
Training

Robot Programming 2

KUKA System Software 8

Training Documentation

KUKA Roboter GmbH

Issued: 14.12.2011

Version: P2KSS8 Roboterprogrammierung 2 V1 en

Robot Programming 2

2 / 115 Issued: 14.12.2011 Version: P2KSS8 Roboterprogrammierung 2 V1 en

© Copyright 2011

KUKA Roboter GmbH

Zugspitzstraße 140

D-86165 Augsburg

Germany

This documentation or excerpts therefrom may not be reproduced or disclosed to third parties without
the express permission of KUKA Roboter GmbH.

Other functions not described in this documentation may be operable in the controller. The user has
no claims to these functions, however, in the case of a replacement or service work.

We have checked the content of this documentation for conformity with the hardware and software
described. Nevertheless, discrepancies cannot be precluded, for which reason we are not able to
guarantee total conformity. The information in this documentation is checked on a regular basis, how-
ever, and necessary corrections will be incorporated in the subsequent edition.

Subject to technical alterations without an effect on the function.

Translation of the original documentation

KIM-PS5-DOC

Publication: Pub COLLEGE P2KSS8 Roboterprogrammierung 2 (PDF-COL) en

Bookstructure: P2KSS8 Roboterprogrammierung 2 V2.3

Version: P2KSS8 Roboterprogrammierung 2 V1 en

Contents

Contents
1 Structured programming .. 5

1.1 Objectives for consistent programming methodology .. 5

1.2 Tools for creating structured robot programs ... 5

1.3 Creating a program flowchart ... 8

2 Introduction to Expert level .. 11

2.1 Using Expert level .. 11

3 Variables and declarations ... 15

3.1 Data management in KRL .. 15

3.2 Working with simple data types ... 17

3.2.1 Declaration of variables .. 17

3.2.2 Initialization of variables with simple data types ... 20

3.2.3 Manipulation of variable values of simple data types with KRL 22

3.3 Arrays with KRL ... 25

3.4 Structures with KRL ... 28

3.5 The enumeration data type ENUM .. 30

4 Subprograms and functions ... 33

4.1 Working with local subprograms .. 33

4.2 Working with global subprograms .. 35

4.3 Transferring parameters to subprograms .. 37

4.4 Programming functions .. 40

4.5 Working with standard KUKA functions ... 42

5 Motion programming with KRL .. 45

5.1 Programming motions with KRL .. 45

5.2 Programming relative motions with KRL .. 50

5.3 Calculating or manipulating robot positions ... 52

5.4 Deliberate modification of Status and Turn bits ... 53

6 Working with system variables .. 59

6.1 Cycle time measurement by means of timers .. 59

7 Using program execution control functions ... 61

7.1 Programming conditional statements or branches ... 61

7.2 Programming a switch statement ... 62

7.3 Programming loops .. 65

7.3.1 Programming an endless loop .. 65

7.3.2 Programming a counting loop ... 67

7.3.3 Programming a rejecting loop ... 69

7.3.4 Programming a non-rejecting loop .. 70

7.4 Programming wait functions ... 72

7.4.1 Time-dependent wait function ... 72

7.4.2 Signal-dependent wait function ... 73

8 Switching functions with KRL .. 75

8.1 Programming simple switching functions ... 75

8.2 Programming path-related switching functions with TRIGGER WHEN DISTANCE 78
3 / 115Issued: 14.12.2011 Version: P2KSS8 Roboterprogrammierung 2 V1 en

4 / 115

Robot Programming 2
8.3 Programming path-related switching functions with TRIGGER WHEN PATH 81

9 Programming with WorkVisual ... 85

9.1 Managing a project with WorkVisual ... 85

9.1.1 Opening a project with WorkVisual ... 85

9.1.2 Comparing projects with WorkVisual .. 88

9.1.3 Transferring a project to the robot controller (installing) 92

9.1.4 Activating a project on the robot controller ... 96

9.2 Editing KRL programs with WorkVisual ... 98

9.2.1 File handling ... 98

9.2.2 Working with the KRL Editor ... 104

Index ... 113
Issued: 14.12.2011 Version: P2KSS8 Roboterprogrammierung 2 V1 en

1 Structured programming
1 Structured programming

1.1 Objectives for consistent programming methodology

Objectives for

consistent

programming

methodology

Consistent programming has the following advantages:

 The rigidly structured program layout allows complex problems to be dealt
with more easily.

 It allows a comprehensible presentation of the underlying process (without
the need for in-depth programming skills).

 Programs can be maintained, modified and expanded more effectively.

Forward-looking program planning has the following advantages:

 Complex tasks can be broken down into simple subtasks.

 The overall programming time is reduced.

 It enables components with the same performance to be exchanged.

 Components can be developed separately from one another.

The 6 requirements on robot programs:

1. Efficient

2. Free from errors

3. Easy to understand

4. Maintenance-friendly

5. Clearly structured

6. Economical

1.2 Tools for creating structured robot programs

What is the point

of a comment?

 Comments about the contents or function of a program

 Contents and benefits can be freely selected.

 Improved program legibility

 Clearer structuring of a program

 The programmer is responsible for ensuring that comments are up to date.

 KUKA uses line comments.

 Comments are not registered as syntax by the controller.

Where and when

are comments

used?

Information about the entire source text:

Structure of the source text:

DEF PICK_CUBE()
;This program fetches the cube from the magazine
;Author: I. M. Sample
;Date created: 09.08.2011
INI
...
END
5 / 115Issued: 14.12.2011 Version: P2KSS8 Roboterprogrammierung 2 V1 en

6 / 115

Robot Programming 2
Explanation of an individual line:

Indication of work to be carried out:

Commenting out:

What is the effect

of using folds in a

robot program?

 Program sections can be hidden in FOLDS.

 The contents of FOLDS are not visible to the user.

 The contents of FOLDS are processed normally during program execu-
tion.

 The use of FOLDS can improve the legibility of a program.

DEF PALLETIZE()
;***
;*This program palletizes 16 cubes on the table*
;*Author: I. M. Sample--------------------------------*
;*Date created: 09.08.2011---------------------------*
;***
INI
...
;------------Calculation of positions-----------------
...
;------------Palletizing of the 16 cubes--------------
...
;----------Depalletizing of the 16 cubes--------------
...
END

DEF PICK_CUBE()

INI

PTP HOME Vel=100% DEFAULT

PTP Pre_Pos ; Move to preliminary position for gripping

LIN Grip_Pos ; Move to cube gripping position
...

END

DEF PICK_CUBE()

INI

;Calculation of the pallet positions must be inserted here!

PTP HOME Vel=100% DEFAULT

PTP Pre_Pos ; Move to preliminary position for gripping

LIN Grip_Pos ; Move to cube gripping position

;Closing of the gripper is still missing here

END

DEF Palletize()

INI

PICK_CUBE()

;CUBE_TO_TABLE()

CUBE_TO_MAGAZINE()

END
Issued: 14.12.2011 Version: P2KSS8 Roboterprogrammierung 2 V1 en

1 Structured programming
What examples

are there for the

use of folds?

Why are subpro-

grams used?

 Multiple use possible

 Avoidance of code repetition

 Memory savings

 Components can be developed separately from one another.

 Components with the same performance can be exchanged at any time.

 Structuring of the program

 Overall task broken down into subtasks

 Improved ease of maintenance and elimination of programming errors

DEF Main()
...
INI ; KUKA FOLD closed

SET_EA ; FOLD created by user closed

PTP HOME Vel=100% DEFAULT ; KUKA FOLD closed

PTP P1 CONT Vel=100% TOOL[2]:Gripper BASE[2]:Table
...
PTP HOME Vel=100% Default

END

DEF Main()
...
INI ; KUKA FOLD closed

SET_EA ; FOLD created by user opened
$OUT[12]=TRUE
$OUT[102]=FALSE
PART=0
Position=0

PTP HOME Vel=100% DEFAULT ; KUKA FOLD closed
...
PTP P1 CONT Vel=100% TOOL[2]:Gripper BASE[2]:Table

PTP HOME Vel=100% Default

END

DEF Main()
...
INI ; KUKA FOLD closed

SET_EA ; FOLD created by user closed

PTP HOME Vel=100% DEFAULT ; KUKA FOLD opened
$BWDSSTART=FALSE
PDAT_ACT=PDEFAULT
FDAT_ACT=FHOME
BAS(#PTP_PARAMS,100)
$H_POS=XHOME
PTP XHOME
...

PTP P1 CONT Vel=100% TOOL[2]:Gripper BASE[2]:Table

PTP HOME Vel=100% Default

END
7 / 115Issued: 14.12.2011 Version: P2KSS8 Roboterprogrammierung 2 V1 en

8 / 115

Robot Programming 2
Using subpro-

grams

What is achieved

by indenting

command lines?

What is achieved

by the meaningful

identification of

data names?

To enable correct interpretation of the function of data and signals in a robot
program, it is advisable to use meaningful terms when assigning names.
These include, for example:

 Long text names for input and output signals

 Tool and base names

 Signal declarations for input and output signals

 Point names

1.3 Creating a program flowchart

What is a

program

flowchart?

 Tool for structuring the sequence of a program

 Program sequence is made more legible.

 Structure errors are detected more easily.

 Simultaneous documentation of the program

Program

flowchart

symbols

Start or end of a process or program

Linking of statements and operations

DEF MAIN()

INI

LOOP

 GET_PEN()
 PAINT_PATH()
 PEN_BACK()
 GET_PLATE()
 GLUE_PLATE()
 PLATE_BACK()

 IF $IN[1] THEN
 EXIT
 ENDIF

ENDLOOP

END

DEF INSERT()
INT PART, COUNTER
INI
PTP HOME Vel=100% DEFAULT
LOOP
 FOR COUNTER = 1 TO 20
 PART = PART+1
 ;Inline forms cannot be indented!!!
PTP P1 CONT Vel=100% TOOL[2]:Gripper BASE[2]:Table
 PTP XP5
 ENDFOR
...
ENDLOOP

Fig. 1-1
Issued: 14.12.2011 Version: P2KSS8 Roboterprogrammierung 2 V1 en

1 Structured programming
Branch

General statements in the program code

Subprogram call

Input/output statement

Fig. 1-2

Fig. 1-3

Fig. 1-4

Fig. 1-5

Fig. 1-6
9 / 115Issued: 14.12.2011 Version: P2KSS8 Roboterprogrammierung 2 V1 en

10 / 115

Robot Programming 2
Program

flowchart

example

Creating a

program

flowchart

1. Rough outline of the overall sequence on approx. 1-2 pages

2. Breakdown of the overall task into small subtasks

3. Rough outline of the subtasks

4. Refinement of the structure of the subtasks

5. Implementation in KRL code

Fig. 1-7
Issued: 14.12.2011 Version: P2KSS8 Roboterprogrammierung 2 V1 en

2 Introduction to Expert level
2 Introduction to Expert level

2.1 Using Expert level

Description The robot controller offers various user groups with different functions. The
following user groups can be selected:

 Operator

User group for the operator. This is the default user group.

 User

User group for the operator. (By default, the user groups “Operator” and
“User” are defined for the same target group.)

 Expert

User group for the programmer. This user group is protected by means of
a password.

 Administrator

The range of functions is the same as that for the user group “Expert”. It is
additionally possible, in this user group, to integrate plug-ins into the robot
controller. This user group is protected by means of a password.

 Safety Recovery

This user group can activate and configure the safety configuration of the
robot. This user group is protected by means of a password.

 Safety Maintenance

This user group is only relevant if KUKA.SafeOperation or KUKA.Saf-
eRangeMonitoring is used. The user group is protected by means of a
password.

Advanced functions of the “Expert” user group:

 Password-protected (default: kuka)

 Programming in editor possible using KRL

 Detail view available for modules

 Hide/show DEF line

 Open and close FOLDs

 Display detail view in program

 Predefined templates can be selected for program creation.

 The “Expert” user group is left again automatically:

 if the operating mode is switched to AUT or AUT EXT.

 if no action is carried out on the user interface within a specific time
(300 s).

Functions Creating programs with templates

 Cell: Existing Cell program can only be replaced or, if Cell is deleted, rec-
reated.

 Expert: Module consisting of SRC and DAT file with just the program
header and the end of the program.

 Expert Submit: Additional Submit file (SUB) consisting of the program
header and the end of the program.

 Function: Creation of SRC function consisting of just the function header
with a BOOL variable. The end of the function is present, but the return still
has to be programmed.

 Module: Module consisting of SRC and DAT file with the program header,
the end of the program and the basic framework (INI and 2x PTP HOME).
11 / 115Issued: 14.12.2011 Version: P2KSS8 Roboterprogrammierung 2 V1 en

12 / 115

Robot Programming 2
 Submit: Additional Submit file (SUB) consisting of the program header,
the end of the program and the basic framework (DECLARATION, INI,
LOOP/ENDLOOP).

The filter defines how programs are displayed in the file list. The following fil-
ters are available:

 Detail

Programs are displayed as SRC and DAT files. (Default setting)

 Modules

Programs are displayed as modules.

Hide/show DEF line

 By default, the DEF line is hidden. Declarations can only be made in a pro-
gram if the DEF line is visible.

 The DEF line is displayed and hidden separately for opened and selected
programs. If detail view (ASCII mode) is activated, the DEF line is visible
and does not need to be activated separately.

FOLD open/close

 The FOLDs are always closed for the user and can be opened by the Ex-
pert.

 The Expert can also program his own FOLDs.

 The syntax for a FOLD is:

;FOLD Name

Statements

;ENDFOLD <Name>

Procedure for

activating Expert

level and elimi-

nating errors

Activating Expert level

1. Select Configuration > User group in the main menu.

2. Log on as Expert: Press Login. Select the user group Expert and confirm
with Login.

3. Enter the password (default: kuka) when prompted and confirm with Log-
in.

Eliminating errors in the program

1. Select faulty module in the Navigator.

2. Select the Error list menu.

3. The error display (program_name.ERR) is opened.

4. Select error; a detailed description is displayed at the bottom of the error
display.

5. In the error display window, press the Display key and jump to the faulty
program.

Fig. 2-1: Program containing errors
Issued: 14.12.2011 Version: P2KSS8 Roboterprogrammierung 2 V1 en

2 Introduction to Expert level
6. Eliminate the error.

7. Exit editor and save changes.
13 / 115Issued: 14.12.2011 Version: P2KSS8 Roboterprogrammierung 2 V1 en

14 / 115

Robot Programming 2
Issued: 14.12.2011 Version: P2KSS8 Roboterprogrammierung 2 V1 en

3 Variables and declarations
3 Variables and declarations

3.1 Data management in KRL

Working with

variables with

KRL

General information about variables

 In the context of robot programming with KRL, a variable, in the broadest
sense, is simply a container for values that arise in the course of a robot
process.

 A variable has a specific address assigned to it in the memory of the com-
puter.

 A variable is identified by a name which is not a KUKA keyword.

 Every variable is linked to a specific data type.

 The data type must be declared before use.

 A distinction is made in KRL between local and global variables.

Variable life in KRL

 The variable life is the time in which the variable has reserved the memory
location.

 When the program or function is exited, runtime variables re-enable their
memory location.

 Variables from a data list receive the current value in their memory location
permanently.

Validity of variables in KRL

 Variables declared as local are only available and visible in this program.

 Global variables are created in a central (global) data list.

 Global variables can also be created in a local data list and are assigned
the keyword global during declaration.

Data types with KRL

 A data type is a grouping together of objects to form a set.

 Predefined standard data types

 User-defined standard data types

 Predefined KUKA data types

Using variables

with KRL

Naming convention

 Names in KRL can have a maximum length of 24 characters.

 Names in KRL can consist of letters (A-Z), numbers (0-9) and the signs “_”
and “$”.

 Names in KRL must not begin with a number.

 Names in KRL must not be keywords.

 No distinction is made between uppercase and lowercase letters.

Data types with KRL

 Predefined standard data types

Simple data
types

Integer Floating-point
number

Logic val-
ues

Indivi-
dual char-
acter

Keyword INT REAL BOOL CHAR
15 / 115Issued: 14.12.2011 Version: P2KSS8 Roboterprogrammierung 2 V1 en

16 / 115

Robot Programming 2
 Array

 Save multiple variables of the same data type by means of an index.

 Initialization or modification of values is carried out by means of an in-
dex.

 The maximum array size depends on the amount of memory required
by the data type.

 Enumeration data type

 All values of the enumeration type are defined with a name (in plain
text) when created.

 The system also defines a sequence.

 The maximum number of elements depends on the available memory.

 Composite data type / structure

 Composite data type consisting of components of various data types

 The components can consist of simple data types or of structures.

 It is possible to access individual components.

Variable life / validity

 Variables created in the SRC file are called runtime variables and

 cannot always be displayed.

 are only valid in the declared program section.

 re-enable their memory location on reaching the last line of the pro-
gram (END line).

 Variables in the local DAT file

 can always be displayed during program execution of the correspond-
ing SRC file.

 are available in the entire SRC file, i.e. also in local subprograms.

 can also be created as global variables.

 receive the current value in the DAT file and start with the saved value
when called again.

 Variables in the system file $CONFIG.DAT

 are available in all programs (global).

 can always be displayed, even if no program is active.

 receive the current value in $CONFIG.DAT.

Double declaration of variables

 A double declaration always occurs if the same character string (name) is
used.

 There is no double declaration if the same name is used in different SRC
or DAT files.

Range of values -231 ...

(231-1)

± 1.1 10-38... ±

3.4 10+38

TRUE /
FALSE

ASCII
character
set

Examples -199 or
56

-0.0000123 or
3.1415

TRUE or
FALSE

"A" or "q"
or "7"

Voltage[10] = 12.75
Voltage[11] = 15.59

color = #red

Date = {day 14, month 12, year 1996}

Simple data
types

Integer Floating-point
number

Logic val-
ues

Indivi-
dual char-
acter
Issued: 14.12.2011 Version: P2KSS8 Roboterprogrammierung 2 V1 en

3 Variables and declarations
 Double declarations in the same SRC and DAT file are not permissible and
generate an error message.

 Double declarations in the SRC or DAT file and $CONFIG.DAT are per-
missible.

 During execution of the program routine in which the variable was de-
clared, only the local value is modified, not the value in $CON-
FIG.DAT.

 During execution of an “external” program routine, only the value from
$CONFIG.DAT is accessed and modified.

KUKA system data

 KUKA system data can be of the following types:

 Enumeration data type, e.g. operating mode (mode_op)

 Structure, e.g. date/time (date)

 System information is obtained from KUKA system variables.

 Read the current system information.

 Modify current system configurations.

 They are predefined and begin with the “$” sign.

 $DATE (current date and time)

 $POS_ACT (current robot position)

 ...

3.2 Working with simple data types

The creation, initialization and modification of variables is explained below.
Only simple data types are used here.

Simple data types with KRL

 Integers (INT)

 Floating-point numbers (REAL)

 Logic values (BOOL)

 Individual character (CHAR)

3.2.1 Declaration of variables

Creating

variables

Declaration of variables

 The variables must always be declared before use.

 Every variable must be assigned to a data type.

 The naming convention must be observed when assigning names.

 The keyword for the declaration is DECL.

 The keyword DECL can be omitted in the case of the four simple data
types.

 Value assignments are carried out with the advance run pointer

 The variable declaration can be carried out in different ways; these deter-
mine the variable life and validity of the variable.

 Declaration in the SRC file

 Declaration in the local DAT file

 Declaration in $CONFIG.DAT

 Declaration in the local DAT file with the keyword “global”

 Creation of constants

 Constants are created using the keyword CONST.

 Constants may only be created in data lists.
17 / 115Issued: 14.12.2011 Version: P2KSS8 Roboterprogrammierung 2 V1 en

18 / 115

Robot Programming 2
Principle of

variable decla-

ration

Program structure in the SRC file

 Variables must be declared in the declaration section.

 The initialization section begins with the first value assignment, which is
usually the “INI” line, however.

 Values are assigned or modified in the instruction section.

Changing the standard view

 Displaying the DEF line is only possible in the “Expert” user group.

 Necessary in the case of modules for accessing the declaration section
before the “INI” line.

 In order to be able to see the DEF and END line, but also important for vari-
able transfer in subprograms.

Planning variable declaration

 Defining the variable life

 SRC file: runtime variable “dies” at the end of the program routine.

 DAT file: variable is retained on completion of program execution.

 Defining validity/availability

 locally in the SRC file: only available in the program routine in which it
was declared. The variable is thus only available between the local
DEF and END line (main program or local subprogram).

 locally in the DAT file: valid in the entire program, i.e. also in all local
subprograms.

 $CONFIG.DAT: globally available, i.e. read/write access is possible in
all program routines.

 locally in the DAT file as a global variable: globally available; read/
write access is possible in all program routines as soon as the DAT file
is assigned the keyword PUBLIC and additionally the keyword GLO-
BAL in the declaration.

 Defining the data type

 BOOL: classic “YES”/“NO” results.

 REAL: results of calculations to avoid rounding errors.

 INT: classic counting variables for counting loops or part counters.

 CHAR: one character only

A string or text can only be implemented as a CHAR array.

 Name assignment and declaration

 Use DECL to ensure simpler legibility of the program.

 Use meaningful, self-explanatory variable names.

 Do not use cryptic names or abbreviations.

 Use sensible name lengths, i.e. do not always use 24 characters.

Procedure for the

declaration of a

variable with a

simple data type

Creating a variable in the SRC file

1. “Expert” user group

2. Display the DEF line.

3. Open the SRC file in the editor.

DEF main()
; Declaration section
...
; Initialization section
INI
...
; Instruction section
PTP HOME Vel=100% DEFAULT
...
END
Issued: 14.12.2011 Version: P2KSS8 Roboterprogrammierung 2 V1 en

3 Variables and declarations
4. Carry out declaration of the variable.

5. Close and save the program.

Creating a variable in the DAT file

1. “Expert” user group

2. Open the DAT file in the editor.

3. Carry out declaration of the variable.

4. Close and save the data list.

Creating a variable in $CONFIG.DAT

1. “Expert” user group

2. In the folder SYSTEM, open $CONFIG.DAT in the editor.

3. Select the fold “USER GLOBALS” and open it with the softkey “Fold open/
cls”.

4. Carry out declaration of the variable.

5. Close and save the data list.

Creating a global variable in the DAT file

1. “Expert” user group

2. Open the DAT file in the editor.

3. Expand the program header in the data list to include the keyword PUB-
LIC.

DEF MY_PROG ()
DECL INT counter
DECL REAL price
DECL BOOL error
DECL CHAR symbol
INI
...
END

DEFDAT MY_PROG
EXTERNAL DECLARATIONS
DECL INT counter
DECL REAL price
DECL BOOL error
DECL CHAR symbol
...
ENDDAT

DEFDAT $CONFIG
BASISTECH GLOBALS
AUTOEXT GLOBALS
USER GLOBALS
ENDDAT

DEFDAT $CONFIG ()
...
;==================================
; User-defined types
;==================================
;==================================
; User-defined externals
;==================================
;==================================
; User-defined variables
;==================================
DECL INT counter
DECL REAL price
DECL BOOL error
DECL CHAR symbol
...
ENDDAT
19 / 115Issued: 14.12.2011 Version: P2KSS8 Roboterprogrammierung 2 V1 en

20 / 115

Robot Programming 2
4. Carry out declaration of the variable.

5. Close and save the data list.

3.2.2 Initialization of variables with simple data types

Description of

initialization with

KRL

 After every declaration, a variable only has a memory location reserved;
the value is always an invalid value.

 In the SRC file, the declaration and initialization are always carried out in
two separate lines.

 In the DAT file, the declaration and initialization are always carried out in
one line.

A constant must be initialized immediately in the declaration.

 The initialization section begins with the first value assignment.

Initialization

principle

Initialization of integers

 Initialization as a decimal value

 Initialization as a binary number

Calculation: 1*32+1*16+1*8+0*4+1*2+0*1 = 58

 Hexadecimal initialization

Calculation: 3*16 +10 = 58

Procedure for

initialization with

KRL

Declaration and initialization in the SRC file

1. Open the SRC file in the editor.

2. Declaration has been carried out.

3. Carry out initialization.

DEFDAT MY_PROG PUBLIC

DEFDAT MY_PROG PUBLIC
EXTERNAL DECLARATIONS
DECL GLOBAL INT counter
DECL GLOBAL REAL price
DECL GLOBAL BOOL error
DECL GLOBAL CHAR symbol
...
ENDDAT

value = 58

value = 'B111010'

Binary 25 24 23 22 21 20

Dec 32 16 8 4 2 1

value = 'H3A'

Hex 1 2 3 4 5 6 7 8 9 A B C D E F

Dec 1 2 3 4 5 6 7 8 9 1
0

11 12 13 14 15
Issued: 14.12.2011 Version: P2KSS8 Roboterprogrammierung 2 V1 en

3 Variables and declarations
4. Close and save the program.

Declaration and initialization in the DAT file

1. Open the DAT file in the editor.

2. Declaration has been carried out.

3. Carry out initialization.

4. Close and save the data list.

Declaration in the DAT file and initialization in the SRC file

1. Open the DAT file in the editor.

2. Carry out the declaration.

3. Close and save the data list.

4. Open the SRC file in the editor.

5. Carry out initialization.

6. Close and save the program.

Declaration and initialization of a constant

1. Open the DAT file in the editor.

2. Carry out declaration and initialization.

DEF MY_PROG ()
DECL INT counter
DECL REAL price
DECL BOOL error
DECL CHAR symbol
INI
counter = 10
price = 0.0
error = FALSE
symbol = "X"
...
END

DEFDAT MY_PROG
EXTERNAL DECLARATIONS
DECL INT counter = 10
DECL REAL price = 0.0
DECL BOOL error = FALSE
DECL CHAR symbol = "X"
...
ENDDAT

DEFDAT MY_PROG
EXTERNAL DECLARATIONS
DECL INT counter
DECL REAL price
DECL BOOL error
DECL CHAR symbol
...
ENDDAT

DEF MY_PROG ()
...
INI
counter = 10
price = 0.0
error = FALSE
symbol = "X"
...
END
21 / 115Issued: 14.12.2011 Version: P2KSS8 Roboterprogrammierung 2 V1 en

22 / 115

Robot Programming 2
3. Close and save the data list.

3.2.3 Manipulation of variable values of simple data types with KRL

List of options for

modifying

variable values

with KRL

Modification of the variable values in the program routines (SRC file) varies ac-
cording to the specific task. The most commonly used methods are described
below. Manipulation by means of bit operations and standard functions is also
possible, but is not dealt with in detail here.

Data manipulation by means of:

 Basic arithmetic operations

 (+) Addition

 (-) Subtraction

 (*) Multiplication

 (/) Division

 Comparison operations

 (==) identical / equal to

 (<>) not equal to

 (>) greater than

 (<) less than

 (>=) greater than or equal to

 (<=) less than or equal to

 Logic operations

 (NOT) Inversion

 (AND) Logic AND

 (OR) Logic OR

 (EXOR) Exclusive OR

 Bit operations

 (B_NOT) Bit-by-bit inversion

 (B_AND) Bit-by-bit ANDing

 (B_OR) Bit-by-bit ORing

 (B_EXOR) Bit-by-bit exclusive ORing

Standard functions

 Absolute function

 Root function

 Sine and cosine function

 Tangent function

 Arc cosine function

 Arc tangent function

 Multiple functions for string manipulation

Data manipu-

lation relation-

ships

Value modification using the data types REAL and INT

 Rounding up/down

DEFDAT MY_PROG
EXTERNAL DECLARATIONS
DECL CONST INT max_size = 99
DECL CONST REAL PI = 3.1415
...
ENDDAT
Issued: 14.12.2011 Version: P2KSS8 Roboterprogrammierung 2 V1 en

3 Variables and declarations
 Results of arithmetic operations (+;-;*)

 Results of arithmetic operations (/)

The following must be noted for arithmetic operations with integer values:

 In the case of interim results for operations with integers only, all dec-
imal places are simply cut off.

 In the case of value assignments to an integer variable, the result is
rounded up or down in the normal manner.

Comparison operations

Using relational operators, it is possible to form logical expressions. The result
of a comparison is always of data type BOOL.

; Declaration
DECL INT A,B,C
DECL REAL R,S,T
; Initialization
A = 3 ; A=3
B = 5.5 ; B=6 (> x.5 is rounded up)
C = 2.25 ; C=2 (rounded down)
R = 4 ; R=4.0
S = 6.5 ; S=6.5
T = C ; T=2.0 (the rounded-down value is taken)

Operands INT REAL

INT INT REAL

REAL REAL REAL

; Declaration
DECL INT D,E
DECL REAL U,V
; Initialization
D = 2
E = 5
U = 0.5
V = 10.6
; Instruction section (data manipulation)
D = D*E ; D = 2 * 5 = 10
E = E+V ; E= 5 + 10.6 = 15.6 -> rounded up to E=16
U = U*V ; U= 0.5 * 10.6 = 5.3
V = E+V ; V= 16 + 10.6 = 26.6

; Declaration
DECL INT F
DECL REAL W
; Initialization
F = 10
W = 10.0
; Instruction section (data manipulation)
; INT / INT -> INT
F = F/2 ; F=5
F = 10/4 ; F=2 (10/4 = 2.5 -> decimal place eliminated)
; REAL / INT -> REAL
F = W/4 ; F=3 (10.0/4=2.5 -> rounded up)
W = W/4 ; W=2.5

Operator/KRL Description Permissible data types

== identical /
equal to

INT, REAL, CHAR, BOOL

<> not equal to INT, REAL, CHAR, BOOL

> greater than INT, REAL, CHAR

< less than INT, REAL, CHAR
23 / 115Issued: 14.12.2011 Version: P2KSS8 Roboterprogrammierung 2 V1 en

24 / 115

Robot Programming 2
Logic operations

Logic expressions can be formed using logic operations. The result of such an
operation is always of data type BOOL.

Operators are executed in order of priority.

>= greater than
or equal to

INT, REAL, CHAR

<= less than or
equal to

INT, REAL, CHAR

; Declaration
DECL BOOL G,H
; Initialization / Instruction section
G = 10>10.1 ; G=FALSE
H = 10/3 == 3 ; H=TRUE
G = G<>H ; G=TRUE

Operations NOT A A AND B A OR B A
EXOR
B

A=TRUE B=TRUE FALSE TRUE TRUE FALS
E

A=TRUE B=FALS
E

FALSE FALSE TRUE TRUE

A=FALSE B=TRUE TRUE FALSE TRUE TRUE

A=FALSE B=FALS
E

TRUE FALSE FALSE FALS
E

; Declaration
DECL BOOL K,L,M
; Initialization / Instruction section
K = TRUE
L = NOT K ; L=FALSE
M = (K AND L) OR (K EXOR L) ; M=TRUE
L = NOT (NOT K) ; L=TRUE

Priority Operator

1 NOT (B_NOT)

2 Multiplication (*); division (/)

3 Addition (+), subtraction (-)

4 AND (B_AND)

5 EXOR (B_EXOR)

6 OR (B_OR)

7 Any comparison (==; <>; ...)

Operator/KRL Description Permissible data types
Issued: 14.12.2011 Version: P2KSS8 Roboterprogrammierung 2 V1 en

3 Variables and declarations
Procedure for

data manipulation

1. Define the data type for the variable(s).

2. Determine the validity and variable life of the variable.

3. Carry out variable declaration.

4. Initialize the variable.

5. Manipulate the variable in the program routines, i.e. always in the SRC file.

6. Close and save the SRC file.

3.3 Arrays with KRL

Description of

arrays with KRL

Arrays provide memory for multiple variables of the same data type, differen-
tiated by means of an index.

 The memory for arrays is finite, i.e. the maximum array size depends on
the amount of memory required by the data type.

 For declaration, the size of the array and the data type must be known.

 The start index in KRL always begins with 1.

 Initialization can always be carried out individually.

 Initialization in the SRC file can also be carried out using a loop.

Array dimensions

 1-dimensional array

 2-dimensional array

 3-dimensional array

 4-dimensional array or higher not supported by KRL.

Relationships in

the use of arrays

The variable life and validity of array variables are the same as for variables of
simple data types.

Array declaration

 Creation in the SRC file

 Creation in the data list (also $CONFIG.DAT)

; Declaration
DECL BOOL X, Y
DECL INT Z
; Initialization / Instruction section
X = TRUE
Z = 4
Y = (4*Z+16 <> 32) AND X ; Y=FALSE

dimension1[4]= TRUE

dimension2[2,1]= 3.25

dimension1[3,4,1]= 21

DEF MY_PROG ()
DECL BOOL error[10]
DECL REAL value[50,2]
DECL INT parts[10,10,10]
INI
...
END
25 / 115Issued: 14.12.2011 Version: P2KSS8 Roboterprogrammierung 2 V1 en

26 / 115

Robot Programming 2
Declaring and initializing an array in the SRC file

 Call each array individually by means of the index.

 using suitable loops

Initializing an array in the data list

 Call each array individually by means of the index and then display the val-
ue in the data list.

 Impermissible declaration and initialization in the data list

DEFDAT MY_PROG
EXTERNAL DECLARATIONS
DECL BOOL error[10]
DECL REAL value[50,2]
DECL INT parts[10,10,10]
...
ENDDAT

DECL BOOL error[10]
error[1]=FALSE
error[2]=FALSE
error[3]=FALSE
error[3]=FALSE
error[4]=FALSE
error[5]=FALSE
error[6]=FALSE
error[7]=FALSE
error[8]=FALSE
error[9]=FALSE
error[10]=FALSE

DECL BOOL error[10]
DECL INT x
FOR x = 1 TO 10
error[x]=FALSE
ENDFOR

After execution of the loop, x has the value 11.

DEFDAT MY_PROG
EXTERNAL DECLARATIONS
DECL BOOL error[10]
error[1]=FALSE
error[2]=FALSE
error[3]=FALSE
error[4]=FALSE
error[5]=FALSE
error[6]=FALSE
error[7]=FALSE
error[8]=FALSE
error[9]=FALSE
error[10]=FALSE

DEFDAT MY_PROG
EXTERNAL DECLARATIONS
DECL BOOL error[10]
DECL INT size = 32
error[1]=FALSE
error[2]=FALSE
error[3]=FALSE
error[4]=FALSE
error[5]=FALSE
error[6]=FALSE
error[7]=FALSE
error[8]=FALSE
error[9]=FALSE
error[10]=FALSE
Issued: 14.12.2011 Version: P2KSS8 Roboterprogrammierung 2 V1 en

3 Variables and declarations
Declaring an array in the data list and initializing it in the SRC file

 If an array is created in the data list in this way, the current values cannot
be viewed in the data list; the current values can only be checked using
the variable display.

or

Initialization by means of loops

 1-dimensional array

 2-dimensional array

 3-dimensional array

Procedure for

using arrays

1. Define data types for the array

2. Determine the validity and variable life of the array.

3. Carry out the array declaration.

4. Initialize the array elements.

5. Manipulate the array in the program routines, i.e. always in the SRC file.

Generates ten “Initial value block not in initialization section” error
messages.

DEFDAT MY_PROG
EXTERNAL DECLARATIONS
DECL BOOL error[10]

DEF MY_PROG ()
INI
Fehler[1]=FALSE
Fehler[2]=FALSE
Fehler[3]=FALSE
...
Fehler[10]=FALSE

DEF MY_PROG ()
INI
FOR x = 1 TO 10
Fehler[x]=FALSE
ENDFOR

DECL INT parts[15]
DECL INT x
FOR x = 1 TO 15
parts[x]= 4
ENDFOR

DECL INT parts_table[10,5]
DECL INT x, y
FOR x = 1 TO 10
 FOR y = 1 TO 5
 parts_table[x, y]= 6
 ENDFOR
ENDFOR

DECL INT parts_palette[5,4,3]
DECL INT x, y, z
FOR x = 1 TO 5
 FOR y = 1 TO 4
 FOR z = 1 TO 3
 parts_palette[x, y, z]= 12
 ENDFOR
 ENDFOR
ENDFOR
27 / 115Issued: 14.12.2011 Version: P2KSS8 Roboterprogrammierung 2 V1 en

28 / 115

Robot Programming 2
6. Close and save the SRC file.

3.4 Structures with KRL

Variables with

several individual

items of infor-

mation

Composite data type: Structure

 Arrays can be used to group together variables of the same data type. In
the real world, however, variables mostly consist of different data types.

 A car, for example, has an engine power or mileage for which the type “In-
teger” is used. An obvious choice for the price is the type “Real”. For the
presence of an air-conditioning system, on the other hand, the data type
“Bool” is more appropriate.

 Together, they all describe a car.

 A structure can be defined with the keyword STRUC.

 A structure is a combination of different data types.

 A structure must first be defined; it can then be used.

Using a structure Availability/definition of a structure

 The simple data types INT, REAL, BOOL and CHAR can be used in a
structure.

 CHAR arrays can be integrated into a structure.

 Known structures, such as a position POS, can also be used in a structure.

 Following definition of the structure, a working variable must be declared
for it.

DEF MY_PROG ()
DECL REAL palette_size[10]
DECL INT counter
INI
; Initialization
FOR counter = 1 TO 10
 palette_size[counter] = counter * 1.5
ENDFOR
...
; Change value individually
palette_size[8] = 13
...
; Comparison of values
IF palette_size[3] > 4.2 THEN
...

Fig. 3-1

STRUC CAR_TYPE INT motor, REAL price, BOOL air_condition

STRUC CAR_TYPE INT motor, REAL price, BOOL air_condition

STRUC CAR_TYPE INT motor, REAL price, BOOL air_condition, CHAR
car_model[15]

STRUC CAR_TYPE INT motor, REAL price, BOOL air_condition, POS
car_pos
Issued: 14.12.2011 Version: P2KSS8 Roboterprogrammierung 2 V1 en

3 Variables and declarations
Initializing/modifying a structure

 The initialization can be carried out using brackets.

 In the case of initialization using brackets, only constants (fixed values)
may be used.

 The value assignment order is not significant.

 Not all structure elements have to be specified in a structure.

 A structure is initialized with a structure element.

 Values that have not been initialized are set to “unknown”.

 The initialization can also be carried out using a point separator.

 In the case of initialization using a point separator, variables can also be
used.

 Structure elements can be modified again at any time individually by
means of a point separator.

Variable life / validity

 Structures created locally are invalid once the END line has been reached.

 Structures that are used in multiple programs must be declared in $CON-
FIG.DAT.

Nomenclature

 Keywords may not be used.

 For greater ease of recognition, user-defined structures should end in
TYPE.

KUKA works a lot with predefined structures that are stored in the system. Ex-
amples can be found for positions and in message programming.

Predefined KUKA structures for positions

 AXIS: STRUC AXIS REAL A1, A2, A3, A4, A5, A6

 E6AXIS: STRUC E6AXIS REAL A1, A2, A3, A4, A5, A6, E1, E2, E3, E4,
E5, E6

 FRAME: STRUC FRAME REAL X, Y, Z, A, B, C

 POS: STRUC POS REAL X, Y, Z, A, B, C INT S,T

 E6POS: STRUC E6POS REAL X, Y, Z, A, B, C, E1, E2, E3, E4, E5, E6
INT S,T

Initialization of a structure with a position

 In the case of initialization using brackets, only constants (fixed values)
may be used.

STRUC CAR_TYPE INT motor, REAL price, BOOL air_condition
DECL CAR_TYPE my_car

my_car = {motor 50, price 14999.95, air_condition = TRUE}

my_car = {price 14999.95, motor 50, air_condition = TRUE}

my_car = {motor 75} ; Price not known

my_car.price = 9999.0

my_car.price = value_car

my_car.price = 12000.0
29 / 115Issued: 14.12.2011 Version: P2KSS8 Roboterprogrammierung 2 V1 en

30 / 115

Robot Programming 2
 The initialization can also be carried out using a point separator.

 In the case of initialization using a point separator, variables can also be
used.

Creation of a

structure

1. Definition of the structure

2. Declaration of the working variable

3. Initialization of the working variable

4. Modification of the values and/or value comparison of the working variable

3.5 The enumeration data type ENUM

Plain text as

variable value

 The enumeration data type consists of a limited number of constants, e.g.
green, yellow and blue.

 The constants are freely selectable names.

 The constants are defined by the programmer.

 An enumeration type must first be defined; it can then be used.

 A working variable, such as crate color, of type COLOR_TYPE, can only
ever take on the value of one constant.

STRUC CAR_TYPE INT motor, REAL price, BOOL air_condition, POS
car_pos
DECL CAR_TYPE my_car
my_car = {price 14999.95, motor 50, air_condition = TRUE, car_pos {X
1000, Y 500, A 0}}

my_car.price = 14999.95
my_car.car_pos = {X 1000, Y 500, A 0}}

my_car.price = 14999.95
my_car.car_pos.X = x_value
my_car.car_pos.Y = 750

STRUC CAR_TYPE INT motor, REAL price, BOOL air_condition

DECL CAR_TYPE my_car

my_car = {motor 50, price 14999.95, air_condition = TRUE}

my_car.price = 5000.0

my_car.price = value_car

IF my_car.price >= 20000.0 THEN
...
ENDIF

Fig. 3-2

ENUM COLOR_TYPE green, blue, red, yellow
Issued: 14.12.2011 Version: P2KSS8 Roboterprogrammierung 2 V1 en

3 Variables and declarations
 The value assignment of a constant is always carried out using the symbol
#.

Using an enumer-

ation data type

Availability/use

 Only known constants can be used.

 An enumeration type can be expanded as often as required.

 An enumeration type can be used on its own.

 An enumeration type can be integrated into a structure.

Variable life / validity

 Enumeration data types created locally are invalid once the END line has
been reached.

 Enumeration data types that are used in multiple programs must be de-
clared in $CONFIG.DAT.

Nomenclature

 Names of enumeration types and their constants should be self-explana-
tory.

 Keywords may not be used.

 For greater ease of recognition, user-defined enumeration types should
end in TYPE.

Creation of an

enumeration data

type

1. Definition of the enumeration variables and constants

2. Declaration of the working variable

3. Initialization of the working variable

4. Value comparison of the working variable

ENUM COLOR_TYPE green, blue, red, yellow

ENUM COLOR_TYPE green, blue, red, yellow
STRUC CAR_TYPE INT motor, REAL price, COLOR_TYPE car_color

ENUM LAND_TYPE de, be, cn, fr, es, br, us, ch

DECL LAND_TYPE my_land

my_land = #be

IF my_land == #es THEN
...
ENDIF
31 / 115Issued: 14.12.2011 Version: P2KSS8 Roboterprogrammierung 2 V1 en

32 / 115

Robot Programming 2
Issued: 14.12.2011 Version: P2KSS8 Roboterprogrammierung 2 V1 en

4 Subprograms and functions
4 Subprograms and functions

4.1 Working with local subprograms

Definition of local

subprograms

 Local subprograms are located after the main program and are identified
by means of DEF Name_subprogram() and END

 An SRC file can consist of up to 255 local subprograms.

 Local subprograms can be called repeatedly.

 Local program names require brackets.

Relationships

when working

with local subpro-

grams

 Once a local subprogram has been executed, the program jumps back to
the next command after the subprogram call.

 The maximum nesting depth for subprograms is 20.

 Point coordinates are saved in the corresponding DAT list and are avail-
able for the entire file.

DEF MY_PROG()
; This is the main program
...
END

DEF LOCAL_PROG1()
; This is local subprogram 1
...
END

DEF LOCAL_PROG2()
; This is local subprogram 2
...
END

DEF LOCAL_PROG3()
; This is local subprogram 3
...
END

DEF MY_PROG()
; This is the main program
...
LOCAL_PROG1()
...
END

DEF LOCAL_PROG1()
...
LOCAL_PROG2()
...
END

DEF LOCAL_PROG2()
...
END
33 / 115Issued: 14.12.2011 Version: P2KSS8 Roboterprogrammierung 2 V1 en

34 / 115

Robot Programming 2
 RETURN can be used to terminate a subprogram and jump back to the pro-
gram module from which it was called.

Procedure for

creating local

subprograms

1. “Expert” user group

2. Display the DEF line.

3. Open the SRC file in the editor.

4. Jump to beneath the END line with the cursor.

5. Assign a new local program header with DEF, program name and brack-
ets.

6. Complete the new subprogram with an END command.

DEF MY_PROG()
; This is the main program
...
PTP P1 Vel=100% PDAT1
...
END

DEF LOCAL_PROG1()
...
; This is the same position as in the main program
PTP P1 Vel=100% PDAT1
...
END

DEFDAT MY_PROG()
...
DECL E6POS XP1={X 100, Z 200, Z 300 ... E6 0.0}
...
ENDDAT

DEF MY_PROG()
; This is the main program
...
LOCAL_PROG1()
...
END

DEF LOCAL_PROG1()
...
IF $IN[12]==FALSE THEN
RETURN ; Jump back to main program
ENDIF
...
END

DEF MY_PROG()
...
END

DEF MY_PROG()
...
END
DEF PICK_PART()

DEF MY_PROG()
...
END
DEF PICK_PART()
END
Issued: 14.12.2011 Version: P2KSS8 Roboterprogrammierung 2 V1 en

4 Subprograms and functions
7. When Return is pressed, a horizontal bar is inserted between the main
program and the subprogram.

8. The main program and the subprogram can now be edited further.

9. Close and save the program.

4.2 Working with global subprograms

Definition of

global subpro-

grams

 Global subprograms have their own SRC and DAT files.

 Global subprograms can be called repeatedly.

Relationships

when working

with local subpro-

grams

 Once a local subprogram has been executed, the program jumps back to
the next command after the subprogram call.

 The maximum nesting depth for subprograms is 20.

 Point coordinates are saved in the corresponding DAT list and are only
available for the corresponding program.

DEF MY_PROG()
...
END

DEF PICK_PART()
END

DEF GLOBAL1()
...
END

DEF GLOBAL2()
...
END

DEF GLOBAL1()
...
GLOBAL2()
...
END

DEF GLOBAL2()
...
GLOBAL3()
...
END

DEF GLOBAL3()
...
END
35 / 115Issued: 14.12.2011 Version: P2KSS8 Roboterprogrammierung 2 V1 en

36 / 115

Robot Programming 2
Different coordinates for P1 in Global2 ()

 RETURN can be used to terminate a subprogram and jump back to the
program module from which it was called.

Procedure for

programming

with global

subprograms

1. “Expert” user group

2. Create a new program.

3. Create the second new program.

4. Open the SRC file of the program MY_PROG in the editor.

5. Program the subprogram call using program name and brackets.

DEF GLOBAL1()
...
PTP P1 Vel=100% PDAT1
END

DEFDAT GLOBAL1()
DECL E6POS XP1={X 100, Z 200, Z 300 ... E6 0.0}
ENDDAT

DEF GLOBAL2()
...
PTP P1 Vel=100% PDAT1
END

DEFDAT GLOBAL2()
DECL E6POS XP1={X 800, Z 775, Z 999 ... E6 0.0}
ENDDAT

DEF GLOBAL1()
...
GLOBAL2()
...
END

DEF GLOBAL2()
...
IF $IN[12]==FALSE THEN
RETURN ; Jump back to GLOBAL1()
ENDIF
...
END

DEF MY_PROG()
...
END

DEF PICK_PART()
...
END

DEF MY_PROG()
...
PICK_PART()
...
END
Issued: 14.12.2011 Version: P2KSS8 Roboterprogrammierung 2 V1 en

4 Subprograms and functions
6. Close and save the program.

4.3 Transferring parameters to subprograms

Description of

parameter

transfer

 Syntax

 There are two possibilities for transferring parameters to subprograms:

 as IN parameters

 as OUT parameters

 Parameter transfer can be carried out in local or global subprograms.

Principle of

parameter

transfer

 Parameter transfer as IN parameter (Call by value):

 The value of the variable remains unchanged in the main program, i.e.
it continues to be processed with the old value from the main program.

 The subprogram can only read the value of the variable, and not write
it.

 Parameter transfer as OUT parameter (Call by reference):

 The value of the variable is changed in the main program, i.e. the value
is taken from the subprogram.

 The subprogram reads the value, modifies it and writes the new value
back.

 Parameter transfer to local subprograms

 Parameter transfer to global subprograms

DEF MY_PROG()
...
CALC (K, L)
...
END

DEF CALC(R:IN, S:OUT)
...
END

DEF MY_PROG()
DECL REAL r,s
...
CALC_1(r)
...
CALC_2(s)
...
END

DEF CALC_1(num1:IN)
; The value "r" is only transferred to num1 for reading
DECL REAL num1
...
END

DEF CALC_2(num2:OUT)
; The value "s" is transferred to num2, altered and written back
DECL REAL num2
...
END
37 / 115Issued: 14.12.2011 Version: P2KSS8 Roboterprogrammierung 2 V1 en

38 / 115

Robot Programming 2
 Value transfer to the same data types is always possible.

 Value transfer to different data types:

 Transfer of multiple parameters

DEF MY_PROG()
DECL REAL r, s
...
CALC_1(r)
...
CALC_2(s)
...
END

DEF CALC_1(num1:IN)
; The value "r" is only transferred to num1 for reading
DECL REAL num1
...
END

DEF CALC_2(num2:OUT)
; The value "s" is transferred to num2, altered and written back
DECL REAL num2
...
END

DEF MY_PROG()
DECL DATATYPE1 value
CALC(value)
END

DEF CALC(num:IN)
DECL DATATYPE2 num
...
END

DATATYPE 1 DATATYPE 2 Comments

BOOL INT, REAL,
CHAR

ERROR (...parameters not compatible)

INT REAL INT value is used as REAL value.

INT CHAR Character from the ASCII table is used.

CHAR INT INT value from the ASCII table is used.

CHAR REAL REAL value from the ASCII table is
used.

REAL INT REAL values are rounded.

REAL CHAR REAL values are rounded; character
from the ASCII table is used.
Issued: 14.12.2011 Version: P2KSS8 Roboterprogrammierung 2 V1 en

4 Subprograms and functions
 Parameter transfer with arrays

 Arrays can only be transferred to a new array in their entirety.

 Arrays may only be transferred with parameter OUT (Call by reference)

 Individual array elements can also be transferred.

Procedure for

parameter

transfer

Preliminary considerations

1. Define which parameters are required in the subprogram.

DEF MY_PROG()
DECL REAL w
DECL INT a, b
...
CALC(w, b, a)
...
CALC(w, 30, a)
...
END

DEF CALC(ww:OUT, bb:IN, aa:OUT)
;1.) w <-> ww, b -> bb, a <-> aa
;2.) w <-> ww, 30 -> bb, a <-> aa
DECL REAL ww
DECL INT aa, bb
...
END

It is also possible to transfer no values if calculation is carried out in
the subprogram without these values. Example: CALC(w,, a)

DEF MY_PROG()
DECL CHAR name[10]
...
name="PETER"
RECHNE(name[])
...
END

DEF RECHNE(my_name[]:OUT)
; Only ever create array in subprogram without array size
; The array size adapts itself to the output array
DECL CHAR my_name[]
...
END

Transfer of complete arrays: ARRAY_1D[] (1-Dimensional),
ARRAY_2D[,] (2-Dimensional), ARRAY_3D[,,] (3-Dimensio-
nal)

DEF MY_PROG()
DECL CHAR name[10]
...
name="PETER"
CALC(name[1])
...
END

DEF RECHNE(symbol:IN)
; Only one character is transferred
DECL CHAR symbol
...
END

When transferring individual array elements, the destination can only
be a variable and not an array. Here, only the letter “P” is transferred
to the subprogram.
39 / 115Issued: 14.12.2011 Version: P2KSS8 Roboterprogrammierung 2 V1 en

40 / 115

Robot Programming 2
2. Determine the type of parameter transfer (IN or OUT parameter).

3. Define the output and target data types (ideally the same data type).

4. Determine the order for parameter transfer.

1. Load the main program into the editor.

2. In the main program, declare, initialize and, if necessary, manipulate the
variables.

3. Create a subprogram call with a variable call.

4. Close and save the main program.

5. Load the subprogram into the editor.

6. Complete the DEF line with variables and IN/OUT.

7. In the subprogram, declare, initialize and, if necessary, manipulate the
variables.

8. Close and save the subprogram.

Complete example:

4.4 Programming functions

Definition of

functions with

KRL

 A function is a subprogram that returns a certain value to the main pro-
gram.

 Frequently, certain input values are required in order to be able to calcu-
late the return value.

 The data type to be written back to the main program is determined in the
function header.

 The value to be transferred is transferred using the RE-
TURN(return_value) statement.

 There are local and global functions.

 Syntax of a function

Note: The first parameter sent is written to the first parameter in the
subprogram, the second to the second parameter in the subprogram,
etc.

DEF MY_PROG()
DECL REAL w
DECL INT a, Anzahl
w = 1.5
a = 3
b = 5
CALC(w, b, a)
; Current values
; w = 3.8
; a = 13
; b = 5
END

DEF CALC(ww:OUT, bb:IN, aa:OUT)
; w <-> ww, b -> bb, a <-> aa

DECL REAL ww
DECL INT aa, bb
ww = ww + 2.3 ; ww = 1.5 + 2.3 =3.8 ->w
bb = bb + 5 ; bb = 5 + 5 = 10
aa = bb + aa ; aa = 10 + 3= 13 -> a
END

DEFFCT DATATYPE NAME_FUNCTION()
...
RETURN(return_value)
ENDFCT
Issued: 14.12.2011 Version: P2KSS8 Roboterprogrammierung 2 V1 en

4 Subprograms and functions
Principle of

functions with

KRL

 The program name is also the variable name of a certain data type.

 Call of a global function

 Call of a local function

 Use of IN / OUT parameters for value transfer

 Value transfer as IN parameters

 Value transfer as OUT parameters

DEF MY_PROG()
DECL REAL result, value
...
result = CALC(value)
...
END

DEFFCT REAL CALC(num:IN)
DECL REAL return_value, num
...
RETURN(return_value)
ENDFCT

The statement RETURN(return_value) must come before the
statement ENDFCT.

DEF MY_PROG()
DECL REAL result, value
...
result = CALC(value)
...
END

DEFFCT REAL CALC(num:IN)
DECL REAL return_value, num
...
RETURN(return_value)
ENDFCT

DEF MY_PROG()
DECL REAL result, value
value = 2.0
result = CALC(value)
; Value = 2.0
; Result = 1000.0
END

DEFFCT REAL CALC(num:IN)
DECL REAL return_value, num
num = num + 8.0
return_value = num * 100.0
RETURN(return_value)
ENDFCT

The transfer value value is not changed.
41 / 115Issued: 14.12.2011 Version: P2KSS8 Roboterprogrammierung 2 V1 en

42 / 115

Robot Programming 2
Procedure for

programming

functions

1. Define the value the function is to supply (return data type).

2. Define which parameters are required in the function (transfer data types).

3. Determine the type of parameter transfer (IN or OUT parameter).

4. Determine whether a local or global function is required.

5. Load the main program into the editor.

6. In the main program, declare, initialize and, if necessary, manipulate the
variables.

7. Create a function call.

8. Close and save the main program.

9. Create a function (global or local).

10. Load the function into the editor.

11. Complete the DEFFCT line with data type, variables and IN/OUT.

12. In the function, declare, initialize and manipulate the variables.

13. Create the RETURN(return_value) line.

14. Close and save the function.

4.5 Working with standard KUKA functions

List of standard

KUKA functions

Mathematical functions:

Functions for string variables:

DEF MY_PROG()
DECL REAL result, value
value = 2.0
result = CALC(value)
; Value = 10.0
; Result = 1000.0
END

DEFFCT REAL CALC(num:OUT)
DECL REAL return_value, num
num = num + 8.0
return_value = num * 100.0
RETURN(return_value)
ENDFCT

The transfer value value is changed and returned.

Description KRL function

Absolute value ABS(x)

Square root SQRT(x)

Sine SIN(x)

Cosine COS(x)

Tangent TAN(x)

Arc cosine ACOS(x)

Arc tangent ATAN2(y,x)

Description KRL function

Determination of the string length in the declara-
tion

StrDeclLen(x)

String variable length after initialization StrLen(x)
Issued: 14.12.2011 Version: P2KSS8 Roboterprogrammierung 2 V1 en

4 Subprograms and functions
Functions for message generation:

Principle for the

use of standard

KUKA functions

Each standard function is called with transfer parameters:

 With fixed values

 Variables of a simple data type

 Variables consisting of arrays

 Variables consisting of enumeration data types

 Variables consisting of structures

 With several different variables

Every function requires a suitable variable in which the result of the function
can be stored.

 Mathematical functions return a REAL value.

 String functions return BOOL or INT values.

 Message functions return BOOL or INT values.

Deleting the contents of a string variable StrClear(x)

Extending a string variable StrAdd(x,y)

Comparing the contents of a string variable StrComp(x,y,z)

Copying a string variable StrCopy(x,y)

Description KRL function

Generate message Set_KrlMsg(a,b,c,d)

Generate dialog Set_KrlDLg(a,b,c,d)

Check message Exists_KrlMsg(a)

Check dialog Exists_KrlDlg(a,b)

Delete message Clear_KrlMsg(a)

Read message buffer Get_MsgBuffer(a)

Description KRL function

result = SQRT(16)

result = SQRT(x)

result = StrClear(Name[])

result = Set_KrlMsg(#QUIT, message_parameter, parameter[], option)

Message_parameter, parameter[1...3] and option are predefined
KUKA structures.

; Deletion of a string
result = StrClear(Name[])

; Deletion of a message (BOOL: deleted?)
result = Clear_KrlMsg(Rueckwert)
43 / 115Issued: 14.12.2011 Version: P2KSS8 Roboterprogrammierung 2 V1 en

44 / 115

Robot Programming 2
Issued: 14.12.2011 Version: P2KSS8 Roboterprogrammierung 2 V1 en

5 Motion programming with KRL
5 Motion programming with KRL

5.1 Programming motions with KRL

Definition of a

motion

Specifications required for a motion:

 Motion type – PTP, LIN, CIRC

 End position and auxiliary position if applicable

 Exact positioning or approximate positioning

 Approximation distance if applicable

 Velocity – PTP (%) and CP motion (m/s)

 Acceleration

 Tool – TCP and load

 Working base

 Robot-guided or external tool

 Orientation control with CP motions

 Approximation distance if applicable

 Circular angle in the case of circular motion CIRC

Principle of

motion

programming

Motion type PTP

 PTP End point <C_PTP <CP approximation>>

 The robot moves to a position in the DAT file (the position has been taught
beforehand by means of an inline form) and approximates this point P3.

 The robot moves to an entered position.

 Axis-specific (AXIS or E6AXIS)

 Position in space (with currently active tool and base)

 The robot only moves if one or more aggregates have been entered.

Motion type LIN

 LIN End point <CP approximation>

 The robot moves to a calculated position and approximates this point
ABLAGE[4]

Motion type CIRC

 CIRC Auxiliary point, End point<, CA Circular angle> <Approximate position-
ing>

 The robot moves to the positions in the DAT file (the positions have been
taught beforehand by means of inline forms) and executes a circular angle
of 190°.

 Circular angle CA

PTP XP3 C_PTP

PTP {A1 0, A2 -80, A3 75, A4 30, A5 30, A6 110}

PTP {X 100, Y -50, Z 1500, A 0, B 0, C 90, S 3, T3 35}

PTP {A1 30} ; Only A1 is moved to 30°

PTP {X 200, A 30} ; Only in X to 200mm and A to 30°

LIN ABLAGE[4] C_DIS

CIRC XP3, XP4, CA 190
45 / 115Issued: 14.12.2011 Version: P2KSS8 Roboterprogrammierung 2 V1 en

46 / 115

Robot Programming 2
 Positive circular angle (CA>0): the circular path is executed in the
programmed direction: Start point - Auxiliary point - End point.

 Negative circular angle (CA<0): the circular path is executed in the
opposite direction from the programmed direction: Start point - End
point - Auxiliary point.

Function of the

motion param-

eters

Default settings for motion programming

 Existing settings can be applied:

 from execution of the INI line

 from the last inline form

 from the last settings of the relevant system variables

 Modification or initialization of the relevant system variables

The orientation taught at the programmed end point is accepted at the
actual end point.

Fig. 5-1: Circular angle CA = +290°

Fig. 5-2: Circular angle CA = -290°
Issued: 14.12.2011 Version: P2KSS8 Roboterprogrammierung 2 V1 en

5 Motion programming with KRL
System variables of the motion parameters

 Tool: $TOOL and $LOAD

 Activation of the calibrated TCP

 Activation of the corresponding load data

 Reference base/working base: $BASE

 Activation of the calibrated base

 Robot-guided or external tool: $IPO_MODE

 Robot-guided tool

 External tool

 Velocity:

 for PTP motion

 for CP motions LIN or CIRC

 Acceleration

 for PTP motion

 for CP motions LIN or CIRC

 Approximation distance

 only for PTP motion: C_PTP

 for CP motions LIN, CIRC and for PTP: C_DIS

The distance from the end point must be less than the value
$APO.CDIS

$TOOL = tool_data[x] ; x = 1...16

$LOAD = load_data[x] ; x = 1...16

$BASE = base_data[x] ; x = 1...16

$IPO_MODE = #BASE

$IPO_MODE = #TCP

$VEL_AXIS[x] ; x=1...8 for each axis

$VEL.CP = 2.0 ; [m/s] path velocity

$VEL.ORI1 = 150 ; [°/s] swivel velocity

$VEL.ORI2 = 200 ; [°/s] rotational velocity

The working direction of the tool is the X axis in most cases. The ro-
tational velocity is the rotation about the X axis with angle C. Swivel
velocity is the velocity of the swivel motion about the other two angles

(A and B).

$ACC_AXIS[x] ; x=1...8 for each axis

$ACC.CP = 2.0 ; [m/s] path acceleration

$ACC.ORI1 = 150 ; [°/s] swivel acceleration

$ACC.ORI2 = 200 ; [°/s] rotational acceleration

PTP XP3 C_PTP
$APO_CPTP = 50 ; Approximation magnitude in [%] for C_PTP

PTP XP3 C_DIS
LIN XP4 C_DIS
$APO.CDIS = 250.0 ; [mm] distance
47 / 115Issued: 14.12.2011 Version: P2KSS8 Roboterprogrammierung 2 V1 en

48 / 115

Robot Programming 2
 for CP motions LIN, CIRC: C_ORI

The dominant orientation angle must be less than the value $APO.CO-
RI

 for CP motions LIN, CIRC: C_VEL

The velocity in the deceleration phase to the end point must be less
than the value $APO.CVEL

 Orientation control: only for LIN and CIRC

 for LIN and CIRC: $ORI_TYPE

The orientation remains constant during the CP motion. The pro-
grammed orientation is disregarded for the end point

During the CP motion the orientation changes continuously to the
orientation of the end point.

LIN XP4 C_ORI
$APO.CORI = 50.0 ; [°] angle

LIN XP4 C_VEL
$APO.CVEL = 75.0 ; [%] percent

$ORI_TYPE = #CONSTANT

Fig. 5-3: Orientation control - Constant

$ORI_TYPE = #VAR

Fig. 5-4: Standard or Wrist PTP

$ORI_TYPE = #JOINT
Issued: 14.12.2011 Version: P2KSS8 Roboterprogrammierung 2 V1 en

5 Motion programming with KRL
During the path motion, the orientation of the tool changes contin-
uously from the start position to the end position. This is done by
linear transformation of the wrist axis angles. The problem of the
wrist singularity can be avoided using this option as there is no ori-
entation control by rotating and pivoting the tool direction.

 only for CIRC: $CIRC_TYPE

Path-related orientation control during the circular motion

Space-related orientation control during the circular motion

Procedure for

programming

motions with KRL

1. At Expert level, load the program into the editor by pressing the Open key.

2. Check the default settings for motion programming and apply them or re-
initialize:

The variable $CIRC_TYPE is meaningless in the case of a linear
transformation of the wrist axis angles with $ORI_TYPE = #JOINT.

$CIRC_TYPE = #PATH

Fig. 5-5: Constant orientation, path-related

$CIRC_TYPE = #BASE

Fig. 5-6: Constant orientation, base-related
49 / 115Issued: 14.12.2011 Version: P2KSS8 Roboterprogrammierung 2 V1 en

50 / 115

Robot Programming 2
 Tool ($TOOL and $LOAD)

 Base settings ($BASE)

 Robot-guided or external tool ($IPO_MODE)

 Velocity

 Acceleration

 Approximation distance if applicable

 Orientation control if applicable

3. Create motion command consisting of:

 Motion type (PTP, LIN, CIRC)

 End point (for CIRC: auxiliary point also)

 for CIRC: circular angle (CA) if applicable

 Activate approximate positioning (C_PTP, C_DIS, C_ORI, C_VEL)

4. For new motion, go back to step 3.

5. Close editor and save changes.

5.2 Programming relative motions with KRL

Description Absolute motion

 Relative motion

PTP {A3 45}

Fig. 5-7: Absolute motion of axis A3
Issued: 14.12.2011 Version: P2KSS8 Roboterprogrammierung 2 V1 en

5 Motion programming with KRL
Relative motions are available for:

 PTP motion

 LIN motion

 CIRC motion

Principle of a

relative motion

Relative motion PTP_REL

 PTP_REL End point <C_PTP <CP approximation>>

 Axis 2 is moved 30 degrees in a negative direction. None of the other axes
moves.

 The robot moves 100 mm in the X direction and 200 mm in the negative Z
direction from the current position. Y, A, B, C and S remain constant. T is
calculated in relation to the shortest path.

Relative motion LIN_REL

 LIN_REL End point <CP approximation> <#BASE|#TOOL>

 The TCP moves 100 mm in the X direction and 200 mm in the negative Z
direction from the current position in the BASE coordinate system. Y, A, B,
C and S remain constant. T is determined by the motion.

PTP_REL {A3 45}

Fig. 5-8: Relative motion of axis A3

A REL statement always refers to the current position of the robot. For
this reason, if a REL motion is interrupted, the robot executes the en-
tire REL motion again, starting from the position at which it was inter-

rupted.

PTP_REL {A2 -30}

PTP_REL {X 100,Z -200}

LIN_REL {X 100,Z -200} ; #BASE is default setting
51 / 115Issued: 14.12.2011 Version: P2KSS8 Roboterprogrammierung 2 V1 en

52 / 115

Robot Programming 2
 The TCP moves 100 mm from the current position in the negative X direc-
tion in the TOOL coordinate system. Y, Z, A, B, C and S remain constant.
T is determined by the motion.

This example is suitable for moving the tool backwards against the tool di-
rection. The precondition is that the tool direction has been calibrated
along the X axis.

Relative motion CIRC_REL

 CIRC_REL Auxiliary point, End point<, CA Circular angle> <CP approxima-
tion>

 The end point of the circular motion is defined by a circular angle of 500°.
The end point is approximated.

Procedure for

programming

motions with KRL

1. At Expert level, load the program into the editor by pressing the Open key.

2. Check the default settings for motion programming and apply them or re-
initialize:

 Tool ($TOOL and $LOAD)

 Base settings ($BASE)

 Robot-guided or external tool ($IPO_MODE)

 Velocity

 Acceleration

 Approximation distance if applicable

 Orientation control if applicable

3. Create motion command consisting of:

 Motion type (PTP_REL, LIN_REL, CIRC_REL)

 End point (for CIRC: auxiliary point also)

 for LIN: select a reference system (#BASE or #TOOL)

 for CIRC: circular angle (CA) if applicable

 Activate approximate positioning (C_PTP, C_DIS, C_ORI, C_VEL)

4. For new motion, go back to step 3.

5. Close editor and save changes.

5.3 Calculating or manipulating robot positions

Description Robot end positions

 are stored in the following structures:

 AXIS / E6AXIS - axis angle (A1...A6 and possibly E1...E6)

 POS / E6POS - position (X, Y, Z), orientation (A, B, C), status and turn
(S, T)

 FRAME - only position (X, Y, Z), orientation (A, B, C)

 can manipulate existing positions from the DAT file.

 Individual aggregates of existing positions can be modified using a point
separator.

Principle

LIN_REL {X -100} #TOOL

CIRC_REL {X 100,Y 30,Z -20},{Y 50},CA 500 C_VEL

For the calculation, it is important to observe the correct
TOOL and BASE settings and then activate them during

motion programming. If this is not observed, unexpected motions and colli-
sions may occur.
Issued: 14.12.2011 Version: P2KSS8 Roboterprogrammierung 2 V1 en

5 Motion programming with KRL
Important system variables

 $POS_ACT: Current robot position. The variable (E6POS) defines the set-
point position of the TCP in relation to the BASE coordinate system.

 $AXIS_ACT: Current axis-specific robot position (setpoint). The variable
(E6AXIS) contains the current axis angles or axis position.

Calculating the absolute end position

 Modify the position from the DAT file once

 Modify the position from the DAT file every time it is executed

 Position is applied and saved in a variable

Procedure 1. At Expert level, load the program into the editor by pressing the Open key.

2. Calculate/manipulate position. If required, temporarily save the newly cal-
culated values to a new variable.

3. Check the default settings for motion programming and apply them or re-
initialize:

 Tool ($TOOL and $LOAD)

 Base settings ($BASE)

 Robot-guided or external tool ($IPO_MODE)

 Velocity

 Acceleration

 Approximation distance if applicable

 Orientation control if applicable

4. Create motion command consisting of:

 Motion type (PTP, LIN, CIRC)

 End point (for CIRC: auxiliary point also)

 for CIRC: circular angle (CA) if applicable

 Activate approximate positioning (C_PTP, C_DIS, C_ORI, C_VEL)

5. For new motion, go back to step 3.

6. Close editor and save changes.

5.4 Deliberate modification of Status and Turn bits

Description The position (X, Y, Z) and orientation (A, B, C) values of the TCP are not
sufficient to define the robot position unambiguously, as different axis po-
sitions are possible for the same TCP. Status and Turn serve to define an
unambiguous position that can be achieved with different axis positions.

XP1.x = 450 ; New X value 450 mm
XP1.z = 30*distance ; New Z value is calculated
PTP XP1

; X value is offset by 450 mm each time
XP2.x = XP2.x + 450
PTP XP2

myposition = XP3
myposition.x = myposition.x + 100 ; 100 mm is added to the X value
myposition.z = 10*distance ; Calculate new Z value
myposition.t = 35 ; Set Turn value
PTP XP3 ; Position was not changed
PTP myposition ; Calculated position
53 / 115Issued: 14.12.2011 Version: P2KSS8 Roboterprogrammierung 2 V1 en

54 / 115

Robot Programming 2
 Status (S) and Turn (T) are integral parts of the data types POS and
E6POS:

 The robot controller only takes the programmed Status and Turn values
into consideration for PTP motions. They are ignored for CP motions.

 The first motion instruction in a KRL program must therefore be one of the
following instructions so that an unambiguous starting position is defined
for the robot:

 A complete PTP instruction of type POS or E6POS

 Or a complete PTP instruction of type AXIS or E6AXIS

“Complete” means that all components of the end point must be
specified. The default HOME position is always a complete PTP in-
struction.

 Status and Turn can be omitted in the subsequent instructions:

 The robot controller retains the previous Status value.

 The Turn value is determined by the path in CP motions.

 In the case of PTP motions, the robot controller selects the Turn value
that results in the shortest possible path (i.e. no software limit switches
violated and also closest to the start angle).

Function STATUS

 The Status specification prevents ambiguous axis positions.

 Bit 0: specifies the position of the intersection of the wrist axes (A4, A5,
A6).

Fig. 5-9: Example: Same TCP position, different axis position

STRUC POS REAL X, Y, Z, A, B, C, INT S, T

STRUC E6POS REAL X, Y, Z, A, B, C, E1, E2, E3, E4, E5, E6, INT S, T
Issued: 14.12.2011 Version: P2KSS8 Roboterprogrammierung 2 V1 en

5 Motion programming with KRL
 Bit 1: specifies the position of axis 3. The angle at which the value of bit 1
changes depends on the robot type.

For robots whose axes 3 and 4 intersect, the following applies:

For robots with an offset between axis 3 and axis 4, the angle at which the
value of bit 1 changes depends on the size of this offset.

Fig. 5-10: Example: The intersection of the wrist axes (red dot) is in the
basic area.

Position Value

A3 ≥ 0° Bit 1 = 1

A3 < 0° Bit 1 = 0
55 / 115Issued: 14.12.2011 Version: P2KSS8 Roboterprogrammierung 2 V1 en

56 / 115

Robot Programming 2
 Bit 2: specifies the position of axis 5.

 Bit 3 is not used and is always 0.

 Bit 4: specifies whether or not the point was taught using an absolutely ac-
curate robot.

Depending on the value of the bit, the point can be executed by both ab-
solutely accurate robots and non-absolutely-accurate robots. Bit 4 is for in-
formation purposes only and has no influence on how the robot calculates
the point. This means, therefore, that when a robot is programmed offline,
bit 4 can be ignored.

TURN

 The Turn specification makes it possible to move axes through angles
greater than +180° or less than -180° without the need for special motion
strategies (e.g. auxiliary points). With rotational axes, the individual bits
determine the sign before the axis value in the following way:

Bit = 0: angle ≥ 0°

Bit = 1: angle < 0°

 Overview of all axes

 Example

T 19 corresponds to T 'B010011'. This means:

Fig. 5-11: Offset between A3 and A4 – example: KR 30

Position Value

A5 > 0 Bit 2 = 1

A5 ≤ 0 Bit 2 = 0

Description Value

The point was not taught with an absolutely accurate
robot.

Bit 4 = 0

The point was taught with an absolutely accurate robot. Bit 4 = 1

Value Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0 A6 ≥ 0° A5 ≥ 0° A4 ≥ 0° A3 ≥ 0° A2 ≥ 0° A1 ≥ 0°

1 A6 < 0° A5 < 0° A4 < 0° A3 < 0° A2 < 0° A1 < 0°

DECL POS XP1 = {X 900, Y 0, Z 800, A 0, B 0, C 0, S 6, T 19}

Axis Angle Binary

A 1 negative 1

A 2 negative 2

A 3 positive 4
Issued: 14.12.2011 Version: P2KSS8 Roboterprogrammierung 2 V1 en

5 Motion programming with KRL
Procedure 1. At Expert level, load the program into the editor by pressing the Open key.

2. Manipulate Status and Turn. If required, temporarily save the newly cal-
culated values to a new variable.

3. Check the default settings for motion programming and apply them or re-
initialize:

 Tool ($TOOL and $LOAD)

 Base settings ($BASE)

 Robot-guided or external tool ($IPO_MODE)

 Velocity

 Acceleration

 Approximation distance if applicable

 Orientation control if applicable

4. Create motion command consisting of:

 Motion type (PTP, LIN, CIRC)

 End point (for CIRC: auxiliary point also)

 for CIRC: circular angle (CA) if applicable

 Activate approximate positioning (C_PTP, C_DIS, C_ORI, C_VEL)

5. For new motion, go back to step 3.

6. Close editor and save changes.

A 4 positive 8

A 5 negative 16

A 6 positive 32

Axis Angle Binary
57 / 115Issued: 14.12.2011 Version: P2KSS8 Roboterprogrammierung 2 V1 en

58 / 115

Robot Programming 2
Issued: 14.12.2011 Version: P2KSS8 Roboterprogrammierung 2 V1 en

6 Working with system variables
6 Working with system variables

6.1 Cycle time measurement by means of timers

Description of

cycle time

measurement

with KUKA

system timers

 $TIMER[1]

 $TIMER[2]

 ...

 $TIMER[32]

The system variables $TIMER[No] serve the purpose of measuring time se-
quences.

Starting and stopping a timer by means of KRL

 STARTING: $TIMER_STOP[No] = FALSE

 STOPPING: $TIMER_STOP[No] = TRUE

Principle of cycle

time

measurement

Presetting a timer

 The factory setting of a timer is 0 ms.

 The timer has its current value.

 A timer can be set forwards or backwards to any freely selected value.

 Resetting and starting a timer

Fig. 6-1

The values of the timer $TIMER[No] are entered/displayed in millisec-
onds ms.

The timer can also be preset, started and stopped manually in the dis-
play window.

;Timer 5 is preset to 0 ms
$TIMER[5] = 0

; Timer 12 is set to 1.5 seconds
$TIMER[12] = 1500

; Timer 4 is reset to -8 seconds
$TIMER[4] = -8000
59 / 115Issued: 14.12.2011 Version: P2KSS8 Roboterprogrammierung 2 V1 en

60 / 115

Robot Programming 2
 Stopping a timer and subsequent comparison

Procedure for

cycle time

measurement

1. Select a “free” timer from the 32 timers available.

2. Preset/reset the timer.

3. Start the timer, observing the advance run pointer.

4. Stop the timer, observing the advance run pointer.

5. Save the current cycle time if required, or preset the timer again.

; Timer 7 reset to 0 ms
$TIMER[7] = 0
; Start timer 7
$TIMER_STOP[7] = FALSE

; Timer 7 running
...
; Stop timer 7
$TIMER_STOP[7] = TRUE

; Executed if 10 seconds or greater ...
IF $TIMER[7] >= 10000 THEN
...

A timer is always started and stopped by means of the advance run
pointer.

DEF MY_TIME()
...
INI
$TIMER[1] = 0 ; Reset TIMER 1
PTP HOME Vel=100% DEFAULT

WAIT SEC 0 ; Trigger advance run stop
$TIMER_STOP[1]=FALSE ; Start cycle time measurement

PTP XP1
PTP XP2
LIN XP3
...
PTP X50
PTP HOME Vel=100% DEFAULT

WAIT SEC 0 ; Trigger advance run stop
$TIMER_STOP[1]=TRUE ; Stop cycle time measurement

; Current cycle time is buffered in timer 12
$TIMER[12] = $TIMER[1]
END
Issued: 14.12.2011 Version: P2KSS8 Roboterprogrammierung 2 V1 en

7 Using program execution control functions
7 Using program execution control functions

7.1 Programming conditional statements or branches

Description of

conditional state-

ments and

branches with

KRL

 A branch is used to divide a program into several paths.

 The IF statement checks a condition that can be TRUE or FALSE. Ac-
cordingly, statements are either executed or not executed.

 Branch

Using branches

Branch

 with alternative branch

 without alternative branch (conditional statement)

Examples of

branches

Branch without alternative branch

IF THEN
...
ELSE
...
ENDIF

Fig. 7-1: Program flowchart: IF branch

IF condition THEN
Anweisung
ELSE
;Statement
ENDIF

IF condition THEN
;Statement
ENDIF
61 / 115Issued: 14.12.2011 Version: P2KSS8 Roboterprogrammierung 2 V1 en

62 / 115

Robot Programming 2
Branch with alternative branch

Branch with complex execution conditions

Branch with Boolean expressions

7.2 Programming a switch statement

Description of the

switch statement

with KRL

 A “switch case” statement can be used to differentiate between numerous
different cases and execute different actions for each case.

 The switch statement is used to distinguish between different cases.

DEF MY_PROG()
DECL INT error_nr
...
INI
error_nr = 4
...
; P21 is only addressed with error_nr 5
IF error_nr == 5 THEN
PTP P21 Vel=100% PDAT21
ENDIF
...
END

DEF MY_PROG()
DECL INT error_nr
...
INI
error_nr = 4
...
; P21 is only addressed with error_nr 5, otherwise P22
IF error_nr == 5 THEN
PTP P21 Vel=100% PDAT21
ELSE
PTP P22 Vel=100% PDAT22
ENDIF
...
END

DEF MY_PROG()
DECL INT error_nr
...
INI
error_nr = 4
...
; P21 is only addressed with error_nr 1 or 10 or greater than 99
IF ((error_nr == 1) OR (error_nr == 10) OR (error_nr > 99)) THEN
PTP P21 Vel=100% PDAT21
ENDIF
...
END

DEF MY_PROG()
DECL BOOL no_error
...
INI
no_error = TRUE
...
; P21 is only addressed if there is no error (no_error)
IF no_error == TRUE THEN
PTP P21 Vel=100% PDAT21
ENDIF
...
END

The expression IF no_error==TRUE THEN can also be reduced to
IF no_error THEN. Omission always signifies comparison with
TRUE.
Issued: 14.12.2011 Version: P2KSS8 Roboterprogrammierung 2 V1 en

7 Using program execution control functions
 A transferred variable in the switch statement is used as the switch and
jumps to the predefined case statements in the statement block.

 If the switch statement finds no predefined case, the default section
is executed.

 Switch statement

Using switch

statements

Switch statement

 A switch statement can be used with the following data types:

 INT (integer)

 CHAR (character)

 ENUM (enumeration data type)

SWITCH ...
CASE ...
...
CASE ...
...
CASE
...
...
DEFAULT
...
ENDSWITCH

Fig. 7-2: Program flowchart: SWITCH – CASE statements

SWITCH number
CASE 1
...

SWITCH symbol
CASE "X"
...
63 / 115Issued: 14.12.2011 Version: P2KSS8 Roboterprogrammierung 2 V1 en

64 / 115

Robot Programming 2
 Only with defined switch statements

 Only with defined switch statements and an alternative case

 With several solutions in a switch statement

Examples of

switch state-

ments

Switch statement without alternative case

Switch statement without alternative case

SWITCH mode_op
CASE #T1
...

SWITCH number
CASE 1
...
CASE 2
...
CASE 3
...
ENDSWITCH

If number is not equal to 1 or 2 or 3, the program jumps directly to
ENDSWITCH without a statement being executed.

SWITCH number
CASE 1
...
CASE 2
...
CASE 3
...
DEFAULT
...
ENDSWITCH

If number is not equal to 1 or 2 or 3, the program jumps to the DE-
FAULT case in order to execute the statement(s) contained therein.

SWITCH number
CASE 1,2
...
CASE 3,4,5
...
CASE 6
...
DEFAULT
...
ENDSWITCH

DEF MY_PROG()
DECL INT error_nr
...
INI
error_nr = 4
...
; Motion is possible in a defined case only
SWITCH error_nr
CASE 1
PTP P21 Vel=100% PDAT21
CASE 2
PTP P22 Vel=100% PDAT22
CASE 3
PTP P23 Vel=100% PDAT23
CASE 4
PTP P24 Vel=100% PDAT24
ENDSWITCH
...
Issued: 14.12.2011 Version: P2KSS8 Roboterprogrammierung 2 V1 en

7 Using program execution control functions
Switch statement with an enumeration data type

7.3 Programming loops

General infor-

mation regarding

loops

 Loops are used for repeating program statements.

 It is not permissible to jump into a loop from outside.

 Loops can be nested.

 There are various different types of loop:

 Endless loop

 Counting loop

 Conditional loops

 Rejecting loop

 Non-rejecting loop

7.3.1 Programming an endless loop

Description of an

endless loop

 The endless loop is a loop that is executed again every time execution has
been completed.

 Execution can be canceled by external influences.

 Syntax

DEF MY_PROG()
DECL INT error_nr
...
INI
error_nr = 99
...
; In a non-defined case, robot moves to HOME
SWITCH error_nr
CASE 1
PTP P21 Vel=100% PDAT21
CASE 2
PTP P22 Vel=100% PDAT22
CASE 3
PTP P23 Vel=100% PDAT23
CASE 4
PTP P24 Vel=100% PDAT24
DEFAULT
PTP HOME Vel=100% DEFAULT
ENDSWITCH
...

DEF MY_PROG()
ENUM COLOR_TYPE red, yellow, blue, green
DECL COLOR_TYPE my_color
...
INI
my_color = #red
...
SWITCH my_color
CASE #red
PTP P21 Vel=100% PDAT21
CASE #yellow
PTP P22 Vel=100% PDAT22
CASE #green
PTP P23 Vel=100% PDAT23
CASE #blue
PTP P24 Vel=100% PDAT24
ENDSWITCH
...
65 / 115Issued: 14.12.2011 Version: P2KSS8 Roboterprogrammierung 2 V1 en

66 / 115

Robot Programming 2
Principle of an

endless loop

 The endless loop can be exited with EXIT.

 When exiting an endless loop with EXIT, it must be ensured that there is
no risk of a collision.

 If two endless loops are nested in one another, two EXIT commands are
required in order to exit both loops.

Examples for

programming of

an endless loop

Endless loop without break

Endless loop with break

LOOP
; Statement
...
; Statement
ENDLOOP

Fig. 7-3: Program flowchart: endless loop

DEF MY_PROG()
INI
PTP HOME Vel=100% DEFAULT

LOOP
PTP P1 Vel=90% PDAT1
PTP P2 Vel=100% PDAT2
PTP P3 Vel=50% PDAT3
PTP P4 Vel=100% PDAT4
ENDLOOP

PTP P5 Vel=30% PDAT5
PTP HOME Vel=100% DEFAULT
END

Point P5 is never addressed in the program.
Issued: 14.12.2011 Version: P2KSS8 Roboterprogrammierung 2 V1 en

7 Using program execution control functions
7.3.2 Programming a counting loop

Definition of a

counting loop

 The FOR loop is a control structure which can be used to execute one or
more statements with a defined number of repetitions.

 Syntax with step size +1

 The step size (increment) can also be specified as an integer using the
keyword STEP.

Principle of a

counting loop

DEF MY_PROG()
INI
PTP HOME Vel=100% DEFAULT

LOOP
PTP P1 Vel=90% PDAT1
PTP P2 Vel=100% PDAT2
IF $IN[3]==TRUE THEN ; Condition for break
EXIT
ENDIF
PTP P3 Vel=50% PDAT3
PTP P4 Vel=100% PDAT4
ENDLOOP

PTP P5 Vel=30% PDAT5
PTP HOME Vel=100% DEFAULT
END

Point P5 is addressed as soon as input 1 is active.
Important: The motion between P2 and P5 must be checked to en-
sure there is no risk of a collision.

FOR counter = start TO last
;Statement
ENDFOR

FOR counter = start TO last STEP increment
;Statement
ENDFOR

Fig. 7-4: Program flowchart: counting loop
67 / 115Issued: 14.12.2011 Version: P2KSS8 Roboterprogrammierung 2 V1 en

68 / 115

Robot Programming 2
 For a counting loop, a previously declared integer variable is required.

 The counting loop starts with the value start and ends, at the latest, with
the value last.

 The counting loop can be exited immediately with EXIT.

How does a counting loop work?

1. Loop counter is initialized with the start value: counter = 1

2. At ENDFOR, the loop counter is incremented by the value of STEP.

3. Loop begins again at the FOR line.

4. The entry condition is checked: counting variable must be less than the
specified end value, otherwise the loop is terminated.

5. Depending on the result of the check, either the loop counter is increment-
ed again, or the loop is terminated and the program is resumed after the
ENDFOR line.

Counting backwards with a counting loop

Programming

with a counting

loop

Examples for programming of counting loops

 Simple counting loop without specification of step size

 Simple counting loop with specification of step size

FOR counter = start TO last
;Statement
ENDFOR

DECL INT counter

FOR counter = 1 TO 3 Step 1
;Statement
ENDFOR

DECL INT counter

FOR counter = 15 TO 1 Step -1
;Statement
ENDFOR

The initial value or start value of the loop must be greater than the end
value in order to allow the loop to be executed several times.

DECL INT counter

FOR counter = 1 TO 50
$OUT[counter] == FALSE
ENDFOR

If no step size is specified with STEP, the step size +1 is used by de-
fault.

DECL INT counter

FOR counter = 1 TO 4 STEP 2
$OUT[counter] == TRUE
ENDFOR

This loop is only executed twice: once with the start value coun-
ter=1 and the second time with counter=3. Once the counter value
reaches 5, the loop is terminated immediately.
Issued: 14.12.2011 Version: P2KSS8 Roboterprogrammierung 2 V1 en

7 Using program execution control functions
 Double counting loop with specification of step size

7.3.3 Programming a rejecting loop

Description of a

rejecting loop

 A rejecting loop is also referred to as a pre-test loop.

 This type of loop repeats operations as long as a specified condition is
fulfilled.

 Syntax

 The rejecting loop can be exited immediately with EXIT.

Principle of a

rejecting loop

 Rejecting loops are used to check first whether a recurring operation is
started.

 The execution condition must be met before the loop can be executed.

DECL INT counter1, counter2

FOR counter1 = 1 TO 21 STEP 2
 FOR counter2 = 20 TO 2 STEP -2
 ...
 ENDFOR
ENDFOR

The inner loop is always executed first (here counter1), and then
the outer one (counter2).

WHILE condition
 ; Statement
ENDWHILE

Fig. 7-5: Program flowchart: rejecting loop
69 / 115Issued: 14.12.2011 Version: P2KSS8 Roboterprogrammierung 2 V1 en

70 / 115

Robot Programming 2
 If the execution condition is not met, the loop is terminated immediately
and the statements after ENDWHILE are executed.

Programming

with a rejecting

loop

 Rejecting loop with simple execution condition

 Rejecting loop with simple negated execution condition

or

 Rejecting loop with complex execution condition

7.3.4 Programming a non-rejecting loop

Description of a

non-rejecting

loop

 A non-rejecting loop is also referred to as a post-test loop.

 This non-rejecting loop first executes the statements and then checks at
the end whether a condition has been met in order to be able to exit the
loop.

 Syntax

 The non-rejecting loop can be exited immediately with EXIT.

...
WHILE IN[41]==TRUE ; Part is ready in magazine
PICK_PART()
ENDWILE
...

The expression WHILE IN[41]==TRUE can also be reduced to
WHILE IN[41]. Omission always signifies comparison with TRUE.

...
WHILE NOT IN[42]==TRUE ; Input 42: magazine is empty
PICK_PART()
ENDWILE...

...
WHILE IN[42]==FALSE ; Input 42: magazine is empty
PICK_PART()
ENDWILE...

...
WHILE ((IN[40]==TRUE) AND (IN[41]==FALSE) OR (counter>20))
PALETTE()
ENDWILE
...

REPEAT
 ; Statement
UNTIL condition
Issued: 14.12.2011 Version: P2KSS8 Roboterprogrammierung 2 V1 en

7 Using program execution control functions
Principle of a

non-rejecting

loop

 If the result of the condition is positive, the loop is exited and the state-
ments after UNTIL are executed.

 If the result of the condition is negative, the loop is started again from RE-
PEAT.

Programming a

non-rejecting

loop

 Non-rejecting loop with simple execution condition

 Non-rejecting loop with complex execution condition

Fig. 7-6: Program flowchart: non-rejecting loop

...
REPEAT
PICK_PART()
UNTIL IN[42]==TRUE ; Input 42: magazine is empty
...

...
REPEAT
PALETTE()
UNTIL ((IN[40]==TRUE) AND (IN[41]==FALSE) OR (counter>20))
...
71 / 115Issued: 14.12.2011 Version: P2KSS8 Roboterprogrammierung 2 V1 en

72 / 115

Robot Programming 2
7.4 Programming wait functions

KRL programming of:

 Time-dependent wait function

 Signal-dependent wait function

7.4.1 Time-dependent wait function

Description of a

time-dependent

wait function with

KRL

 The time-dependent wait function waits for the specified time before the
process can be resumed.

 Syntax

Principle of the

time-dependent

wait function

 The time base for a time-dependent wait function is seconds (s).

 The maximum time is 2147484 seconds, i.e. more than 24 days.

 The time value can also be transferred with a suitable variable.

 The smallest meaningful unit of time is 0.012 seconds (interpolation cycle).

 If the specified time is negative, the program does not wait.

 A time-dependent wait function triggers an advance run stop; approximate
positioning is thus not possible.

 In order to generate just one advance run stop, the command WAIT SEC
0 is used.

Programming a

time-dependent

wait function

 Time-dependent wait function with a fixed time

Fig. 7-7

WAIT SEC time

PTP P1 Vel=100% PDAT1
PTP P2 Vel=100% PDAT2
WAIT SEC 5.25
PTP P3 Vel=100% PDAT3
Issued: 14.12.2011 Version: P2KSS8 Roboterprogrammierung 2 V1 en

7 Using program execution control functions
 Time-dependent wait function with a calculated time

 Time-dependent wait function with a variable

7.4.2 Signal-dependent wait function

Description of a

signal-dependent

wait function

 The signal-dependent wait function switches when the condition is met
and the process is resumed.

 Syntax

Principle of the

signal-dependent

wait function

 The signal-dependent wait function triggers an advance run stop; approx-
imate positioning is thus not possible.

 Even if the condition has already been met, an advance run stop is still
generated.

 An advance run stop is prevented by means of the command CONTINUE.

Programming a

signal-dependent

wait function

 WAIT FOR with advance run stop

Fig. 7-8: Example motion for logic

WAIT SEC 3*0.25

DECL REAL time
time = 12.75
WAIT SEC time

WAIT FOR condition

Fig. 7-9: Example motion for logic with advance run

PTP P1 Vel=100% PDAT1
PTP P2 CONT Vel=100% PDAT2
WAIT FOR $IN[20]
PTP P3 Vel=100% PDAT3
73 / 115Issued: 14.12.2011 Version: P2KSS8 Roboterprogrammierung 2 V1 en

74 / 115

Robot Programming 2
 WAIT FOR with processing in the advance run (use of CONTINUE)

Fig. 7-10: Example motion for logic

PTP P1 Vel=100% PDAT1
PTP P2 CONT Vel=100% PDAT2
CONTINUE
WAIT FOR ($IN[10] OR $IN[20])
PTP P3 Vel=100% PDAT3

Fig. 7-11: Example motion for logic with advance run
Issued: 14.12.2011 Version: P2KSS8 Roboterprogrammierung 2 V1 en

8 Switching functions with KRL
8 Switching functions with KRL

8.1 Programming simple switching functions

Description of

simple switching

functions

General

 The robot controller can manage up to 4096 digital inputs and 4096 digital
outputs.

 The inputs/outputs are implemented using optional field bus systems.

 The configuration is customer-specific.

 Configuration is carried out using WorkVisual.

Capabilities of simple switching functions

 Simple activation/deactivation of an output (with advance run/advance run
stop)

 Pulsing of an output

 Switching of an output with the main run pointer (without advance run stop)

Function of

simple switching

functions

Simple activation/deactivation of an output

 Activation of an output

 Deactivation of an output

 When an output is switched, an advance run stop is generated; the motion
can thus not be approximated.

 Using the command CONTINUE cancels the advance run stop.

 Using the command CONTINUE causes switching to be carried out with the
advance run stop.

 Approximate positioning is possible with CONTINUE.

Fig. 8-1

$OUT[10]=TRUE

$OUT[10]=FALSE

...
PTP P20 CONT Vel=100% PDAT20
$OUT[30]=TRUE
PTP P21 CONT Vel=100%PDAT21

Fig. 8-2: Switching with the advance run stop
75 / 115Issued: 14.12.2011 Version: P2KSS8 Roboterprogrammierung 2 V1 en

76 / 115

Robot Programming 2
 CONTINUE only refers to the next line (even if this line is empty).

Switching of an output with the main run pointer

 Up to 8 outputs can be switched with reference to the main run and without
an advance run stop.

 If exact positioning is programmed, switching is carried out when the end
point is reached.

 If approximate positioning is programmed, switching is carried out in the
middle of the approximate positioning motion of the end point.

Pulsing of an output

 Sets a pulse.

 The output is set to a defined level for a specified duration.

 The output is then reset automatically by the system.

 The PULSE statement triggers an advance run stop.

 Syntax

PULSE (Signal, Level, Pulse duration)

...
PTP P20 CONT Vel=100% PDAT20
CONTINUE
$OUT[30]=TRUE
PTP P21 CONT Vel=100%PDAT21

Fig. 8-3: Switching in the advance run

...
LIN P20 CONT Vel=100% PDAT20
$OUT_C[30]=TRUE
LIN P21 CONT Vel=100%PDAT21

Fig. 8-4: Switching with the main run

The pulse is not terminated in the event of an EMER-
GENCY STOP, an operator stop or an error stop!

PULSE ($OUT[30], TRUE, 20); Positive pulse

PULSE ($OUT[31], FALSE, 20); Negative pulse
Issued: 14.12.2011 Version: P2KSS8 Roboterprogrammierung 2 V1 en

8 Switching functions with KRL
 If a pulse is programmed before the END statement, the duration of pro-
gram execution is increased accordingly.

 If program execution is reset (RESET) or aborted (CANCEL) while a pulse
is active, the pulse is immediately reset.

Programming of

simple switching

functions

 Switching outputs with an advance run stop

 Switching outputs by means of a pulsed function with an advance run
stop

 Switching outputs in the advance run

 Switching outputs by means of a pulsed function in the advance run

 Switching outputs with the main run

...
PULSE($OUT[50],TRUE,2)
END

Fig. 8-5: PULSE+END, example

...
PULSE($OUT[50],TRUE,2)
; Program is now reset or deselected

Fig. 8-6: PULSE+RESET, example

...
LIN P20 CONT Vel=100% PDAT20
$OUT[50]=TRUE ; Switch on
LIN P21 CONT Vel=100%PDAT21
$OUT[50]=FALSE ; Switch off
LIN P22 CONT Vel=100%PDAT22

...
LIN P20 CONT Vel=100% PDAT20
PULSE ($OUT[50], TRUE, 1.5) ; Positive pulse
PULSE ($OUT[51], FALSE, 1.5) ; Negative pulse
LIN P21 CONT Vel=100%PDAT21

...
LIN P20 CONT Vel=100% PDAT20
CONTINUE
$OUT[50]=TRUE ; Switch on
LIN P21 CONT Vel=100%PDAT21
CONTINUE
$OUT[50]=FALSE ; Switch off
LIN P22 CONT Vel=100%PDAT22

...
LIN P20 CONT Vel=100% PDAT20
CONTINUE
PULSE ($OUT[50], TRUE, 1.5) ; Positive pulse
CONTINUE
PULSE ($OUT[51], FALSE, 1.5) ; Negative pulse
LIN P21 CONT Vel=100%PDAT21
77 / 115Issued: 14.12.2011 Version: P2KSS8 Roboterprogrammierung 2 V1 en

78 / 115

Robot Programming 2
8.2 Programming path-related switching functions with TRIGGER WHEN DISTANCE

Description of

path-related

switching

functions with

TRIGGER WHEN
DISTANCE

 The path-related switching function TRIGGER triggers a defined state-
ment.

 The statement refers to the start point or end point of the motion block.

 The statement is executed parallel to the robot motion.

 The switching point can be shifted in time.

Function of path-

related switching

functions with

TRIGGER WHEN
DISTANCE

Syntax

 TRIGGER WHEN DISTANCE=Position DELAY=Time DO Statement
<PRIO=Priority>

 Position: Defines the point at which the statement is triggered. Possible
values:

 0: The statement is triggered at the start point of the motion block.

 1: The statement is triggered at the end point. If the end point is ap-
proximated, the statement is triggered in the middle of the approximate
positioning arc.

 Time: This defines a shift time relative to the selected position.

 Positive and negative values can be used.

 The time base is milliseconds (ms).

 Times of up to 10,000,000 ms can be used without problems.

 If the value set for the time is too great or too small, switching is carried
out at the switching limits.

 Statement: Options include:

 Assignment of a value to a variable

 OUT statement

 PULSE statement

 Subprogram call. In this case, Priority must be specified.

 Priority (only for a subprogram call):

 Priorities 1, 2, 4 to 39 and 81 to 128 are available.

...
LIN P20 CONT Vel=100% PDAT20
$OUT_C[50]=TRUE
LIN P21 CONT Vel=100%PDAT21

Fig. 8-7: Grinding application

The value must not be assigned to a runtime variable.
Issued: 14.12.2011 Version: P2KSS8 Roboterprogrammierung 2 V1 en

8 Switching functions with KRL
 Priorities 40 to 80 are reserved for cases in which the priority is auto-
matically assigned by the system. If the priority is to be assigned auto-
matically by the system, the following is programmed: PRIO = -1.

Programming of

path-related

switching

functions

TRIGGER WHEN
DISTANCE

Switching options with TRIGGER WHEN DISTANCE

 Start point and end point are exact positioning points

 Start point is approximate positioning point, end point is exact positioning
point

 Start point is exact positioning point, end point is approximate positioning
point

LIN XP1
LIN XP2
TRIGGER WHEN DISTANCE = 0 DELAY = 20 DO duese = TRUE
TRIGGER WHEN DISTANCE = 1 DELAY = -25 DO UP1() PRIO=75
LIN XP3
LIN XP4

Fig. 8-8: Example of TRIGGER WHEN DISTANCE with exact positioning/
exact positioning

LIN XP1
LIN XP2 C_DIS
TRIGGER WHEN DISTANCE = 0 DELAY = 20 DO duese = TRUE
WHEN DISTANCE = 1 DELAY = -25 DO UP1() PRIO=75
LIN XP3
LIN XP4

Fig. 8-9: Example of TRIGGER WHEN DISTANCE with approximate posi-
tioning/exact positioning
79 / 115Issued: 14.12.2011 Version: P2KSS8 Roboterprogrammierung 2 V1 en

80 / 115

Robot Programming 2
 Start point and end point are approximate positioning points

LIN XP1
LIN XP2
TRIGGER WHEN DISTANCE = 0 DELAY = 20 DO duese = TRUE
TRIGGER WHEN DISTANCE = 1 DELAY = -25 DO UP1() PRIO=75
LIN XP3 C_DIS
LIN XP4

Fig. 8-10: Example of TRIGGER WHEN DISTANCE with exact position-
ing/approximate positioning

LIN XP1
LIN XP2 C_DIS
TRIGGER WHEN DISTANCE = 0 DELAY = 20 DO duese = TRUE
TRIGGER WHEN DISTANCE = 1 DELAY = -25 DO UP1() PRIO=75
LIN XP3 C_DIS
LIN XP4

Fig. 8-11: Example of TRIGGER WHEN DISTANCE with approximate po-
sitioning/approximate positioning
Issued: 14.12.2011 Version: P2KSS8 Roboterprogrammierung 2 V1 en

8 Switching functions with KRL
8.3 Programming path-related switching functions with TRIGGER WHEN PATH

Description of

path-related

switching

functions with

TRIGGER WHEN
PATH

 The path-related switching function TRIGGER triggers a defined state-
ment.

 The statement PATH refers to the end point of the motion block.

 The statement is executed parallel to the robot motion.

 The switching point can be shifted in space and/or time.

Function of path-

related switching

functions with

TRIGGER WHEN
PATH

Syntax

 TRIGGER WHEN PATH=Distance DELAY=Time DO Statement <PRIO=Prio-
rity>

 Distance: Defines the offset of the end point.

 Positive value: shifts the statement towards the end of the motion.

 Negative value: shifts the statement towards the start of the motion.

 The distance is specified in millimeters (mm).

 The specified distance can be up to +/- 10,000,000 mm.

 If the specified value is too great or too small, switching is carried out
at the switching limits.

 Time: The PATH specification defines a shift time relative to the selected
position.

 Positive and negative values can be used.

 The time base is milliseconds (ms).

 Times of up to 10,000,000 ms can be used without problems.

 If the value set for the time is too great or too small, switching is carried
out at the switching limits.

 Statement:

 Assignment of a value to a variable

 OUT statement

 PULSE statement

 Subprogram call. In this case, the Priority must be specified.

 Priority (only for a subprogram call):

Fig. 8-12: Adhesive bonding application

The end point must be addressed by means of a CP motion (LIN or
CIRC). The motion must not be PTP.

The value must not be assigned to a runtime variable.
81 / 115Issued: 14.12.2011 Version: P2KSS8 Roboterprogrammierung 2 V1 en

82 / 115

Robot Programming 2
 Priorities 1, 2, 4 to 39 and 81 to 128 are available.

 Priorities 40 to 80 are reserved for cases in which the priority is auto-
matically assigned by the system. If the priority is to be assigned auto-
matically by the system, the following is programmed: PRIO = -1.

Switching range

 Shift towards the end of the motion:

A statement can be shifted, at most, as far as the next exact positioning
point after TRIGGER WHEN PATH (skipping all approximate positioning
points).

 Shift towards the start of the motion:

A statement can be shifted, at most, as far as the start point of the mo-
tion block (i.e. as far as the last point before TRIGGER WHEN PATH).

 If the start point is an exact positioning point, the statement can be
shifted, at most, as far as the start point.

 If the start point is an approximated PTP point, the statement can be
brought forward, at most, as far as the end of its approximate position-
ing arc.

Fig. 8-13: TRIGGER WHEN PATH – switching limit for end of motion

In other words, if the end point is an exact positioning point, the statement
cannot be shifted beyond the end point.

Fig. 8-14: TRIGGER WHEN PATH – switching limit for start point (exact
positioning)
Issued: 14.12.2011 Version: P2KSS8 Roboterprogrammierung 2 V1 en

8 Switching functions with KRL
Programming of

path-related

switching

functions

TRIGGER WHEN
PATH

 Switching towards the end of the motion

 Switching towards the start of the motion

Fig. 8-15: TRIGGER WHEN PATH – switching limit for start point (approx-
imated)

LIN XP2 C_DIS
TRIGGER WHEN PATH = Y DELAY = X DO $OUT[2] = TRUE
LIN XP3 C_DIS
LIN XP4 C_DIS
LIN XP5
LIN XP6

Fig. 8-16: TRIGGER WHEN PATH – switching towards the end of the mo-
tion

LIN XP2 C_DIS
TRIGGER WHEN PATH = Y DELAY = X DO $OUT[2] = TRUE
LIN XP3 C_DIS
LIN XP4 C_DIS
LIN XP5
LIN XP6
83 / 115Issued: 14.12.2011 Version: P2KSS8 Roboterprogrammierung 2 V1 en

84 / 115

Robot Programming 2
Fig. 8-17: TRIGGER WHEN PATH – switching towards the start of the mo-
tion
Issued: 14.12.2011 Version: P2KSS8 Roboterprogrammierung 2 V1 en

9 Programming with WorkVisual
9 Programming with WorkVisual

9.1 Managing a project with WorkVisual

Project phases

1. Loading a project from the robot controller to WorkVisual

 (>>> 9.1.1 "Opening a project with WorkVisual" Page 85)

2. Modifying a project, e.g. KRL programs

 (>>> 9.2 "Editing KRL programs with WorkVisual" Page 98)

3. Comparing a project (merging)

 (>>> 9.1.2 "Comparing projects with WorkVisual" Page 88)

4. Loading (deploying) a project from WorkVisual to the robot controller

 (>>> 9.1.3 "Transferring a project to the robot controller (installing)"
Page 92)

5. Project activation (enabling)

 (>>> 9.1.4 "Activating a project on the robot controller" Page 96)

9.1.1 Opening a project with WorkVisual

Brief description

of WorkVisual

The WorkVisual software package is the engineering environment for KR C4
controlled robotic cells. It offers the following functionalities:

 Transferring projects from the robot controller to WorkVisual

 Comparing a project with another project and accepting differences where
necessary

 Transferring projects to the robot controller

Fig. 9-1: WorkVisual graphical user interface
85 / 115Issued: 14.12.2011 Version: P2KSS8 Roboterprogrammierung 2 V1 en

86 / 115

Robot Programming 2
 Configuring and connecting field buses

 Editing the safety configuration

 Programming robots offline

 Managing long texts

 Diagnostic functionality

 Online display of system information about the robot controller

 Configuring traces, starting recordings, evaluating traces (with the oscillo-
scope)

Structure and

function of the

WorkVisual

graphical user

interface

Not all elements on the graphical user interface are visible by default, but they
can be shown or hidden as required.

There are other windows and editors available in addition to those shown here.
These can be displayed via the Window and Editors menus.

Project Structure window

Fig. 9-2: Overview of the graphical user interface
Issued: 14.12.2011 Version: P2KSS8 Roboterprogrammierung 2 V1 en

9 Programming with WorkVisual
 Hardware:

The Hardware tab shows the relationship between the various devices.
Here, the individual devices can be assigned to a robot controller.

 Product:

The Product tab is used mainly in WorkVisual Process and less in
WorkVisual. This displays all the tasks required for a product in a tree
structure.

 Geometry:

The Geometry tab is used mainly in WorkVisual Process and less in
WorkVisual. This displays all the 3D objects used in the project in a tree
structure.

 Files:

The Files tab contains the program and configuration files belonging to the
project.

Coloring of file names:

 Files generated automatically (with Generate code function): Gray

 Files inserted manually in WorkVisual: Blue

 Files transferred to WorkVisual from the robot controller: Black

Project Explorer

Fig. 9-3: Example: automatically generated files in gray
87 / 115Issued: 14.12.2011 Version: P2KSS8 Roboterprogrammierung 2 V1 en

88 / 115

Robot Programming 2
 Recent Files displays the most recently used files

 Create Project generates

 a new, empty project

 a new project using a template

 a new project on the basis of an existing project

 Open Project is used to open existing projects

 Browse is required in order to load a project from the robot controller.

Procedure for

loading a project

with WorkVisual

On every robot controller to which a network connection is established, a
project can be selected and transferred to WorkVisual.

This is also possible if this project is not yet present on this PC.

The project is saved in the directory: My Files\WorkVisual Projects\Download-
ed Projects.

1. Select the menu sequence: File > Browse for project. The Project Ex-
plorer is opened. On the left, the Search tab is selected.

2. In the Available cells area, expand the node of the desired cell. All the ro-
bot controllers of this cell are displayed.

3. Expand the node of the desired robot controller. All projects are displayed.

4. Select the desired project and click on Open. The project is opened in
WorkVisual.

9.1.2 Comparing projects with WorkVisual

Description A project in WorkVisual can be compared with another project.

 This can be a project on a robot controller or a locally saved project.

 The differences are clearly listed and detailed information can be dis-
played.

 For each individual difference, the user can decide:

 whether the state should be left as in the current project

 or whether the state from the other project should be applied.

Principle of

project

comparison

Merge projects

Fig. 9-4: Project Explorer
Issued: 14.12.2011 Version: P2KSS8 Roboterprogrammierung 2 V1 en

9 Programming with WorkVisual
 Active project

 Project of the same name on the controller (only possible with network
connection)

 Base project

 Initial project

 Local project (from notebook)

Comparison

The differences between the projects are displayed in an overview. For each
difference, the user can select which state to accept.

Fig. 9-5: Selecting a project for “Merge”

Fig. 9-6: Example: overview of differences
89 / 115Issued: 14.12.2011 Version: P2KSS8 Roboterprogrammierung 2 V1 en

90 / 115

Robot Programming 2
Description of the colors:

Procedure for

project

comparison

1. In WorkVisual, select the menu sequence Extras > Compare projects.
The Comparing projects window is opened.

2. Select the project with which the current WorkVisual project should be
compared, e.g. the project of the same name on the real robot controller.

3. Click on Next. A progress bar is displayed. (If the project contains more
than one controller, a bar is displayed for each one.)

4. When the progress bar is full and the message Status: Ready for merge
is displayed: Click on Show differences. The differences between the
projects are displayed in an overview.

If no differences were determined, this is indicated in the message win-
dow. Continue with step 8. After this, no further steps are necessary.

Column Description

Project structure Each element is displayed in the color that it has in the column in which
it is selected.

Current project
value (1)

All elements are displayed in black.

Comparison value
(2)

 Green: Elements which are not present in the open project, but in the
comparison project.

 Blue: Elements which are present in the open project, but not in the
comparison project.

 Red: All other elements. These include higher-level elements which
contain elements in various colors.

Fig. 9-7

Fig. 9-8: Selecting a project for “Merge”
Issued: 14.12.2011 Version: P2KSS8 Roboterprogrammierung 2 V1 en

9 Programming with WorkVisual
5. For each difference, select which state to accept. This does not have to be
done for all the differences at one go.

If suitable, the default selection can also be accepted.

6. Press Merge to transfer the changes to WorkVisual.

7. Repeat steps 5 to 6 as many times as required. This makes it possible to
work through the different areas bit by bit.

When there are no more differences left, the following message is dis-
played: No further differences were detected.

8. Close the Comparing projects window.

9. If parameters of external axes have been changed in the project on the ro-
bot controller, these must now be updated in WorkVisual:

 Open the Machine data configuration window for this external axis.

 In the area General axis-specific machine data, click on the button
for importing machine data.

The data are updated.

10. Save the project.

Example of a project comparison

Specifying which state of the file(s) is to be accepted

Fig. 9-9: Example: Overview of project comparison
91 / 115Issued: 14.12.2011 Version: P2KSS8 Roboterprogrammierung 2 V1 en

92 / 115

Robot Programming 2
The differences between the files can be displayed by activating the Details.

9.1.3 Transferring a project to the robot controller (installing)

Description After making changes to the project, it must be transferred from WorkVi-
sual to the controller

 This procedure is called deployment by KUKA

 When a project is transferred to the robot controller, the code is always
generated first

 A network connection to the real robot controller is required for deploy-
ment

Fig. 9-10: Example: Merge projects

Fig. 9-11: Example: Details activated

If a project was transferred to the real robot controller at an earlier
time and has not yet been activated then this will be overwritten if a
further project is transferred.

Transferring and activating a project overwrites a project of the same name
that already exists on the real robot controller (after a request for confirma-
tion).
Issued: 14.12.2011 Version: P2KSS8 Roboterprogrammierung 2 V1 en

9 Programming with WorkVisual
Functions Generate code

 This procedure can be used to generate the code separately and thus to
check in advance whether generation runs without error.

 The function is called via

 the menu sequence Extras > Generate code

 or the button

 The code is displayed on the Files tab of the Project structure win-
dow.

Automatically generated code is displayed in pale gray.

 The code is generated. When the process is finished, the following
messages are displayed in the message window: The project <"{0}"
V{1}> has been compiled. The results can be seen in the file tree.

Instructions 1. Click on the Deploy… button in the menu bar. The Project deployment
window is opened.

2. If the project has never been transferred back to WorkVisual from a robot
controller before, it will not yet contain all the configuration files. This is in-

Fig. 9-12: Example of code generation: before – after

Fig. 9-13: Overview with warning about incomplete configuration
93 / 115Issued: 14.12.2011 Version: P2KSS8 Roboterprogrammierung 2 V1 en

94 / 115

Robot Programming 2
dicated by a message. (The configuration files include machine data files,
safety configuration files and many others.)

 If this message is not displayed: Continue with step 13.

 If this message is displayed: Continue with step 3.

3. Click on Complete. The following confirmation prompt is displayed: The
project must be saved and the active controller will be reset! Do you
want to continue?

4. Answer the query with Yes. The Merge projects window is opened.

5. Select a project from which the configuration data are to be transferred,
e.g. the active project on the real robot controller.

6. Click on Next. A progress bar is displayed. (If the project contains more
than one controller, a bar is displayed for each one.)

7. When the progress bar is full and the message Status: Ready for merge
is displayed: Click on Show differences.

The differences between the projects are displayed in an overview.

8. For each difference, select which state to accept. This does not have to be
done for all the differences at one go.

If suitable, the default selection can also be accepted.

9. Press Merge to transfer the changes.

10. Repeat steps 8 to 9 as many times as required. This makes it possible to
work through the different areas bit by bit.

When there are no more differences left, the following message is dis-
played: No further differences were detected.

11. Close the Comparing projects window.

12. Click on the button Deploy... in the menu bar. The overview of the cell as-
signment is displayed again. The message about the incomplete configu-
ration is no longer displayed.

Fig. 9-14: Selecting a project for “Complete”
Issued: 14.12.2011 Version: P2KSS8 Roboterprogrammierung 2 V1 en

9 Programming with WorkVisual
13. Click on Next. Program generation begins. When the progress indicator
bar reaches 100%, the program is generated and the project is trans-
ferred.

14. Click on Activate.

15. Only in operating modes T1 and T2: The KUKA smartHMI displays the re-
quest for confirmation Do you want to activate the project […]?. In addition, a
message is displayed as to whether the activation would overwrite a proj-
ect, and if so, which.

If no relevant project will be overwritten: Confirm with Yes within 30 min-
utes.

16. An overview is displayed of the changes which will be made in comparison
to the project that is still active on the robot controller. The check box De-
tails can be used to display details about the changes.

17. The overview displays the request for confirmation Do you want to conti-
nue?. Confirm with Yes. The project is activated on the robot controller. A
confirmation is displayed in WorkVisual.

Fig. 9-15: Overview

In the operating modes AUT and AUT EXT, the project is
activated without any request for confirmation if there are

only program changes.

Fig. 9-16: Confirmation in WorkVisual
95 / 115Issued: 14.12.2011 Version: P2KSS8 Roboterprogrammierung 2 V1 en

96 / 115

Robot Programming 2
18. Close the Project deployment window by selecting Finish.

19. If the request for confirmation on the robot controller is not answered within
30 minutes, the project is still transferred, but is not activated on the robot
controller. The project can then be activated separately.

9.1.4 Activating a project on the robot controller

Description A project can be activated directly on the robot controller.

 A project can also be activated on the robot controller from within WorkVi-
sual.

(not described here; for this, see WorkVisual online documentation)

Project

management

function

General

 The robot controller offers a function for managing a number of projects on
the controller

 All functions are only available in the user group Expert or higher.

 The function is called via:

 the menu sequence File > Project management

 on the user interface via the WorkVisual symbol button, followed by
the Open button

Use / operation

After activation of a project on the robot controller, the
safety configuration must be checked there! If this is not

done, the robot will possibly be operated with incorrect data. Death to per-
sons, severe physical injuries or considerable damage to property may re-
sult.

If the activation of a project fails, an error message is dis-
played in WorkVisual. In this case, one of the following

measures must be carried out:

 Either: Activate a project again (the same one or a different one).

 Or: Reboot the robot controller with a cold restart.

Fig. 9-17: Project display on the user interface
Issued: 14.12.2011 Version: P2KSS8 Roboterprogrammierung 2 V1 en

9 Programming with WorkVisual
 In addition to the regular projects, the Project management window con-
tains the following special projects:

 Description of buttons

Fig. 9-18: “Projects management” window

Project Description

Initial project The initial project is always present. It cannot be
changed by the user. It contains the initial state of the
robot controller as shipped.

Base project The user can save the active project as the base proj-
ect. This functionality is generally used to save a func-
tional, tried-and-tested project state.

The base project cannot be activated, but copied. The
base project can no longer be changed by the user. It
can, however, be overwritten by saving a new base
project (after a request for confirmation).

If a project is activated which does not contain all the
configuration files, the missing information is inserted
from the base project. This is the case e.g. if a project
is activated from an earlier version of WorkVisual. (The
configuration files include machine data files, safety
configuration files and many others.)

Button Description

Activate Activates the selected project.

If the selected project is pinned: Creates a copy of the
selected project. (A pinned project cannot be activated
itself, only a copy of it.) The user can then decide
whether to activate this copy or whether the current
project should remain active.

Pin Pinned projects cannot be changed, activated or
deleted. They can be copied or unpinned, however. A
project can thus be pinned e.g. to prevent it from being
accidentally deleted.

Unpin Unpins the project.

Copy Copies the selected project.
97 / 115Issued: 14.12.2011 Version: P2KSS8 Roboterprogrammierung 2 V1 en

98 / 115

Robot Programming 2
Procedure

1. Select the menu sequence File > Project management. The Project
management window is opened.

2. Select the desired project and activate it using the Activate button.

3. The KUKA smartHMI displays the request for confirmation Do you want to
activate the project […]?. In addition, a message is displayed as to whether
the activation would overwrite a project, and if so, which.

If no relevant project will be overwritten: Confirm with Yes within 30 min-
utes.

4. An overview is displayed of the changes which will be made in comparison
to the project that is still active on the robot controller. The check box De-
tails can be used to display details about the changes.

5. The overview displays the request for confirmation Do you want to conti-
nue?. Confirm with Yes. The project is activated on the robot controller.

9.2 Editing KRL programs with WorkVisual

 File handling

 (>>> 9.2.1 "File handling" Page 98)

 Working with the KRL Editor

 (>>> 9.2.2 "Working with the KRL Editor" Page 104)

9.2.1 File handling

Description Load existing file into the KRL Editor.

 Add new file from catalog.

 Add external file.

Principle of

templates from

catalog

 Before templates can be used, the corresponding catalog must be loaded.

 Load via File > Add catalog and activate the corresponding templates.

 KRL templates: KRL Templates.afc

 VW templates: VW Templates.afc

Delete Deletes the selected project.

Edit Opens a window in which the name and/or description
of the selected project can be changed.

Refresh Refreshes the project list. This enables e.g. projects to
be displayed which have been transferred to the robot
controller since the display was opened.

Button Description

Restriction: If the activation causes changes in the Communication
parameter area of the safety configuration, the user group “Safety re-
covery” or higher must be selected.

If the operating mode AUT or AUT EXT is selected: The project can only be
activated if this affects only KRL programs. If the project contains settings
that would cause other changes, it cannot be activated.

After activation of a project on the robot controller, the
safety configuration must be checked there! If this is not

done, the robot will possibly be operated with incorrect data. Death to per-
sons, severe physical injuries or considerable damage to property may re-
sult.
Issued: 14.12.2011 Version: P2KSS8 Roboterprogrammierung 2 V1 en

9 Programming with WorkVisual
 KRL templates catalog

Handling instruc-

tions

Procedure for opening a file (SRC/DAT) in the KRL Editor

1. Switch to “Files” in the project tree.

2. Open the directories as far as directory R1.

Fig. 9-19: Catalog for KRL templates

Fig. 9-20: WorkVisual project tree
99 / 115Issued: 14.12.2011 Version: P2KSS8 Roboterprogrammierung 2 V1 en

100 / 115

Robot Programming 2
3. Select file by means of:

 Double-click.

 Toolbar button .

 Right-click and select (KRL Editor) in the context menu.

Fig. 9-21: WorkVisual project tree file structure (R1)
Issued: 14.12.2011 Version: P2KSS8 Roboterprogrammierung 2 V1 en

9 Programming with WorkVisual
Procedure for adding a file by means of KRL templates

1. Switch to “Files” in the project tree.

2. Open the directories as far as directory R1.

3. Select the folder in which the new file is to be created.

4. Right-click and select (Add) in the context menu.

Fig. 9-22: WorkVisual – Context menu (KRL Editor)
101 / 115Issued: 14.12.2011 Version: P2KSS8 Roboterprogrammierung 2 V1 en

102 / 115

Robot Programming 2
5. Select template.

6. Assign program name.

Fig. 9-23: WorkVisual – Context menu (Add)

Fig. 9-24: WorkVisual – KRL templates
Issued: 14.12.2011 Version: P2KSS8 Roboterprogrammierung 2 V1 en

9 Programming with WorkVisual
Procedure for adding an external file

1. Switch to “Files” in the project tree.

2. Open the directories as far as directory R1.

3. Select the folder in which the new file is to be created.

4. Right-click and select “Add external axis file” in the context menu.

5. Select file(s) and press “Open”.

Fig. 9-25: WorkVisual – Context menu (Add external file)
103 / 115Issued: 14.12.2011 Version: P2KSS8 Roboterprogrammierung 2 V1 en

104 / 115

Robot Programming 2
9.2.2 Working with the KRL Editor

Description of

KRL Editor

Program editing (SRC/DAT)

 By means of direct KRL entry

 By means of fast entry for KRL instructions (KRL snippets)

 By means of inline forms from the tool panel

Properties of the KRL Editor

 Configuration of the Editor

 Color description in the KRL Editor

 Error detection (KRL Parser)

 Variable list

 Additional editing functions in the KRL Editor

Configuring the

KRL Editor

 Select the menu sequence Extras > Options. The Options window is
opened.

 The Text editor folder contains the subitems Appearance and Behavior.

 Appearance

Fig. 9-26: WorkVisual – Add external file
Issued: 14.12.2011 Version: P2KSS8 Roboterprogrammierung 2 V1 en

9 Programming with WorkVisual
Appearance:

 Behavior

Fig. 9-27: Appearance

Box Description

Line numbers Activated: Display line numbers.

Selection area Activated: Selected code is additionally marked
by a vertical red bar on the left-hand side.

Changed lines mark-
ing

Activated: Changed lines are marked in yellow at
the beginning of the line.

Line wrapping marks Only relevant if the Word Wrap check box is
activated under Behavior.

 Activated: Line breaks are indicated by a
small green arrow.

 Deactivated: Line breaks are not indicat-
ed.

Transparent selection Representation of selected code:

 Activated: Text in original color on light
background

 Deactivated: White text on dark back-
ground

Status bar Activated: A status bar is displayed at the bottom
of the KRL Editor. It displays e.g. the program
name and the number of the line in which the
cursor is currently positioned.
105 / 115Issued: 14.12.2011 Version: P2KSS8 Roboterprogrammierung 2 V1 en

106 / 115

Robot Programming 2
Behavior:

Color description

of the KRL Editor

 Description of the colors:

The KRL Editor recognizes the different elements of the code entered and
automatically displays them in different colors.

Fig. 9-28: Behavior

Box Description

Virtual Space mode Activated: The cursor can be placed at
any position in a blank line.

 Deactivated: The cursor can only be
placed at the beginning of a blank line.

View White Space Activated: Control characters are displayed.
(Spaces, tabs, etc.)

Word wrap Activated: Lines are broken in accor-
dance with the window width.

 Deactivated: Lines are not broken. If any
lines are longer than the window width, a
scroll bar is automatically displayed.

Use Tabs Activated: The tab key inserts a tab.

 Deactivated: The tab key inserts the
number of spaces specified under Tab
Size.

Tab Size The size of a tab is equivalent to x spaces.

Auto Indent Mode Behavior when making a new line using the
Enter key:

 None: The new line is not indented.

 Block: The new line has the same level
of indentation as the preceding line.

 Smart: Behavior within a fold

If the previous line is indented, this inden-
tation is used for the new line.

If the previous line is not indented, the
new line is indented.

Code element Color

KRL keywords

(except ;FOLD and ;ENDFOLD)

Medium blue

;FOLD and ;ENDFOLD Gray

Figures Dark blue
Issued: 14.12.2011 Version: P2KSS8 Roboterprogrammierung 2 V1 en

9 Programming with WorkVisual
 Example of the use of colors

KRL Editor –

Error detection

 The KRL Editor has an automatic error detection function.

 Detected errors in the programming code are underlined with a wavy red
line.

 The errors are only visible in the message window if the category KRL
Parser is selected.

 KRL errors and some structural errors are detected (declaration at the
wrong point in the program)

 Typing errors in variables are not detected.

Strings (text in quotation marks "…") Red

Comments Green

Special characters Blue-green

Other code Black

Fig. 9-29: Example: Colors in the KRL Editor

1 KRL keywords: Blue

2 Comment: Green

3 FOLD: Gray

4 Other code: Black

Code element Color

The error detection function does not detect all errors. If nothing is un-
derlined, this is no guarantee that the program is free from errors.
107 / 115Issued: 14.12.2011 Version: P2KSS8 Roboterprogrammierung 2 V1 en

108 / 115

Robot Programming 2
Function of the

variable list

 All the KRL variables that are declared in a particular file can be displayed
in a list overview.

 With SRC files, the variables from the corresponding DAT file are always
displayed at the same time, and vice versa.

 Enter the variable name or part of the name in the search box. The search
results are displayed immediately.

Fig. 9-30: Example: error detection

1 KRL Editor: error underlined with a wavy red line

2 Message window: category KRL Parser is selected.

3 Message window: error description with line and column number

Fig. 9-31: Example of a variable list

Fig. 9-32: Example of a variable list (variables from SRC and DAT)
Issued: 14.12.2011 Version: P2KSS8 Roboterprogrammierung 2 V1 en

9 Programming with WorkVisual
 Setting options

Clicking on a column sorts the list by this column.

Additional editing

functions

Standard edit functions can be called via Edit in the context menu. These in-
clude:

 Cut, Paste, Copy, Delete

 Undo, Redo

 Find…, Replace…

 Go to…

 Select all

Further edit functions are available in the context menu under Advanced:

Fig. 9-33: Example of a variable list (search function)

If the search box contains a search term, this remains valid if the fo-
cus is moved to another file. It is only possible to display all the vari-
ables in a file if the search box is empty.

Fig. 9-34: “Variable list” window

Button Description

Refresh

Updates the list whenever the selected file in the tree
changes

Updates the list when the current editor changes

Groups the variables by local subfunctions (SRC/DAT)

Button is pressed: The search includes all global variables.
109 / 115Issued: 14.12.2011 Version: P2KSS8 Roboterprogrammierung 2 V1 en

110 / 115

Robot Programming 2
Handling instruc-

tions

Fast entry for KRL instructions (KRL snippets)

An interrupt declaration must be programmed. KRL snippets are used to avoid
having to enter the complete syntax INTERRUPT DECL … WHEN … DO. All
that is then required is to fill out the variable positions in the syntax manually.

Procedure for programming with code snippets

1. Move the cursor to the desired position.

 Right-click and select Insert code snippet from the context menu. A
list box is opened. Double-click on the desired instruction.

 Or: Type in the abbreviation and press the TAB key.

2. The KRL syntax is inserted automatically. The first variable position is
highlighted in red. Enter the desired value.

3. Press the Enter key to jump to the next variable position. Enter the desired
value.

Advanced > … Description

Tabify selection Replaces the spaces in the selected string with
tabs.

Precondition: The configuration setting Use tabs
is activated.

Untabify selection Replaces the tabs in the selected string with
spaces.

Increase indent Inserts spaces or a tab at the cursor position.

Decrease indent Removes the tab or spaces to the left of the cur-
sor position.

Comment selection Inserts a semicolon at the beginning of the
selected line.

Uncomment selec-
tion

Removes the semicolon from the beginning of
the selected line.

Collapse all folds Closes all folds in the currently displayed file.

Expand all folds Opens all folds in the currently displayed file.

Fig. 9-35: Double-clicking on the instruction

Fig. 9-36: KRL snippets with search function

Fig. 9-37: The first variable position is highlighted in red
Issued: 14.12.2011 Version: P2KSS8 Roboterprogrammierung 2 V1 en

9 Programming with WorkVisual
4. Repeat step 3 for all other variable positions.

KRL Editor: programming with the tool panel

Activate the tool panel.

1. Menu Window>Toolpanel

2. Position or dock the empty tool panel.

3. Load the program into the KRL Editor and the tool panel fills itself with
functions.

Procedure for programming with the tool panel

1. Move the cursor to the desired position.

2. Select the desired inline form in the tool panel.

Fig. 9-38: Filled tool panel
111 / 115Issued: 14.12.2011 Version: P2KSS8 Roboterprogrammierung 2 V1 en

112 / 115

Robot Programming 2
3. Edit inline form / set parameters.

4. Close inline form with the Cmd OK key on the tool panel.

Fig. 9-39: Tool panel – Motion

Fig. 9-40: KRL Editor – Inline form
Issued: 14.12.2011 Version: P2KSS8 Roboterprogrammierung 2 V1 en

Index
Index

Symbols
$TIMER o 59

A
Administrator 11
Advance run pointer 17
Array 25
Arrays 25

B
Basic arithmetic operations 22
Bit operations 22
Branch 61
Branches 61

C
CASE 63
Comment 5
Comparing projects 88
Comparison operations 22
Conditional statements 61
Counting loop 67
Cycle time 59

D
Data management 15
Data names 8
DECL 17
Declaration 17, 18
Declarations 15
DEFFCT 40
DISTANCE 78

E
Endless loop 65
ENUM 30
Enumeration data type 30
Expert level 11

F
Fold 6
Functions 33, 40, 42
Functions for message generation 43
Functions for string variables 42
Functions, mathematical 42

G
Global 15
Graphical user interface, WorkVisual 86

I
IF ... THEN 61
Importing, WorkVisual project 98
Initialization 20
Installing 92

K
Keyword 17

KRL Editor 104

L
Local 15
Logic operations 22
Loops 65

M
Manipulation 22
Motion programming in KRL 45

N
Non-rejecting loop 70

O
Operator 11

P
Parameter transfer 37
PATH 81
Path-related switching function 78, 81
Priority 24, 78, 81
Program execution control 61
Program flowchart 8
Program flowchart example 10
Program flowchart symbols 8
Programmer 11
Programming methodology, program flowchart
example 10
Project Explorer 88
Project, activating 96
Project, loading 88
Project, opening 85
Pulse 76

R
Rejecting loop 69
Return 34, 40

S
Standard functions 22, 42
Structure 28
Structured programming 5
Subprogram 33
Subprogram, global 35
Subprogram, local 33
Subprograms 7
SWITCH 63
Switch statement 62, 63
Switching functions 75
System variables 59

T
Template 98
Timer 59
Transferring 92
TRIGGER 78, 81
113 / 115Issued: 14.12.2011 Version: P2KSS8 Roboterprogrammierung 2 V1 en

114 / 115

Robot Programming 2
U
User group, default 11

V
Variable life 15
Variables 15, 17

W
Wait function, signal-dependent 73
Wait function, time-dependent 72
WHILE 69
WorkVisual 85
Issued: 14.12.2011 Version: P2KSS8 Roboterprogrammierung 2 V1 en

115 / 115Issued: 14.12.2011 Version: P2KSS8 Roboterprogrammierung 2 V1 en

Robot Programming 2

	Robot Programming 2
	1 Structured programming
	1.1 Objectives for consistent programming methodology
	1.2 Tools for creating structured robot programs
	1.3 Creating a program flowchart

	2 Introduction to Expert level
	2.1 Using Expert level

	3 Variables and declarations
	3.1 Data management in KRL
	3.2 Working with simple data types
	3.2.1 Declaration of variables
	3.2.2 Initialization of variables with simple data types
	3.2.3 Manipulation of variable values of simple data types with KRL

	3.3 Arrays with KRL
	3.4 Structures with KRL
	3.5 The enumeration data type ENUM

	4 Subprograms and functions
	4.1 Working with local subprograms
	4.2 Working with global subprograms
	4.3 Transferring parameters to subprograms
	4.4 Programming functions
	4.5 Working with standard KUKA functions

	5 Motion programming with KRL
	5.1 Programming motions with KRL
	5.2 Programming relative motions with KRL
	5.3 Calculating or manipulating robot positions
	5.4 Deliberate modification of Status and Turn bits

	6 Working with system variables
	6.1 Cycle time measurement by means of timers

	7 Using program execution control functions
	7.1 Programming conditional statements or branches
	7.2 Programming a switch statement
	7.3 Programming loops
	7.3.1 Programming an endless loop
	7.3.2 Programming a counting loop
	7.3.3 Programming a rejecting loop
	7.3.4 Programming a non-rejecting loop

	7.4 Programming wait functions
	7.4.1 Time-dependent wait function
	7.4.2 Signal-dependent wait function

	8 Switching functions with KRL
	8.1 Programming simple switching functions
	8.2 Programming path-related switching functions with TRIGGER WHEN DISTANCE
	8.3 Programming path-related switching functions with TRIGGER WHEN PATH

	9 Programming with WorkVisual
	9.1 Managing a project with WorkVisual
	9.1.1 Opening a project with WorkVisual
	9.1.2 Comparing projects with WorkVisual
	9.1.3 Transferring a project to the robot controller (installing)
	9.1.4 Activating a project on the robot controller

	9.2 Editing KRL programs with WorkVisual
	9.2.1 File handling
	9.2.2 Working with the KRL Editor

	Index

