
An Intelligent Smartphone Application

1 of 58

Abstract
BusTUC is a natural language bus route expert system developed at IDI NTNU and

provides the inhabitants of Trondheim with route suggestions every day. The Android

application described in this paper can be considered an extension of BusTUC with real-time

data and GPS. By having BusTUC suggest multiple travel routes given the users location

and adjacent bus stops, the application is able to narrow those travel routes down to the

„best‟ ones.

Contents
Abstract ... 1

1. Introduction ... 3

2. Similar systems ... 5

3. Underlying Technologies ... 8

3.1 Hardware and OS ... 8

3.2 Deriving location .. 8

3.3 BusTUC.. 9

3.5 Real-time data .. 10

4. Methods .. 11

4.1 GPS ... 12

4.1.1 Geographic coordinate system ... 12

4.1.2 Provider .. 13

4.2 Bus Stops ... 14

4.3 HTTP.. 16

4.3.1 POST .. 16

4.3.2 Real-time ... 19

4.5 Extending BusTUC .. 20

4.6 Distance between two locations ... 21

4.7 Ranking ... 21

5. Results and discussion .. 22

5.2 Retrieving coordinates ... 22

5.2.1 Bus stops .. 22

5.2.2 Device location .. 22

5.3 Integrating BusTUC ... 23

5.4 Getting real-time data .. 24

5.5 Rank .. 25

An Intelligent Smartphone Application

2 of 58

5.6 Examples .. 25

5.6.1 Location 1 .. 26

5.6.2 Location 2 .. 32

5.6.3 Location 3 .. 36

6. Conclusion .. 37

7. Further research and development ... 38

7.1 Graphics ... 38

7.2 Testing .. 41

7.3 Evaluation .. 42

7.4 Extending functionality ... 42

7.5 Removing „stupid‟ suggestions ... 42

8. Implementation ... 43

8.1 Application... 43

8.1.1 Controller ... 43

8.1.2 Browser ... 44

8.1.3 Formatter .. 44

8.1.4 Calculator ... 44

8.1.5 GUI ... 45

9. Additional notes... 45

9.1 Real-time communication ... 45

9.2 Android .. 47

9.2.1 Activity .. 47

9.3 GUI ... 49

9.4 Hardware and OS ... 51

9.4.1 Smartphones .. 51

9.4.2 Android OS .. 52

9.5 Global Positioning System .. 54

9.5.1 General description .. 54

9.5.2 Cell phones and GPS ... 55

10. References .. 56

11. Figures ... 56

An Intelligent Smartphone Application

3 of 58

1. Introduction
This report describes the motivation, method and technologies needed to create an

application which intelligently calculates the best possible travel route for bus users in

Trondheim. By using Global Positioning System (GPS) coordinates, real-time data and a

natural language bus route expert system the application is able to give the user information

describing the fastest way to get from point a to point b.

The primary motivation behind this research is to combine numbers from many different

sources to produce the most reliable, accurate and intelligent route suggestion system up to

date for Android. The problem with information about bus routes is not that it is hard to

find, but that it is spread over multiple system. Consider yourself located in an area which

you are not familiar with. You do not know where the closest bus stop is, what the route

times are or even which bus you should take. A simple query using this application would

solve this predicament.

This report will also contain a description of the underlying technologies located in

smartphones and how to utilize these technologies in order to provide a system with all the

required functionality.

The components involved in this system are primarily the smartphone, BusTUC and AtB‟s

real-time system.

In a world where users require instant information with minimal effort, high expectations are

set for information value and correctness, usability and stability. These requirements are

especially important because people will trust the information given and plan their route

accordingly.

The core requirements in this project are:

1. Find the user‟s position by utilizing GPS.

2. Use this position to find the relevant bus stops surrounding the user.

3. Use the relevant bus stops and the destination provided by the user to find different route

suggestions.

4. Acquire the actual arrival times with the use of real-time systems.

5. Rank the suggestions and present this information in natural language and with a graphical

representation of the suggested routes.

 This application is also created as generic as possible. It can be used in any another city as

long as it has coordinates for the bus stops and BusTUC to communicate with. It can be

viewed as an addition to BusTUC.

An Intelligent Smartphone Application

4 of 58

Below is an abstract diagram describing the communication flow.

Figure 1.1 Communication flow in the application

 As depicted in Figure 1.1, the application will send a query containing the destination and the

relevant bus stops to BusTUC. BusTUC will generate multiple bus route suggestions which it

will return to the application. The application will examine these suggestions (and probably

remove some of them) and use the bus stops where the travel starts to acquire arrival times

from the real-time system.

 After receiving the actual arrival times, the suggestions will be ranked and presented to the

user.

 The application has been under development since autumn 2010 as a project given by Tore

Amble, associate professor at IDI NTNU. While the primary goal was to develop the actual

application, a lot of work went in to discussing different methods, solutions and results. This

report will hopefully provide some insight in this discussion as well as describing the final

solution (final in this context does not mean commercially ready). The report will also point

out the limitations and disadvantages of the application as well as possible solutions.

This report is originally meant for professors and students at NTNU with a technical

background.

An Intelligent Smartphone Application

5 of 58

2. Similar systems
There are many systems which provide useful information when planning a bus travel. One

of them, the one that resembles this application the most (at least in theory) is TransitGenie,

an app for iPod. It is developed by the BITS Laboratory at University of Illinois and handles

public transport in the city of Chicago1.

TransitGenie works by either having the user enter their current position by hand or having

the GPS in the phone figure it out. The user then enters his desired destination and four

different travel suggestions are displayed. The different suggestions include directions and an

estimated time of arrival.

Figure 2.1 TransitGenie route suggestions

Figure 2.1 shows TransitGenie presenting four different travel suggestions to the user. They

are ranked by earliest arrival time, shown in the column to the left. The green man represents

walking distance for the user, while the black icons represent buses and the blue icons

represent a tram. The number under the buses is the route number.

In Norway the closest thing would be the application developed by Trafikanten2 for users of

public transport in Oslo. Here you can choose between real-time data or route suggestions

ranked after arrival. Current position and destination is chosen manually by the user, but

position is suggested by the application based on the user‟s current position.

1 BITS Laboratory, University of Illinois – http://transitgenie.com/
2 Trafikanten, Oslo - http://www.mobilen.no/artikler/ukens_app_trafikanten/88217

http://transitgenie.com/
http://www.mobilen.no/artikler/ukens_app_trafikanten/88217

An Intelligent Smartphone Application

6 of 58

Figure 2.2 Trafikanten real-time window for a single station

In figure 2.2, the Trafikanten application is showing the arrival times of the different types of
transportation at „Stortorvet‟ station. For instance, the number 11 tram (with Disen as the
final destination) will arrive at „Stortorvet‟ in 1 minute, 4 minutes, 14:59 etc.

The other part of the application is the route suggestion. This uses logic already used by
www.trafikanten.no, the web portal for route suggestions. One important distinction
between the web portal and Android application is that the latter is able to utilize GPS.

Figure 2.3 Trafikanten application suggesting current position.

The user is presented a map with his/her current position and is able to pick one of the

adjacent stops as their starting point.

http://www.trafikanten.no/

An Intelligent Smartphone Application

7 of 58

The user then types in their destination and a route suggestion is presented to the user given

the time of the query.

Figure 2.4 Suggestions derived from www.trafikanten.no

Figure 2.4 does not show how the information is provided on the Trafikanten Android

application, but on www.trafikanten.no. The same information will be revealed in both, but

shown a bit differently.

In the query which produced the route suggestion given in figure 2.4 the starting point was

„Stortinget‟ and the destination was „Bøler‟. The query was not asked in natural language (e.g

„How do I get from Stortinget to Bøler?‟, but rather filled in pre-set boxes representing

starting point and destination.

Figure 2.5 Trafikanten.no search bar

The boxes are labeled fra (from) and til (to) as shown in figure 2.5. The user is also able to

set the date and time of either departure or arrival (avgang or ankomst in Norwegian).

Some differences between the Trafikanten application and the application described in this

paper:

1. The Trafikanten application derives route suggestions assuming only one starting point,

while this application considers many.

2. The Trafikanten application is not able to handle natural language queries.

3. The Trafikanten application does not include real-time data with its route suggestions.

http://www.trafikanten.no/
http://www.trafikanten.no/

An Intelligent Smartphone Application

8 of 58

3. Underlying Technologies
This chapter will give a quick overview of the underlying technologies which provides the

functionality used in the creation of this application. A more general and detailed description

off the technologies can be found later the appendix provided with this paper.

3.1 Hardware and OS

The smartphone used for the development of this application is a HTC Wildfire. It runs on

Android OS 2.1 developed by Google. There are over 200,000 applications available for

Android smart phones.

The hardware provides two key services needed for this application.

1. Deriving user location with GPS.

2. Internet access.

3.2 Deriving location

If you look back at figure 1.1, you‟ll see that the first step in the communication flow is the

query to BusTUC. This query contains a list of relevant bus stops or what you might call

potential starting positions for the bus travel.

Figure 3.1 Query sent to BusTUC

To be able to find out which bus stops the user might want to travel from, you‟ll need to

find out where the user is located. This is done by utilizing the GPS receiver in the

smartphone.

An Intelligent Smartphone Application

9 of 58

The location is found by the GPS receiver by calculating the distance between multiple

satellites and comparing them. The accuracy of the position will increase with the amount of

satellites it gets a signal from. 3 satellites are enough to calculate a 2D position (longitude and

latitude) which is good enough for this purpose. More information about GPS and location

calculation can be found in the appendix.

3.3 BusTUC

Let‟s return once again to the figure 1.1 and look at the technology which provides the

different route suggestions.

Figure 3.2 BusTUC returning route suggestions

The technology which provides the route suggestions is a bilingual natural language bus

route expert system developed at the Department of Computer & Information Science,

NTNU3. It get its name, TUC (The Understanding Computer), from a general natural

language system developed by Tore Amble, a professor at NTNU. It was implemented first

for Team Trafikk and later for AtB, the companies responsible for the buses in Trondheim

and is considered to have reached the intelligence of a savant. Savant is defined as a term

used for a person with certain social disabilities, but has some extraordinary skills when it

comes to memory or speed calculations. Their natural language understanding is excellent

within their domains of expertise, but lacking when it comes to other conversation topics.

BusTUC is indeed very robust when it comes to queries about Trondheim‟s bus routes. The

following examples are in Norwegian.

3 BusTUC - http://www.idi.ntnu.no/~tagore/rapporter/BusTUC.pdf

An Intelligent Smartphone Application

10 of 58

„Når går bussen fra Solsiden til Dragvoll? / When does the bus go from Solsiden to

Dragvoll?‟

This will return a travel route together with departure or arrival times. It will assume you

want to travel as fast as possible unless you specify arrival or departure times.

„Når går første buss etter 15.00 fra Solsiden til Dragvoll? / When does the first bus after

15.00 go from Solsiden to Dragvoll?‟

This will return the first available travel router after 15.00.

The BusTUC system is separated into 3 different components:

- A parser system which consists of a parser, a grammar, a lexical processor and a

dictionary

- A knowledge base (KB), divided into an application KB and a semantic KB

- A query processor, containing a routing logic system, and a route database.

The dictionary contains about 4590 words, 1204 bus stop names, 80 buses and 9970 name

variants only for the Norwegian part of the system. The different name variants are

important because people do not necessarily call certain bus stops by their „proper‟ name.

There are also over 5000 grammar rules, a semantic net with 6500 word meaning entries and

1500 more rules which help translate the output from the parser to a route database query

language. The semantic knowledge base contains 960 nouns, 1100 verbs and 450 adjectives.

All in all there are about 130500 lines of Prolog code. The parser uses a generalization of

Definite Clause Grammars, called Consensical Grammar (CONtext SENSItive

CompositionAL Grammar). Compositional grammar means that the semantics of the

subphrases creates the semantics of a phrase.

The semantic knowledge base creates the foundation and the logic is generally generated by

it. When there is a need for changes, these will be made in the fact database and in the

semantic knowledge base, while the general grammar and dictionary remains untouched

(This is in theory. In practice the dictionary has been extended to have a bigger vocabulary).

The semantic knowledge base contains a restricted list of legal combinations of verb, nouns,

adjectives and prepositions.

The query processor translates natural language into a form called TQL (Temporal Query

Language) which is a first order event calculus expression. The TQL expressions consist of

predicates, functions, constants and variables. The TQL is then translated to BusLog, a route

database query language.

3.5 Real-time data

The real-time data we want to retrieve from the system is of course the actual arrival times of

the buses at a given bus stop. The application uses the same real-time system that is used by

AtB. It is called Flash and is developed by SWARCO4. Flash is also implemented in

Barcelona and Turin as well as other major cities and handles large amount of traffic. The

vehicles in question are monitored with the help of GPS and distance measuring.

4 ATB - http://www.AtB.no/sanntid/category210.html

http://www.atb.no/sanntid/category210.html

An Intelligent Smartphone Application

11 of 58

Let‟s once again return to the communication flow figure (figure 1.1).

Figure 3.3 Requesting real-time arrival times.

The system returns the arrival times after receiving a SOAP (Simple Object Access Protocol)

request from the application specifying the bus stop. The number of calls to the real-time

system depends on the amount of suggestions received from BusTUC.

4. Methods
The earlier chapters has hopefully given a overview of the motivation, requirements, data

flow and underlying technologies required for meeting the goals set for this project. This

chapter will include a more detailed description on how the application displays information,

retrieves both the bus stop and user location, acquires route suggestions and updates the

planed arrival times with the actual arrival times.

satre
Highlight

An Intelligent Smartphone Application

12 of 58

4.1 GPS

4.1.1 Geographic coordinate system

The application uses Google Maps5 as a map which again uses the World Geodetic System

(WGS) as a geographical coordinate system. WGS is a standard within cartography, geodesy

and navigation. It comprises:

- A standard coordinate frame for the Earth

- A standard spheriodal reference surface (the datum or reference ellipsoid) for raw altitude

data

- A gravitational equipotential surface (the geoid) that defines the nominal sea level

Google Maps is available for websites and different types of applications, Android included.

Figure 4.1 Google Maps is used for this application

Google Maps provides a lot of functionality for developers, including a quick conversion

from GPS coordinates to points on the map. Figure 4.1 shows how Google Maps is used in

this application. The pin represents the user position and the blue bus stop signs represent

the position of the bus stops obviously.

5 Google Maps - http://code.google.com/apis/maps/

http://code.google.com/apis/maps/

An Intelligent Smartphone Application

13 of 58

There are some inconsistencies regarding the icons when zooming in on the map. If you

compare the two pictures below, you can see that the pin on each picture does not point to

exactly the same point. This can be solved by refreshing the icon positions, but it has not

been prioritized during the development of this application due to the fact that the actual

position stays the same (only the visual representation is slightly off).

Figure 4.2 Difference in position after zooming out on the map

In figure 4.2, the picture to the right is the original zoom size. The picture on the left is from

when the map is zoomed out a bit. The location of the pin is slightly higher on the picture to

the left. As mentioned, this lack of accuracy is only in the visual representation and is not

actually effecting the actual calculations.

4.1.2 Provider

There are three different „providers‟ (as defined by the Android SDK) or ways of utilizing

smartphone technology to get user location. Each has their own advantages and limitations.

4.1.2.1 GPS

Derives a location by utilizing the device‟s GPS chip and is highly accurate in doing so, but a

line of sight is necessary for the satellites to provide a fix.

4.1.2.2 NETWORK

This provider uses the cellular network to provide a fast initial fix before utilizing the GPS

chip. It is still very accurate and works without provide the satellites a line of sight.

4.1.2.2 PASSIVE

This method derives the location by Cellular ID / Wifi MAC ID look up. This does not

require a GPS chip, but is significantly less accurate.

There is one problem with the methods given by the Android SDK to choose the correct

provider. It will normally choose „GPS‟ as the best possible provider, even though you are

currently located inside a building. This will make the application search for a satellite link up

indefinitely.

One limitation of this application is that it is only able to run while having a network

connection. This is due to the fact that route suggestions require HTTP and SOAP requests.

satre
Highlight

An Intelligent Smartphone Application

14 of 58

A discussion around this limitation can be found in the chapter concerning further

development.

LocationManager is the class in the SDK which provides access to the system location

services. These services allow applications to obtain periodic updates of the device‟s

geographical location. It makes it possible to specify the name of the provider with which to

register, a minimum time and distance interval for notifications. This class is combined with

a listener.

4.2 Bus Stops

The next information needed before sending a query to BusTUC for route suggestion is the

relevant bus stops. The method for finding these bus stops is done by comparing the

coordinates of the user location and the coordinates of all the bus stops in Trondheim.

The list of bus stops used in development of this application was provided by AtB. It is

included as a XML file in the package, and the application creates an array on startup. One

problem with this list is that there is only 1 stop registered per location. So while almost

every bus stop has its counterpart across the street (which handles traffic in the opposite

direction), only one of these bus stops are registered with coordinates. The method for

calculating the air distance between location A (where the user is) and location B (where the

bus stop is) in meters is provided by Android SDK.

The Bus Stop list is the only thing (and BusTUC of course) that is specific to Trondheim in

this application.

ID Name Longitude Latitude

16000001 Location 1 XX.XXXXXX XX.XXXXXX

16000002 Location 2 XX.XXXXXX XX.XXXXXX

..... ……

Figure 4.3 Bus stop list included in the application

The next step now is to find out which of these bus stops that are relevant. There is a need

to not just get the fastest possible route from the closest bus stop.

An Intelligent Smartphone Application

15 of 58

Example

In this example the user is located at „Gløshaugen NTNU‟ (shown as a star in figure 4.4)

There are here four different bus stops (shown as an arrow in figure 4.4) within a 500 meter

radius.

The search algorithm used in this application is able to:

a. Get N closest bus stops.

b. Get all bus stops within a specified radius M.

These values are not mutually exclusive. They can be combined or used individually.

Figure 4.4 Map for example

These four bus stops offer of course different bus routes, so depending on the desired

destination some of them will naturally be preferred. If the user wants to travel south, bus

stop 2 will probably offer the route with the fastest arrival time, while bus stop 4 will offer

the same for users travelling north-east. But some of these routes may only go once every

hour, so routes travelling from bus stop 1 or 3 might be preferred from time to time. The

motivation for having many possible starting points when calculating travel route is pretty

obvious.

The next step after finding relevant bus stops is creating and sending the query to BusTUC.

An Intelligent Smartphone Application

16 of 58

4.3 HTTP

4.3.1 POST

The method used to communicate with BusTUC is a HTTP (HyperText Transfer Protocol)

Browser provided by Java. The common way for people to use BusTUC is through the web

interface where they type in a query using the provided form. The form then sends the query

to a perl script. This application, on the other hand, creates name-value pairs to simulate the

form and sends a request directly to the perl script.

Figure 4.5 A version of BusTUC implemented at www.AtB.no

The perl script has primarily two name-value pairs, language and question. The “lang” name

defines what language the input string might be written in, even though it understands both

Norwegian and English regardless of the value. This is because there is an internal test in

BusTUC which looks up the word in the query and finds which language it belongs to in the

bilingual dictionary.

Name Value

“lang” “nor”

“quest” String

Figure 4.6 The name-value pairs of BusTucs input script

The value string is what this application generates. It will take the user generated string

(which defines the desired destination) and add the closest bus stops (chapter 4.2).

Below is an example showing the generation of the query string and the returned values from

BusTUC.

Example

The user finds himself at Solsiden, Trondheim. The five closest bus stops inside a 500 meter

radius sorted by closest first are used to generate a query.

http://www.atb.no/

An Intelligent Smartphone Application

17 of 58

Figure 4.7 The five nearest bus stops within a 500 meter radius.

In figure 4.7 the pin represents the user location. Let‟s say the user types in „til sentrum‟ (to
downtown in English). The query sent to BusTUC will be

(Location 1, Location 2, Location 3, Location 4, Location 5) til sentrum

One thing that is worth pointing out is that the application simply sends what the user types
together with the relevant bus stops. This means that the user is able to utilize the robustness
of BusTUC when it comes to asking questions in natural language. The queries are handled
like any other natural language query sent directly to BusTUC.

Figure 4.8 Communication flow: BusTuc query.

An Intelligent Smartphone Application

18 of 58

BusTUC will respond by giving route suggestions formatted in JSON (JavaScript Object

Notation), which is a language-independent data format.

Response from BusTUC (JSON)
{"transfer":"false" ,
"timeset":"false" ,
"departures" : [
{"busstopname":"Location1","busstopnumber":16000001,"busnumber":1,"time":1501,"duration":8,"destination":"Sentrumster
minalen"}
{"busstopname":"Location2","busstopnumber":16000002,"busnumber":2,"time":1502,"duration":7,"destination":"Sentrumster
minalen"}
{"busstopname":"Location3","busstopnumber":16000003,"busnumber":9,"time":1502,"duration":6,"destination":"Sentrumster
minalen"}
{"busstopname":"Location4","busstopnumber":16000004,"busnumber":63,"time":1504,"duration":11,"destination":"Sentrumst
erminalen"}
{"busstopname":"Location5","busstopnumber":16000005,"busnumber":63,"time":1505,"duration":11,"destination":"Sentrumst
erminalen"}
]}

Figure 4.9 Reponse generated by BusTUC

As you can see from figure 4.9, there are two booleans present before the actual route

suggestions. Transfer indicates if the user is required to change bus anytime during his/her

travel. Timeset indicates if the user has any time requirements for the suggestions. For each

route there are six values. Bus stop name, bus stop number, bus number, time (arrival time

of bus at the given bus stop), duration (the time spent on the bus) and the destination.

These values help form the route objects which are compared when finding the best possible

travel route. More information regarding the inner workings of BusTUC and the route

suggestions it returns is found in chapter 4.5 Extending BusTUC.

An Intelligent Smartphone Application

19 of 58

4.3.2 Real-time

The application has now received several route suggestions from BusTUC and needs to get

the real-time values before ranking the suggestions. These real-time values are derived with

the use of SOAP objects formatted in XML.

Figure 4.10 Deriving the real-time data.

Some preparation is needed before getting these values because the bus stop numbers

returned from BusTUC is not the same numbers as the ones (from now on referred to as

„unique id number‟) used by the real-time system. The unique id numbers used by the real-

time system are even changed from time to time, so this application downloads these

numbers when it starts.

The SOAP method provided by the real-time system is called GetBusStopList. It requires

only a username and password. The web service will send a SOAP response with a XML

node called GetBusStopsListResult.

The information encapsulated inside the GetBusStopsListResult node is a JSON object. The

information required by this application is then extracted from the JSON object to create a

list containing the unique id numbers required for real-time and the corresponding bus stop

numbers.

Unique ID Bus stop number

111111 16000001

111112 16000002

111113 16000003

…….. ………..

Figure 4.11 The list generated the GetBusStopList reponse.

An Intelligent Smartphone Application

20 of 58

Now the application is able to send specific real-time queries because it knows the relevant

bus stop numbers (information received from BusTUC) and the unique id number

corresponding to that specific bus stop.

The SOAP method for getting real-time data at a given bus stop is called getUserReal-

timeForecast. It requires a username, password and bus stop. The value used for the bus

stop is the unique id number.

The response from the server would again be formatted as XML with a JSON object in the

getUserReal-timeForecastResult node.

Let‟s use the values presented in figure 4.11. After receiving a route suggestion from

BusTUC which starts at bus stop number 16000002, we can see that the unique id number

used by the real-time system for this exact bus stop is 111112. This value is used in the

getUserReal- timeForecast method and the information provided in figure 4.12 is returned.

Bus number Arrival time

3 14:44

4 14:56

2 15:07

Figure 4.12 Real-time data for a specific bus stop.

One thing worth mentioning is that this response includes arrival times of every active bus

arriving at this particular bus stop.

Remember from previously in this chapter that one of the suggestions returned from

BusTUC was „bus number 2‟ stopping at „Location 2‟ at „15:02‟. The predicted arrival time by

BusTUC (15:02) is replaced with the actual arrival time (15:07) before this suggestion is

ranked and presented to the user.

Specific implementation notes can be found in chapter 9.1 „Real-time specifics‟.

4.5 Extending BusTUC

As mentioned in the chapter above, the application is able to send a wide variety of natural

language queries to BusTUC. Some examples of this could be:

Norwegian: (Location 1, Location 2, Location 3, Location 4, Location 5) til sentrum
English: (Location 1, Location 2, Location 3, Location 4, Location 5) to downtown

Norwegian: (Location 1, Location 2, Location 3, Location 4, Location 5) til sentrum etter klokken
15.00
English: (Location 1, Location 2, Location 3, Location 4, Location 5) to downtown after 15.00 o’clock

Norwegian: (Location 1, Location 2, Location 3, Location 4, Location 5) til sentrum før klokken 15.00
English: (Location 1, Location 2, Location 3, Location 4, Location 5) to downtown before 15.00 o’clock

When handling the queries BusTUC will first parse the natural language part. It will derive

the desired user destination and set the (optional) time restrictions. Then it will look for

direct travel routes between the locations given by the user in the parentheses (this is the list

of relevant bus stops) and the destination. Each direct route it finds will be added in the list

An Intelligent Smartphone Application

21 of 58

of route suggestions. This means that BusTUC might return three route suggestions from

one bus stop, while none from another. If the travel route requires a transfer, BusTUC will

provide the one that makes the user arrive at the wanted destination earliest.

4.6 Distance between two locations

The method used to calculate the distance between two locations can be found in the

Google API. Each location object has a method called distanceTo(Location obj), which

returns the air distance between this location and a given location. Distance is defined using

the WGS84 ellipsoid. WGS stands for World Geodetic System and is a standard used in

cartography and navigation6. 84 is the current revision.

4.7 Ranking

The principle used to rank the different route suggestions are based on a couple of

assumptions and happens after the route suggestions have updated their times with the times

received from the real-time system.

1. The user will not take a bus from a bus stop further away when the same bus is available at

a bus stop closer to him.

2. The user would like to arrive at his destination as early as possible (unless routes at specific

times are requested).

Let‟s say that the user would like to travel from a place which is surrounded by 4 different

bus stops (Described as Location1,..,Location 4). BusTUC will return something like this:

ID BusStopName BusStopNumber BusNumber Time Duration

1 Location 1 16010001 9 1819 6

2 Location 2 16010002 9 1823 5

3 Location 3 16010003 6 1826 8

4 Location 4 16010004 6 1829 11

Figure 4.13 Example of route suggestions from BusTUC

As you see, there are four different route suggestions on two different bus routes. That is

quite common in these types of situations, because it is natural that bus stops that exist in the

same area will have many of the same buses traveling through them. The exclusion of these

types of suggestions is done by implementing the first assumption stated above. In this

example the route which starts at location 2 will be removed because location 1 shares the

same bus, but is located closer to the user. The route starting at location 4 is removed for the

same reason (Location 3 has same bus, but is closer). This allows the application to only run

two real-time data requests instead of 4, saving 50% of the original bandwidth and time

costs.

6 WGS - http://en.wikipedia.org/wiki/World_Geodetic_System

http://en.wikipedia.org/wiki/World_Geodetic_System

An Intelligent Smartphone Application

22 of 58

Now, after the application calls the real-time system and receives the actual arrival times of

the buses at bus stop X, a total time is calculated. The total time consists of the time between

now and departure of the bus added by the duration of the travel. WD shown in figure 4.14

is walking distance derived from comparing user location and bus stop location. In this

example our new data might look like this:

 Current time: 18:10

ID BusStopName TotalTime BusNumber Time Duration WD

1 Location 1 21 9 1825* 6 200

4 Location 4 31 6 1830* 11 100

Figure 4.14 Updated table with new arrival times and total travel time. The * indicates a

difference between the planed and actual (real-time) arrival times.

The suggestions we have left now illustrates a common problem or obstacle when only

providing one route suggestion. Both of these routes can be considered best depending on

what you value. On one hand you can say that suggestion 1 is superior because it arrives 5

minutes earlier than suggestion 4. On the other hand, you can say that suggestion 4 is

superior because there is a shorter walking distance. This application will rank these types of

suggestions instead of excluding one of them. In this particular implementation the total

travel time (The difference between now and arrival at destination) is preferred over walking

distance, mainly because one of the questions this project was suppose to answer was „What

is the quickest way from A to B?‟.

5. Results and discussion

5.2 Retrieving coordinates

5.2.1 Bus stops

The 500 bus stop locations available in this application are described by four different

characteristics. The bus stop id, name, longitude and latitude are provided for each stop. As

mentioned earlier the list of bus stops was formatted as an XML file located in the

application package. The process of translating and parse the XML file into Location objects

is handled when the application starts. The Location objects contain longitude, latitude and a

name. These objects are needed for calculating the distance between the bus stops and the

device‟s current location. The problem of only having 1 longitude and latitude pair for each

bus stop location (e.i not one for each direction) is not really restricting the intelligence of

the application at this point.

The bus stop list used in this application was a union between the bus stop list provided by

AtB (containing name and coordinates in Google Maps format) and a bus stop list from

BusTUC (containing the bus stop id, name and coordinates in another format).

5.2.2 Device location

As mentioned earlier, there are three different location providers available in the framework.

This version of the application uses the network provider, which requires internet access.

This is due to the fact that making an application which would prioritize providers after what

type of resources it had at a given time, requires more testing than I had the time to do.

Additional information about this is available under the chapter of further research.

satre
Highlight

satre
Highlight

An Intelligent Smartphone Application

23 of 58

There are some inconsistencies in deriving the device location due to the fact that the

application uses the network provider. These happened when the device was inside and used

assisted GPS for the initial satellite fix.

Figure 5.1 Overview

This is an overview over the results received when using this application from Nedre

Møllenberg Gate 68, Trondheim. The red star represents the actual location. My returned

locations (circle 1, circle 2) are represented by the orange dots and the bus stops are the blue

arrows.

While working on this project, the application has received circle 2 a couple of times as

position even though the smartphone was located in more or less the same place (the couch

of my apartment). The rest of the time (95% ca) the position returned has been circle 1. The

cause is unknown, but it might be the ISP.

5.3 Integrating BusTUC

The integration of BusTUC worked very well for this application. When using the methods

described under in chapter four the application managed to suggest adequate routes for every

destination under testing. The extension is also highly flexible and the output (Route

suggestions figure 5.3) from BusTUC is very predictable.

An Intelligent Smartphone Application

24 of 58

Figure 5.2 BusTUC input and output.

The only problem is that the server can be a little slow in returning the suggestions. This is

due to the fact that the extended version of BusTUC is currently hosted on a NTNU server

which is relevantly slow. If the android application was connected to a extended version of

BusTUC running on a commercially viable server, this would not be a problem.

5.4 Getting real-time data

The process of gathering the real-time data was relatively straight forward. The methods for

extracting the unique id numbers as described in chapter 4.3.2 worked well. One thing worth

mentioning here is that it may sound unnecessary to download these id numbers (figure 5.3)

each time the application loads, but it is really the only way. There are no other ways of

knowing if the numbers have been changed, than to actually download the numbers. And so

if they have been changed, there is no use to compare them with older numbers just to make

sure that they‟ve changed of course.

Unique ID Bus stop number

111111 16000001

111112 16000002

111113 16000003

…….. ………..

Figure 5.3 The list generated the GetBusStopList reponse.

The system which provides the real-time data is hosted on AtB‟s own servers and is used by

them as well.

The gathering of arrival times worked also quite well, even though you could only specify

bus stop (not bus number, see figure 5.4). If you could specify bus stop and bus number,

some of the workload could have been taken off the application.

An Intelligent Smartphone Application

25 of 58

Figure 5.4 Real-time system input and output

5.5 Rank

The ranking as described in chapter 4.7 worked very well. As stated there, the score is built

on two assumptions:

1. The user will not take a bus from a bus stop further away when the same bus is available at

a bus stop closer to him.

2. The user would like to arrive at his destination as early as possible (unless routes at specific

times are requested).

The application will produce around 1-3 suggestions based on these assumptions, all varying

in walking distance and time of destination arrival. The main reason there isn‟t just one

suggestion is that there is no objective way of saying one is better than the other. Some

might prefer the least amount of walking needed; some might prefer getting to their

destination faster. And considering a route suggestion is easily explained in one sentence of

natural language (e.g. Bus 9 arrives at Solsiden 13:00), the loss of excluding some of them

greatly outweighs the loss of including them all.

5.6 Examples

This chapter will contain examples from three different locations in Trondheim with varying

query complexity. The examples will be explained and the data from the external systems

(BusTUC and real-time) will be presented as well as the final result.

An Intelligent Smartphone Application

26 of 58

5.6.1 Location 1

The first location is „Nedre Møllenberg gate 68‟ in Trondheim. A correct map is shown below

to illustrate the accuracy of the application.

Figure 5.5 The actual location

5.6.1.1 Downtown

After deriving the user location, the application finds the relevant bus stops and displays

them on the map. At the top of the application, the input field (where the user types in his

destination, currently occupied by the text „Hvor vil du dra?/Where do you want to go?‟) and

a send button is presented.

Figure 5.6 The blue thumbnail which states „BUS STOP‟ represents

the corresponding stop, while the pin represents the user.

An Intelligent Smartphone Application

27 of 58

The slight difference in actual position (figure 5.5) and position displayed by the application

(figure 5.6) is due to GPS accuracy. The difference is small enough as to not disturb or

invalidate the upcoming search for best possible travel route. This occurs in some of the

other examples as well, and will be pointed out there. It is also evident that only three bus

stops are visible on the map. This is because the map is zoomed in. If the user decides to

zoom out, he will discover two more bus stops which will be included in the query (they

would have been included if he had not zoomed as well). The bus stop search parameter is a

500 meter radius around the users‟ correct position and a maximum of 5 bus stops.

Figure 5.7 The map zoomed out from initial scale.

It is worth pointing out that the pin is has been moved slightly to the north after zooming

out (figure 5.6 and 5.7). This was explained in chapter 4.1.

In this example our desired destination is going to be downtown Trondheim. This is where

the only user generated input is required, namely typing in „sentrum‟ in the text field. As

mentioned in chapter 4.5 „Extending BusTUC‟, the user can use a wide variety of natural

language queries, but in this example only „sentrum‟ is used. Additional examples with

different type of queries will follow. After pressing send, the formatted query is sent to

BusTUC.

An Intelligent Smartphone Application

28 of 58

Figure 5.8 The user typing in his wanted destination

The query was sent at 18.14.

Query:

Norwegian: (Dokkparken, Strandveien, Sig. Bergs Allè, Buran, Rosenborg skole) til sentrum

English: (Dokkparken, Strandveien, Sig. Bergs Allè, Buran, Rosenborg skole) to downtown

The response is formatted in JSON, but showed below as a table for easier reading.

Query sent: 18.14

Id BusStopName BusStopNr BusNr Time Duration Destination

1 Strandveien 16011470 3 1819 6 Sentrumsterminalen

2 Strandveien 16010470 36 1820 42 Sentrumsterminalen

3 Buran 16010077 36 1821 41 Sentrumsterminalen

4 Buran 16011077 66 1822 6 Sentrumsterminalen

5 Strandveien 16011470 66 1823 5 Sentrumsterminalen

6 Buran 16011077 6 1830 8 Sentrumsterminalen

Figure 5.9 Response list

One thing worth noticing here is that the BusTUC has „changed‟ the original destination

from sentrum (downtown) to sentrumsterminalen (Downtown terminal). This is because

there is not an actual bus stop named sentrum, so BusTUC provides the actual name of the

bus stop.

Before retrieving real-time data based on the suggestion given by BusTUC, some of these

values are filtered out due to some of the previous stated assumptions (For a specific bus

line, the user will always travel from the closest bus stop). Suggestion 3 and 4 is therefore

ignored because Strandveien is closer to walk than Buran.

An Intelligent Smartphone Application

29 of 58

The bus stop numbers are set as parameters in the XML SOAP query sent to ATB‟s server.

The application receives the real-time data and updates the arrival time of the buses.

Query sent: 18.14
Id BusStopName BusStopNumber BusNumber Time Duration Distance Destination
1 Strandveien 16011470 3 1818* 6 264 Sentrumsterminalen
2 Strandveien 16010470 36 1820 42 264 Sentrumsterminalen
5 Strandveien 16011470 66 1828* 5 264 Sentrumsterminalen
6 Buran 16011077 6 1836* 8 462 Sentrumsterminalen

Figure 5.10 Updated time with real-time data and air distance.

3 out of 4 suggestions had a change in arrival time after receiving the actual time. Suggestion

1 shows that bus number 3 actually arrives a minute earlier than expected. Suggestion 3 and 4

is delayed 5 and 6 minutes respectively.

The last data required before making an intelligent route suggestion is total travel time.

Remember that the time was 18.14 when this query was made. Total time would be the time

from 18.14 until the bus arrives at the users‟ destination.

Query sent: 18.14
Id BusStopName BusNumber Time Duration Distance TotalTime Destination
1 Strandveien 3 1818* 6 264 10 Sentrumsterminalen
2 Strandveien 36 1820 42 264 48 Sentrumsterminalen
5 Strandveien 66 1828* 5 264 19 Sentrumsterminalen
6 Buran 6 1836* 8 462 30 Sentrumsterminalen

Figure 5.11 The updated results with total travel time.

The obvious outcast here is Suggestion 2. The bus travel duration is 42 minutes and would

not have been preferred by the user. A method for excluding them has not been

implemented in this version of the application. The issue is discussed in chapter 7.5, further

research and development, together with a possible solution for excluding these types of

„stupid‟ suggestions.

An Intelligent Smartphone Application

30 of 58

Figure 5.12 The final result displayed

After ranking, sorting and displaying the four unique suggestions, the application is available
for a new bus route search.

5.6.1.2 Nardo

The main objective of this example is to show the applications ability to handle transfers as
well. The user location is still at „Nedre Møllenberg Gate 68‟ (figure 5.5) Whether or not the
route is a transfer is provided as the transfer boolean (chapter 4.3) in the data returned from
BusTUC. The destination chosen is „Nardo‟.

Query:

Norwegian: (Dokkparken, Strandveien, Sig. Bergs Allè, Buran, Rosenborg skole) til nardo
English: (Dokkparken, Strandveien, Sig. Bergs Allè, Buran, Rosenborg skole) to nardo

The query is still a simple „to‟ query.

Response:

Query sent: 22.31
Transfer: True

Id BusStopName BusStopNr BusNr Time Duration Destination

1 Strandveien 16011470 3 2246 7 Munkegata –M3

1 Munkegata – M3 16010003 52 2300 11 Nardosenteret

Figure 5.13 Transfer response

The arrival times (arrival at Munkegata for bus number 3 and Nardosenteret for bus number
52) of the buses are still updated with real-time data even though there is only one transfer
suggestion. There is still great value in providing correct arrival times for the user. The
original destination sat by the user („nardo‟) has been replaced by the actual bus stop
(„Nardosenteret‟).

An Intelligent Smartphone Application

31 of 58

Figure 5.14 Result after „Nardo‟ query.

The application is able to handle bus routes which include transfers, which is a necessary
functionality for any smart bus route information system.

5.6.1.3 Nardo after 15.00

This example is from the same location (figure 5.5) as the previous ones, but with a time

restriction.

Query:
Norwegian: (Dokkparken, Strandveien, Sig. Bergs Allè, Buran, Rosenborg skole) til nardo etter 15.00
English: (Dokkparken, Strandveien, Sig. Bergs Allè, Buran, Rosenborg skole) to nardo after 15.00

Figure 5.15 Query with time restriction

satre
Sticky Note
"før"
ikke etter!

An Intelligent Smartphone Application

32 of 58

Response from BusTUC:

Query sent: 23.09
Transfer: True
Timeset: True

Id BusStopName BusStopNr BusNr Time Duration Destination

1 Strandveien 16011470 66 1443 5 Munkegata –M3

1 Munkegata – M3 16010003 52 1455 11 Nardosenteret

Figure 5.16 Response from BusTUC with time restriction

Since the query contained a set time (or time constraint), the arrival times set by BusTUC is

presented to the user. This is of course because this query was sent at 23.08, almost 15 hours

before the bus arrives.

Figure 5.17 Result with time restriction

5.6.2 Location 2

This time the user is located at Olav Tryggvasons gate 22. Here is a picture from Google
Maps for the actual position.

Figure 5.18 Actual position of user.

An Intelligent Smartphone Application

33 of 58

5.6.2.1 Solsiden

The desired destination is „Solsiden‟ this time. The user location and adjacent bus stops are

shown on the application.

Figure 5.19 The picture on the left is focused east and right picture is focused east.

The search radius has been set for 500 meters and the maximum amount of bus stops is 5.

After typing in „Solsiden‟ the following query is sent to BusTUC:

Norwegian: (Nova Kinosenter,Munkegata M5,Munkegata M4,Munkegata M1,Munkegata M2) til

solsiden

English: (Nova Kinosenter,Munkegata M5,Munkegata M4,Munkegata M1,Munkegata M2) til solsiden

BusTUC finds the possible routes and returns the following suggestions:

Query sent: 13.38

Id BusStopName BusStopNumber BusNumber Time Duration Destination

1 Munkegata - M5 16010005 6 1340 4 Solsiden

2 Munkegata - M4 16010004 36 1345 4 Solsiden

3 Munkegata - M5 16010005 4 1345 4 Solsiden

4 Nova Kinosenter 16010022 9 1345 2 Solsiden

5 Nova Kinosenter 16010022 36 1347 2 Solsiden

6 Nova Kinosenter 16010022 4 1347 2 Solsiden

Figure 5.20 Data received from BusTUC

The application narrows the list down to only one suggestion per bus number (the closest

bus stop) and gets the real-time data.

Query sent: 13.38

Id BusStopName TotalTime BusNumber Time Duration Distance Destination

1 Munkegata - M5 5 6 1340 4 215 Solsiden

4 Nova Kinosenter 7 9 1344* 2 160 Solsiden

5 Nova Kinosenter 10 36 1347* 2 160 Solsiden

6 Nova Kinosenter 9 4 1346* 2 160 Solsiden

Figure 5.21 Suggestions filtered

Here you can see that both suggestion 2 and 3 gets thrown away because „Nova Kinosenter‟

provides the same bus route closer to the user.

An Intelligent Smartphone Application

34 of 58

Suggestion 1 will be come up on top in this scenario because it will get the user quickest to

Solsiden.

Figure 5.22 Result presented to the user

5.6.2.2 Gløshaugen

Same location as the previous example, Olav Tryggvasons gate 22 (figure 5.18) but different

destination: Gløshaugen. This travel requires a transfer, so BusTUC returns this information:

Query sent: 13.43

Id BusStopName BusStopNumber BusNumber Time Duration Destination

1 Munkegata – M2 16010002 6 1350 2 Torget

 Torget 16010012 52 1357 5 Gløshaugen Syd

Figure 5.23 Returned route suggestions

The planned arrival times are updated with the actual arrival times:

Query sent: 13.43

Id BusStopName TotalTime BusNumber Time Duration Distance Destination

1 Munkegata – M2 9 6 1350 2 245 Torget

 Torget 5 52 1357 5 Gløshaugen Syd

Figure 5.24 Updated with real-time data. No changes

No changes and the results are presented to the user. As you can see, the total travel time for

„Munkegata – M2‟ is 9 minutes. This is from „now‟ (13.43) to arrival at Torget (13.52). The

application knows that this is a transfer and presents the two connecting travel routes in the

correct order.

An Intelligent Smartphone Application

35 of 58

Figure 5.25 Final result for Gløshaugen

The zoom bug is present again in figure 5.25 after zooming out. The pin has moved itself

further up on the map, representing the user location somewhat wrong (again, the actual

values used for calculations are not changed).

5.6.2.3 Dragvoll

Last example from Olav Tryggvassons gate 22 (figure 5.18). This time the destination is

„Dragvoll‟.

This query received two bus route suggestions, one from „Munkegata – M5‟ and one from

„Nova Kinosenter‟. Both these suggestions had the same bus number, 9, so „Nova

Kinosenter‟ is the only presented suggestion due the fact that it is located closer to the user.

Figure 5.26 Bus route suggestion for Dragvoll

An Intelligent Smartphone Application

36 of 58

5.6.3 Location 3

The last example is from Nygata 25 and only one example will be provided from this

location. This is a more remote (read: less bus stops nearby) location than the others. As you

can see, the application chooses the only two bus stops available within a 500 meter radius.

Figure 5.27 Two available bus stops

5.6.3.1 Nardo

In this example the destination is Nardo. The two bus stops picked out by the selection

algorithm is sent to BusTUC with the destination:

Query:

Norwegian: (Bakkegata,Nova Kinosenter) til nardo

English: (Bakkegata,Nova Kinosenter) til nardo

Query sent: 15.25

Id BusStopName BusStopNumber BusNumber Time Duration Destination

1 Nova Kinosenter 16011022 66 1532 1 Munkegata – M3

 Munkegata - M3 16010003 52 1540 11 Nardosenteret

Figure 5.28 Results returned from BusTUC

There is no direct route between any of the two bus stops and „Nardo‟, so BusTUC presents

the best transfer. The arrival times are updated and the final suggestion is given to the user.

An Intelligent Smartphone Application

37 of 58

Figure 5.29 Final suggestion for Nardo

6. Conclusion
The developing of applications for smartphones is an exciting field. Even though the

technology is fairly new, high expectations are set by the end-users. The smartphone

programs need to be intuitive, fast and the data correct. Google knew this when developing

the Android API. It is fairly well documented and any information missing can usually be

found on the Google code message boards. The integration of Google Maps in Android

applications is relatively easy and the functionality it provides is well documented. There

weren‟t many problems at this point. The only thing required was internet access, may it be

internet or cellular.

The focus of this project was to create the architecture for a generic public transport

suggestion system and it was in many ways successful. The combination of GPS coordinates,

real-time data and BusTUC provided enough information to accurately give users detailed

route suggestions. The application is also able to exclude some parts of its functionality and

still be useful. If a town or area decides to implement BusTUC without having a real-time

system, the application is still able to provide users with the locations of themselves and bus

stops as well as route suggestions.

The development went fairly well. The language used was Java, but some time was spent

learning the Android specific rules and techniques.

One of my biggest concerns throughout this project was accessing the real-time data

provided by AtB. They were originally going to be made available in the autumn of 2010, but

where delayed until March 2011. This naturally caused some delays regarding the

implementation, but it worked out. There were no problems actually accessing and using the

data after they were made available.

An Intelligent Smartphone Application

38 of 58

The extension and integration of BusTUC word very well. A complete set of initial route

suggestions are provided by BusTUC after a single call from the application.

The way the suggestions are ranked, with exception of some outliers (chapter 7.5), are very

efficient and based on solid reasoning. Keep in mind that the only input generated from the

user in this application is the destination. Without requiring more information from the user

regarding his/her preferences there are no objectively way to exclude some of the final

suggestions.

The application is added as an digital appendix and is also available at

http://e-pos.info/magge/BusTUCwGPS-RT.apk

7. Further research and development
The main areas that need improvement before making this application available for the

public are graphical design, testing, evaluation and extension of functionality.

7.1 Graphics

Not much effort has been spent on making this application look aesthetically pleasing. An

example of how this could be improved is shown below. The language in the example is

Norwegian.

Figure 7.1 Start picture

satre
Cross-Out

satre
Replacement Text
ked

satre
Sticky Note
URL broken!

An Intelligent Smartphone Application

39 of 58

When starting the application a window which includes a map, query box and a preferences

button should appear (Figure 7.1). The map should include user location (the green „A‟) and

the bus stops nearby. The user should be able to freely navigate the map. When selecting

(press on the map) one of the bus stops a new window containing information about the

buses which arrives first will appear.

Figure 7.2 Information about a specific bus stop

The new window will also include a walk suggestion for the user. The times displayed in this

window will not be the planed arrival times, but the actual times of arrival derived from the

real-time system. All of this functionality exists in the application, so extending the

application to be able to have these types of „individual windows‟ for each bus stop would

not be hard.

As mentioned previously in this paper, the problem of narrowing down the number of

suggestions without knowing any of the preferences of the user is difficult. So if we extend

the application to include a set of options for the user, it would be able to rank or even

exclude some of the suggestions better.

satre
Highlight

An Intelligent Smartphone Application

40 of 58

Figure 7.3 The different options available for the user

The user is able to set the search radius and the maximum amount of bus stops. If the user

sets search radius to 500 meters and bus stops to 0, the application will find every bus stop

within 500 meters. If the search radius is set to 0 and the bus stops to 10, the application will

find the 10 closest bus stops regardless of distance between the user and the actual stop.

For a more day to day use, the user would perhaps choose the values shown in figure 7.3.

The search radius excludes useless bus stops when you find yourself in a suburban area,

while the number of bus stops limits the workload when operating in an area with many bus

stops.

The last option is the „preferences‟ option. The values set here would affect the ranking of

suggestion.

satre
Sticky Note
Future work == NOW!

An Intelligent Smartphone Application

41 of 58

Figure 7.4 Preferences

As shown in Figure 7.4, we can let the user set his/her preferred walking speed. Since the

distance between the user and the bus stop is already known the unobtainable routes can be

excluded. The average walking speed is about 5 kilometers per hour. Slightly less for older

individuals and slightly higher for younger individuals7. Let‟s say that low is set at 2.5 km/h,

average is 5 km/h and fast is 7.5 km/h. If the bus arrives at the bus stop in 10 minutes and it

is 1 kilometers away it will only be useful for a fast walker.

The last option is to decide if the user prefers a short walking distance or the earliest possible

arrival time. Some suggestions might „survive‟ all the explained stages of exclusion so this will

help us rank according to the user‟s taste.

7.2 Testing

Developing mobile applications can sometimes be tricky. I‟ve encountered weird exceptions

while developing and some even weirder ones while testing. Most exceptions should be

caught, but it should go through a more rigoursly testing period before being available to the

public.

7 Pedestrian Walking Speed - http://www.usroads.com/journals/p/rej/9710/re971001.htm

http://www.usroads.com/journals/p/rej/9710/re971001.htm

An Intelligent Smartphone Application

42 of 58

7.3 Evaluation

A small focus group should perhaps be used while developing further. This can help in

finding exceptions and get general feedback from people who will use it. The questionnaire

given to each test user should at least include questions such as:

- Is it easy to use?

- Were the suggestions given smart? Give a specific example of when it was not.

- Did it return any errors? Give a specific example of when it did.

7.4 Extending functionality

As mentioned earlier in this paper, the lack of user input makes it difficult to narrow down

the suggestions provided to the user. By having the user set his own preferences, some

suggestions could be filtered out.

- How far are you willing to walk?

This could set the radius down to perhaps only include 1 or 2 bus stops even in areas with

higher concentrations of bus stops.

- What is your walking speed?

Since the application knows how far the user is from any given bus stop, it could exclude

suggestions which the user will not catch.

7.5 Removing ‘stupid’ suggestions

In one of the examples, there were a couple of outliers which should have been excluded,

but did not.

Query sent: 18.14
Id BusStopName BusNumber Time Duration Distance TotalTime Destination
1 Strandveien 3 1818* 6 264 10 Sentrumsterminalen
2 Strandveien 36 1820 42 264 48 Sentrumsterminalen
5 Strandveien 66 1828* 5 264 19 Sentrumsterminalen
6 Buran 6 1836* 8 462 30 Sentrumsterminalen

Figure 7.5 Example of „stupid‟ suggestion

The suggestions shown in figure 7.5 were presented to the user in example 5.6.1.1. The

second suggestion has a 42 minute bus travel and no one would prefer it. One simple way to

remove these types of suggestions is to look at the quickest (the suggestion with the shortest

total time, total time being now until arrival at destination) from the same bus stop.

Let‟s say that the smallest total time for „Strandveien‟ is 10 minutes (figure 7.5). Every

suggestion that starts at „Strandveien‟ should have a smaller total time than 10*2 = 20, in

other words: every suggestion provided at each bus stop cannot have a longer total time than

double of the quickest.

This is easily implemented and would remove any silly suggestions.

An Intelligent Smartphone Application

43 of 58

8. Implementation
A simple description of the actual implementation follows in this chapter. The components

and the most important methods are mentioned and described.

8.1 Application

The application consists of 5 main components: Controller, browser, formatter, calculator

and GUI.

Figure 8.1 Abstract view of the application

8.1.1 Controller

This component handles all the information flow and is in charge of communicating with the

user interface: It handles the events generated by button pushes etc and sets the text shown

to the user.

This component is also in charge of starting, maintaining the „Activity‟ and implementing

listeners.

Class Method Description

Controller onCreate() 1. Sets the layout.
2. Creates the list of bus stops
3. Initiates Google Maps
4. Creates Browser objects
5. Adds location listener for GPS
6. Adds button listener for requests

Controller onResume() 1. Sets the requirements for location listener.
(When to update the coordinates)

Controller partialsort() 1. Takes all the bus stops and sorts them
according to parameters(radius and max bus
stops)

MapOverlay Draw() 1. Draws the bus stop signs and pin (user) on
Google Maps

LocationListener onLocationChanged() 1. Runs the partial sort method
2. Updates the relevant points for MapOverlay
3. Zooms the map to the current user position

ButtonListener onClick() 1. Sends the relevant bus stops to the browser
2. Create route objects from BusTUC response
3. Requests the real-time arrival times from
browser

An Intelligent Smartphone Application

44 of 58

4. Sends the final solutions to the calculator
5. Displays the result

Figure 8.2 Description of the most important methods in the Controller component

8.1.2 Browser

This component handles all the internet traffic necessary to run this application. It has

general methods which send POST or SOAP requests and sends either the pure html or xml

to the formatter.

Class Method Description

Browser sendPOST() 1. Sets up the POST requests
2. Sends the POST requests

Browser sendSOAP() 1. Receives SOAP Header and message
2. Sends the SOAP message

Browser specificRequest() 1. Receives bus stop id and bus number
2. Calls sendSOAP() with SOAP Header and
message

Browser getBusStopList() 1. Sends the bus stop list SOAP message

Figure 8.3 Description of the most important methods in the Browser component

8.1.3 Formatter

The formatter component handles all encoding of outputs or decoding of inputs. It is

required to handle different languages (XML,JSON,HTML), but luckily the inputs are highly

predictable.

Class Method Description

GetGPS fCords() 1. Loads the XML file with the bus stop list
containing bus stop number and coordinates
2. Creates a list

Browser parseRealTimeData() 1. Receives the SOAP response
2. Extracts the JSON string from the XML and
creates an object

Browser parseHTTP() 1. Receives the suggestions from BusTUC
2. Extracts the JSON string from the HTML and
creates an object

Figure 8.4 Description of the most important methods in the Formatter component

8.1.4 Calculator

After all the data has been formatted correctly it gets sent to the calculator. This component

includes objects for routes and bus stops, as well as a ranking algorithm. The output from

this component gets sent to the Controller which displays it on the GUI.

Class Method Description

Route Constructor 1. Creates a route suggestion object with arrival
time, bus stop name, bus stop number, bus
number, travel time, destination, travel, timeset,
walking distance and total time.

Calculator createRoutes() 1. Retreives the JSON object containing route
suggestions

An Intelligent Smartphone Application

45 of 58

2. Creates an array of route objects

Calculator suggestRoutes() 1. Retrieves the route suggestion array
2. Ranks them

Calculator calculateTotalTime() 1. Finds the current time and calculates total
travel time

Figure 8.5 Description of the most important methods in the Calculator component

8.1.5 GUI

Notably the component which requires the most work before this application can be

considered commercially viable. It handles the general layout of the graphics as well the

different graphical components. The map, text field, button. The map gets „drawn‟ on by this

component after instructions from the controller.

9. Additional notes
This chapter contains more information about the underlying technologies, the actual

requests used in the real-time system and a more detailed description of development for

Android.

9.1 Real-time communication

Here are the actual SOAP requests and responses.

SOAP Request – GetBusStopList

POST /InfoTransit/userservices.asmx HTTP/1.1

Host: 10.0.2.52

Content-Type: application/soap+xml; charset=utf-8

Content-Length: length

<?xml version="1.0" encoding="utf-8"?>

<soap12:Envelope

xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:soap12="http://www.w3.org/2003/05/soap-

envelope">

 <soap12:Body>

 <GetBusStopsList

xmlns="http://xxxxxxx.xxx/infotransit">

 <auth>

 <user>string</user>

 <password>string</password>

 </auth>

 </GetBusStopsList>

 </soap12:Body>

</soap12:Envelope>

Figure 9.1 Requesting the bus stop list containing unique id numbers

In the SOAP request GetBusStopsList username and password needs to be specified. After

receiving the request, the server will send a XML response which contains the new unique id

numbers and the corresponding bus stop number.

An Intelligent Smartphone Application

46 of 58

SOAP Response – GetBusStopList

HTTP/1.1 200 OK

Content-Type: application/soap+xml; charset=utf-8

Content-Length: length

<?xml version="1.0" encoding="utf-8"?>

<soap12:Envelope

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:soap12="http://www.w3.org/2003/05/soap-envelope">

 <soap12:Body>

 <GetBusStopsListResponse

xmlns="http://xxxxx.xxx/infotransit">

<GetBusStopsListResult>string</GetBusStopsListResult>

 </GetBusStopsListResponse>

 </soap12:Body>

</soap12:Envelope>

Figure 9.2 Server respons to GetBusStopList

The information returned from the server is the list of unique id numbers and bus stop

numbers.

Unique ID Bus stop number

111111 16000001

111112 16000002

111113 16000003

…….. ………..

Figure 9.3 The list generated the GetBusStopList reponse.

The GetUserReal-timeForecast request for real arrival times.

SOAP Request – GetUserReal-timeForecast

POST /InfoTransit/userservices.asmx HTTP/1.1

Host: 10.0.2.52

Content-Type: application/soap+xml; charset=utf-8

Content-Length: length

<?xml version="1.0" encoding="utf-8"?>

<soap12:Envelope

xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:soap12="http://www.w3.org/2003/05/soap-

envelope">

 <soap12:Body>

 <getUserReal-timeForecast

xmlns="http://xxxxx.xxx/infotransit">

 <auth>

 <user>string</user>

 <password>string</password>

 </auth>

 <busStopId>string</busStopId>

 </getUserReal-timeForecast>

 </soap12:Body>

</soap12:Envelope>

Figure 9.4 Request for real-time data

An Intelligent Smartphone Application

47 of 58

The user, password and busStopId nodes require values.

The response from the real-time system:

SOAP Response – getUserReal-timeForecast

HTTP/1.1 200 OK

Content-Type: application/soap+xml; charset=utf-8

Content-Length: length

<?xml version="1.0" encoding="utf-8"?>

<soap12:Envelope

xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:soap12="http://www.w3.org/2003/05/soap-

envelope">

 <soap12:Body>

 <getUserReal-timeForecastResponse

xmlns="http://miz.it/infotransit">

 <getUserReal-

timeForecastResult>string</getUserReal-

timeForecastResult>

 </getUserReal-timeForecastResponse>

 </soap12:Body>

</soap12:Envelope>

Figure 9.5 Server response containing the actual arrival time of buses given bus stop

The real arrival times at a specific bus stop:

Bus number Arrival time

3 14:44

4 14:56

2 15:07

Figure 9.6 The real-time data

9.2 Android

One aspect of developing in android is the term „Activity‟. Activity is the window that is

currently active on the smartphone.

9.2.1 Activity

The activity (task) lifecycle is defined by 4 different states:8

- Active or running. The activity is in the foreground of the screen

- Paused. It has lost focus, but is still visible. The activity is considered alive, but can

be killed by the system in extreme low memory situations.

- Stopped. The application is no longer visible to the user, but retains all state and

member information. Generally killed when memory is needed elsewhere.

- Killed. The system can drop the activity from memory by either asking it to finish,

or simply killing its process. When displayed again, the program is completely

restarted.

8Android Activity - http://developer.android.com/reference/android/app/Activity.html

http://developer.android.com/reference/android/app/Activity.html

An Intelligent Smartphone Application

48 of 58

Figure 9.7 Activity life cycle

The MapActivity class (the applications‟ main class) contains some of these methods to make

sure the application behaves properly. A quick overview of the different methods follows:

- onCreate() : This method is called when the activity is first created. This is where the

application should bind data to lists, create views, etc.

- onStart(): This method is called when the user can see the activity.

- onResume(): This method is called when the activity interacts with the user. The

activity is at the top of the activity stack and input from user is available.

- onPause(): This method is called when a previous activity is about to be the focus of

the system. Here you can save data, stop animations etc.

- onStop(): This method is called when the activity is no longer visible to the user,

because another activity is covering it. Followed either by onRestart() or

onDestroy().

- onDestroy(): This method is called right before the activity is destroyed.

In this application

- onCreate() creates the views, sets the layout and binds the data from the bus stop

XML file to a String array. The string array which contains bus stop id, name,

latitude and longitude is then split so these values have their own string[x][y]

position. This method also starts the GPS location manager, which configures the

location service. An event listener for both location and button is created. This is

also were the unique id numbers are downloaded and stored.

An Intelligent Smartphone Application

49 of 58

- onResume() set the restrictions on how often the locationManager should request

location updates. In this project it checks if the position has changed more than over

one meter, every second. If the position fulfills the criteria set by location manager,

the location listener will trigger an event.

9.3 GUI

In this chapter a short description on how GUI modeling works on Android follows.

The GUI is defined by a hierarchy of View and ViewGroup nodes.

Figure 9.8 The view hierarchy 9

The view hierarchy and is expressed with an XML layout file unique (figure 11.11)10. Each

element in XML is either a View or a ViewGroup object (or a descendant thereof). View

objects are leaves in the tree and actual visible objects. ViewGroup objects are branches in

the tree and determine the layout of their leaves.

When implementing this view hierarchy as XML in the application, the result will look like

this:

Figure 9.9 Description of layout

9 View and Viewgroup -
http://developer.motorola.com/docstools/library/Basics_of_Event_Management/images/view_hier
archy.gif/
10 XML Layout - http://developer.android.com/guide/topics/ui/declaring-layout.html

http://developer.motorola.com/docstools/library/Basics_of_Event_Management/images/view_hierarchy.gif/
http://developer.motorola.com/docstools/library/Basics_of_Event_Management/images/view_hierarchy.gif/
http://developer.android.com/guide/topics/ui/declaring-layout.html

An Intelligent Smartphone Application

50 of 58

The LinearLayout node is the root and splits off into two leaves (TextView and MapView)

and one branch (RelativeLayout). The MapView is the visible map part at the bottom of the

window, TextView is the black area which contains the text and the RelativeLayout branch

contains two leaves (EditText and Button). The EditText is the input box which allows the

user to generate a query. The button actually sends the query. In this application the view

hierarchy is defined as such:

Figure 9.10 The applications view hierarchy

Layout file
<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 android:orientation="vertical"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent">

 <TextView

 android:id="@+id/myLocationText"

 android:layout_width="fill_parent"

 android:layout_height="wrap_content"

 android:text=""

 />

 <RelativeLayout

 android:id="@+id/widget61"

 android:layout_width="264px"

 android:layout_height="59px"

 android:layout_x="17px"

 android:layout_y="50px"

 >

 <Button

 android:id="@+id/Button"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Send!"

 android:layout_alignTop="@+id/eText"

 android:layout_alignParentRight="true"

 >

 </Button>

 <EditText

 android:id="@+id/eText"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Hvor vil du dra?"

 android:textSize="18sp"

 android:layout_centerVertical="true"

 android:layout_alignParentLeft="true"

 >

 </EditText>

 </RelativeLayout>

 <com.google.android.maps.MapView

 android:id="@+id/mapView"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent"

 android:enabled="true"

An Intelligent Smartphone Application

51 of 58

 android:clickable="true"

 android:apiKey="XXXXXXXXXXXXX"

 />

</LinearLayout>
Figure 9.11 The layout file for the application

One of the benefits Google‟s MapView is that it can be used as a canvas. The pin and bus

stop sign is drawn upon MapView to create a visual representation of the locations in

question. The icons used are located within the application package and represented as a

variable within the development environment. The only necessary operation before drawing

is translating the geographical coordinates to screen pixels.

9.4 Hardware and OS

9.4.1 Smartphones

Smartphones are defined as a cell phone that offers more connectivity and advanced

computing ability than a „regular cell phone‟11. With the ability to install and run more

advanced applications, smartphones can be thought of as handheld computers integrated

within a mobile telephone. These types of phones run a complete operating system which

provides a platform for application developers.

Figure 9.12 Sales of smartphones by operating system12

The demand for more computational power, larger screens and open operating systems has

made smartphones the dominant product in the mobile phone market.

11General information about smartphones - http://en.wikipedia.org/wiki/Smartphone
12 Research Canalys - http://www.canalys.com/pr/2011/r2011013.html

http://en.wikipedia.org/wiki/Smartphone
http://www.canalys.com/pr/2011/r2011013.html

An Intelligent Smartphone Application

52 of 58

The smartphone used in this project was HTC Wildfire. It runs Android OS 2.1 on a

Qualcomm MSM7225 528 MHz CPU, supported by 512 MB Read-only memory and 384

MB Random-access memory. Wildfire was chosen primarily because of its relatively low

price and full GPS support13.

Figure 9.13 HTC Wildfire

9.4.2 Android OS

Android OS is an open-source operating system initially created by Android Inc, but

purchased by Google in 2005. It is based on a modified Linux kernel and consists of Java

application running on an object oriented application framework on top of Java core

libraries. These core libraries run on Dalvik VM (register-based virtual machine) featuring

JIT compilation (just-in-time compilation. A method to improve the runtime performance of

computer programs by translating high-level language continuously).14 The core is generally

written in C and the user interface in Java. Some third party libraries are written in C++.

13 HTC Wildfire - http://www.htc.com/no/product/wildfire/overview.html
14 Dalvik VM - https://sites.google.com/site/io/dalvik-vm-internals/2008-05-29-Presentation-Of-
Dalvik-VM-Internals.pdf?attredirects=0

http://www.htc.com/no/product/wildfire/overview.html
https://sites.google.com/site/io/dalvik-vm-internals/2008-05-29-Presentation-Of-Dalvik-VM-Internals.pdf?attredirects=0
https://sites.google.com/site/io/dalvik-vm-internals/2008-05-29-Presentation-Of-Dalvik-VM-Internals.pdf?attredirects=0

An Intelligent Smartphone Application

53 of 58

Figure 9.14 The Android OS Architecture15

It allows for developers to write application programs that extend the devices‟ standard

functionality. The development occurs in Java, using Google‟s Java libraries.

Development on Android OS is quite popular and the official market for applications

(Android Market) has over 200,000 applications16 which extend the devices‟ standard

functionality. Developers must use Android software development kit (SDK), which

includes a comprehensive set of development tools. Some details on the Android debugger

are located in the Implementation chapter.

15 System architecture - http://androidteam.googlecode.com/files/system-architecture.jpg
16 Hugo Barro, Product management director, Android -

http://googleblog.blogspot.com/2011/05/android-momentum-mobile-and-more-at.html

http://googleblog.blogspot.com/2011/05/android-momentum-mobile-and-more-at.html

An Intelligent Smartphone Application

54 of 58

9.4.2.1 Libraries

Figure 9.15 The available libraries

Android includes libraries written in C/C++ used by different components of the Android

system. The functionality provided by these libraries can be used by developers through the

Android application framework. The primary libraries17 are:

- Surface Manager: handles access to the display subsystem and composites 2D and

3D layers of graphic from multiple applications.

- Media Libraries: support playback and recording of many image files, audio and

video formats, including MPEG4, H.264, MP3, AAC, AMR, JPG and PNG.

- SGL: underlying 2D graphics engine.

- FreeType: vector font and bitmap rendering.

- SQLite: lightweight relational database engine.

- 3D libraries: use either hardware 3D acceleration or the included, highly optimized

3D software rasterizer

- System C library: a BSD-derived implementation of the standard C system library

(libc), modified for embedded Linux-based devices.

The database (SQLite) was not used in this application.

9.5 Global Positioning System

9.5.1 General description

The Global Positioning System (GPS) is a satellite-based navigation system created by a

network of (originally) 24 satellites18. The satellites were controlled by the U.S Department of

Defense and GPS was originally intended for military applications19. The system provides

reliable location and time information as long as there is an unobstructed line of sight to four

or more GPS satellites. No matter what weather, hour of the day or where you are. In the

1980‟s the U.S Department of Defense made GPS available for everyone with a GPS

receiver.

The satellites circle the earth in a very precise orbit twice a day and sends signal information

to earth. This information is picked up by the GPS receivers who use triangulation to

17What is Android? - http://developer.android.com/guide/basics/what-is-android.html
18 General information about GPS - http://en.wikipedia.org/wiki/Global_Positioning_System
19 Trimble - http://www.trimble.com/gps/whygps.shtml

http://developer.android.com/guide/basics/what-is-android.html
http://en.wikipedia.org/wiki/Global_Positioning_System

An Intelligent Smartphone Application

55 of 58

calculate the user‟s exact location. Triangulation works like this20: The GPS receiver

compares the time a signal was transmitted by a satellite with the time it was received. This

difference allows the GPS receiver to calculate the actual distance to the satellite. When

combining these distance measurements from multiple satellites, the receiver can pin point

the user‟s position. The accuracy of the position will naturally increase with the amount of

available satellites. 3 satellites is enough to calculate a 2D position (longitude and latitude),

but with 4 satellites you‟ll be able to get the altitude as well.

The network of satellites is orbiting the earth at about 20,200 kilometers in the Medium

Earth Orbit. They make two complete orbits in less than 24 hours traveling at speeds of

roughly 11,300 km/h. They gather energy from the sun, but carry backup batteries onboard

in case of a solar eclipse.

Most receivers now have a parallel multi-channel design. 21This means that they have 12

parallel channel receivers which are quick to lock onto satellites and maintain strong locks.

They are considered extremely accurate even within urban environments with tall buildings.

The signals that satellites send out are called L1 and L2. These are low power radio signals.

L1 is dedicated for civilians and has a frequency of 1575,42 MHz in the Ultra High

Frequency (UHF) band. As mentioned the signals travel by line of sight, meaning they will

pass through obstacles like clouds and plastic but struggles more with solid objects such as

mountains and buildings. The signal contains 3 different elements. Ephemeris data, almanac

data and an identification code22. The ephemeris data contains important information about

the status of the satellite (healthy or unhealthy), current time and date. The almanac data

contains information about every satellite, showing the orbital information for all the

satellites in the system. The identification code indentifies which satellite is transmitting

information.

9.5.2 Cell phones and GPS

After September 11 2001, the demand for GPS technology in cell phones increased. The U.S

government pushed for implementing enhanced emergency calling which would show the

location of the person in distress. There are basically two different ways of locating a cell

phone. One is to use the towers and base stations which are arranged into a network of cells.

A cell phone contains a low-power transmitter that allows it to communicate with the nearest

tower. The base station then tracks your movement as you move from one cell to another by

monitoring your phone‟s signal strength. So even without a GPS receiver, the location of the

cell phone can be calculated based on its angle of approach to the cell towers, how long it

takes the signal to travel to multiple towers and the strength of your signal when it reaches

the towers. This is less accurate than GPS.

The cell phones with GPS usually have something called assisted GPS. This is a system

which can improve the startup time of a satellite-based positioning system. It does this by

using network resources to utilize the satellites faster as well as better in poor signal

conditions. Signals bouncing off buildings, walls or trees are examples of poor signal

20 How stuff works, Discovery - http://electronics.howstuffworks.com/gadgets/travel/gps2.htm
21NAV - http://www.navsoftware.com/info/how-gps-works/
22GPS Passion - http://www.gpspassion.com/hardware/explained.htm

http://electronics.howstuffworks.com/gadgets/travel/gps2.htm
http://www.navsoftware.com/info/how-gps-works/
http://www.gpspassion.com/hardware/explained.htm

An Intelligent Smartphone Application

56 of 58

conditions. This makes downloading the almanac and ephemeris data very difficult and time

consuming because the receivers will only get fragmented signals.

Assisted GPS uses data available from a network to:

1. Quickly acquire satellites

The network can supply orbital (almanac) data for the satellites to the GPS receiver, which

requires less transfer and quicker satellite locks. The network can also provide precise time.

 2. Help calculate the position.

The server always has a good satellite signal and a lot more computation power than the cell

phone. So it helps to calculate the position by comparing the fragmented signals it gets from

the cell phone, with the satellite signal it receives directly.

The A-GPS also helps devices because the computational power required by the GPS device

is reduced due to the fact that more calculations are done on the assistance server.

Cell phones also have the options to only use standalone GPS.

10. References
The sources used for the general knowledge of the underlying technologies are mentioned as

footnotes throughout the paper.

Android

- http://developer.android.com/

BusTUC

- http://www.idi.ntnu.no/~tagore/rapporter/bustuc.pdf

- Discussions with Tore Amble

Real-time system

- Information provided by AtB

11. Figures
The first number indicates the chapter.

Figure 3.1 Communication flow in the application 4

Figure 4.1 TransitGenie route suggestions 5

Figure 2.2 Trafikanten real-time window for a single station 6

Figure 2.3 Trafikanten application suggesting current position. 6

Figure 2.4 Suggestions derived from www.trafikanten.no 7

Figure 2.5 Trafikanten.no search bar 7

Figure 3.1 Query sent to BusTUC 8

Figure 3.2 BusTUC returning route suggestions 9

Figure 3.3 Requesting real-time arrival times. 11

http://developer.android.com/
http://www.idi.ntnu.no/~tagore/rapporter/bustuc.pdf
http://www.trafikanten.no/

An Intelligent Smartphone Application

57 of 58

Figure 4.1 Google Maps is used for this application 12

Figure 4.2 Difference in position after zooming out on the map 13

Figure 4.3 Bus stop list included in the application 14

Figure 4.4 Map for example 15

Figure 4.5 A version of BusTUC implemented at www.AtB.no 16

Figure 4.6 The name-value pairs of BusTucs input script 16

Figure 4.7 The five nearest bus stops within a 500 meter radius. 17

Figure 4.8 Communication flow: BusTuc query. 17

Figure 4.9 Reponse generated by BusTUC 18

Figure 4.10 Deriving the real-time data. 19

Figure 4.11 The list generated the GetBusStopList reponse. 19

Figure 4.12 Real-time data for a specific bus stop. 20

Figure 4.13 Example of route suggestions from BusTUC 21

Figure 4.14 Updated table with new arrival times and total travel time. The *
indicates a difference between the planed and actual (real-time) arrival times.

22

Figure 5.1 Overview 23

Figure 5.2 BusTUC input and output. 24

Figure 5.3 The list generated the GetBusStopList reponse. 24

Figure 5.4 Real-time system input and output 25

Figure 5.5 The actual location 26

Figure 5.6 The blue thumbnail which states „BUS STOP‟ represents ….. 26

Figure 5.7 The map zoomed out from initial scale. 27

Figure 5.8 The user typing in his wanted destination 28

Figure 5.9 Response list 28

Figure 5.10 Updated time with real-time data and air distance. 29

Figure 5.11 The updated results with total travel time. 29

Figure 5.12 The final result displayed 30

Figure 5.13 Transfer response 30

Figure 5.14 Result after „Nardo‟ query. 31

Figure 5.15 Query with time restriction 31

Figure 5.16 Response with time restriction 32

Figure 5.17 Result with time restriction 32

Figure 5.18 Actual position of user. 32

Figure 5.19 The picture on the left is focused east and right picture is focused east. 33

Figure 5.20 Data received from BusTUC 33

Figure 5.21 Suggestions filtered 33

Figure 5.22 Result presented to the user 34

Figure 5.23 Returned route suggestions 34

Figure 5.24 Updated with real-time data. No changes 34

Figure 5.25 Final result for Gløshaugen 35

Figure 5.26 Bus route suggestion for Dragvoll 35

Figure 5.27 Two available bus stops 36

Figure 5.28 Results returned from BusTUC 36

Figure 5.29 Final suggestion for Nardo 37

Figure 7.1 Start picture 38

Figure 7.2 Information about a specific bus stop 39

Figure 7.3 The different options available for the user 40

Figure 7.4 Preferences 41

Figure 7.5 Example of „stupid‟ suggestion 42

Figure 8.1 Abstract view of the application 43

Figure 8.2 Description of the most important methods in the Controller component 43

Figure 8.3 Description of the most important methods in the Browser component 44

http://www.atb.no/
satre
Highlight

An Intelligent Smartphone Application

58 of 58

Figure 8.4 Description of the most important methods in the Formatter component 44

Figure 8.5 Description of the most important methods in the Calculator component 44

Figure 9.1 Requesting the bus stop list containing unique id numbers 45

Figure 9.2 Server respons to GetBusStopList 46

Figure 9.3 The list generated the GetBusStopList reponse. 46

Figure 9.4 Request for real-time data 46

Figure 9.5 Server response containing the actual arrival time of buses given bus stop 47

Figure 9.6 Real-time data 47

Figure 9.7 Activity life cycle 48

Figure 9.8 The view hierarchy 49

Figure 9.9 Description of layout 49

Figure 9.10 The applications view hierarchy 50

Figure 9.11 The layout file for the application 50

Figure 9.12 Sales of smartphones by operating system 51

Figure 9.13 HTC Wildfire 52

Figure 9.14 The Android OS Architecture 53

Figure 9.15 The available libraries 54

