Scripting vs Emergence

by Elias and Trygve

Overview

- Scripting vs Emergence
- Concerns for Devs
- Concerns for players
- Techniques

Scripting vs Emergence

Scripting:

- Bottom up
- Handcrafted and Rigid
- Focus on Narrow interactions

Emergence:

- Top down,
- Systemic design,
- Focus on Broad interactions.

The difference between the two

Scripting:

- Little uncertainty
- "Railroaded" / Linear Gameplay
- Direct Feedback, Clear Goal

Emergence:

- More uncertainty
- More freedom
- Less Feedback, Unclear Goal

Notes

Two extremes on a spectrum

Most games fall in the middle

Paper stresses most games are scripted

Is a sandbox environment a game?

Examples

Scripted

Concerns for Devs

	Scripting	Emergence
Effort in initial design	Medium, easy to start, hard to maintain consistency	High, a lot of planning before coding starts
Effort in modifying	High, scales poorly and is difficult to modify	Low, scales well, easy to add and modify
Level of control	High control, devs decide permitted actions/outcomes	Low control, dev can't anticipate actions
Quality assurance / testing	Fewer outcomes means easier testing	High uncertainty, requires much testing
Ease of feedback / direction	Less feedback needed because the players path is predetermined	Player requires additional feedback / direction

Concerns for players

	Scripting	Emergence
Consistency and Immersion	Scripting often causes inconsistencies which easily ruins immersion	Consistent rules makes it easier to suspend disbelief, increasing immersion.
Intuitiveness and Learning	Inconsistencies in interaction often makes it harder to learn how the game works (eg. barrels)	Games that follow realistic rules are often more intuitive, and therefore easier to learn.
Player expression	Both actions and strategies are limited to the vision of the developer	Player can make their own choices and explore paths and strategies not anticipated by the developers. This can increase replayability.

Techniques for Scripting

Finite State Machines (FSM)

Scripting Languages

Finite State Machines (FSM)

- Consists of a set of states, inputs, outputs and a state transition function
- Simple to create and understand
- Offers high power relative to their complexity
- Scales poorly as system gets more complex

Scripting languages

- High level programming language

Allows communities to create mods

```
com.assertions.leman
setS.bad++);p.testDone(o
setTimeout&&!m.doneTimer&(
com.push({result:!!e,message)
rions.push({result:!!e,message)
setTimeout(e,t,n){o(t!=e,e,t)
setTimeout(e,t,n)(e(t)
setTimeout(fine)
setTimeout(fine)
setTimeout(fine)
setTimeout(fine)
setTimeout(fine)
setTimeout(fine)
setTimeout(fine)
```

 Claim form the paper: Easier to use for non-programmers (not sure if we agree)

Techniques for Emergence

Flocking

Cellular Automata

Neural Networks

Evolutionary Algorithm

Flocking

Movement algorithm

Separation: Don't crash

Alignment: Go to where my neighbours are going

Cohesion: Go towards the center of the flock

Cellular Automata

Each cell in a grid updates based on a set of rules

More realistic: Fire, Water or Smoke

Famously: Conway's game of life

Neural Networks & Evolutionary Algorithms

Infinite craft

