
TABuss: An Intelligent Smartphone
Application

Christoffer Jun Marcussen, Lars Moland Eliassen

December 20, 2011

1

Abstract

With the constant increase in smartphone sales, integrated sensors
and map navigation has now become available to the average user.
This allows for mobile applications to use the user’s context to pro-
vide more relevant information. An interesting use-case for such ap-
plications is a route information systems for buses.

This report covers the improvements made to Magnus Raaum’s
existing context-aware application for Android, made in 2011. The
application uses BusTUC, a reasoning-system for bus routes in Trond-
heim. By combining user context with BusTUC reasoning and real-
time data from AtB, the user-interaction is simplified, compared to a
standard information application.

The original Android application had the same basic functionality.
We have built on, and extended this functionality, improved the de-
sign, and made the application ready for release to the public. Based
on feedback from beta-testers, we have reason to believe that the im-
proved application suits the needs of typical bus travellers.

2

Contents

1 Introduction 6
1.1 Task Description . 6
1.2 Terminology . 6
1.3 Background and Motivation 7
1.4 Goals . 8

1.4.1 Reviewing and Re-implementing Raaum’s Application 8
1.4.2 Research of Similar Applications 8
1.4.3 Real-time Functionality 8
1.4.4 Artificial Intelligence 8
1.4.5 Improvement of The User Interface 9
1.4.6 Shifting to the MultiBRIS Server 9

2 Existing technologies 9
2.1 BusTUC . 9
2.2 The Real-time System . 10
2.3 Servers . 11
2.4 Android OS . 12
2.5 Android SDK . 12
2.6 Devices . 13
2.7 Maps . 14
2.8 Application .apk-files . 14
2.9 Developing Native Applications vs Web Applications 14

2.9.1 Web Applications . 15
2.9.2 Native Applications 16
2.9.3 Comparison . 16

2.10 Context Awareness . 17
2.10.1 Location-aware Computing 18
2.10.2 Definitions . 18

3 Method 20
3.1 Raaum’s BusTUC Android Application 20
3.2 Existing Solutions in Trondheim 20

3.2.1 Bartebuss . 21
3.2.2 Alf’s ByBuss . 22
3.2.3 Bussdroid . 22
3.2.4 Busstider . 22
3.2.5 BusBuddy API . 23
3.2.6 Summary of Existing Solutions in Trondheim 23

3.3 Extended Research . 24
3.3.1 Natural Language Applications 24
3.3.2 Real-time Bus Information 25
3.3.3 Summary of Extended Research 26

3

3.4 Testing . 27
3.4.1 Testing Raaum’s Application 27
3.4.2 Adjustments Made to Raaum’s Application 30
3.4.3 Testing BusTUC and The Real-time System 31

3.5 Finalising Raaum’s Application 32
3.5.1 Location . 32
3.5.2 Map with Bus Stops 33
3.5.3 User Feedback . 33

3.6 TABuss . 34
3.6.1 Development Framework 34
3.6.2 Architecture . 35
3.6.3 User Interface . 35
3.6.4 Context Awareness . 37
3.6.5 BusTUC and Natural Language 38
3.6.6 Real-time Functionality 38
3.6.7 Storage . 39
3.6.8 Display of Answers . 39
3.6.9 Optimisation . 40
3.6.10 Shifting Functionality to MultiBRIS’ Server 40

4 Results 41
4.1 Performance . 41
4.2 Optimisation with MultiBRIS’ Server 41
4.3 Screenshots . 42

4.3.1 Screenshot Descriptions 42
4.4 System Testing . 45
4.5 User Testing . 45

4.5.1 General Opinion . 45
4.5.2 Suggestions . 46
4.5.3 Implemented Suggestions 46
4.5.4 Conclusion . 47

5 Discussion 47
5.1 Advantages . 47
5.2 Improvements . 47
5.3 Answer to Research Questions 47

5.3.1 The Future of The Application 50

6 Future work 50
6.1 TABuss . 50

6.1.1 Known Bugs . 51
6.2 Future Research . 51

6.2.1 Speech Processing . 52
6.2.2 Context Awareness . 52

4

6.2.3 Intelligent Computations 53
6.2.4 Future Extensions of TABuss 53

6.3 BusTUC . 53
6.4 Real-time . 54

7 Acknowledgements 55

5

1 Introduction

This report is the final product by Lars M Eliassen and Christoffer Jun Mar-
cussen for the course TDT 4501, Department of Computer and Information
Science, NTNU, 2011.

1.1 Task Description

The task at hand was given by Tore Amble at IDI, NTNU:

FUIROUS - Fremtidens ultimate intelligente
ruteopplysningssystem.

BusTUC is a natural language bus route system for Trondheim.
It gives information about scheduled bus route passings, but has no
information about the real passing times. This is about to change, be-
cause AtB has installed GPS tracking of the buses, giving access to
real passing times and delays. Besides, with new smart phones arriv-
ing rapidly on the market, there are possibilities for GPS localisation
and connections to maps. The project shall take a broad view, and
consider all possible advanced concepts, resulting in advanced smart
phone applications.

1.2 Terminology

Explicit terms not covered by the following abbreviations are in this report
written in italic.

AtB Public transport agency in Trondheim.

HTML HyperText Markup Language, a markup language for formatting
web pages.

HTTP Hypertext Transfer Protocol, application protocol for distributed,
collaborative, hypermedia information systems.

IDI Department of Computer and Information Science, NTNU.

JSON JavaScript Object Notation, a lightweight data-interchange format.

KML Keyhole Markup Language, file format used to display geographic
data in an earth browser.

MultiBRIS Multiple-platform approach to the Ultimate Bus Route Infor-
mation System, system developed in parallel to TABuss.

6

PHP PHP is a general-purpose server-side scripting language originally
designed for web development to produce dynamic web pages.

SOAP Simple Object Access Protocol, protocol for exchanging information
in web services.

SMS Short Message Service, a text messaging service component of phone,
web, or mobile communication systems.

TABuss Tore Amble Buss, this project.

TUC The Understanding Computer, a reasoning system developed at IDI.
BusTUC is developed for bus route information.

XML Extensible Markup Language, a markup language for sharing struc-
tured data.

1.3 Background and Motivation

BusTUC[2] became publicly available to the inhabitants of Trondheim in
1998, based on time tables by the bus company Trondheim Trafikkselskap.
Since the commercialisation by LingIT1 in 2001, approximately one million
queries have been asked every year. Now hosted by AtB2, BusTUC can be
accessed through both the web and Short Message Service (SMS).

With the recent progress in smartphone technology, several bus route
information applications have become available. Here, we present TABuss,
an intelligent application developed to explore new possibilities within the
bus route information domain and to utilise more smartphone capabilities.
The aim is to close in on the concept of an ultimate intelligent bus route
information system.

TABuss is the result of continued development of a previous project[17].
It was initiated by Magnus Raaum, a former M.Sc student at the Depart-
ment of Computer and Information Science(IDI), NTNU.

1http://nyweb.lingit.no/nb/om-lingit/tuc
2https://www.atb.no/

7

1.4 Goals

The goals were based on their estimated time consumption and the time
available, both regarding reviewing Raaum’s project, and the implementa-
tion of new functionality.

1.4.1 Reviewing and Re-implementing Raaum’s Application

Raaum’s application[17] was not tested thoroughly. User testing is impor-
tant, to detect black-box3 errors. White-box4 was also performed and it high-
lighted several flaws leading to frequent crashes when using the applica-
tion. Testing had to be addressed before adding new functionality, and
should also be done before a future release.

1.4.2 Research of Similar Applications

There are several existing applications available using BusTUC and real-
time data. Research must be done to gather inspiration, and also to see
what the standards are, and what functionality TABuss should contain to
be competitive. Existing research performed in the domain of intelligent
route information systems should also be reviewed, to guide future devel-
opment.

1.4.3 Real-time Functionality

Real-time data was already introduced in Raaum’s application as a way
to improve the BusTUC answers. Real-time data can also be used to: E.g.
show the user real-time data for the bus stops closest to the his/her loca-
tion or any other bus stop. Real-time information itself is not within the
domain of artificial intelligence, but it can be used as a valuable resource in
intelligent systems.

1.4.4 Artificial Intelligence

The new artificial intelligence functionalities within TABuss’ scope, are mainly
related to different usages of BusTUC. In Raaum’s application, BusTUC
was accessed through web communication with a nested syntax. It is a
project goal to find alternative ways of handling both the user input and
the network communication.

Other interesting features to study are context and context awareness.
Possibilities in context awareness, starting with a formal definition of con-
text, are addressed Section 2.10.

3http://en.wikipedia.org/wiki/Black-box_testing
4http://en.wikipedia.org/wiki/White-box_testing

8

• Når går bussen fra Samfundet til Torvtaket?(Standard)

• When does the bus departure from Samfundet to Torv-
taket?(Standard)

• (Samfundet +n, Prinsen +n) til Torvtaket.(New)

• English translated version not supported.

Figure 1: Standard and new queries. The n represents walking distance (in
this case to Samfundet). This representation was discovered to not work
properly during testing, as different values for walking distance, did not
affect the results.

1.4.5 Improvement of The User Interface

The user interface in Raaum’s application was prototypic. The user inter-
face is important for the user experience, e.g: A user is more likely to use
applications that are easy to navigate and use. The average user might re-
ject an application after only a few seconds of use, if the user interface is not
aesthetically pleasing and intuitive. Therefore, an effort has to been made
to design a new user interface that is easy to navigate.

1.4.6 Shifting to the MultiBRIS Server

As mobile devices suffer from restricted hardware compared to stationary
devices, performing all the computations on the client-side can affect both
performance and battery power. It was therefore decided to shift all the
core functionality to an external server, MultiBRIS[5].

2 Existing technologies

In this section we describe the technologies used in TABuss.

2.1 BusTUC

The BusTUC natural language server accepts two forms of queries. One
using plain language sentences, referred to as the ”standard syntax”. The
second is a merged query format, referred to as the ”new syntax”. Both are
shown below.

TABuss uses both syntaxes, where the standard syntax requires a larger
amount of natural language input from the user. The user has to enter

9

Table 1: Bus stop and Real-time ID mapping. New real-time id is assigned
when the real-time server restarts.

Bus stop ID Real-time ID
16000001 111111
16000002 111112
16000003 111113
... ...

sufficient information in order for BusTUC to provide an intelligent text
answer. The new syntax allows merged queries. In addition to a plain
text answer, BusTUC also returns an object similar to a JSON5 object. The
text answer is not used by TABuss, since all the needed information can be
parsed from the returned JSON object.

An example of a returned JSON object is shown in Listing 1.

{"transfer":"false" ,"timeset":"false" ,"departures" : [{"
busstopname":"Studentersamfundet","busstopnumber":16010477 ,"
busnumber":5,"time":1139,"duration":11,"destination":"Dragvoll
"},{"busstopname":"H\o gskoleringen","busstopnumber":16010197 ,
"busnumber":5,"time":1141,"duration":11,"destination":"
Dragvoll"},{"busstopname":"Gl\o shaugen Nord","busstopnumber"
:16010333 ,"busnumber":5,"time":1143,"duration":9,"destination"
:"Dragvoll"},{"busstopname":"G\o shaugen Syd","busstopnumber"
:16010265 ,"busnumber":5,"time":1143,"duration":7,"destination"
:"Dragvoll"}]}

Listing 1: BusTUC result with new syntax

2.2 The Real-time System

The real-time system provides information on the actual arrival times of
all the buses. Queries and answers are sent and received using a SOAP6

interface to a server hosted by AtB. The only necessary input parameter is
a bus stop’s real-time ID. The real-time IDs can be retrieved from the same
server as a list that maps each bus stop ID to a real-time ID (see Table 1.
AtB updates this list from time to time, and an updated list is necessary in
order to query the correct real-time data. An example illustrating bus stop
ID to real-time ID mapping, is shown in Table 1.

A query results returns five next bus arrivals for the chosen bus stop.
The answer contains route numbers, planned arrival times, actual arrival
times and destinations. An example result of a real-time query is shown in

5http://www.json.org/
6http://www.w3.org/TR/soap/

10

Listing 2. Descriptions of the key nodes within the JSON object are shown
in Table 2.

{"total":5,"InfoNodo":[{"nome_Az":"AtB","codAzNodo":"16011265","
nomeNodo":"Gl\o sh","descrNodo":"1265 (Gl\o shaugen Syd)","
bitMaskProprieta":"","codeMobile":"1265 (Gl\o shaugen Syd)",
"coordLon":"10.4087","coordLat":"63.416311"}],"Orari":[{"
codAzLinea":"5","descrizioneLinea":"5","orario":"06/12/2011
12:25","orarioSched":"27/11/2011 12:20","statoPrevisione":"
Prev","capDest":"Dronningens gt. "},{"
codAzLinea":"52","descrizioneLinea":"52","orario":"06/12/2011
12:31","orarioSched":"27/11/2011 12:24","statoPrevisione":"

Prev","capDest":"Munkegata - M3 "},{"codAzLinea":"5","
descrizioneLinea":"5","orario":"06/12/2011 12:37","
orarioSched":"27/11/2011 12:30","statoPrevisione":"Prev","
capDest":"Dronningens gt."},{"codAzLinea":"5","
descrizioneLinea":"5","orario":"06/12/2011 12:48","
orarioSched":"27/11/2011 12:40","statoPrevisione":"Prev","
capDest":"Dronningens gt."},{"codAzLinea":"5","
descrizioneLinea":"5","orario":"06/12/2011 12:58","
orarioSched":"27/11/2011 12:50","statoPrevisione":"Prev","
capDest":"Dronningens gt."}]}

Listing 2: Real-time query result

Table 2: JSON nodes
Node name Description
nome _ Az Bus company providing the service
codAzNodo Bus stop ID
nodeNodo Shortened bus stop name
descrNodo Bus stop description
coord(lon/lat) Latitude/longitude for bus stop
Orari Contains info on buses passing the stop
codAzLinea Route number
orario Bus departure date and time(real-time)
orarioSched Scheduled departure
capDest Destination for bus/route nr

2.3 Servers

TABuss has used two servers during the development: busstjener.idi.ntnu.no
and furu.idi.ntnu.no. The server: furu.idi.ntnu.no is used in the stand-alone
application, while: busstjener.idi.ntnu.no provides the MultiBRIS service. In
table 3 and table 4 the specifications of the servers are listed.

11

Table 3: Server information for busstjener.idi.ntnu.no
Attribute Value
CPU 2x 5.2 GHz, VMware shared pool 7

Memory 4 GB dedicated
OS Ubuntu 11.04 (GNU/Linux 2.6.38-8-server x86_64)

Table 4: Server information for furu.idi.ntnu.no
Attribute Value
CPU 4x UltraSPARC IIIi 1.062, 1.28, 1.593 GHz
Memory 16 GB dedicated
OS Sun Microsystems Inc. SunOS 5.10, Generic January

2005

2.4 Android OS

Android8 is an operating system, originally developed by Google and the
Open Handset Alliance, with first release November 5, 2007. Android uses
a Linux based kernel containing drivers, with above layers consisting of
libraries and the Dalvik Virtual Machine (DVM)9, frameworks and the top
application layer.

As opposed to iOS10, Android is used by several manufacturers, the top
ones being HTC11, Samsung12 and Sony Ericsson13. Android is licensed
under Apache14, so different manufacturers can adapt their own distribu-
tions. This is similar to how Linux has become available in several different
versions like: SuSe, RedHat and Ubuntu.

2.5 Android SDK

The Android Software Development Kit (SDK) contains all the necessary
classes, packages and files, for developing on the Android platform. The
SDK is freeware, and it is available for Windows, Linux and Mac OS. The
SDK offers the possibility to target different Android versions, and also
provide access methods to device hardware such as the Global Position-
ing System (GPS), camera and accelerometer. Other features include: me-
dia support, database integration and optimised graphics (based on the

8http://www.openhandsetalliance.com/android_overview.html
9http : //en.wikipedia.org/wiki/Dalvik(so f tware)

10http://www.apple.com/ios
11http://www.htc.com/
12http://www.samsung.com/
13http://www.sonyericsson.com/cws
14http://www.apache.org/

12

Table 5: Specifications of the devices. Components such as GPS, WIFI and
3G capabilities are not listed, as these are standard on most smartphones
released in later years.

Spec Desire HD Incredible S
CPU 1 GHz 1 GHz
Android version 2.3.3 2.3.3
Read only memory 1.5 GB 1.1 GB
RAM 768 MB 768 MB
Screen res 480x800 480x800
SD-card slot yes yes

OpenGL ES framework15). TABuss targets the SDK-version 2.2 or newer.
For Android development, the Android SDK and Java are most com-

monly used tools. C or C++ code can also be integrated, through the An-
droid Native Developer Kit16 which can be seen as an add-on to the original
SDK.

A central concept in Android development is the activities17. An activity
can be described as a main-class, where a view can be attached. An appli-
cation can have several activities, which are managed by an activity stack.

2.6 Devices

Two devices were used in the development of TABuss: an HTC Desire HD
and and HTC Incredible S. These were chosen because Tore Amble pro-
vided the Desire HD, and one of the project members already had the In-
credible S.

The two devices have similar specifications (see Table 5). Both devices
are powerful, and can handle heavy computations. TABuss does not use
heavy graphics or algorithms, which means that devices with poorer spec-
ifications can also be used. A absolute requirement is that an SD-card is
present and can be used for storage.

15http://www.khronos.org/opengles/
16http://developer.android.com/sdk/ndk/index.html
17http://developer.android.com/reference/android/app/Activity.html

13

2.7 Maps

TABuss uses Google Maps18, where a free API key is necessary. As Android
is a product of Google, maps are easily integrated using the MapView19

package. This package provides a wrapper for the Google Maps API, and
is used to display maps, and also to add icons on the map20.

2.8 Application .apk-files

Application Package File(APK) is the file format Android uses for applica-
tion distribution and installation. It is the output from the compiler, and it
holds the source code, the resources and other assets, including the mani-
fest21 file. The manifest file provides a description of the application name,
the activities present and the permissions needed to execute. To install an
".apk", the application has to be developer signed for either debug or re-
lease.

2.9 Developing Native Applications vs Web Applications

When developing for mobile platforms, there are several technology de-
cisions to be made. An important one is regarding the choice to develop
native applications or web applications. Native development has in later
years been the main choice for platforms such as Android and iOS, as ear-
lier versions of HTML did not provide enough framework possibilities22.
Lately a new option has emerged, with the release of HTML523. Applica-
tions written in HTML5 and JavaScript24, have become the new competi-
tors to native applications. The following sections contain comparisons
between native applications and web applications, and the background for
the choice to use the native framework in TABuss. The reader is advised to
watch talks from the 2011 Google I/O conference25 for more information
on the difference.

18http://maps.google.no/
19http://code.google.com/intl/no-NO/android/add-ons/google-

apis/reference/com/google/android/maps/MapView.html
20http://code.google.com/intl/no-NO/android/add-ons/google-

apis/reference/com/google/android/maps/Overlay.html
21http://developer.android.com/guide/topics/manifest/manifest-intro.html
22http://www.w3.org/TR/html5-diff/
23http://dev.w3.org/html5/html-author/
24http://www.w3schools.com/js/
25http://www.youtube.com/watch?v=4f2Zky_ YyyQ

14

2.9.1 Web Applications

Figure 2: Building a web application

The basic definition of a web appli-
cation is: "having no ties to a spe-
cific operating system or device".
Web applications does not rely on
any platform-specific API or SDK.
They can be designed to resem-
ble native applications regarding
the user interface, and they can be
deployed on all major platforms.
There are many libraries available
for development: JQuery26 and
SenchaTouch27 being two. Perfor-
mance has also increased with the
releases of JavaScript engines such
as the Google V828.

Web applications can consist of web code only, or they can be a hybrid
between web applications and native code. A hybrid application runs the
web code, in addition to some parts implemented in native code. This na-
tive part can span from simple parts of the user interface, to larger amount
of back-end code. What separates a user interface written for web, from a
native one, is that the rendering is done by a browser. In native applica-
tions, the rendering is done by native graphic components in the device.

The HTML code within web applications can be compiled with a build
program. PhoneGap29 is a build API, which maps JavaScript calls to the
correct functionalities found in a native SDK. This results in a build file,
which is ready to be installed. These actions are depicted in Figure 1, with
Android used as an example.

26http://jquery.com/
27http://www.sencha.com/products/touch
28http://code.google.com/p/v8/
29www.phonegap.com

15

2.9.2 Native Applications

Figure 3: Building a native app

Native applications are developed
using platform-specific SDKs. Na-
tive applications have (through the
underlying operating system) di-
rect access to a device’s hardware.

The main disadvantage with
native development lies in the
meaning of the term. As appli-
cations are native, they are not
portable to other platforms. An
application developed for Android
cannot be directly run on iOS, or on

any other platform. Another disadvantage affecting the TABuss project, is
the access to the Google Maps API. The API on the Android platform is
accessed through a wrapper, which has several deprecated functionalities.
Figure 2 depicts the compilation of a native application, with Java as se-
lected programming language, and direct access to the SDK.

2.9.3 Comparison

Although web applications can perform many of the same functions as na-
tive applications, the end result is not always as satisfying. Web applica-
tions (as of today) perform slower than native apps, and large background
computing is not supported by build systems (such as PhoneGap30). Graph-
ical Processor Unit(GPU)-acceleration is available for iOS, but not for An-
droid versions older than 3.031, resulting in poorer performance. Still, it is
debatable how many applications that actually need performance at a top
level to function properly.

Hardware access has earlier been a problem for web, as the possibilities
were limited compared to native. Today, provided libraries give access to
components such as GPS, camera and compass, and limitations are less vis-
ible. However some are noticeable. An example is the usage of maps. For
iOS, rendering results are similar to native, while on Android, performance
is slower. ”Pinch zoom” is not possible either. Of the tested applications in
section 3.2, this was visible in Bartebuss. The map rendering on the iPhone
version of Bartebuss, performed much faster than on the Android version.
Additionally, problems occurred when turning the screen into/out of land-
scape mode. This problem has been addressed by MultiBRIS[5].

A fundamental advantage discussed at the Google I/O talks, in favour
of native apps, is related to how the web apps can utilise their strength,

30http://wiki.phonegap.com/w/page/36752779/PhoneGap Plugins
31http://developer.android.com/sdk/android-3.0-highlights.html

16

namely the paradigm:”code once, deploy everywhere”. This is only possi-
ble because all technologies based on the web are standardised. The native
applications promotor Reto Meier states that: ”Standardised technologies
will always trail innovation”. What this means is that while native devel-
opers will have direct access to innovative features, web applications may
have to wait until a standard is established. Meier continues with the argu-
ment that:”If we look at the recent years’ rapid development of new tech-
nology such as gyroscopes, multi-touch, tablets and so on, all are based on
innovations”.

To summarise, both development technologies have advantages and
disadvantages. Which one to use depends on the complete context. As
mentioned earlier with the argument of Java development being easier than
JavaScript, people often chose what they do best. Often, extensive technol-
ogy research is not possible given strict time limitations, and the learning of
a new programming language is not an option. Money also often plays an
important part, and the decision can be influenced by the budget. Another
interesting aspect is the cost versus profit evaluation. As deployment of an
application on multiple platforms may generate more income, it is not an
easy decision to make.

Both TABuss, and Raaum’s application, are developed as native appli-
cations(for Android). As in many other projects, further development of
a system often leads to continuing in the same track. Regarding the map
problems discovered in Bartebuss, the question is whether or not a web ap-
plication for this project actually provides full multi-platform functionality,
as its performance clearly is poorer than native applications.

Both of the authors are supporters of native apps, which also affected
our choice of technology. We see native applications as ideal for research
within mobile development. The end goal for research is seldom mass dis-
tribution, but proof-of-concept. This can in our opinion be realised by hav-
ing the best(native) tools available.

MultiBRIS[5] has chosen to investigate and use web technologies. As
a result, the FUIROS project may get a comparison of the two through the
development process.

2.10 Context Awareness

Context and context awareness have many definitions [15] [21] [20] [4](1997).
In the following sections we first describe location-aware computing, be-
fore we review some of the existing definitions of context, and check how
TABuss fits into these.

17

2.10.1 Location-aware Computing

Smartphones today are pervasive32 and personal. This means that they are
almost always turned on, and they are customised to each user. Raento,
Oulasvirta, Petit and Toivonen(2005) claimed that because of this, smart-
phones are well suited for context-aware applications[18].

Hazas,Scott and Krumm(2002) stated that: context awareness is at the core
of location-aware computing[10]. Location-aware systems use the user’s loca-
tion in functionalities, through a location-sensing technology. A location-
sensing technology is not restricted to GPS or WiFi, but also includes Ra-
dio frequency identification(RFID)33. RFID tags have a short transmission
range compared to GPS and WiFi. An example of RFID use in a context
aware application is to place tags in door entries, and track passing people.

A domain of context awareness is in tourist guide applications. Wang,
Sørensen, Brede, Servold and Gimre, in 2005, developed the context aware
Nidaros Framework[27]. Using this framework they implemented a tour
guide for the Nidaros Cathedral34, which uses the user’s location to dis-
play zones and nearby objects.

Because of the arguments stated by Raento, Oulasvirta, Petit and Toivo-
nen, we claim that the domain of bus route information systems is well
suited for context awareness. Such systems should be able to monitor the
user’s behaviour through sensor input, and use this data to provide route
suggestions or other information.

2.10.2 Definitions

Pascoe (1998) defined context to be “a subset of physical and conceptual
states of interest to a particular entity”[15], where the importance of the
involved states had to be determined. An example of an entity could be a
person.

Schilit and Theimer(1994) defined context by three factors: location, de-
scriptions of people in the immediate surroundings and objects with the
changes these objects go through[21]. This is a broad definition, with es-
sential criteria needed to be fulfilled, in order to be classified as context.

Ryan et al. (1997) defined context as the user’s location, environment,
identity and time[20]. Context is generalised by including a number of
physical and logical attributes, assumed to affect the user’s environment.
The definition has similarities to Schilit and Theimer’s 1994 proposal, in
terms of important factors. However, Ryan et al.(1997) introduces time as
an additional factor.

32http://en.wikipedia.org/wiki/Ubiquitous_computing
33http://no.wikipedia.org/wiki/Radio_Frequency_Identification
34http://en.wikipedia.org/wiki/Nidaros_Cathedral

18

Dey (1997) defined context in a more general formulation, and not by
enumerating a list of factors needed to be matched, in order to be called
context: ”context is any information that can be used to characterise the sit-
uation of an entity. An entity is a person, place or object that is considered
relevant to the interaction between a user and an application, including the
user and application themselves”[4]. This formulation simplifies declar-
ing functionalities and theories as context. If any part of information can
describe or help the user at a given time, it can be called context.

Our project uses context and context awareness in two different ways. The
former context uses the user’s location, while the latter context introduces
time and destination as additional factors. Schilit and Theimer’s(1994) and
Ryan et al.’s(1997) definitions, would consider the limited and changing
factors not to be adaptable to our purpose, as this would lead to forcing
our factors into their definitions.

Pascoe’s(1998) definition cannot be used, because of the lack of modu-
larity. If adding additional factors to determine context, their importance
would have to be determined: this is difficult, as situations change(what
is rated as an important factor in one setting, might be less important in
another).

Dey’s(1997) definition is the one best suited for our project. This is be-
cause of its generality, which defines a factor to be a part of the context,
as long as it concerns the user. It also allows for context to be either im-
plicit or explicit. This means that context information is both provided by
the user and automatically detected by the system. Dey also defines ”con-
text awareness” as the system’s response to changed context. It does not
determine whether the system should initiate an action automatically or
not(in our project, this fits). In a practical example from TABuss: the sys-
tem should not automatically start downloading the real-time data for one
or more stops, only because the user has changed his/her location. But in
an intelligent application, it is still an advantage to have the option to do
so.

As mentioned earlier, context and context awareness are used in two
different ways. Context is used during the general location tracking of the
user, and subsequent loading of nearby bus stops. This happens dynami-
cally as the user moves and can be seen on the map while moving: clickable
bus stop icons are added or removed as the user changes his/her location.
This is an example of implicit context: the user does not provide the loca-
tion information manually(location is automatically detected and tracked
by the system). However, a location technology such as GPS, WiFi or 3G
must be enabled.

The second way, which uses more factors(e.g. time and day), is de-
scribed in Section 3.6.4.

19

3 Method

In this section we first identify solutions similar to TABuss, found in Trond-
heim and in other parts of the world, before we describe the development
process.

At the beginning of the project, MultiBRIS[5] planned the implementa-
tion of a server hosting the application logic, including the communication
with BusTUC[2] and AtB’s real-time system. The development sections
first describe the implementation of TABuss without thinking about the
server functionalities. Then, the shifting to the server and necessary adjust-
ments are described.

3.1 Raaum’s BusTUC Android Application

BusTUC Android Application is the application that was created by Mag-
nus Raaum[17]. It displays a map with user and bus stop locations, and an
input field for entering the desired destinations. The system uses the clos-
est bus stops to a user’s location to search for possible routes, by sending
queries to BusTUC. Received departure suggestions are then updated with
real-time departure times, before they are shown to the user as plain text
suggestions.

3.2 Existing Solutions in Trondheim

The following sections describe existing applications, developed for getting
info about bus transportation in Trondheim. Table 3.2 gives a summarised

Table 6: Functionality in the tested applications.
Application Bartebuss Alf’s Bybuss Bussdroid Busstider
Bus oracle Yes Yes Yes Yes
Map Yes Yes No Yes
Favourites Yes No No No
History Yes Yes Yes No
Real-time Yes Yes Yes No

comparison of the tested applications. Below a brief description of each
criteria is given. The following sections describe all the tested applications.

20

BusTUC Whether the tested application uses BusTUC as a functionality

Map Whether the tested application integrate maps

Favourites Favourites functionality allows a user to store queries or spe-
cific bus stops for later use. A typical usage is to store a query with
an additional tag

History History defines earlier searched queries or selected bus stops, stored
in the internal or the external storage

Real-time Whether the tested applications provide real-time data.

3.2.1 Bartebuss

Bartebuss35 is developed in HTML5 by Rune M. Andersen, and uses the
BusBuddy API36. It has rich functionality, with options to store favourites,
find near-by bus stops, search for specific bus stops, use BusTUC and show
maps. Due to the use of HTML5, the map is not as responsive as in a native
application. The user interface on the other hand is intuitive and easy to
navigate but it might provide too many choices to the user.

Figure 4: Bartebuss

There are 5 ways to use the ap-
plication to find bus departures.
The first is through ”favourites”,
where several bus stops can be
stored(giving quick access). When
a favourite is selected, real-time
data for the bus stop is displayed.
The second way to use the applica-
tion is an option called ”near me”,
where the closest bus stops to a
user’s location are listed. Items
can be selected the same way as
in favourites. The third option is
”search”. Here, the user can search
for a specific bus stop, and view
real-time data. The fourth option is
BusTUC, where a text field is used
for query input. The last option is
to select a bus stop icon from the

map, which triggers a rewrite of real-time data. The map part was lagging
during testing on the Android platform, and hardly usable at all. Two other

35http://bartebuss.no/om
36http://busbuddy.norrs.no/

21

problems are the lack of pinch zooming and poor handling of landscape/-
portrait changes(as resizing causes problems). When tilted to landscape
mode, the zoom controls disappear.

3.2.2 Alf’s ByBuss

Alf’s ByBuss 37 is a native Android application, developed by Alf Simen
Sørensen. It also uses the BusBuddy API. It has a simple user interface, and
provides BusTUC functionality, with the option to include the user’s loca-
tion as the departure parameter. The application has a text field for entering
queries, and some additional functionalities in the menu (activated by the
menu button). The main component of the user interface is a map showing
clickable bus stop icons. The user can select the bus stop icons, with cor-
responding bus stop names, as departure and destination, and view real-
time data. Menu options include: ”Use my existing location”(which inserts
the user’s current location into the text field as departure input), ”reverse
search”(which switches the departure and destination stops), and a link to
the online bus schedules. Alf’s ByBuss appears more responsive than Barte-
buss during map navigation, but the user interface is not as polished.

3.2.3 Bussdroid

Bussdroid 38 is a native Android application by Ken Børge Viktil. Unlike
the two previously tested applications, it does not provide a map. The
functionality consists of real-time data for bus stops, a BusTUC query text
field and the possibility to store queries as favourites. The application is
responsive, and has a clean and intuitive user interface.

3.2.4 Busstider

Busstider 39 is a native Android application by Martin M. Syvertsen. Func-
tionality is limited to BusTUC, and a map displaying bus stop icons. Real-
time data is not available. There are two ways to use the application: 1)
Asking BusTUC with a natural language query, 2) selecting departure and
destination by clicking icons on the map. It has a simple and intuitive user
interface based on tabs, and is fairly responsive.

37http://bybuss.alfsimen.com
38market.android.com/details?id=com.ken.bussdroid
39http://www.a2bsoft.net/projects/busstider

22

Figure 5: From left to right: (1)Alf’s ByBuss, (2)Bussdroid, (3)Busstider

3.2.5 BusBuddy API

BusBuddy40 is an API developed by Roy Sindre Norangshol, aimed at the
retrieval of real-time data. It is a hobby project with the goal to minimise
the overhead of SOAP messages downloaded to the mobile devices. Both
Bartebuss and Alf’s ByBuss, use this API. All applications developed with
the BusBuddy API are available through GIT Hub41, as BusBuddy’s policy is
that development projects should be open source.

In the early stages of the project using this API was considered . How-
ever, the disadvantages lead to discarding of the idea. As it is a hobby
project, retrieving a license key was not easy. In addition, BusBuddy’s user-
name and password for access to AtB’s real-time system is not permanent.
AtB can retract this at any time. The process of retrieving new keys, would
have to go through the BusBuddy crew. By using the username and pass-
word provided by LingIT, this “middle man” operation is avoided. It is
also likely that AtB would renew the username and password quicker for
LingIT, than for a private operator.

3.2.6 Summary of Existing Solutions in Trondheim

All the tested applications for bus route information in Trondheim are al-
ready downloaded by several users, indicating that they have attractive
functionalities. For our project it was important to investigate what has to
be done to move the concept of a bus route information application to a
new level. And also to compare the different levels of artificial intelligence
in the apps.

40http://api.busbuddy.no/
41https://github.com/

23

Especially Alf’s ByBuss and Bartebuss are close to our goals: they use
BusTUC, maps and real-time functionality. Both Alf’s Bybuss and Bartebuss
integrate natural language through BusTUC, but aside from this, they do
not have any other functionalities involving artificial intelligence. Their
functionalities are based only on user input and menu navigations. The
main topic of our project is reducing user input. In Raaum’s application,
route suggestions were calculated based on the closest stops to the user’s
location, and were automatically updated with real-time departure times.
This is the core of the development of TABuss. Though the display of real-
time data when a user presses a bus stop icon is an important functionality,
we have to keep in mind the artificial intelligence aspects. This can separate
our project from Alf’s ByBuss and Bartebuss, and give us an upper hand
regarding market potential.

3.3 Extended Research

Even though there are several applications available in Trondheim for bus
route information, an expanded view including other cities and research
performed is more informing. As discussed in Section 3.2, aside from the
general use of BusTUC, no functionalities in the tested applications can
contribute to moving TABuss forward in the field of artificial intelligence.
This section describes research areas within bus route information systems,
with the main focus on intelligence through natural language, and the use
of real-time data.

3.3.1 Natural Language Applications

In intelligent route information systems, natural language has been ad-
dressed by different reseach papers[19][25][24][23].

Raux et al.(2003) developed a system called Let’s go, which uses speech
through phone calls as input, for returning route information[19]. The sys-
tem was developed for ”elderly and non-native English speakers”, and
provided information for the city of Pittsburgh. Speech was recognised
by comparison and retrieval of the closest match. Emphasis was on cre-
ation of a grammar model for spoken language, and to include an overall
generality regarding different structuring of sentences with the same mean-
ing. Through their work, Raux et al. identified several challenges with
speech processing and route information. The main challenge was that dif-
ferent users structured the same phrases differently, when referring to bus
stops or places. Hypothetically, assuming BusTUC has a similar up to date
speech system (TeleBuster42 is not in use), this system would have to be able
to infer correct mappings from spoken text, and also be able to extract con-
tent from text spoken with different dialects. As Trondheim is a city with

42http://www.idi.ntnu.no/ tagore/telebuster/

24

inhabitants from different areas of Norway, this could become a complex
operation.

Turunen et al. (2007)[24] (2006)[23] proposed a similar solution, Travel-
Man, developed for the city Tampere in Finland. TravelMan is an updated
version of StopMan[25](2006), which provided route planning. Input con-
sisted of locations or addresses, provided to the system by text or speech.
The user could also set personal preferences, such as exclusion of trans-
portation options, as TravelMan in addition to bus transportation, covered
metro and tram. Of other features, a guidance functionality for visually
impaired users was implemented, to provide what was referred to as an
”unbroken trip chain”. An unbroken trip chain was a successful trip, com-
pleted with full system guidance.

An interesting feature in TravelMan related to our project, is the use of
context and user location. The real-time guidance relies on location infor-
mation, which also could be used to infer departure addresses. A video of
TravelMan in use is available at YouTube 43

3.3.2 Real-time Bus Information

Early research focused on finding an optimal route. The Traveling Sales-
person Problem [3] is transferrable to route information, and several algo-
rithms have been proposed. An example is Robert J. Szczerba et al.’s (2000)
paper, which described an adaptation of the A*[9] algorithm, for finding
the optimal route in real-time[22]. Assuming bus route companies incorpo-
rate a similar feature when planning routes, an algorithm including traffic
information could give a real-time estimate of where the bus is at a given
time.

Maclean and Dailey’s MyBus(2000) predicts real-time arrival of buses
by using historical data, the bus schedule and an prediction algorithm[13].
This algorithm, based on Kalman filters [11], produced estimates, where
traffic and passenger information is used as noise, affecting the original
schedule.

Maclean and Dailey also published an article on a Mobile MyBus(2001),
which used communication through WAP[14]. This system gave users real-
time information based on received input. The input consisted of desti-
nation and a route number, sent by a URL request, and forwarded to the
MyBus server. Both were provided as digits as devices at that time did not
have any input mechanism similar to a computer keyboard. In our project,
this functionality can be compared to retrieving a real-time ID for a bus
stop, before sending a SOAP-request to fetch real-time data.

43http://www.youtube.com/watch?v=bPVAQtHtC3s

25

Figure 6: MyBus WAP

Today, buses have GPS-trackers
on-board, transmitting location in-
formation to a server. Real-time
data is updated at specific time in-
tervals and is fairly accurate. The
real-time service was introduced in
Trondheim by AtB. A similar ser-
vice is provided in Oslo44.

Ferris, Watkins and Borning’s
OneBusAway(2010) 45 focuses on
context awareness in addition to
the use of real-time data[6]. OneBu-
sAway uses the location of the user
to automatically display the closest

bus stops on a map, similar to TABuss. Context aware functionality proved
to be successful through user testing, where 93 per cent of the existing users
of OneBusAway reported that more concise information was provided.

What differs OneBusAway from TABuss, is that TABuss’ main query
functionality only needs the users destination as input. OneBusAway needs
to know both the departure stop and which route to select in order to reach
planned destination.

3.3.3 Summary of Extended Research

Both TravelMan and Let’s Go utilise speech recognition to provide route
information.TravelMan extended the concept even further by introducing
real-time guidance based on user location, and had features worth research-
ing for future functionality. It was shown through Turunen et al.’s work
that natural language has potential for mobile development and route in-
formation applications.

BusTUC has since its release become a popular choice in Trondheim.
As users have become familiar with the usage of natural language, a log-
ical next step could be to introduce speech. iPhone 4S has implemented
a system called SIRI46, which also contributes to familiarising people with
natural language.

Research on the usage of real-time information has shown progress;
from using estimated real-time, to actual real-time data. Maclean and Dai-
ley’s MyBus WAP version was used over 9000 times, in a time period be-
tween its release in September 2000-January 2001, giving an indication that
real-time route information on mobile devices is a promising field.

44http://trafikanten.no/
45www.onebusaway.org
46http://www.apple.com/iphone/features/siri.html

26

3.4 Testing

In this section we identify several existing problems that will be fixed in
this project, or in the extension projects in the spring 2012.

3.4.1 Testing Raaum’s Application

Raaum’s original source code compiled and ran ”out of the box”, and only
required a switch of the API-key, to get the Google Maps integration work-
ing. It crashes occasionally, when not reaching the BusTUC server, caused
by exceptions that are not caught in the source code. To test the application,
several queries were executed, and success rates and response times were
monitored. The response times varied between 20 and 40 seconds, which
was much slower than the applications reviewed in section ??. It is worth
mentioning that the 20-40 seconds monitored for a run includes computa-
tions performed with multiple bus stops. A query with one bus stop, took
5-10 seconds to perform on average.

Table 7 displays the time needed to perform five queries, with origin at
Gløshaugen and destination at Ila.

Table 7: Tested queries.
Run 1 2 3 4 5
Time BusTUC 18 sek 17 sek 19 sek 16 sek 19 sek
Time Real-Time 5 sek 7 sek 7 sek 6 sek 7 sek
Time Total 23 sek 24 sek 26 sek 22 sek 26 sek

The results show that the queries to BusTUC were the most time consum-
ing, while the real-time queries were much quicker.

Slow query runs were caused by the BusTUC server, located at Gløshau-
gen. The other applications tested, used servers hosted by Amazon47. The
Amazon servers are faster as a result of threading and the use of sockets,
performed by a Python script. The server at Gløshaugen uses a slower ap-
proach with a PHP-script that runs in the background. This script reads
queries from files, and writes queries and results to files. The Prolog side
of BusTUC checks these files at given intervals, and processes the queries.

The two different approaches give two different responses: to use the
BusTUC hosted by Amazon, only the standard BusTUC syntax(defined in
section 2.1) can be used, and the results are returned as text. The BusTUC
hosted at Gløshaugen returns a parseable JSON object, in addition to the
text, if the new BusTUC syntax is used. In Raaum’s application, the lat-
ter format was required for the real-time updates of route suggestions. An

47http://aws.amazon.com/ec2/

27

uncaught exception was thrown if the returned JSON objects contained er-
rors. As a remark, the returned JSON objects from BusTUC does not follow
correct JSON syntax. The JSON objects contain ”
” html-tags, which
have to be removed for a parser to be able to recognise the structure.

To benefit from using the faster Amazon servers, some adjustments
have to be made. The servers do not include JSON objects in their results,
and a direct swap is not an option as important information is lost when
using only the text answers. This JSON information includes bus stop IDs
and transfer details. A switch to the Amazon servers would also complicate
debugging. Debugging the server at NTNU can be done white box, as root
access is available. It is unlikely that we would get access to the Amazon
servers.

Figure 7: Bus stop icons

Raaum’s application uses an
XML-file containing: bus stop lo-
cations, bus stop names and bus
stop IDs, which does not contain
sufficient information: information
for several bus stops are missing.
Also, the list also only contains one
bus stop description per ”bus stop
group”. A bus stop group con-
sists of one or more bus stops with
the same bus stop name. This is
a problem in the extraction of real-
time data, as a unique bus stop ID
is necessary for each bus stop in a
bus stop group. Figure 7 illustrates
this problem: only one icon is dis-
played for each stop group.

Raaum’s application has two
sorting errors: one when the total
travel time is equal for more than
one route suggestion returned by
BusTUC, and one when the dis-
tances are equal to two or more bus

stops from the user’s location. The error source is the use of HashMaps48,
with total times or distances from the user’s location to bus stops as keys.
Keys in HashMaps are unique, because multiple equal keys overwrite the
previous mapped value. In the total travel time issue, this leads to an ex-
ception as one or more route suggestions are overridden. In the distance
issue,the error leads to a wrong display of bus stop icons on the map.

Raaum’s application occasionally crashes during parsing of real-time

48http://docs.oracle.com/javase/1.4.2/docs/api/java/util/HashMap.html

28

data. This happens because the wrong node is extracted for some numbers.
The extracted route numbers sometimes contain the letter ”N”, which in
turn causes an exception when parsed as an integer.

Queries with the new BusTUC syntax were meant to incorporate walk-
ing time to a bus stop in minutes. After testing, this was discovered to be
ignored in BusTUC’s reasoning. Time offsets may assure that unrealistic
route suggestions are dropped. But on the other hand, real-time data is
only available for bus departures in the ”near future”, and later real-time
departure times are equal to the scheduled time. Syntacticly, it is a chal-
lenge to add text in the nested query syntax. A working syntax was: (Sam-
fundet +2) fra Samfundet til Tiller etter n. This was reasoned by BusTUC as if
we wanted a bus departure after n.

Another issue is the handling of transfers, where two or more bus trav-
els are needed to reach a destination. Raaum’s application often suggests
routes where the transfer bus departs before the first bus has arrived. This
happens when the real-time data replaces the scheduled departure times
returned from BusTUC, and no further sanity checks are performed. Al-
though this does not cause an exception, the returned answers are unintel-
ligent.

The application crashes every time Lade or Ranheim is entered as input,
while Lademoen and Ranheim Stasjon works. Testing with the BusTUC web-
end and standard BusTUC syntax, works for all four. When the standard
BusTUC syntax is used, BusTUC provides the correct bus stops. For Lade,
this results in Lade allé. No reasoning happens when using the new BusTUC
syntax, except when a transfer is involved. BusTUC then maps the location
to the bus stop correctly. Two examples are the queries: (Gløshaugen nord
+2) til Lade, and (Torget +2) til Lade. The first query is successful, as a transfer
is necessary to get to Lade. The second query leads to an exception.

The list below summarises the errors and exceptions found and cor-
rected during testing and debugging. There was no handling of these ex-
ceptions in Raaum’s source code, but it was important for our future ver-
sions to introduce the necessary exception handling.

• No handling of wrong or empty input

• No handling of busy server

• No handling of empty query results

• Insufficient bus stop information

• Wrong sorting of route suggestions

• Wrong handling of routes involving transfers

• Wrong parsing of real-time data

29

• Wrong display of a user’s location

• No handling of missing internet location

3.4.2 Adjustments Made to Raaum’s Application

It was necessary to modularise the existing source code because Raaum’s
code structure relied on to many dependencies, making any modifications
difficult. Exception handling has also been addressed, for future develop-
ment and for user testing. When Raaum’s application was tested on An-
droid devices(unplugged from a development machine), no detailed ex-
ception description was provided to the user. The only feedback was: ”The
application has closed unexpectedly”. This needed to be improved because
the average user is not capable of accessing exception descriptions through
a debugger.

The HashMap issues were solved by re-implementing the sorting al-
gorithms, and choosing a more object-oriented solution. HashMaps are
fast when performing look-ups, but their usage did not fit this project.
An object-oriented solution also aided the separation of code into multi-
ple classes and activities.

The HTML answers returned by BusTUC contained both JSON objects
and text. The text answers were not used by Raaum’s application, and
should not be a part of the result returned from BusTUC. This is a BusTUC
related issue, and not within TABuss’ scope.

The transfer time issues were fixed by adding a validation after a route
suggestion was received. The solution was simply to calculate the user’s
arrival time at the second bus stop, and compare with the real-time depar-
ture time.

depTime1 = Departure time from the first bus stop
depTime2 = Departure time from the second bus stop
walkingTime = Estimated two minutes of walking time
travelTime = Travel time from the first bus stop , to the second

bus stop
if (depTime1 + travelTime + walkingTime < depTime2)

discard suggestion , and calculate a new route with updated
arrival time at the second stop

return suggestion

Listing 3: Real-time query result handling with logical soundness checks

An example BusTUC query for a new route, is: (Sentrum+2) fra Sentrum til
Ilsvika etter 1900).

30

3.4.3 Testing BusTUC and The Real-time System

The numbering scheme for bus stop IDs causes some problems: if there
are two or more stops in a group, they can be separated by the fourth last
digit in their IDs. This digit identifies whether passing buses are headed
towards or away from the city centre. If there are two stops, buses heading
towards the city centre pass the bus stop with 1 as the fourth last digit of
its bus stop ID. Buses heading away from the city centre then pass the bus
stop with 0 as the fourth last digit of its bus stop ID. An example is the stop
group at Ila:

• Buses heading towards the city centre: 16011192

• Buses heading away from the city centre: 16010192

Problems occur for stop groups which only have one stop. Rune An-
dersen49received emails from AtB, where it was explained that stop groups
with one stop were assigned a bus stop ID with 0 as the fourth last digit.
If we use Gudes gate as an example, figure 8 implies that passing buses
are headed away from the city centre(”fra byen”). However, a look-up in
with AtB’s route schedules shows that all buses pass Gudes Gate on a route
heading towards the city centre. A BusTUC query from sentrum to Gudes
gate suggests a route from sentrum to the end stop Asbjørnsens gate, and
then down to Gudes gate. Instead, the user could get off the bus on its way
to the end stop, and walk(100 m) to Gudes gate.

Another problem with BusTUC appears for queries with route 63. Then,
the same bus stop ID is returned regardless of the direction of the passing
buses. The tested queries were: Ila to Dragvoll and Ila to Ilsvika. Ila to
Buenget, which is in the same direction as Ilsvika, returned the correct ID,
as route 5 was returned instead of 63. Clearly, there are some inconsis-
tencies, which seem to only affect certain stops and routes, but which can
become problems when implementing new functionality. The project’s su-
pervisor(Rune) thought this occured as certain routes are ”circle” routes,
where buses only ever pass one stop in a stop group. However, for route
63, buses pass more than one of the stops in several of the stop groups. Still,
only one bus stop ID is stored in BusTUC’s knowledge base. This problem
further affects Raaum’s application’s real-time updates of the departure
times. Route suggestions are possibly updated with real-time departure
times for buses travelling in the wrong direction: the two queries: (Høgsko-
leringen +2) til Ilsvika and (Høgskoleringen +2) til Asbjørnsens gate, return the
same bus stop ID for route 63. Updating with real-time data returns equal
departure times.

49http://www.ntnu.no/ansatte/rune.andersen

31

Figure 8: From atb.no: Gudes gate, with wrong direction given

3.5 Finalising Raaum’s Application

Raaum’s application has several errors (see Section3.4.1), and finalising his
application was prioritised before the implementation of new functionali-
ties.

Figure 9: Query functionality

3.5.1 Location

The user’s location is retrieved through a position technology such as WiFi,
3G or GPS. The accuracy depends on the choice, as WiFi provides higher
accuracy than 3G. The reason for this, is partially controversial50: Google
scanned and stored MAC-addresses in the process of developing Google
Street View.

Raaum’s application has problems displaying the location of the user.
The marker used to display the user’s location moved when the user zoomed.
There is also no indication of how accurate a location fix is. This is solved

50http://www.wired.com/threatlevel/2010/05/google-street-view-cams/

32

by the implementation of an Android built-in overlay51, where a circle is
drawn to display the user’s location. The circle’s diameter is determined
by the accuracy of the location fix. Raaum’s application also does not give
the user any feedback if a location fix is lost.

When TABuss starts, it retrieves a location fix and does not proceed
until one is present. How long this takes is dependent on location tech-
nology, e.g Edge is likely to use more time than WiFi. If the location fix is
lost, a warning is given if the user tries to use functionalities dependent on
his/her location.

3.5.2 Map with Bus Stops

The displayed map is re-implemented to allow touch events, triggered by
pressing bus stop icons. The map is changed to use an ”ItemizedOverlay”
52, which the bus stop icons are added to. The XML-file containing bus stop
information is also replaced, and TABuss now uses two bus stop lists. One
contains information on all bus stops, and one only contains information on
one bus stop per bus stop group. The latter is used in the BusTUC query
functionality, where only a bus stop’s name is required. If we use the list
with information on all bus stops, duplicate bus stop names are included
in queries. This happens because bus stops within a bus stop group often
are located close to each other.

An example of the content in the bus stop lists is shown in table 8. Each
list element contains: The bus stop’s ID, the bus stop’s name and the bus
stop’s coordinates.

Table 8: Bus stop list
ID Name Latitude,longitude

16538544 Øie skole 10.254138,63.32273
16011292 Marcus Thranes vei 10.367198,63.35539
16011374 Ranheim idrettsplass 10.521225,63.42812
16010258 Anders Buens gate 10.429856,63.43846

...

3.5.3 User Feedback

An important part of the user experience is to get feedback when errors
occur, caused by either faulty user input or a system failure. A system
failure in Raaum’s application involves errors from BusTUC, the real-time

51http://code.google.com/intl/no-NO/android/add-ons/google-
apis/reference/com/google/android/maps/MyLocationOverlay.html

52http://code.google.com/intl/no-NO/android/add-ons/google-
apis/reference/com/google/android/maps/ItemizedOverlay.html

33

system and the application itself. In TABuss, feedback is returned to the
user both when actions are performed and when exceptions are caught:

• Progress bars for start-up operations

• Progress bars for query runs

• Error message for missing internet connection

• Error message for missing location fix

• Error message for missing mounted SD-card

• Error message for no result found for query

• Error message for empty input in text fields

3.6 TABuss

The following sections provide an overview of the development of TABuss.

3.6.1 Development Framework

The development of TABuss has followed Scrum53’s guidelines for iterative
development.

Figure 10: Activity overview

53www.scrum.org

34

3.6.2 Architecture

The development part focuses on making usage of the application as easy
as possible. By encouraging thumb-navigation, the map is reduced to an
extra feature. Raaum’s application runs only one activity, which also in-
cludes the map. This means map info is downloaded every time the appli-
cation runs. To avoid this, TABuss is divided into several activities, where
the top activity defines a home screen. Menu and button presses start other
activities, and the users can choose for themselves whether or not to use
the map.

Figure 11: Screenshots of Raaum’s application.

3.6.3 User Interface

The user interface in Raaum’s application consists only of the screen in Fig-
ure 3.6.2. Queries are sent and answers displayed in the top section of the
screen, while the bottom section displays the map.

One of the most important principles when designing a user interface, is
simple and intuitive usage. Extended functionalities require more screens,
and has to be solved carefully to achieve user friendliness.

According to [8], one of the challenges in mobile computing is the small
displays. Even though this article was written in 1994 and the size and res-
olution of mobile devices have increased since then, it remains a challenge.
While a laptop-computer has a 15 inch screen, the minimum requirement
for an Android device is 2.5 inches and QVGA resolution (240 × 320 pix-
els)54. To cope with the small screen sizes, the amount of elements in the
user interface is reduced to a minimum.

The acronym KISS (Keep It Simple, Stupid) applies well to inter-
face design. A simple, effective interface should be designed with the
users’ needs taking first priority. [16]

54http://source.android.com/compatibility/index.html

35

Figure 12: a) Raaum’s home screen, b) First draft, c) Final draft

The user interface is designed following the “KISS” and the “Less is more”
principles. We want to keep it as basic as possible, while still being aes-
thetically pleasing. Icons are not used as we want focus on the displayed
text.

We chose to use the colours from the AtB website55, as these colours
are associated with buses by the people in Trondheim. An early version
of the user interface had buttons resembling the LCD signs found on the
front of buses, but as the user interface in other features of the application
did not have a similar look, a more simplistic approach was chosen in the
end. Contrasting colours are used to make the text visible under various
lighting conditions.

The route suggestions in Raaum’s application are text based. This is
not a very good solution for handheld devices with small screens,and is
redesigned to show only the most important information, where intuitive
layout replaces unnecessary text.

Figure 13: The answer screen.

55www.atb.no

36

3.6.4 Context Awareness

Context is mainly extracted from the user’s location. The device’s location
listener automatically loads the bus stop objects(from the bus stop list) clos-
est to the user’s location, when a location change has been triggered. Real-
time data for these can be accessed from the map, or through a list available
in the menu. The closest bus stops also play an important part in the main
query functionality, where the user’s location determines which bus stops
are included as departure stops.

Figure 14: Context retrieval

To distinguish TABuss from the
many existing solutions, extra func-
tionality is added by giving the
user the option to let the applica-
tion guess where he/she is going.
A simplified version of case-based
reasoning [1] is implemented, by
logging each made query as a case.
These data are stored locally in a
database, where each case consists
of: The departing area, time of day,
day of week and destination. De-
parture areas are squares of 500 ×
500 metres, with defined area codes
stored in a separate table. When-

ever a new log item is created, a new area is created if the origin location is
not covered by an existing area.

To retrieve relevant cases, queries with similar origin and time are fetched
from the database. Similarity is implied by identical areas and somewhat
similar time of day. For now, +/- 2 hours is used. The retrieved cases are
rated by the euclidean distance between each case, and the current time
and weekday. The best matching destination is then presented to the user.
+/- for hours is used as finding a direct match is difficult. We want to also
include delayed bus departures, and bus departures from within a time
period.

When TABuss suggests a route, the user can respond by validating the
result. At the current moment positive user feedback triggers a query run,
while negative feedback has no effect.

The level of intelligence is fairly low, but is still higher than in function-
alities with direct look-ups, e.g ”if val.equals(another)”.

37

Figure 15: Database tables

3.6.5 BusTUC and Natural Language

To enhance the use of natural language in TABuss, new functionalities
which use BusTUC are implemented. Raaum’s application only requires a
destination as input, which limits the amount of natural language provided
to the system. New functionality is firstly the option to switch between the
BusTUC syntaxes, defined in section 2.1. While the new syntax assumes
that the user wants to depart from one of the closest located bus stops, the
standard syntax allows for user defined departure stops. Switching be-
tween the two BusTUC syntaxes can be done in the home screen menu.

The second part involves AtB’s text messaging service56. An SMS query
starts with ”rute”(route), followed by text, to 2027. This has been incorpo-
rated in two ways. If the new BusTUC syntax is chosen from the home
screen menu, TABuss uses the closest bus stop to the user’s location as the
departure stop. If the standard syntax is chosen, the user has to provide
both departure and destination input.

Figure 16: Web end communication

3.6.6 Real-time Functionality

Real-time data can be accessed from the map by pressing a bus stop icon, or
through the home screen menu. Both functionalities use the user’s location
to retrieve and display the n closest bus stops.

The retrieval of a bus stop’s ID is done by comparing the chosen bus
stop’s location with the locations of each of the n closest bus stops. If

56https://www.atb.no/spoer-bussorakelet/category228.html

38

Figure 17: SMS communication

matched, the found bus stop ID is used to extract the real-time ID. The
real-time ID is then sent via SOAP to the real-time server, which returns
the five next bus departures. The user can also search for bus stops that
are not among the n closest, by providing a bus stop name as input. This
option also lets the user select which direction to retrieve real-time data
for(from/towards the city centre), before a real-time query is sent.

3.6.7 Storage

The external and internal storages are used with SD-card external storage,
and a SQLite57 internal storage database. Favourite strings are stored on
the SD-card in text files in a ”favourite” folder. On application start-up,
these are retrieved and displayed in the home screen as query shortcuts.
The SD-card also stores a text file with all bus stop names. This list is used
for the auto-completion functionality in the input text fields.

The SQLite-database contains logged queries and a history of performed
real-time searches for bus stop names. The latter allows quick retrieval of
previously performed searches.

3.6.8 Display of Answers

The display of query answers is built from scratch. Route suggestions are
displayed in a list view, where touch events on a list element trigger a map
activity. This map activity shows: The user’s location, the location of the
selected departure bus stop and a walking route between the two locations.
As mentioned in section 2.7, Android does not provide direct access to the
Google Maps API, and no native functionality for plotting is available. Our
solution is to use KML-files58 for retrieval of walking coordinates between
locations. Plotting is done using an ”ItemizedOverlay”.

57http://www.sqlite.org/
58http://code.google.com/intl/no-NO/apis/kml/documentation/

39

3.6.9 Optimisation

To not the map as a main feature is an optimisation, as data traffic is min-
imised. Other implemented optimisations are according to the limitations
with handheld devices. Unnecessary object creations are avoided by using
static calls. Existing objects are also used across activities if possible. The ap-
plication will then check whether or not the needed objects exist, and only
create new instances if not. As activities over time can ”pop out” of the ac-
tivity stack59, initialised objects do not always exist for the entire application
lifetime.

Logical computations are put in asynchronous threads60. This parallelisa-
tion makes the start-up of the application faster, and also allows for progress
bars to be integrated. Threading is also introduced in the retrieval of real-
time data for route suggestions, where a computation time half of the orig-
inal is achieved. The application creates a new thread for each bus stop to
retrieve real-time data for, and sends all queries in parallel. The threads are
stopped and removed by a recursive call, when all queries have returned
answers.

3.6.10 Shifting Functionality to MultiBRIS’ Server

To shift core functionality to a separate server has advantages. During the
mentioned Google I/O talks referred to in section 2.9, Reto Meier empha-
sised the importance of energy conservation in applications because of bat-
tery constraints. As back-end computations are shifted to a server, CPU
cycles and battery power are saved. Another advantage is the reduced
amount of data traffic. In a query involving BusTUC and real-time updates
of the departure times, only one query has to be sent to the server. When
the application is used stand-alone, a query has to be sent to each.

However, there are disadvantages with the usage of servers. Adding
another layer introduces an error source in the communication between the
application and the server. BusTUC and the real-time system can be avail-
able, but if the server crashes, the application will not receive a response.
A server also has to be maintained and updated.

Advantages and disadvantages are further described by MultiBRIS[5].
TABuss benefits from having a modular code architecture, where sim-

ple type boolean values control whether to use MultiBRIS’ server. Results
are either way parsed into dedicated class objects ready for display.

59http://developer.android.com/reference/android/app/Activity.html
60http://developer.android.com/reference/android/os/AsyncTask.html

40

Figure 18: Queries with MultiBRIS’ server

4 Results

The following sections describe the development results of TABuss.

4.1 Performance

Raaum’s application suffered from poor performance. Queries took up to
40 seconds to complete, which is more than the average user is willing to
wait. With the use of MultiBRIS’ [5] server, queries rarely use more than
10-15 seconds to return.

4.2 Optimisation with MultiBRIS’ Server

An important aspect when developing an application that uses 3G is to
monitor data traffic. Table 9 and 10 display average results based on three
different tests performed with the application 3G Watchdog61. The tested
queries used Gløshaugen as the departure stop. The first destination was set
to Ila, the second to sentrum and the third monitored data traffic when only
real-time data was downloaded.

The results especially differ in the sending of data for the queries to
Ila and Sentrum. As MultiBRIS’ server handles all computations, only one
request is sent from the application to the server for each query.

Received data is also less, because only one result is returned. For the
same queries in the stand-alone application, data was received from both
BusTUC and the real-time system. There is also a significant reduction of
downloaded data for the real-time query, because only a bus stop ID is sent
from the application, and a JSON object is returned.

61https://market.android.com/details?id=net.rgruet.android.g3watchdog

41

It is difficult to replicate the exact same query scenarios when doing
comparisons, but as the server handles both computational operations(queries
to BusTUC, and real-time updates of departure times), and minimises over-
head provided by SOAP messages, we can conclude that less data is sent
and received.

The stand-alone application in addition downloads a list mapping bus
stop IDs to real-time IDs, on each start-up. This results in an average 400
kb of data, and is in MultiBRIS handled by the server.

Table 9: Data Usage without MultiBRIS’ Server

Query Ila Sentrum Real-time
Data sent 5,5 kB 8 kB 4 kB
Data received 6,1 kB 4,4 kB 4,5 kB

Table 10: Data Usage with MultiBRIS’ Server

Query Ila Sentrum Real-time
Data sent 2 kB 2 kB 800 B
Data received 3,5 kB 1,5 kB 3,5 kB

4.3 Screenshots

4.3.1 Screenshot Descriptions

1. Start menu where text buttons represent shortcuts stored on the de-
vice’s SD-card.

2. Application menu. Menu elements are translated to English below.

3. The answer screen with results from a HTTP query with the new syn-
tax. The displayed routes are the results of a BusTUC query with
real-time updated departure times. In parenthesis, walking distance

Table 11: Translation of menu elements
Norwegian English
Legg til ny Add a new bus stop shortcut to the home screen
Logg Logged queries
Gå til kart Proceed to map
Innstillinger Settings
Om denne appen About this application

42

Figure 19: From top left: (1)start screen, (2)menu, (3)answer screen, (4)text
answer, (5)map for real-time. Displaying user location and closest bus
stops, (6)real-time for stop,(7)list of real-time stops, (8)Walking route,
(9)Bus stop search

43

to the bus stop is shown. ”Overgang” indicates the resulting route
suggestions include a transfer.

4. The answer screen with results from a text message query with the
standard syntax. Both the text message and HTTP functionality with
standard syntax, will output results to this answer screen.

5. Map displaying user location. The closest bus stops are represented
by clickable bus stop icons.

6. Result of a real-time data query. The query is either initiated by menu
access, or by a bus stop icon press.

7. List of the closest bus stops to the user’s location, accessed from the
menu. On registered clicks, real-time data is downloaded for the se-
lected bus stop. Each element also displays route direction, either
towards or away from the city centre.

8. Map displaying walking route to a departure bus stop suggested by
query results.

9. Search functionality for bus stops not in range of the user’s location.
If the search returns a bus stop, real-time data can be viewed. The
list of elements below the input field contains recently searched bus
stops. These are stored in a SQLite database.

Figure 20: From left to right: (1)guess based on context, (2)autocomplete,
(3)settings

1. Suggestion from TABuss, based on stored cases. The bottom pop-up
suggests a route, while the above dialog prompts for validation.

44

2. Autocomplete suggestions, retrieved based on the two letters entered
in the input field. If clicking a suggestion, a query is run with the
chosen suggestion as the departure stop.

3. The settings screen, where options are: delete logs, adjust number of
bus stops to be included in queries with the new syntax, adjust num-
ber of bus stops to be displayed on the map, adjust search radius for
bus stops and an option to switch between new and standard Bus-
TUC syntaxes.

4.4 System Testing

TABuss has been tested before, during and after development. Most errors
affecting core functionality were fixed during the testing of Raaum’s appli-
cation. Other errors were detected during runs, by running queries with
different inputs, and also by adjusting the settings parameters. Testing was
mainly done with the ”Eclipse Debugger62”, which displays error traces if
exceptions occur. Our goal regarding error rate was not to achieve zero
percent. With the project’s time limitations, this would be too optimistic.
Instead we decided to do testing continuously during implementation, fix
what we could, and identify possible error sources for future reviewing.
An example of a performed test was during the implementation of the er-
ror messages a user can be presented. Different scenarios were designed
for the application to throw exceptions: Unmount of the SD-card after ap-
plication start-up, disconnection from a network and lost location fix.

Testing without the Eclipse debugger was done by travelling routes
suggested by the application. Detected exceptions were stored on the test
devices’ SD-cards, and reviewed when connected to a development ma-
chine.

4.5 User Testing

A simplified user test was performed to get feedback of TABuss’ functional-
ities. An extensive user test was not conducted because of time limitations,
and issues with permission for public release of the application.

All of the test subjects were Trondheim inhabitants, and experienced
bus travellers.

4.5.1 General Opinion

The general user opinion indicated that the application was easy to use.
However, some users experienced difficulties during installation, as their
devices did not meet the original SDK requirements(2.3).

62http://www.eclipse.org/

45

It was clear that the users appreciated our prioritising of user interface.
Positive feedback was received on both the colour combinations and the
layout. Most users preferred the application functionalities detached from
the map, and feedback suggested the map should only be an add-on.

Users found the query functionality to be useful. The main functional-
ity with the new BusTUC syntax was seen as interesting. Accustomed to
BusTUC with standard syntax, not having to provide the same amount of
text was a time-saver. It was subsequently easier for the users to blame the
system if an erroneous answer was returned, as user input was limited.

The real-time data functionality for the closest bus stops was a function-
ality found quick to access and use. This especially applied to the real-time
functionality accessible from the home screen, as this required less naviga-
tion than through the map.

4.5.2 Suggestions

All users requested a more extensive feedback from the system, when er-
rors occurred. Errors such as: A missing internet connection and no loca-
tion fix, had up to this point been covered by a general error feedback.

For the query functionality, users requested the possibility to use the
standard BusTUC syntax for queries not involving the closest located bus
stops. This was not an option at the current development stage. Another
suggestion was a ”settings”-screen, allowing the user to set properties such
as the number of bus stops to use in queries.

4.5.3 Implemented Suggestions

When solving the installation problems some users had, a memory bug
was discovered on Android 2.2. The loading and parsing of bus stop lists
needed to be re-implemented, as a memory overflow occurred. The list
used in Raaum’s application[17] contained 498 elements, while the new
lists each contains over 1000. After researching this error, a possible er-
ror source was found on a debugging forum 63. One forum user posted
that he did not get his application to work with >505 elements. If correct,
this explains why this was not detected during Raaum’s project. A bug re-
port had been filed to Google regarding this issue. The re-implementation
consisted of manually parsing the XML-files, instead of using Android’s
built-in parser.

For the system feedback request, additional error messages were added.
This included checks for internet connection, mounted SD-card and loca-
tion fix. The usage of the standard BusTUC syntax was also implemented.
The last added suggestion was a settings functionality, which lets the user
set different properties within given boundaries.

63http://stackoverflow.com/occuring

46

4.5.4 Conclusion

The user’s opinions were divided in the choice between the BusTUC query
functionality and only real-time functionality. A possible reason may be
speed, as the BusTUC query functionality during user testing was not opti-
mised. Another reason may be the limitations some users experienced with
the new BusTUC syntax.

It is difficult to draw a concise conclusion after a narrow user test, but
the feedback we received from the target users was valuable. We received
implementation suggestions, information on errors and an indication that
TABuss suited the needs of bus travellers.

5 Discussion

5.1 Advantages

We are satisfied with the development process, including the learning of
new technology aspects involving Android. There were no major prob-
lems during development, and research progressed in parallel. The imple-
mentation of new features was done in iterations, resulting in a functional
application for every demo.

5.2 Improvements

Development was delayed due to unavailability of the source code from
the Raaum’s application[17]. In retrospect, we should have been more ag-
gressive towards retrieval. Due to tragical circumstances there was also
a switch of supervisors. This happened at an unfortunate time, as deci-
sions had not yet been made regarding task descriptions. Whether this
lead to less functionality being implemented is uncertain, as development
progressed rapidly when the source code eventually was received.

The shifting of functionality to MultiBRIS’ server [5] caused some dupli-
cate programming, as MultiBRIS began the implementation of server func-
tionalities in parallel to our development. While not visible in the running
of TABuss, parts of the source code providing the same functionalities, is
written separately by both groups.

5.3 Answer to Research Questions

Reviewing the defined goals, we claim that all have been fulfilled.
Raaum’s application[17] has been thoroughly reviewed and tested, and

all obvious bugs have been fixed. This was done before any new func-
tionalities or major changes were implemented. While the time estimates
regarding duration was exceeded, the goal is still considered to be reached.

47

None of the research papers regarding natural language directly af-
fected development, as the purpose was to facilitate for future work. The
articles found and analysed represent a good foundation.

The implementation of a new user interface was an important goal to
reach. The resulting user interface is satisfying, and the feedback received
from users support the graphical choices made. Doing design with usabil-
ity in mind was given a considerate amount of resources, as it was impor-
tant that an acceptable suggestion was finalised within given time.

For the actual development, all planned functionalities involving us-
age of real-time data were implemented, including searching and storing
possibilities.

The standard syntax for BusTUC queries was also implemented. Hope-
fully, users will prefer the new syntax, but both syntaxes are still avail-
able.Together with the text messaging service, covering usage without an
internet connection, natural language queries can now be sent to BusTUC
in three different ways.

The server shifting proved to be successful. While TABuss still works
as a stand-alone application, computational gains are achieved, especially
during start-up. The loading of bus stop lists has been reduced, and the
loading of the Real-time ID list has been removed. The time estimated for
shifting functionality was about the same as the actual time spent. The
shifting is considered to be permanent at this point. Future development
should continue to utilise the server, as more functionality developed client-
side would put further restraints on the underlying resources.

It was concluded during research of existing solutions in section 3.2,
that Bartebuss and Alf’s ByBuss were comparable applications to TABuss. As
Rune M. Andersen has been available as a resource through the develop-
ment process, Bartebuss has mainly been used for comparisons. Compared
to Bartebuss, TABuss’ functionalities are more focused on user location and
context awareness. In our opinion, intelligence is what separates TABuss
from Bartebuss, and also from the other test subjects for Trondheim. We
claim that in order for an intelligent bus route information application to
actually ”be intelligent”, the natural input source is context data. Whether
TABuss can be classified as ”better” is unsure, as Bartebuss has been devel-
oped over a longer period of time, and been through more extensive user
testing. Still, we feel TABuss represents a more complex approach, with
market potential, as no other applications have the exact same functionali-
ties.

We discussed in Section 2.9 the advantages and disadvantages with na-
tive and web development, and stated that both of the project members
prefer native. In retrospect we are satisfied with our technology choice.
Compared to Bartebuss, a technology difference is in the storage function-
alities. For Bartebuss to work cross-platform and also through a regular

48

browser, ”web storage” through ”local storage” is used64. The size limit of
local storage depends on which browser is used, but is no bigger than 10
MB(Internet Explorer). TABuss uses the devices’ external storage, where
the size limit depends on the size of the mounted SD-card, which normally
can store gigabytes of information. While not necessary in the current ver-
sion of TABuss, future extensions could need more storage space than 10
MB. The storage limitation of local storage also affects the iOS version of
Bartebuss, where the internal storage optimally is used instead(external
storage not available).

The map problems in web applications deployed on the Android plat-
form are avoided in TABuss, where the map is much more responsive. Na-
tive development also allows for pinch zooming, which is an important
feature when navigating.

The use of activities utilise the devices’ screen sizes, because the same
information does not have to be displayed at all times(can instead navigate
between activities). TABuss also binds the devices’ buttons to functionali-
ties such as the home screen menu, which also contributes to minimise the
amount of displayed information.

Although web applications can be deployed on multiple platforms, na-
tive applications provide, in our opinion, the best user experience for An-
droid and our domain. We prefer to rather develop a competitive applica-
tion for a specific platform, than to deploy a ”working” solution to more. It
has to mentioned that this is given today’s web application performance on
Android. Future SDK updates will benefit web application development
and improve the browser rendering65. The problem is that older devices
will not receive these updates, and it will also take time for newer devices
to get them. The releases to newer devices almost always have to wait until
the different manufacturers have adapted their own distributions. Devel-
opers will then have a dilemma on which SDK versions to target, and which
users to exclude.

TABuss does not represent a complete solution or the ”holy grail” for
intelligent route information applications. It represents a contribution, and
a motivation for others to do future development. We have illustrated pos-
sibilities with mobile development and artificial intelligence and, together
with MultiBRIS’ server[5], developed a working system. TABuss differs
from other applications providing bus route information in Trondheim,
and has not at this point any competitors regarding the level of artificial
intelligence.

64http://en.wikipedia.org/wiki/Web_Storage
65http://www.sencha.com/blog/galaxy-nexus-the-html5-developer-scorecard/

49

5.3.1 The Future of The Application

The future of the application is to be decided by the department. The con-
cept of an intelligent bus route information system will most likely continue
to be pursued during next semester’s masters thesis. However, the direct
involvement of TABuss is unsure.

6 Future work

6.1 TABuss

TABuss has not been thoroughly user tested after its recent updates. A
detailed user test will elucidate problems concerning both aesthetics and
functionality, better than random bug reports from just a few users. Opti-
mally, this should be done before TABuss is uploaded to the Android Mar-
ket.

A functionality that is missing is dynamic switching from using Multi-
BRIS’ server to using BussTUC and the real-time server directly. The in-
tention is to switch if MultiBRIS’ server experiences problems. Basic im-
plementation should be relatively easy, as all the functionality exists for
manual switching. More advanced implementations could be similar to the
Spectra system developed by Flinn, Soyoung Park and Satyanarayanan[7].
Spectra monitors resource usage during operations, and uses this to decide
whether to perform operations locally, with a remote server or through a
hybrid solution. In TABuss this would mainly concern the queries’ time
consumptions, and a choice to switch to stand-alone computations if the
server is too busy.

The bus stop lists should reside on the server. Data should be down-
loaded to the application on start-up, and only if there are any changes
since the last startup. As bus stop IDs and bus stop names are regularly
updated by AtB , managing the lists on the server prevents the user from
having to download a new version of TABuss each time a change occurs in
the list.

We were made aware of an SMS API text messaging service located at
IME 66. Shifting to this could be an option for students to save some money
on behalf of the department during debugging.

The functionality for guessing a user’s intended destination is incom-
plete, and only a little testing has been performed. Continued development
should strive for getting correct suggestions most of the time. A high suc-
cess rate is both intelligent and user friendly. In order to achieve a high
success rate the "simplified" case-based reasoning described in Section 3.6.4
will have to be extended.

66http://boost.com

50

To further utilise the advantages of native development, widget func-
tionality could be implemented. An idea is to have a widget displaying in-
formation on the closest bus stop to the user’s location. If the user chooses
to access the widget, the widget itself could provide some information or
trigger the start-up of the actual application.

Another interesting field is Near Field Communication(NFC)67. NFC is
based on RFID standards, and can be used to set up ad-hoc68 networks.
Typical usages include instant messaging services and games. A usage in-
volving TABuss could be to integrate an RFID tag in every bus stop, and
trigger display of real-time data when the user approaches.

6.1.1 Known Bugs

When downloading of real-time data the returned JSON objects from AtB’s
real-time system sometimes contains nodes with the wrong date, while the
time is still correct. This does not affect the display of departure time,
only the display of additional information on minutes to departure. The
value grow erroneously large, as the wrong dates lead to wrong calcula-
tions. The real-time system is also unstable around midnight as it does not
return JSON objects formatted similarly to the ones returned during day-
time. In detail, the nodes containing departure times are missing. Both of
these bugs are present in the real-time server, and will have to be addressed
by AtB.

Another bug is in the retrieval of the closest bus stops, and the distance
to them (in metres). The built-in Android algorithm for calculating distance
between two locations returns the air distance in metres. An optimal solu-
tion would be to use the walking distance: air distance disregards physical
objects that may be blocking the way. A possibility is to use KML-files, as
described in Section 3.5.2.

The application has (on a few occasions) continued to run in the back-
ground when it should have exited. This may indicate that there is a need
for a more careful exit process.

For the query functionality with BusTUC, TABuss sometimes cannot re-
turn an answer when the user is located in a specific area in the city centre.
This problem occurs on the server, and is handled as any other exception
by TABuss.

6.2 Future Research

This section identifies future research areas of FUIROUS and TABuss.
67http://en.wikipedia.org/wiki/Near_field_communication
68http://en.wikipedia.org/wiki/Wireless_ad-hoc_network

51

6.2.1 Speech Processing

IDI has a speech-extension to BusTUC(TeleBuster),but there is no certainty
to whether future development of this extension provides the best possible
solution.

TravelMan(2007)[24] (2006)[23] is an interesting system because of it’s
speech processing and route guidance. A goal could be to create a similar
prototype, and compare with other implementations including TeleBuster.

Architecturally, it is important to decide which parts of the system should
perform the speech processing. Integrating the functionalities on Multi-
BRIS’ server will minimise application computations and contribute to a
modular solution. Application side implementations also has its advan-
tages, such as sending small parsed texts across HTTP instead of sending
large sound files.

While TABuss has explored the opportunities of involving smartphones,
another area of research is the the extension of functionality to users with
only regular cell phones. TABuss already utilises SMS for communication
with BusTUC, and a speech recognising module could involve a simple
calling interface. The predecessor to TravelMan, StopMan[25](2006), used
a calling interface to provide route information, and could together with
IDI’s TeleBuster be a natural starting point.

6.2.2 Context Awareness

TABuss uses location data as context input. An extension is to use more
sensors than only the location sensor. Raento, Oulasvirta, Petit and Toivo-
nen(2005) developed the system ContextPhone[18]. ContextPhone uses four
sensors: location, user interaction, communication behaviour and physical
environment. This means that besides from location information, Context-
Phone monitors: what actions the user performs, calls and SMSs and sur-
rounding devices.

For TABuss, this sensor information could be used to introduce context
awareness to the user interface. The age differences between potential tar-
get users is large, and an adaptive user interface could be a solution. The
user interface could through sensors track the user’s actions, register some
trends and then adjust visibility and availability accordingly. An alterna-
tive may be in the direction of the work performed in 2010, by Kolekar, San-
jeevi and Bormane[12]. They proposed an adaptive user interface solution
with the use of feedforward artificial neural networks69 and backpropaga-
tion70 to learn the user’s behaviour.

The tracking of user trends could also be used to perfect route sugges-
tions. People of different ages have different levels of mobility, and have

69http://en.wikipedia.org/wiki/Artificial_neural_network
70http://en.wikipedia.org/wiki/Backpropagation

52

different walking speeds. This has been addressed by Vieira, Caldas and
Salgado(2011), in their proposed system UbiBus[26]. UbiBus considers dif-
ferent people’s and vehicle’s mobility, and other factors than can affect a
bus departure. An interesting idea is for AtB to contribute to such function-
alities in order to improve route suggestions. Buses have installed cameras,
and could be used to monitor how crowded a bus is. This could prove ben-
eficial for handicapped people, or people with small children, who need
seats or at least clear floor area.

6.2.3 Intelligent Computations

In Section 6.1, the Spectra system was mentioned. For TABuss to use a sim-
ilar approach, resource usage has to be monitored. An algorithm imple-
mented on MultiBRIS’ server could then be used to make the actual choice,
on whether TABuss should run queries as a stand-alone application, or to
use MultiBRIS’ server.

It is also possible to implement computations based on monitoring re-
sults client-side, in TABuss. Monitored data for runs could be stored on
the device as cases, and a case-based reasoning implementation could re-
trieve the best matching ones. An artificial neural network approach is also
possible, where the system makes decisions based on learnt information.
Training could be done over a number of runs, for TABuss to learn which
operations to perform locally, and which to perform through MultiBRIS’
server. An example is a standard BusTUC query: if the monitored battery
power is low, TABuss should opt for server computations to minimise CPU
cycles. However, if the server is busy(caused by a high traffic load) TABuss
has to view earlier runs in order to find the best solution.

6.2.4 Future Extensions of TABuss

A future extension could be to integrate TABuss into a tourist application.
The Trondheim Guide71 is an intelligent travel guide which already imple-
ments some bus information. This information is limited, and we could
not find any information on arrival/departure times. Another alternative
is City Explorer72, which is a framework for city exploration.

6.3 BusTUC

Future work on BusTUC involves researching other solutions for intelligent
route information. As BusTUC is the only available candidate in Trond-
heim, there are no available comparisons. One specific task would be to do

71www.trondheim.no/app
72http://www.sintef.no/Projectweb/UbiCompForAll/Results/Software/City-

Explorer/

53

research on similar systems, and to develop comparable prototypes. Ex-
pansion of BusTUC outside of Trondheim, to cities of different sizes and
number of inhabitants, is also an exciting option. If BusTUC turns out to be
the best solution, a goal could be to establish it as a standard for bus route
information in Norway.

6.4 Real-time

AtB has planned the implementation of SIRI73. SIRI is a CEN standard74

XML-protocol for the retrieval of real-time data. In Oslo, Trafikanten has
made the StopMonitoringRequests75 publicly available through a JSON API.StopMonitoringRequests
offer the same functionalities as AtB’s real-time system offers today, with
real-time departure times of buses. By using a JSON API the overhead pro-
vided by SOAP-messages is avoided, which means less data needs to be
transferred.

In the ”Experts in teamwork”76 subject in 2011, one of the project mem-
bers participated in a project aimed towards the use of the SIRI standard.
We were then made aware of AtB’s plans, but also that delays already had
occurred, and most likely would continue to occur. Keeping these delays
in mind, TABuss’ real-time functionalities should be more modularised.
As AtB had no accurate answer for when the SIRI implementation would
be finalised, a modularised application could benefit from a ”plug-and-
play” solution. TABuss would then not have to re-implement functionali-
ties when the SIRI implementation is finalised, but simply swap.

An ultimate goal should be for all bus companies to use the same stan-
dards. This would aid the development of bus route information systems,
because adaptation to more cities would be simplified. When AtB has im-
plemented the SIRI standard, real-time data for two major cities in Norway
use the same standard. In addition has Bergen begun a real-time data trial
period, with GPS trackers installed on trams77. It may therefore be reason
to believe that future real-time data implementations in other cities will fol-
low the SIRI standard, which would simplify a future version of TABuss to
be adapted to several cities.

73http://www.kizoom.com/standards/siri/
74http://www.cen.eu/cen/pages/default.aspx
75http://www.kizoom.com/standards/siri/schema/1.4/examples/exs_stopMonitoring_request.xml
76http://www.idi.ntnu.no/grupper/sos/eit2010/
77http://labs.trafikanten.no/2011/3/1/sanntid-paa-bybanen-i-bergen.aspx

54

7 Acknowledgements

We would like to thank our supervisors Björn Gämback and Rune Sætre
for guidance and support. Rune has especially been a valuable resource
to have, both because of his knowledge of the BusTUC system, and his
general interest in mobile application development. We would also like to
thank our beta-testers: Jirka Konietzny, Trond Bøe Engell, Jostein Klakegg,
Ola Hast, Marita Gjerde, Håvard Axelsen and Morten Fornes.

References

[1] A. Aamodt and E. Plaza. Case-based reasoning: Foundational issues,
methodological variations, and system approaches. AICom - Artificial
Intelligence Communications, 7, 1994.

[2] Tore Amble. Bustuc: a natural language bus route oracle. In Proceed-
ings of the sixth conference on Applied natural language processing, ANLC
’00, pages 1–6, Stroudsburg, PA, USA, 2000. Association for Computa-
tional Linguistics.

[3] David L. Applegate. The Traveling Salesman Problem: a Computational
Study, page 1. Princeton University Press, 2006.

[4] Anind K. Dey and Gregory D. Abowd. Towards a better understand-
ing of context and context-awareness. In In HUC ’99: Proceedings of
the 1st international symposium on Handheld and Ubiquitous Computing,
pages 304–307. Springer-Verlag, 1999.

[5] Trond Bøe Engell and Runar Andersstuen. Multibris: -a multiple-
platform approach to the ultimate bus route information system for
mobile devices. Master’s thesis, NTNU, December 2011.

[6] Brian Ferris, Kari Watkins, and Alan Borning. Onebusaway: Location-
aware tools for improving public transit usability. IEEE Pervasive Com-
puting, 2010.

[7] Jason Flinn, Soyoung Park, and M. Satyanarayanan. Balancing perfor-
mance, energy, and quality in pervasive computing. In In Proceedings
of the 22nd International Conference on. Distributed Computing Systems,
pages 217–226, 2002.

[8] George H. Forman and John Zahorjan. The challenges of mobile com-
puting. Computer, 27(4):38–47, April 1994.

[9] Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. Correction to "a
formal basis for the heuristic determination of minimum cost paths".
SIGART Bull., pages 28–29, December 1972.

55

[10] Mike Hazas, James Scott, and John Krumm. Location-aware comput-
ing comes of age. Computer, 37:95–97, February 2004.

[11] R.E. Kalman and R.S. Bucy. A new approach to linear filtering and
prediction problems. Journal of Basic Engineering, 82(1):35–45, 1960.

[12] S.V. Kolekar, S.G. Sanjeevi, and D.S. Bormane. Learning style recog-
nition using artificial neural network for adaptive user interface in e-
learning. In Computational Intelligence and Computing Research (ICCIC),
2010 IEEE International Conference on, pages 1 –5, dec. 2010.

[13] S.D. Maclean and D.J. Dailey. Mybus: An advanced public transporta-
tion system based on the us tcip standard. Proceedings of the Seventh
Annual World Congress on Intelligent Transport Systems, November 2000.

[14] S.D. Maclean and D.J. Dailey. Real-time bus information on mobile
devices. In Intelligent Transportation Systems, 2001. Proceedings. 2001
IEEE, pages 988 –993, 2001.

[15] J Pascoe. Adding generic contextual capabilities to wearable comput-
ers. International Symposium on Wearable Computers, 2:92–99, 1998.

[16] John A. Quarantillo. Gui kisses: Tips and strategies for interface de-
sign. SUGI, 24, April 1999.

[17] Magnus Raaum. An intelligent smartphone application. Master’s the-
sis, NTNU, 2010.

[18] Mika Raento, Antti Oulasvirta, Renaud Petit, and Hannu Toivonen.
Contextphone: A prototyping platform for context-aware mobile ap-
plications. IEEE Pervasive Computing, 4:51–59, 2005.

[19] Antoine Raux, Brian Langner, Alan W Black, and Maxine Eskenazi.
Let’s go: Improving spoken dialog systems for the elderly and non-
natives. In in Eurospeech03, 2003.

[20] N. Ryan, J. Pascoe, and D. Morse. Enhanced reality fieldwork: the
context-aware archaeological assistant. In V. Gaffney, M. van Leusen,
and S. Exxon, editors, Computer Applications and Quantitative Methods
in Archaeology (CAA 97), Oxford, 1997.

[21] Bill N. Schilit and Marvin M. Theimer. Disseminating active map in-
formation to mobile hosts, 1994.

[22] Robert J. Szczerba, Peggy Galkowski, Ira S. Glickstein, and Noah Ter-
nullo. Robust algorithm for real-time route planning. IEEE Transac-
tions on Aerospace and Electronic Systems, 36(3), July 2000.

56

[23] Markku Turunen, Jaakko Hakulinen, and Anssi Kainulainen. Evalu-
ation of a spoken dialogue system with usability tests and longterm
pilot studies: Similarities and differences. In In Proceedings of Inter-
speech 2006, 2006.

[24] Markku Turunen, Jaakko Hakulinen, Anssi Kainulainen, Aleksi
Melto, and Topi Hurtig. Design of a rich multimodal interface for
mobile spoken route guidance, 2007.

[25] Markku Turunen, Topi Hurtig, Jaakko Hakulinen, Ari Virtanen, and
Sami Koskinen. Mobile speech-based and multimodal public trans-
port information services, 2006.

[26] Vaninha Vieira, Luiz Rodrigo Caldas, and Ana Carolina Salgado. To-
wards an ubiquitous and context sensitive public transportation sys-
tem. International Conference on Ubi-Media Computing, 0:174–179, 2011.

[27] Alf Inge Wang, Carl-Fredrik Sørensen, Steinar Brede, Hege Servold,
and Sigurd Gimre. Development of location-aware applications the
nidaros framework, 2005.

57

	Introduction
	Task Description
	Terminology
	Background and Motivation
	Goals
	Reviewing and Re-implementing Raaum's Application
	Research of Similar Applications
	Real-time Functionality
	Artificial Intelligence
	Improvement of The User Interface
	Shifting to the MultiBRIS Server

	Existing technologies
	BusTUC
	The Real-time System
	Servers
	Android OS
	Android SDK
	Devices
	Maps
	Application .apk-files
	Developing Native Applications vs Web Applications
	Web Applications
	Native Applications
	Comparison

	Context Awareness
	Location-aware Computing
	Definitions

	Method
	Raaum's BusTUC Android Application
	Existing Solutions in Trondheim
	Bartebuss
	Alf's ByBuss
	Bussdroid
	Busstider
	BusBuddy API
	Summary of Existing Solutions in Trondheim

	Extended Research
	Natural Language Applications
	Real-time Bus Information
	Summary of Extended Research

	Testing
	Testing Raaum's Application
	Adjustments Made to Raaum's Application
	Testing BusTUC and The Real-time System

	Finalising Raaum's Application
	Location
	Map with Bus Stops
	User Feedback

	TABuss
	Development Framework
	Architecture
	User Interface
	Context Awareness
	BusTUC and Natural Language
	Real-time Functionality
	Storage
	Display of Answers
	Optimisation
	Shifting Functionality to MultiBRIS' Server

	Results
	Performance
	Optimisation with MultiBRIS' Server
	Screenshots
	Screenshot Descriptions

	System Testing
	User Testing
	General Opinion
	Suggestions
	Implemented Suggestions
	Conclusion

	Discussion
	Advantages
	Improvements
	Answer to Research Questions
	The Future of The Application

	Future work
	TABuss
	Known Bugs

	Future Research
	Speech Processing
	Context Awareness
	Intelligent Computations
	Future Extensions of TABuss

	BusTUC
	Real-time

	Acknowledgements

