
Scripting vs Emergence

by Elias and Trygve

Overview

- Scripting vs Emergence
- Concerns for Devs
- Concerns for players
- Techniques

Scripting vs Emergence

Scripting:

- Bottom up
- Handcrafted and Rigid
- Focus on Narrow interactions

Emergence:

- Top down,
- Systemic design,
- Focus on Broad interactions.

The difference between the two

Scripting:

- Little uncertainty
- “Railroaded” / Linear Gameplay
- Direct Feedback, Clear Goal

Emergence:

- More uncertainty
- More freedom
- Less Feedback, Unclear Goal

Notes

Two extremes on a spectrum

Most games fall in the middle

Paper stresses most games are scripted

Is a sandbox environment a game?

Examples

Point and click

Concerns for Devs
Scripting Emergence

Effort in initial design Medium, easy to start, hard to
maintain consistency

High, a lot of planning before coding
starts

Effort in modifying High, scales poorly and is difficult
to modify

Low, scales well, easy to add and
modify

Level of control High control, devs decide
permitted actions/outcomes

Low control, dev can’t anticipate
actions

Quality assurance / testing Fewer outcomes means easier
testing

High uncertainty, requires much
testing

Ease of feedback / direction Less feedback needed because
the players path is predetermined

Player requires additional feedback /
direction

Concerns for players
Scripting Emergence

Consistency and Immersion Scripting often causes
inconsistencies which easily ruins
immersion

Consistent rules makes it easier to
suspend disbelief, increasing
immersion.

Intuitiveness and Learning Inconsistencies in interaction often
makes it harder to learn how the
game works (eg. barrels)

Games that follow realistic rules are
often more intuitive, and therefore
easier to learn.

Player expression Both actions and strategies are
limited to the vision of the
developer

Player can make their own choices
and explore paths and strategies not
anticipated by the developers. This
can increase replayability.

Techniques for Scripting
Finite State Machines (FSM)

Scripting Languages

Finite State Machines (FSM)

- Consists of a set of states, inputs, outputs and a state transition function
- Simple to create and understand
- Offers high power relative to their complexity
- Scales poorly as system gets more complex

Scripting languages

- High level programming language

- Allows communities to create mods

- Claim form the paper: Easier to use for non-programmers
(not sure if we agree)

Techniques for Emergence

Flocking

Cellular Automata

Neural Networks

Evolutionary Algorithm

Flocking

Movement algorithm
Separation: Don’t crash
Alignment: Go to where my neighbours are going
Cohesion: Go towards the center of the flock

Cellular Automata

Each cell in a grid updates based on a set of rules

More realistic: Fire, Water or Smoke

Famously :
Conway's game of life

Neural Networks & Evolutionary Algorithms

Infinite craft

