
Training

Robot Programming 3

KUKA System Software 8

KUKA Roboter GmbH

Issued: 21.12.2011

Version: P3KSS8 Roboterprogrammierung 3 V1 en

Robot Programming 3

2 / 93 Issued: 21.12.2011 Version: P3KSS8 Roboterprogrammierung 3 V1 en

© Copyright 2011

KUKA Roboter GmbH

Zugspitzstraße 140

D-86165 Augsburg

Germany

This documentation or excerpts therefrom may not be reproduced or disclosed to third parties without
the express permission of KUKA Roboter GmbH.

Other functions not described in this documentation may be operable in the controller. The user has
no claims to these functions, however, in the case of a replacement or service work.

We have checked the content of this documentation for conformity with the hardware and software
described. Nevertheless, discrepancies cannot be precluded, for which reason we are not able to
guarantee total conformity. The information in this documentation is checked on a regular basis, how-
ever, and necessary corrections will be incorporated in the subsequent edition.

Subject to technical alterations without an effect on the function.

Translation of the original documentation

KIM-PS5-DOC

Publication: Pub COLLEGE P3KSS8 Roboterprogrammierung 3 (PDF-COL) en

Bookstructure: P3KSS8 Roboterprogrammierung 3 V1.1

Version: P3KSS8 Roboterprogrammierung 3 V1 en

Contents

Contents
1 Structured programming .. 5

1.1 Objectives for consistent programming methodology .. 5

1.2 Tools for creating structured robot programs ... 5

1.3 Creating a program flowchart ... 9

2 Submit interpreter ... 13

2.1 Using the Submit interpreter .. 13

3 Workspaces with KRL ... 17

3.1 Using workspaces .. 17

3.2 Exercise: Workspace monitoring ... 26

4 Message programming with KRL ... 29

4.1 General information about user-defined messages ... 29

4.2 Working with a notification message .. 36

4.3 Exercise: Programming notification messages .. 37

4.4 Working with a status message ... 39

4.5 Exercise: Programming status messages .. 40

4.6 Working with an acknowledgement message .. 42

4.7 Exercise: Programming acknowledgement messages .. 43

4.8 Working with a wait message .. 45

4.9 Exercise: Programming wait messages ... 46

4.10 Working with a dialog message ... 47

4.11 Exercise: Programming a dialog .. 50

5 Interrupt programming .. 51

5.1 Programming interrupt routines ... 51

5.2 Exercise: Working with interrupts ... 60

5.3 Exercise: Canceling motions with interrupts .. 62

6 Programming return motion strategies ... 65

6.1 Programming return motion strategies ... 65

6.2 Exercise: Programming a return motion strategy ... 66

7 Working with analog signals .. 69

7.1 Programming analog inputs ... 69

7.2 Programming analog outputs ... 71

7.3 Exercise: Working with analog I/Os ... 73

8 Sequence and configuration of Automatic External 75

8.1 Configuring and implementing Automatic External .. 75

8.2 Exercise: Automatic External ... 83

9 Programming collision detection ... 85

9.1 Programming motions with collision detection ... 85

Index ... 91
3 / 93Issued: 21.12.2011 Version: P3KSS8 Roboterprogrammierung 3 V1 en

4 / 93

Robot Programming 3
Issued: 21.12.2011 Version: P3KSS8 Roboterprogrammierung 3 V1 en

1 Structured programming
1 Structured programming

1.1 Objectives for consistent programming methodology

Objectives for

consistent

programming

methodology

Consistent programming has the following advantages:

 The rigidly structured program layout allows complex problems to be dealt
with more easily.

 It allows a comprehensible presentation of the underlying process (without
the need for in-depth programming skills).

 Programs can be maintained, modified and expanded more effectively.

Forward-looking program planning has the following advantages:

 Complex tasks can be broken down into simple subtasks.

 The overall programming time is reduced.

 It enables components with the same performance to be exchanged.

 Components can be developed separately from one another.

The 6 requirements on robot programs:

1. Efficient

2. Free from errors

3. Easy to understand

4. Maintenance-friendly

5. Clearly structured

6. Economical

1.2 Tools for creating structured robot programs

What is the point

of a comment?

Comments are additional remarks within programming languages. All pro-
gramming languages consist of instructions for the computer (code) and infor-
mation for text editors (comments). If a source text undergoes further
processing (compilation, interpretation, etc.), the comments are ignored by the
software carrying out the processing and thus have no effect on the results.

In the KUKA controller, line comments are used, i.e. the comments automati-
cally end at the end of the line.

Comments on their own cannot render a program legible; they can, however,
significantly increase the legibility of a well-structured program. Comments en-
able the programmer to insert remarks and explanations into the program with-
out the controller registering them as syntax.

It is the responsibility of the programmer to ensure that the contents of the
comments are up to date and correspond to the actual program instructions.
If programs are modified, the comments must therefore also be checked and
adapted as required.

The contents of a comment, and thus its beneficial value, can be freely select-
ed by the programmer/editor and are not subject to rules of syntax. Comments
are generally written in “human” language – either the native language of the
author or a major world language.

 Comments about the contents or function of a program

 Contents and benefits can be freely selected.

 Improved program legibility

 Clearer structuring of a program

 The programmer is responsible for ensuring that comments are up to date.

 KUKA uses line comments.
5 / 93Issued: 21.12.2011 Version: P3KSS8 Roboterprogrammierung 3 V1 en

6 / 93

Robot Programming 3
 Comments are not registered as syntax by the controller.

Where and when

are comments

used?

Information about the entire source text:

At the start of a source text, the author can insert preliminary remarks, includ-
ing details about the author, the license, the creation date, contact address for
questions, list of other required files, etc.

Structure of the source text:

Headers and sections can be indicated as such. Often, not only linguistic
means are used, but also graphic aids that are implemented using text.

Explanation of an individual line:

The working method or the meaning of a section of text (e.g. a program line)
can be explained, for example, so that other people (or even the author him-
self) can subsequently understand it more easily.

Indication of work to be carried out:

Comments can be used to label inadequate sections of code or as placehold-
ers for sections of code that are missing completely.

DEF PICK_CUBE()
;This program fetches the cube from the magazine
;Author: I. M. Sample
;Date created: 09.08.2011
INI
...
END

DEF PALLETIZE()
;***
;*This program palletizes 16 cubes on the table*
;*Author: I. M. Sample--------------------------------*
;*Date created: 09.08.2011---------------------------*
;***
INI
...
;------------Calculation of positions-----------------
...
;------------Palletizing of the 16 cubes--------------
...
;----------Depalletizing of the 16 cubes--------------
...
END

DEF PICK_CUBE()

INI

PTP HOME Vel=100% DEFAULT

PTP Pre_Pos ; Move to preliminary position for gripping

LIN Grip_Pos ; Move to cube gripping position
...

END
Issued: 21.12.2011 Version: P3KSS8 Roboterprogrammierung 3 V1 en

1 Structured programming
Commenting out:

If part of the code is to be temporarily deleted, but possibly reinserted in the
future, it is commented out. Once it has been turned into a comment, the com-
piler no longer considers it to be code, i.e. for practical purposes it no longer
exists.

What is the effect

of using folds in a

robot program?

 Program sections can be hidden in FOLDS.

 The contents of FOLDS are not visible to the user.

 The contents of FOLDS are processed normally during program execu-
tion.

 The use of FOLDS can improve the legibility of a program.

What examples

are there for the

use of folds?

By default, the system already uses folds on the KUKA controller, e.g. for dis-
playing inline forms. These folds help to structure the display of values in the
inline form and hide program sections that are not relevant for the operator.

Furthermore, the user (in user group Expert or higher) is able to make his own
folds. These folds can be used by the programmer, for example, to inform the
user about what happens in certain program sections while keeping the actual
KRL syntax in the background.

Initially, folds are generally displayed closed after they have been created.

DEF PICK_CUBE()

INI

;Calculation of the pallet positions must be inserted here!

PTP HOME Vel=100% DEFAULT

PTP Pre_Pos ; Move to preliminary position for gripping

LIN Grip_Pos ; Move to cube gripping position

;Closing of the gripper is still missing here

END

DEF Palletize()

INI

PICK_CUBE()

;CUBE_TO_TABLE()

CUBE_TO_MAGAZINE()

END

DEF Main()
...
INI ; KUKA FOLD closed

SET_EA ; FOLD created by user closed

PTP HOME Vel=100% DEFAULT ; KUKA FOLD closed

PTP P1 CONT Vel=100% TOOL[2]:Gripper BASE[2]:Table
...
PTP HOME Vel=100% Default

END
7 / 93Issued: 21.12.2011 Version: P3KSS8 Roboterprogrammierung 3 V1 en

8 / 93

Robot Programming 3
Why are subpro-

grams used?

In programming, subprograms are primarily used to enable multiple use of
sections containing identical tasks and thus avoid repetition of code. Apart
from anything else, this saves memory.
Another important reason for the use of subprograms is the resultant structur-
ing of the program.
A subprogram should perform a self-contained and clearly definable subtask.
For improved ease of maintenance and elimination of programming errors,
subprograms today are preferably short and uncluttered, as the time and ad-
ministrative effort required to call subprograms on modern computers is neg-
ligible.

 Multiple use possible

 Avoidance of code repetition

 Memory savings

 Components can be developed separately from one another.

 Components with the same performance can be exchanged at any time.

 Structuring of the program

 Overall task broken down into subtasks

 Improved ease of maintenance and elimination of programming errors

DEF Main()
...
INI ; KUKA FOLD closed

SET_EA ; FOLD created by user opened
$OUT[12]=TRUE
$OUT[102]=FALSE
PART=0
Position=0

PTP HOME Vel=100% DEFAULT ; KUKA FOLD closed
...
PTP P1 CONT Vel=100% TOOL[2]:Gripper BASE[2]:Table

PTP HOME Vel=100% Default

END

DEF Main()
...
INI ; KUKA FOLD closed

SET_EA ; FOLD created by user closed

PTP HOME Vel=100% DEFAULT ; KUKA FOLD opened
$BWDSSTART=FALSE
PDAT_ACT=PDEFAULT
FDAT_ACT=FHOME
BAS(#PTP_PARAMS,100)
$H_POS=XHOME
PTP XHOME
...

PTP P1 CONT Vel=100% TOOL[2]:Gripper BASE[2]:Table

PTP HOME Vel=100% Default

END
Issued: 21.12.2011 Version: P3KSS8 Roboterprogrammierung 3 V1 en

1 Structured programming
Using subpro-

grams

What is achieved

by indenting

command lines?

In order to make explicit the structures within program modules, it is advisable
to indent nested command sequences in the program text and write instruc-
tions at the same nesting depth directly below one another.
The effect obtained is purely optical and serves merely to make the program
more comprehensible to other people.

What is achieved

by the meaningful

identification of

data names?

To enable correct interpretation of the function of data and signals in a robot
program, it is advisable to use meaningful terms when assigning names.
These include, for example:

 Long text names for input and output signals

 Tool and base names

 Signal declarations for input and output signals

 Point names

1.3 Creating a program flowchart

What is a

program

flowchart?

A program flowchart is a flowchart illustrating the sequence and structure of a
program. It is a graphic representation of the implementation of an algorithm
in a program and describes the sequence of operations for solving a task. The
symbols for program flowcharts are standardized in DIN 66001. Program flow-
charts are often used independently of computer programs to represent pro-
cesses and activities.
The graphic representation of a program algorithm is significantly more legible
than the same program algorithm in a code-based description as the structure
is much easier to recognize.
Structure and programming errors are much easier to avoid when translating
the program into program code as correct application of a program flowchart

DEF MAIN()

INI

LOOP

 GET_PEN()
 PAINT_PATH()
 PEN_BACK()
 GET_PLATE()
 GLUE_PLATE()
 PLATE_BACK()

 IF $IN[1] THEN
 EXIT
 ENDIF

ENDLOOP

END

DEF INSERT()
INT PART, COUNTER
INI
PTP HOME Vel=100% DEFAULT
LOOP
 FOR COUNTER = 1 TO 20
 PART = PART+1
 ;Inline forms cannot be indented!!!
PTP P1 CONT Vel=100% TOOL[2]:Gripper BASE[2]:Table
 PTP XP5
 ENDFOR
...
ENDLOOP
9 / 93Issued: 21.12.2011 Version: P3KSS8 Roboterprogrammierung 3 V1 en

10 / 93

Robot Programming 3
allows direct translation into program code. At the same time, creation of a pro-
gram flowchart provides documentation of the program to be created.

 Tool for structuring the sequence of a program

 Program sequence is made more legible.

 Structure errors are detected more easily.

 Simultaneous documentation of the program

Program

flowchart

symbols

Start or end of a process or program

Linking of statements and operations

Branch

General statements in the program code

Subprogram call

Input/output statement

Fig. 1-1

Fig. 1-2

Fig. 1-3

Fig. 1-4

Fig. 1-5
Issued: 21.12.2011 Version: P3KSS8 Roboterprogrammierung 3 V1 en

1 Structured programming
Program

flowchart

example

Creating a

program

flowchart

Starting from the user expectations, the problem is gradually refined until the
resulting components are manageable enough to be converted into KRL.
The drafts made at successive stages of development become steadily more
detailed.

1. Rough outline of the overall sequence on approx. 1-2 pages

2. Breakdown of the overall task into small subtasks

3. Rough outline of the subtasks

4. Refinement of the structure of the subtasks

5. Implementation in KRL code

Fig. 1-6

Fig. 1-7
11 / 93Issued: 21.12.2011 Version: P3KSS8 Roboterprogrammierung 3 V1 en

12 / 93

Robot Programming 3
Issued: 21.12.2011 Version: P3KSS8 Roboterprogrammierung 3 V1 en

2 Submit interpreter
2 Submit interpreter

2.1 Using the Submit interpreter

Description of the

Submit inter-

preter

Two tasks run in KSS 8.x.

 Robot interpreter (execution of robot motion programs and their logic)

 Controller interpreter (execution of a parallel control program)

Structure of the program SPS.SUB:

The status of the Submit interpreter

The controller interpreter

 can be started automatically or manually.

 can also be stopped or deselected manually.

 can perform robot operator and control tasks.

 is created by default in the R1/SYSTEM directory with the name SPS.sub.

 can be programmed with the KRL command set.

 cannot execute KRL commands related to robot motions.

 Asynchronous motions of external axes are permissible.

 has read/write access to system variables.

 has read/write access to inputs/outputs.

Relationships

when

programming the

Submit inter-

preter

 1 DEF SPS ()
 2 DECLARATIONS
 3 INI
 4
 5 LOOP
 6 WAIT FOR NOT($POWER_FAIL)
 7 TORQUE_MONITORING()
 8
 9 USER PLC
 10 ENDLOOP

Submit interpreter run-
ning

Submit interpreter
stopped

Submit interpreter
deselected

Caution!
The Submit interpreter must not be used for time-critical applications! A PLC
must be used in such cases. Reasons:

 The Submit interpreter shares system resources with the robot interpret-
er and I/O management, which have the higher priority. The Submit inter-
preter is thus not executed regularly at the robot controller’s interpolation
cycle rate of 12 ms.

 Furthermore, the runtime of the Submit interpreter is irregular. The run-
time of the Submit interpreter is influenced by the number of lines in the
SUB program. Even comment lines and blank lines have an effect.
13 / 93Issued: 21.12.2011 Version: P3KSS8 Roboterprogrammierung 3 V1 en

14 / 93

Robot Programming 3
 Automatic starting of the Submit interpreter

 The Submit interpreter starts automatically when the robot controller is
switched on.

 The program defined in the file KRC/STEU/MADA/$custom.dat is
started.

 Manual operator control of the Submit interpreter

 Select operator control via the menu sequence Configure > SUBMIT
Interpreter > Start / select.

 Direct operator control using the status bar of the Submit interpreter
status indicator. Touching it opens a window with the options that can
be executed.

Points to consider when programming the Submit interpreter

 No statements for robot motions can be executed, such as:

 PTP, LIN, CIRC, etc.

 Subprogram calls containing robot motions.

 Statements referring to robot motions, TRIGGER or BRAKE.

 Asynchronous axes, such as E1, can be controlled.

 Statements between the LOOP and ENDLOOP lines are processed perma-
nently in the background.

 All stoppages due to wait commands or wait loops must be avoided, as
these slow Submit interpreter execution still further.

 Switching of outputs is possible.

$PRO_I_O[]="/R1/SPS()"

If a system file, e.g. $config.dat or $custom.dat, is modified in such a way that
errors are introduced, the Submit interpreter is automatically deselected.
Once the error in the system file has been rectified, the Submit interpreter
must be reselected manually.

IF (($IN[12] == TRUE) AND (NOT $IN[13] == TRUE)) THEN
ASYPTP {E1 45}
...
IF ((NOT $IN[12] == TRUE) AND ($IN[13] == TRUE)) THEN
ASYPTP {E1 0}

Warning!
No check is made to see if the robot interpreter and Submit interpreter are
accessing the same output simultaneously, as this may even be desired in
certain cases.
The user must therefore carefully check the assignment of the outputs. Oth-
erwise, unexpected output signals may be generated, e.g. in safety equip-
ment. Death, serious physical injuries or major damage to property may
result.

In the test modes, $OV_PRO must not be written to by
the Submit interpreter, because the change may be un-

expected for operators working on the industrial robot. Death to persons, se-
vere physical injuries and considerable damage to property may result.
Issued: 21.12.2011 Version: P3KSS8 Roboterprogrammierung 3 V1 en

2 Submit interpreter
Procedure for

programming the

Submit inter-

preter

1. Programming is carried out with the interpreter stopped or deselected.

2. The default program SPS.sub is loaded into the editor.

3. Carry out the necessary declarations and initializations. The prepared
folds should be used for this.

4. Make program expansions in the fold USER PLC.

5. Close and save the Submit interpreter.

6. If the Submit does not start automatically, start it manually.

Program example: blinker programming in the Submit interpreter

Warning!
If possible, do not modify safety-relevant signals and variables (e.g. operat-
ing mode, EMERGENCY STOP, safety gate contact) via the Submit inter-
preter.
If modifications are nonetheless required, all safety-relevant signals and vari-
ables must be linked in such a way that they cannot be set to a dangerous
state by the Submit interpreter or PLC.

DEF SPS()
DECLARATIONS
DECL BOOL flash ;Declaration in $CONFIG.dat
INI
flash = FALSE
$TIMER[32]=0 ; Reset TIMER[32]
$TIMER_STOP[32]=false ; Start TIMER[32]
...
LOOP
...
USER PLC
IF ($TIMER[32]>500) AND (flash==FALSE) THEN
 flash=TRUE
ENDIF
IF $TIMER[32]>1000 THEN
 flash=FALSE
 $TIMER[32]=0
ENDIF
; Assignment to a lamp (output 99)
$OUT[99] = flash
...
ENDLOOP
15 / 93Issued: 21.12.2011 Version: P3KSS8 Roboterprogrammierung 3 V1 en

16 / 93

Robot Programming 3
Issued: 21.12.2011 Version: P3KSS8 Roboterprogrammierung 3 V1 en

3 Workspaces with KRL
3 Workspaces with KRL

3.1 Using workspaces

Description Safe and unsafe workspaces

 Safe workspaces serve to protect personnel and can only be set up using
the additional SafeOperation option.

 KUKA System Software 8.x enables workspaces to be configured for the
robot. These serve to protect the system only.

Unsafe workspaces

 These unsafe workspaces are configured directly in the KUKA System
Software.

 8 axis-specific workspaces can be created.

 Axis-specific workspaces can be used to further restrict the areas defined
by the software limit switches in order to protect the robot, tool or work-
piece.

 8 Cartesian workspaces can be created.

Fig. 3-1: Example of axis-specific workspaces for A1
17 / 93Issued: 21.12.2011 Version: P3KSS8 Roboterprogrammierung 3 V1 en

18 / 93

Robot Programming 3
 In the case of Cartesian workspaces, only the position of the TCP is mon-
itored. It is not possible to monitor whether other parts of the robot violate
the workspace.

 Multiple workspaces can be activated in order to form complex shapes;
these workspaces may also overlap.

 Non-permitted spaces: The robot may only move outside such a space.

 Permitted spaces: The robot must not move outside such a space.

Fig. 3-2: Example of a Cartesian workspace

Fig. 3-3: Non-permitted spaces
Issued: 21.12.2011 Version: P3KSS8 Roboterprogrammierung 3 V1 en

3 Workspaces with KRL
 Exactly what reactions occur when the robot violates a workspace de-
pends on the configuration.

 One output (signal) can be assigned to each workspace.

Principle of

workspace inter-

locking and

workspaces

Workspace interlocking

 Sequence with direct coupling (without PLC)

 Sequence with a PLC, which can only forward the signals or implements
additional logic control.

Fig. 3-4: Permitted spaces

Fig. 3-6
19 / 93Issued: 21.12.2011 Version: P3KSS8 Roboterprogrammierung 3 V1 en

20 / 93

Robot Programming 3
 Direct signal forwarding (with use of a PLC: without logic)

 Without wait time: An entry request is submitted and the robot may
enter the space immediately if it is not locked.

 With monitoring time: An entry request is submitted and the robot’s
own space is locked. The new space is not checked until a monitoring
time has elapsed. If the space is not locked, the robot may enter it im-
mediately. The spaces are locked if both requests are received almost
simultaneously.

 Signal forwarding with logic control (priority)

 The entry requests and entry enable are logically linked. The priority
control decides which robot may enter the shared workspace even in
the case of simultaneous entry requests.

 In addition to the priority control, it can also be checked whether the
robot (robot TCP) is located in the workspace before permission to en-
ter is granted. Workspaces must be defined for this purpose.

Principle of

workspace

configuration

Mode for workspaces

 #OFF

Workspace monitoring is deactivated.

 #INSIDE

 Cartesian workspace: The defined output is set if the TCP or flange is
located inside the workspace.

 Axis-specific workspace: The defined output is set if the axis is located
inside the workspace.

 #OUTSIDE

 Cartesian workspace: The defined output is set if the TCP or flange is
located outside the workspace.

 Axis-specific workspace: The defined output is set if the axis is located
outside the workspace.

 #INSIDE_STOP

 Cartesian workspace: The defined output is set if the TCP, flange or
wrist root point is located inside the workspace. (Wrist root point = cen-
ter point of axis A5)

Fig. 3-10

If both robots submit an entry request simultaneously,
they are both granted permission to enter, generally re-

sulting in a collision.
Issued: 21.12.2011 Version: P3KSS8 Roboterprogrammierung 3 V1 en

3 Workspaces with KRL
 Axis-specific workspace: The defined output is set if the axis is located
inside the workspace.

The robot is also stopped and messages are displayed. The robot cannot
be moved again until the workspace monitoring is deactivated or by-
passed.

 #OUTSIDE_STOP

 Cartesian workspace: The defined output is set if the TCP or flange is
located outside the workspace.

 Axis-specific workspace: The defined output is set if the axis is located
outside the workspace.

The robot is also stopped and messages are displayed. The robot cannot
be moved again until the workspace monitoring is deactivated or by-
passed.

The following parameters define the position and size of a Cartesian work-
space:

 Origin of the workspace relative to the WORLD coordinate system

 Dimensions of the workspace, starting from the origin

Fig. 3-13: Cartesian workspace, origin U

Fig. 3-14: Cartesian workspace, dimensions
21 / 93Issued: 21.12.2011 Version: P3KSS8 Roboterprogrammierung 3 V1 en

22 / 93

Robot Programming 3
Procedure for

configuring and

using

workspaces

Configuring axis-specific workspaces

1. In the main menu, select Configuration > Miscellaneous > Workspace
monitoring > Configuration.

The Cartesian workspaces window is opened.

2. Press Axis-spec. to switch to the window Axis-specific workspaces.

3. Enter values and press Save.

Fig. 3-15: Example of axis-specific workspaces for A1

Fig. 3-16: Example of an axis-specific workspace
Issued: 21.12.2011 Version: P3KSS8 Roboterprogrammierung 3 V1 en

3 Workspaces with KRL
4. Press Signal. The Signals window is opened.

If no output is to be set when the workspace is violated, the value FALSE
must be entered.

5. In the Axis-specific group: next to the number of the workspace, enter the
output that is to be set if the workspace is violated.

6. Press Save.

7. Close the window.

Configuring Cartesian workspaces

1. In the main menu, select Configuration > Miscellaneous > Workspace
monitoring > Configuration.

The Cartesian workspaces window is opened.

2. Enter values and press Save.

3. Press Signal. The Signals window is opened.

4. In the Cartesian group: next to the number of the workspace, enter the
output that is to be set if the workspace is violated.

5. Press Save.

6. Close the window.

Example of Cartesian workspaces

 If point “P2” is situated at the origin of the workspace, only the coordinates
of “P1” need to be determined.

Fig. 3-17: Workspace signals

Item Description

1 Outputs for monitoring of the Cartesian workspaces

2 Outputs for monitoring of the axis-specific workspaces
23 / 93Issued: 21.12.2011 Version: P3KSS8 Roboterprogrammierung 3 V1 en

24 / 93

Robot Programming 3
 The workspace in this example has the dimensions x = 300 mm, y = 250
mm and z = 450 mm. In relation to the world coordinate system, it is rotated
about the Y axis by 30 degrees. The origin “U” is not situated at the center
of the cuboid.

Fig. 3-18: Example of a Cartesian workspace (P2 located at origin)

Fig. 3-19: Example configuration of a Cartesian workspace (P2 located at
origin)
Issued: 21.12.2011 Version: P3KSS8 Roboterprogrammierung 3 V1 en

3 Workspaces with KRL
Working with workspaces

 Axis-specific workspaces (R1\Mada\$machine.dat)

 Cartesian workspaces (STEU\Mada\$custom.dat)

 Workspace signals (STEU\Mada\$machine.dat)

Fig. 3-20: Example of a Cartesian workspace (rotated)

Fig. 3-21: Example configuration of a Cartesian workspace (rotated)

DEFDAT $MACHINE PUBLIC
...
$AXWORKSPACE[1]={A1_N 0.0,A1_P 0.0,A2_N 0.0,A2_P 0.0,A3_N 0.0,A3_P
0.0,A4_N 0.0,A4_P 0.0,A5_N 0.0,A5_P 0.0,A6_N 0.0,A6_P 0.0,E1_N
0.0,E1_P 0.0,E2_N 0.0,E2_P 0.0,E3_N 0.0,E3_P 0.0,E4_N 0.0,E4_P
0.0,E5_N 0.0,E5_P 0.0,E6_N 0.0,E6_P 0.0,MODE #OFF}
$AXWORKSPACE[2]={A1_N 45.0,A1_P 160.0,A2_N 0.0,A2_P 0.0,A3_N
0.0,A3_P 0.0,A4_N 0.0,A4_P 0.0,A5_N 0.0,A5_P 0.0,A6_N 0.0,A6_P
0.0,E1_N 0.0,E1_P 0.0,E2_N 0.0,E2_P 0.0,E3_N 0.0,E3_P 0.0,E4_N
0.0,E4_P 0.0,E5_N 0.0,E5_P 0.0,E6_N 0.0,E6_P 0.0,MODE #INSIDE_STOP}

DEFDAT $CUSTOM PUBLIC
...
$WORKSPACE[1]={X 400.0,Y -100.0,Z 1200.0,A 0.0,B 30.0,C 0.0,X1
250.0,Y1 150.0,Z1 200.0,X2 -50.0,Y2 -100.0,Z2 -250.0,MODE #OUTSIDE}
$WORKSPACE[2]={X 0.0,Y 0.0,Z 0.0,A 0.0,B 0.0,C 0.0,X1 0.0,Y1 0.0,Z1
0.0,X2 0.0,Y2 0.0,Z2 0.0,MODE #OFF}
25 / 93Issued: 21.12.2011 Version: P3KSS8 Roboterprogrammierung 3 V1 en

26 / 93

Robot Programming 3
 Switching workspace on/off by means of KRL

3.2 Exercise: Workspace monitoring

Aim of the

exercise

On successful completion of this exercise, you will be able to carry out the fol-
lowing activities:

 Configure workspaces

 Use the different modes with workspaces

 Override workspace monitoring

Preconditions The following are preconditions for successful completion of this exercise:

 Theoretical knowledge of workspace monitoring

Task description Subtask 1

1. Configure workspace 1 as a cube with edge length 200 mm.

2. Transfer a signal when the workspace is entered. Use output 14 for this.

3. Configure workspace 2 as a cube with edge length 200 mm.

4. Transfer a signal when the workspace is exited. Use output 15 for this.

5. Test both workspaces and compare the information with the control panel
display.

Subtask 2

1. Configure workspace 3 as a cuboid with edge length 400 mm and 200 mm.

2. Lock entry into this workspace and transfer a signal. Use output 16 for this.

3. Test this workspace and compare the information with the control panel
display.

4. To exit the workspace, override the monitoring of the workspace by means
of the corresponding menu item.

DEFDAT $MACHINE PUBLIC
...
SIGNAL $WORKSTATE1 $OUT[912]
SIGNAL $WORKSTATE2 $OUT[915]
SIGNAL $WORKSTATE3 $OUT[921]
SIGNAL $WORKSTATE4 FALSE
...
SIGNAL $AXWORKSTATE1 $OUT[712]
SIGNAL $AXWORKSTATE2 $OUT[713]
SIGNAL $AXWORKSTATE3 FALSE

DEF myprog()
...
$WORKSPACE[3].MODE = #INSIDE
...
$WORKSPACE[3].MODE = #OFF
...
$AXWORKSPACE[1].MODE = #OUTSIDE_STOP
...
$AXWORKSPACE[1].MODE = #OFF

Fig. 3-22
Issued: 21.12.2011 Version: P3KSS8 Roboterprogrammierung 3 V1 en

3 Workspaces with KRL
What you should now know:

1. What is the maximum number of workspaces that can be configured?

 .

 .

2. What MODE options are available during workspace configuration?

 .

 .

3. Which coordinate system does the ORIGIN refer to in Cartesian workspace
configuration?

 .

 .

4. What are the advantages of a robot interlock implemented using direct I/O
coupling and monitoring time?

 .

 .

5. What are the disadvantages in the above case (Question 4) when working
without a monitoring time?

 .

 .

Fig. 3-23
27 / 93Issued: 21.12.2011 Version: P3KSS8 Roboterprogrammierung 3 V1 en

28 / 93

Robot Programming 3
Issued: 21.12.2011 Version: P3KSS8 Roboterprogrammierung 3 V1 en

4 Message programming with KRL
4 Message programming with KRL

4.1 General information about user-defined messages

Description of

user-defined

messages

Message programming properties

 The programmer can use KRL to program his own messages.

 Several messages can be generated simultaneously.

 Generated messages are stored in a message buffer until they are delet-
ed.

 Notification messages are not managed in the message buffer (“fire and
forget” principle).

 Messages can be easily checked or deleted, but not notification messag-
es.

 Up to 3 parameters can be integrated into each message.

An icon is displayed in the message window of the KUKA.HMI alongside every
message. The icons are permanently assigned to the message types and can-
not be altered by the programmer.

The following types of message can be programmed:

The generation, deletion or checking of messages is carried out using ready-
made standard KUKA functions. A number of different variables are required
for this:

Functions for message programming

 Generate message

 Check message

 Delete message

 Generate dialog

 Check dialog

Complex variables for message programming

 Structure for originator, message number, message text

 Structure as placeholder for the 3 possible parameters

 Structure for the general message reaction

Icon Type

Acknowledgement message

Status message

Notification message

Wait message

Dialog message (displayed in a separate pop-up window)

No predefined reactions of the robot system are linked to the different
message types (e.g. robot brakes or program is stopped). The de-
sired reactions must be programmed.
29 / 93Issued: 21.12.2011 Version: P3KSS8 Roboterprogrammierung 3 V1 en

30 / 93

Robot Programming 3
 Structure for labeling the buttons in the case of dialog messages

Principle of user-

defined message

programming:

variables/struc-

tures

Structure for originator, message number, message text

 Predefined KUKA structure: KrlMsg_T

 Originator: Modul[]“College”

 Maximum 24 characters

 When displayed, the originator text is embedded by the system in
“< >”.

 Message number: No. 1906

 Freely selectable integer

 Duplicated numbers are not recognized.

 Message text: Msg_txt[] “My first Message”

 Maximum 80 characters

 Text is displayed in the second line of the message.

When sending message, the message type must be selected:

 Enumeration data type EKrlMsgType

 #Quit: generates this message as an acknowledgement message

 #STATE: generates this message as a status message

 #NOTIFY: generates this message as a notification message

 #WAITING: generates this message as a wait message

The value of a variable is to be displayed in a message text. For example, the
current number of units is to be displayed. For this, a so-called placeholder is
required in the message text. The maximum number of placeholders is 3. The
notation is %1, %2 and %3.

Fig. 4-1: Notification message

STRUC KrlMsg_T CHAR Modul[24], INT Nr, CHAR Msg_txt[80]

DECL KrlMsg_T mymessage
mymessage = {Modul[] "College", Nr 1906, Msg_txt[] "My first
Message"}

ENUM EKrlMsgType Notify, State, Quit, Waiting
Issued: 21.12.2011 Version: P3KSS8 Roboterprogrammierung 3 V1 en

4 Message programming with KRL
For this reason, 3 parameter sets are required. Each parameter set consists
of the KUKA structure KrlMsgPar_T:

Using the individual elements

 Par_Type: Type of parameter/placeholder

 #VALUE: The parameter is integrated directly into the message text in
the form in which it is transferred (i.e. as string, INT, REAL or BOOL
value).

 #KEY: The parameter is a keyword that must be searched for in the
message database in order to load the corresponding text.

 #EMPTY: The parameter is empty.

 Par_txt[26]: Text or keyword for the parameter

 Par_Int: Transfer of an integer value as a parameter

 Par_Real: Transfer of a real value as a parameter

 Par_Bool: Transfer of a Boolean value as a parameter; the text displayed
is TRUE or FALSE.

Program examples for the direct transfer of parameters to the placeholders

The message text is Msg_txt[] “Fault in %1”.

Message generation: Fault in gripper

Program examples for the transfer of parameters to the placeholders using the
point separator

The message text is Msg_txt[] “%1 components missing”.

Message generation: 13 components missing

Enum KrlMsgParType_T Value, Key, Empty
STRUC KrlMsgPar_T KrlMsgParType_T Par_Type, CHAR Par_txt[26], INT
Par_Int, REAL Par_Real, BOOL Par_Bool

DECL KrlMsgPar_T Parameter[3] ; Create 3 parameter sets
...
Parameter[1] = {Par_Type #VALUE, Par_txt[] "Finisher"}
Parameter[2] = {Par_Type #EMPTY}
Parameter[3] = {Par_Type #EMPTY}
...

Since the parameters are seldom entered using constants, the indi-
vidual elements are transferred with the point separator.

DECL KrlMsgPar_T Parameter[3] ; Create 3 parameter sets
DECL INT missing_part
...
missing_part = 13
...
Parameter[1] = {Par_Type #VALUE}
Parameter[1].Par_Int = missing_part
Parameter[2] = {Par_Type #EMPTY}
Parameter[3] = {Par_Type #EMPTY}
...
31 / 93Issued: 21.12.2011 Version: P3KSS8 Roboterprogrammierung 3 V1 en

32 / 93

Robot Programming 3
Structure for the assignment of buttons in dialogs:

 Predefined KUKA structure: KrlMsgDlgSK_T

 Sk_Type: Type of button labeling

 #VALUE: The parameter is integrated directly into the message text in
the form in which it is transferred.

 #KEY: The parameter is a keyword that must be searched for in the
message database in order to load the corresponding text.

 #EMPTY: The button is not assigned.

 Sk_txt[]: Text or keyword for the button

Program example for the labeling of 7 buttons in a dialog

When a message or dialog is generated, 4 more message options are trans-
ferred. These options can be used to influence the advance run, message de-
letion and log database.

Structure for general message options:

 Predefined KUKA structure: KrlMsgOpt_T

 VL_Stop: TRUE triggers an advance run stop.

 Default: TRUE

 Clear_P_Reset : TRUE deletes all status, acknowledgement and wait
messages when the program is reset or canceled.

Fig. 4-2: Dialog message

Enum KrlMsgParType_T Value, Key, Empty
Struc KrlMsgDlgSK_T KrlMsgParType_T Sk_Type, Char SK_txt[10]

DECL KRLMSGDLGSK_T Softkey[7] ; Prepare 7 possible softkeys
...
softkey[1]={sk_type #value, sk_txt[] "key1"}
softkey[2]={sk_type #value, sk_txt[] "key2"}
softkey[3]={sk_type #value, sk_txt[] "key3"}
softkey[4]={sk_type #value, sk_txt[] "key4"}
softkey[5]={sk_type #value, sk_txt[] "key5"}
softkey[6]={sk_type #value, sk_txt[] "key6"}
softkey[7]={sk_type #value, sk_txt[] "key7"}
...

A maximum of 10 characters per button can be assigned. The width
of the buttons varies according to which characters are used.

STRUC KrlMsgOpt_T BOOL VL_Stop, BOOL Clear_P_Reset, BOOL
Clear_SAW, BOOL Log_To_DB
Issued: 21.12.2011 Version: P3KSS8 Roboterprogrammierung 3 V1 en

4 Message programming with KRL
 Default: TRUE

 Clear_P_SAW: TRUE deletes all status, acknowledgement and wait mes-
sages when block selection is carried out using the “Line Sel.” button.

 Default: FALSE

 Log_To_DB: TRUE causes the message to be logged in the log database.

 Default: FALSE

Principle of user-

defined message

programming:

functions

Setting, checking and deleting a message

 Setting or generating a message

This function is used to set a message in the KRL program. This means
that the corresponding message is transferred to the internal message
buffer. The exception to this is notification messages, as these are not
managed in the message buffer.

 Built-in functions for generating a message

 Type: Type of message (#Notify, #State, #Quit, #Waiting)

 MyMessage: general message information (originator, message num-
ber, message text)

 Parameter[]: the 3 possible parameters for the placeholders %1,
%2 and %3 (must also be transferred if used)

 Option: general message options (advance run stop, log in message
database, implicitly delete message in the case of a program reset or
block selection)

 Return value of the function: called a “handle” (ticket number). This
handle can be used to check whether the message has been success-
fully generated and also serves as the identification number in the
message buffer. In this way, specific messages can be checked or de-
leted.

 handle == -1: The message could not be generated (e.g. be-
cause the message buffer is too full).

 handle > 0: The message was successfully generated and is
being managed with the corresponding identification number in the
message buffer.

 Checking a message

Notification messages can only be deleted using the buttons “OK”
and “All OK”. The following always applies for dialog messages:
Clear_P_Reset=TRUE.

DEFFCT INT Set_KrlMsg(Type:IN, MyMessage:OUT, Parameter[]:OUT,
Option:OUT)
DECL EKrlMsgType Type
DECL KrlMsg_T MyMessage
DECL KrlMsgPar_T Parameter[]
DECL KrlMsgOpt_T Option

DEF MyProg()
DECL INT handle
...
handle = Set_KrlMsg(Type, MyMessage, Parameter[], Option)

Notification messages are processed on a “fire and forget” basis. In
the case of notification messages, the return value is always handle
= 0 if the message was generated successfully.
33 / 93Issued: 21.12.2011 Version: P3KSS8 Roboterprogrammierung 3 V1 en

34 / 93

Robot Programming 3
This function can be used to check whether a specific message with a de-
fined handle still exists. It also checks whether this message is still present
in the internal message buffer.

 Built-in functions for checking a message

 nHandle: The handle provided for the message by the function
“Set_KrlMsg(...)”

 Return value of the function:

 present == TRUE: This message still exists in the message buf-
fer.

 present == FALSE: This message is no longer in the message
buffer (i.e. it has been acknowledged or deleted).

 Deleting a message

This function can be used to delete a message. This means that the cor-
responding message is deleted from the internal message buffer.

 Built-in functions for checking a message

 nHandle: The handle provided for the message by the function
“Set_KrlMsg(...)”

 Return value of the function:

 erase == TRUE: This message was successfully deleted.

 erase == FALSE: This message could not be deleted.

DEFFCT BOOL Exists_KrlMsg(nHandle:IN)
DECL INT nHandle

DEF MyProg()
DECL INT handle
DECL BOOL present
...
handle = Set_KrlMsg(Type, MyMessage, Parameter[], Option)
...
present= Exists_KrlMsg(handle)

DEFFCT BOOL Clear_KrlMsg(nHandle:IN)
DECL INT nHandle

DEF MyProg()
DECL INT handle
DECL BOOL erase
...
handle = Set_KrlMsg(Type, MyMessage, Parameter[], Option)
...
erase = Clear_KrlMsg(handle)

Special functions for deleting with the function
Clear_KrlMsg(handle):
Clear_KrlMsg(-1): All messages initiated by this process are de-

leted.
Clear_KrlMsg(-99): All initiated user-defined KRL messages are delet-
ed.
Issued: 21.12.2011 Version: P3KSS8 Roboterprogrammierung 3 V1 en

4 Message programming with KRL
Principle of user-

defined dialog

programming:

functions

Setting and checking a dialog

 Setting or generating a dialog

The function Set_KrlDlg() generates a dialog message. This means
that the message is transferred to the message buffer and displayed in a
separate message window with buttons.

 Built-in functions for generating a dialog

 MyQuestion: general message information (originator, message
number, message text)

 Parameter[]: the 3 possible parameters for the placeholders %1,
%2 and %3 (must also be transferred if used)

 Button[]: the labeling for the 7 possible buttons (must also be
transferred if used)

 Option: general message options (advance run stop, log in message
database, implicitly delete message in the case of a program reset or
block selection)

 Return value of the function: handle for the dialog. This handle can
be used to check whether the dialog has been successfully generated
and also serves as the identification number in the message buffer.

 handle == -1: The dialog could not be generated (e.g. because
another dialog is active and has not yet been answered or the
message buffer is too full).

 handle > 0: The dialog was successfully generated and is being
managed with the corresponding identification number in the mes-
sage buffer.

 Checking a dialog

The function Exists_KrlDlg() can be used to check whether a spe-
cific dialog still exists. It also checks whether this dialog is still present in
the message buffer.

 Built-in functions for checking a message

 nHandle: The handle provided for the dialog by the function
“Set_KrlDlg(…)”

 answer: Return value indicating which button has been pressed. But-
ton 1, defined as “Button[1]”, thus returns the value 1.

DEFFCT Extfctp Int Set_KrlDlg (MyQuestion:OUT, Parameter[]:OUT,
Button[]:OUT, Option:OUT)
DECL KrlMsg_T MyQuestion
DECL KrlMsgPar_T Parameter[]
DECL KrlMsgDlgSK_T Button[]
DECL KrlMsgOpt_T Option

DEF MyProg()
DECL INT handle
...
handle = Set_KrlDlg(MyQuestion, Parameter[], Button[], Option)

A dialog cannot be generated until no other dialog is active.
The function merely generates the dialog. It does not wait until the dialog has
been answered.

DEFFCT BOOL Exists_KrlDlg(INT nHandle:IN, INT Answer:OUT)
DECL INT nHandle, answer
35 / 93Issued: 21.12.2011 Version: P3KSS8 Roboterprogrammierung 3 V1 en

36 / 93

Robot Programming 3
 Return value of the function:

 present == TRUE: This dialog still exists in the message buffer.

 present == FALSE: This dialog is no longer in the message buf-
fer (i.e. it has been answered).

4.2 Working with a notification message

Description of a

user-defined

notification

message

 Notification messages are not managed in the message buffer.

 Notification messages can only be deleted again using the buttons “OK”
and “All OK”.

Function of a

user-defined

notification

message

 Notification messages are suitable for displaying general information.

 A notification message is only generated. It is possible to check whether
the message has arrived.

 As notification messages are not managed, approx. 3 million messages
can be generated.

Programming

user-defined

notification

messages

1. Load the main program into the editor.

2. Declare working variables for:

 Originator, message number, message text (from KrlMsg_T)

 Arrays with 3 elements for the parameters (from KrlMsgPar_T)

 General message options (from KrlMsgOpt_T)

 “Handle” (as INT)

3. Initialize working variables with the desired values.

4. Program the function call Set_KrlMsg(…).

5. If required, evaluate “Handle” to check that generation was successful.

6. Close and save the main program.

The function does not wait until the dialog has been deleted, but merely
searches the buffer for the dialog with this handle. The KRL program must
therefore be polled cyclically until the dialog has been answered or deleted.

DEF MyProg()
DECL INT handle, answer
DECL BOOL noch_da
...
handle = Set_KrlDlg(MyQuestion, Parameter[], Button[], Option)
...
noch_da = Exists_KrlDlg(handle, answer)

answer is now written back with the value of the pressed button. Valid values
are in the range 1 to 7, depending on the programmed button numbers.

Fig. 4-3: Notification message
Issued: 21.12.2011 Version: P3KSS8 Roboterprogrammierung 3 V1 en

4 Message programming with KRL
Programming example for the above display:

4.3 Exercise: Programming notification messages

Aim of the

exercise

On successful completion of this exercise, you will be able to carry out the fol-
lowing activities:

 Program customized notification messages •

 Freely output parameters in messages

Preconditions The following are preconditions for successful completion of this exercise:

 Knowledge of the KRL programming language

 Theoretical knowledge of message programming

Task description Subtask 1: Notification message

1. Create a notification message with the text “Magazine almost empty – Re-
fill”.

2. This message is to be displayed using input 13 on the control panel.

3. Test your program in accordance with the instructions.

Subtask 2: Notification message with parameter

1. Create a notification message with the text “Part number xxx is ready”.

2. This message is to be displayed using input 16 on the control panel; the
part counter for this part is to be incremented and displayed at position
xxx.

3. Test your program in accordance with the instructions.

What you should now know:

1. How is a notification message deleted again?

 .

 .

Fig. 4-4: Notification message

DECL KRLMSG_T mymessage
DECL KRLMSGPAR_T Parameter[3]
DECL KRLMSGOPT_T Option
DECL INT handle
...
mymessage={modul[] "College", Nr 1906, msg_txt[] "My first Message"}
Option= {VL_STOP FALSE, Clear_P_Reset TRUE, Clear_P_SAW FALSE,
Log_to_DB TRUE}
;Placeholders are empty, placeholder[1..3]
Parameter[1] = {Par_Type #EMPTY}
Parameter[2] = {Par_Type #EMPTY}
Parameter[3] = {Par_Type #EMPTY}
handle = Set_KrlMsg(#NOTIFY, mymessage, Parameter[], Option)
37 / 93Issued: 21.12.2011 Version: P3KSS8 Roboterprogrammierung 3 V1 en

38 / 93

Robot Programming 3
2. Which component in the message structure is responsible for causing the
message text to be generated?
Issued: 21.12.2011 Version: P3KSS8 Roboterprogrammierung 3 V1 en

4 Message programming with KRL
4.4 Working with a status message

Description of a

user-defined

status message

 Status messages are managed in the message buffer.

 Status messages cannot be deleted again using the “All OK” button.

 Status messages must be deleted by means of a function in the program.

 Status messages can also be deleted by means of settings in the message
options when the program is reset or exited, or in the case of a block se-
lection.

Function of a

user-defined

status message

 Status messages are suitable for indicating a change of status (e.g. elim-
ination of an input).

 A maximum of 100 messages are managed in the message buffer.

 The program is stopped, for example, until the status that triggered it is no
longer active.

 The status message is deleted again using the function
Clear_KrlMsg().

Programming

user-defined

status messages

1. Load the main program into the editor.

2. Declare working variables for:

 Originator, message number, message text (from KrlMsg_T)

 Arrays with 3 elements for the parameters (from KrlMsgPar_T)

 General message options (from KrlMsgOpt_T)

 “Handle” (as INT)

 Variable for the result of the check (as BOOL)

 Variable for the result of the deletion (as BOOL)

3. Initialize working variables with the desired values.

4. Program the function call Set_KrlMsg(…).

5. Stop the program with a loop until the status that triggered the message is
no longer applicable.

6. Delete the status message with the function call Clear_KrlMsg().

7. Close and save the main program.

Fig. 4-5: Status message

No predefined reactions of the robot system are linked to the different
message types (e.g. robot brakes or program is stopped). The de-
sired reactions must be programmed.

Fig. 4-6: Status message
39 / 93Issued: 21.12.2011 Version: P3KSS8 Roboterprogrammierung 3 V1 en

40 / 93

Robot Programming 3
Programming example for the above display/message:

4.5 Exercise: Programming status messages

Aim of the

exercise

On successful completion of this exercise, you will be able to carry out the fol-
lowing activities:

 Program customized status messages

 Freely output parameters in messages

Preconditions The following are preconditions for successful completion of this exercise:

 Knowledge of the KRL programming language

 Theoretical knowledge of message programming

Task description Subtask 1: Status message

1. Create a status message with the text “Magazine almost empty”.

2. This message is to be displayed using input 14 on the control panel.

3. This message is to be deleted again by resetting input 14 on the control
panel.

4. Test your program in accordance with the instructions.

Subtask 2: Status message with parameter

1. Create a status message with the text “There are still xxx of yyy cubes in
the magazine”.

2. This message is to be displayed using input 15 on the control panel.

3. This message is to be deleted again by resetting input 15 on the control
panel.

The status message is triggered by the status of input 17 (FALSE).
Once the message has been generated, the program is stopped. The
message is deleted by the status of input 17 (TRUE). Program execu-

tion is then resumed.
The message also disappears if the program is reset or exited. This is due to
the setting Clear_P_Reset TRUE in the message options.

DECL KRLMSG_T mymessage
DECL KRLMSGPAR_T Parameter[3]
DECL KRLMSGOPT_T Option
DECL INT handle
DECL BOOL present, erase
...
IF $IN[17]==FALSE THEN
mymessage={modul[] "College", Nr 1909, msg_txt[] "My Messagetext"}
Option= {VL_STOP FALSE, Clear_P_Reset TRUE, Clear_P_SAW FALSE,
Log_to_DB TRUE}
;Placeholders are empty, placeholder[1..3]
Parameter[1] = {Par_Type #EMPTY}
Parameter[2] = {Par_Type #EMPTY}
Parameter[3] = {Par_Type #EMPTY}
handle = Set_KrlMsg(#STATE, mymessage, Parameter[], Option)
ENDIF
erase=FALSE
;Loop for stopping until this message has been cleared
REPAEAT
IF $IN[17]==TRUE THEN
erase=Clear_KrlMsg(handle) ;Clear message
ENDIF
present=Exists_KrlMsg(handle) ;Additional check
UNTIL NOT(present) or erase
Issued: 21.12.2011 Version: P3KSS8 Roboterprogrammierung 3 V1 en

4 Message programming with KRL
4. Test your program in accordance with the instructions.

What you should now know:

1. What does %2 mean in the message text?

 .

 .
41 / 93Issued: 21.12.2011 Version: P3KSS8 Roboterprogrammierung 3 V1 en

42 / 93

Robot Programming 3
4.6 Working with an acknowledgement message

Description of a

user-defined

acknowl-

edgement

message

 Acknowledgement messages are managed in the message buffer.

 Acknowledgement messages can be deleted again using the buttons “OK”
and “All OK”.

 Acknowledgement messages can also be deleted by means of a function
in the program.

 Acknowledgement messages can also be deleted by means of settings in
the message options when the program is reset or exited, or in the case of
a block selection.

Function of a

user-defined

acknowl-

edgement

message

 Acknowledgement messages are suitable for displaying information of
which the user must be made aware.

 A maximum of 100 messages are managed in the message buffer.

 In the case of an acknowledgement message (unlike a notification mes-
sage), it is possible to check whether or not the user has acknowledged it.

 The program is stopped, for example, until the message has been ac-
knowledged.

Programming

user-defined

acknowl-

edgement

messages

1. Load the main program into the editor.

2. Declare working variables for:

 Originator, message number, message text (from KrlMsg_T)

 Arrays with 3 elements for the parameters (from KrlMsgPar_T)

 General message options (from KrlMsgOpt_T)

 “Handle” (as INT)

 Variable for the result of the check (as BOOL)

3. Initialize working variables with the desired values.

4. Program the function call Set_KrlMsg(…).

5. Stop the program with a loop.

6. Use the function call Exists_KrlMsg(...) to check whether the mes-
sage has already been acknowledged by the user; if the message has
been acknowledged, the above loop will have been exited.

7. Close and save the main program.

Fig. 4-7: Acknowledgement message

No predefined reactions of the robot system are linked to the different
message types (e.g. robot brakes or program is stopped). The de-
sired reactions must be programmed.
Issued: 21.12.2011 Version: P3KSS8 Roboterprogrammierung 3 V1 en

4 Message programming with KRL
Programming example for the above display/message:

4.7 Exercise: Programming acknowledgement messages

Aim of the

exercise

On successful completion of this exercise, you will be able to carry out the fol-
lowing activities:

 Program customized acknowledgement messages

 Freely output parameters in messages

Preconditions The following are preconditions for successful completion of this exercise:

 Knowledge of the KRL programming language

 Theoretical knowledge of message programming

Task description Subtask 1: Acknowledgement message

1. Create an acknowledgement message with the text “Ackn. Fault - Vacuum
not established”.

2. This message is to be displayed using input 15 on the control panel.

3. Test your program in accordance with the instructions.

Subtask 2: Status message with acknowledgement message

1. Create a status message with the text “Fault - Vacuum not established”.

2. This message is to be displayed using input 18 on the control panel.

Fig. 4-8: Acknowledgement message

Once the message has been generated, the program is stopped. The
message is deleted by pressing “OK” or “All OK”. Program execution
is then resumed.

The message also disappears if the program is reset or exited. This is due to
the setting Clear_P_Reset TRUE in the message options.

DECL KRLMSG_T mymessage
DECL KRLMSGPAR_T Parameter[3]
DECL KRLMSGOPT_T Option
DECL INT handle
DECL BOOL present
...
mymessage={modul[] "College", Nr 1909, msg_txt[] "My Messagetext"}
Option= {VL_STOP FALSE, Clear_P_Reset TRUE, Clear_P_SAW FALSE,
Log_to_DB TRUE}
;Placeholders are empty, placeholder[1..3]
Parameter[1] = {Par_Type #EMPTY}
Parameter[2] = {Par_Type #EMPTY}
Parameter[3] = {Par_Type #EMPTY}
handle = Set_KrlMsg(#QUIT, mymessage, Parameter[], Option)

;Loop for stopping until this message has been cleared
REPAEAT
present=Exists_KrlMsg(handle)
UNTIL NOT(present)
43 / 93Issued: 21.12.2011 Version: P3KSS8 Roboterprogrammierung 3 V1 en

44 / 93

Robot Programming 3
3. When the input is reset, the status message is to be cleared and your ac-
knowledgement message programmed in subtask 1 is to be displayed.

4. Test your program in accordance with the instructions.

What you should now know:

1. xxx?

. .

. .
Issued: 21.12.2011 Version: P3KSS8 Roboterprogrammierung 3 V1 en

4 Message programming with KRL
4.8 Working with a wait message

Description of a

user-defined wait

message

 Wait messages are managed in the message buffer.

 Wait messages can be deleted again using the “Simulate” button.

 Wait messages cannot be deleted again using the “All OK” button.

 Wait messages can also be deleted by means of settings in the message
options when the program is reset or exited, or in the case of a block se-
lection.

Function of a

user-defined wait

message

 Wait messages are suitable for waiting for a state while displaying the wait
icon.

 A maximum of 100 messages are managed in the message buffer.

 The program is stopped, for example, until the status that is being waited
for is active.

 The wait message is deleted again using the function Clear_KrlMsg().

Programming

user-defined wait

messages

1. Load the main program into the editor.

2. Declare working variables for:

 Originator, message number, message text (from KrlMsg_T)

 Arrays with 3 elements for the parameters (from KrlMsgPar_T)

 General message options (from KrlMsgOpt_T)

 “Handle” (as INT)

 Variable for the result of the check (as BOOL)

 Variable for the result of the deletion (as BOOL)

3. Initialize working variables with the desired values.

4. Program the function call Set_KrlMsg(…).

5. Stop the program with a loop until the status that is being waited for is ac-
tive or the message has been deleted using the “Simulate” button.

6. Delete the wait message with the function call Clear_KrlMsg().

7. Close and save the main program.

Programming example for the above display/message:

Fig. 4-9: Wait message

Fig. 4-10: Wait message
45 / 93Issued: 21.12.2011 Version: P3KSS8 Roboterprogrammierung 3 V1 en

46 / 93

Robot Programming 3
4.9 Exercise: Programming wait messages

Aim of the

exercise

On successful completion of this exercise, you will be able to carry out the fol-
lowing activities:

 Program customized wait messages

 Freely output parameters in messages

Preconditions The following are preconditions for successful completion of this exercise:

 Knowledge of the KRL programming language

 Theoretical knowledge of message programming

Task description Subtask 1: Wait message

1. Create a wait message with the text “Wait for operator input”.

2. Make 4 different parts available and assign the 5th softkey the name
“END”.

3. On selection of a part, generate a notification message with the text “Part
xxx selected”. Use any existing basic modules for this.

4. Test your program in accordance with the instructions.

What you should now know:

1. What is the difference between a “STATE” and a “WAITING” message?

. .

. .

 Once the message has been generated, the program is stopped. The
message is deleted by the status of input 17 (TRUE). Program execu-
tion is then resumed.

The message also disappears if the program is reset or exited. This is due to
the setting Clear_P_Reset TRUE in the message options.

DECL KRLMSG_T mymessage
DECL KRLMSGPAR_T Parameter[3]
DECL KRLMSGOPT_T Option
DECL INT handle
DECL BOOL present, erase
...
IF $IN[17]==FALSE THEN
mymessage={modul[] "College", Nr 1909, msg_txt[] "My Messagetext"}
Option= {VL_STOP FALSE, Clear_P_Reset TRUE, Clear_P_SAW FALSE,
Log_to_DB TRUE}
;Placeholders are empty, placeholder[1..3]
Parameter[1] = {Par_Type #EMPTY}
Parameter[2] = {Par_Type #EMPTY}
Parameter[3] = {Par_Type #EMPTY}
handle = Set_KrlMsg(#WAITING, mymessage, Parameter[], Option)
ENDIF
erase=FALSE
;Loop for stopping until this message has been cleared
REPAEAT
IF $IN[17]==TRUE THEN
erase=Clear_KrlMsg(handle) ;Clear message
ENDIF
present=Exists_KrlMsg(handle) ;Might have been cleared via
simulation
UNTIL NOT(present) or erase
Issued: 21.12.2011 Version: P3KSS8 Roboterprogrammierung 3 V1 en

4 Message programming with KRL
4.10 Working with a dialog message

Description of a

user-defined

dialog message

 A dialog cannot be generated until no other dialog is active.

 Dialog messages can be deleted using a softkey that can be labeled by
the programmer.

 Up to 7 softkeys can be defined.

Function of a

user-defined

dialog message

 Dialog messages are suitable for displaying questions that must be an-
swered by the user.

 The function Set_KrlDlg() generates a dialog message.

 The function merely generates the dialog.

 It does not wait until the dialog has been answered.

 The function Exists_KrlDlg() can be used to check whether a specific
dialog still exists.

 This function also does not wait until the dialog has been deleted, but
merely searches the buffer for the dialog with this handle.

 The KRL program must therefore be polled cyclically until the dialog has
been answered or deleted.

 How program execution continues can be made dependent on which soft-
key the user selects.

Evaluation of the buttons

 Declaration and initialization of the buttons

Fig. 4-11: Dialog message

Fig. 4-12: Dialog message
47 / 93Issued: 21.12.2011 Version: P3KSS8 Roboterprogrammierung 3 V1 en

48 / 93

Robot Programming 3
 Evaluation by means of Exists_KrlDlg(): The button created with in-
dex 4 sends 4 as the return value.

Programming

user-defined

dialog messages

1. Load the main program into the editor.

2. Declare working variables for:

 Originator, message number, message text (from KrlMsg_T)

 Arrays with 3 elements for the parameters (from KrlMsgPar_T)

 7 possible buttons (from KrlMsgDlgSK_T)

 General message options (from KrlMsgOpt_T)

 “Handle” (as INT)

 Variable for the result of the check (as BOOL)

 Variable for the result of the answer as to which button was pressed
(as INT)

3. Initialize working variables with the desired values.

4. Program the function call Set_KrlDlg(…).

5. Stop the program with a loop until the Set_KrlDlg(…) dialog has been an-
swered.

6. Evaluate the dialog message with the function call Exists_KrlDlg().

7. Plan and program additional branches in the program.

8. Close and save the main program.

DECL KRLMSGDLGSK_T Softkey[7] ; Prepare 7 possible softkeys
softkey[1]={sk_type #value, sk_txt[] "key1"}
softkey[2]={sk_type #value, sk_txt[] "key2"}
softkey[3]={sk_type #value, sk_txt[] "key3"}
softkey[4]={sk_type #value, sk_txt[] "key4"}
softkey[5]={sk_type #value, sk_txt[] "key5"}
softkey[6]={sk_type #value, sk_txt[] "key6"}
softkey[7]={sk_type #value, sk_txt[] "key7"}

; Softkey no. 4 sends 4 as the return value
softkey[4]={sk_type #value, sk_txt[] "key4"}

Fig. 4-13: Dialog message with 3 buttons

If not all buttons are programmed, or if gaps are left (no. 1, 4, 6), the
buttons are arranged consecutively. If only buttons 1, 4 and 6 are
used, only return values 1, 4 and 6 are possible.
Issued: 21.12.2011 Version: P3KSS8 Roboterprogrammierung 3 V1 en

4 Message programming with KRL
Programming example for the above display/message:

Fig. 4-14: Dialog message

 Once the dialog has been generated, the program is stopped. The message
is deleted once it has been answered. Program execution is then resumed.
A switch statement is then programmed.
The message also disappears if the program is reset or exited. This is due to
the setting Clear_P_Reset TRUE in the message options.

DECL KRLMSG_T myQuestion
DECL KRLMSGPAR_T Parameter[3]
DECL KRLMSGDLGSK_T Softkey[7] ;Prepare 7 possible softkeys
DECL KRLMSGOPT_T Option
DECL INT handle, answer
DECL BOOL present
...

myQuestion={modul[] "College", Nr 1909, msg_txt[] "My Questiontext"}
Option= {VL_STOP FALSE, Clear_P_Reset TRUE, Clear_P_SAW FALSE,
Log_to_DB TRUE}
;Placeholders are empty, placeholder[1..3]
Parameter[1] = {Par_Type #EMPTY}
Parameter[2] = {Par_Type #EMPTY}
Parameter[3] = {Par_Type #EMPTY}
softkey[1]={sk_type #value, sk_txt[] "key1"} ; Button 1
softkey[2]={sk_type #value, sk_txt[] "key2"} ; Button 2
softkey[3]={sk_type #value, sk_txt[] "key3"} ; Button 3
softkey[4]={sk_type #value, sk_txt[] "key4"} ; Button 4
softkey[5]={sk_type #value, sk_txt[] "key5"} ; Button 5
softkey[6]={sk_type #value, sk_txt[] "key6"} ; Button 6
softkey[7]={sk_type #value, sk_txt[] "key7"} ; Button 7
...
handle = Set_KrlMsg(#STATE, mymessage, Parameter[], Option)
ENDIF
erase=FALSE
;Loop for stopping until this message has been cleared
REPAEAT
IF $IN[17]==TRUE THEN
erase=Clear_KrlMsg(handle) ;Clear message
ENDIF
present=Exists_KrlMsg(handle) ;Additional check
UNTIL NOT(present) or erase
49 / 93Issued: 21.12.2011 Version: P3KSS8 Roboterprogrammierung 3 V1 en

50 / 93

Robot Programming 3
4.11 Exercise: Programming a dialog

Aim of the

exercise

On successful completion of this exercise, you will be able to carry out the fol-
lowing activities:

 Program customized notification, status and acknowledgement messages
•

 Program customized query dialogs

 Freely output parameters in messages

Preconditions The following are preconditions for successful completion of this exercise:

 Knowledge of the KRL programming language

 Theoretical knowledge of message programming

Task description Subtask 1: Dialog message

1. Create a dialog message with the text “Select a new part”.

2. Make 4 different parts available and assign the 5th softkey the name
“END”.

3. On selection of a part, generate a notification message with the text “Part
xxx selected”. Use any existing basic modules for this.

4. Test your program in accordance with the instructions.

What you should now know:

1. How are the softkeys in the dialog labeled?

. .

. .

...; Generate dialog
handle = Set_KrlDlg(myQuestion, Parameter[],Softkey[], Option)
answer=0
REPEAT ; Loop for stopping until this dialog has been answered
present = exists_KrlDlg(handle ,answer) ; Answer is written by the
system
UNTIL NOT(present)
...
SWITCH answer
CASE 1 ; Button 1
; Action for button 1
...
CASE 2 ; Button 2
; Action for button 2
...
...
CASE 7 ; Button 7
; Action for button 7
ENDSWITCH
...
Issued: 21.12.2011 Version: P3KSS8 Roboterprogrammierung 3 V1 en

5 Interrupt programming
5 Interrupt programming

5.1 Programming interrupt routines

Description of

interrupt routines

 In the case of a defined event, e.g. an input, the controller interrupts the
current program and executes a defined subprogram.

 A subprogram called by an interrupt is called an interrupt program.

 A maximum of 32 interrupts may be declared simultaneously.

 Up to 16 interrupts may be active at any one time.

Important steps when using an interrupt

 Interrupt declaration

 Interrupt activation/deactivation or disabling/enabling

 Possibly stopping the robot

 Possibly rejecting the current path planning and executing a new path

Principle of

interrupt decla-

ration

General information about the declaration of interrupts

 In the case of a defined event, e.g. an input, the controller interrupts the
current program and executes a defined subprogram.

 The event and the subprogram are defined by INTERRUPT ... DECL
... WHEN ... DO

Syntax of the interrupt declaration

 Global

 An interrupt is only recognized at, or below, the level in which it is de-
clared.

Fig. 5-1: Working with interrupt routines

The interrupt declaration is a statement. It must be situated in the statements
section of the program and not in the declaration section!

When first declared, an interrupt is deactivated. The interrupt must be acti-
vated before the system can react to the defined event!

<GLOBAL> INTERRUPT DECL Prio WHEN Event DO Interrupt program
51 / 93Issued: 21.12.2011 Version: P3KSS8 Roboterprogrammierung 3 V1 en

52 / 93

Robot Programming 3
 An interrupt declared in a subprogram is not recognized in the main
program (in this case: interrupt 23).

 An interrupt preceded by the keyword GLOBAL in the declaration is
also recognized at the higher levels (in this case: interrupt 2).

 Prio: Priority

 Priorities 1, 2, 4 to 39 and 81 to 128 are available.

 Priorities 3 and 40 to 80 are reserved for use by the system.

 Interrupt 19 may be preset for the brake test.

 If several interrupts occur at the same time, the interrupt with the high-
est priority is processed first, then those of lower priority. (1 = highest
priority)

Fig. 5-2: Validity of interrupts

<GLOBAL> INTERRUPT DECL Prio WHEN Event DO Subprogram

Fig. 5-3: Priorities of interrupts
Issued: 21.12.2011 Version: P3KSS8 Roboterprogrammierung 3 V1 en

5 Interrupt programming

 Event: Event that is to trigger the interrupt.

 Interrupt program

 The name of the interrupt program to be executed.

 This subprogram is referred to as the interrupt program.

 Runtime variables must not be transferred to the interrupt program as
parameters.

 Variables declared in a data list are permissible.

 Example: declaration of an interrupt

 No global interrupt

 Priority: 23

 Event: positive edge of input 12

 Interrupt program: INTERRUPT_PROG(20,VALUE)

Description of

interrupt

activation/deacti-

vation/disabling/

enabling

Once an interrupt has been declared, it must then be activated.

Possibilities of the command INTERRUPT ...:

 Activates an interrupt.

 Deactivates an interrupt.

 Disables an interrupt.

 Enables an interrupt.

Syntax

 INTERRUPT Action <Number>

Action

 ON: Activates an interrupt.

 OFF: Deactivates an interrupt.

 DISABLE: Disables an activated interrupt.

 ENABLE: Enables a disabled interrupt.

Number

 Number (= priority) of the interrupt to which the Action is to refer.

 Number can be omitted.
 In this case, ON or OFF refers to all declared interrupts, while DISABLE
or ENABLE refers to all active interrupts.

Activating and deactivating interrupts

<GLOBAL> INTERRUPT DECL Prio WHEN Event DO Subprogram

This event is detected by means of an edge when it occurs (edge-triggered).

INTERRUPT DECL 23 WHEN $IN[12]==TRUE DO INTERRUPT_PROG(20,VALUE)

When first declared, an interrupt is deactivated. The interrupt must be acti-
vated before the system can react to the defined event!
53 / 93Issued: 21.12.2011 Version: P3KSS8 Roboterprogrammierung 3 V1 en

54 / 93

Robot Programming 3
Activating and deactivating interrupts: contact bouncing

Disabling and enabling interrupts

Description of

braking the robot

or canceling the

current motion by

means of an

interrupt routine

Braking the robot

 A robot is to stop immediately when a certain event occurs.

 There are two braking ramps available (STOP 1 and STOP 2).

 The interrupt program is not continued until the robot has come to a stop.

 The robot motion that had been started is resumed as soon as the interrupt
program has been completed.

 Syntax:

INTERRUPT DECL 20 WHEN $IN[22]==TRUE DO SAVE_POS()
...
INTERRUPT ON 20
;Interrupt is recognized and executed (positive edge)
...
INTERRUPT OFF 20 ; Interrupt is switched off

 In this case, the interrupt is triggered by a change of state, e.g. in the case
of $IN[22]==TRUE by the change from FALSE to TRUE. The state must
therefore not already be present at INTERRUPT ON, as the interrupt is
not then triggered!

 Furthermore, the following must also be considered in this case: the
change of state must not occur until at least one interpolation cycle after
INTERRUPT ON.

(This can be achieved by programming a WAIT SEC 0.012 after INTER-
RUPT ON. If no advance run stop is desired, a CONTINUE command
can also be programmed before the WAIT SEC.)

The reason for this is that INTERRUPT ON requires one interpolation cy-
cle (= 12 ms) before the interrupt is actually activated. If the state chang-
es before this, the interrupt cannot detect the change.

If there is a risk of an interrupt being incorrectly triggered twice because of
sensitive sensors (“contact bouncing”), you can prevent this by switching off
the interrupt in the first line of the interrupt program.
However, a genuine interrupt arising during interrupt processing can now no
longer be recognized. If the interrupt is to remain active, it must be switched
back on before returning to the main program.

INTERRUPT DECL 21 WHEN $IN[25]==TRUE DO INTERRUPT_PROG()
...
INTERRUPT ON 21
;Interrupt is recognized and immediately executed (positive edge)
...
INTERRUPT DISABLE 21
;Interrupt is recognized and saved but not executed (positive edge)
...
INTERRUPT ENABLE 21
; Saved interrupts are not executed until now
...
INTERRUPT OFF 21 ; Interrupt is switched off
...

A disabled interrupt is recognized and saved. The interrupt is executed di-
rectly after it has been enabled. In the case of motions, it must be ensured
that there is no risk of collision.
Issued: 21.12.2011 Version: P3KSS8 Roboterprogrammierung 3 V1 en

5 Interrupt programming
 BRAKE: STOP 2

 BRAKE F: STOP 1

Motions and interrupt routines

 The robot moves while the interrupt routine is being executed in parallel.

 Inline forms for the initialization (INI) or for motions (e.g. PTP or LIN ...)
are not permissible. These result in error messages during execution.

 The robot is stopped with BRAKE and resumes motion at the end of the in-
terrupt routine with the path planned in the main program.

 The robot is stopped with BRAKE and moved in the interrupt routine. On
completion of the interrupt routine, the path from the main program is re-
sumed.

 The robot is stopped with BRAKE and is to execute a new path after com-
pletion of the interrupt routine. This can be implemented using the RESUME
command.

 The robot is stopped with BRAKE and moved in the interrupt routine. On
completion of the interrupt routine, the current motion is no longer to be re-
sumed and new path planning is carried out. This can also be implement-
ed using the RESUME command.

BRAKE may only be used in an interrupt program.

Fig. 5-4: Execution of interrupt routines

If the time required for execution of the interrupt routine is shorter than that
for the path planning in the main program, the robot can continue moving
without stopping. If the time required for the interrupt routine is greater than
the planned path, the robot stops at the end of the path planning and re-
sumes motion as soon as the interrupt routine has been executed.

It must be ensured that there is no risk of collision!
Failure to observe this may result in death to persons, physical injuries or
damage to property.
55 / 93Issued: 21.12.2011 Version: P3KSS8 Roboterprogrammierung 3 V1 en

56 / 93

Robot Programming 3
Canceling the current motion by means of RESUME

 RESUME cancels all running interrupt programs and subprograms up to the
level at which the current interrupt was declared.

 When the RESUME statement is activated, the advance run pointer must
not be at the level where the interrupt was declared, but at least one level
lower.

 RESUME may only occur in interrupt programs.

 As soon as an interrupt has been declared as GLOBAL, no RESUME com-
mand may be used in the interrupt routine.

 Changing the variable $BASE in the interrupt program only has an effect
there.

 The computer advance run, i.e. the variable $ADVANCE, must not be
modified in the interrupt program.

 Motions that are to be canceled by means of BRAKE and RESUME must
be programmed in a subprogram.

 The behavior of the robot controller after RESUME depends on the following
motion instruction:

 PTP instruction: is executed as a PTP motion.

 LIN instruction: is executed as a LIN motion.

 CIRC instruction: is always executed as a LIN motion!

Following a RESUME statement, the robot is not situated at the origi-
nal start point of the CIRC motion. The motion will thus differ from how
it was originally planned; this can potentially be very dangerous, par-
ticularly in the case of CIRC motions.

 Useful system variables for exact positioning

 Useful system variables for approximate positioning

Since it cannot be predicted precisely when the interrupt will be triggered, it
must be ensured that collision free motion during the interrupt routine and the
subsequent motion is possible at all possible positions along the current ro-
bot path.
Failure to observe this may result in death to persons, physical injuries or
damage to property.

If the first motion instruction after RESUME is a CIRC
motion, this is always executed as LIN! This must be tak-

en into consideration when programming RESUME statements. The robot
must be able to reach the end point of the CIRC motion safely, by means of
a LIN motion, from any position in which it could find itself when the RESUME
statement is executed.
Failure to observe this may result in death to persons, physical injuries or
damage to property.

Fig. 5-5: System variables for exact positioning
Issued: 21.12.2011 Version: P3KSS8 Roboterprogrammierung 3 V1 en

5 Interrupt programming
Programming

interrupt routines

Execution of logic parallel to the robot motion

1. Interrupt declaration

 Define priority.

 Determine trigger event.

 Define and create interrupt routine.

2. Activate and deactivate the interrupt.

3. Expand the program with motions and define actions in the interrupt rou-
tine.

Fig. 5-6: System variables for approximate positioning

DEF MY_PROG()

INI
INTERRUPT DECL 25 WHEN $IN[99]==TRUE DO ERROR()

END

DEF ERROR()

END

DEF MY_PROG()

INI
INTERRUPT DECL 25 WHEN $IN[99]==TRUE DO ERROR()
INTERRUPT ON 25
...
...
INTERRUPT OFF 25

END

DEF ERROR()

END
57 / 93Issued: 21.12.2011 Version: P3KSS8 Roboterprogrammierung 3 V1 en

58 / 93

Robot Programming 3
Execution of logic after the robot has been stopped, followed by resump-
tion of the robot motion

1. Interrupt declaration

 Define priority.

 Determine trigger event.

 Define and create interrupt routine.

 Activate and deactivate the interrupt.

2. Expand the program with motions and define robot braking and logic in the
interrupt routine.

Stopping the current robot motion, repositioning, rejecting the current
path planning and executing a new path

1. Interrupt declaration

 Define priority.

DEF MY_PROG()

INI
INTERRUPT DECL 25 WHEN $IN[99]==TRUE DO ERROR()
INTERRUPT ON 25
PTP HOME Vel=100% DEFAULT
PTP P1 Vel=100% PDAT1
PTP P2 Vel=100% PDAT2
PTP HOME Vel=100% DEFAULT
INTERRUPT OFF 25
END

DEF ERROR()
$OUT[20]=FALSE
$OUT[21]=TRUE
END

DEF MY_PROG()

INI
INTERRUPT DECL 25 WHEN $IN[99]==TRUE DO ERROR()
INTERRUPT ON 25
...
...
INTERRUPT OFF 25

END

DEF ERROR()

END

DEF MY_PROG()

INI
INTERRUPT DECL 25 WHEN $IN[99]==TRUE DO ERROR()
INTERRUPT ON 25
PTP HOME Vel=100% DEFAULT
PTP P1 Vel=100% PDAT1
PTP P2 Vel=100% PDAT2
PTP HOME Vel=100% DEFAULT
INTERRUPT OFF 25
END

DEF ERROR()
BRAKE
$OUT[20]=FALSE
$OUT[21]=TRUE
END
Issued: 21.12.2011 Version: P3KSS8 Roboterprogrammierung 3 V1 en

5 Interrupt programming
 Determine trigger event.

 Define and create interrupt routine.

2. Expand program with motions.

 In order to be able to cancel a motion, it must be executed in a subpro-
gram.

 Advance run pointer must remain in the subprogram.

 Activate and deactivate the interrupt.

3. Edit the interrupt routine.

 Stop the robot.

 Reposition the robot to $POS_INT.

 Reject current motion.

 New motion in main program.

DEF MY_PROG()

INI
INTERRUPT DECL 25 WHEN $IN[99]==TRUE DO ERROR()
...
END

DEF ERROR()
...
END

DEF MY_PROG()

INI
INTERRUPT DECL 25 WHEN $IN[99]==TRUE DO ERROR()
SEARCH()
END

DEF SEARCH()
INTERRUPT ON 25
PTP HOME Vel=100% DEFAULT
PTP P1 Vel=100% PDAT1
PTP P2 Vel=100% PDAT2
PTP HOME Vel=100% DEFAULT
WAIT SEC 0 ; Stop advance run pointer
INTERRUPT OFF 25
END

DEF ERROR()
...
END
59 / 93Issued: 21.12.2011 Version: P3KSS8 Roboterprogrammierung 3 V1 en

60 / 93

Robot Programming 3
5.2 Exercise: Working with interrupts

Aim of the

exercise

On successful completion of this exercise, you will be able to carry out the fol-
lowing activities:

 Declare an interrupt

 Create an interrupt subprogram

 Evaluate and process interrupts in the program sequence

Preconditions The following are preconditions for successful completion of this exercise:

 Knowledge of the KRL programming language

 Theoretical knowledge of interrupt programming

Task description The aim of this exercise is to detect the positions of 3 cubes using a defined
measurement run and to save these positions.

1. Create a new program with the name “SEARCH”.

2. Remove 3 cubes from the magazine (you, not the robot) and place them
in a line on the table

3. Teach a LIN motion as a search run to pass over the 3 cubes The velocity
is to be set to 0.2 m/s.

4. The sensor must be activated/deactivated via output 27. Checkback sig-
nals for position determination are received at input 27.

5. Output 10 is to be switched for 1 second when a cube is detected. At the
same time, the position of the detected cube must be saved. Create and
use an array in the local DAT file or $config.dat for this purpose.

6. On completion of the search run, the robot is to indicate the 3 saved po-
sitions by moving to each one in turn and waiting for 1 second before mov-
ing on to the next position.

7. Test your program in accordance with the instructions

What you should now know:

1. In which program section is the interrupt declared?

. .

. .

DEF MY_PROG()

INI
INTERRUPT DECL 25 WHEN $IN[99]==TRUE DO ERROR()
SEARCH()
END

DEF SEARCH()
INTERRUPT ON 25
PTP HOME Vel=100% DEFAULT
PTP P1 Vel=100% PDAT1
PTP P2 Vel=100% PDAT2
PTP HOME Vel=100% DEFAULT
WAIT SEC 0 ; Stop advance run pointer
INTERRUPT OFF 25
END

DEF ERROR()
BRAKE
PTP $POS_INT
RESUME
END
Issued: 21.12.2011 Version: P3KSS8 Roboterprogrammierung 3 V1 en

5 Interrupt programming
2. What is the difference between INTERRUPT OFF 99 and INTERRUPT DIS-
ABLE 99?

 .

 .

 .

 .

3. When is the interrupt subprogram called?

 .

 .

4. What is the effect of the command INTERRUPT OFF at the start of an in-
terrupt subprogram?

 .

 .

5. What priority range is not enabled for the interrupt?

 .

 .
61 / 93Issued: 21.12.2011 Version: P3KSS8 Roboterprogrammierung 3 V1 en

62 / 93

Robot Programming 3
5.3 Exercise: Canceling motions with interrupts

Aim of the

exercise

On successful completion of this exercise, you will be able to carry out the fol-
lowing activities:

 Declare an interrupt

 Create an interrupt subprogram

 Evaluate and process interrupts in the program sequence

 Brake the robot motion by means of a KRL command

 Brake and cancel the robot motion by means of KRL commands

Preconditions The following are preconditions for successful completion of this exercise:

 Knowledge of the KRL programming language

 Theoretical knowledge of interrupt programming

 Theoretical knowledge of the KRL commands for braking and canceling
robot motion and how to use them

Task description Using a defined measurement run, detect the positions of 3 cubes and save
these positions. Additionally, the measurement run is to be terminated as soon
as the 3rd cube has been detected.

1. Duplicate your program SEARCH and rename it CANCEL_SEARCH.

2. Remove 3 cubes from the magazine (you, not the robot) and place them
in a line on the table.

3. Teach a LIN motion as a search run to pass over the 3 cubes. The velocity
is to be set to 0.2 m/s. The sensor must be activated/deactivated via output
27. Checkback signals for position determination are received at input 27.

4. Output 10 is to be switched for 1 second when a cube is detected. At the
same time, the position of the detected cube must be saved. Create and
use an array in the local DAT file for this purpose.

5. Once the 3rd cube has been found, the robot is to stop immediately and
the search run is to be canceled.

6. On completion of the search run, the robot is to indicate the 3 saved posi-
tions by moving to each one in turn and waiting for 1 second before moving
on to the next position.

7. Test your program in accordance with the instructions.

What you should now know:

1. What is the difference between BRAKE and BRAKE F?

. .

. .

2. Why does the RESUME command not function correctly here?
INTERRUPT DECL 21 WHEN $IN[1] DO Found()
INTERRUPT ON 21
LIN Strtpt
LIN Endpt
$ADVANCE = 0
INTERRUPT OFF 21 ...
END

DEF Found()
INTERRUPT OFF 21
BRAKE
;Pick part up
RESUME
END
Issued: 21.12.2011 Version: P3KSS8 Roboterprogrammierung 3 V1 en

5 Interrupt programming
3. When is an interrupt triggered?
63 / 93Issued: 21.12.2011 Version: P3KSS8 Roboterprogrammierung 3 V1 en

64 / 93

Robot Programming 3
Issued: 21.12.2011 Version: P3KSS8 Roboterprogrammierung 3 V1 en

6 Programming return motion strategies
6 Programming return motion strategies

6.1 Programming return motion strategies

What is a return

motion strategy?

Once an application program has been created and tested in practical opera-
tion, the question additionally arises as to how the program will react to mal-
functions.

Of course it is desirable for the system to react automatically to a malfunction.

Return motion strategies are used for this purpose.

A return motion strategy involves return motions that the robot executes in the
event of a malfunction in order to move automatically to the home position, for
example, no matter where it is currently located.

These return motions must be freely programmed by the programmer.

Where are return

motion strategies

used?

Return motion strategies are used wherever full automation of a production
cell is desired, even in the case of malfunctions.

A correctly programmed return motion strategy might only give the operator an
opportunity to decide what is to happen in the further procedure.

The need to jog the robot out of a hazardous situation can thus be avoided.

How do you

program a return

motion strategy?

 Subdivide motion range into workspaces

 Configure I/Os

 Declare interrupts

 Save positions

 Program user messages

 Define various home positions if necessary

 Use global points if necessary

Fig. 6-1
65 / 93Issued: 21.12.2011 Version: P3KSS8 Roboterprogrammierung 3 V1 en

66 / 93

Robot Programming 3
6.2 Exercise: Programming a return motion strategy

Aim of the

exercise

On successful completion of this exercise, you will be able to carry out the fol-
lowing activities:

 Program automatic return motions

 Integrate messages into the work process

 Detect faults using interrupts

 Terminate the robot motion, depending on the process

Preconditions The following are preconditions for successful completion of this exercise:

 Knowledge of the KRL programming language

 Knowledge of message programming

Fig. 6-2

Fig. 6-3
Issued: 21.12.2011 Version: P3KSS8 Roboterprogrammierung 3 V1 en

6 Programming return motion strategies
 Knowledge of interrupt programming

 Knowledge of the KRL commands for braking and canceling robot motion
and how to use them

 Theoretical knowledge of the Trigger command

Task description The basic program involves fetching the cube from the magazine and inserting
it back into the magazine. The enabling is withdrawn by the PLC via an input
(no. 11). The robot must be stopped immediately. The operator is to decide,
by answering a dialog query, whether the robot should return to the home po-
sition or resume the process. In either case, the robot cannot move, following
the decision, until the enabling is present once again and this fault has been
acknowledged. If the home position is selected, the motion to this position is
executed at reduced velocity (POV=10%). In the home position, another dia-
log will ask whether the system is ready. If “yes”, the robot can continue pro-
gram execution with the program override that was set before the fault
occurred. Answering with “no” terminates the program.

1. Start by creating the program flowchart.

2. Pay attention to the structure of your overall concept when implementing
the program structure.

3. The aim of the project is clear, well-structured programming and function-
ing programs/modules.

4. When assigning file and variable names, make sure they are easy to un-
derstand.

5. Ensure that it is always possible to move to the home position without the
risk of collision.

6. When restarting from the home position, ensure that the correct procedure
(fetch or set down) is carried out, depending on the gripper position. Note:
input 26 means that the gripper is open.

7. Test your program in accordance with the instructions.

What you should now know:

1. Which expert command can be used to switch user-defined variables on the
path?

Fig. 6-4
67 / 93Issued: 21.12.2011 Version: P3KSS8 Roboterprogrammierung 3 V1 en

68 / 93

Robot Programming 3
. .

. .

2. What are the KRL commands for the immediate termination of a subpro-
gram and an interrupt subprogram?

. .

. .

3. What is the purpose of a BCO run?

. .

. .

4. What variables can be used to influence the program override?

. .

. .

5. What can additionally be switched using the Trigger command that cannot
be switched using the SYNOUT inline form?

. .

. .
Issued: 21.12.2011 Version: P3KSS8 Roboterprogrammierung 3 V1 en

7 Working with analog signals
7 Working with analog signals

7.1 Programming analog inputs

Description

 The KR C4 features 32 analog inputs.

 For the analog signals, an optional bus system is required, which must be
configured via WorkVisual.

 Analog inputs are read via the system variables $ANIN[1] ...
$ANIN[32].

 Cyclical reading (every 12 ms) of an analog input.

 The values of $ANIN[no] range between 1.0 and -1.0 and represent an
input voltage of +10 V to -10 V.

Function Static value assignment

 Direct value assignment

 Value assignment of a signal declaration

Dynamic value assignment

 All of the variables used in an ANIN statement must be declared in data
lists (locally or in $CONFIG.DAT).

 A maximum of three ANIN ON statements can be used at the same time.

 A maximum of two ANIN ON statements can use the same variable Value
or access the same analog input.

 Syntax

 Starting cyclical reading:

ANIN ON Value = Factor * Signal name <±Offset>

Fig. 7-1: Analog signals

...
REAL value

value = $ANIN[2]
...

...
SIGNAL sensor $ANIN[6]
REAL value

value = sensor
...
69 / 93Issued: 21.12.2011 Version: P3KSS8 Roboterprogrammierung 3 V1 en

70 / 93

Robot Programming 3
 Ending cyclical reading:

ANIN OFF Signal name

 Example 1

 Example 2

Procedure for

programming

analog inputs

Programming of ANIN ON/OFF

1. Selection of the correct analog input

2. Performance of the signal declaration

3. Declaration of the necessary variables in a data list

4. Switching on: Programming of the ANIN ON statement

5. Verification that no more than 3 dynamic inputs are active

6. Switching off: Programming of the ANIN OFF statement

Element Description

Value Type: REAL

The result of the cyclical reading is stored in Value. Value
can be a variable or a signal name for an output.

Factor Type: REAL

Any factor. It can be a constant, variable or signal name.

Signal name Type: REAL

Specifies the analog input. Signal name must first have been
declared with SIGNAL . It is not possible to specify the ana-
log input $ANIN[x] directly instead of the signal name.

The values of an analog input $ANIN[x] range between
+1.0 and -1.0 and represent a voltage of +10 V to -10 V.

Offset Type: REAL

It can be a constant, variable or signal name.

DEFDAT myprog
DECL REAL value = 0
ENDDAT

DEF myprog()
SIGNAL sensor $ANIN[3]
...
ANIN ON value = 1.99*sensor-0.75
...
ANIN OFF sensor

DEFDAT myprog
DECL REAL value = 0
DECL REAL corr = 0.25
DECL REAL offset = 0.45
ENDDAT

DEF myprog()
SIGNAL sensor $ANIN[7]
...
ANIN ON value = corr*sensor-offset
...
ANIN OFF sensor

A precondition for using the analog signals is correct
configuration of the bus system with the connected ana-

log signals.
Issued: 21.12.2011 Version: P3KSS8 Roboterprogrammierung 3 V1 en

7 Working with analog signals
7.2 Programming analog outputs

Description

 The KR C4 features 32 analog outputs.

 For the analog signals, an optional bus system is required, which must be
configured via WorkVisual.

 Analog inputs are read via the system variables $ANOUT[1] ...
$ANOUT[32].

 Cyclical writing (every 12 ms) to an analog output.

 The values of $ANOUT[no] range between 1.0 and -1.0 and represent an
output voltage of +10 V to -10 V.

Function

Static value assignment

 Direct value assignment

 Value assignment by variables

 Programming by inline form

Fig. 7-2: Analog signals

A maximum of 8 analog outputs (static and dynamic to-
gether) can be used at any one time. ANOUT triggers an

advance run stop.

...
ANOUT[2] = 0.7 ; 7 V at analog output 2
...

...
REAL value
value = -0.8
ANOUT[4] = value ; -8 V at analog output 4
...

Fig. 7-3: Inline form “ANOUT” (static)
71 / 93Issued: 21.12.2011 Version: P3KSS8 Roboterprogrammierung 3 V1 en

72 / 93

Robot Programming 3
Dynamic value assignment

 All of the variables used in an ANOUT statement must be declared in data
lists (locally or in $CONFIG.DAT).

 A maximum of four ANOUT ON statements can be used at the same time.

 ANOUT triggers an advance run stop.

 Syntax

 Starting cyclical writing:

ANOUT ON Signal name = Factor * Control element <±Offset> <DELAY
= ±Time> <MINIMUM = Minimum value> <MAXIMUM = Maximum
value>

 Ending cyclical writing:

ANOUT OFF Signal name

 Example 1

Item Description

1 Number of the analog output

 CHANNEL_1 … CHANNEL_32

2 Factor for the voltage

 0 … 1 (intervals: 0.01)

Element Description

Signal name Type: REAL

Specifies the analog output. Signal name must first have
been declared with SIGNAL . It is not possible to specify
the analog output $ANOUT[x] directly instead of the signal
name.

The values of an analog output $ANOUT[x] range between
+1.0 and -1.0 and represent a voltage of +10 V to -10 V.

Factor Type: REAL

Any factor. It can be a constant, variable or signal name.

Control
element

Type: REAL

It can be a constant, variable or signal name.

Offset Type: REAL

It can be a constant, variable or signal name.

Time Type: REAL

Unit: seconds. By using the keyword DELAY and entering a
positive or negative amount of time, the output signal can
be delayed (+) or set early (-).

Minimum
value,
Maximum
value

Type: REAL

Minimum and/or maximum voltage to be present at the out-
put. The actual value does not fall below/exceed these val-
ues, even if the calculated values fall outside this range.

Permissible values: -1.0 to +1.0 (corresponds to -10 V to
+10 V).

It can be a constant, variable, structure component or array
element. The minimum value must always be less than the
maximum value. The sequence of the keywords MINIMUM
and MAXIMUM must be observed.
Issued: 21.12.2011 Version: P3KSS8 Roboterprogrammierung 3 V1 en

7 Working with analog signals
 Example 2

Procedure for

programming

analog inputs

Programming of ANOUT ON/OFF

1. Selection of the correct analog output

2. Performance of the signal declaration

3. Declaration of the necessary variables in a data list

4. Switching on: Programming of the ANOUT ON statement

5. Verification that no more than 4 dynamic outputs are active

6. Switching off: Programming of the ANOUT OFF statement

Example:

7.3 Exercise: Working with analog I/Os

Aim of the

exercise

On successful completion of this exercise, you will be able to carry out the fol-
lowing activities:

 Use signal declarations with inputs/outputs

 Integrate analog inputs into work processes statically or dynamically

DEF myprog()
SIGNAL motor $ANOUT[3]
...
ANOUT ON motor = 3.5*$VEL_ACT-0.75 DELAY=0.5
...
ANOUT OFF motor

DEFDAT myprog
DECL REAL corr = 1.45
DECL REAL offset = 0.25
ENDDAT

DEF myprog()
SIGNAL motor $ANOUT[7]
...
ANOUT ON motor = corr*$VEL_ACT-offset
...
ANOUT OFF motor

A precondition for using the analog signals is correct
configuration of the bus system with the connected ana-

log signals.

Fig. 7-4: Example of an analog output signal

DEF myprog()
SIGNAL motor $ANOUT[3]
...
ANOUT ON motor = 3.375*$VEL_ACT MINIMUM=0.30 MAXIMUM=0.97
...
ANOUT OFF motor
73 / 93Issued: 21.12.2011 Version: P3KSS8 Roboterprogrammierung 3 V1 en

74 / 93

Robot Programming 3
 Integrate analog outputs into work processes statically or dynamically

Preconditions The following are preconditions for successful completion of this exercise:

 Theoretical knowledge of signal declarations

 Theoretical knowledge of integrating analog inputs/outputs

Task description Configure your system so that you can alter the program override via an ana-
log input. Additionally, the actual robot velocity is to control an analog output.

Subtask 1

1. Create a program with the name “Velocity”.

2. Use analog input 1, which is controlled by the potentiometer.

3. Adapt the program override in the Submit interpreter.

4. Test your program in accordance with the instructions

Subtask 2

1. Expand your program with CP motions (velocity: up to 2 m/s) in an endless
loop.

2. Use analog output 1 of the control panel display.

3. Use the system variable $VEL_ACT for the current velocity.

4. Test your program in accordance with the instructions.

5. Additional instructions: Even if the velocity is below 0.2 m/s, the output
must nonetheless be connected to 1.0 V, and if the velocity is greater than
1.8 m/s, the output voltage must not exceed 9.0 V.

What you should now know:

 1. How many analog I/Os can be used in the KRC controller?

. .

. .

2. How many predefined digital inputs, analog inputs and analog outputs can
the KUKA controller use simultaneously?

. .

. .

3. What are the KRL commands for starting and stopping the analog output
cyclically?

. .

. .

4. How is an analog input statically polled?

. .

. .

Make sure that you only activate the analog I/O once.
Issued: 21.12.2011 Version: P3KSS8 Roboterprogrammierung 3 V1 en

8 Sequence and configuration of Automatic External
8 Sequence and configuration of Automatic External

8.1 Configuring and implementing Automatic External

Description

 The Automatic External interface allows robot processes to be controlled
by a higher-level controller (e.g. a PLC).

 The higher-level controller transmits the signals for the robot processes
(e.g. motion enable, fault acknowledgement, program start, etc.) to the ro-
bot controller via the Automatic External interface. The robot controller
transmits information about operating states and fault states to the higher-
level controller.

To enable use of the Automatic External interface, the following configurations
must be carried out:

1. Configuration of the CELL.SRC program.

2. Configuration of the inputs/outputs of the Automatic External interface.

Using the inputs/

outputs of the

Automatic

External interface

Overview of the principal signals of the interface

Fig. 8-1: PLC connection
75 / 93Issued: 21.12.2011 Version: P3KSS8 Roboterprogrammierung 3 V1 en

76 / 93

Robot Programming 3
Inputs (from robot controller’s point of view)

 PGNO_TYPE – Program number type

This variable defines the format in which the program number sent by the
higher-level controller is read.

* When using this transmission format, the values of PGNO_REQ,
PGNO_PARITY and PGNO_VALID are not evaluated and are thus of no
significance.

 PGNO_LENGTH – Program number length

This variable determines the number of bits in the program number sent
by the higher-level controller. Range of values: 1 … 16.

If PGNO_TYPE has the value 2, only 4, 8, 12 and 16 are permissible val-
ues for the number of bits.

 PGNO_PARITY – Program number parity bit

Input to which the parity bit is transferred from the higher-level controller.

Fig. 8-2: Overview of the principal Automatic External signals

Value Description Example

1 Read as binary number.

The program number is transmitted by the
higher-level controller as a binary coded
integer.

0 0 1 0 0 1 1 1

=> PGNO = 39

2 Read as BCD value.

The program number is transmitted by the
higher-level controller as a binary coded
decimal.

0 0 1 0 0 1 1 1

=> PGNO = 27

3 Read as “1 of n”*.

The program number is transmitted by the
higher-level controller or the periphery as a
"1 of n" coded value.

0 0 0 0 0 0 0 1

=> PGNO = 1

0 0 0 0 1 0 0 0

=> PGNO = 4
Issued: 21.12.2011 Version: P3KSS8 Roboterprogrammierung 3 V1 en

8 Sequence and configuration of Automatic External
If PGNO_TYPE has the value 3, PGNO_PARITY is not evaluated.

 PGNO_VALID – Program number valid

Input to which the command to read the program number is transferred
from the higher-level controller.

 $EXT_START – External start

If the I/O interface is active, this input can be set to start or continue a pro-
gram (normally CELL.SRC).

 $MOVE_ENABLE – Motion enable

This input is used by the higher-level controller to check the robot drives.

 $CONF_MESS – Message acknowledgement

Setting this input enables the higher-level controller to acknowledge error
messages automatically as soon as the cause of the error has been elim-
inated.

 $DRIVES_ON – Drives on

If there is a high-level pulse of at least 20 ms duration at this input, the
higher-level controller switches on the robot drives.

Input Function

Negative value Odd parity

0 No evaluation

Positive value Even parity

Input Function

Negative value Number is transferred at the falling edge of the signal.

0 Number is transferred at the rising edge of the signal on
the EXT_START line.

Positive value Number is transferred at the rising edge of the signal.

Only the rising edge of the signal is evaluated.

There is no BCO run in Automatic External mode. This
means that the robot moves to the first programmed po-

sition after the start at the programmed (not reduced) velocity and does not
stop there.

Signal Function

TRUE Jogging and program execution are possible.

FALSE All drives are stopped and all active commands inhibit-
ed.

If the drives have been switched off by the higher-level controller, the
message “GENERAL MOTION ENABLE” is displayed. It is only pos-
sible to move the robot again once this message has been reset and

another external start signal has been given.

During commissioning, the variable $MOVE_ENABLE is often config-
ured with the value $IN[1025]. If a different input is not subsequently
configured, no external start is possible.

Only the rising edge of the signal is evaluated.
77 / 93Issued: 21.12.2011 Version: P3KSS8 Roboterprogrammierung 3 V1 en

78 / 93

Robot Programming 3
 $DRIVES_OFF – Drives off

If there is a low-level pulse of at least 20 ms duration at this input, the high-
er-level controller switches off the robot drives.

Outputs (from robot controller’s point of view)

 $ALARM_STOP – Emergency Stop

This output is reset in the following EMERGENCY STOP situations:

 The EMERGENCY STOP button on the KCP is pressed (Int. E-Stop).

 External EMERGENCY STOP

 $USER_SAF – Operator safety / safety gate

This output is reset if the safety fence monitoring switch is opened (AUT
mode) or an enabling switch is released (T1 or T2 mode).

 $PERI_RDY – Drives ready

By setting this output, the robot controller communicates to the higher-lev-
el controller the fact that the robot drives are switched on.

 $STOPMESS – Stop messages

This output is set by the robot controller in order to communicate to the
higher-level controller any message occurring which requires the robot to
be stopped. (Examples: EMERGENCY STOP, Motion enable or Operator
safety)

 $I_O_ACTCONF – Automatic External active

This output is TRUE if Automatic External mode is selected and the input
$I_O_ACT is TRUE (normally always at $IN[1025]).

 $PRO_ACT – Program is active/running

This output is set whenever a process is active at robot level. The process
is therefore active as long as a program or an interrupt is being processed.
Program processing is set to the inactive state at the end of the program
only after all pulse outputs and all triggers have been processed.

 PGNO_REQ – Program number request

A change of signal at this output requests the higher-level controller to
send a program number.

If PGNO_TYPE has the value 3, PGNO_REQ is not evaluated.

 APPL_RUN – Application program running

By setting this output, the robot controller communicates to the higher-lev-
el controller the fact that a program is currently being executed.

 $IN_HOME – Robot in HOME position

This output communicates to the higher-level controller whether or not the
robot is in its HOME position.

 $ON_PATH – Robot is on the path

This output remains set as long as the robot stays on its programmed path.
The output ON_PATH is set after the BCO run. This output remains set un-
til the robot leaves the path, the program is reset or block selection is car-
ried out. The ON_PATH signal has no tolerance window, however; as
soon as the robot leaves the path the signal is reset.

In the case of an EMERGENCY STOP, the nature of the EMERGEN-
CY STOP can be recognized from the states of the outputs
$ALARM_STOP and Int. E-Stop:

 Both outputs are FALSE: the EMERGENCY STOP was triggered on the
KCP.

 $ALARM_STOP is FALSE, Int. E-Stop is TRUE: external EMERGENCY
STOP.
Issued: 21.12.2011 Version: P3KSS8 Roboterprogrammierung 3 V1 en

8 Sequence and configuration of Automatic External
Principle of

Automatic

External commu-

nication

Overview of the complete procedure

Subdivision into subareas

1. Switch on drives

2. Acknowledge messages

3. Start Cell program

4. Transfer program number and execute application

For each of these areas, conditions have to be fulfilled and the possibility of
reporting robot states to the PLC must be created.

It is advisable to use these predefined handsakes.

Switch on drives

Fig. 8-3: Automatic system start and normal operation with program
number acknowledgement by means of PGNO_VALID

Fig. 8-4: Handshake
79 / 93Issued: 21.12.2011 Version: P3KSS8 Roboterprogrammierung 3 V1 en

80 / 93

Robot Programming 3
 Preconditions

 $USER_SAF – Safety gate closed

 $ALARM_STOP – No Emergency Stop active

 $I_O_ACTCONF – Automatic External active

 $MOVE_ENABLE – Motion enable present

 $DRIVES_OFF – Drives off not activated

 Switch on drives

$DRIVES_ON – Switch drives on for at least 20 ms

 Drives ready

$PERI_RDY – The $DRIVES_ON signal is reset as soon as the check-
back signal for the drives is received.

Acknowledge messages

 Preconditions

$STOPMESS – Stop message is active

 Acknowledge message

$CONF_MESS – Acknowledge message

 Acknowledgeable messages are cleared

$STOPMESS – Stop message is no longer active; $CONF_MESS can
now be reset.

Start program (CELL.SRC) externally

Fig. 8-7

Fig. 8-11
Issued: 21.12.2011 Version: P3KSS8 Roboterprogrammierung 3 V1 en

8 Sequence and configuration of Automatic External
 Preconditions

 $PERI_RDY – Drives are ready

 $IN_HOME – Robot is in HOME position

 No $STOPMESS – No stop message is active

 External start

$EXT_START – Activate external start (positive edge)

 CELL program running

 $PRO_ACT – Signals that CELL program is running

 $ON_PATH – The $EXT_START signal is reset as soon as the check-
back signal for the robot is received.

Execute program transfer and application program

 Preconditions

 $PERI_RDY – Drives are ready

 $PRO_ACT – CELL program is running

 $ON_PATH – Robot is on the path

 $IN_HOME – Robot is in HOME position, not required for restart

 PGNO_REQ – Program number request is active

 Program number transfer and confirmation

 Program number transfer

(Correct data type (PGNO_TYPE), program number length
(PGNO_LENGTH) and first bit for program nummer (PGNO_FBIT) are
set)

Fig. 8-16

Fig. 8-23
81 / 93Issued: 21.12.2011 Version: P3KSS8 Roboterprogrammierung 3 V1 en

82 / 93

Robot Programming 3
 PGNO_VALID – Set program number valid (confirmation) (positive
edge)

 Application program is running

 APPL_RUN – Signals that application program is running

 Robot leaves the HOME position; on termination of the application
program the robot returns to the HOME position.

Procedure 1. In the main menu, select Configuration > Inputs/outputs > Automatic
External.

2. In the Value column, select the cell to be edited and press Edit.

3. Enter the desired value and save it by pressing OK.

4. Repeat steps 2 and 3 for all values to be edited.

5. Close the window. The changes are saved.

Fig. 8-26: Configuring Automatic External inputs

Item Description

1 Number

2 Long text name of the input/output

3 Type

 Green: Input/output

 Yellow: Variable or system variable ($...)

4 Name of the signal or variable

5 Input/output number or channel number

6 The outputs are thematically assigned to tabs.
Issued: 21.12.2011 Version: P3KSS8 Roboterprogrammierung 3 V1 en

8 Sequence and configuration of Automatic External
8.2 Exercise: Automatic External

Aim of the

exercise

On successful completion of this exercise, you will be able to carry out the fol-
lowing activities:

 Targeted integration of a robot program into Automatic External operation

 Adaptation of the “Cell” program

 Configuration of the Automatic External interface

 Recognition of sequence in Automatic External mode

Preconditions The following are preconditions for successful completion of this exercise:

 Knowledge of how to edit the “Cell” program

 Knowledge of how to configure the Automatic External interface

 Theoretical knowledge of the signal sequence in Automatic External

Task description 1. Configure the Automatic External interface to the requirements of your
control panel.

2. Expand your Cell program by any 3 modules, the functions of which you
have verified beforehand.

3. Test your program in the modes T1, T2 and Automatic. Observe the rele-
vant safety instructions.

4. Use buttons to simulate the functionality of the PLC.

What you should now know:

1. What is the precondition for PGNO_REQ not to be evaluated?

 .

 .

2. What signal is used to activate the drives and what must be taken into con-
sideration?

Fig. 8-27: Configuring Automatic External outputs
83 / 93Issued: 21.12.2011 Version: P3KSS8 Roboterprogrammierung 3 V1 en

84 / 93

Robot Programming 3
. .

. .

3. Which Automatic External interface variable also influences jogging?

. .

. .

4. Which Fold in the CELL program checks the HOME position?

. .

. .

5. What are the preconditions for Automatic External mode?

. .

. .
Issued: 21.12.2011 Version: P3KSS8 Roboterprogrammierung 3 V1 en

9 Programming collision detection
9 Programming collision detection

9.1 Programming motions with collision detection

Description

Monitoring of axis torques is implemented in robotics in order to detect wheth-
er the robot has collided with an object. This collision is undesirable in most
cases and can result in destruction of the robot, tool or components.

Collision detection

 If the robot collides with an object, the robot controller increases the axis
torques in order to overcome the resistance. This can result in damage to
the robot, tool or other objects.

 Collision detection reduces the risk and severity of such damage. It moni-
tors the axis torques.

 The user can define the procedure to be executed after a collision once
the algorithm has detected a collision and the robot has stopped:

 The robot stops with a STOP 1.

 The robot controller calls the program tm_useraction. This is located
in the Program folder and contains the HALT statement. Alternatively,
the user can program other reactions in the program tm_useraction.

 The robot controller automatically calculates the tolerance range.

 A program must generally be executed 2 or 3 times before the robot con-
troller has calculated a practicable tolerance range.

 The user can define an offset via the user interface for the tolerance range
calculated by the robot controller.

 If the robot is not operated for a longer period (e.g. over the weekend), the
motors, gear units, etc., cool down. Different axis torques are required in
the first few runs after such a break than in the case of a robot that is al-
ready at operating temperature. The robot controller automatically adapts
the collision detection to the changed temperature.

Limitations

 Collision detection is not possible in T1 mode.

 Collision detection is not possible for HOME positions and other global po-
sitions.

 Collision detection is not possible for external axes.

 Collision detection is not possible during backward motion.

Fig. 9-1: Collision
85 / 93Issued: 21.12.2011 Version: P3KSS8 Roboterprogrammierung 3 V1 en

86 / 93

Robot Programming 3
 High axis torques arise when the stationary robot starts to move. For this
reason, the axis torques are not monitored in the starting phase (approx.
700 ms).

 The collision detection function reacts much less sensitively for the first 2
or 3 program executions after the program override value has been mod-
ified. Thereafter, the robot controller has adapted the tolerance range to
the new program override.

Principle of

collision

detection

Teaching a program with collision detection

 Acceleration adaptation must be activated with the system variable
$ADAP_ACC

 The system variable is located in the file C:\KRC\Roboter\KRC\R1\Ma-
Da\$ROBCOR.DAT

 $ADAP_ACC = #NONE Acceleration adaptation not activated

 $ADAP_ACC = #STEP1 Dynamic model without kinetic energy

 $ADAP_ACC = #STEP2 Dynamic model with kinetic energy

 To activate collision detection for a motion, the parameter Collision de-
tection must be set to TRUE during programming. This can be seen from
the addition CD in the program code:

 The tolerance range is only calculated for motion blocks that have been
executed completely.

Setting the offset values

 An offset for the torque and for the impact can be defined for the tolerance
range.

 Torque: The torque is effective if the robot meets a continuous resistance.
Examples:

 The robot collides with a wall and pushes against the wall.

 The robot collides with a container. The robot pushes against the con-
tainer and moves it.

 Impact: The impact is effective if the robot meets a brief resistance. Ex-
ample:

 The robot collides with a panel which is sent flying by the impact.

 The lower the offset, the more sensitive the reaction of the collision detec-
tion.

 The higher the offset, the less sensitive the reaction of the collision detec-
tion.

 Option window “Collision detection”

PTP P2 Vel= 100 % PDAT1 Tool[1] Base[1] CD

The parameter Collision detection is only available if the motion is
programmed via an inline form.

If the collision detection reacts too sensitively, do not immediately in-
crease the offset. Instead, recalculate the tolerance range first and
test whether the collision detection now reacts as desired.
Issued: 21.12.2011 Version: P3KSS8 Roboterprogrammierung 3 V1 en

9 Programming collision detection
Fig. 9-2: Option window “Collision detection”

The values in the option window Collision detection do not always
refer to the current motion. Deviations are particularly possible in the
case of points which are close together and approximated motions.

Item Description

1 The button indicates the status of a motion.

 Red: the current motion is not monitored.

 Green: the current motion is monitored.

 Orange: a button for setting the numeric value of the torque
or impact on the left or right has been pressed. The window
remains focused on the motion and the offset can be mod-
ified. The change can be applied by pressing Save.

 Pixelated: a program must generally be executed 2 or 3
times before the robot controller has calculated a practica-
ble tolerance range. While the robot controller is in the
learning phase, the button remains pixelated.

2 Number of the TMx variable

The robot controller creates a TMx variable for each motion block
in which the parameter Collision detection is set to TRUE. TMx
contains all the values for the tolerance range of this motion block.
If 2 motion blocks refer to the same point Px, the robot controller
creates 2 TMx variables.

3 Path and name of the selected program

4 Point name
87 / 93Issued: 21.12.2011 Version: P3KSS8 Roboterprogrammierung 3 V1 en

88 / 93

Robot Programming 3
Procedure

Programming collision detection

1. Create a motion using an inline form.

2. Open the option window “Frames” and activate collision detection.

5 This box is only active in “Automatic External” mode. It appears
gray in all other modes.

MonOn: collision detection has been activated by the PLC.

If collision detection is activated by the PLC, the PLC sends the
input signal sTQM_SPSACTIVE to the robot controller. The robot
controller responds with the output signal sTQM_SPSSTATUS.
The signals are defined in the file $config.dat.

Note: Collision detection is only active in Automatic External
mode if both the PLC box and the KCP box show the entry
MonOn.

6 MonOn: collision detection has been activated from the KCP.

Note: Collision detection is only active in Automatic External
mode if both the PLC box and the KCP box show the entry
MonOn.

7 Offset for the torque. The lower the offset, the more sensitive the
reaction of the collision detection. Default value: 20.

The window remains focused on the motion and the offset can be
modified. The change can be applied by pressing Save.

N.A.: the option Collision detection in the inline form is set to
FALSE for this motion.

8 Offset for the impact. The lower the offset, the more sensitive the
reaction of the collision detection. Default value: 30.

The window remains focused on the motion and the offset can be
modified. The change can be applied by pressing Save.

N.A.: the option Collision detection in the inline form is set to
FALSE for this motion.

Button Description

Activate Activates collision detection.

This button is not displayed if the torque or impact
has been changed, but the changes have not yet
been saved.

Deactivate Deactivates collision detection.

This button is not displayed if the torque or impact
has been changed, but the changes have not yet
been saved.

Save Saves changes to the torque and/or impact.

Cancel Rejects changes to the torque and/or impact.

Item Description

Alternatively, the lines with the torque monitoring in such programs
can be deleted and collision detection can be used instead. Collision
detection must not be used together with torque monitoring in a pro-

gram.
Acceleration adaptation is activated when system variable $ADAP_ACC is
not equal to #NONE. (This is the default setting.) The system variable can
be found in the file C:\KRC\Roboter\KRC\R1\MaDa\$ROBCOR.DAT.
Issued: 21.12.2011 Version: P3KSS8 Roboterprogrammierung 3 V1 en

9 Programming collision detection
3. Complete the motion.

Calculating the tolerance range and activating collision detection

1. In the main menu, select Configuration > Miscellaneous > Collision de-
tection.

 (>>> Fig. 9-2)

2. The box KCP must contain the entry MonOff. If this is not the case, press
Deactivate.

3. Start the program and execute it several times. After 2 or 3 program exe-
cutions, the robot controller has calculated a practicable tolerance range.

4. Press Activate. The box KCP in the Collision detection window now
contains the entry MonOn.

Save the configuration by pressing Close.

1. Select program.

2. In the main menu, select Configuration > Miscellaneous > Collision de-
tection.

3. The offset for a motion can be modified while a program is running: If the
desired motion is displayed in the Collision detection window, press the
buttons next to the torque or impact. The window remains focused on this
motion. Change the offset using these buttons.

Fig. 9-3: Option window: Frames

Item Description

1 Tool selection.

If True in the box External TCP: workpiece selection.

Range of values: [1] … [16]

2 Base selection.

If True in the box External TCP: fixed tool selection.

Range of values: [1] … [32]

3 Interpolation mode

 False: The tool is mounted on the mounting flange.

 True: The tool is a fixed tool.

4 True: For this motion, the robot controller calculates the
axis torques. These are required for collision detection.

 False: For this motion, the robot controller does not calcu-
late the axis torques. Collision detection is thus not possi-
ble for this motion.
89 / 93Issued: 21.12.2011 Version: P3KSS8 Roboterprogrammierung 3 V1 en

90 / 93

Robot Programming 3
Alternatively, a block selection to the desired motion can be carried out.

4. Save the change by pressing Save.

5. Save the configuration by pressing Close.

6. Set the original operating mode and program run mode.

Fig. 9-6: Modified collision detection values
Issued: 21.12.2011 Version: P3KSS8 Roboterprogrammierung 3 V1 en

Index
Index

Symbols
$ADAP_ACC 88

A
Acknowledgement message 29, 42
Analog I/Os, exercise 73
Analog inputs 69
Analog signals 69
Automatic External 75

C
Canceling a motion with interrupt, exercise 62
Collision detection 85, 89
Collision detection (menu item) 89
Collision detection, Automatic External 88
Collision detection, variable 87
Comment 5
Configuration 75
Configuring Automatic External, exercise 83

D
Data names 9
Declaring an interrupt, exercise 60
Dialog 47
Dialog message 29, 47

E
EKrlMsgType 30

F
Fold 7

G
Global 51

I
Impact 86
Interpolation mode 89
Interrupt 51

K
KrlMsg_T 30
KrlMsgDlgSK_T 32
KrlMsgOpt_T 32

M
Message number 30
Message text 30
Message type 30
Messages 29

N
Notification message 29, 36

O
Originator 30
Outputs, analog 71

P
Priority 52
Program flowchart 9
Program flowchart example 11
Program flowchart symbols 10
Programming a dialog, exercise 50
Programming acknowledgement messages,
exercise 43
Programming methodology, program flowchart
example 11
Programming notification messages, exercise
37
Programming status messages, exercise 40
Programming wait messages, exercise 46

R
Return motion strategies 65
Return motion strategy, exercise 66

S
Status message 29, 39
Structured programming 5
Submit 13
Submit interpreter 13
Subprograms 8

T
tm_useraction 85
TMx 87
Torque 86

U
User messages 29

V
Voltage 72

W
Wait message 29, 45
Workspace monitoring 26
Workspace monitoring, exercise 26
Workspaces 17
Workspaces, mode 20
Wrist root point 20
91 / 93Issued: 21.12.2011 Version: P3KSS8 Roboterprogrammierung 3 V1 en

92 / 93

Robot Programming 3
Issued: 21.12.2011 Version: P3KSS8 Roboterprogrammierung 3 V1 en

93 / 93Issued: 21.12.2011 Version: P3KSS8 Roboterprogrammierung 3 V1 en

Robot Programming 3

	Robot Programming 3
	1 Structured programming
	1.1 Objectives for consistent programming methodology
	1.2 Tools for creating structured robot programs
	1.3 Creating a program flowchart

	2 Submit interpreter
	2.1 Using the Submit interpreter

	3 Workspaces with KRL
	3.1 Using workspaces
	3.2 Exercise: Workspace monitoring

	4 Message programming with KRL
	4.1 General information about user-defined messages
	4.2 Working with a notification message
	4.3 Exercise: Programming notification messages
	4.4 Working with a status message
	4.5 Exercise: Programming status messages
	4.6 Working with an acknowledgement message
	4.7 Exercise: Programming acknowledgement messages
	4.8 Working with a wait message
	4.9 Exercise: Programming wait messages
	4.10 Working with a dialog message
	4.11 Exercise: Programming a dialog

	5 Interrupt programming
	5.1 Programming interrupt routines
	5.2 Exercise: Working with interrupts
	5.3 Exercise: Canceling motions with interrupts

	6 Programming return motion strategies
	6.1 Programming return motion strategies
	6.2 Exercise: Programming a return motion strategy

	7 Working with analog signals
	7.1 Programming analog inputs
	7.2 Programming analog outputs
	7.3 Exercise: Working with analog I/Os

	8 Sequence and configuration of Automatic External
	8.1 Configuring and implementing Automatic External
	8.2 Exercise: Automatic External

	9 Programming collision detection
	9.1 Programming motions with collision detection

	Index

