section 2.6.1, combined
HMMs with the graph searching idea from the Harpy system.

The Hidden Markov Model Toolkit (HTK), which is described in section 2.6.1,
is another system developed in the 1990s. The background for its creation was
the progress in creating ASR systems with large vocabularies, and the need for
research software that could aid the future development. HTK is still today a
popular ASR software, and was used in the existing Buster (Hartvigsen et al.,
2007) system.

In more recent years ASR systems have been developed for several domains.
An example is Jupiter (Zue et al., 2000), which provides weather information
through a calling interface. Other systems such as TravelMan (Turunen et al.,
2007) and Let’s go (Raux et al., 2003, 2005) focus on transportation services.

There are also a number of companies producing commercial ASR software,
where the most known is Nuance. Such systems are often expensive, which
makes the access to development tools difficult.

This section has provided a high-level summary of the development in the
field of ASR. What is found most interesting and important for TaleTUC are
ASR engines such as Sphinx and HTK, and their contributions to the develop-
ment of ASRs. These engines are open-source and well documented, which
helps the development process. It is also interesting to view the domains that
ASR functionality has been implemented in, and the technologies used.

2.3 ASR for Mobile Devices

ASR systems for mobile devices have become popular within the field of per-
vasive computing (Alewine et al., 2004), and span from the traditional calling
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interface to systems developed specifically for smartphones. Raux et al. (2003,
2005) and Hartvigsen et al. (2007) both developed ASR systems with calling in-
terfaces, while Turunen et al. (2007) proposed a smartphone solution. Several
technology companies have adapted to the new smartphone trend, and today
major companies such as Nuance (see section 2.6.1) and Apple10 provide ASR
solutions for smartphones.

Which architecture to choose for the developemt of ASR systems for mobile
devices is a much discussed topic. For applications involving a calling interface
there are no architectural choices on where the ASR functionalities should re-
side, but for the smartphone applications there are two standard architectures
to choose between: client-side ASR and server-side ASR (Zaykovskiy, 2006).
Client-side ASR benefits from not having to send data to a server. And since it
is not dependent on a server, the system will not fail if a server is down.

The other option is a client-server architecture, which is characterised as a
modular solution where a server hosts functionalities to several clients. Such
clients can be based on any platform, as long as they support transfers over the
Hypertext Transfer Protocol (HTTP). This means that both Android and iPhone
clients can access the same functionalities, and developers do not have to im-
plement them for each platform. Server-side ASR allows seamless updates of
functionalities, as the user never uses these locally. Several projects have em-
braced this mindset. TABuss’ (Marcussen and Eliassen, 2011) bus route infor-
mation functionalities were shifted to the MultiBRIS server (Andersstuen and
Engell, 2011) to save resources and reduce the amount of data traffic. This view
is also supported by Turunen et al. (2006a,b, 2007), who designed a distributed
architecture with hardware constraints and modularity in mind. Another sup-
porter is the company MyCaption11, which produces voice-enabled applications
for smartphones. They have listed server computations as one of the main com-
ponents in a successful ASR system. Apple’s system SIRI also uses a server-side
solution, according to actors who have studied the patent application from Ap-
ple’s R&D labs12.

The ASR architecture for mobile devices is further discussed in section 2.5,
where a view on the challenges of choosing an ASR architecture is provided.

10http://www.apple.com/
11http://www.mycaption.com/resources/technology/voice-recognition
12http://www.unwiredview.com/2011/10/12/how-siri-on-iphone-4s-works-and-why-it’

s-a-big-deal-apple’s-ai-tech-details-in-230-pages-of-patent-app/

http://www.apple.com/
http://www.mycaption.com/resources/technology/voice-recognition
http://www.unwiredview.com/2011/10/12/how-siri-on-iphone-4s-works-and-why-it's-a-big-deal-apple's-ai-tech-details-in-230-pages-of-patent-app/
http://www.unwiredview.com/2011/10/12/how-siri-on-iphone-4s-works-and-why-it's-a-big-deal-apple's-ai-tech-details-in-230-pages-of-patent-app/
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2.4 Multimodal Interaction

Multimodal interfaces target multiple ways of interacting with a system, and
are key research areas in Human Computer Interaction (HCI) (Dumas et al.,
2009). This can be through speech, gestures or other modalities. The advantage
of multimodal interaction is that it offers a greater range of communication by
adding expressive power. It is adapted towards the user’s communicative abil-
ities, and provide improved support for the user’s different interaction styles.
According to Dumas et al. (2009), 95 % - 100 % of the users preferred multimodal
interaction over unimodal input. This topic also has a cognitive foundation. Du-
mas et al. (2009) states that the user can extract a higher lexical intelligibility by
processing multimodal information, and lists the following:

• Humans are able to process modalities partially independently and, thus,
presenting information with multiple modalities increases human work-
ing memory

• Humans tend to reproduce interpersonal interaction patterns during mul-
timodal interaction with a system

• Human performance is improved when interacting multimodally due to
the way human perception, communication, and memory function

Mobile phones have enabled ubiquitous spoken telecommunication between
humans (Turunen et al., 2007). In later years, mobile devices have become more
powerful, enabling the possibility to run multimodal applications. Because they
are pervasive, smartphones and multimodality is an appropriate combination.
An example is Turunen et al. (2007)’s TravelMan, which offers multimodal inter-
action through speech, haptics, text, physical browsing and physical gestures.
Another example is Kühnel et al. (2010)’s Smart-Home System, which is a system
that can control living room items. These are items such as the TV, the video
recorder, the radio and the lamps. This system has a smartphone interface that
uses both touch input and gesture recognition.

Multimodal interation in TaleTUC concerns the TaleTUC client, which in
this project is TABuss, and the speech synthesis part of TaleTUC (Engell, 2012).
The goal for the TaleTUC client is to integrate speech modality with the exist-
ing text input. The combination of speech with other modalities was researched
alredy in 1980. Bolt (1980)’s Put-That-There combined speech with gestures, and
commanded simple graphical shapes. Later research by Bangalore and John-
ston (2000) focused on the development of language processing techniques of
utterances inputted through multiple modalities.

Ehlen and Johnston (2012) created a system for local business information.
The interesting result from their research is that users do not always wish to
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issue commands multimodally, even though they prefer to have the option to
do so. Ehlen and Johnston (2012) stated that this could have something to do
with smartphone users being too busy too learn the multimodal commands.
Instead, the users preferred the commands that felt natural to them. Ehlen and
Johnston (2012) mentions that their map gesture feature was received poorly,
because the users expected their devices to determine their locations for them.
In TABuss, the application automatically retrieves the user’s location, and uses
this in queries. Based on Ehlen and Johnston (2012)’s results, the TaleTUC client
should therefore continue the same line of thought as TABuss. It is familiar to
the existing TABuss users, and would simplify the integration of ASR into their
usage. It ensures that the speech input does not differ from the text input, and
eliminates the extended linguistic complexity of speaking complete sentences
(e.g., ”Sentrum” instead of ”I want to travel from Ila to Sentrum”). This view is
supported by Oviatt (1999), who stated that when free to interact multimodally,
users selectively eliminate many linguistic complexities.

2.5 Identified ASR Challenges

This section describes the ASR challenges in TaleTUC, where the identified ar-
eas are: robustness, architecture and user frustration.

2.5.1 ASR Robustness

One of the challenges for TaleTUC is the different spoken dialects in Trond-
heim. In addition to the local inhabitants, there are a large number of students
living in Trondheim. There are many different spoken dialects which have to
be accounted for, when the users refer to bus stop names or areas. One way
to approach this is by training robust language models and acoustic models. This
challenge touches an important topic in ASR, OOV words, where the ASR re-
sult does not match any utterances defined or recorded in the created models. In
TaleTUC, this can typically occur when the audio input from a user that speaks
a strong Norwegian dialect leads to a result that does not match any bus stop
name in Trondheim. Approaches for handling OOV words have been proposed
by among others Bazzi et al. (2000) and Yazgan and Saraclar (2004), who both
adapted their language models to contain OOV words.

Because TaleTUC is a system developed for the bus route information do-
main, and typical usage is both outside and inside, noise is a challenge. Deng
and Huang (2004) identified noise as one of the key challenges for modern day
ASR systems, where the biggest problem is changing environments. Related to
TaleTUC, this could be a situation where the user is walking or cars are passing
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by. Deng and Huang (2004) names two technique categories for noise compen-
sation: feature-space compensation and model-space compensation. These techniques
were addressed by Miguel et al. (2007), where they created an adaptive acous-
tic model able to capture speaker variabilites, and a normalisation technique for
normalising noisy data, obtaining a WER improvement of 83,45%.

2.5.2 Architecture

As discussed in section 2.3, mobile ASR applications are challenged with hard-
ware limitations, which affect architectural decisions. The option to choose be-
tween client-side ASR and a service-oriented architecture with server-side ASR
was mentioned. A big challenge for a client-side system is optimisation and
computation efficiency, caused by hardware limitations compared to stationary
devices. It does not represent a modular solution available to multiple plat-
forms, which means that the functionalities have to implemented for each target
platform. In addition, the vocabulary cannot be as large as in a server-side ASR,
because of storage limitations. For use in an application for mobile devices, it is
not given that a user would download a big application. This is the main reason
why server-side ASR often is chosen. However, there is a trade-off between data
traffic and resources, when it comes to shifting speech recognising functionality
to a server. One disadvantage with server-side computations is that it requires
data traffic. Also, the challenge on pervasive computing identified already in 1994
by Forman and Zahorjan (1994) on the problems with wireless communication
is still present today, allthough it is not as strong. With today’s WiFi range, WiFi
hot-spots, 3G and so on, the problem is to a certain extent avoided. But there
is still a challenge when the user moves from network to network, for example
from a WiFi network to a 3G network. The user of an application developed
with server-side ASR will also not be able to view what he or she said, before a
response from the server is returned.

An optimisation to server-side ASR described by Zaykovskiy (2006) is to
perform the feature extraction process on the mobile devices. This is called
a distributed architecture, which minimises the size of the sound files sent to
the server, and will according to Zaykovskiy (2006) replace the standard client-
server architecture. This view is also supported by others. Tan et al. (2005)
stated that a distributed architecture would aid the development of ASR sys-
tems meant to communicate over WiFi, because of less bandwith usage. De-
laney et al. (2005) compared the distributed architecture to client-side ASR. They
concluded that a distributed architecture was a better choice, after monitoring
CPU cycles and energy consumption.
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2.5.3 User Frustration

Raux et al. (2005) identified a frustration factor for users when the system gave
incorrect recognition results. For TaleTUC, which is designed for smartphones,
many incorrect results will lead to unnecessary data traffic (given that the user
has not given up). It was therefore important for the developed TaleTUC client
to have a plan for what to do if the system after repetitive attempts cannot return
the correct results. To allow the user to confirm the ASR result, before a TABuss
query is sent, is also important. This avoids unnecessary data traffic, but the
whole process with ASR and the TABuss query will take longer time to perform,
as the user explicitly has to initiate the TABuss query.

2.6 Existing ASR Technologies

The following sections describe the researched ASR technologies.

2.6.1 Existing ASR Engines and Tools

In the follow sections the researched ASR engines and tools are presented, and
TaleTUC’s choice of ASR engine is described.

The Hidden Markov Model Toolkit

The Hidden Markov Model Toolkit (HTK) is a toolkit for building and manipulat-
ing HMMs. The HTK Book is available on the website13 after registration. This
book describes how to use all HTK components, and also provides general de-
scriptions of ASR related topics.

A dictionary in HTK contains a sorted list of the required words, together
with their pronunciations. A brief example dictionary is shown in listing 2.1

ACADEMIES ax k ae dx ax m iy z
ACADEMY ax k ae dx ax m iy
ACCADEMIA ae k ax d iy m iy ax
ACCELERATED ae k s eh l er ey dx ix d
ACCENT ax k s eh n t
ACCENTS ae k s eh n t s
ACCENTUATE ae k s eh n ch uw ey t
ACCENTUATED ae k s eh n ch ax w ey dx ix d

Listing 2.1: Example HTK dictionary, with pronunciations

13http://htk.eng.cam.ac.uk/

http://htk.eng.cam.ac.uk/
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A language model in HTK is an n-gram model. It is created using a built-in tool
called HLM, where the input is a file containing the words to train the recog-
niser for. An acoustic model in HTK is built in a stepwise manner. First, there is a
file preparation step: the audio data is recorded, and converted to MFCCs, be-
fore they are used in the training of the acoustic model. Word-level transcriptions
of the audio are then created, before the built-in tool HLEd is used to expand
these transcriptions to phone-level transcriptions. After the file preparation
step, monophones (single phones) and triphones (three grouped phones) are
created, based on the transcriptions. An example of the two is:

Word Monophone
TRANSLATE [TRANSLATE] t r @ n s l e t
Word Triphone
TRANSLATE [TRANSLATE] t+r t-r+@ r-@+n @-n+s n-s+l s-l+e l-e+t e-t

Listing 2.2: Monophones and triphones

The final step is to build the HMMs.
A decoder in HTK is responsible for the recognition process. The tool used is

called HVite, and uses Viterbi-search with the language model, the dictionary and
the acoustic model as input.

If HTK is compared with Sphinx-4, many of the similar tools are found. HTK
includes tools for creating language models and acoustic models, where Sphinx-
4 uses SphinxTrain. However, models created in one of them are not directly
portable to the other.

There are several systems available that use models created with HTK. For
TaleTUC two of these have been researched, Buster (Hartvigsen et al., 2007),
which uses HTK models through the HAPI (Odell et al., 1999) recogniser, and
Julius.

HTK was not chosen as TaleTUC’s ASR engine because Sphinx-4 was found
to have better documented tools. In addition, Sphinx-4 uses the Java program-
ming language, which earlier FUIROS-projects also did. This would make the
integration of TaleTUC into other parts of FUIROS easier, and benefit from the
project participants’ experiences. Since it was a goal to create a client for An-
droid, the use of a Java based ASR engine would be beneficial.

Julius

Julius 14 is an open-source engine for continous ASR, first released in 1998. It has
been applied to several languages: English, French, Mandarin Chinese, Thai,
Estonian, Slovenian and Korean (Lee and Kawahara, 2009). The downloadable

14http://julius.sourceforge.jp/en_index.php

http://julius.sourceforge.jp/en_index.php
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source contains the needed tools for running recognition from input such as a
microphone or audio files. Unlike Sphinx (see 2.6.1) it does not have any built-in
functionality for building language models or acoustic models, but models created
by tools such as the HTK can be imported.

Julius is developed using the C programming language, and can be used in
applications in four different ways:

• Embedded as a C library

• Through client-server communication through sockets

• Recognition process controlled by clients/applications

• As a plug-in extension

Julius was not chosen as TaleTUC’s ASR engine because of the lack of model
building tools. It cannot adopt models created in TaleTUC’s chosen model
building tool SphinxTrain, which meant that since HTK’s model building tool
was not used, Julius was not an option.

Android Speech Input

Android Speech Input is Google’s ASR functionality for Android15 (Ballinger et al.,
2010). One of two language models can be used: free form, which is designed for
dictation purposes, and the web search model, which is used for shorter phrases.
Android Speech Input is hosted by Google’s servers, and follows the client-server
architecture. It supports multiple languages. However, Norwegian is not yet
one of these, and Android Speech Input was therefore not used in TaleTUC. It
would not be an optimal solution even if the Norwegian language was sup-
ported, because it does not allow for modifications of the language models and
acoustic models. This would make the recognition of bus stop names difficult, as
it is unlikely that they are in Android Speech Input’s vocabulary.

ISpeech

ISpeech16 is a software that provides both ASR and speech synthesis services,
and which uses a cloud-based architecture. Definitions a cloud-based architec-
ture have been proposed by among others Zhang et al. (2010), Vaquero et al.
(2009) and Mell and Grance (2011). ISpeech provides Software Development
Kits (SDKs) to mobile platforms such as Android and iOS17. Its basic version

15http://developer.android.com/resources/articles/speech-input.html
16http://www.ispeech.org/
17http://www.apple.com/ios/

http://developer.android.com/resources/articles/speech-input.html
http://www.ispeech.org/
http://www.apple.com/ios/
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is free to download, but the integration of ISpeech recognition into an appli-
cation requires a key. ISpeech supports multiple languages, and was used by
Sriratanaprapahd and Songwatana (2008) in their implementation of ASR for
the Thai language. It also supports the Norwegian language. However, the lan-
guage models and acoustic models cannot be adapted towards a specific domain
(e.g., bus route information). ISpeech was not used in TaleTUC because of this.
And, as with Nuance, no architectural choices can be made. One is forced to
use the cloud-based architecture.

Nuance and Loquendo

Nuance is a corporation that provides commercial ASR and speech synthesis
products. Developers can get access to the Nuance Software Development Kits
(SDKs) through the Dragon SDKs18. The most relevant SDK to TaleTUC is the
mobile SDK, which is a cloud-based ASR service able to recognise Norwegian
spoken words and sentences. This SDK can be directly used in Android, and is
at the present time (May 10th 2012) available through the NDEV Mobile developer
program, where developers can apply and download it for free.

Loquendo19 (aquired by Nuance in 2011) is a corporation that provides prod-
ucts similar to Nuance’s. The Loquendo ASR software provides a mobile SDK,
and a range of additional tools, that let the developers customise the language
models and adapt the acoustic models to their own needs. Trutnev and Rajman
(2004) compared Loquendo with other ASR softwares, including Nuance and
HTK. Their results showed that HTK, which is open-source, given a reasonable
acoustic model, obtained the same results as both Nuance and Loquendo.

There is not much academic information about the ASR technologies in Nu-
ance and Loquendo, because they provide commercial solutions. But it is a
known fact that Nuance is one of the market leaders in ASR solutions. It is
therefore important to mention, as it represents the state-of-the-art, even though
the research and development performed is not open to the public.

Because of the required licenses, the Dragon Mobile SDK and the Loquendo
mobile SDK were not chosen for TaleTUC. In addition, compared to the use
of Sphinx-4, PocketSphinx and Julius, no architectural options are available. The
developer has to use the cloud-based solution. The alternative is to purchase
Nuance or Loquendo’s server solutions.

18http://www.nuance.com/for-developers/
19http://www.loquendo.com/en/

http://www.nuance.com/for-developers/
http://www.loquendo.com/en/


i
i

“Disposisjon” — 2012/6/6 — 12:19 — page 25 — #43 i
i

i
i

i
i

Automatic Speech Recognition (ASR) 25

Sphinx

Sphinx20 is a speech recognition software written in Java21, as a collaboration be-
tween the Carnegie Mellon University22, Sun (now Oracle)23, Mitsubishi Elec-
tric Research Laboratories24 and Hewlett Packard25. The lastest release, Sphinx-
4, is described by Walker et al. (2004) in the paper Sphinx-4: A Flexible Open
Source Framework for Speech Recognition.

Figure 2.2 displays the Sphinx framework. The primary modules are: the
FrontEnd, the Decoder and the Linguist. The FrontEnd is a front-end which re-
ceives a speech signal from the application, and creates a sequence of Features.
The Linguist uses its AcousticModel, Dictionary and LanguageModel to create a
SearchGraph, containing the language model, pronunciation information and struc-
tural information. The Decoder combines the Features created by the FrontEnd
and the SearchGraph created by the Linguist, to produce a Result which is re-
turned to the calling application.

Figure 2.2: The Sphinx-4 framework (Walker et al., 2004)

20http://cmusphinx.sourceforge.net/sphinx4/
21http://www.oracle.com/us/technologies/java/index.html
22http://www.cmu.edu/index.shtml
23http://labs.oracle.com/
24http://www.merl.com/
25http://www.hp.com/

http://cmusphinx.sourceforge.net/sphinx4/
http://www.oracle.com/us/technologies/java/index.html
http://labs.oracle.com/
http://www.merl.com/
http://www.hp.com/
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The development in Sphinx-4 is done with the use of configuration XML-
files, where one can set up the different components, including the FrontEnd
and the Decoder. These components are then accessed and used through Java
code. An example of a FrontEnd-setup in a configuration file is shown in listing
2.3, together with the calling Java code.

<component name="epFrontEnd" type="edu.cmu.sphinx.frontend.
FrontEnd">

<propertylist name="pipeline">
<item >audioFileDataSource </item >
<item >wavWriter </item >

</propertylist >
</component >

<component name="audioFileDataSource" type="edu.cmu.sphinx.
frontend.util.AudioFileDataSource">

<property name="bytesPerRead" value="320"/>
</component >

<component name="wavWriter" type="edu.cmu.sphinx.frontend.util.
WavWriter">

<property name="outFilePattern" value="./ output_pattern"/>
<property name="isCompletePath" value="false"/>
<property name="bitsPerSample" value="16"/>
<property name="signedData" value="true"/>
<property name="captureUtterances" value="true"/>

</component >

public class Test {

public static void main(String [] args) {
AudioFileDataSource afds = new AudioFileDataSource (320, null);
WavWriter ww = new WavWriter("./ output_pattern", false , 16,

true , true);
ww.setPredecessor(afds);

Data data = null;
while ((data= ww.getData ())instanceof DataEndSignal){
};

}
}

Listing 2.3: Example frontend configuration

One of Sphinx’s strengths is its linguistic modularity, where one can create
and use a custom linguistic implementation with a language model. A custom
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Dictionary can also be used as a pronunciation lexicon, where words are broken
down into sequences containing chunks of sub-words. This simplifies the task
of implementing a speech recogniser for a non-English language. For TaleTUC,
a linguistic implementation would then cover the Norwegian language, and the
pronunciation of bus stop names.

In 2006, Huggins-Daines et al. (2006) published a paper on PocketSphinx,
an open-source licensed version of Sphinx for mobile devices. According to
Huggins-Daines et al., earlier attempts to implement speech recognisers on mo-
bile devices had suffered from the devices’ hardware constraints compared to
stationary devices. They therefore aimed to create a non-proprietary toolkit for
ASR, optimised for embedded devices, built on Sphinx-II (Huang et al., 1992).

Because PocketSphinx is not built on the newest version of Sphinx, it does not
offer the newest Sphinx features. Kumar et al. (2011) developed SphinxTiny, an
adaptation of the 3.X versions of Sphinx, for development on mobile devices.
Their results showed that SphinxTiny performed better than PocketSphinx when
complex linguistic models were used. However, it was concluded that Pocket-
Sphinx outperformed SphinxTiny when small linguistic models were used. This
is an interesting result for TaleTUC. The ASR in TaleTUC would only need to
recognise bus stop names (and not complete sentences), and SphinxTiny is there-
fore not automatically a better choice than PocketSphinx. Because of this, and be-
cause PocketSphinx is better documented than SphinxTiny, PocketSphinx was the
preferred version of Sphinx among the ones aimed at development for mobile
devices.

The biggest difference between Sphinx-4 and PocketSphinx is in where the
ASR is performed. Sphinx-4 is not directly portable to the Android platform,
because its libraries are designed to be compiled with the Java Virtual Machine
(JVM)26, and not the Dalvik Virtual Machine (DVM)27. Some libraries are as a
result not accessible through Android code. If a workaround was available,
it would still be a challenge, as Sphinx-4 is not optimised towards the mobile
devices’ hardware. A Sphinx-4 implementation would therefore have to be done
server-side. With PocketSphinx, an implementation could be done on the device.
The difference is then in the data traffic. If Sphinx is used, some part of audio
has to be transferred and processed on a server, before the recognised text is
sent back to the client. No data traffic is necessary in PocketSphinx.

For several reasons, Sphinx-4 became the chosen ASR engine for TaleTUC.
Some have already been mentioned in the section on HTK. One reason is that
the Sphinx-4 tools and SphinxTrain were easy to get started with, and the tuto-
rials were user-friendly. Another reason was on the basis of the architectural

26http://java.com/en/download/index.jsp
27http://www.dalvikvm.com/

http://www.dalvikvm.com/
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challenges discussed in section 2.5.2, where a client-server architecture was the
preferred alternative. PocketSphinx, and client-side ASR was not chosen because
client-side ASR does not represent a modular solution. For TaleTUC, an im-
plementation would then be bound to one platform, and would have to be re-
implemented for other platforms. It would still be interesting to develop a small
PocketSphinx prototype to get a hands on comparison.

SphinxTrain

One of the biggest challenges when making an ASR system for a domain, is
to create the required models and dictionaries. In order to achieve a low WER,
good models are required. The Linguist part of the Sphinx-4 framework requires
two models and a dictionary, as can be seen in figure 2.2. One of the most time
consuming tasks is to create the acoustic model, because it requires the collection
of training data, in the form of audio files. It also requires a good amount of pa-
rameter tuning. SphinxTrain is a set of tools that help the user create the acoustic
model for Sphinx-4. A training database needs to be present, in order to train the
acoustic model. This database contains all the files described in Table 2.1

One of the concerns about SphinxTrain, in relation to TaleTUC, was its abil-
ity to train acoustic models for the Norwegian language. An example of where
SphinxTrain was successfully used to train a non-English acoustic model is de-
scribed in an article by Satori et al. (2007). This article presents how SphinxTrain
was used to train a small acoustic model for the Arabic language. Satori et al.
(2007) achieved high recognition ratios for their tests, which is promising for
TaleTUC’s training of acoustic models.
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File Description
Phonetic dictio-
nary

Contains a phonetic description of all the words to be
trained.

Phoneset file Contains all phones used in the phonetic dictionary.
Language model Describes a statistical representation of a corpus, that

helps the ASR to restrict the word search.
List of filler
phones

Contains a list of filler phones. These phones are typ-
ical noises like laughter, breath and other phones not
described in the language model.

List of files for
training

A file that contains the relative paths to all audio files
to be used in the training. One file is described per line
like this : speaker_1/file_1

Transcription A text file, listing the transcription for each audio file,
like this: <s>helloworld</s>(file_1)

List of files for
testing

A file that contains the relative paths to all audio files to
be used in the testing. One file is described per line like
this : speaker_1/file_1.

Transcription for
testing

A text file listing the transcription for each audio file
used for testing, like this: <s>helloworld</s>(file_1)

Audio files A set of audio files in the 16khz 16bit mono MS WAV
format (Some other formats are supported but not rec-
ommended).

Table 2.1: Table of files in a SphinxTrain database.

2.6.2 Existing ASR Solutions

The following sections present the related ASR work, and how this affects the
development of TaleTUC.

Buster

Buster is a part of Hartvigsen et al. (2007)’s publication on the Marvina system,
developed as a part of the BRAGE-project28. Buster is a spoken dialogue system
that lets the user pose queries about bus route information through a calling
interface. In the Marvina system, Buster is integrated into a multimodal visitors
guide for guests at the NTNU in Trondheim, and is assigned the task on which
buses the user has to take to reach the campus. It is a part of TeleBuster, which
consists of Buster and DAter. DAter is a text-based Directory Assistance system,

28http://www.iet.ntnu.no/projects/brage/

speaker_1/file_1
<s> hello world </s> (file_1)
speaker_1/file_1
<s> hello world </s> (file_1)
http://www.iet.ntnu.no/projects/brage/
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which provides information on all employees at the NTNU. This is information
such as office locations, phone numbers and email-addresses.

The ASR functionality in Buster is implemented with the HAPI (Odell et al.,
1999) recogniser. The models used were created with HTK, with a vocabulary
size of approximately 700 words. The acoustic model was trained with recordings
from the SpeechDat database29, made over a fixed telephone line.

Because Buster is a program developed by NTNU and Sintef30, all of the cre-
ated models are available to the development of the ASR module in TaleTUC.
The problem with the use of these is the acoustic model, where the Buster record-
ings are not suitable for TaleTUC. These come from a fixed telephone line, and
therefore have a sample rate of 8 kHz. For TaleTUC it is desirable to instead
use recordings made with a smartphone, with a sample rate of 16 kHz. There is
also a difference between how the recordings are done. Often, the microphone
is closer to the speaker’s mouth when recording over a fixed line, compared to
when a smartphone is used. It is, as mentioned in section 2.1, important that
the training data is a good representation of what the recogniser is designed to
recognise. To use Buster’s acoustic model would therefore be a suboptimal solu-
tion.

CU-Move and CU Communicator

Two systems are presented in the paper University of Colorado dialog systems for
travel and navigation (Pellom et al., 2001): the CU Communicator and the CU-
Move. The CU Communicator is a system similar to Buster (Hartvigsen et al.,
2007), that integrates ASR, speech synthesis and natural language understand-
ing technologies. It uses a Sphinx-II recogniser, for semi-continuous HMMs.
The language model is a trigram model, and is created with the CMU-Cambridge
Statistical Language Modeling Toolkit (Clarkson and Rosenfeld, 1997). They also
created a dialog context dependent language model, where different grammars are
combined. This improved the WER by 3.5 %.

The CU-Move system is a practical implementation of a dialog system, which
makes use of the CU Communicator. Its main role is to collect audio data. The
collection of quality audio data for ASR in an automobile environment can be a
challenge. CU-Move handles this by applying an array of methods, among those
a Gaussian Mixture Model based classification of the noise conditions. By inte-
grating an environmental classification system into the microphone array de-
sign, they could make decisions on how to best utilise a noise-adaptive frequency-
partitioned iterative enhancement algorithm (Hansen and Clements, 1991) (Pellom

29http://www.speechdat.org/
30http://www.sintef.no/

http://www.speechdat.org/
http://www.sintef.no/
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and Hansen, 1998) or model-based adaptation algorithms (Sarikaya and Hansen,
2000) during decoding to optimise the ASR accuracy on the beam-formed sig-
nal.

In a later paper called CU-MOVE: advanced in-vehicle speech systems for route
navigation by Hansen et al. (2005), updated data on the WERs is presented. They
achieved a 3.2 % WER for digits, in a noisy environment. To achieve this WER,
they used, among other optimisations, something referred to as "Environmental
Sniffing". Environmental Sniffing is not filtering of the sound, and not the same
as training the acoustic model with noise. It uses information about the real-
time sound environment to classify the noise conditions, and modify system
parameters accordingly. One can therefore claim that the CU-MOVE system
is context-aware. The context-awareness in CU-MOVE is more integrated in the
ASR part of the system, compared to in TaleTUC. Comparisons of the WERs of
CU-MOVE and TaleTUC can give an indication of how well a loose connection
between ASR and context-awareness succeeds, compared to a tight connection.

Stopman and Travelman

Turunen et al. (2007) proposed the system Travelman, developed for the city of
Tampere in Finland. Travelman is an updated version of Stopman (Turunen et al.,
2006b), which provided route planning services.

The ASR in TravelMan is used in route searches and in route guidance. It is
implemented using a distributed architecture (Turunen and Hakulinen, 2003)
and a distributed dialogue model (Salonen et al., 2005), where the mobile de-
vices operate as terminal devices, and a server handles the ASR computations.
The usage of terminal devices is something that can be used as an inspiration,
and which was introduced to the FUIROS-project by Andersstuen and Engell
(2011)’s MultiBRIS project.

An interesting feature in Travelman is the use of context and the user’s loca-
tion. The real-time guidance relies on location information, which also can be
used to infer departure addresses. The existing application TABuss is context-
aware, and because one of TaleTUC’s goals is to extend TABuss’ CBR module,
TaleTUC draws inspiration from TravelMan.

Let’s Go

Raux et al. (2003, 2005) developed a system called Let’s go, which uses speech
through phone calls as input, for returning route information. The goal was to
create a grammar model for spoken language, and to include an overall gen-
erality regarding the different structuring of sentences with the same meaning.
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Let’s go was developed using Sphinx-II (Huang et al., 1992), and uses the acous-
tic model and the training sets created by Rudnicky et al. (2000) in their dialog
system The Carnegie Mellon Communicator.

The grammar consists of a 200 000 sentence corpus, which covers most of
the bus stops in the Pittsburgh area, and also time expressions. Compared to
Buster (Hartvigsen et al., 2007), which only maintains approximately 700 names
of bus stops and areas, Let’s go has to maintain information on 15 218 stops. In
addition, there are 2423 routes in the Pittsburgh area.

Through their work, Raux et al. (2003, 2005) identified several challenges
with speech processing and route information. The main challenge was that
different users structured the same phrases differently, when referring to bus
stops or places. If Let’s go is compared to TaleTUC’s goals, the biggest differ-
ence is the backends. While Let’s go uses a database containing route schedules,
TaleTUC uses another approach. In TaleTUC, only a bus stop name is the re-
sult of the ASR. This is to be used as input to the existing query functionality
in TABuss, where it represents where the user would like to go. TaleTUC then
avoids rules on sentence structuring, which is needed in Let’s go’s speech recog-
niser, as inserting the ASR result into the correct context is handled by TABuss
and MultiBRIS.

Raux et al. (2003, 2005) did not account for different dialects in their training
sets. The level of variation in dialects in the Pittsburgh area will not be discussed
here, but for Trondheim this is a challenge, which was discussed in section 2.5.

Because Let’s go uses a calling interface, an important factor is which action
the system should perform when the ASR has misinterpreted the user’s request.
Raux et al. (2005) identified a frustration factor for users during user testing,
when the system reprompted a given text caused by misintrepertation. This
and other factors such as noise contributed to a WER of 68 %. Another reason
why this error rate is so high is the input requirements. The user has to input
four pieces of information, which all have to be mapped to the correct context
by the system. What is interesting for TaleTUC, is the connection between the
user input and the WER. There should be a strive to avoid user frustration, and
to minimise the input requirements may be a solution.

SIRI

Apple has not shared much information on SIRI’s technology, but some such
as the patent application is available. This was briefly mentioned in section
2.3, where some actors have analysed the document and extracted noteworthy
information. The most interesting piece of information that can be related to the
development of the ASR module in TaleTUC is the use of domains to specify
parts of the vocabulary. This can be domains such as: travel, restaurants or
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sports. TaleTUC only has one domain, bus route information, but for future
ASR work this domain could become one of many domains constituting the
ontologies of a FUIROS ASR system.

It has been speculated to be Nuance that has created SIRI’s ASR technology,
but this has not been confirmed.

As the information released on SIRI does not come from Apple directly, one
has to be careful about presenting statements and results. But it is clear that
SIRI has become popular among iPhone users, and represent a functional ASR
as well as dialogue system. It is therefore worth mentioning, as it represents the
state-of-the-art, even though it does not have an academic research documenta-
tion.
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Chapter 3

Case-Based Reasoning (CBR)

The basis for CBR was allegedly first created by Roger Schank from Yale Univer-
sity in the early 1980s, with Schank’s dynamic memory model (Schank, 1983).
However, the general interest in CBR first caught on in the early 1990s, when
many papers were published and conferences were held. Among the papers
published was Case-based Reasoning: Foundational issues, methodological varia-
tions, and system approaches, by Aamodt and Plaza (1994). This paper gathers
terminologies and principles from many former papers, and constructs a for-
mal description of a CBR system. The most notable part of this description is
the four processes in the CBR cycle:

1. RETRIEVE the most similar case or cases

2. REUSE the information and knowledge in that case to solve the problem

3. REVISE the proposed solution

4. RETAIN the parts of this experience likely to be useful for future problem
solving

A new problem is solved by retrieving one or more previously experienced
cases, reusing the case in one way or another, revising the solution based on the
reused case and retaining the new experience by incorporating it into the existing
knowledge base. An illustration of this cycle can be seen in figure 3.1.
Case-Based Reasoning(CBR), generally speaking, is the process of solving new
problems based on solutions of similar past problems.

3.1 ASR and CBR

Maier and Moore (2009) points out that ASR systems lack procedural knowl-
edge. They argue that the performance of state-of-the-art ASR systems is ap-
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Figure 3.1: The classical representation of the CBR cycle (Aamodt and Plaza,
1994)

proaching an asymptote at a level that falls well short of that which is desir-
able for many advanced applications (Lippmann, 1997). They further imply
that opening up ASR systems to use procedural knowledge through CBR can
counteract this asymptotic performance trend. The paper does not present any
results from an existing system to back up their theories. However, their argu-
mentation is supported by other research, giving a good indication that com-
bining CBR and ASR could yield good results.

3.2 Context-Awareness and CBR

Smartphones today are pervasive and personal. This means that they are almost
always turned on, and they are customised to each user. Raento et al. (2005)
claimed that because of this, smartphones are well suited for context-aware ap-
plications.

Hazas et al. (2004) stated that context-awareness is at the core of location-
aware computing. Location-aware systems use the user’s location through a
location-sensing technology such as GPS or WiFi, to provide services.

A system that combines context-awareness and CBR was proposed by Ma
et al. (2005), who based context on factors such as the environment and user
attributes. These factors together with the actions the user performs are stored
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as cases.
A context-aware bus route information system should be able to monitor the

user’s behaviour through sensor input, and use this data to provide route sug-
gestions or other information. TaleTUC draws inspiration from TABuss’ (Mar-
cussen and Eliassen, 2011) combined usage of context-awareness and CBR. The
goal for TaleTUC is to extend this functionality, and use it to optimise the ASR
results (see section 6.4).

3.3 Identified CBR Challenges

According to Aamodt and Plaza (1994), there are five general CBR challenges:
case representation, case retrieval, case reusal, case revision and case retain-
ment. Knowledge contained in a case, often called the case memory, has to have
some form of representation. This representation, in addition to containing the
knowledge, has to be translated into descriptors for the case. Because the CBR
module in TaleTUC needs fairly simple knowledge, it was possible to create de-
scriptors that could also serve as the case memory itself. The knowledge needed
to be represented in a case is time, location and the desired destination. One of
the description challenges encountered related to the representation of time-of-
day, is closely connected to the retrieval method used. The retrieval method
does its initial matching by finding the n closest cases using the Euclidean dis-
tance1. A typical representation of time-of-day can be done by dividing up the
day in 24 discrete sections, as was done by Marcussen and Eliassen Marcussen
and Eliassen (2011) in their CBR module. A problem with this representation
is that time-of-day becomes more powerful and imprecise than preferred. The
reason for this problem can be illustrated by imagining the following scenario:
in the case database there is a case that describes that when located at location
A and the time is 12:01, the user wants to go to location C. Another case in the
case base describes that when located at A and the time is 11:01 the user want to
go to location E. If the time when the system checks the case database is 11:59,
the initial matching would return the case where the desired destination is E,
even if the time is much closer to 12:01 than 11:01. A benefit of the 24 discrete
sections is that computation is saved on the initial match, as all cases outside
the discrete time window can be ignored.

Another challenge with representing time is the fact that 01:00 is closer, in
the amount of time, to 23:00, than 06:00 is to 01:00, because of the clock’s cyclic
time scale. However, 01:00 is closer to 06:00 numerical. This can theoretically
result in problems around midnight, as cases with time descriptions from be-

1http://mathworld.wolfram.com/Distance.html

http://mathworld.wolfram.com/Distance.html
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fore midnight would be judged as very far off, when the clock has just passed
midnight.

When it comes to representing locations, the most obvious way to do so is to
represent the location with latitude and longitude. The matching is done by rep-
resenting the latitude and longitude values as a vector, and calculating the Eu-
clidean distance, as was done by Marcussen and Eliassen citeMarcussen2011.
This approach will produce a CBR matching where movement in the north-
south direction has a larger impact on the matching than movement in the east-
west direction. This happens because the longitude scale goes from minus 180
degrees to plus 180 degrees, while the latitude scale goes from minus 90 degrees
to plus 90 degrees. The size of the errors will vary depending on where on the
earth the cases take place, because of the properties of longitude and latitude.
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Chapter 4

Underlying Route Information
Technologies

This chapter provides information on the relevant existing route information
technologies in Trondheim. First, a description of BusTUC is provided. AtB’s
real-time system is then described, before finally, the FUIROS-projects TABuss
and MultiBRIS are presented.

4.1 BusTUC

BusTUC is a natural language bus route system for Trondheim, which provides
information about scheduled bus route passings. Query examples are shown in
figure 4.1, where two different syntaxes are illustrated.

1. Når går bussen fra Samfundet til Torvtaket?
When does the bus departure from Samfundet to Torvtaket?

2. (Samfundet +n, Prinsen +n) til Torvtaket.
English translated version not supported.

Figure 4.1: The BusTUC query syntax.

The n represents walking distance (in this case to Samfundet). This represen-
tation is actually not used in BusTUC’s parsing, but is syntactically necessary
when posing queries. MultiBRIS (Andersstuen and Engell, 2011) uses syntax
number two, as this allows the system to specify more than one departure bus
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stop. The format of the result from BusTUC can be decided by the developer. It
can either be plain text or a JSON1 object.

4.2 AtB’s Real-time System

AtB’s real-time system provides information on the actual arrival times of all
the buses, and is used by MultiBRIS (see section 4.3). Queries and answers are
sent and received using a SOAP2 interface. The only necessary input parameter
is a bus stop’s real-time ID. The real-time IDs can be retrieved from AtB’s server,
which holds a list that maps bus stop IDs to real-time IDs. This list is updated
from time to time, and to have an updated list is necessary in order to query the
correct real-time data. An example illustrating the bus stop ID to real-time ID
mapping, is shown in Table 4.1.

Bus stop ID Real-time ID
16000001 111111
16000002 111112
16000003 111113
... ...

Table 4.1: Bus stop and Real-time ID mapping. New real-time IDs are assigned
when the real-time server restarts.

A query to AtB’s real-time system returns the five next bus arrivals for the
chosen bus stop. The answer contains route numbers, planned arrival times,
actual arrival times and destinations.

1http://www.json.org/
2http://www.w3.org/TR/

http://www.json.org/
http://www.w3.org/TR/
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4.3 TABuss and MultiBRIS

TABuss is the existing Android application, developed by Marcussen and Eliassen
(2011) as a part of the FUIROS-project. TABuss’ main functionality provides
route suggestions through a query to the MultiBRIS (Andersstuen and Engell,
2011) server. The MultiBRIS server is one of two parts that constitute the Multi-
BRIS system. It is also a part of the FUIROS-project, and handles the communi-
cation with BusTUC and AtB’s real-time system.

As seen in figure 4.2, the first step in TABuss’ query functionality is a query
to MultiBRIS, containing: a destination string (i.e., where the user wants to
travel), the location of the user and addtional parameters. The MultiBRIS server
uses the location information in a query to BusTUC, where the closest bus stops
to the user’s location are set as the departure stops. The received destination
string is set as the destination. The returned route suggestions are then up-
dated with real-time departure times, retrieved from a query to AtB’s real-time
system (see section 4.2). The response returned to TABuss from the MultiBRIS
server contains a JSON-object with route suggestions. This is then parsed and
presented.

Figure 4.3 illustrates this from the user’s perspective. The first screenshot
shows the application home screen. From here, the user can either type a desti-
nation in the input text field, or select one of the suggestions listed below. The
second screenshot displays the query result, where a route suggestion is shown.
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TABuss

AtB real-time MultiBRIS 
server BusTUC

1. TABuss query 6. JSON answer

2. BusTUC request

3. JSON 
answer

4. Bus stop ID

5. Real-time for bus 
stop

Figure 4.2: TABuss’ main functionality

Figure 4.3: Screenshots of the TABuss application
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Chapter 5

Smartphones and Android

This chapter first provides updated information on the different smartphone
manufacturers’ market share. The Android operating system is then described.
Finally, the devices that have been used for the development, and their specifi-
cations are listed.

5.1 The Popularity of Smartphones

The development and sales of smartphones have expanded immensely over the
last few years. Companies such as HTC1, Samsung2 and Apple are all focusing
on the development of smartphones, where HTC and Samsung use Android
as a platform, and Apple iOS. Nokia3 has also begun to develop smartphones,
and has shifted their focus from the Symbian Operating System4 to the new
and emerging Windows Phone 7 platform5. According to Gartner’s6 report for
the third quarter of 2011, Android had 25,3% of the smartphone market share,
while iOS had 16,6%, and Microsoft7 2,7 %.

Along with the growth in smartphone sales, the development possibilities
increase, and applications targeting every day use have become common. Ex-
amples of popular applications are: instant messaging, Facebook8, e-mail and
cardio training.

1http://www.htc.com/
2http://www.samsung.com/
3www.nokia.com
4http://www.developer.nokia.com/Community/Wiki/Symbian_OS
5http://www.microsoft.com/windowsphone/en-gb/default.aspx
6http://www.gartner.com/it/page.jsp?id=1848514
7www.microsoft.com
8www.facebook.com

http://www.htc.com/
http://www.samsung.com/
www.nokia.com
http://www.developer.nokia.com/Community/Wiki/Symbian_OS
http://www.microsoft.com/windowsphone/en-gb/default.aspx
http://www.gartner.com/it/page.jsp?id=1848514
www.microsoft.com
www.facebook.com
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5.2 Android

Android9 is an operating system originally developed by Google and the Open
Handset Alliance10. Android uses a Linux based kernel containing drivers, with
above layers consisting of libraries and the DVM, frameworks and the top ap-
plication layer.

Android is licensed under Apache11, and different manufacturers such as
HTC and Samsung adapt their own distributions by adding functionalities and
a custom user interface. This is similar to how Linux has become available in
several different versions like: SuSe, RedHat and Ubuntu.

The Android Software Development Kit (SDK) contains all the necessary
classes, packages and files, for developing on the Android platform. The SDK
is freeware, and it is available for Windows, Linux and Mac OS. It offers the
possibility to target different Android versions, and also provides access meth-
ods to device hardware such as GPS, camera and accelerometer. Other features
include: media support, database integration and optimised graphics (based on
the OpenGL ES framework12). TaleTUC targets the SDK-version 2.2 or newer.

For Android development, the Android SDK and Java are the most com-
monly used tools. C or C++ code can also be integrated through the Android
Native Development Kit (NDK)13 which can be seen as an add-on to the original
SDK.

5.3 Devices

Two devices were used in the development of the ASR module, and the client,
in TaleTUC: an HTC Desire HD and an HTC Sensation. These were chosen be-
cause the department provided the Desire HD, and one of the project members
already had the Sensation.

The two devices have similar specifications (see Table 5.1). Both devices are
powerful, and can handle heavy computations. An absolute requirement is that
an SD-card is present and can be used for storage. This has to do with the
storage of audio files created by TaleTUC, and also TABuss’ requirements on
storage of bus stop information.

9http://www.openhandsetalliance.com/android_overview.html
10http://www.openhandsetalliance.com/
11http://www.apache.org/
12http://www.khronos.org/opengles/
13http://developer.android.com/sdk/ndk/index.html

http://www.openhandsetalliance.com/android_overview.html
http://www.openhandsetalliance.com/
http://www.apache.org/
http://www.khronos.org/opengles/
http://developer.android.com/sdk/ndk/index.html
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Spec Desire HD Sensation
CPU 1 GHz 1,2 GHz
Android version 2.3.4 4.0.3
Read only memory 1.5 GB 1 GB
RAM 768 MB 768 MB
Screen res 800x480 960x540
SD-card size 8 GB 8 GB

Table 5.1: Specifications of the devices. Components such as GPS, WiFi and 3G
capabilities are not listed, as these are standard on most smartphones released
in later years.
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Chapter 6

Method

Figure 6.1 shows the top level view of TaleTUC. The following sections describe
the development of: the server, the ASR module, the BSF module and the CBR
module.
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ASR (Automatic Speech Recognition)

BSF (Bus Stop Finder)

CBR (Case-based reasoning)

List of possible 
sentences

List of possible bus 
stops

Audio file, latitude, longitude, device ID

Input from Client

A Bus Stop Name

Returned to Client

Server

Client

Client

Figure 6.1: Top level view of TaleTUC
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6.1 Server

The server technology used is Java Servlet1. A Java Servlet can be published
through any available servlet container. A servlet container is the web server
component that interacts with a servlet, and enables the communication be-
tween a servlet and a web-client. TaleTUC, as well as MultiBRIS (Andersstuen
and Engell, 2011), use the non-commercial container Jetty2. This container is
also used by Google, in their Google App Engine3. Jetty is developed in Java,
which makes it a very portable server solution.

TaleTUC uses three Java Servlets: one for the ASR module , one for the CBR
module and one for the Android training application (see section 6.2.1).

6.2 The ASR Module

This section first describes the steps for training the necessary ASR models. De-
scriptions of the ASR component in figure 6.2 are provided, and measures taken
to make the recogniser more robust are presented. Because of the advantages
with server-side ASR discussed in section 2.5, TaleTUC uses a client-server ap-
proach. It also embraces the distributed architecture mindset, with a created
module that allows for cepstrum extraction on the mobile devices.

The numbers in figure 6.2 indicate the order of the performed operations.

1http://www.oracle.com/technetwork/java/javaee/servlet/index.html
2http://www.eclipse.org/jetty/
3http://code.google.com/intl/no/appengine/

http://www.oracle.com/technetwork/java/javaee/servlet/index.html
http://www.eclipse.org/jetty/
http://code.google.com/intl/no/appengine/
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Audio file, device ID, 
latitude and longitude

Server
A bus stop name

ASR

Possible 
sentences

Bus Stop 
Finder

Possible bus 
stops

1

2

3

4

5

6

Figure 6.2: TaleTUC ASR flow chart

6.2.1 ASR Models

The language model in TaleTUC was created with the CMU-Cambridge Statistical
Language Modeling Toolkit (Clarkson and Rosenfeld, 1997), and by following the
instructions on the Sphinx website4. A Java program was developed to auto-
mate these steps, where the only input needed is a text corpus containing the
words, in this case the bus stop names. This Java program runs all the needed
scripts, and creates the language model files named according to the Sphinx-4 in-
structions.

For creating the acoustic model in TaleTUC, SphinxTrain (see section 2.6.1),
was used. 50 of the pronunciations from the Buster grammar were mapped
to the Sphinx-4 pronunciation alphabet. Examples of the difference between
pronunciations in Sphinx-4 and HTK are shown in Table 6.1. Descriptions of
the Sphinx phonemes can be seen at http://www.speech.cs.cmu.edu/cgi-bin/
cmudict. Descriptions of the HTK phonemes are found in the HTK Book (see

4http://cmusphinx.sourceforge.net/wiki/tutoriallm

http://www.speech.cs.cmu.edu/cgi-bin/cmudict
http://www.speech.cs.cmu.edu/cgi-bin/cmudict
http://cmusphinx.sourceforge.net/wiki/tutoriallm
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section 2.6.1). The Android devices listed in Table 5.1 were used to record the
spoken utterances. An Android application was developed, which first down-
loads a text file containing the bus stop names. These are displayed in a click-
able list, where a click triggers the built-in audio recorder to start recording.
When the recording is finished (closed by the user), an audio file is stored on
the device’s SD-card, with the registered username and the name of the clicked
bus stop name as the filename. This file is sent to a server, which stores it in
a hierarchy, where files are stored according to the received username and file
name from the client. Screenshots of this application are shown in the Result
section (section 7.1.1).

Word Sphinx-4 pronunciation HTK pronunciation
Gløshaugen G L OX S H AE UH E N g l ox: s h ox uh g e n
Ila I L A i: l A
Nova kinosenter N O V A C I N U S E N T E R n O: v A C i: n u s e n t e r

Table 6.1: Comparison of the pronunciations in HTK and Sphinx-4

The training of the acoustic model followed the steps described in section
2.6.1. The program developed for building the language model was extended
to also automate the acoustic model building steps. It builds the acoustic model,
and allows the adjustment of configuration parameters. An advantage of us-
ing this program is that training can be performed with different parameters
sequentially, without having to configure and initiate each run explicitly. It also
decodes the trained model, and outputs the WER to a text file, together with
the parameter settings the user would like to log. In TaleTUC’s case, it was in-
teresting to log the number of senones (clustered similar HMM states), and the
number of final densities (Zhao et al., 1991) used, in order to find the configura-
tions that lead to the lowest WER.

The Java program developed to automate the building steps for the language
model and the acoustic model can currently only be used in Unix-based operating
systems. This has to do with Linux being the operating system that was used
for the development of TaleTUC, and because the training steps target a Unix
environment. For training the models using the Windows operating system,
one has to manually perform the training steps from the Sphinx website. This
can be done with a Unix-like environment such as Cygwin5.

5http://www.cygwin.com/

http://www.cygwin.com/
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6.2.2 ASR Implementation

Two decoders were created for the implementation of the ASR in TaleTUC. One
decoder takes a wav-file as input, and the second takes a cepstrum file as input.
In total, three Sphinx-4 front-end configurations were developed. One which is
a front-end for the decoding of wav-files (listing 6.1), and another which is a
front-end for the decoding of cepstrum files (listing 6.2). The third is used to
extract cepstrums, and is accessed by a Java program that extracts cepstrums
from a wav-file (listing 6.3), before saving them to a file. The cepstrum front-
end uses this file as input, and calculates the delta and double delta (first and
second order derivative) of the input cepstrum, before it outputs a feature vec-
tor which the decoder uses as input. For more information on the delta and
double delta calculations in Sphinx-4, the reader is referred to the Sphinx-4 web-
site on feature extraction6. It was chosen to implement two decoders to com-
pare the size of the files (wav and cepstrum) needed to be sent to the server
for recognition, and also to compare each solution’s time use. The computation
of cepstrums was implemented through existing functionalities in the Sphinx-4
framework, which were ported to the Android platform. The advantage of fol-
lowing Sphinx-4’s approach was that all steps from the cepstrum extraction to
the recognition process were implemented in the same framework.

<component name="epFrontEnd" type="edu.cmu.sphinx.frontend.
FrontEnd">

<propertylist name="pipeline">
<item >audioFileDataSource </item >

<item >dataBlocker </item >
<item >speechClassifier </item >
<item >speechMarker </item >
<item >nonSpeechDataFilter </item >
<item >preemphasizer </item >
<item >windower </item >
<item >fft </item >
<item >melFilterBank </item >
<item >dct </item >
<item >batchCMN </item >
<item >featureExtraction </item >

</propertylist >
</component >

Listing 6.1: Wav decoding front-end

6http://cmusphinx.sourceforge.net/sphinx4/javadoc/edu/cmu/sphinx/frontend/
feature/DeltasFeatureExtractor.html

http://cmusphinx.sourceforge.net/sphinx4/javadoc/edu/cmu/sphinx/frontend/feature/DeltasFeatureExtractor.html
http://cmusphinx.sourceforge.net/sphinx4/javadoc/edu/cmu/sphinx/frontend/feature/DeltasFeatureExtractor.html
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<component name="epFrontEnd" type="edu.cmu.sphinx.frontend.
FrontEnd">

<propertylist name="pipeline">
<item >streamDataSource </item >
<item >featureExtractor </item >

</propertylist >
</component >

Listing 6.2: Cepstrum decoding front-end

<component name="mfcFrontEnd" type="edu.cmu.sphinx.frontend.
FrontEnd">

<propertylist name="pipeline">
<item >streamDataSource </item >

<item >dataBlocker </item >
<item >speechClassifier </item >
<item >speechMarker </item >
<item >nonSpeechDataFilter </item >
<item >preemphasizer </item >
<item >windower </item >
<item >fft </item >
<item >melFilterBank </item >
<item >dct </item >

<item >batchCMN </item >
</propertylist >

</component >

Listing 6.3: Cepstrum computation front-end

The following descriptions are found in the Sphinx-4 javadoc7, and describe
the properties in listings 6.1, 6.3 and 6.2.

audioFileDataSource - is the input audio file. This property is used for the
decoding of wav files.

streamDataSource - is the input audio stream. This property is used for the
decoding of a cepstrum stream.

speechClassifier - is Sphinx-4’s implementation of a VAD (Ramirez et al., 2007).
The speechClassifier holds a user defined threshold, which is used for the
processing of incoming audio frames. If the average signal level in deci-
bel is higher than the background noise level by this threshold, the audio
frame is marked as speech. A low value indicates that a smaller volume
difference is used to separate foreground noise from background noise,
which makes the speechClassifier more sensitive.

7http://cmusphinx.sourceforge.net/sphinx4/javadoc/

http://cmusphinx.sourceforge.net/sphinx4/javadoc/


i
i

“Disposisjon” — 2012/6/6 — 12:19 — page 54 — #72 i
i

i
i

i
i

54 The ASR Module

speechMarker is the processing of an audio file that has been passed through
the speechClassifier, where regions that are considered to be speech are
marked.

nonSpeechDataFilter is the further processing of an audio file that has been
passed through the speechClassifier and the speechMarker, where the non-
speech regions are removed.

preemphasizer is the implementation of a high-pass filter, that compensates
for the attenuation in the audio data.

windower is where the audio is sliced up into a number of overlapping win-
dows. A Windowing function (Rozman and Kodek, 2006) is then applied
to each. It is a part of the Fourier transformation of the speech signal.

fft is the process of analysing the speech signal into its frequency components,
by analysing one window of data.

melFilterBank is where the power spectrum is filtered through a mel filter bank,
which is a set of triangular filter banks used to approximate the frequency
resolution of the human ear.

dct is the discrete cosine transform of the input data, after a logarithm has been
applied. This is the last step of the conversion of a signal to cepstrum.

batchCMN is Sphinx-4’s batch mode implementation of Cepstral Mean Nor-
malisation (CMN) (Liu et al., 1993). This step is included to reduce the
distortion caused by the transmission channel.

featureExtractor is where the delta and double delta of the input cepstrum is com-
puted.

When the ASR process has finished, a word lattice is created. This lattice
contains a list of the sentences evaluated throughout the recognition process,
sorted based on their score (i.e., the best ASR result is the first lattice sentence).

6.2.3 ASR Robustness

ASR robustness was identified as a challenge for ASR systems in section 2.5.
This section describes TaleTUC’s approach to cope with this challenge.

Robustness and noise cancellation in ASR systems are much discussed top-
ics, where many have proposed solutions. Sarosi et al. (2011) emphasises the
importance of robust features, and compared different feature extraction tech-
niques. Lee et al. (2011) also focused their research on features, and designed a
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model for the representation of features, which is able to dynamically adapt to
noise.

Narayanan et al. (2011) proposed a solution where multiple prior models are
trained instead of only one. These are then used to reconstruct noisy speech.
Narayanan et al. (2011) achieved a WER improvement of 13,7 % using this tech-
nique.

The first step for TaleTUC was to increase the robustness of the acoustic model,
and to extract robust features with the use of Sphinx-4’s CMN. To make the
trained acoustic model more robust, the audio for the training sets was recorded
in different environments. The recording took place both inside and outside,
capturing both an environment where there is little background noise, and an
environment where there is traffic noise. Different Norwegian spoken dialects
were also taken into account (figure 6.2), as there are many dialects in Norway.
This resulted in ten training sets, which were used to train two acoustic models.
One of the models contains only the training sets with audio recorded indoors,
while the other contains the training sets with audio recorded both indoors and
outdoors. In addition, three independent test sets were created: one that con-
tains audio recorded indoors (low noise level), one that contains audio recorded
outdoors (traffic noise) and one that contains audio recorded both indoors and
outdoors. The procedure of training more than one acoustic model has previ-
ously been done by Cosi and Nicolao (2009). Their results indicated that an
acoustic model that contains recorded audio with dynamic background noises
performs better than an acoustic model trained only with homogeneous back-
ground noise. For TaleTUC, this also has to do with where the system is to be
used. And because the usage area is considered to be both inside and outside,
diverse training may be the best alternative.

Different forms of filters for removing noise were investigated. Sound files
were mounted in the sound processing program Audacity8, and different filters
were applied. The result was then exported and played in a standard media
player, and also used as input to the recogniser. SoX9 was also used, which
has a built-in noise cancellation filter. Based on these experiments, the Sphinx-
4 preemphasizer, which as mentioned in section 6.2.2 is a high-pass filter, was
included.

Sphinx-4’s VAD functionality through the speechClassifier was also added.
Different thresholds were tested, in order to get the best recognition results com-
pared to recognition without filters.

The final step was to include Sphinx-4’s Wiener filter implementation. The
use of a Wiener filter in ASR has previously been researched by among others

8http://audacity.sourceforge.net/?lang=nb
9http://sox.sourceforge.net/

http://audacity.sourceforge.net/?lang=nb
http://sox.sourceforge.net/
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Arakawa et al. (2006), Chen et al. (2006) and Xu et al. (2005). The filter was
added as a property to the front-end in listing 6.3, and combined with the speech-
Classifier’s tuned threshold. A new acoustic model was trained on Wiener filtered
audio, recorded indoors and outdoors. All of the created test sets were tested
against this model, in order to view and compare the WER to earlier results
with the noisy acoustic model. The updated cepstrum computation front-end is
shown in listing 6.4.

<component name="mfcFrontEnd" type="edu.cmu.sphinx.frontend.
FrontEnd">

<propertylist name="pipeline">
<item >streamDataSource </item >
<item >dataBlocker </item >
<item >preemphasizer </item >
<item >windower </item >
<item >fft </item >
<item >wiener </item >
<item >speechClassifier </item >
<item >speechMarker </item >
<item >nonSpeechDataFilter </item >
<item >melFilterBank </item >
<item >dct </item >
<item >batchCMN </item >

</propertylist >
</component >

Listing 6.4: Cepstrum computation front-end with a Wiener filter

Dialect type Number of persons
North Norwegian 2
East Norwegian 5
North-West Norwegian 1
South Norwegian 1
South-West Norwegian 1

Table 6.2: Overview of trained dialects
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6.2.4 Prototype Comparisons of Sphinx-4 and PocketSphinx

A basic PocketSphinx prototype was developed for comparison with the Sphinx-
4 solution, where it was interesting to view the differences in storage require-
ments. Both of the prototypes were tested with the devices listed in Table 5.1.
The PocketSphinx program required storage of a number of files on the SD-card,
such as grammar files, which were manually added during testing. The same
language models and acoustic models were used in both the Sphinx-4 solution and
the PocketSphinx solution.

The development of the PocketSphinx program was done by following a tuto-
rial on the Sphinx website10. Existing classes, developed in the C programming
language, were imported with the Android NDK, and modified to fit the trained
models.

6.3 The Bus Stop Finder (BSF) Module

The BSF, depicted in figure 6.2, is a module that was added server-side, to op-
timise where the ASR results are OOV words. The BSF uses the word lattice
outputted by the ASR as input, and performs the following steps:

1. Checks whether the first lattice sentence matches a bus stop name. If so, this
sentence is returned.

2. If the BSF reaches step two, it means that the first lattice sentence does not
match a bus stop name, and is an OOV word. The BSF then iterates
through the lattice and maps each sentence to the most likely bus stop
name, by calculating a new score based on each sentence’s similarity to
legal bus stop names. This similarity is calculated based on: if the num-
ber of words in a lattice sentence matches the number of words in a bus
stop name, if any words in the lattice sentence matches any words in a
bus stop name and if the matching words have the same placement. It
also calculates a confidence score for each bus stop name. The confidence
score represents how confident the system is in the bus stop name’s score.
The bus stop name with the highest calculated score is then returned.

The BSF’s scoring uses the following adjustable parameters:

CONF_SCORE_CAP: If the score of a lattice sentence is higher than one, and
higher than the CONF_SCORE_CAP, its score is directly added to the
score list.

10http://cmusphinx.sourceforge.net/2011/05/building-pocketsphinx-on-android/

http://cmusphinx.sourceforge.net/2011/05/building-pocketsphinx-on-android/
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SCORE_DECAY_RATE: If the score of a lattice sentence is lower than one or
lower than the the CONF_SCORE_CAP, the SCORE_DECAY_RATE mul-
tiplied with the lattice sentence’s position is subtracted from the score. The
score is then added to the score list.

The strength of the BSF is that it can fix the ASR results if OOV words are
present. Its weakness is when the ASR result is wrong, but still matches a bus
stop name in step 1. Then, the BSF will return this sentence, as it is a legal result.
The BSF can however still manage to get the correct result in later tries, if the
returned sentence is blacklisted by the user (see section 6.4).

There is a system parameter called strong context, which can be set to true
or false by the individual clients using the system. When the strong context
parameter is set to true, the BSF skips the first step, and does not check whether
the first lattice sentence matches a bus stop name. This forces the system to
enter step two. By doing so the CBR module is used more often, as the BSF
module triggers the CBR module. This can be beneficial if the user has a good
case base present.

6.4 The CBR Module

This section explains how the CBR module in TaleTUC works. The CBR module
is used to give a solution to a basic problem: given the location and time for a
user, where would he or she probably want to go? The problem consists of time
and place, and the solution is the destination. When a new case is presented
to the CBR module, the search to find the solution for this case starts. This is
done by finding the n-closest existing cases from the case database. Before ex-
plaining how the n-closest cases are found, some technical knowledge about
the system is presented. There are a total of four places where the cases are
stored temporarily or long term in the system. What is called the Case Database
and Confirmed Cases Database, are the two long term storage entities. These two
databases are maintained as SQL tables, where each entry in a table is a case.
Each entry contains the fields: time-of-day, weekend, latitude, longitude, destination
and device ID. The fields time-of-day and weekend constitute the time part of the
case, while the latitude and longitude are the location part of the case. Finally,
the destination field is the solution for the case, and the device ID is used to dis-
tinguish users. The two others places where cases are stored are called: List
of Recently Suggested Solutions and Blacklisted Solutions. These two reside in the
system’s physical memory as arrays of objects at runtime.

The process of finding the n-closest existing cases to a new case is done
through an SQL query. As mentioned in the challenges section 3.3, it does not
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suffice to simply use the Euclidean distance formula on time-of-day, weekend,
latitude and longitude, due to the properties of latitude and longitude. The SQL
query was therefore constructed in the way that it calculates the distance be-
tween two latitude and longitude points, and uses this distance in an Euclidean
distance measurement.

Measuring the distance between two latitude and longitude points is not
straightforward because the earth is not flat, it has an oblate spheroid shape.
An oblate spheroid shape can be illustrated by taking a soft ball and gently
squeezing it between your hands.

It is fairly easy to do calculations on a perfect sphere, as there exist simple
and computation friendly formulas for this. However, to perform calculations
on an oblate spheroid is more complex. Listing 6.5 shows an example of how
Google has implemented this calculation in their Android Location Applica-
tion Programming Interface (API)11. The listing is included directly in the text
to give the correct impression on how substantial the calculation need is, the
bearing part of the method is however left out, as it is not relevant.

computeDistanceAndBearing(double lat1 , double lon1 ,
double lat2 , double lon2 , float[] results) {

int MAXITERS = 20;
// Convert lat/long to radians
lat1 *= Math.PI / 180.0;
lat2 *= Math.PI / 180.0;
lon1 *= Math.PI / 180.0;
lon2 *= Math.PI / 180.0;

double a = 6378137.0; // WGS84 major axis
double b = 6356752.3142; // WGS84 semi -major axis
double f = (a - b) / a;
double aSqMinusBSqOverBSq = (a * a - b * b) / (b * b);

double L = lon2 - lon1;
double A = 0.0;
double U1 = Math.atan ((1.0 - f) * Math.tan(lat1));
double U2 = Math.atan ((1.0 - f) * Math.tan(lat2));

double cosU1 = Math.cos(U1);
double cosU2 = Math.cos(U2);
double sinU1 = Math.sin(U1);
double sinU2 = Math.sin(U2);
double cosU1cosU2 = cosU1 * cosU2;
double sinU1sinU2 = sinU1 * sinU2;

11http://developer.android.com/reference/android/location/package-summary.html

http://developer.android.com/reference/android/location/package-summary.html
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double sigma = 0.0;
double deltaSigma = 0.0;
double cosSqAlpha = 0.0;
double cos2SM = 0.0;
double cosSigma = 0.0;
double sinSigma = 0.0;
double cosLambda = 0.0;
double sinLambda = 0.0;

double lambda = L; // initial guess
for (int iter = 0; iter < MAXITERS; iter ++) {

double lambdaOrig = lambda;
cosLambda = Math.cos(lambda);
sinLambda = Math.sin(lambda);
double t1 = cosU2 * sinLambda;
double t2 = cosU1 * sinU2 - sinU1 * cosU2 *

cosLambda;
double sinSqSigma = t1 * t1 + t2 * t2; // (14)
sinSigma = Math.sqrt(sinSqSigma);
cosSigma = sinU1sinU2 + cosU1cosU2 * cosLambda; //

(15)
sigma = Math.atan2(sinSigma , cosSigma); // (16)
double sinAlpha = (sinSigma == 0) ? 0.0 :

cosU1cosU2 * sinLambda / sinSigma; // (17)
cosSqAlpha = 1.0 - sinAlpha * sinAlpha;
cos2SM = (cosSqAlpha == 0) ? 0.0 :

cosSigma - 2.0 * sinU1sinU2 / cosSqAlpha; //
(18)

double uSquared = cosSqAlpha * aSqMinusBSqOverBSq;
// defn

A = 1 + (uSquared / 16384.0) * // (3)
(4096.0 + uSquared *
(-768 + uSquared * (320.0 - 175.0 * uSquared)))

;
double B = (uSquared / 1024.0) * // (4)

(256.0 + uSquared *
( -128.0 + uSquared * (74.0 - 47.0 * uSquared)))

;
double C = (f / 16.0) *

cosSqAlpha *
(4.0 + f * (4.0 - 3.0 * cosSqAlpha)); // (10)

double cos2SMSq = cos2SM * cos2SM;
deltaSigma = B * sinSigma * // (6)

(cos2SM + (B / 4.0) *
(cosSigma * (-1.0 + 2.0 * cos2SMSq) -
(B / 6.0) * cos2SM *
(-3.0 + 4.0 * sinSigma * sinSigma) *
(-3.0 + 4.0 * cos2SMSq)));
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lambda = L +
(1.0 - C) * f * sinAlpha *
(sigma + C * sinSigma *
(cos2SM + C * cosSigma *
(-1.0 + 2.0 * cos2SM * cos2SM))); // (11)

double delta = (lambda - lambdaOrig) / lambda;
if (Math.abs(delta) < 1.0e-12) {

break;
}

}

float distance = (float) (b * A * (sigma - deltaSigma));
}

Listing 6.5: Google’s calculation on oblate spheroid shapes

The method in listing 6.5 is based on formulas proposed by Vincentry (1975). It
involves several iterations of calculations to reduce the calculation error. This
method is too computation heavy to be used to calculate the distance in Tale-
TUC’s CBR module. The reason for this is that the method would have to be
run for each relevant case in the case base, where relevant cases are cases that
match the given device ID. Luckily, the earth’s oblate spheroid shape is not very
significant. According to the WGS 84 World Geodic System standard (NIMA,
2000), the radius at the equator is 6378137 metres, and the radius at the poles
is 6356752 metres. This results in a difference of about 22 kilometres. Because
the difference is so small, this shape can be ignored in the calculation of small
distances. The distance calculation on spheres is often called the great-circle
distance12 calculation. There are a number of formulas to choose from when
calculating the great-circle distance, where some have rounding errors for small
distances, some are computational heavy and some have rounding errors when
dealing with antipodal points13. The one chosen for TaleTUC is called the haver-
sine formula. The haversine is computation friendly, and its only drawback is
that it has rounding errors when dealing with antipodal points (Sinnott, 1984).
Calculation problems with antipodal points can be ignored as the geographical
field of operations for TaleTUC is very small compared to the size of the earth.
The haversine formula looks like this:

haversin(
d
R
) = Haversine(∆φ) + cos(φ1)cos(φ2)haversin(∆λ) (6.1)

Where R is the radius of the sphere, φ1 and φ2 is latitude points, ∆φ is φ1 - φ2,

12http://mathworld.wolfram.com/GreatCircle.html
13http://www.antipodemap.com/

http://mathworld.wolfram.com/GreatCircle.html
http://www.antipodemap.com/
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∆λ is the difference between two longitude points and d is the distance between
the two points (along the great circle arc).
The haversine function looks like this:

haversin(θ) =
1− cos(θ)

2
(6.2)

Listing 6.6 shows the haversine formula 6.1 solved for d, and translated into
an SQL query.

SELECT *, 6378137 * 2 * ASIN(SQRT( POWER(SIN(( orig_lat -abs(dest.
lat)) * pi()/180 / 2) ,2) + COS(orig_lat * pi()/180 ) * COS(abs

(dest.lat) * pi()/180) * POWER(SIN(( orig_lon - dest.lon) * pi()
/180 / 2), 2) )) as distance;

Listing 6.6: The haversine formula solved for d, and translated into an SQL
query

Listing 6.7 shows the SQL query when the rest of the variables used in TaleTUC
are included:

SELECT *, 6378137 * 2 * ASIN(SQRT( POWER(SIN(( orig_lat -abs(dest.
lat)) * pi()/180 / 2) ,2) + COS(orig_lat * pi()/180 ) * COS(abs

(dest.lat) * pi()/180) * POWER(SIN(( orig_lon - dest.lon) * pi()
/180 / 2), 2) )) as distance FROM QUERY where devID = ’tester2 ’

ORDER BY SQRT(POW(distance ,2)+POW((QUERY.timeOfDay -
currentTimeOfDay) ,2) +POW((QUERY.weekend - currentWeekend) ,2))
LIMIT 10;

Listing 6.7: The haversine SQL query with variables

When the n-closest cases are found, the construction of the solution for the new
case is started. The n-closest cases are ordered so that the first item in the list is
the closest match. The cases are scored on their position in the list. This scoring
is dependant on the system variables called N_ CASES_ TO_ CONSIDER and
SCORE_DECLINE_RATE. Lets say that the N_CASES_TO_ CONSIDER is set to
10 and the SCORE_DECLINE_RATE is set to 1. The first item in the list gets 10
as its score, the next item in the list gets 9 and so on. If case number one and
three in the list have the same case solution, it means that this solution now has
a total score of 18. This feature makes sure that the solution to the new case is a
generalisation of the n-closest case solutions.

In relation to system variables, there are three additional ones. The two first
are called TIME_WEIGHT and GEO_WEIGHT. These two make it possible to
weight either time or geographical location in the case matching. The last sys-
tem variable is called GEO_FIELD_OF_OPERATION. It defines the max diame-
ter of the system’s field of operation in metres. This variable is used by the CBR
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module to adjust the matching values, so that time and location are equally
weighted (if not altered by TIME_WEIGHT or GEO_WEIGHT).

Before the new case is finalised, scores from the Feedback Case Database are
added to the total solution score. The scores from the Feedback Case Database are
fetched in a similar way to how the n-closest cases are fetched from the Case
Database. In this way, the knowledge from revised cases is added to the final case
solution.

Client Case DB

List of Recently 
Suggested 
Solutions

Blacklisted 
Solution

Confirmed 
Cases

Device ID, Latitude, Longitude, 
Destination, ...

MultiBRIS Module

CBR 
Business 

Logic

1
2

3

4

5.1

8

910

11

12

5.2

6

7

Figure 6.3: CBR Module

The following explains what happens at each step in figure 6.3.

1. The client sends its device ID, latitude and longitude to the CBR-system
on the pretence to get a suggested destination in return.

2. The CBR business logic fetches the most promising cases from the Case
Database. This is a part of the retrieve process discussed in section 3. The
n-closest matched are found as described earlier.

3. The CBR business logic fetches the most promising cases from the Con-
firmed Cases Database. This is done similarly to how the cases from the Case
Database are fetched. If a solution in the list from the Case Database also
exists in the Confirmed Cases Database, that solution is credited with more
score, dependant on the solution’s position in the list from the Confirmed
Cases Database list. This way, the system builds it’s new solution for the
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new problem case. This is part of the reuse process. The system builds
itself a ranked list of this possible case solution, so that if the best found
solution is for instance blacklisted, the next best case solution can be used.

4. The blacklist is checked if the best solution found is tagged as blacklisted
for the current device ID. If the best solution turns out to be blacklisted,
the next case solution is selected to be sent back to the client.

5. The best case solution is sent back to the client. The best solution is also
temporarily stored in the list called: List of Recently Suggested Solutions.
This list is used in the revise process of the CBR system. A case solution
exists in the List of Recently Suggested Solutions for a time span dependant
on a system parameter called FEEDBACK_ SUSTAIN_ INTERVAL.

6. If it turns out that the case solution was wrong, the client reports this back
to the system.

7. A case solution is reported to be wrong and unwanted for a particular
device ID. The solution is therefore temporarily stored in the blacklist, so
that the same error cannot occur again within a short period of time.

8. If the case solution received by the client is correct, the normal usage pat-
tern is then to use this solution, or more specific, the destination to do a
bus route query to the MultiBRIS module.

9. The MultiBRIS module stores the MultiBRIS bus route query as a case in
the Case Database.

10. The MultiBRIS module replies bus route information to the client.

11. The revise and retain parts of the CBR system check the List of Recently
Suggested Solutions against the Case Database consecutively. The system
checks if the device ID and the solution from any new case matches a
device ID and a solution in the List of Recently Suggested Solutions. If it finds
a match, it means that this solution was given to the specific device ID, not
long ago. It also means that a suggested case solution was confirmed by
the client, and it is therefore successfully revised and found correct.

12. If a case solution is found revised and correct, it is stored in the Confirmed
Cases Database. The case solution is also removed from the List of Recently
Suggested Solutions, even if the time span of the FEEDBACK_ SUSTAIN_
INTERVAL is not reached.
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6.5 The Combined Modules

The connection link between the ASR and CBR modules is the BSF module. As
described in section 6.3, the BSF creates an ordered list of scored answers. Before
the final answer is returned to the user, the system checks the scores and the
confidence scores of the bus stop names in this list. If the first two answers in the
list have the same scores, and the same confidence scores, the system deducts
that the probability that the right answer is found is too low. The system then
uses the CBR module to get an answer instead, which is returned to the user.

6.6 TABuss as a TaleTUC client

In the use with TaleTUC, TABuss represents the client component in figure 6.2.
Two audio processing functionalities were created, in addition to graphic com-
ponents, in TABuss to use it as a TaleTUC client. The first was a recording
method. This method records audio, and stores a wav file on the SD-card. The
second extracts the cepstrum from this wav file, and stores this in a separate file.
Which one of these files to send to TaleTUC is controlled in the source code. The
method that extracts the cepstrum uses the Sphinx-4 front end configuration file
in listing 6.3. This file is downloaded to the device’s SD-card on start-up, if it
does not already exist.

As seen in figure 6.2, a query to TaleTUC consists of more than only an au-
dio file. In addition to the device ID, location information is needed. This is
retrieved from the device’s location technology (GPS, WiFi, etc). The process
of running the ASR, and using the result in TABuss’ query functionality is de-
picted in figure 6.4.

User verification was added as a measure to limit the user frustration when
the system returns the wrong results. The user can verify the result through a
touch event in the answer screen. If the user accepts the ASR result, a query
is sent to the MultiBRIS server, with the result as one of the inputs. If the user
does not accept the ASR result, the recording process is restarted automatically.
At the same time, the ASR result is blacklisted (see section 6.4). This has a limit
of two tries. A third try will display a message stating that the system cannot
provide the correct ASR result, and that the user should type in the correct bus
stop name.

In addition to the use of TABuss as a TaleTUC client, it was desirable to
further explore the smartphone capabilities. As a result, a widget14 was devel-
oped. This home screen widget is a part of TABuss, but can provide function-

14http://developer.android.com/guide/topics/appwidgets/index.html

http://developer.android.com/guide/topics/appwidgets/index.html
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TABuss MultiBRIS

TaleTUC

1. Spoken utterance of 
bus stop name 
(destination)

2. ASR result

3. ASR result and 
location

4. Route suggestion

Figure 6.4: TABuss’ query based on ASR results

alities without the need to start the application. At this moment, the widget
uses TABuss for the calculation of route suggestions through MultiBRIS, and
the display of these. The widget’s main functionality is depicted in figure 6.5.
The numbers indicate the order of the performed operations.

TABuss 
widget

Record audio

Calculate routes

TABuss

Display route 
suggestions

Audio 
file

ASR 
result

Server

ASR

ASR result, location and 
additional information

1
2
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Figure 6.5: The TABuss widget architecture
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Results

This chapter describes TaleTUC’s development results.

7.1 The ASR and the BSF Modules

The following sections first describe the developed language models and acous-
tic models. The results from the prototype comparisons of Sphinx-4 and Pock-
etSphinx are then presented. Finally, the development results of the Sphinx-4
solution, and results from the BSF module are described.

7.1.1 ASR Models

The 50 bus stop names in the language model are shown in listing 7.1. These
were in the text corpus which was used as input to the language model training
program.

alfheimsvingen
anders buens gate
anton jenssens veg
brøsetvegen
brekkåsen
brobakk
brukseier olsens vei
bukkvollan
dronningens gate
eggan klæbu
einar tambarskjelves gate
fannrem stasjon
gafset
gimseflata
gløshaugen
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granåsen gård
hallfred høyems veg
ila
ilsvika
kambru
kroppanmarka snuplass
kvitland melhus
langlo
lundåsen
målsjøåsen
marcus thranes vei
nova kinosenter
nypantunet
omkjøringsveien nardo
osveien
persaunevegen
pirbadet
prestgårdskrysset
presthusaunet
rønningen aldersbolig
ranheim idrettsplass
rydningen
sjøla
skårgangen
sluppen
sollia
svebergkrysset
tanemskrysset
trøndertun
trondheim sentralstasjon
udduvoll bru øst
udduvoll bru vest
voll studentby
øie skole
øysandkrysset

Listing 7.1: The bus stop names in the language model

The outputted language model file was after completion added to the path of the
acoustic model building program. This program was then run to find the best pa-
rameter values for the number of senones, and the final number of densities. The
result from these runs were within Sphinx’ recommendations, given the size of
the training data. Higher numbers would make the model over-trained, which
means the system would be poor at recognising unseen speech (i.e., speakers it
is not trained for). The following settings were therefore chosen:

Number of senones: 25

Final number of densities: 6
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Screenshots of the Android application developed for recording the training
data are shown in figure 7.1, where the recording process is illustrated. The
numbers indicate the order of the performed operations.

Audio file

The training web-service 
on the TaleTUC server

1 2

3

4

Main screen The user has chosen 
"Alfheimsvingen"

A recording of 
"Alfheimsvingen" is sent to 

the server

The sound file has been stored 
in the hiearchy on the server

Figure 7.1: The recording application that collects data for the acoustic model
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7.1.2 Prototype Comparisons of Sphinx-4 and PocketSphinx

The results from the comparison between the Sphinx-4 solution and the Pocket-
Sphinx solution showed the same recognition results. This was because both of
the solutions used the same acoustic models and language models, and because
the front-end used to compute the cepstrums performs the same operations
as Sphinx-4 does in its built-in cepstrum computations. The advantage of the
PocketSphinx implementation was that it returned results quicker, which was
expected as no sending of sound files to a server was necessary. The disadvan-
tage was the need for free storage space on the test device’s SD-card. 1,2 MB of
storage space was required for a vocabulary of 50 words, and a language model
trained with four speakers. A larger vocabulary and a more robust acoustic
model would require a larger amount of free storage space available.

Results in the Sphinx-4 program were returned in an average of three sec-
onds, when the application was tested in a WiFi network. The testing was per-
formed before the extraction of cepstrums was implemented in the Sphinx-4
front-end configuration, and was therefore done with wav files. The tested wav
files had an average size of 75 kB. In addition, when HTTP headers are added,
the size of each file transfer increases. But compared to the PocketSphinx solu-
tion, the storage of language models and acoustic models was avoided.

The size of the needed available storage space in the PocketSphinx prototype
lead to a reinforced impression of Sphinx-4 and a client-server archictecture be-
ing the best choices for TaleTUC. Also, the use of the Android NDK increased
the application complexity, as it introduced an additional dependency. Devel-
opers need to use two different programming languages (Java and C) to create
PocketSphinx programs. This requires either background knowledge of the ad-
ditional programming language, or that there is time available to learn it.

7.1.3 ASR Implementation with Sphinx-4

Both of the trained acoustic models and three test sets were used in the performed
runs. ”Clean” means that the acoustic model was trained indoors, with minimum
background noise. ”Mixed” means an acoustic model where the ”clean” training
sets have been mixed with training sets that contain audio recorded outdoors.
For the test sets, ”indoors” means that the audio was recorded indoors, and
”outdoors” means that the audio was recorded outdoors. ”Mixed” means a test
set where every other audio file is recorded indoors and outdoors.

For the BSF the parameters in Table 7.1 were chosen:
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Parameter name Parameter value
CONF_SCORE_CAP 1
SCORE_DECAY_RATE 2

Table 7.1: The BSF parameters used for the WER tests

The runs presented in Table 7.2 and Table 7.3 were done without any form
of noise cancellation or filters.

Trained model WER indoors WER outdoors WER mixed
Clean 10 % 66 % 38 %
Mixed 10 % 32 % 18 %

Table 7.2: ASR without filters

Trained model WER indoors WER outdoors WER mixed
Clean 0 % 52 % 26 %
Mixed 4 % 20 % 12 %

Table 7.3: ASR without filters, optimised with the BSF

Based on these tables, the best results were with the mixed acoustic model.
The remaining tests therefore focused on this model. The results also showed
that the BSF provided optimised WERs for all of the tests, and even achieved
0 % WER in one of them. The current tests were conducted with both the cep-
strum decoding front-end and the wav-file decoding front-end. Because of the
reduced data traffic achieved with the cepstrum front-end, shown in section
7.4.2, the remaining tests and results in this section are based on this front-end.

Next, Sphinx-4’s preemphasizer and speechClassifier were introduced in the
project’s configuration file. For finding the optimal threshold in the speechClas-
sifier property, several tests were performed. As seen from figures 7.2, 7.3 and
7.4, a low threshold gave the best results. A value of two was therefore chosen,
which achieved the lowest WERs of all the tested thresholds. It was assumed
that thresholds higher than 30 would not give lower WERs, as the use of thresh-
olds up to and including 30 showed a trend with an increasing WER.
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Figure 7.2: VAD threshold test 1

Figure 7.3: VAD threshold test 2
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Figure 7.4: VAD threshold test 3

Next, a Wiener filter was implemented. The new acoustic model was trained on
Wiener filtered audio, where the speechClassifier threshold was set to two, which
was the best result from the threshold tests. The system was then tested, where
the speechClassifier property for the test program had to be tuned, to achieve the
lowest possible WER with the new acoustic model. The threshold found to give
the best results for all of the three test sets was five. Table 7.4 displays the WER
of the performed runs with a Wiener filter, and Table 7.5 displays the same runs
optimised with the BSF.

Trained model WER indoors WER outdoors WER mixed
Mixed 6 % 26 % 10 %

Table 7.4: ASR with a Wiener filter

Trained model WER indoors WER outdoors WER mixed
Mixed 0 % 22 % 4 %

Table 7.5: ASR with a Wiener filter, optimised with the BSF

Table 7.6 displays the comparisons of the WERs achieved with and without
a Wiener filter. As can be seen, the runs with a Wiener filter achieve lower WERs
for all of the tests. Table 7.7 displays the same comparisons, where the BSF has
been used. As one can see, a lower WER is achieved with the use of a Wiener
filter, compared to without, in all tests, except for one.
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Trained model Test set WER without filters WER with a Wiener filter
Mixed Indoors 10 % 6 %
Mixed Outdoors 32 % 26 %
Mixed Mixed 18 % 10 %

Table 7.6: Comparison of the WERs without filters, and the WERs with a Wiener
filter

Trained model Test set WER without filters WER with a Wiener filter
Mixed Indoors 4 % 0 %
Mixed Outdoors 20 % 22 %
Mixed Mixed 12 % 4%

Table 7.7: Comparison of the WERs without filters, and the WERs with a Wiener
filter, optimised with the BSF

7.2 The CBR Module

This section contains two different test results: one is based on a very practi-
cal test where a natural usage pattern was set up, while the other was a more
scientific approach using n-fold cross-validation.

The first test scenario, named "the natural usage scenario", for the CBR mod-
ule was as follows: the user is located at three different places during one day.
Depending on the time-of-day and the user’s location, the user wants to go
to one of three places. The two locations the user is located at are approxi-
mately 2626 metres apart. The user is located at "Ila" at 09:00 and wants to go to
"Gløshaugen". The user is located at "Gløshaugen" at 14:00 and wants to go to
"Dragvoll". At 16:00 the user is located at "Gløshaugen" and wants to go to "Ila".
The trip from "Dragvoll" back to "GlÃ¸shaugen" is omitted. This scenario setup
is illustrated in figure 7.5. The case base for testing was filled by using this sce-
nario as a starting point. Deviations from a uniform case base were then created
by adding random variations in time and geographical locations. To represent
the case where a user, for one or more days, decided to deviate from his or her
usual travel pattern, a "noise" percentage function was added. The noise per-
centage function works by giving each case in the case base a chance at being
replaced with a wrong solution. The chance for this to be replaced depends on
one of the input parameters used in the test. This input parameter was simply
called "noise", and was added to simulate an abnormal daily schedule by a user.
There was a total of three input parameters that were iterated through to cre-
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Scenario 1: Time is 09:
00 and the user wants to 

go to "NTNU"

Scenario 3: 
Time is 16.00 

and user 
wants to go to 

"Ila"

Scenario 2: 
Time is 14:00 

and user 
wants to go to 

"Dragvoll"

2626 m

Figure 7.5: Graphical representation of the test setup

ate the results in this section, namely time, location and noise variations. The
parameters in figure 7.9 are all converted into percentages to make both input
parameters and the results displayable in the same graph. The results were pro-
duced by checking if the right destinations were suggested by the system, for
base scenarios.
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Figure 7.6: Results with different time variations in case set, when using the
"Natural Scenario" setup

Figure 7.7: Results with different noise percentages, when using the "Natural
Scenario" setup

The next test is called a n-fold cross-validation test, had a similar base setup,
where the base scenario consisted of 6 core cases. These scenarios were set up
so that they tested the two key concepts for the CBR system: travelling to dif-
ferent destinations from the same location, only on different times, and travel-
ling to a different location on the same time, but from different locations. 200
different cases were generated with different properties dependant on the re-
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Figure 7.8: Results with different distance variations, when using the "Natural
Scenario" setup

spective tests. These created the basis for the 10-fold cross validation. 10-fold
cross validation uses 90% of the available data to train the case base, and 10 %
to test it with, which is said to be optimal when using n-fold cross validation.
Kohavi (1995) compared several approaches to estimate accuracy in his paper,
A study of cross-validation and bootstrap for accuracy estimation and model selec-
tion. He tested: cross-validation (including regular cross-validation, leave-one-
out cross-validation , stratified cross-validation) and bootstrap (sample with re-
placement ), and recommended stratified 10-fold cross-validation as the best
method, as it tends to provide less biased estimations of the accuracy. The tests
for TaleTUC’s CBR module were performed with 2x10-fold cross validation,
and are shown in figures 7.10, 7.11 and 7.12. The "2x" means that each test was
run twice per new parameter setting. As the entire dataset was replaced be-
tween the two tests, it gave an even more correct system accuracy. The system
settings used for the test can bee seen in Table 7.8.
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Figure 7.9: CBR Result where time, noise and distance variations are combined.
100% GPS Variance: 0.02 (3143 metres), 100% Time Variance: 45 minutes, using
the "Natural Scenario" setup

System setting name Setting value
GEO_ FIELD_ OF_ OPERATION 15000
TIME_ WEIGHT 1
GEO_ WEIGHT 1
N_ CASES_ TO_CONSIDER 10
SCORE_ DECLINE_ RATE 1

Table 7.8: System settings for the CBR module test
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Figure 7.10: Correct guesses with distance variations, when using 2x10-fold
cross validation. Case base includes 200 cases

Figure 7.11: Correct guesses with time variations, when using 2x10-fold cross
validation. Case base includes 200 cases
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Figure 7.12: Correct guesses with noise amount, when using 2x10-fold cross
validation. Case base includes 200 cases
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7.3 The Combined Modules

This section contains the test results from all three of the systems modules com-
bined. In order to test the ASR, BSF and CBR modules together, a CBR case
base was trained to fit the available audio test data. As this audio test data was
used to test the ASR and BSF, it provided a base for testing if the CBR module
could improve the WERs. The audio test data consisted of 100 sound samples.
50 were recorded indoors, and 50 were recorded outdoors, as explained in the
ASR result section (section 7.1.3). A "core case" was then generated for each of
these audio samples. What is referred to as a "core case", is a point in a user’s
daily bus travel schedule. Because it is unnatural to have 100 "core cases" for one
user (a user is distinguished by the device ID as explained earlier), the 100 cases
were devised into 17 sections (where each section can be viewed as a "user’s"
set of "core schedules"). By doing so, each section except the last one contained
six "core cases". The six "core cases" were designed to test both time and place
overlapping cases, as explained in the CBR method section (section 6.4). For
each "core case", ten cases were generated on the basis of the settings in Table
7.9. This gave approximately 60 cases for each case set, and a case base with
1000 cases in total. A case set is a set of cases that belongs to one user.

The test setup used the optimal ASR settings as described in section 7.1.3.
Table 7.10 presents the WER results from four different combinations of the sys-
tem modules. The two last columns represent the WERs when all three of the
system modules were used together (the ASR module, the BSF module and the
CBR module). The first two columns show the WER results from the ASR and
the BSF modules. The first two columns are included to give an easy compar-
ison of the WER results for all the system modules. As can be seen from Table
7.10, combining the CBR module with the ASR and the BSF modules gave a
2% point reduction in the WER in a mixed sound environment. The largest im-
provement in WER was produced when the CBR module with the strong context
setting was applied to the test set recorded outdoors. This yielded an improve-
ment of 18 % points in the WER.
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Settings name Setting value
GEO_ FIELD_ OF_ OPERATION (CBR) 15000
TIME_ WEIGHT (CBR) 1
GEO_ WEIGHT (CBR) 1
N_ CASES_ TO_CONSIDER (CBR) 10
SCORE_ DECLINE_ RATE (CBR) 1
SCORE_ DECAY_ RATE (BSF) 2.0
CONF_ SCORE_ CAP (BSF) 1.0
Geographical variance (CBR) 1500 metres
Time variance (CBR) 30 minutes
Noise chance per case (CBR) 20 %
SpeechClassifier threshold for Wiener filtered training set (ASR) 2
SpeechClassifier threshold for test set (ASR) 5
Acoustic model (ASR) Mixed

Table 7.9: System and test settings for the combined module test

Test set ASR WER ASR with
BSF WER

Combined
modules
WER

Combined
modules
WER with
strong con-
text

Indoors 6 % 0 % 0 % 0 %
Outdoors 26 % 22 % 18 % 4 %
Mixed 10 % 4 % 6 % 0 %

Table 7.10: Comparison between the WER results of the ASR module, the ASR
module with the BSF and the combined modules
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7.4 The TaleTUC Client

The following sections present screenshots and descriptions of the TaleTUC
client. The data traffic and performance are then described.

7.4.1 Screenshots and Descriptions

Figure 7.13 displays the recognition process from TABuss’ perspective. First,
the audio is recorded by pressing a button in the home screen menu. The audio
(either a wav file or a cepstrum file) is then sent to the TaleTUC server. Finally,
an answer is returned to the user, and displayed in an answer screen. The text
in the first screenshot translated to English is: Speak (first line), Press button when
done (second line) and Done (Button text).

Figure 7.14 displays the event when the user has pressed the ASR result text
field. The user is then prompted with a dialog asking for verification, in this
case for ”ila”. If the user chooses ja (yes), TABuss displays route suggestions, as
seen in the figure. If the user chooses nei (no), TABuss performs the operations
described in section 6.6, on verification. If the number of tries exceed the set
limit of two tries, the user is asked to manually type the wanted destination.

Server

Recorded 
audio

ASR 
result

Figure 7.13: TABuss speech input and ASR result
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Figure 7.14: TABuss ASR result and calculated route suggestions

7.4.2 Data Traffic and Performance

This section describes the data traffic and performance of the wav decoder (cep-
strums are computed on the server), and the cepstrum decoder (where cep-
strums are computed on the device). Table 7.11 lists the results from five runs
for each of the solutions, with five bus stop names of different lengths. The runs
were performed with the test devices, where the audio data was transmitted
over a WiFi connection. The data traffic sizes listed do not account for HTTP
headers or other additional data required for transmissions.
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Phrase Wav file size Cepstrum
file size

Wav time
use

Cepstrum
time use

Gløshaugen 42,3 kB 6,8 kB 2,58 sec 4 sec
Einar Tam-
barskjelves
gate

84,5 kB 13,7 kB 3,93 sec 6,85 sec

Ila 46,1 kB 7,4 kB 2,35 sec 3,98 sec
Ilsvika 38,4 kB 6,2 kB 2,72 sec 3,48 sec
Trondheim
sentral-
stasjon

65,3 kB 10,6 kB 3,36 sec 4,81 sec

Table 7.11: Performance comparisons of the wav and cepstrum solutions

As seen from Table 7.11, there is a trade-off between the time use and the
data traffic. The cepstrum solution performes slower than the wav-solution,
but makes up for it by providing approximately six times smaller file sizes for
the tested audio files. Also, to illustrate the size difference between the wav files
and the cepstrum files: the wav recordings used for training the mixed acoustic
model had a combined size of 40,1 MB. The extracted cepstrums of these had a
combined size of 5,7 MB. This means that there will be a significant difference
in the data traffic with regular use.
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7.5 The TaleTUC Client Widget

Figure 7.15 displays the TABuss client widget. The image in the middle shows
the start screen. The image to the left displays the event that occurs when the
icon is pressed, where the user can record audio. The text translated to English
is: Hold to speak (text above mic). The image to the right displays the event that
occurs when the text is pressed, which is to open the TABuss application.

Figure 7.16 displays the event when the user has recorded audio. The audio
file (wav or cepstrum) is then sent to the TaleTUC server (as seen in figure 6.5).
The same as with the TaleTUC client is then seen, where the user is prompted
with a verification dialog. If the user chooses Riktig (correct), TABuss displays
route suggestions, as seen in the figure. If the user chooses Feil (wrong), the
widget performs the operations described in section 6.6, on verification. If the
number of tries exceed the set limit of two tries, the widget opens the TABuss
home screen. From here, the user can manually type in the destination.
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Figure 7.15: Screenshots of the TABuss widget

Figure 7.16: The TABuss widget with calculated route suggestions
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Chapter 8

Discussion

This chapter first discusses the results, before TaleTUC’s research questions and
goals are reviewed. Finally, a conclusion is provided.

8.1 The ASR Module

The achieved WERs indicated that the steps performed to make the ASR more
robust worked. A low WER was achieved when the clean acoustic model was
tested indoors, but this highly increased when test sets containing audio recorded
outdoors were used. The introduction of the mixed acoustic model showed im-
proved results. This was expected, as this model was more diverse.

The introduction of Sphinx-4’s preemphasizer, speechClassifier and Wiener fil-
ter resulted in further improvements of the WER. The threshold tests showed
that the system performed best with a low value set. This meant that a smaller
volume difference was required for delineating the foreground noise from the
background noise. The results from the Wiener filter tests showed significant
lower WERs for all of the three test sets (indoors, outdoors, mixed). This showed
that even though the amount of available training data was limited, the filter
was able to give good estimations. Optimally, an adaptive threshold should be
used for the speechClassifier, to better cope with noise, but this is not an option
in Sphinx-4’s functionalities.

The prototype comparisons of Sphinx-4 and PocketSphinx led to expected re-
sults, regarding the need for free storage space in PocketSphinx. Training with a
larger vocabulary and a more robust acoustic model than in the developed proto-
type, can lead to storage space problems. The only real advantage of the Pock-
etSphinx solution was that it could process speech offline. For the domain in
which TaleTUC is designed to operate, the TABuss client will need to use some
data traffic in queries to MultiBRIS. The focus area for TaleTUC was therefore
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not to eliminate the data traffic, but to minimise it. The solution, to extract cep-
strums, reduced the size of the audio files needed to be sent to the server (see
Table 7.11). The size reductions were large enough for TaleTUC to justify the
extra time consumption of the extraction process.

8.2 The BSF Module

In the first ASR tests where no filters were used, the BSF module optimised
the WERs in all of the tested cases. It also did so in the tests conducted with a
Wiener filter. These results display the strength of the BSF module, where it is
able to map OOV sentences to the correct bus stop names. However, a higher
WER was achieved with the BSF and the test set recorded outdoors, compared
to the BSF test with the same test set, without a Wiener filter (see Table 7.7). This
shows that the BSF does not always give large optimisations, even though all
OOV sentences are mapped to bus stop names, and also that the size of the
optimisations is not fixed.

Though it still needs further testing, the results showed that the BSF pro-
vided improved results for the ASR module. For all of the performed tests it
was able to replace the OOV words. Combined with the ASR module, it re-
duced the WERs for all of the tests, compared to the ASR module alone.

8.3 The CBR Module

As can be seen from the CBR results (see section 7.2), there were three parame-
ters tested for their impact on the accuracy of the CBR system. The three param-
eters were: Time Variance, Distance Variance and Noise. When looking at the CBR
results, it is clear that a large amount of noise gave the least accurate CBR solu-
tions. From the practical test (”Natural Scenario”) where only the "core cases"
were tested, the system did not crumble until there was over 50% chance that
each case was a faulty case. This indicates that the system can hold up against
noise around a user’s "core cases". A typical core schedule for a user would for
instance be: 06:00 at home and wants to go to work, 16:00 at work and wants
to go home and 18:00 at home and wants to go to spear fishing practice. From
the 2x10-fold cross validation test, it can seem as this was not the case, since
the percent of correct guesses initially seems to drop linear with the amount of
noise. What one needs to consider here is that cross validation picks 10% of the
test set and tests this against the remaining 90%. If one, or more, of the cases
in the 10% are cases where the destination has been altered to a faulty destina-
tion, they will be counted as a failed tests even if the CBR system guesses the



i
i

“Disposisjon” — 2012/6/6 — 12:19 — page 91 — #109 i
i

i
i

i
i

Discussion 91

"correct" answers for them.
The Time Variance and Distance Variance parameters seemed to have no im-

pact on the system until they made cases overlap in either time or distance.
For instance, both in the 2x10-fold cross validation test and the "Natural Sce-
nario" test, the score fell below 100% at the point where the distance variances
exceeded about 2600 metres. This was the distance between the closest core
cases.

The tests indicated that the CBR-module works as intended. It works well
with variances in the user’s schedule, variations in locations and variations in
time.

8.4 The Combined Modules

It was shown in section 7.3 that combining the three modules improved the
WERs for the test sets. It was also shown that the use of a strong context reduced
the WER of one of the test sets with as much as 18 %. This happened as the
computation was more affected by context data. When looking at these results,
there are two important facts. The vocabulary is very domain specific. There
is a relatively small set of possible sentences, which is exploited by the BSF to
improve the result. The other fact is that the strong context depends heavily on
the CBR module to produce the correct result. For the CBR module to produce a
good result, a set of cases has to exist for the user, which means that the system
depends on regular use. The first time a new user accesses the system this will
not be the case. An extension could be to client-side ask for the user’s daily bus
travel schedule, the fist time the system is used.

The results achieved with the combined modules, with and without a strong
context, indicate that context-awareness through CBR is a suitable technology to
combine with ASR. The use of a strong context lead to the best results, but as
mentioned earlier, a case base is necessary. A dynamic switch could be im-
plemented for future use, where the size of the trained case base determines
whether or not a strong context is used. The combined modules without a strong
context still provided improved results, and could be used until a sufficient case
base is present.

8.5 The Training Application

The training application fulfilled the important purpose of collecting training
data from the environment the TaleTUC client is designed to operate in. Volun-
teers that recorded audio had two choices: either use the application on one of
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the project’s devices, or use it on their own devices. By doing so, less equipment
was necessary, and the recording could take place anywhere. Since the audio
files were sent to a server, there were minimal storage requirements. The use
of a server also helped in the structuring of files, as the files were automatically
fit into a hierarchy. The disadvantage with this approach was the unreliabil-
ity of the network connection, when moving between WiFi and 3G. This led to
incidents where it was necessary to re-record several of the bus stop names.

8.6 The TaleTUC Client and Client Widget

The TaleTUC client and the TaleTUC client widget illustrate the usage of ASR
in a bus route information domain, where Android has been used as the target
platform. The data traffic was reduced with the client-side cepstrum compu-
tations, as discussed in section 8.1. The implementation of this functionality
was greatly simplified with the use of the Sphinx-4 framework. The necessary
framework components are portable to the Android platform through Java, and
were directly implemented.

The challenge on user frustration was described in section 2.5.3. Both the
TaleTUC client and the TaleTUC client widget offer user verification of the ASR
result. Whether users find this beneficial, or just a waste of time, have to be
tested. To verify the ASR result requires additional user interaction, which
might not be desirable if one is occupied with something else. On the other
hand, unneccesary data traffic and the time use of MultiBRIS queries with the
wrong ASR result, are avoided. For the time being, because of the time use of
MultiBRIS, user verification is seen as an important measure to minimise the
user frustration.

The other approach to minimise the user frustration, was to only allow two
ASR attempts (as described in section 7.4.1). This approach will also need test-
ing to uncover areas that need improvement, as for instance the number of tries
a user should get. But is for the time being also seen as important.



i
i

“Disposisjon” — 2012/6/6 — 12:19 — page 93 — #111 i
i

i
i

i
i

Discussion 93

8.7 Research Questions and Goals

The following sections list the research questions and goals, and review their
fulfillment.

8.7.1 Research Question 1

Which ASR technologies are well suited for Android devices and the task at hand? The
performed research identified several commercial and non-commercial ASR tech-
nologies. Each of these were evaluated on whether or not they were suitable
for TaleTUC, and suitable for Android devices. The best candidate found was
Sphinx-4, which became the chosen ASR engine for TaleTUC.

8.7.2 Research Question 2

Where is it most desirable to do the different parts of the ASR? On the device or on a
server? Given the researched technologies and the space requirements of client-
side ASR, it was most desirable to perform the ASR on a server. Client-side
extraction of cepstrums was also implemented, which reduced the data traffic
requirements.

8.7.3 Research Question 3

Can context-awareness through CBR optimise the performance of an ASR system?
WER improvements were achieved for all of the test sets when context-awareness
through CBR were combined with ASR.

8.7.4 Goal 1

Develop a prototype system based on the results from research question 1 and 2. The
developed prototype is based on the technology result from research question
1, which was Sphinx-4. From research question 2, a client-server architecture
was used. Cepstrum extraction of the recorded speech was also implemented
on the test devices, and runs showed that this led to reduced data traffic.

The prototype is implemented to recognise 50 bus stop names in Trondheim.
The lowest achieved WERs with the use of a Wiener filter and the BSF were 22
% for the test set recorded outdoors, 0 % for the test set recorded indoors and 4
% for the mixed test set (recorded both indoors and outdoors). It has a modular
design, and future expansions of the vocabulary or adaptation to other domains
is possible without having to make any architectural changes.
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8.7.5 Goal 2

Develop modules for context-awareness based on research question 3, and integrate
them with the prototype. The BSF and CBR modules were created. Tests were
conducted with the ASR module combined with the BSF module, and the ASR
module combined with both the BSF and CBR modules. This yielded good
results, as described in the Result section (section 7.1).

8.7.6 Goal 3

Integrate the prototype with existing parts of the FUIROS-project. TABuss now op-
erates as a TaleTUC client. TABuss’ main functionality can use the ASR result
as input for querying route suggestions through MultiBRIS.

A widget has also been created, which originally was not within this goal’s
scope. This widget offers quicker access to the ASR functionality together with
TABuss’ main functionality.

8.8 Conclusion

We are satisfied with the development process, including the learning of new
theory and technologies. There were no major problems during the develop-
ment, and the performed research created the foundation for a functional pro-
totype.

The acoustic model in the ASR module should both be trained on more speak-
ers, and trained on more bus stop names. The implemented Wiener filter would
also benefit from this, as it would improve the estimations of clean speech.
However, it was not easy within the development time frame to get many
participants to record audio. Because of the prototype’s modular design, ex-
panding the ASR module’s dictionary or adding more training data can easily
be done, if enough people are available. This also applies if the system is to
be adapted towards another domain than bus route information. The Java pro-
gram developed to automate the steps for creating the language model only needs
an updated text file containing the added entries, to create a new language model.
The same is for the building of the acoustic model. Given an updated dictionary
and recorded utterances, the program runs the necessary scripts, and creates an
acoustic model.

Another advantage that comes with the modularity is that future TaleTUC
clients can use the same server functionalities. This is the benefit of a client-
server architecture. Such clients can be based on any operating system, as long
as audio can be recorded and sent over HTTP.
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There was not much focus on the user interface for the TaleTUC client. To
use the ASR functionality one has to access one of the TABuss home screen
menu options. We are however satisfied with the client widget. In our opinion,
the widget increases the chances that the ASR functionality will be used, be-
cause it is easy to access from the home screen. Its design is created with simple
access in mind, and an optimal user interface in the client could be similar to
this.

// Ha med noe om cbr, evt combined
Section 2.6.2 describes the CU-Move and the CU Communicator. It was men-

tioned that the results from CU-Move’s use of context-awareness could be com-
pared to TaleTUC’s use. The CU-Move system achieved 3.2 % WER for digits,
in a noisy environment. The most comparable test set used in TaleTUC is the
set that contains audio recorded outdoors, where runs showed a WER of 4 %,
with the use of a strong context. However, it is optimistic to assume that Tale-
TUC in real-life provides only a 0.8 % higher WER than CU-Move. CU-Move
is more robust, and used a training set containing 4000 utterances, and a test
set containing 500 utterances. In addition, it was designed for in-vehicle ASR,
which means that the two systems are not tested in the same conditions. Still,
TaleTUC’s results show that the use of context-awareness has been successful. As
CU-Move also achieved good results, it is reasonable to conclude that there are
multiple ways to use context-awareness to optimise ASR.

Let’s go was another related system. Raux et al. (2005) achieved a WER of 68
%, which is substantially higher than in TaleTUC. One of the main reasons for
the high WER is errors related to the structuring of senteces. Despite the fact
that Let’s go uses a larger vocabuarly, which gives more error sources, we claim
that the TaleTUC approach provides better results. First of all, TaleTUC does not
use a calling interface, and can utilise the smartphone’s built-in sensors such as
GPS. The client only requires one input, which avoids the wrong structuring of
sentences. Secondly, TaleTUC uses context data through CBR to optimise the
process, and to avoid OOV words. And because TABuss is used as a TaleTUC
client, the user has other options for getting route suggestions, if the ASR cannot
provide the correct ones. This, and actions for handling failed recognitions,
were designed to cope with the challenge identified by Raux et al. (2005), on
user frustration.

The goals for this project were to research ASR for mobile devices, and create
a prototype that combines ASR with context-awareness through CBR. The proto-
type showed successful results, and all of the goals were fulfilled. TaleTUC can
also be viewed as a foundation for future work, as there still is work that needs
to be done. Typical next steps, which are further described in chapter 9, are
to perform user testing, expand the vocabulary with more bus stop names and



i
i

“Disposisjon” — 2012/6/6 — 12:19 — page 96 — #114 i
i

i
i

i
i

96 Conclusion

extend onto other domains than bus route information.
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Future Work

This chapter identifies the future work for TaleTUC, and the future work for
FUIROS and the FUIROS related technologies.

9.1 TaleTUC

First of all, TaleTUC and the TaleTUC client should be user tested. TABuss
(Marcussen and Eliassen, 2011) received feedback that indicated that it suited
the needs of bus travellers. Since TABuss as a TaleTUC client uses the exist-
ing route suggestion functionalities, it would be interesting to get updated user
feedback. TaleTUC should also be tested and compared against the existing
Buster (Hartvigsen et al., 2007) system. Performed tests could give answers
to whether the users prefer ASR with complete sentences, as in Buster, or the
setup that TaleTUC and the TaleTUC client use. Testing of the performance of
TaleTUC’s Sphinx-4 implementation could also be done, by creating prototypes
based on the technologies that were not chosen. Models could be created in
HTK, and both HTK and Julius decoders could be used to test the accuracy.

As mentioned in section 8.8, TaleTUC’s acoustic model should be trained on
more speakers (and dialects) and bus stop names. This is essential if a TaleTUC
client such as TABuss is to be released with ASR as a functionality. An inter-
esting idea is to let the users each have their own acoustic model residing on the
server. If the ASR module, the BSF module and the CBR module should fail
on a spoken utterance, this audio could be used to train the acoustic model for
a user provided bus stop name. In this way, over time, each user would have
an adapted acoustic model. The challenge is space requirements. To let each user
have his or her own acoustic model will naturally occupy more space than having
only one for all, and the space requirements would increase with the number of
users.
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The latest acoustic model in TaleTUC is trained on ten speakers. Each of the
training sets contain 50 recordings (one for each bus stop name), where each
recording has a length of approximately two seconds. This means that each
person recorded 100 seconds of audio for a training set. To train TaleTUC on all
of the bus stop names in the Trondheim area, which is approximately 2700, a
training set would contain 5400 seconds of audio, or 90 minutes. These calcula-
tions do not account for time spent starting the training application, navigating
the training application or any erroneous recordings. How much these factors
affect the total time use is individual, but the actual time spent for the process of
creating a training set is guaranteed to be higher than just the total length of the
recordings. It is important to reduce this additional time use, as it can effect the
participation of volunteers for creating training sets. A re-design of the training
application may be a solution, or to re-think the training process as a whole.

The Java program that automates the building steps for the language model
and the acoustic model should be designed to support the Windows operating
system. This can either be done through implementing an operating system
detector, or by re-designing the programs entirely.

The existing prototype should be made more robust. This project has in-
vestigated different built-in Sphinx-4 approaches for robust ASR, but other ap-
proaches need to be researched. This can be different noise cancelling algo-
rithms or filters. Sphinx-4’s XML configuration is plug-in based, such that al-
gorithms or filters can be integrated into a module, and plugged into the con-
figration front-end. An example is to develop a VAD module with an adaptive
threshold (Jiang et al., 2010), which could replace Sphinx-4’s speechClassifier.

To further reduce the data traffic for the TaleTUC client, different codecs
could be investigated. There are a number of alternatives available, where
Speex1 and Ogg Vorbis2 are two popular ones. However, because the data traffic
already has been heavily reduced caused by the extraction of cepstrums, the use
of compression functionalities have to keep the run time in mind. A compres-
sion algorithm that requires as little as a second of computation time, should
provide a great reduction of audio file sizes if it is to be considered. In addition,
if a lossy compression algorithm is used, information is lost.

The lack of effort put into the user interface of the TaleTUC client was men-
tioned in section 8.8. Future work could start with the user interface in the
TaleTUC client widget as a foundation, and conduct user tests with this. An
intuitive user interface is crucial for the user experience, and can actually be a
contributing factor to whether the functionality will be used or not.

Other work includes to develop TaleTUC clients based on other technolo-

1http://www.speex.org/
2http://www.vorbis.com/

http://www.speex.org/
http://www.vorbis.com/
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gies than Android, to demonstrate TaleTUC’s modularity. An example is to
start with the hybrid MultiBRIS client, which is developed in JavaScript3. This
client provides the same functionalities as TABuss, and for it to operate as a
TaleTUC client would only require the implementation of methods for record-
ing and sending audio.

A possibility that concerns the entire TaleTUC system (including Engell (2012)’s
work), is route guidance, similar to the TravelMan system (Turunen et al., 2007).
The application of ASR for route guidance has also been researched by Ko-
matani et al. (2003), who developed a dialogue system, tested in the city of Ky-
oto. A route guidance functionality in TaleTUC would be beneficial for tourists
and people not familiar with the different places in Trondheim. A basic imple-
mentation for the TABuss client is to use speech synthesis for route suggestions.
The provided suggestions already contain all of the needed information, and the
integration of speech synthesis is only a matter of fitting this information into
sentences.

In relation to CBR there are many improvements that could be explored. One
of these is to make the SQL queries more efficient by adding a max range to the
queries. Another improvement could be to implement a functionality that lets
the user reset his or her CBR case base. This could be handy, say if one moves,
or changes workplace. Another solution to this would be to give older cases
less credibility. In this way, older cases would "fade out" of the system over
time. This could also help to prune the case database. If a case has "all faded
out" in the way that it does no longer contribute to a solutions’ score, it could
be removed from the database. This would help the case database to maintain
a small size, and by that maintaining short query times.

3http://www.w3schools.com/js/

http://www.w3schools.com/js/
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9.2 FUIROS and FUIROS Related Technologies

The following sections describe the future work for FUIROS in general, TABuss,
MultiBRIS and BusTUC.

9.2.1 Geographical Expansion of FUIROS and Standards

An idea for future work for FUIROS, is to add support for other cities in Nor-
way, and use a single system to provide public transportation information for
the entire country. Then, a single client application could access route informa-
tion based on the mobile device’s location.

A challenge for an effective expansion is the need for standards. It would aid
the development if all of the bus agencies in Norway used the same standards
for sharing routes and real-time data. Norway’s largest bus agency, Trafikanten
AS 4, already uses such a standard. This standard, which is called SIRI5, is
used for the distribution of real-time data. It is an XML protocol that allows
distributed computers to exchange real-time information about public transport
services and vehicles.

Through a JSON-API Trafikanten AS has made the StopMonitoring (SM) part
of SIRI available for public use. The Stop Monitoring section is described by the
SIRI standard as follows:

The Stop Services (Stop Timetable and Stop Monitoring) The Stop
Timetable (ST) and Stop Monitoring services (SM) provide stop-centric
information about current and forthcoming vehicle arrivals and departures
at a nominated stop or Monitoring Point, typically for departures within
the next 20-60 minutes for display to the public. The SM service is suited
in particular for providing departure boards on all forms of device.

SIRI is already in use by Trafikanten, and therefore it represents a good example
of what could be a national standard for sharing real-time public transport in-
formation. For the notion of a single system, this could be the first step towards
achievement.

However, the biggest challenge for such standards is probably not techni-
cal, but rather political and financial. An approach that avoids the distributed
standardisation challenge could be constructed by absorbing the existing trans-
portation agency systems one-by-one. This system would effectually become

4www.ruter.no
5http://www.kizoom.com/standards/siri/

www.ruter.no
http://www.kizoom.com/standards/siri/
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the mediation layer that creates the standard, seen from an application devel-
oper’s point-of-view. This would also increase the amount of work needed to
expand the system substantially, compared to expanding a system based on
standards. The advantage to this approach would be that such a system could
establish a position of power in relation to public transport data sharing. It is
reasonable to believe that a system that has a standard way to communicate
route data for an entire country, would become vastly popular in the develop-
ment community. By providing the "back-end" to "front-end" mediation layer
for the majority of available public transportation client-applications available,
one would be in a position of power. This is an advantage that could be used to
encourage the use of standards such as SIRI, among the public transportation
agencies.

9.2.2 TABuss

The following sections first identify possibilities with the new smartphone tech-
nologies. Future work involving context-awareness is then described. Finally,
suggestions for future extensions to TABuss are provided.

New Smartphone technologies

Based on the experiences with widget development for the TaleTUC client wid-
get, a widget could be created for TABuss. This widget could provide infor-
mation such as real-time passings of buses for the closest bus stop to the user’s
location. Touch events could trigger the widget itself to provide som informa-
tion, or trigger the start-up of TABuss.

Another interesting field is Near Field Communication (NFC) (Ylinen et al.,
2009), and the use of this technology in mobile applications (Sánchez et al.,
2012). A usage in TABuss could be to detect Radio Frequency Identification
(RFID) (Ngai et al., 2008) tags that have been integrated into in every bus stop.
When the user is close enough to a bus stop, the application could trigger the
display of the next passing buses. RFID tags integrated into bus stops could
also be used for speech synthesis purposes. Blind people, or others with bad
eyesight, could benefit from a functionality where the system reads out loud
the next passing buses, when they approach a bus stop.

A new implementation that involves AtB, is the purchase of bus tickets. It
is possible to buy tickets through a service provided by AtB, by sending a text
message to 2027 (Norwegian number), and specifying the type of ticket (adult,
child, military, etc). This sending of a text message could be triggered by the
user approaching the bus stop. It should be integrated into already existing
functionalities, to avoid unnecessary sending of text messages. An example
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is when the user has performed a query to MultiBRIS, and has received route
suggestions. The user could then select the suggestion he or she wants to use,
an action that alerts the RFID reader to start the SMS service when the user
approaches the selected departure bus stop.

Context-Awareness

An extension involving context-awareness for TABuss is to use more sensors than
only the location sensor, which has been done by Raento et al. (2005). Their
system uses four sensors: location, user interaction, communication behaviour
and physical environment. This means that besides from location information,
their system monitors: what actions the user performs, calls and text messages
and surrounding devices.

For TABuss, this sensor information could be used to introduce context-awareness
to the user interface. The age differences between potential target users is large,
and an adaptive user interface could be a solution. The user interface could
through sensors track the user’s actions, register some trends and then adjust
visibility and availability accordingly. An example is to track the usage of the
ASR module. If it is an often used feature, access to it could be made quicker.

The tracking of user trends could also be used to perfect route suggestions.
People of different ages have different levels of mobility, and have different
walking speeds. This has been addressed by Vieira et al. (2011), in their pro-
posed system UbiBus. UbiBus considers different people’s and vehicle’s mobil-
ity, and other factors than can affect a bus departure. An interesting idea is for
AtB to contribute to such functionalities in order to improve route suggestions.
Buses have installed cameras, and could be used to monitor how crowded a bus
is. This could prove beneficial for handicapped people, or people with small
children, who need seats or at least clear floor area.

Another suggestion is to use context through calendar information, by moni-
toring scheduled appointments. When an appointment is approaching, the user
could be prompted with a query suggestion. Khalil and Connelly (2005) stated
that it is an inevitable fact that people’s actions not always mirror their inten-
tions. Even though an appointment has been scheduled, the user is not guar-
anteed to attend. TABuss queries should therefore not be run automatically in
this case, only a query suggestion should be prompted. Automatic query runs
could cause unnecessary data traffic when the user has chosen not to attend a
scheduled appointment, or has chosen another form of transportation.

A challenge with introducing context-aware extensions is privacy. If such in-
formation is to be stored on a server, a secure login mechanism is necessary.
TaleTUC uses the device IDs of the smartphones to separate users, which is a
sufficient solution when non-sensitive data is stored. To introduce the factors
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proposed by Raento et al. (2005) will either require that these factors are stored
on the device, or that a secure storage functionality is created server-side. With
server-side storage and a login mechanism, it is important to minimise the user
requirements. Users may reject an application that requires too many involve-
ments, when they want to get a quick route suggestion.

Future Extensions of TABuss

A future extension could be to integrate TABuss into a tourist application. The
Trondheim Guide6 is an intelligent travel guide which already provides some
bus route information. This information is limited, and no information on ar-
rival/departure times was found during testing. Another alternative is City
Explorer7, which is a framework for city exploration. In relation to TaleTUC,
tourist information could be a domain to extend the ASR functionality to cover.
Then, TABuss as a TaleTUC client with integrated City Explorer functionalites
could use this.

9.2.3 MultiBRIS

Flinn et al. (2002) developed a system that dynamically decides whether to
perform server-side or client-side computations. These decisions are based on
monitored resource usage both on the server and the client. This functionality
could be implemented for MultiBRIS, and prevent delays when the MultiBRIS
server is busy, which can be caused by a high traffic load. In those situations,
the clients should do the necessary operations instead of relying on MultiBRIS.
Clients such as TABuss must have functionality that calculates route sugges-
tions, and allow for queries to be sent to BusTUC and AtB’s real-time system.
This puts extra computational pressure on the client, but facilitates a solution
that can provide route suggestions with and without the involvement of Multi-
BRIS.

Flinn et al. (2002) also describes the idea to let the client learn what is best
practise in the different situations, when taking into account factors such as
low battery power. The client could monitor the resource usage for performed
operations over time, and learn which tasks to compute client-side and which to
compute server-side. Experiences gained after each operation could be stored
as cases, and a CBR functionality could be used for retrievement.

6www.trondheim.no/app
7http://www.sintef.no/Projectweb/UbiCompForAll/Results/Software/

City-Explorer/

www.trondheim.no/app
http://www.sintef.no/Projectweb/UbiCompForAll/Results/Software/City-Explorer/
http://www.sintef.no/Projectweb/UbiCompForAll/Results/Software/City-Explorer/
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9.2.4 BusTUC

Future work on BusTUC includes the research of other intelligent route infor-
mation solutions. Because BusTUC is the only available candidate in Trond-
heim, there are no systems to compare it with. One specific task would be to
do research on similar systems found outside of Trondheim, and develop com-
parable prototypes. If research shows that BusTUC is the best solution, a goal
could be to establish it as a standard for bus route information in Norway. This
standard, together with the SIRI standard, could then be two of the building
blocks of a common standard, for the exchange of transportation information.

Another option is to expand BusTUC and the concept of a natural language
route information system outside of Trondheim, to cities of different sizes and
number of inhabitants.
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Appendix

This appendix contains information on how to do future development of Tale-
TUC.

How To Get Started With Future Development of Tale-
TUC

The following sections first describe the necessary programs. Instructions are
then given on how to test the existing functionalities, and how to build and
train models. Finally, information on the TABuss source code, and the TaleTUC
server are provided.

Install Sphinx-4, PocketSphinx and Additional Tools

Sphinx-4, PocketSphinx and all of the additional tools are available from the
Sphinx website http://cmusphinx.sourceforge.net/. This site also provides
the necessary tutorials to get started with development. This includes tutorials
on building language models and acoustic models.

The acoustic model tutorial’s first step is to create a certain file structure. The
file structure used in TaleTUC is found in the TestTrain folder, where the two
relevant top-level folders are Acoustic_model and Language_model.

Test the Existing ASR Functionality

Testing of the latest models can be done in the Lattice project. The Lattice project
is a NetBeans1 project that can be used to run ASR tests locally on a computer. It
does not use the CBR module, but tests can be done with and without the BSF.
It contains five classes:

1www.netbeans.org

http://cmusphinx.sourceforge.net/
www.netbeans.org
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LatticeMFCC.java is used for ASR on a single cepstrum file. The cepstrum of a
wav file is extracted and saved to a separate file, before it is used as input
to the recogniser.

SpeechTestMFCC.java is used for running ASR tests with a test set. This class
contains methods for running the tests with and without the BSF and find-
ing the WER. It uses cepstrum files as input, which are extracted from a
folder containing the wav files to test.

MFCCExtractor.java is used for the extraction of cepstrums from wav files. It
is used in both LatticeMFCC.java and SpeechTestMFCC.java.

LatticeDemo.java is used for ASR on a single wav file, without cepstrum ex-
traction.

SpeechTestWav.java is used for running ASR tests with a test set. This class
contains methods for running the tests with and without the BSF and find-
ing the WER. Its input is a folder containing the wav files to test.

The classes used for ASR on wav files (LatticeDemo.java and SpeechTest-
Wav.java) will need some work if they are to be used, as they are not up to
date with the classes used for ASR on cepstrum files. TaleTUC does not use
any source code from these at the moment, and work on them stopped after the
data traffic improvement with cepstrum extraction was discovered (see section
7.4.2).

The Lattice project also contains three Sphinx-4 configuration files. These files
specify the front-end and other components, and the locations of the dictionary,
language model and acoustic model.

config.xml is used in LatticeDemo.java and SpeechTestWav.java, for the decod-
ing of wav files.

config3.xml is used in LatticeMFCC.java and SpeechTestMFCC.java, for the de-
coding of cepstrum files.

configMFCC.xml is used in MFCCExtractor.java, for the extraction of cepstrums.

Other files in the source package:

corpus.cd_cont_25_wiener_2 contains the latest TaleTUC acoustic model, cre-
ated in SphinxTrain. The configration files contain a path to this folder.

Clean contains test files recorded indoors.

Traffic contains test files recorded outdoors.
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Mixed contains test files recorded both indoors and outdoors.

MFCCComp contains the cepstrum files converted during runs of the MFC-
CExtractor.java class.

An illustration of the process of running the LatticeMFCC.java class is shown
in figure 10.1, where the numbers indicate the order of the performed opera-
tions.

LatticeMFCC.java

Test set

Acoustic 
model

config3.
xml

MFCCComp

Language 
model

Dictionary 2. Wav file from 
test set

3. Extract cepstrum from wav file

4. Save to file in 
folder

5. Input 
cepstrum file

1. Path to wav 
file

5. Input 
models

Recognised 
utterance

MFCCExtractor.
java

configMFCC.xml

6. Run ASR

Figure 10.1: LatticeMFCC.java flow chart

The Existing Models

Before one starts to expand the number of speakers or number of bus stop
names in TaleTUC’s vocabulary, it can be useful to view the latest language model
and acoustic model setup.

The necessary acoustic model files are located in /TestTrain/Acoustic_Model/.
This folder contains a folder called etc, which includes the setup files, and a
folder called wav, which contains the audio files. The content of etc is listed
below.

corpus.dic contains the bus stop names together with phonetic transcriptions.
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corpus.lm.DMP contains the language model.

corpus.phone contains the phones used in the phonetic transcriptions.

corpus.filler contains the filler phones.

corpus_test.fileids contains the file IDs for all of the test files in the wav folder.

corpus_test.transcription contains the transcription of all of the test files in the
wav folder.

corpus_train.fileids contains the file IDs for all of the training files in the wav
folder.

corpus_train.transcription contains the transcription of all of the training files
in the wav folder.

The additional files located in the etc folder were generated when the acoustic
model was built.

To add more speakers to the acoustic model, one first has to record the audio.
When this is done, the audio files have to be put in the wav folder, and the
transcription files have to be updated. Which files to update depend on whether
the recorded set is to be used for training or testing. The files containing the
file IDs also have to be updated to match the number of files in the updated
transcriptions.

To add more bus stop names, the first step is to create a new language model.
TaleTUC’s model is located in /TestTrain/Language_Model/, and is created with
the NetBeans project SphinxTrainTools (10). The input file needed is called cor-
pus.txt, which contains the bus stop names to train the language model on. After
this list has been updated with the new bus stop names, the SphinxTrainTools
project can be run. The next step after the language model has been built is to add
more speakers, as described earlier.

Using the Created Java Program for Training Models

The language model and the acoustic model have been created in the NetBeans
project SphinxTrainTools. The relevant classes and files are:

BuildAndTrain.java contains methods for building the language model, the acous-
tic model and decoding the acoustic model.

Tools.java contains methods for running the Sphinx training scripts.
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WienerConverter.java contains methods for extracting Wiener filtered cepstrums
for the training and test data. These files can be used instead of the ones
created with Sphinx-4’s built-in cepstrum extraction functionality.

config.xml is the config file used by WienerConverter.java.

FileIDAndTranscriptMaker.java is used for creating transcription files based
on a text corpus, according to Sphinx-4’s rules. To create these transcrip-
tion files is the first step in creating an acoustic model in Sphinx-4. They
contain

Recording Audio with the Training Application

The training application is an Android Eclipse project that can be mounted
through the Eclipse import feature. The audio files recorded with the train-
ing application are stored on a server. In the development of TaleTUC, these
files were manually copied into the TestTrain folder, and organised according to
Sphinx’ rules. The acoustic model building Java program (BuildAndTrain.java)
maintains a path to this folder, in which it looks for training and test data.

TABuss Git Repository

The TABuss source code can be viewed and pulled from the Git2 repository at:
https://github.com/saetre/TABuss. This code also contains the modifications
made to TABuss for it to operate as a TaleTUC client. Git repositories can be
accessed through the Egit3, a Git plug-in for the Eclipse IDE4.

The Server

When the language model and the acoustic model are ready for use in TaleTUC,
they can be uploaded to the server. Files are uploaded to the URL user@vm-6114.
idi.ntnu.no, with FTP clients such as FileZilla5, or through SSH file transfers.
The language model files are located in the /upFiles/Div/etc folder, and the acoustic
model is located in the /upFiles/Div/model_parameters folder. The /upFiles folder
also contains the recordings made with the Android Training application, in
addition to the file bussStop.dic, which is used by the BSF module.

2www.github.com
3http://www.eclipse.org/egit/
4http://www.eclipse.org/
5www.filezilla-project.org/

https://github.com/saetre/TABuss
user@vm-6114.idi.ntnu.no
user@vm-6114.idi.ntnu.no
http://www.eclipse.org/
www.filezilla-project.org/


i
i

“Disposisjon” — 2012/6/6 — 12:19 — page 122 — #140 i
i

i
i

i
i

122

The server source code is found in the SpeechServer NetBeans project. This
project contains the Java Servlets and business logic used. The source code is
organised into the following packages:

CBR contains classes for the CBR module.

DTO contains the data transfer objects.

POJO contains the POJOs and Hibernate6 classes.

core contains the ASR classes and configuration files.

scorer contains the BSF classes for scoring lattice sentences.

servlet contains the Java Servlets.

tools contains the BSF main class, tools and test classes.

To upload a new Web Application Archive (WAR)7 file, the SpeechServer
project must first be built. The built WAR file is then be uploaded to the /we-
bapps folder.

6http://www.hibernate.org/
7http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/WCC3.html

http://www.hibernate.org/
http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/WCC3.html
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