
MultiBRIS: A Multiple Platform Approach to
the Ultimate Bus Route Information System for

Mobile Devices

Runar Andersstuen, Trond Bøe Engell

December 21, 2011

Abstract

We describe MultiBRIS, a multipleplatform approach to the ulti-
mate bus route information system for mobile devices. The system is con-
text aware, which means that users only need to tell the system where
they wish to go, and the system takes care of the rest. The user is
presented with a list of possible routes he or she can take to reach the
desired destination. The results are also shown on a map that makes
finding the bus-stops very easy. This functionality is made available
through an application that can be run on multiple platforms, with a
minimal amount of data transfer and calculation needed on the client side.

A state-of-the-art survey for existing public transport information
systems was performed. Based on the results, we decided how to best
make use of the existing technology in order to create the MultiBRIS
system described here.

The prototype system that was created consists of two parts, the
MultiBRIS server and the MultiBRIS client. The client has a minimal
amount of business logic implemented. It focuses instead on the inter-
action with the user and facilitates multiple platform possibilities , us-
ing technology like HTML5, PhoneGap and Sencha Touch. The MultiB-
RIS server handles most of the business logic and communicates with
external services.

Finally, we present ideas on how to future develop and expand
the system so it can reach beyond Trondheim and incorporate more
functionality with help from the field of artificial intelligence.

1



Contents

1 Introduction 5
1.1 Terminology and Abbreviations . . . . . . . . . . . . . . . . . 5

2 Goals and Methods 9
2.1 State-of-the-Art Survey . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Technologies and Design . . . . . . . . . . . . . . . . 9
2.1.2 Existing Applications . . . . . . . . . . . . . . . . . . 9

2.2 Prototype System . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Collaboration with Project TABuss . . . . . . . . . . . . . . . 10

3 State of the Art Survey 11
3.1 Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1.1 The Age of Smartphones . . . . . . . . . . . . . . . . . 11
3.2 Existing Applications in Trondheim . . . . . . . . . . . . . . 15

3.2.1 "Bussorakel" . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2.2 Bartebuss . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.3 Busstider . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.4 Alf’s ByBuss . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.5 Bussdroid . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.6 BusApp Trondheim . . . . . . . . . . . . . . . . . . . . 18
3.2.7 Bussruter . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.8 Bussøye . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.9 Comparison Charts . . . . . . . . . . . . . . . . . . . . 19

3.3 Existing Applications in Other Parts of the World . . . . . . 20
3.3.1 Google Transit . . . . . . . . . . . . . . . . . . . . . . . 20
3.3.2 OneBusAway . . . . . . . . . . . . . . . . . . . . . . . 22

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Prototype Client 24
4.1 Development Technologies . . . . . . . . . . . . . . . . . . . 24

4.1.1 HTML 5 . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.1.2 CSS 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.1.3 JavaScript . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2 Deployment Technologies . . . . . . . . . . . . . . . . . . . . 27
4.2.1 PhoneGap . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2.2 Appcelerator Titanium Mobile . . . . . . . . . . . . . 28
4.2.3 Rhodes . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.3 Conclusion: Deciding which Technologies to Make Use of . 29

2



5 Prototype Server 29
5.1 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.2 Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.3 The Main Service . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.3.1 Migrating the Application Logic to the Server . . . . 31
5.3.2 Interacting With BusTUC . . . . . . . . . . . . . . . . 32
5.3.3 Main Service Interface . . . . . . . . . . . . . . . . . . 32

5.4 The Real Time Service . . . . . . . . . . . . . . . . . . . . . . 34
5.5 The Logging Service . . . . . . . . . . . . . . . . . . . . . . . 35
5.6 Server Optimisation . . . . . . . . . . . . . . . . . . . . . . . . 37

6 New Web-Interface for BusTUC 37
6.1 Challenges with the Previous BusTUC Web-Interface . . . . 37
6.2 The New Web-Interface . . . . . . . . . . . . . . . . . . . . . 38

7 Results 40
7.1 Physical Servers . . . . . . . . . . . . . . . . . . . . . . . . . . 40
7.2 The Client Application . . . . . . . . . . . . . . . . . . . . . . 40
7.3 The Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.4 The New BusTUC Web-Interface . . . . . . . . . . . . . . . . 44

8 Discussion 45
8.1 Challenges During Development . . . . . . . . . . . . . . . . 45

8.1.1 Bugs in the Previous Business Logic . . . . . . . . . . 45
8.1.2 AtB’s Real-Time Service . . . . . . . . . . . . . . . . . 45
8.1.3 Same Origin Policy . . . . . . . . . . . . . . . . . . . . 46
8.1.4 Optimising Client-side . . . . . . . . . . . . . . . . . . 47
8.1.5 Google Maps Woes . . . . . . . . . . . . . . . . . . . . 48

8.2 Reflections on Creating the Client Prototype . . . . . . . . . 49
8.3 Reflections on Adding a Server and Updating the BusTUC

Web-Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
8.4 Known bugs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

9 Future Work 50
9.1 The MultiBRIS Client Applications . . . . . . . . . . . . . . . 51

9.1.1 Back Button support . . . . . . . . . . . . . . . . . . . 51
9.1.2 Optimise JavaScript Code to Follow Best Practises . . 51
9.1.3 Multi-Language . . . . . . . . . . . . . . . . . . . . . . 51
9.1.4 Fix XML List of Bus-Stops in Trondheim . . . . . . . 51
9.1.5 Improve Euclidian Distance Algorithm . . . . . . . . 52
9.1.6 Dynamic Bus-Stop Loading . . . . . . . . . . . . . . . 52
9.1.7 GUI Optimalisation for Landscape Mode . . . . . . . 52
9.1.8 GUI Optimised for Desktop Browsers . . . . . . . . . 52
9.1.9 Speech support . . . . . . . . . . . . . . . . . . . . . . 53

3



9.1.10 Context Aware: Dynamic GUI . . . . . . . . . . . . . 53
9.2 The MultiBRIS Server . . . . . . . . . . . . . . . . . . . . . . . 53

9.2.1 Extensive Testing . . . . . . . . . . . . . . . . . . . . . 53
9.2.2 The Least Transfers Option . . . . . . . . . . . . . . . 54
9.2.3 Adding Authentication . . . . . . . . . . . . . . . . . 54
9.2.4 Compressing the Returned JSON Objects . . . . . . . 54
9.2.5 Caching the Requests . . . . . . . . . . . . . . . . . . 54
9.2.6 Filtering Options for the Logging Service . . . . . . . 55
9.2.7 Intelligent Decisions on Where to Compute . . . . . . 55

9.3 Geographical Expansion . . . . . . . . . . . . . . . . . . . . . 56

10 Acknowledgments 57

4



1 Introduction

The project was given by Tore Amble and IDI. The grand goal as presented
by Tore Amble is to make an ultimate bus route information system for the
future. Below is the original assignment text as it was presented to this
project:

FUIROUS - Fremtidens ultimate intelligente
ruteopplysningssystem.

BusTUC is a natural language bus route system for Trondheim.
It gives information about scheduled bus route passings, but has no
information about the real passing times. This is about to change, be-
cause Team trafikk has installed GPS tracking of the buses, giving ac-
cess to real passing times and delays. Besides, with new smart phones
arriving rapidly on the market, there are possibilities for GPS localisa-
tions and connections to maps. The project shall take a broad view, and
consider all possible advanced concepts, resulting in advanced smart
phone applications.

Part of the goal and the key focus of this report, is researching existing
applications and to develop a prototype multi-platform bus route infor-
mation application for mobile devices. The project is based on an master
thesis called ”An intelligent smartphone application: Combining real-time
with static data in pursuit of the quickest way to travel by bus” by Magnus
Raaum [13]. The work done in his thesis is based around an application
specifically made for a single platform called Android1. The basic idea be-
hind this project is the prediction that in order to get closer to an ultimate
bus route information system, the system has to be able to run on multiple
platforms to be available to as many users as possible. If the system is eas-
ily adaptable to new platforms, it is much easier to reach this goal. In order
to realise this, it is essential that the system relies on technology standards
that are widely accepted and implemented. Our prototype system is called
MultiBRIS.

1.1 Terminology and Abbreviations

This section describes the terminology and abbreviations used in this pa-
per. Some of the explanations below are partially taken from sources such
as Wikipedia2, product web-sites, and standardisation organisations web-
sites.

1http://www.android.com/
2http://en.wikipedia.org/wiki/Main_Page

5

http://www.android.com/
http://en.wikipedia.org/wiki/Main_Page


• API - An Application Programming interface is a source code based
specification intended to be used as an interface by software compo-
nents to communicate with each other.

• Apple WebKit - A layout engine designed to allow web browsers to
render web pages. It is used in the default browser on both Android
and iOS

• AtB - Administration agency for public transport in Sør-Trøndelag.
Formerly Team Trafikk.

• Black Box - Black box is an object which can be viewed solely in terms
of its input, output and transfer characteristics without any knowl-
edge of its internal workings.

• Business Logic - Business logic is a non-technical term generally used
to describe the functional algorithms that handle information exchange
between a database and a user interface. In this paper, it is specifically
used to describe the part of the system that makes the actual compu-
tations and calls external services.

• BusTUC - BusTUC is a natural language problem solver capable of
answering questions about bus departures in Trondheim stated in
common English.

• CEO - Chief Executive Officer. He/she is the highest-ranking cor-
porate officer (executive) or administrator in charge of total manage-
ment of an organization.

• CPU - Central Processing Unit is the portion of a computer system
that carries out the instructions of a computer program, to perform
the basic arithmetical, logical, and input/output operations of the
system.

• DOM- Document Object Model is a cross-platform and language-
independent convention for representing and interacting with objects
in HTML, XHTML and XML documents.

• GPS - Global Positioning System is a orbit-based satellite navigation
system that provides location and time information in all weather,
anywhere on or near the Earth, where there is an unobstructed line of
sight to four or more GPS satellites.

• GPU- Graphical Processing Unit is a specialized circuit designed to
rapidly manipulate and alter memory in a way whichs accelerate the
building of images in a frame buffer intended for output to a display.

6



• GUI - Graphical User Interface is a type of electronic user interface
that allows users to interact with images rather than text commands.

• HTML - HyperText Markup Language is a markup language for for-
matting web pages.

• HTTP - HyperText Transfer Protocol is an application protocol for
distributed, collaborative, hypermedia information systems.

• HTTP GET - Part of the HTTP, requests a representation of the speci-
fied resources.

• IDI - Department of Computer and Information Science (Institutt for
datateknikk og informasjonsvitenskap), NTNU.

• IP- Internet Protocol is the principal communications protocol used
for relaying packets across an internetwork. Responsible for routing
packets across network boundaries, it is the primary protocol that
establishes the Internet.

• JSON - JavaScript Object Notation is a lightweight data-interchange
format.

• MultiBRIS - "Multiple-platform approach to the Ultimate Bus Route
Information System" is a system developed in parallel to TABuss.

• NTNU - Norwegian University of Science and Technology.

• OS - Operating System is a set of programs that manage computer
hardware resources and provide common services for application soft-
ware.

• PHP - PHP is a general-purpose server-side scripting language.

• SMS - Short Message Service is a text messaging service component
of phone, web, or mobile communication systems.

• SOAP - Simple Object Access Protocol is a protocol specification for
exchanging structured information in the implementation of Web Ser-
vices in computer networks. It relies on Extensible Markup Language
(XML) for its message format, and usually relies on other Application
Layer protocols, most notably Hypertext Transfer Protocol (HTTP)for
message negotiation and transmission.

• TABuss - "Tore Amble Buss" is an intelligent Android bus route ap-
plication.

• TUC - The Understanding Computer is a reasoning system devel-
oped at IDI by Tore Amble.

7



• UI - User Interface, facilitates interaction between humans and ma-
chines.

• URL - Uniform Resource Locator is a specific character string that
constitutes a reference to an Internet resource.

• WireShark - Wireshark is a network protocol analyser. It lets the user
capture and interactively browse the traffic running on a computer
network.

• XML - Extensible Markup Language is a markup language for shar-
ing structured data.

8



2 Goals and Methods

The goal is to make a multi-platform prototype system. Through the devel-
opment of this system it is also a goal to reveal strengths and weaknesses
around the "web-application approach" to making an application for mo-
bile devices. The main goals are given below to describe the bounds of the
project.

2.1 State-of-the-Art Survey

The goal for this state-of-the-art survey is to give an overview over the
latest bus route systems and the available technology for mobile device
software development. A set of bus route systems that exist for mobile
devices, and the functionality that these systems implement, are reviewed
to see what technology has been applied and what these technologies can
contribute in this project with respect to multi-platform systems. The infor-
mation gathered from the survey reveals valuable information that is to be
used later in the project.

2.1.1 Technologies and Design

The goal is to collect information on what technologies exist for creating
multi-platform applications on mobile devices. A typical technology re-
lated challenge in multi-platform applications is how to make use of device-
native sensors such as GPS. Other typical areas of importance when work-
ing on mobile devices are the assessment of how much data should be trans-
ferred in device communication and how much of the business logic should
reside on the clients. This survey makes a conclusion based on whether the
existing technology is sufficiently mature for use in our problem domain.

2.1.2 Existing Applications

The goal is to review a set of diverse applications both in the Trondheim
area and in the rest of the world that promise to aid people that travel by
bus. Each application is reviewed in order to get an overview of what tech-
nology is being used today to create these and how functionality has been
implemented accordingly.

2.2 Prototype System

The best way to prove that something works is by creating a working sam-
ple. Hence, the goal is to make a prototype system that has the same func-
tionality as the application developed for the Android platform in the mas-
ter thesis by Magnus Raaum[13]. The main functionality of the android
application is that it automatically finds out where the traveler is located,

9



so that the traveler only has to input the desired destination information
in order to get the bus route suggestions. It also displays a geographical
map, where the closest bus-stops are shown. For more information on the
specifications the reader is referred to Raaum’s master thesis[13].

As the source code from the thesis was available for this project, the
main challenge was that the prototype should be a web-application and
not device-native throughout. This means that new technology is be used
for everything regarding the graphical user-interface. The business-logic
that is implemented in the existing Android application could be used to
some extent, but some design choices was to be made concerning what to
implement on the server-side and what to implement on the client-side.

2.3 Collaboration with Project TABuss

The FUIROUS project actually consists of two groups, the other project
group was given the working name TABuss[9]. Both groups had Magnus
Raums master thesis (2011) as a starting point[13]. TABuss was working
on improving the Android application that Magnus developed in his mas-
ter thesis, while we were looking at the possibilities for a multi platform
version of the application. As both groups had the same code as a start-
ing point, we shared information about known bugs in the business logic.
In the later phase of the project, we developed a server to handle much of
the business logic that was earlier on the client side. As can be seen from
the result section of this report, reducing query time and the need for data
transfer was imperative to make a client-application viable. Therefore the
TABuss project started using our server, and by doing so giving us valuable
feedback on bugs and ideas on improvement.

10



3 State of the Art Survey

This section describes the current state-of-the-art technologies for mobile
device software development and review existing systems based on these
technologies.

3.1 Technology

This section takes a look at multi-platform strategies for software devel-
opment on mobile devices and decides which one is best suited for this
project.

3.1.1 The Age of Smartphones

The worldwide smartphone3 market has expanded immensely during the
last few years. There were 440 million mobile devices sold by vendors in
the 3rd quarter of 20114. Of these, 115 million were smartphones. This
equals a marked share of 26.1%. The marked share has increased continu-
ously the last few years, as depicted in the diagram below. Companies like
Apple, HTC and Samsung, to name a few that have focused on developing
smartphones, have gained large parts of the market share. Other compa-
nies, like Nokia, that are big on mobile phones, seem to be on a negative
trend.

Figure 1: Percentage of worldwide mobile device sales to end users that are
smartphone devices. Source: Gartner.

3http://en.wikipedia.org/wiki/Smartphone
4Deducted by the numbers given in Gartner’s press releases :

Q3 2011: http://www.gartner.com/it/page.jsp?id=1848514
Q3 2010: http://www.gartner.com/it/page.jsp?id=1466313
Q3 2009: http://www.gartner.com/it/page.jsp?id=1224645

11

http://en.wikipedia.org/wiki/Smartphone
http://www.gartner.com/it/page.jsp?id=1848514
http://www.gartner.com/it/page.jsp?id=1466313
http://www.gartner.com/it/page.jsp?id=1224645


Other big trends in the mobile market is the rapid growth of the mobile
internet connectivity and social networks(2010)[8]. Internet Data Corpora-
tion predicts that by 2015, more Internet users in United States will access
Internet through mobile devices than through PCs or other wireline de-
vices5.

As smartphones take over the marked, the need for mobile-enabled
content and services increases. Unfortunately, huge amounts of available
devices has split the market into several mobile technology platforms. Lead-
ing platforms like iOS6, Android7 and RIM8 are all based on different op-
erating systems and code languages. Software developers need to make
choices for which platform to support and then learn the native language
of that platform. If they want to focus on several platforms and reach out to
a larger audience, duplicate efforts are needed to implement specific soft-
ware on each platform and keep maintaining each code base separately.
Consequently, application development time can be immense.

One of the reasons why smartphones are popular, is that people always
bring their phones with them, wherever they go. The mobility of smart-
phones opens up for new uses that stationary PCs cannot. People are get-
ting used to doing most things without the constraints of place. An exam-
ple of this is reading books and journals. Many would prefer downloading
texts directly to their mobile device from the comforts of their home rather
than hauling around stacks of physical books and magazines from libraries.
In the field of scholar communication, this is a problem that needs to be ad-
dressed [11]. In this paper, Richard Padley describes the challenge of bring-
ing publishing of scholarly work to a range of mobile devices. As pub-
lishers convert books and journals to digital form9 for easier access, new
challenges appear: How to reach the masses? Commercial uncertainties
in the highly competitive mobile market space cause questions to appear
when approaching the challenges of cross-platform publishing. How are
they supposed to know which platforms will succeed? What resources and
knowledge are needed to make a sensible decision? A lot of factors need to
be taken into account, like Apple losing Steve Jobs as CEO, Google’s future
vision for Android and so on. Such organisation-wide strategic decisions
can not to be taken lightly.

Fortunately, there is a way around this issue: Multi-platform develop-
ment. The big advantage here is a single code base, which reduces ap-
plication development time greatly. There are several ways of developing
multi-platform software. Determining which strategy is most suitable can
be a challenge. What is certain though, is that project requirements must

5IDC Press Release : http://www.idc.com/getdoc.jsp?containerId=prUS23028711
6http://www.apple.com/ios/
7http://www.android.com/
8http://www.rim.com/
9http://en.wikipedia.org/wiki/E-book

12

http://www.idc.com/getdoc.jsp?containerId=prUS23028711
http://www.apple.com/ios/
http://www.android.com/
http://www.rim.com/
http://en.wikipedia.org/wiki/E-book


the primary deciding factor. The following paragraphs takes a look at a few
strategies to achieve multi-platform applications:

Web Applications Web-based applications make use of HTML510, CSS11

and Javascript12 to create mobile websites that aim to look and feel like a
native mobile application. Web applications can use JavaScript frameworks
such as Sencha Touch13 and JQuery Mobile14, that are solely designed for
mobile development , to replicate mobile user interfaces. Web applications
can be conveniently run in a web browser15 and is therefore essentially
multi-platform since most mobile device are equipped with web browsers
these days. The disadvantages of web applications are the limited access
to device-specific features, like sensors, and product publishing. They can
not be uploaded to application stores, like Android Market16 and iOS App
Store17, which could have a negative effect on availability and product
sales.

Proprietary Middleware Applications can also be based on web services
like Red Foundry18. Developers gets access to a web interface where an
application is graphically created by selecting a set of prebuilt modules.
When the developer has picked all the modules that provide the necessary
functionality, the service builds a native application that the developer can
submit to an application store or market. The advantage of this strategy is
that the developer do not need any specialist knowledge or programming
experience to create applications that look good and perform well. The
drawback is that the services usually are not free and that the design and
functionality are limited to what is offered in the service.

Native Applications and Hybrid Applications An application is referred
to as native if it is written in a specific code language and if it designed to
run in a specific operating system. The main advantage of the native appli-
cations is that they work as intended by the operating system developers.
Device features like sensors, contact list and storage are easily accessed di-
rectly and the llibraries offered by the application programming interface
(API)19 are optimised for the specific operating system.

10http://en.wikipedia.org/wiki/HTML5
11http://no.wikipedia.org/wiki/Cascading_Style_Sheets
12http://en.wikipedia.org/wiki/JavaScript
13http://www.sencha.com/products/touch
14http://jquerymobile.com/
15http://en.wikipedia.org/wiki/Web_browser
16http://en.wikipedia.org/wiki/Android_market
17http://en.wikipedia.org/wiki/App_Store_(iOS)
18http://www.redfoundry.com/
19http://en.wikipedia.org/wiki/Application_programming_interface

13

http://en.wikipedia.org/wiki/HTML5
http://no.wikipedia.org/wiki/Cascading_Style_Sheets
http://en.wikipedia.org/wiki/JavaScript
http://www.sencha.com/products/touch
http://jquerymobile.com/
http://en.wikipedia.org/wiki/Web_browser
http://en.wikipedia.org/wiki/Android_market
http://en.wikipedia.org/wiki/App_Store_(iOS)
http://www.redfoundry.com/
http://en.wikipedia.org/wiki/Application_programming_interface


The Hybrid applications are written as web applications, using cod-
ing technologies such as HTML5, CSS and JavaScript. The web applica-
tions are then wrapped by one of the available "multiple phone web-based
application frameworks"20 such as PhoneGap in order to emulate native
behaviour. Device features like sensors, contact list and storage are pro-
vided by these platforms. Unlike the other alternatives which are confined
to browsers and have limited functionality, the hybrid strategy takes, as
Pradley puts it (2011), "the best of two worlds", referring to native- and web
applications[11]. Developers get a greater control over application design.
They use one single code base, but still get access to device features. Christ
(2011) states "The hybrid approach, which even in its infancy, is a strong solution.
When developers use the hybrid approach thoughtfully, the result can be compa-
rable to a native application-a true bridging of the gap from native to web-based
applications"[2]. For a more in-depth comparison between native and hy-
brid applications the reader is referred to section 2.2 of the other FUIROUS
project report TABuss[9]. Multiple phone web-based application frame-
works are from now on referred to as Deployment technologies in this paper.

Big Influencial Companies go for HTML5 Adobe Flash21 is a proprietary
multimedia platform used to add animation, video, and interactivity to
web pages. It has also become a tool for creating web applications that
mimic many characteristics of desktop applications. The last few years,
Adobe has also focused on adding support for their Adobe Flash Player22

to mobile devices. Support has been added for a few devices, but Adobes
future plans for the Adobe Flash Player on mobile devices has come to a
halt. Apple’s23 unwillingness to add support for Adobe Flash Player to
their products marks the start of Adobe Flash Player’s downfall for mobile
devices. Steve Jobs stated in a 2010 press release24: "The mobile era is about
low power devices, touch interfaces and open web standards - all areas where Flash
falls short." He also states that Apple will rather focus on supporting open
platforms like HTML5. Since then Adobe has stopped further development
of the Adobe Flash Player for mobile devices and instead committed itself
to HTML5, a platform with broader support and capabilities than Flash
was ever able to deliver. This is reflected by their recent (2011) acquisition
of Nitobi25, which spesialise in the deployment technology: PhoneGap26.

20http://en.wikipedia.org/wiki/Multiple_phone_web-based_application_
framework

21http://en.wikipedia.org/wiki/Adobe_Flash
22http://www.adobe.com/no/products/flashplayer.html
23http://www.apple.com
24http://www.apple.com/hotnews/thoughts-on-flash/
25http://www.adobe.com/aboutadobe/pressroom/pressreleases/201110/

AdobeAcquiresNitobi.html
26http://phonegap.com/

14

http://en.wikipedia.org/wiki/Multiple_phone_web-based_application_framework
http://en.wikipedia.org/wiki/Multiple_phone_web-based_application_framework
http://en.wikipedia.org/wiki/Adobe_Flash
http://www.adobe.com/no/products/flashplayer.html
http://www.apple.com
http://www.apple.com/hotnews/thoughts-on-flash/
http://www.adobe.com/aboutadobe/pressroom/pressreleases/201110/AdobeAcquiresNitobi.html
http://www.adobe.com/aboutadobe/pressroom/pressreleases/201110/AdobeAcquiresNitobi.html
http://phonegap.com/


3.2 Existing Applications in Trondheim

The Android and iOS systems were selected as our test platforms because
the phones available for testing were based on these. These are popular
in Norway, so it was expected to find a broad range of existing applica-
tions. Research was done on the web, Android Market and Apple App
Store to find suitable participants for this application comparison. The
applications where chosen in such a way that both Android and iPhone
platforms are represented, ranging from simplistic applications to more so-
phisticated ones with lots of functionality. The reviews are by no means
thorough, and were mainly written in order to map the functionality of
each application to get an overview of what technology and functions are
needed in a smartphone bus route application by present standards. Note
that these applications were updated to the newest versions by the 5th of
October 2011. Changes in the applications after this date are not taken into
consideration.

This survey was done in the Software Lab on the campus of NTNU,
using the smartphones Samsung Galaxy S2 and iPhone 3GS.

3.2.1 "Bussorakel"

Figure 2: Bussorakel.

"Bussorakel" is a native Android application cre-
ated by Erlend Klakegg Bergheim and uses the
BussBuddy API27. It is a very simple application
with minimalistic design and functionality.

Although simple design may open up for ef-
ficient use, it does seem a bit crude and did not
give us any incentives to choose to use this partic-
ular application. It consists merely of a text field
for sending bus route queries to the Bus Oracle"28

and that was all. It is easy to use, but the re-
sponse time is slow and would certainly become
a stress factor for any person in a hurry. There is
no favourite functionality, but the system logs the
user’s queries until manual deletion. The applica-
tion gives the user small helpful features through the menu, though. For
instance, when the user receive the answer from the Oracle it can be posted
on any installed social media, e-mail or SMS.

27http://api.busbuddy.no/
28www.atb.no

15

http://api.busbuddy.no/
www.atb.no


3.2.2 Bartebuss

Bartebuss29 is created in HTML5 by Rune M. Andersen and uses the Bus-
Buddy API. It is very rich in functionality, consisting of favourites, a view of
nearby bus-stops, alphabetically ordered group search of bus-stops, oracle
queries and a map view.

Figure 3: Bartebuss.

The application consists of five ways to find the
bus times. The favourites tab, where several bus
stops can be saved, gives quick access to the routes
often used. When a favourite bus-stop is selected
from this list, real-time data for this bus-stop is dis-
played. The second way to use the application is
an option called "Near me", where the closest bus-
stops are listed and can be selected the same way
as in favourites. The third option is "Search" where
the user can manually search for a specific bus-
stop alphabetically, and show its real-time data.
The fourth option is the use of the Bus Oracle,
where queries like "When does the bus go from
Gløs to Munkegata" give the user several route
suggestions. The last option is to select a bus-stop on the map, which shows
real-time data of all busses going through that stop. The map view does not
pinpoint the user’s location and it is a bit slow. Whether this is because the
map technology is OpenStreetMap30 or because the application is written
in HTML5 code is still not clear and left as future work to explore. The user
interface is created in a orderly and intuitive way. The colour usage is easy
on the eyes. The diverse functionality makes it perfect for the advanced bus
traveler, but for the casual user the functionality may be too overwhelming.

3.2.3 Busstider

Figure 4: Busstider.

Busstider31 is a native Android application made
by Martin M. Syversen and is developed using the
BussBuddy API. It consists of the Bus Oracle func-
tionality and a Google Maps implementation.

This application is in the mid-range in our
comparison. It offers a pleasant amount of func-
tionality together with a clean design. The user
can either send queries to the Bus Oracle or the
map can be used, where the user can see the cur-
rent position and pick the start and end destina-

29http://www.bartebuss.no
30http://www.openstreetmap.org/
31http://www.a2bsoft.net/

16

http://www.bartebuss.no
http://www.openstreetmap.org/
http://www.a2bsoft.net/


tion. The response time is good. There is no favourite functionality, but the
system logs the user’s queries until they manually deleted.

3.2.4 Alf’s ByBuss

Alf’s ByBuss32 is a native Android application which uses the BusBuddy
API. It is made by Alf Simen Sørensen and consists of a Google Map view
that sends queries to the Bus Oracle.

Figure 5: Alf’s By-
Buss.

The application has a map and a text-box for en-
tering queries to the Bus Oracle. The map loads all
the bus-stops in Trondheim and finds the user’s
position. The user may then select the start and
end bus-stop in order to get the bus route sugges-
tions. An additional feature when the user selects
a bus-stop is to view the real-time data of buses go-
ing in either direction through that bus-stop. The
"Use your address" menu option will find the clos-
est bus-stop and put it in the textbox as the de-
parture stop. This reduces the amount of user-
interaction needed before posting a query. Other
functions include a "reverse route" and a "down-
load the AtB route brochure" feature. This appli-
cation is perhaps the most intuitive and responsive
of all the reviewed applications.

3.2.5 Bussdroid

Figure 6: Bussdroid.

Bussdroid33 is a native Android application cre-
ated by Ken Børge Viktil. It has real-time data for
bus-stops, an oracle query feature and the ability
to store queries as favourites.

In order to use the application the user can
make use of the "Real-time" view and make a
search for a bus-stop. The user will then be pre-
sented with real-time data for buses going through
the bus-stop. The user can also simply ask the Bus
Oracle as in many of the other applications. The
user can then store this query as a favourite. The
lack of a map may be a deal-breaker for people
who are not familiar with Trondheim. It is very
responsive and uses swipe technology to switch between the functionality
views. Swiping is fun and intuitive.

32http://bybuss.alfsimen.com/
33https://market.android.com/developer?pub=Ken+B%C3%B8rge+Viktil

17

http://bybuss.alfsimen.com/
https://market.android.com/developer?pub=Ken+B%C3%B8rge+Viktil


3.2.6 BusApp Trondheim

Figure 7: BusApp
Trondheim.

BusApp Trondheim34 is a native Android applica-
tion created by Skogvold Android that focuses on
finding bus-stops and real time departure times in
Trondheim.

Not much effort is put into this application’s
GUI. It is presented in such a way that it is looks
like the author just threw a few textboxes and but-
tons together. Lack of Oracle support also makes
it much less user friendly than the other applica-
tions. This application does not have route sug-
gestions at all. It merely functions as a bus-stop
finder. It also has the real-time feature, but it uses
SMS to communicate with AtB, which is expensive
and a bit awkward. This is an outdated solution.

3.2.7 Bussruter

Figure 8: Bussruter.

Bussruter35 is a native Android application writ-
ten by Stian Standahl. It is by far the simplest of
all the applications in this comparison. The only
function it provides is to list the available buss
route brochures from AtB’s webpages and let the
user download them.

The application has two views. First the user
goes to the "All bus routes" view where the avail-
able brochures get listed. When the user clicks on
one, it gets downloaded. Then the user can view
the downloaded brochures in the "Downloaded
brochures" view.

34https://market.android.com/developer?pub=Skogvold+Android
35https://market.android.com/details?id=com.bussruter&hl=no

18

https://market.android.com/developer?pub=Skogvold+Android
https://market.android.com/details?id=com.bussruter&hl=no


3.2.8 Bussøye

Bussøye is a native iPhone application developed by Capgemini Norge
AS36. It uses real-time data to give information about when the next bus
arrives at any selected bus-stops in Trondheim.

Figure 9: Bussøye.

This application lets the user search for bus-
stops and displays where they are located on a
map. It also have the ability to only show the
nearby bus-stops. The favourites function works
well and the user’s search history is also stored.
The application has a GUI that is easy to use, re-
sponsive and works well. The bus route requests
are also responsive. The only drawback of this ap-
plication is the lack of Oracle support and lack of
real-time support. Otherwise it works very well.

3.2.9 Comparison Charts

Buss-
Orakel

Barte-
Buss

Buss-
tider

Alf’s
By-
buss
Trond-
heim

Buss-
droid

Bus-
App
Trond-
heim

Buss-
ruter

Buss-
øye

Plattform A/iP HTML5 A/iP A A A A iP
Multi-
Language

Yes No No Yes No Yes No No

Cost Free Free Free Free Free Yes No Free
Favourites No Yes No No Yes No No Yes
History Yes Yes Yes Yes No Yes No Yes
Route
PDF
down-
load

No No No Yes No No Yes No

Map - OSP GM GM - GM - GM
Shows
closest
bus-stops

- Yes No No No Yes No Yes

Uses GPS - Yes Yes Yes No Yes No Yes

Table 1: List of attributes, GM: GoogleMap, OSP: Open Street Map, A: An-
droid, iP: iPhone.

36http://www.no.capgemini.com/

19

http://www.no.capgemini.com/


3.3 Existing Applications in Other Parts of
the World

This subsection describes foreign systems that are relevant to this project.

3.3.1 Google Transit

The Google Transit system essentially consists of two parts. One first part
relates to the consumer of the service and is called Google Transit Trip Plan-
ner . The other part is called General Transit Feed Specification37. It is used by
data providers to feed the Google Transit Service with data. Users of GTFS
are typically public transportation agencies.

The Google Transit Trip Planner lets users pose queries to the transit
system in three different forms. By address, by location name and by direc-
tional indicators (i.e. NE, NW, SE, SW) or by GPS coordinates. All of these
query types are accompanied by date and time38. It is also possible to com-
bine these different forms of querying. A result from Google Transit Trip
Planner displays both text and directional lines on Google Maps39. Figure
10 shows the result of a combined query to Google Transit Trip Planner
containing stop name and GPS coordinates.

Figure 10: Google Transit Planner Result.

GTFS General Transit Feed Specification defines a common format for
public transportation schedules and associated geographic information. The

37http://code.google.com/intl/no/transit/spec/transit_feed_specification.
html

38https://spreadsheets.google.com/pub?key=puMHBiWYEbXT0UxQGLDpuBA&gid=11
39http://maps.google.com/

20

http://code.google.com/intl/no/transit/spec/transit_feed_specification.html
http://code.google.com/intl/no/transit/spec/transit_feed_specification.html
https://spreadsheets.google.com/pub?key=puMHBiWYEbXT0UxQGLDpuBA&gid=11
http://maps.google.com/


data is fed to Google with a ZIP-file. This ZIP-file contains a number of
txt-files. These txt-files contain comma separated values with information.
Table 2 describes the txt-files and their content. As one can see there is sub-
stantial amount of information needed in order to start using this service
from a transit agencies point of view. The biggest challenge for the agen-
cies, provided that they actually have the information needed, is the trans-
formation of data so that it fits the Google Transit Feed Specification[10].

File Name Content
agency.txt (required) Contains information about one or more transit

agencies that provide the data in this feed.
stops.txt (required) Contains information about individual loca-

tions where vehicles pick up or drop off pas-
sengers.

routes.txt (required) Contains information about a transit organiza-
tion’s routes. A route is a group of trips that are
displayed to riders as a single service.

trips.txt (required) Lists all trips and their routes. A trip is a se-
quence of two or more stops that occurs at spe-
cific time.

stop_times.txt
(required)

Lists the times that a vehicle arrives at and de-
parts from individual stops for each trip.

calendar.txt (required) Defines dates for service IDs using a weekly
schedule. Specify when service starts and ends,
as well as days of the week where service is
available.

calendar_dates.txt
(optional)

Lists exceptions for the service IDs defined in
the calendar.txt file. If calendar_dates.txt in-
cludes ALL dates of service, this file may be
specified instead of calendar.txt.

fair_attributes.txt
(optional)

Defines fare information for a transit organiza-
tion’s routes.

fair_rules.txt
(optional)

Defines the rules for applying fare information
for a transit organization’s routes.

shapes.txt (optional) Defines the rules for drawing lines on a map to
represent a transit organization’s routes.

frequencies.txt
(optional)

Defines the headway (time between trips) for
routes with variable frequency of service.

transfers.txt (optional) Defines the rules for making connections at
transfer points between routes.

Table 2: GTFS Files and their Content.

21



3.3.2 OneBusAway

OneBusAway 40 is a set of transit traveler information tools developed
for providing real-time arrival information, a trip planner, a schedule and
route browser, and a transit-friendly destination finder for Seattle area bus
riders. Ferris, Watkins and Borning (2010) concentrated on the tools for pro-
viding real-time arrival information and extended the functionality to add
support for location sensing. They first created an iPhone application to ex-
ploit its localization framework and built-in multitouch map support, but
later also developed an experimental multi-platform web application for
real-time arrival information based on JavaScript to meet user demands[4].

3.4 Conclusion

The FUIROUS projects have a big common vision: Becoming the ultimate
bus route information system for the future.

The ultimate part of this vision tells us that it expects to become not
only the best bus route information system out there, but also that it wants
to have as many users as possible. The importance of a multi-platform
application has been explained earlier. The languages HTML5, CSS and
JavaScript achieves this for us. In order to reach out to users, though, the
application also needs to be eligible for deployment into the variety of ap-
plication stores out there, which provides opportunities for publishing, ad-
vertisement and collecting fees. Hybrid applications are designed for this,
using deployment technologies. The disadvantages of the hybrid-solutions
will dissipate as the deployment technologies, along with the browsers on
the devices, mature and become more robust.

As for the future part of the vision: This is a research project. Software
created here are prototypes. Therefore it is important, for further devel-
opment of this prototype, that they are created within standards that are
future proof. Big software companies like Apple and Adobe both see the
potential of the open standards HTML5, JavaScript and CSS. These tech-
nologies are standards that has been around for many years, and are firmly
set in the world wide web. The Web Hypertext Application Technology
Working Group (WHATWG) states that preserving backwards compatibil-
ity with browsers designed for earlier versions of HTML is one of the key
features of HTML541. This feature has served them well this far, and will
most likely do so for many years ahead.

The main function of the application review was to create a base of in-
formation for currently existing systems for bus route information. Inspi-
ration was drawn from the applications to bring together all the strengths

40http://onebusaway.org
41http://wiki.whatwg.org/wiki/FAQ

22

http://onebusaway.org
http://wiki.whatwg.org/wiki/FAQ


and avoid the weaknesses when implementing our own prototype. Rein-
venting the wheel is a waste of time. It is crucial to not make the same
mistakes as other developers in order for this project to be considered suc-
cessful. As mentioned earlier, the primary goal in this project is to create a
prototype that consists of all the functionality in Magnus Raaum’s Android
application[13]. The secondary goal is to take the next step in creating the
ultimate1 application. This step consists of implementing an appealing and
intuitive graphical user interface. Good applications like "Bartebuss" and
"Alf’s Bybuss Trondheim" and small, helpful little features in the other pro-
grams are welcomed inspirational sources. It is important not to take it too
far though, so that the resulting program get too complex and untidy. This
could easily kill intuitivity and responsiveness, which are key properties
of a successful application. An interesting thing to make note of is that
the application that have been created by means of HTML5 and JavaScript,
namely Bartebuss, do not hold back against the native applications. On
the contrary, it is perhaps the most feature rich and well-working applica-
tion of them all. This, of course, gives more incentives to make use of such
technology.

The OneBusAway article provides valuable user feedback on an appli-
cation much like the one Magnus Raums has made. The most interesting
user comment is that the users want the system to provide a bookmark
functionality. They want to be able to tap the bookmarked destination at
any time and receive route suggestions to that bookmark from their cur-
rent location[4]. Valuable feedback like this plays an important role when
choosing functionality for our prototypes.

Google Transit offers a good way for uses to interact with their service
directly. The drawback is the lack of APIs for external developers, so it is
impossible to make use of the data in their system. However, their Gen-
eral Transit Feed Specification provides a good starting point as to what
data is needed in order to make a good public transport system[10]. What
differs Google Transit from the other systems looked at in this survey is
that Google Transit is a purely server based system. All business logic re-
sides on the server. The client, which is a web browser, only handles the
display of information. Having the business logic on a server provides a
lot of benefits for the solution to be created as well. One of the benefits is
that it saves the client for a lot of work. This is desirable because it saves
CPU cycles, which consequently saves battery. This approach finds sup-
port in other works. For instance in an article by Forman and Zahorjan
(1994) where they draw the very obvious connection between CPU cycles
and battery power consumption[6]. Wireless data transfer should be con-
sidered as well. If all business logic was to be handled on the client side,
due to extraneous factors, more data has to be transferred to the client. This

1The ’U’ in FUIROUS

23



is because our the business logic requires several request to a SOAP42 ser-
vice for real-time data43, and one request towards BusTUC. By handling
the business logic on the server, the server can make these request to the
various services. Since some of the requested resources can be shared by
the clients using the server, the server can also relieve the external services
for heavy request load. Regarding shared resources, there is another as-
pect to consider. Since there is a single point where the logic is handled,
the possibilities for optimisation trough resource sharing and information
caching is easy to implement. A single point where the logic is handled can
also be exploited in other ways. For instance, if one of the external service
providers decides to alter how their service is accessed, only one update
is needed. With business logic implemented on a server, there is only one
point where the code has to be changed. If the business logic existed on the
client, all applications had to have their code updated to handle the service
change.

All this research points in the direction of the hybrid strategy, using
HTML5, javascript, CSS and a deployment technology to easily create a
client prototype that works on several platforms. The client prototype
should consist of all the functionality in Magnus Rauum’s application. This
includes a search function and a map view. Also, the ability to use book-
marks or favourites should be implemented. As described a server also
offers many benefits. Therefore, our solution consists of two parts, the
server and the client. Together the server and client implements function-
ality needed to take the next step into becoming the ultimate bus route
system.

4 Prototype Client

This chapter gives an overview of promising frameworks and what they
can contribute in the context of mobile application development. First there
is be a brief in introduction to the basic technologies that most of the avail-
able frameworks use.

4.1 Development Technologies

This subsection describes the languages of web application development
used in this project.

42http://en.wikipedia.org/wiki/SOAP
43https://www.atb.no/sanntid/category210.html

24

http://en.wikipedia.org/wiki/SOAP
https://www.atb.no/sanntid/category210.html


4.1.1 HTML 5

HTML5 is a cooperation between the World Wide Web Consortium (W3C)
and the Web Hypertext Application Technology Working Group (WHATWG).
HTML5 will be the new standard for HTML, XHTML, and the HTML DOM.
The previous version of HTML came in 1999. The web has changed a lot
since then and new functionality is needed to give more HTML native sup-
port for new functionality. HTML5 is still work in progress. However,
some rules for the final HTML5 standards is established:

1. The new features should be based on HTML, CSS, DOM, and JavaScript

2. Reduce the need for external plugins (like Flash)

3. Provide better error handling

4. Contain more markup, to replace scripting

5. HTML5 should be device independent

6. The development process should be visible to the public

The new main features in HTML5 are:

1. Canvas element for drawing

2. Video and audio elements for media playback

3. Better support for local offline storage

4. New content specific elements, like article, footer, header, nav, section

5. New form controls, like calendar, date, time, email, url, search

The most interesting new feature in the context of this project, is better
support for local and offline storage. With the old HTML standard the only
way to save information directly on the client is cookies. Storing information
in cookies is very inefficient, because cookies are loaded on every server re-
quest. Since this project evolves around mobile devices, it is imperial that
data transfer is kept to a minimum. A natural way to exploit the new func-
tionality in this project would be to download as much as possible of the
needed data, first time the application is used on a mobile device. Typically
this data could be bus-route-cross-reference tables.

25



4.1.2 CSS 3

Cascading Style Sheets is a style sheet language used to describe the presen-
tation semantics of a document written in a markup language, like XML.
CSS is primary designed to make it easy to style fonts, color and layout for
different parts of an webpage.

The new CSS3 standard differs from the old ones in that it uses mod-
ules that handle different types of styling. These modules are manifested
text documents, and each module adds new capability or extends features
defined in CSS 2 standard. The first CSS 3 draft came already in June 1999,
but the the first W3C recommendation for a CSS 3 module was made in in
June 2011.

Later in this report one can see that some of the most promising JavaScript
frameworks are using CSS 3 for styling purposes.

4.1.3 JavaScript

JavaScript is a prototype-based scripting language that is dynamic, weakly
typed and has first-class functions, as explained below. It is a multi-paradigm
language, supporting both object-oriented, imperative and functional pro-
gramming styles. Prototype-based simply means that one does not use
classes. Behaviour reuse is accomplished through cloning of existing ob-
jects which then serves as prototypes. "Weakly typed" means that JavaScript
is not strict on how different data types are mixed. JavaScript has first-class
functions, which means that it treats functions as first-class objects, and can
therefore pass function as arguments to other functions.

JavaScript was a for long time seen as the black sheep of the web, but
since the AJAX web development method became popular JavaScript has
redeemed itself. Traditionally JavaScript has only been used on the client
sides, but lately better virtual machines has been developed for it to run on.
Therefore, JavaScript is now also on the server side.

As one can see from the HTML 5 section above, JavaScript plays an im-
portant role when working with the new HTML standards. As JavaScript
is a scripting language, it makes it possible to move most of the business
logic to the client side of the web-application, if desired.

Several JavaScript frameworks out there helps to ease the pain of mak-
ing a graphical user interface. Two of these, "Sencha Touch" and "JQuery
Mobile", are popular alternatives and provides everything we need for our
application:

Sencha Touch Sencha Touch44 is a cross-platform framework aimed at
the next generation, "touch enabled", devices. It is currently compatible

44http://www.sencha.com/products/touch

26

http://www.sencha.com/products/touch


with Apple iOS 3+, Android 2.1+, and BlackBerry 6+ devices. Sencha Touch
is the world’s first app framework built specifically to leverage HTML5,
CSS3, and Javascript.

JQuery Mobile JQuery Mobile45 is a unified, HTML5-based user inter-
face system for all popular mobile device platforms, built on the rock-solid
jQuery and jQuery UI foundation. Its lightweight code is built with pro-
gressive enhancement, and has a flexible, easily "themeable", design.

4.2 Deployment Technologies

There are several available mobile development frameworks that are capa-
ble of hybrid cross-platform application deployment. These frameworks
can free developers from having to write any code in the target devices’ na-
tive languages. Developers can stick to one codebase, but still get access to
many of the device’s native features, such as the compass, the camera, the
contact list, and so on. Three popular frameworks, with different strengths
and weaknesses, have been reviewed in order to choose the right one to
use.

4.2.1 PhoneGap

PhoneGap46 is an open-source mobile development framework that en-
ables software programmers to build applications using the "standard web
stack" (JavaScript, HTML5 and CSS3). The resulting applications are hy-
brid, neither fully native nor purely web based. This provides the ability
to make an application as complex as needed, but still have the oppor-
tunity to let it degrade in order to work on devices with less support for
new content. This degradation can be controlled via CSS, or even dynam-
ically with JavaScript by checking the type and version of browser the de-
vice has installed and what content this browser supports. PhoneGap does
not limit development to any specific integrated development environment
(IDE47) or framework. Developers may choose whatever tools they like.
This makes PhoneGap ideal for cross-platform development. It does have
its backsides, though. The applications created will have its layout ren-
dered in a webview, which is slow in comparison to a native GUI on the
device. The performance will be better in the near future, when support for
graphics processing unit (GPU) acceleration is implemented on all mobile
devices. Even though hybrid applications have access to the smartphone’s
utilites such as sensors, camera and contacts, it does not have full access to
the device application programming interface (API). PhoneGap provides a

45http://jquerymobile.com/
46http://www.phonegap.com/
47http://en.wikipedia.org/wiki/Integrated_development_environment

27

http://jquerymobile.com/
http://www.phonegap.com/
http://en.wikipedia.org/wiki/Integrated_development_environment


web service called "PhoneGap: Build"48 that translates the HTML5-code to
native code for all the platforms it supports: iOS, Android, webOS, Sym-
bian and BlackBerry. Support for Windows Mobile is still in development.

4.2.2 Appcelerator Titanium Mobile

Appcelerator Titanium49 is another mobile web development application
framework. Appcelerator is similar to Phonegap in that it tries to pursue
the notion of cross-platform development. It differs from PhoneGap in that
deployment is limited only Android and iOS platforms. While writing in
familiar JavaScript syntax, developers will also have to learn the extensive
Titanium API, and to use designated tools provided by Appcelerator. These
tools are free. Using the Titanium API is both a good and a bad thing.
Learning the API requires a steeper learning curve than more familiar web
frameworks, and because it is purely javascript and has no ties to the DOM,
it cannot make use of opular javascript libraries. Most of them, like JQuery,
require the presence of a DOM window and document. The Titanium API
does give us the ability to implement native UI components on the iOS
and Android platforms. This is where the Appcelerator shines. Where the
PhoneGap apps, using webview, will seem a bit sluggish in animations and
GUI interaction, the Appcelerator applications look, feel and perform like
native applications. Note that this is after the application is loaded, since
the loading times could actually be slightly slower. This is because the
Appcelerator is not truly a cross-platform compiler. What really happens,
after the application source code is deployed to the mobile devices, is that
it is interpreted every time the application runs. In addition, errors in the
source code do not reveal themselves until run-time. This could be time
consuming to debug during development.

4.2.3 Rhodes

Rhodes50 is a mobile web development framework that uses a Model View
Controller (MVC)51 pattern. The views are written in HTML and the con-
trollers in Ruby. Rhodes supports the iOS, Android, Windows Mobile,
Blackberry and Symbian platforms. Rhodes compiles to true native ap-
plications, which gives the same strengths as for the Appcelerator Tita-
nium. Rhodes is powerful and feature-rich, but does not have the simplic-
ity and ease of use that Titanium offers. Significant specialist knowledge is
required for good results. Rhodes tries to manage the entire application de-
velopment from start to end. This may put obstacles in the actual process of

48https://build.phonegap.com/
49http://www.appcelerator.com
50http://rhomobile.com/
51http://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller

28

https://build.phonegap.com/
http://www.appcelerator.com
http://rhomobile.com/
http://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller


making an application for some developers. If something goes wrong any-
where in the development process, e.g. compilation errors, or one want to
do something in a different way than the Rhodes common practice it may
prove difficult to do. Rhodes, just like PhoneGap, also supports automatic
codebase deployment to different platforms, through RhoHub52.

4.3 Conclusion: Deciding which Technologies to Make Use of

Since one of the prerequisites in this project was to reach out to as many
mobile device platforms as possible, it is the key point when choosing a de-
ployment technology. Appcelerator Titanium’s lack of support for any plat-
forms except iOS and Android makes it a poor alternative. As for Rhodes,
it does have full platform support, but the requirement for knowledge of
Ruby and the extensive API will perhaps make it a job too big to handle
for this size of project. Another prerequisite is that the framework should
be easy to use and be able to collaborate with other frameworks that can
make it faster and easier to create well working GUI-components. This is
easier in PhoneGap than in the other deployment technologies. The Multi-
BRIS application in this project does not require very heavy computing or
graphics, so the performance weakness of PhoneGap is not a big problem.
PhoneGap’s simplicity and platform support therefore makes it a clear win-
ner for our project.

Regarding which JavaScript framework to use, the updated (February
17, 2011) article "JQuery Mobile vs Sencha Touch"53 by Tyson Lloyd Ca-
denhead gives a concise overview over the two frameworks and for what
sort of developers and projects they are prefered. The main difference be-
tween the Sencha Touch library and JQuery is that Sencha Touch rarely use
any pre-rendered HTML and the developer typically work with compo-
nents that consists of several DOM elements bound as one object instead
of working directly with the DOM, one element at a time. The authors of
this report are primarily Java developers and do not have extensive knowl-
edge of coding webpages in HTML, so Sencha Touch’s near pure JavaScript
approach and sense of control makes this our best choice.

5 Prototype Server

This chapter describes the prototype server developed during this project.
First, a system overview and a description of the technologies is given.
Then each service is described in more detail.

52https://app.rhohub.com/
53http://tysonlloydcadenhead.com/blog/jquery-mobile-vs-sencha-touch/

29

https://app.rhohub.com/
http://tysonlloydcadenhead.com/blog/jquery-mobile-vs-sencha-touch/


5.1 System Overview

The server offers three distinct services. Figure 11 shows a block diagram
of the system.

Main Service

BussTUC AtB Real 
Time

Adopted Business Logic

MBServlet

Real-Time Service

AtB Real Time

RealTimeServlet

Logging Service

Generated Log-files

LogServlet

JSON Factory

JSON Factory

Figure 11: Block diagram of the server system, MBServlet: MultiBRIS
servlet, JSON Factory: JavaScript Object Notation Factory.

The main service effectively replaces all the business logic implemented by
Magnus Raaums[13] Android application. The client sends its desired des-
tination and the current location to the MultiBRIS server. The server looks
up the desired number of bus-stops near the given location. When the bus-
stops are found, a query is sent to the new BusTUC web-interface (the new
BusTUC web-interface is described in section 6). The new BusTUC web-
interface responds with possible bus routes. The MultiBRIS server then up-
dates these routes with real-time departure times for the buses proposed by
BusTUC. This is done by contacting a real-time system provided by AtB54.
The MultiBRIS server then sends the updated route alternatives back to the
client.

The system also offers a pure real-time service where the client can send
a bus-stop ID to the MultiBRIS server and get a list of the next five buses
arriving at that stop. AtB offers a similar service directly, but with some
significant drawbacks. These drawbacks are elaborated in the discussion
section (Section 8).

When the first version of the server was up and running, it was quickly
established that a easily accessible logging system was needed for debug-
ging reason. This was accomplished through making a logging service,
which is accessible trough a web browser. The service was made so that it
is easy to change the amount of data logged.

54https://www.atb.no

30

https://www.atb.no


5.2 Technologies

The server technology used is Java Servlet55, developed by Sun Microsys-
tems in 1997. The Java servlet technology is now at version 3.0 and has
by now been around for over a decade. It is a well tested and documented
technology. With Java Servlets, business logic can easily be written in Java[1]
and then be made available to consumers through servlets[12]. As the start-
ing point for the project was to make a multi-platform client, it was nat-
ural that the server was created with the same though in mind. A Java
servlet can be published through any available servlet container, which
makes very portable. A servlet container, also known as a web container,
is a component of a web server that interacts with a servlet and makes
the communication between a servlet and a web-client possible. There are
many servlet containers available. Some are commercial and some are not.
The best known commercial containers are IBM’s WebSphere56 and SAP’s
NetWeaver57. Among the non-commercial servlet containers are Apache’s
Tomcat58 and Glassfish from Sun Microsystems59. As this was an academ-
ical project a non-commercial server would be needed. The one chosen is
called Jetty, from Eclipse Foundation60, it is seen at a rising star in the web
community, much because Google chose to use Jetty technology for there
cloud service, Google App Engine61. What is special about Jetty is that it
is made up of pure Java code. As known Java is very portable[1]. This all
facilitates a very portable server solution.

5.3 The Main Service

This is the service that implements all of the business logic needed to repli-
cate Magnus Raaum’s application[13] as a multi-platform system.

5.3.1 Migrating the Application Logic to the Server

When migrating the business logic to the server, major changes was done.
The previously logic was used on an Android device, utilising Android-
and Google libraries. The new business logic needed to be made indepen-
dent from these. Another thing that had to be sorted out was to organise
the code, as the previous structure had too much functionality nested to-
gether. For instance the functionality for handling request to an external

55http://www.oracle.com/technetwork/java/javaee/servlet/index.html
56www.ibm.com/software/websphere/
57http://www.sap.com/platform/netweaver/index.epx
58http://tomcat.apache.org/
59http://glassfish.java.net/
60http://www.eclipse.org/jetty/
61http://code.google.com/intl/no/appengine/

31

http://www.oracle.com/technetwork/java/javaee/servlet/index.html
www.ibm.com/software/websphere/
http://www.sap.com/platform/netweaver/index.epx
http://tomcat.apache.org/
http://glassfish.java.net/
http://www.eclipse.org/jetty/
http://code.google.com/intl/no/appengine/


service and sorting routes where in the same Java method. It was also vi-
tal to do proper exception handling and logging. The way the system was
implemented meant that if some part of the code would lead to an excep-
tion when running, the code would halt. This could typically be if BusTUC
returns an erroneous answer. Then the system would not proceed to the
ranking involving real-time data. This, in turn, would lead to no proper
error message being sent to the client side.

One of the main issues when breaking the connection to the Google
API was that the system used Google functionality to calculate distance
between GPS coordinates. This functionality had to be completely reim-
plemented when moving the logic to the server. Calculating the distance
between two GPS locations is not as easy as just to use euclidean distance,
because of the approximately oblate spheroid62 shape of the earth. There-
fore, the reimplemented logic used to calculated the distance between two
GPS locations is now based on the "Inverse formula" from a paper by T.
Vincentry (1975), using the WGS 84 standard63[16].

5.3.2 Interacting With BusTUC

The BusTUC natural language system accepts two forms of queries. One is
natural language through sentences, and the other is a nested query. Both
are shown below.

• When does the bus depart from Ilsvika to Tiller?

• (Ilsvika +n, Ila +n) til Tiller.

MultiBRIS uses only on the second type of query. Its syntax allows
nested queries with multiple departure stops. The answer from BusTUC
is also different when using the second query type. In addition to a tex-
tual answer in the HTML returned, an JSON object can be filtered out. The
textual answer is actually never used, as the JSON object is what is parsed
for information. The n represents "walking distance to", in this case Ila and
Ilsvika. The n parameter was discovered to not work at all during testing,
as different values did not affect query results.

5.3.3 Main Service Interface

A query is posed to the server as a HTTP GET, and parameter data is sent
trough the URL. A typical query to the server looks like this: http://
bustjener.idi.ntnu.no/MultiBRISserver/MBServlet?dest=Ilsvika&type=
json&lat=63.4169548&long=10.40284478&nStops=5&maxWalkDist=300&key=
TheKey

62http://en.wikipedia.org/wiki/Oblate_spheroid
63http://en.wikipedia.org/wiki/WorldGeodeticSystem

32

http://bustjener.idi.ntnu.no/MultiBRISserver/MBServlet?dest=Ilsvika&type=json&lat=63.4169548&long=10.40284478&nStops=5&maxWalkDist=300&key=TheKey
http://bustjener.idi.ntnu.no/MultiBRISserver/MBServlet?dest=Ilsvika&type=json&lat=63.4169548&long=10.40284478&nStops=5&maxWalkDist=300&key=TheKey
http://bustjener.idi.ntnu.no/MultiBRISserver/MBServlet?dest=Ilsvika&type=json&lat=63.4169548&long=10.40284478&nStops=5&maxWalkDist=300&key=TheKey
http://bustjener.idi.ntnu.no/MultiBRISserver/MBServlet?dest=Ilsvika&type=json&lat=63.4169548&long=10.40284478&nStops=5&maxWalkDist=300&key=TheKey
http://en.wikipedia.org/wiki/Oblate_spheroid
http://en.wikipedia.org/wiki/World Geodetic System


In table 3 one can see a complete list of possible attributes and what their
function is. How many concurrent request the server is allowed to handle
is regulated by the servlet container, in this case Jetty. Jetty has an configu-
ration file with a property called thread pool, where the number of allowed
concurrent requests can be regulated.

Attribute Function
dest (required) The desired destination.
type (required) Can be aether json or text depending on desired re-

turn type.
lat (required) Latitude value for current location.
long (required) Longitude value for current location.
nStops Number of bus-stop to check for possible routes (De-

fault is 5).
maxWalkDist Max distance in meters to checked bus-stops (De-

fault is 500).
key Key is used to identify users of the system (Default

is null).
callback Adds callback part to the return with the given call-

back value. Used for HTML injections to bypass
same origin policy restrictions for AJAX.

getSpecialTransfer Changes the return so that the two or more routes
involved in the transfer appear as one alternative.

Table 3: List of attributes and their functions for the main service.

A typical return from the server would look like the one in listing 1:

{ "alts" : [ { "arrivalTime" : "1317",
"busNumber" : 8,
"bustopName" : "Prof. Brochs gate",
"bustopNumber" : 16011376 ,
"depLatitude" : 63.415534999999998 ,
"depLongitude" : 10.398126 ,
"destination" : "Torget",
"totalTime" : 1322,
"transfer" : true ,
"travelTime" : "05",
"walkingDistance" : 283

},
{ "arrivalTime" : "1334",

"busNumber" : 63,
"bustopName" : "Dronningens gate - D1",
"bustopNumber" : 16010006 ,
"depLatitude" : 63.432020000000001 ,
"depLongitude" : 10.392315 ,
"destination" : "Ilsvika",
"totalTime" : 1341,
"transfer" : true ,

33



"travelTime" : "7",
"walkingDistance" : 1759

}
],

"error" : false ,
"formatedTexts" : "1: Ta bus 8 fra Prof. Brochs gate (283

meter) klokken 1317. Du vil nÃ¥ Torget ca 5 minutter
senere .\n2: Ta bus 63 fra Dronningens gate - D1 klokken
1334. Du vil nÃ¥ Ilsvika ca 7 minutter senere .\n"

}

Listing 1: JSON return from server.

Figure 12 shows a complete interaction diagram for the main service.

Phone Client MultiBRIS 
Server

GPS cordinates and 
destination name (1)

Ordered list of possible 
busses to take (6)

BussTUC
ATB Realtime

Request string (2)

Answer in part 

HTML and part 

JSON (3)

Bus
s s

top
 ID

s (
4)

Rea
l ti

mes
 fo

r b
us

 

sto
ps

 re
qu

es
ted

 (5
)

Figure 12: Main service overview.

5.4 The Real Time Service

A client can access the real-time service by using a HTTP GET against the
MultiBRIS server. The request URL looks like this: http://bustjener.
idi.ntnu.no/MultiBRISserver/RealTime?bID=16010495
The table 4 shows the possible attributes for this service. A typical return
from the real time service would look like the on in listing 2.

{ "busStops" : [ { "arrivalTime" : "27/11/2011 15:25:00",
"dest" : "Klabu sentrum",
"line" : 47,
"realTime" : false

},
{ "arrivalTime" : "27/11/2011 16:25:00",

34

http://bustjener.idi.ntnu.no/MultiBRISserver/RealTime?bID=16010495
http://bustjener.idi.ntnu.no/MultiBRISserver/RealTime?bID=16010495


Attribute Function
bID (required) The Bus-stop ID for which to return bus arrivals for.
callback Adds callback part to the return with the given call-

back value. Used for HTML injections to bypass
same origin policy restrictions for AJAX (For details
see section 8.1.3).

Table 4: List of attributes and their functions for the real time service.

"dest" : "Klabu sentrum",
"line" : 47,
"realTime" : false

},
{ "arrivalTime" : "27/11/2011 19:25:00",

"dest" : "Klabu sentrum",
"line" : 47,
"realTime" : false

},
{ "arrivalTime" : "27/11/2011 20:25:00",

"dest" : "Klabu sentrum",
"line" : 47,
"realTime" : true

},
{ "arrivalTime" : "27/11/2011 21:25:00",

"dest" : "Klabu sentrum",
"line" : 47,
"realTime" : false

}
] }

Listing 2: Real time JSON return from server.

Figure 13 shows a interaction diagram for the the real time service.

5.5 The Logging Service

To understand how logging works in MultiBRIS, a little info about how
Java Servlets works in relation to threads is needed. If nothing else is spec-
ified, a Java Servlet creates a new thread for each new client session. In
MulitBRIS, this thread is given a unique recognisable id. The id is created
by combining the value of the key attribute from table 3 and the value from
the System.nanoTime()64 method in Java. This gives the threads a unique
id and at the same time it is easy to track the threads in a multi thread sys-
tem by the key part of the thread id. The reason for this thread tracking in
relation to logging has to do with the design of the logger. The logger was
designed so that it takes a minimum amount of work to use it anywhere in
the code. At the same time it makes use of only a single log object for each

64http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/System.html

35

http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/System.html


Phone Client MultiBRIS 
Server

Buss stop ID (1)

JSON with five next 
arriving buses (4)

ATB Realtime
Bus

s s
top

 liv
e I

D (2
)

Rea
l ti

mes
 fo

r b
us

 

sto
p r

eq
ue

ste
d (

3)
Figure 13: Real time service overview.

service. The normal way of doing this in Java would be to send the logger
object as an parameter to each method. That however, is not a very elegant
method of implementing it. Instead the logger is made as an Java single-
ton65 and fetched when ever needed anywhere in the code. The logger then
uses the thread name of the caller to identify the user session. That way, it
is possible to have a single logging object that can be used by all parts of
the system, and still let the logger keep track of who the caller is.

The file writing is handled by Java’s built in functionality, java.util.logging66,
but a custom file handler was made to make log entries compatible with
HTML representation. The log is accessible trough a web service, a client
can access the logs by doing ha HTTP GET request like this: http://bustjener.
idi.ntnu.no/MultiBRISserver/MBServlet?getLog=true#bottom

Figure 14 shows some example log entries returned trough the web ser-
vice. One can see from the qID : TheKey23411709 that both these log en-
tries are from the same user session. The log level is in this example set to
fine, meaning it is very verbose, one can see that both entries with log level
"INFO" and "SEVERE" are present. In a production scenario the log level
would be changed to "SEVERE", so that only the system errors would be
logged. As there is only a single instance of the logger, the change would
have to be done only one place in the code.

65http://www.javaworld.com/javaworld/jw-04-2003/jw-0425-designpatterns.
html

66http://docs.oracle.com/javase/1.4.2/docs/api/java/util/logging/
package-summary.html

36

http://bustjener.idi.ntnu.no/MultiBRISserver/MBServlet?getLog=true#bottom
http://bustjener.idi.ntnu.no/MultiBRISserver/MBServlet?getLog=true#bottom
http://www.javaworld.com/javaworld/jw-04-2003/jw-0425-designpatterns.html
http://www.javaworld.com/javaworld/jw-04-2003/jw-0425-designpatterns.html
http://docs.oracle.com/javase/1.4.2/docs/api/java/util/logging/package-summary.html
http://docs.oracle.com/javase/1.4.2/docs/api/java/util/logging/package-summary.html


Figure 14: Example log return.

5.6 Server Optimisation

For optimisation of the MultiBRIS server two things were done. The "bus
ID to bus-stop live ID" lookup list are shared between all the clients using
the server. Threading was introduced in the retrieval of real-time data for
multiple bus-stops. This resulted in a computation time half of the orig-
inal, as multiple threads now send queries in parallel, instead of sequen-
tial. However, the time between the query was posed to the server and the
server responded was still too long. The query time was still sometimes
up to 40 seconds. The reason for this was that the MultiBRIS server had to
wait for answers from the BusTUC server. As a response to this it was de-
cided that speeding up the BusTUC server was imperative for the practical
usability of the entire system. Therefore a new web-interface for BusTUC
was made, as described in section 6.

6 New Web-Interface for BusTUC

This section describes the new BusTUC web-interface developed during
this project. First, challenges related to the previous web-interface is ex-
plained. Then the new solution is presented.

6.1 Challenges with the Previous BusTUC Web-Interface

The main challenge with the previous solution was the lack of similar re-
quest handling. If the server was already handling a request the next re-
quest would just have to wait for the current running request to finish. If
the first request takes more than 30 seconds the next request is dropped.
This behaviour is produced by the way the web-interface is implemented.
It uses a PHP-script that writes to a predefined file when a request is posed
to the script. The BusTUC back end system then runs a service that checks
this file once every second. If there is new content in the file, it reads the
content from the file and processes the request. BusTUC then writes to an-
other predefined file which the PHP-script, in turn, checks for new content

37



once every second. This method of exchanging information, even if not
taking into account the extra time used to write and read from files, has a
two second potential delay, because of the checking intervals.

Temporary Communication 
File

BusTUC Java Factory

Sicstus 
Prolog

Prolog Response Filtering

Java Servlet (Web-interface)

BusTUC 
Query

JSON or plain text 
dependent on the 

input

Figure 15: New Web-Interface Overview.

6.2 The New Web-Interface

The new BusTUC web-interface uses Java Servlet technology with the same
Jetty container as the MultiBRIS server. This is because it is well docu-
mented and portable. The BusTUC core system is made of Prolog code,
which is a general purpose logic programming language 67. The specific
Prolog framework used is called Sicstus and is maintained and owned by
the Swedish Institute of Computer Science68. Sicstus has made a java li-
brary called Jasper69 which makes it possible for Java code to communicate
with Prolog code. Figure 15 shows an overview of the new web-interface.

When a query arrives at the Java Servlet the query is sent to what is
called the BusTUC Java Factory. The BusTUC factory poses the query to the
Prolog code, which, in turn, puts the answer into a temporary file. What
happens in the Prolog part of this factory is considered out of scope for
this project. Thus it is treated as a black-box70. The reason why the exter-

67http://en.wikipedia.org/wiki/Prolog
68http://www.sics.se/isl/sicstuswww/site/index.html
69http://www.sics.se/sicstus/docs/3.7.1/html/sicstus_12.html
70http://en.wikipedia.org/wiki/Black_box

38

http://en.wikipedia.org/wiki/Prolog
http://www.sics.se/isl/sicstuswww/site/index.html
http://www.sics.se/sicstus/docs/3.7.1/html/sicstus_12.html
http://en.wikipedia.org/wiki/Black_box


nal communication file is needed is because the BusTUC system was not
made to be interfaced the way it is in this project. To be able to exclude
the usage of this file, approximately 1000 lines of Prolog code would have
to be changed according to an external resource. Therefore, the usage of a
file as intermediate layer was accepted as a necessary evil. The filename is
made unique by using the thread name and the current system nanotime.
The file is then read and filtered by another part of the the BusTUC factory
before the result is returned to the Java Servlet. A typical request to the ora-
cle where the goal is to get a JSON object back looks like this: http://furu.
idi.ntnu.no:1337/bussstuc/oracle?jq=%28H%F8gskoleringen%2B1,Gl%F8shaugen%
20nord%2B1,Gl%F8shaugen%20syd%2B1,samfundet%2B1%29%20til%20dragvoll
The return looks like this:

"departures" : [ { "busnumber" : 5,
"busstopname" : "GlÃ¸shaugen Nord",
"busstopnumber" : 16010333 ,
"destination" : "Dragvoll",
"duration" : 9,
"time" : 2348

},
{ "busnumber" : 5,

"busstopname" : "Studentersamfundet",
"busstopnumber" : 16010477 ,
"destination" : "Dragvoll",
"duration" : 13,
"time" : 2404

},
{ "busnumber" : 5,

"busstopname" : "HÃ¸gskoleringen",
"busstopnumber" : 16010197 ,
"destination" : "Dragvoll",
"duration" : 11,
"time" : 2406

},
{ "busnumber" : 5,

"busstopname" : "GlÃ¸shaugen Syd",
"busstopnumber" : 16010265 ,
"destination" : "Dragvoll",
"duration" : 9,
"time" : 2408

}
],

"timeset" : "false",
"transfer" : "false"

}

Listing 3: JSON return from new BusTUC Web-interface.

If the normal text answer is desired, a request would look like this : http://
furu.idi.ntnu.no:1337/bussstuc/oracle?q=ilvika%20til%20gl%F8shaugen?
The return would look something like this: Holdeplassen nærmest Gløshau-

39

http://furu.idi.ntnu.no:1337/bussstuc/oracle?jq=%28H%F8gskoleringen%2B1,Gl%F8shaugen%20nord%2B1,Gl%F8shaugen%20syd%2B1,samfundet%2B1%29%20til%20dragvoll
http://furu.idi.ntnu.no:1337/bussstuc/oracle?jq=%28H%F8gskoleringen%2B1,Gl%F8shaugen%20nord%2B1,Gl%F8shaugen%20syd%2B1,samfundet%2B1%29%20til%20dragvoll
http://furu.idi.ntnu.no:1337/bussstuc/oracle?jq=%28H%F8gskoleringen%2B1,Gl%F8shaugen%20nord%2B1,Gl%F8shaugen%20syd%2B1,samfundet%2B1%29%20til%20dragvoll
http://furu.idi.ntnu.no:1337/bussstuc/oracle?q=ilvika%20til%20gl%F8shaugen?
http://furu.idi.ntnu.no:1337/bussstuc/oracle?q=ilvika%20til%20gl%F8shaugen?


gen er Gløhaugen Syd .Buss 63 går fra Ilsvika kl. 2325 til Munkegata M3 kl. 2331
og buss 52 går fra Munkegata M3 kl. 2350 til Gløshaugen Syd kl. 2357 .Tidene
angir tidligste passeringer av holdeplassene.

7 Results

The results section presents the quantifiable results produced by this project.

7.1 Physical Servers

There are two physical servers used in this project, they are called busst-
jener.idi.ntnu.no and furu.idi.ntnu.no. The server busstjener.idi.ntnu.no
provides the MultiBRIS service and furu.idi.ntnu.no provides both the new
and the old BusTUC web-interface. All results involving a "back-end" ser-
vice, except AtB’s real-time service, are produced using these servers. In
table 5 and table 6 the specification of the servers are given.

Attribute Value
CPU 2x 5.2 GHz, VMware shared pool 71

Memory 4 GB dedicated
OS Ubuntu 11.04 (GNU/Linux 2.6.38-8-server x86_64)

Table 5: Server information for busstjener.idi.ntnu.no.

Attribute Value
CPU 4x UltraSPARC IIIi 1.062, 1.28, 1.593 GHz
Memory 16 GB dedicated
OS Sun Microsystems Inc. SunOS 5.10, Generic January

2005

Table 6: Server information for furu.idi.ntnu.no.

7.2 The Client Application

This section shows a number of figures depicting the functionality of the
MultiBRIS client application. Note that when the application starts it tries
to retrieve the current location. If it fails, the application is basically useless
because all functionality is based on this information.

Figure 16:a This is the Favourite tab. Here the user can add favourites by
tapping the "+" button (See figure 16:c) or remove them either by swiping
the favourite and tap the "X" button or mark the favourite and tap the but-
ton that looks like a trash can. Tapping any of the favourites that is added

40



Table 7: Translation of menu elements

Norwegian English
Søk Search
Favoritt Favourite
Destinasjon Destination
Lagre Save
Avbryt Cancel
Kart Map
Meg Me
Nær meg Near me
Fjern Clear
Resultater Results
Oppdater Update

Figure 16: (a)Favourite tab, (b)Add favourite and (c)Settings.

immediately starts a bus route search for that favourite’s destination and
the user is presented with the Results tab (See figure 17:b).

Figure 16:b This figure represents the add favourite feature where the
user types in the name and destination of favourite.

Figure 16:c This is the settings view where the user can set properties for
how many bus-stops should be viewed in map mode or how many bus-
stops should be assessed in the bus route queries.

41



Figure 17: (a)Searchbar, (b)Results tab, (c)Results shown on the map.

Figure 17:a A search bar always resides on top of the application. This
gives the user quick access to bus route search functionality from wher-
ever the user has navigated in the application. The search bar has an auto-
complete function that suggests bus-stops that exist in Trondheim. The rest
of the figures represent the views that are available through the tab mecha-
nism.

Figure 17:b This is the result tab. Here the user is presented with the (up
to) 5 most optimal bus routes for the search query. They are presented in
a list, sorted by total travel time. The user can now either tap on the result
that suits the most to switch to the map and view the target bus-stop and
travel route to that bus-stop, or the user can click on the map tab and be
presented with all the bus-stops in his results along with the travel routes
to them from his location.

Figure 17:c After doing a search, the user may click on the map tab in or-
der to get a view of the bus-stops that are among the results. Also, colored
lines shows the user how to get to them from the user’s current location.

Figure 18:a The figure depicts the real-time information view. It shows
information of the next 5 buses for specific bus-stop. Buses marked in red,
have actual real-time values, while the black are regular times. If any of the
buses are among the users search results, they are also marked with a "*".

Figure 18:b This figure describes the map tab of the application, consist-
ing of a Google Map with added functionality. Here the user is presented
with the current location centered on the map. The user can at any time
update or pan back to a location by tapping the "Meg"-button.

42



Figure 18: (a)Real-time information, (b)The Google Maps, (c)Close-by bus-
stops functionality.

Figure 18:c In the map tab the user can also click on the "Nær meg" to add
closeby bus-stops to the map. The user may then click on any of these to
get real-time information of the 5 next buses passing through that bus-stop
(See figure 18:a).

7.3 The Server

The easiest quantifiable result of moving the business logic to a server is
the decrease in data transfer. Table 8 show a comparison between the data
transfer for the client, before and after the business logic was moved to
the server. The measurement scenario consists of starting the client and
making a bus route alternatives query i.e. using "the main service" on the
MultiBRIS server, as described in section 5.3. This scenario was chosen as
it would represent the most natural usage pattern. As one can see, moving
the business logic to the server resulted in that only a 100 fraction of the
original data transfer amount is needed for a normal user scenario. About
400 KB of the transferred data comes from downloading the live ID to bus-
stop ID list from AtB.

Business logic
on client

Bussines logic on server

570 KB 5 KB

Table 8: Average data transfer comparison for bus route query (Measured
with WireShark 1.6.1. The Client used was a AppleWebKit 535.2 Based
Browser.)

When it comes to saved CPU cycles it is not easy to measure the result of

43



moving the business logic. No known mobile devices have functionality
for this. However if one instead looks at the main incentive for saving CPU
cycles, namely power usage, there are some tools available. In figure 19
there is a comparison between power usage for having business logic on
the client and on the server side. The topmost graph in figure 19 shows the
total amount of milliwatts (mW) usage for the application. As one can see
the one where the business logic is on the client use more power.

Figure 19: Power usage with business logic on client (left) and business
logic on sever (right). Test Client Provided by the TABuss project.

7.4 The New BusTUC Web-Interface

As mentioned it was imperative that the BusTUC query time was reduced
and as we can see in table 9 a substantial reduction in query time was
achieved. The most important improvement is the max query time, which
was lowered to one third of the old web-interface.

Old Web-Interface
Query Time

New Web-Interface Query Time

Max 30 sec 10 sec
Avg 15 sec 6 sec

Table 9: BusTUC Query Times.

44



8 Discussion

This section discusses the results from the Result section and the challenges
that was encountered during development.

8.1 Challenges During Development

This subsection describes a variety of challenges that appeared during de-
velopment of the prototypes, both on server and client.

8.1.1 Bugs in the Previous Business Logic

During development, some bugs were found in the existing business logic.
The following list contains the critical errors that was found and corrected.

1. When the total travel time was equal for more than one route, due to
how Java HashMaps works, routes was replaced during sorting and
an error occured in later computations because of missing items.

This bug was fixed by not using the total time from the HashMaps
as sort parameters.

2. When the distance to two bus-stops was equal, the latter bus-stop
added to the system overwrote the first because the distance was used
as key parameter in the HashMap that holds the bus-stops. This bug
did not give an exception under system execution, but it removed a
bus-stop that might have been part of the ultimate bus route alterna-
tive.

This bug was fixed by making sure distances never were the
same. This is easy to do when dealing with HashMaps as no
actual search is needed to check if the key is unique. One can
simply pull out an object from the HashMap using the key in
question. If the returned object is null, then all is good. If not,
increment the key and try again. Of course this could make one
of the distances move off by a metre or two, but this does not
really matter because the distances are straight lines that do not
take terrain into account, making them inaccurate anyhow.

8.1.2 AtB’s Real-Time Service

To understand the challenge with AtB’s real time SOAP72 service one need
to have an overview of the information entities involved. A bus-stop es-
sential has four info entities in this system; name, ID, GPS location and live

72http://www.w3.org/TR/soap12-part1/#intro

45

http://www.w3.org/TR/soap12-part1/#intro


ID. The live ID may change whenever AtB’s real-time system is updated or
is restarted. The live ID is not updated often by AtB’s system, but it has to
be update relatively often by the consumer of the service to make sure bus-
stop data is correct at all times. Because the consumer of the service never
knows when the live IDs are changed. The bus-stop’s live ID is needed
to give the five next arriving buses to the queried bus-stop. The problem
then, is that it is not possible to query AtB’s real-time SOAP system for one
live ID, given a bus-stop ID. It is however possible to query the service for
a complete list of bus-stop IDs and live IDs, which is a big chunk of data.
The SOAP service also has some bugs; it changes the returned SOAP mes-
sage sporadically, so that it does not match the expected return given in
the WSDL 73. In addition, the SOAP service’s parameters are all in Italian,
which makes it troublesome to use without knowledge of Italian. Therefore
we made a mediation layer that simplifies the query for a client by remov-
ing the need for handling bus-stop ID to live ID translation, strange SOAP
returns and Italian parameters. This service is described in section 5.4

8.1.3 Same Origin Policy

The same origin policy74 is an important security concept for a number
of browser-side programming languages, such as JavaScript. The "origin"
term describes resources having the same application layer protocol, do-
main name and, in most browsers, port number. Two resources are con-
sidered to be of the same origin if and only if all these values are exactly
the same. The policy allows scripts running on webpages originating from
the same site to access each other’s methods and properties with no re-
strictions. For webpages on different sites, however, access is denied. This
was a real concern for the communication between the server and client
developed in this project. Data transfers consists of data in JSON format
delivered through AJAX requests. Regular AJAX-calls were prohibited by
the browser and failed to work due to the same domain policy. Luckily,
the Sencha Touch API has a solution to this problem, so there was no need
to create a workaround or find a hack on the web. The solution is called
"ScriptTagProxy"75.

Instead of using the standard AJAX request, ScriptTagProxy injects a
<script> tag into the DOM. For example: If the prototype klient in this
project wants to load bus-stop data from http://busDomain.com/stops,
the injected script tag might look something like this:

<script src="http://busDomain.com/stops?callback=someCallback"></script>

73http://en.wikipedia.org/wiki/WebServicesDescriptionLanguage
74http://www.w3.org/Security/wiki/Same_Origin_Policy
75http://docs.sencha.com/touch/1-1/#!/api/Ext.data.ScriptTagProxy

46

http://busDomain.com/stops
http://en.wikipedia.org/wiki/Web Services Description Language
http://www.w3.org/Security/wiki/Same_Origin_Policy
http://docs.sencha.com/touch/1-1/#!/api/Ext.data.ScriptTagProxy


The browser on the client side then makes a request to that url and
includes the response as if it was any other type of JavaScript include. Be-
cause the client passes a callback in the url above, the busDomain server
knows that the client want to be notified when the result comes in and that
it should call a certain callback function with the data it sends back as pa-
rameters. So long as the remote server is configured to format the response
data accordingly, transfers are completed successfully.

8.1.4 Optimising Client-side

During testing on the Samsung Galaxy S2, the iPhone 3GS and iPad it was
very apparent that the graphics in the user interface of the client was ren-
dered much faster by the iOS-based devices. Presentation of layout, lists,
maps and map related graphics like zooming and panning seemed much
smoother on these devices. Also, on the Android device, the map flick-
ers during panning, which is really a minor annoyance, but takes away
the clean cut look of the application. It is likely that the difference in per-
formance mentioned here is a product of iOS having hardware accelera-
tion, while Android has not. Both iOS and Android devices use the We-
bKit web-renderer in their default browsers[7]. WebKit already have GPU-
acceleration implemented, so the only thing missing is to have native sup-
port up and running on the Android devices. The following quote76 gives
an overview of GPU-acceleration on mobile browsers:

”Traditionally, web browsers relied entirely on the CPU to render
web page content. With capable GPUs becoming an integral part of
even the smallest of devices and with rich media such as video and 3D
graphics playing an increasingly important role to the web experience,
attention has turned on finding ways to make more effective utilization
of the underlying hardware to achieve better performance and power
savings. There’s clear indication that getting the GPU directly in-
volved with compositing the contents of a web page can result in very
significant speedups. The largest gains are to be had from eliminat-
ing unnecessary (and very slow) copies of large data, especially copies
from video memory to system memory. The most obvious candidates
for such optimizations are the <video> element and the WebGL can-
vas, both of which can generate their results in areas of memory that
that CPU doesn’t have fast access to. Delegating compositing of the
page layers to the GPU provides other benefits as well. In most cases,
the GPU can achieve far better efficiency than the CPU (both in terms
of speed and power draw) in drawing and compositing operations that

76http://www.chromium.org/developers/design-documents/
gpu-accelerated-compositing-in-chrome

47

http://www.chromium.org/developers/design-documents/gpu-accelerated-compositing-in-chrome
http://www.chromium.org/developers/design-documents/gpu-accelerated-compositing-in-chrome


involve large numbers of pixels as the hardware is designed specifically
for these types of workloads.”

It is a bit curious that Android has not implemented GPU-acceleration
yet, but the Android developers have a good reason why. While on other
platforms like iOS and Windows Phone 7, minimum requirements for hard-
ware are set in place for devices running their respective operation systems.
Not only does this make it much easier to make sure processes run con-
sistently on all devices, but it lets software developers easily implement
hardware bound functionality, like GPU-acceleration. To this date, it has
been very difficult for Android developers to make a generic solution for
this problem. A future release of Android 4.0, nicknamed Ice Cream Sand-
wich, will supposedly 77 support hardware acceleration and then hopefully
make the experience on Android devices similiar to devices based on iOS
and Windows Phone 7.

8.1.5 Google Maps Woes

Implementing Google Maps in Sencha Touch might seem trivial to imple-
ment at first. Only a few lines of code should do the trick, but there are
things that have proved difficult. If a map UI object is create without
putting it in front and let it render initially, the map does not behave as
expected. The map’s start position does not get loaded, markers created do
not show, loading while panning does not work properly and so on. After
some research on the web and looking through APIs, a solution presented
itself. Google Maps API provides a way to resize the map and reinitialise it
properly. As stated in Google Maps Reference web page 78:

”Developers should trigger this event on the map when the div
changes size: google.maps.event.trigger(map, ’resize’) ”

Putting this line of code in the map object’s "activate"-listener solves the
problem when the map is rendered initially. Still, there is a problem when
an orientation change event fires on the phone, e.g the phone is flipped to
the side. The problem is that the resize method needs to be called after the
layout has been redone. It is hard to say exactly when the Sencha layout is
done rendering after the orientation change since none of the listeners pro-
vided gives the correct time of when the map has been fully re-rendered.
After extensive debugging and brainstorming, the way around this issue
was to put the resize call in a delayed task, i.e. a new thread that runs
after a certain amount of time. The delayed task was then run whenever

77http://phandroid.com/2011/10/19/android-4-0-ice-cream-sandwich-has-hardware-acceleration/
78http://code.google.com/intl/no-NO/apis/maps/documentation/javascript/

reference.html#Map

48

http://phandroid.com/2011/10/19/android-4-0-ice-cream-sandwich-has-hardware-acceleration/
http://code.google.com/intl/no-NO/apis/maps/documentation/javascript/reference.html#Map
http://code.google.com/intl/no-NO/apis/maps/documentation/javascript/reference.html#Map


the application fired a "onWindowResize"-event, i.e. when the application
window changes size. A second delay to make sure that the layout has
been redone seemed to be a good value during testing.

The Sencha Touch API provides functionality to retrieve and track the
users current location easily. It is a simple boolean that is set when initialis-
ing the map called ’useCurrentLocation’. This did not work in our device’s
browsers and we had to create our own method for doing this.

To this date "pinch zoom" in Google Maps is not supported on Android
browsers. Implementing custom code for doing this could be time consum-
ing and does not fit the scope of this project. Android users have to make
do with the ’plus’ (or double tapping) and "minus" buttons on the Google
Maps control interface until this issue is fixed in future versions of Android.

8.2 Reflections on Creating the Client Prototype

The client application ended up as expected and considered a success by
us. Even though the application works more smoothly on iOS-devices, fu-
ture updates for the Android devices, as discussed earlier, will presum-
ably fix the shortcomings of the Android browser capabilities. As can be
seen in the results section, all functionality from Magnus Raaum’s applica-
tion were implemented[13] and the application gives the user the look and
feel "illusion" of being native application. The hybrid application strategy
worked out as planned and gave us the benefits from using the multiple
platform approach we were looking for. We successfully created one appli-
cation that can be used on both Android and iOS devices without the use
of any platform-specific code.

8.3 Reflections on Adding a Server and Updating the BusTUC
Web-Interface

The implementation of the MultiBRIS server and update of the BusTUC
web-interface were considered a success as we see it. The system as a whole
went from having an client-application that transferred up to 0,5 MB of
data for a bus route query and a query time that was around 20 seconds,
to transferring only 5 KB of data and having query times at around 10 sec-
onds. Saving both time and data transfer was imperative for the practical
viability of both our MultiBRIS client, and TABuss’s Android client.

When looking at the power usage on figure 19 in the result section, that
compares power usage when having the business logic on either the client
or the server, a surprising property was revealed. One can see that the
difference in power usage in a large part comes from the extra data trans-
ferred and not from more CPU usage. From what we could find in articles
discussing power usage on mobile devices, the CPU cycles and the display
are always portrayed as the main battery power consumers. The result in

49



figure 19 can indicate that data transfers can consume as much power as
CPU cycles in some cases.

As shown, there are a lot of benefits from moving much of the business
logic to a server. The client saves battery power and it is easier to maintain
and update the system. However one should not forget to think about the
possible drawbacks from adding a server as part of the solution. Doing this
effectively creates another layer where the information has to pass trough
to reach the client. Adding another layer creates another point which can
potentially fail to work properly.

Another aspect is that the server, when used in a production environ-
ment, needs proper infrastructure as a foundation in order to be reliable
enough for any client to use it. Though it is not in the scope of this project
to look at commercial aspect of the solution, it would be parochial not to
point out that infrastructure cost for a server-infrastructure has to consid-
ered.

8.4 Known bugs

The prototypes have not been thoroughly tested and may therefore have
a bugs that were not noticeable during development. The following list
depicts those that have been discovered.

Client prototype

• The GUI might not rebuild itself properly on orientation change at
times (i.e flipping the device to the side).

• The "Trashcan"-button for favourite deletion has been rendered obse-
lete. It is impossible to select a favourite due to instant initiation of
searches on tap. The alternative solution of swiping the favourite and
clicking the "X"-button works.

Server prototype

• On some bus-stops for some routes, the bus departure time is up-
dated with the wrong real-time, this is because BusTUC delivers the
wrong bus-stop ID for some bus-stops.

9 Future Work

Future work consists of ideas of how to improve or extend the functionality
of the MultiBRIS system.

50



9.1 The MultiBRIS Client Applications

This section describes potential improvements specific to the MultiBRIS
client application.

9.1.1 Back Button support

As of now, the client has no support for device specific buttons, like the
back button on Android devices. These buttons runs in default mode. On
an android device, the back button makes the user leave the application,
which annoys users that expect the back button to work as the "Go-back"
functionality in web browsers. This can be implemented with the use of
the history states functionality in html579.

9.1.2 Optimise JavaScript Code to Follow Best Practises

Because of the lacking knowledge of JavaScript at the start of this project,
much of the time was spent learning the language and debugging. Little
time was allocated to an implementation phase. Therefore, the JavaScript
code might not follow what is widely considered best practises and be as
optimised as it should be. This, including the use of a MVC-pattern80, were
sacrificed in order to prioritise adding functionality and getting things to
work. Future work should include a MVC-pattern for a more structured
and tidier code and code optimisations.

9.1.3 Multi-Language

Creating language packs and implement an easy way to toggle between
different languages in the client application should be an easy task and
would open up for foreign users. Buttons, descriptions and results should
be translated. Context awareness could be used here. For instance, lan-
guage in the client application could be set by using the language setting
on the mobile device’s operating system.

9.1.4 Fix XML List of Bus-Stops in Trondheim

The MultiBRIS client application loads bus-stop information from a XML-
file. This information is used for both the real-time information functional-
ity and the search textfield auto-complete feature. This file has a few entries
that are considered false. The bus-stops might not exist and give errors
when posting queries for real-time information. These should be altered

79This link should be helpful: https://github.com/balupton/history.js/wiki/
The-State-of-the-HTML5-History-API

80(Sencha Touch supports the use of MVC:
http://www.sencha.com/learn/a-sencha-touch-mvc-application-with-phonegap/

51

https://github.com/balupton/history.js/wiki/The-State-of-the-HTML5-History-API
https://github.com/balupton/history.js/wiki/The-State-of-the-HTML5-History-API
http://www.sencha.com/learn/a-sencha-touch-mvc-application-with-phonegap/


or removed accordingly. There are also duplicate names in this list, due
to several bus-stops in vicinity of each other (E.g. Studentersamfundet).
Future implementations of the MultiBRIS client application should either
create a separate list without these duplicates or remove the duplicates by
using filters in the code implementation.

9.1.5 Improve Euclidian Distance Algorithm

The "Bus-stops near me" functionality uses a simple euclidean distance81

algorithm to figure out what bus-stops are closest to the user’s location.
This algorithm does not take the Earth’s spheric shape into account. So in
order to increase accuracy this algorithm should be improved. This could
be done by implementing the same "Inverse formula" from the paper by
T.Vincentry as it was implemented on the MultiBRIS server[16].

9.1.6 Dynamic Bus-Stop Loading

The current version of the MultiBRIS client application lets the user view
the closest bus-stops by the push of a button. The application could be
made more intuitive by updating the code to facilitate dynamic loading of
bus-stops according to where the user is located or where the user navi-
gates to on the map.

9.1.7 GUI Optimalisation for Landscape Mode

The user interface in the application does not work as well in landscape
mode (i.e mobile device flipped to the side). The map is very small due to
toolbars and menu items. Customisations could be made to free up some
space for the map. For instance, it is not essential to have the search bar
in this view. The user can easily switch to the "Favourite" view for search
functionality. The feature toolbar in bottom of the view could also be re-
moved. The user’s current location could be set be automatically updated
("Meg"-button). The clear map functionality might not be necessary for
most users ("Fjern"-button). By implementing dynamic bus-stop loading
(See previous paragraph) the "Nær meg"-button is also rendered obsolete.

9.1.8 GUI Optimised for Desktop Browsers

As explained earlier, the client application is essentially a web application.
This means that it already works well with desktop browsers like Apple
Safari and Google Chrome. The graphical user interface (GUI) has not been
optimised for such desktop browsers, though. The different GUI elements
are either too small or they fill the browser window entirely, which is not

81http://en.wikipedia.org/wiki/Euclidean_distance

52

http://en.wikipedia.org/wiki/Euclidean_distance


optimal for big monitors. Small adjustments should be made to the code
base in order to accommodate this.

9.1.9 Speech support

Additional support for input and output in the form of speech (Multimodal
Interaction82) could be added to the client application. This would ex-
pand the target audience further to include the visually impaired, elderly
and non-natives. The spoken dialog system "Let’s Go" (2003) has imple-
mented functionality to make bus route information available for these user
groups[15]. For the non-natives, using such a system can even aid in learn-
ing the native language[14].

9.1.10 Context Aware: Dynamic GUI

When humans communicate, they make use of implicit situational informa-
tion, context, to increase content and efficiency. To increase the efficiency of
the client application it can try to mimic this behaviour by being context-
aware[3]. Dynamic GUI based on user’s age is one of the things that could
be implemented. What this means is to control font size, in addition to
what and how much information will be shown. Customising design of the
graphical interface and interactive elements, like buttons, could also help
achieve this. To keep children interested, one should for instance stick to a
minimum amount of text and design the application to have certain shapes
and colors to exploit their playful state of mind and draw them in. As we
age, perception is lessened, attention is narrowed and memory is limited.
Increasing font size and give concise information is therefore preferred for
the elderly users.

9.2 The MultiBRIS Server

This section describes future work regarding the MultBRIS server.

9.2.1 Extensive Testing

Once in a while, during the development of the server, errors occurred
that one was not able to replicate and therefore not fix. With many sys-
tems working together it is not always easy to pinpoint the exact origin
of an error. Therefore it would be beneficial to conduct extensive testing
of the server to try to get rid of as many bugs as possible. A proper load
test should also be conducted to estimate what hardware specifications is
needed in relation to concurrent queries.

82http://en.wikipedia.org/wiki/Multimodal_interaction

53

http://en.wikipedia.org/wiki/Multimodal_interaction


Extensive testing should also be conducted on the client prototype in
order to reveal weaknesses and fix them.

9.2.2 The Least Transfers Option

A functionality which could be added to the server is to give the user the
option to select the route that involves the least transfers. One could even
make a weighting system so that the server would suggest a route that in-
volved a transfer only when the total travel time for other routes exceeded
a given relative limit.

9.2.3 Adding Authentication

At the current stage there is no control on who is allowed to use the server.
Anyone that knows the URL can use the service. Adding authentication
might be desirable. There are already a query attribute called key that can
be used to identify the query caller. This attribute currently is only optional.
A loose authentication method would be to make this key mandatory, and
maintain a list of allowed keys on the server.

9.2.4 Compressing the Returned JSON Objects

It could be beneficial to add support for the compression of the returned
JSON-objects. This would allow the client side to spend some more CPU
cycles in order to save some data transfer. As there are many mobile sub-
scriptions that still have expensive data transfer rates, it could be that some
users would prefer to "pay battery time" for less data transfered. GZIP is
an option in HTTP that provides support for this functionality. GZIP83 is
part of the HTTP 1.1 standard defined by the RFC261584. To our knowledge
there is no existing web browser for mobile devices that does not support
HTTP 1.1 usage.

9.2.5 Caching the Requests

The part of the system that requires most computation is the BusTUC part.
One solution to this challenge is to cache of the requests to the MultiBRIS
server. This would only come into play in an environment where there
are a large number of users. All requests, with responses attached, can be
stored for reuse for a given time, typical up to one minute. The reuse time
can not be too long, as it could give inaccurate results. Another interesting

83http://en.wikipedia.org/wiki/Gzip
84http://tools.ietf.org/html/rfc2616

54

http://en.wikipedia.org/wiki/Gzip
http://tools.ietf.org/html/rfc2616


functionality, in relation to this, would be to use some kind of case-based-
reasoning. The server itself can learn how long this reuse period could be
extended, for a given route or area, without getting inaccurate results.

9.2.6 Filtering Options for the Logging Service

The "logging service" for the MultiBRIS server could be improved by adding
filtering options. Typical, useful filters would be logging level, key and
date. The level filtering would be handy to filtering out SEVERE log en-
tries indicating errors in the system. The key would help locate an error
that a particular user has, and the date would filter by date. It can also be
beneficial to look at how the log is actually stored. Now it uses files with no
standard syntax. A standard syntax log could be made in XML85. XSLT86

could be used to transform the XML to HTML content.

9.2.7 Intelligent Decisions on Where to Compute

In an paper by Jason Flinn et al. called Balancing Performance, Energy, and
Quality in Pervasive Computing they portray a system called Spectra[5]. This
system dynamical decides whether to perform computation on the server
or the client. It makes its decisions by monitoring resource usage both on
server and client, and making an "optimal choice" based on given system
parameters. This functionality could be implemented for MultiBRIS. For
instance if MultiBRIS server was under such heavy load that it would de-
lay query times, the clients calling could be instructed to perform the route
calculations and contact underlying services themselves. This would re-
quire development on the both the server and the client. The client code
would grow substantially, as it has to contain all the business logic needed
to perform computations and service call-outs itself.

Another idea from the article by Jason Flinn et al. is allowing the client
to learn what is best practise, for instance to save battery power. As one can
see in the Result section, battery usage from transferring data can require as
much power as CPU cycles. Therefore the client application could monitor
power usage for different operations, and learn what tasks to compute by
itself and what to ask a server to compute. By doing this, the client could
optimise for saving battery on the unique mobile device it is currently run-
ning on. The reason why this needs to be learned for every type of device
is that battery power used for data communication and CPU usage varies
from device to device. Typically, the client could also optimise for lower
execution time.

85http://www.w3schools.com/xml/default.asp
86http://www.w3schools.com/xsl/xsl_intro.asp

55

http://www.w3schools.com/xml/default.asp
http://www.w3schools.com/xsl/xsl_intro.asp


9.3 Geographical Expansion

There is no reason why the MultiBRIS system should be restricted to the
Trondheim area. Adding support for other cities in Norway, and eventually
even the whole country is one of the ultimate goals of FUIROUS.

For instance, public transportation information from the entire country
could be maintained in a single system. When a client application starts it
could load public transportation information data, from the new system,
according to the mobile device’s current location.

One of the challenges related to effective expansion is the need for stan-
dards. For instance, if the goal was total coverage for all public transporta-
tion in Norway, it would be convenient to convince all the bus agencies in
Norway, to use the same standards for sharing routes and real-time data.
One such standard for real-time data is already in use by Trafikanten AS
87, Norway’s largest bus agency. The standard Trafikanten AS uses for dis-
tribution of real-time data is called SIRI88 Service Interface for Real Time
Information. SIRI is an XML protocol that allows distributed computers to
exchange real-time information about public transport services and vehi-
cles. The protocol is a CEN89 standard, developed with initial participation
by France, Germany (Verband Deutscher Verkehrsunternehmen90), Scandi-
navia, and the UK (UK Real Time Interest Group91). Through a JSON-API
Trafikanten AS makes the StopMonitoring (SM) part of SIRI available for
public use. The Stop Monitoring section is as described by the SIRI stan-
dard:

The Stop Services (Stop Timetable and Stop Monitoring) The
Stop Timetable (ST) and Stop Monitoring services (SM) provide stop-
centric information about current and forthcoming vehicle arrivals
and departures at a nominated stop or Monitoring Point, typically
for departures within the next 20-60 minutes for display to the public.
The SM service is suited in particular for providing departure boards
on all forms of device.

Because SIRI is a CET standard and already in use by Norway’s largest bus
agency, SIRI is a good candidate for a national standard for sharing real-
time public transport information.

It still remains to find a good standard for sharing route information.
However, the biggest challenge when it comes to standards are probably
not technical, but rather political and financial.

87http://trafikanten.no/no/verdt-a-vite/trafikanten/Om-selskapet/
88http://www.kizoom.com/standards/siri/
89http://www.cen.eu/cen/pages/default.aspx
90http://www.vdv.de/
91http://www.rtig.org.uk/

56

http://trafikanten.no/no/verdt-a-vite/trafikanten/Om-selskapet/
http://www.kizoom.com/standards/siri/
http://www.cen.eu/cen/pages/default.aspx
http://www.vdv.de/
http://www.rtig.org.uk/


An approach that avoids the distributed standardisation challenge could
be constructed by absorbing the existing transportation agency systems
one-by-one. This system would effectually become the mediation layer
that creates the standard, seen from an application developer’s point-of-
view. This would also increase the amount of work needed to expand the
system substantially, compared to expanding a system based on standards.
An advantage to this approach would be that such a system could estab-
lish a position of power in relation to public transport data sharing. It is
reasonable to believe that a system that has a standard way to communi-
cate route data for an entire country, would become vastly popular among
client developers. By providing the "back-end" to "front-end" mediation
layer for the majority of available public transportation client-applications
available, one would be in a position of power. This position of power
could then be used to encourage the use of standards such as SIRI, among
the public transportation agencies.

10 Acknowledgments

We would like to thank our supervisors Rune Sætre and Björn Gämback
for their guidance. Rune has been a valuable resource, both because of
his knowledge of the BussTUC domain, and his general enthusiasm and
interest in mobile application development. We would further like to thank
Chistoffer Jun Marcussen and Lars Moland Eliassen for their valuable ideas
and feedback during the project.

57



References

[1] Ken Arnold, James Gosling, and David Holmes. The Java Programming
Language. Pearson, 4rd edition, 2005.

[2] Adam M. Christ. Bridging the moble app gap. Noblis. Sigma, Inside the
Digital Ecosystem, 11:27–32, October 2011.

[3] Anind K. Dey and Gregory D. Abowd. Towards a better understand-
ing of context and context-awareness. In In HUC ’99: Proceedings of
the 1st international symposium on Handheld and Ubiquitous Computing,
pages 304–307. Springer-Verlag, 1999.

[4] Brian Ferris, Kari Watkins, and Alan Borning. Onebusaway: Location-
aware tools for improving public transit usability. IEEE Pervasive Com-
puting, 2010.

[5] Jason Flinn, Soyoung Park, and M. Satyanarayanan. Balancing perfor-
mance, energy, and quality in pervasive computing. In In Proceedings
of the 22nd International Conference on. Distributed Computing Systems,
pages 217–226, 2002.

[6] George H. Forman and John Zahorjan. The challenges of mobile com-
puting. Computer, 27(4):38–47, April 1994.

[7] Edwin A. Hernandez. War of the mobile browsers. IEEE Pervasive
Computing, 8(1):82–85, 2009.

[8] A. Lenhart, K. Purcell, A. Smith, and K. Zickuhr. Social media & mo-
bile internet use among teens and young adults. Pew Internet & Amer-
ican Life Project, 2010.

[9] Christoffer J. Marcussen and Lars M. Eliassen. Tabuss: An intelligent
smartphone application. 2011.

[10] Daniel Moraff. Google transit feed specification: A primer. November
2009.

[11] Richard Padley. Html5 - bridging the mobile platform gap: mobile
technologies in scholarly communication. The Journal for the Serials
Community, 24:S32–S39, November 2011.

[12] Bruce W. Perry. Java Servlet & JSP Cookbook. O’Reilly Media, 1st edition,
December 2003.

[13] Magnus Raaum. An intelligent smartphone application. Master’s the-
sis, NTNU, 2010.

58



[14] Antoine Raux, Maxine Eskenazi, and This Cmu. Non-native users in
the let’s go!! spoken dialogue system: Dealing with linguistic mis-
match.

[15] Antoine Raux, Brian Langner, Alan W Black, and Maxine Eskenazi.
Let’s go: Improving spoken dialog systems for the elderly and non-
natives. In in Eurospeech03, 2003.

[16] T. Vincentry. Direct and inverse solutions of geodesics on the ellip-
soid with application of nested equations. Survey Review, XXIII:88–93,
April 1975.

59


	Introduction
	Terminology and Abbreviations

	Goals and Methods
	State-of-the-Art Survey
	Technologies and Design
	Existing Applications

	Prototype System
	Collaboration with Project TABuss

	State of the Art Survey
	Technology
	The Age of Smartphones

	Existing Applications in Trondheim
	"Bussorakel"
	Bartebuss
	Busstider
	Alf's ByBuss
	Bussdroid
	BusApp Trondheim
	Bussruter
	Bussøye
	Comparison Charts

	Existing Applications in Other Parts of the World
	Google Transit
	OneBusAway

	Conclusion

	Prototype Client
	Development Technologies
	HTML 5
	CSS 3
	JavaScript

	Deployment Technologies
	PhoneGap
	Appcelerator Titanium Mobile
	Rhodes

	Conclusion: Deciding which Technologies to Make Use of

	Prototype Server
	System Overview
	Technologies
	The Main Service
	Migrating the Application Logic to the Server
	Interacting With BusTUC
	Main Service Interface

	The Real Time Service
	The Logging Service
	Server Optimisation

	New Web-Interface for BusTUC
	Challenges with the Previous BusTUC Web-Interface
	The New Web-Interface

	Results
	Physical Servers
	The Client Application
	The Server
	The New BusTUC Web-Interface

	Discussion
	Challenges During Development
	Bugs in the Previous Business Logic
	AtB's Real-Time Service
	Same Origin Policy
	Optimising Client-side
	Google Maps Woes

	Reflections on Creating the Client Prototype
	Reflections on Adding a Server and Updating the BusTUC Web-Interface 
	Known bugs

	Future Work
	The MultiBRIS Client Applications
	Back Button support
	Optimise JavaScript Code to Follow Best Practises
	Multi-Language
	Fix XML List of Bus-Stops in Trondheim
	Improve Euclidian Distance Algorithm
	Dynamic Bus-Stop Loading
	GUI Optimalisation for Landscape Mode
	GUI Optimised for Desktop Browsers
	Speech support
	Context Aware: Dynamic GUI

	The MultiBRIS Server
	Extensive Testing
	The Least Transfers Option
	Adding Authentication
	Compressing the Returned JSON Objects
	Caching the Requests
	Filtering Options for the Logging Service
	Intelligent Decisions on Where to Compute

	Geographical Expansion

	Acknowledgments

