
Training

Robot Programming 1

KUKA System Software 8.2

Training Documentation, KUKA Roboter GmbH

KUKA Roboter GmbH

Issued: 31.05.2011

Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

Robot Programming 1

2 / 175 Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

© Copyright 2011

KUKA Roboter GmbH

Zugspitzstraße 140

D-86165 Augsburg

Germany

This documentation or excerpts therefrom may not be reproduced or disclosed to third parties without
the express permission of KUKA Roboter GmbH.

Other functions not described in this documentation may be operable in the controller. The user has
no claims to these functions, however, in the case of a replacement or service work.

We have checked the content of this documentation for conformity with the hardware and software
described. Nevertheless, discrepancies cannot be precluded, for which reason we are not able to
guarantee total conformity. The information in this documentation is checked on a regular basis, how-
ever, and necessary corrections will be incorporated in the subsequent edition.

Subject to technical alterations without an effect on the function.

Translation of the original documentation

KIM-PS5-DOC

Publication: Pub COLLEGE P1KSS8 Roboterprogrammierung 1 en

Bookstructure: P1KSS8 Roboterprogrammierung 1 V4.2

Label: COL P1KSS8 Roboterprogrammierung 1 V1 en

Contents

Contents
1 Structure and function of a KUKA robot system 5

1.1 Introduction to robotics ... 5

1.2 Robot arm of a KUKA robot .. 5

1.3 (V)KR C4 robot controller ... 8

1.4 The KUKA smartPAD ... 9

1.5 Overview of smartPAD ... 10

1.6 Robot programming .. 11

1.7 Robot safety .. 13

2 Moving the robot ... 15

2.1 Reading and interpreting robot controller messages .. 15

2.2 Selecting and setting the operating mode .. 16

2.3 Moving individual robot axes .. 19

2.4 Coordinate systems in conjunction with robots ... 23

2.5 Moving the robot in the world coordinate system ... 24

2.6 Moving the robot in the tool coordinate system .. 28

2.7 Moving the robot in the base coordinate system .. 32

2.8 Exercise: Operator control and jogging .. 37

2.9 Jogging with a fixed tool ... 39

2.10 Exercise: Jogging with a fixed tool .. 40

3 Starting up the robot ... 41

3.1 Mastering principle .. 41

3.2 Mastering the robot ... 43

3.3 Exercise: Robot mastering .. 47

3.4 Loads on the robot .. 49

3.4.1 Tool load data ... 49

3.4.2 Supplementary loads on the robot .. 50

3.5 Tool calibration ... 52

3.6 Exercise: Tool calibration, pen .. 61

3.7 Exercise: Tool calibration of gripper, 2-point method ... 64

3.8 Base calibration .. 66

3.9 Displaying the current robot position .. 70

3.10 Exercise: Base calibration of table, 3-point method .. 72

3.11 Calibration of a fixed tool .. 74

3.12 Calibration of a robot-guided workpiece ... 76

3.13 Exercise: Calibrating an external tool and robot-guided workpiece 77

3.14 Disconnecting the smartPAD .. 81

4 Executing robot programs .. 85

4.1 Performing an initialization run ... 85

4.2 Selecting and starting robot programs .. 86

4.3 Exercise: Executing robot programs ... 91

5 Working with program files .. 93

5.1 Creating program modules ... 93

5.2 Editing program modules .. 94

5.3 Archiving and restoring robot programs .. 95
3 / 175Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

4 / 175

Robot Programming 1
5.4 Tracking program modifications and changes of state by means of the logbook . 96

6 Creating and modifying programmed motions ... 101

6.1 Creating new motion commands .. 101

6.2 Creating cycle-time optimized motion (axis motion) ... 102

6.3 Exercise: Dummy program – program handling and PTP motions 107

6.4 Creating CP motions .. 109

6.5 Modifying motion commands .. 116

6.6 Exercise: CP motion and approximate positioning ... 119

6.7 Motion programming with external TCP ... 122

6.8 Exercise: Motion programming with external TCP ... 122

7 Using logic functions in the robot program .. 125

7.1 Introduction to logic programming .. 125

7.2 Programming wait functions ... 126

7.3 Programming simple switching functions ... 129

7.4 Programming time-distance functions .. 132

7.5 Exercise: Logic statements and switching functions ... 138

8 Working with variables .. 141

8.1 Displaying and modifying variable values ... 141

8.2 Displaying robot states ... 142

8.3 Exercise: Displaying system variables ... 143

9 Using technology packages ... 145

9.1 Gripper operation with KUKA.GripperTech .. 145

9.2 Gripper programming with KUKA.GripperTech .. 145

9.3 KUKA.GripperTech configuration ... 148

9.4 Exercise: Gripper programming – plastic panel .. 150

9.5 Exercise: Gripper programming – pen .. 152

10 Successful programming in KRL ... 155

10.1 Structure and creation of robot programs ... 155

10.2 Structuring robot programs ... 160

10.3 Linking robot programs ... 163

10.4 Exercise: Programming in KRL ... 165

11 Working with a higher-level controller .. 169

11.1 Preparation for program start from PLC ... 169

11.2 Adapting the PLC interface (Cell.src) ... 170

Index ... 173
Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

1 Structure and function of a KUKA robot system
1 Structure and function of a KUKA robot system

1.1 Introduction to robotics

What is a robot? The term robot comes from the Slavic word robota, meaning hard work.

According to the official definition of an industrial robot: “A robot is a freely pro-
grammable, program-controlled handling device”.

The robot thus also includes the controller and the operator control device, to-
gether with the connecting cables and software.

Everything outside the system limits of the industrial robot is referred to as the
periphery:

 Tooling (end effector/tool)

 Safety equipment

 Conveyor belts

 Sensors

 etc.

1.2 Robot arm of a KUKA robot

What is a manipu-

lator?

The manipulator is the actual robot arm. It consists of a number of moving links
(axes) that are linked together to form a “kinematic chain”.

Fig. 1-1: Industrial robot

1 Controller ((V)KR C4 control cabinet)

2 Manipulator (robot arm)

3 Teach pendant (KUKA smartPAD)
5 / 175Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

6 / 175

Robot Programming 1
The individual axes are moved by means of targeted actuation of servomotors.
These are linked to the individual components of the manipulator via reduction
gears.

The components of a robot arm consist primarily of cast aluminum and steel.
In isolated cases, carbon-fiber components are also used.

Fig. 1-2: Manipulator

1 Manipulator (robot arm)

2 Start of the kinematic chain: base of the robot (ROBROOT)

3 Free end of the kinematic chain: flange (FLANGE)

A1
...

A6

Robot axes 1 to 6

Fig. 1-3: Overview of manipulator components

1 Base frame 4 Link arm

2 Rotating column 5 Arm

3 Counterbalancing system 6 Wrist
Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

1 Structure and function of a KUKA robot system
The individual axes are numbered from bottom (robot base) to top (robot
flange):

Excerpt from the technical data of manipulators from the KUKA product range

 Number of axes: 4 (SCARA and parallelogram robots) to 6 (standard ver-
tical jointed-arm robots)

 Reach: from 0.35 m (KR 5 scara) to 3.9 m (KR 120 R3900 ultra K)

 Weight: from 20 kg to 4700 kg.

 Accuracy: 0.015 mm to 0.2 mm repeatability.

The axis ranges of main axes A1 to A3 and wrist axis A5 of the robot are lim-
ited by means of mechanical end stops with a buffer.

Additional mechanical end stops can be installed on the external axes.

Fig. 1-4: Degrees of freedom of a KUKA robot

Axis 1 Axis 2 Axis 3
7 / 175Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

8 / 175

Robot Programming 1
1.3 (V)KR C4 robot controller

Who controls

motion?

The manipulator is moved by means of servomotors controlled by the
(V)KR C4 controller.

Properties of the (V)KR C4 controller

 Robot control (path planning): control of six robot axes plus up to two ex-
ternal axes.

 Sequence control: integrated Soft PLC in accordance with IEC61131

 Safety controller

 Motion control

Danger!
If the robot or an external axis hits an obstruction or a buffer on the mechan-
ical end stop or axis range limitation, this can result in material damage to the
robot system. KUKA Roboter GmbH must be consulted before the robot sys-
tem is put back into operation . The affected buffer must immediately be re-
placed with a new one. If a robot (or external axis) collides with a buffer at
more than 250 mm/s, the robot (or external axis) must be exchanged or re-
commissioning must be carried out by the KUKA Roboter GmbH.

Fig. 1-5: (V)KR C4 control cabinet

Fig. 1-6: (V)KR C4 axis control
Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

1 Structure and function of a KUKA robot system
 Communication options via bus systems (e.g. ProfiNet, Ethernet IP, Inter-
bus):

 Programmable logic controllers (PLC)

 Additional controllers

 Sensors and actuators

 Communication options via network:

 Host computer

 Additional controllers

1.4 The KUKA smartPAD

How is a KUKA

robot operated?

The KUKA robot is operated by means of the KUKA smartPAD teach pendant.

Features of the KUKA smartPAD:

 Touch screen (touch-sensitive user interface) for operation by hand or us-
ing the integrated stylus

 Large display in portrait format

 KUKA menu key

 Eight jog keys

Fig. 1-7: (V)KR C4 communication options

Fig. 1-8
9 / 175Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

10 / 175

Robot Programming 1
 Keys for operator control of the technology packages

 Program execution keys (Stop/Backwards/Forwards)

 Key for displaying the keypad

 Keyswitch for changing the operating mode

 EMERGENCY STOP button

 Space Mouse

 Unpluggable

 USB connection

1.5 Overview of smartPAD

Fig. 1-9

Item Description

1 Button for disconnecting the smartPAD

2 Keyswitch for calling the connection manager. The switch can only
be turned if the key is inserted.

The connection manager is used to change the operating mode.

3 EMERGENCY STOP button. Stops the robot in hazardous situa-
tions. The EMERGENCY STOP button locks itself in place when it
is pressed.
Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

1 Structure and function of a KUKA robot system
1.6 Robot programming

A robot is programmed so that motion sequences and processes can be exe-
cuted automatically and repeatedly. For this, the controller requires a large
amount of information:

 Robot position = position of the tool in space.

 Type of motion

 Velocity / acceleration

 Signal information for wait conditions, branches, dependencies, etc.

What language

does the

controller speak?

The programming language is KRL - KUKA Robot Language

Example program:

How is a KUKA

robot

programmed?

Various programming methods can be used for programming a KUKA robot:

 Online programming with the teaching method.

4 Space Mouse. For moving the robot manually.

5 Jog keys. For moving the robot manually.

6 Key for setting the program override

7 Key for setting the jog override

8 Main menu key. Shows the menu items on the smartHMI.

9 Technology keys. The technology keys are used primarily for set-
ting parameters in technology packages. Their exact function de-
pends on the technology packages installed.

10 Start key. The Start key is used to start a program.

11 Start backwards key. The Start backwards key is used to start a
program backwards. The program is executed step by step.

12 STOP key. The STOP key is used to stop a program that is run-
ning.

13 Keyboard key

Displays the keyboard. It is generally not necessary to press this
key to display the keyboard, as the smartHMI detects when key-
board input is required and displays the keyboard automatically.

Item Description

PTP P1 Vel=100% PDAT1
PTP P2 CONT Vel=100% PDAT2
WAIT FOR IN 10 'Part in Position'
PTP P3 Vel=100% PDAT3
11 / 175Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

12 / 175

Robot Programming 1
 Offline programming

 Interactive, graphics-based programming: simulation of the robot
process.

 Text-based programming: programming with the aid of the smart-
PAD user interface display on a higher-level control PC (also for diag-
nosis, online adaptation of programs that are already running)

Fig. 1-10: Robot programming with the KUKA smartPAD

Fig. 1-11: Simulation with KUKA WorkVisual

Fig. 1-12: Robot programming with KUKA OfficeLite
Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

1 Structure and function of a KUKA robot system
1.7 Robot safety

A robot system must always have suitable safety features. These include, for
example, physical safeguards (fences, gates, etc.), EMERGENCY STOP but-
tons, dead-man switches, axis range limitations, etc.

Example: College

training cell

EMERGENCY

STOP device

The EMERGENCY STOP device for the industrial robot is the EMERGENCY
STOP button on the KCP. The button must be pressed in the event of a haz-
ardous situation or emergency.

Reactions of the industrial robot if the EMERGENCY STOP button is pressed:

 The manipulator and any external axes (optional) are stopped with a safe-
ty stop 1.

Before operation can be resumed, the EMERGENCY STOP button must be
turned to release it and the ensuing stop message must be acknowledged.

Fig. 1-13: Training cell

1 Safety fence

2 Mechanical end stops or axis range limitation for axes 1, 2 and 3

3 Safety gate with contact for monitoring the closing function

4 EMERGENCY STOP button (external)

5 EMERGENCY STOP button, enabling switch, keyswitch for calling
the connection manager

6 Integrated (V)KR C4 safety controller

 In the absence of functional safety equipment and safe-
guards, the robot system can cause personal injury or

material damage. If safety equipment or safeguards are dismantled or deac-
tivated, the robot system may not be operated.
13 / 175Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

14 / 175

Robot Programming 1
There must always be at least one external EMERGENCY STOP device in-
stalled. This ensures that an EMERGENCY STOP device is available even
when the KCP is disconnected.

External E-STOP

There must be EMERGENCY STOP devices available at every operator sta-
tion that can initiate a robot motion or other potentially hazardous situation.
The system integrator is responsible for ensuring this.

There must always be at least one external EMERGENCY STOP device in-
stalled. This ensures that an EMERGENCY STOP device is available even
when the KCP is disconnected.

External EMERGENCY STOP devices are connected via the customer inter-
face. External EMERGENCY STOP devices are not included in the scope of
supply of the industrial robot.

Operator safety

The operator safety signal is used for interlocking physical safeguards, e.g.
safety gates. Automatic operation is not possible without this signal. In the
event of a loss of signal during automatic operation (e.g. safety gate is
opened), the manipulator stops with a safety stop 1.

Operator safety is not active in the test modes T1 (Manual Reduced Velocity)
and T2 (Manual High Velocity).

Safe operational

stop

The safe operational stop can be triggered via an input on the customer inter-
face. The state is maintained as long as the external signal is FALSE. If the
external signal is TRUE, the manipulator can be moved again. No acknowl-
edgement is required.

External safety

stop 1 and

external safety

stop 2

Safety stop 1 and safety stop 2 can be triggered via an input on the customer
interface. The state is maintained as long as the external signal is FALSE. If
the external signal is TRUE, the manipulator can be moved again. No ac-
knowledgement is required.

Tools and other equipment connected to the manipulator
must be integrated into the EMERGENCY STOP circuit

on the system side if they could constitute a potential hazard.
Failure to observe this precaution may result in death, severe physical inju-
ries or considerable damage to property.

Following a loss of signal, automatic operation must not
be resumed merely by closing the safeguard; it must first

additionally be acknowledged. It is the responsibility of the system integrator
to ensure this. This is to prevent automatic operation from being resumed in-
advertently while there are still persons in the danger zone, e.g. due to the
safety gate closing accidentally.

 The acknowledgement must be designed in such a way that an actual
check of the danger zone can be carried out first. Acknowledgement
functions that do not allow this (e.g. because they are automatically trig-
gered by closure of the safeguard) are not permissible.

 Failure to observe this may result in death to persons, severe physical in-
juries or considerable damage to property.
Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

2 Moving the robot
2 Moving the robot

2.1 Reading and interpreting robot controller messages

Overview of

messages

The controller communicates with the operator via the message window. It has
five different message types:

Overview of message types:

Fig. 2-1: Message window and message counter

1 Message window: the current message is displayed.

2 Message counter: number of messages of each message type.

Icon Type

Acknowledgement message

 Displays states that require confirmation by the operator be-
fore program execution is resumed (e.g. “Ackn. EMERGEN-
CY STOP”).

 An acknowledgement message always causes the robot to
stop or not to start.

Status message

 Status messages signal current controller states (e.g.
“EMERGENCY STOP”).

 Status messages cannot be acknowledged while the status is
active.

Notification message

 Notification messages provide information for correct opera-
tor control of the robot (e.g. “Start key required”).

 Notification messages can be acknowledged. They do not
need to be acknowledged, however, as they do not stop the
controller.

Wait message

 Wait messages indicate the event the controller is waiting for
(status, signal or time).

 Wait messages can be canceled manually by pressing the
“Simulate” button.

The command “Simulate” may only be used if there is no
risk of a collision or other hazards!
15 / 175Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

16 / 175

Robot Programming 1
Influence of

messages

Messages influence the functionality of the robot. An acknowledgement mes-
sage always causes the robot to stop or not to start. The message must be
acknowledged before the robot can be moved.

The command OK (acknowledge) represents a prompt to the operator, forcing
a conscious response.

Dealing with

messages

Messages are always displayed with the date and time in order to be able to
trace the exact time of the event.

Procedure for viewing and acknowledging messages:

1. Touch the message window (1) to expand the message list.

2. Acknowledge:

 Acknowledge individual messages with OK (2).

 Alternatively: acknowledge all messages with All OK (3).

3. Touching the top message again or an “X” on the left-hand edge of the
screen closes the message list.

2.2 Selecting and setting the operating mode

Operating modes

of a KUKA robot

 T1 (Manual Reduced Velocity)

 For test operation, programming and teaching

 Velocity in program mode max. 250 mm/s

 Velocity in jog mode max. 250 mm/s

 T2 (Manual High Velocity)

 For test operation

 Velocity in program mode corresponds to the programmed velocity!

 Jog mode: not possible.

 AUT (Automatic)

Dialog message

 Dialog messages are used for direct communication with the
operator, e.g. to ask the operator for information.

 A message window with buttons appears, offering various
possible responses.

An acknowledgeable message can be acknowledged with OK. All ac-
knowledgeable messages can be acknowledged at once with All OK.

Tips for dealing with messages:

Read attentively!

Read older messages first. A newer message could simply be a fol-
low-up to an older one.

 Do not simply press “All OK”.

 Particularly after booting: look through the messages. Display all mes-
sages (touching the message window expands the message list).

Fig. 2-2: Acknowledging messages
Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

2 Moving the robot
 For industrial robots without higher-level controllers

 Velocity in program mode corresponds to the programmed velocity!

 Jog mode: not possible.

 AUT EXT (Automatic External)

 For industrial robots with higher-level controllers (PLC)

 Velocity in program mode corresponds to the programmed velocity!

 Jog mode: not possible.

Safety instruc-

tions – operating

modes

Jog mode T1 and T2
Manual mode is the mode for setup work. Setup work is all the tasks that
have to be carried out on the robot system to enable automatic opera-
tion. These include:

 Teaching/programming

 Executing a program in jog mode (testing/verification)

New or modified programs must always be tested first in Manual Reduced Ve-
locity mode (T1).

In Manual Reduced Velocity mode (T1):

 Operator safety (safety gate) is inactive!

 If it can be avoided, there must be no other persons inside the safeguard-
ed area.

If it is necessary for there to be several persons inside the safeguarded ar-
ea, the following must be observed:

 All persons must have an unimpeded view of the robot system.

 Eye-contact between all persons must be possible at all times.

 The operator must be so positioned that he can see into the danger area
and get out of harm’s way.

In Manual High Velocity mode (T2):

 Operator safety (safety gate) is inactive!

 This mode may only be used if the application requires a test at a velocity
higher than Manual Reduced Velocity.

 Teaching is not permissible in this operating mode.

 Before commencing the test, the operator must ensure that the enabling
devices are operational.

 The operator must be positioned outside the danger zone.

 There should be no other persons inside the safeguarded area.

Operating modes Automatic and Automatic External

 Safety equipment and safeguards must be present and fully operational.

 All persons are outside the safeguarded area.

Procedure
If the operating mode is changed during operation, the drives are im-
mediately switched off. The industrial robot stops with a safety stop 2.
17 / 175Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

18 / 175

Robot Programming 1
1. On the KCP, turn the switch for the connection manager. The connection
manager is displayed.

2. Select the operating mode.

3. Return the switch for the connection manager to its original position.

The selected operating mode is displayed in the status bar of the smart-
PAD.
Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

2 Moving the robot
2.3 Moving individual robot axes

Description: Axis-

specific motion

Moving robot axes

 Move each axis individually in the plus and minus direction.

 The jog keys or Space Mouse of the KUKA smartPAD are used for this.

 The velocity can be modified (jog override: HOV).

 Jogging is only possible in T1 mode.

 The enabling switch must be pressed.

Principle The drives are activated by pressing the enabling switch. As soon as a jog key
or the Space Mouse is pressed, servo control of the robot axes starts and the
desired motion is executed.

Continuous motion and incremental motion are possible. The size of the incre-
ment must be selected in the status bar.

The following messages influence manual operation:

Fig. 2-3: Degrees of freedom of a KUKA robot

Message Cause Remedy

“Active com-
mands inhib-
ited”

A (STOP) message or state is present
which inhibits active commands. (e.g.
EMERGENCY STOP pressed or
drives not ready)

Release EMERGENCY STOP and/or
acknowledge messages in the mes-
sage window. As soon as an enabling
switch is pressed, the drives are avail-
able immediately.

“Software
limit switch –
A5”

The robot has moved to the software
limit switch of the axis indicated (e.g.
A5) in the direction indicated (+ or -).

Move the indicated axis in the opposite
direction.
19 / 175Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

20 / 175

Robot Programming 1
Safety instruc-

tions relating to

axis-specific

jogging

Operating mode
Manual operation of the robot is only permissible in T1 mode (Manual
Reduced Velocity). The maximum jog velocity in T1 is 250 mm/s. The op-
erating mode is set via the connection manager.

Enabling switches
In order to be able to jog the robot, an enabling switch must be pressed.
There are three enabling switches installed on the smartPAD. The en-
abling switches have three positions:

 Not pressed

 Center position

 Panic position

Software limit switches
The motion of the robot is also limited in axis-specific jogging by means
of the maximum positive and negative values of the software limit
switches.

Procedure:

Executing an

axis-specific

motion

1. Select Axis as the option for the jog keys.

2. Set jog override.

 If the message “Perform mastering” appears in the mes-
sage window, these limits can be exceeded. This can re-

sult in damage to the robot system!
Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

2 Moving the robot
3. Press the enabling switch into the center position and hold it down.

Axes A1 to A6 are displayed next to the jog keys.

4. Press the Plus or Minus jog key to move an axis in the positive or negative
direction.

Moving the robot

in emergencies

without the

controller

Description

The release device can be used to move the robot mechanically after an acci-
dent or malfunction. The release device can be used for the main axis drive
motors and, depending on the robot variant, also for the wrist axis drive mo-
tors. It is only for use in exceptional circumstances and emergencies (e.g. for
freeing people). After use of the release device, the affected motors must be
exchanged.

Procedure

Fig. 2-4: Release device

Warning!
The motors reach temperatures during operation which can cause burns to
the skin. Contact must be avoided. Appropriate safety precautions must be
taken, e.g. protective gloves must be worn.
21 / 175Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

22 / 175

Robot Programming 1
1. Switch off the robot controller and secure it (e.g. with a padlock) to prevent
unauthorized persons from switching it on again.

2. Remove the protective cap from the motor.

3. Push the release device onto the corresponding motor and move the axis
in the desired direction.

Labeling of the directions with arrows on the motors can be ordered as an
option. It is necessary to overcome the resistance of the mechanical motor
brake and any other loads acting on the axis.

Fig. 2-5: Procedure for using release device

Item Description

1 Motor A2 with protective cap fitted

2 Removing the protective cap from motor A2

3 Motor A2 with protective cap removed

4 Mounting the release device on motor A2

5 Release device

6 Sign (optional) indicating the direction of rotation

Warning!
Moving an axis with the release device can damage the motor brake. This
can result in personal injury and material damage. After using the release de-
vice, the affected motor must be exchanged.

Further information is contained in the robot operating instructions.
Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

2 Moving the robot
2.4 Coordinate systems in conjunction with robots

During the operator control, programming and start-up of industrial robots, the
coordinate systems are of major significance. The following coordinate sys-
tems are defined in the robot controller:

 WORLD | world coordinate system

 ROBROOT | robot base coordinate system

 BASE | base coordinate system

 FLANGE | flange coordinate system

 TOOL | tool coordinate system

Fig. 2-6: Coordinate systems on the KUKA robot

Name Location Use Special feature:

WORLD Freely
definable

Origin for ROB-
ROOT and BASE

Located in the robot base
in most cases.

ROB-
ROOT

Fixed in
the robot
base

Origin of the robot Defines the position of
the robot relative to
WORLD.

BASE Freely
definable

Tools, fixtures Defines the position of
the base relative to
WORLD.

FLANGE Fixed at
the robot
flange

Origin for TOOL Origin is the center of the
robot flange.

TOOL Freely
definable

Tools The origin of the TOOL
coordinate system is
called the “TCP”.

(TCP = Tool Center Point)
23 / 175Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

24 / 175

Robot Programming 1
2.5 Moving the robot in the world coordinate system

Motion in the

world coordinate

system

 The robot tool can be moved with reference to the coordinate axes of the
world coordinate system.

In this case, all robot axes move.

 The jog keys or Space Mouse of the KUKA smartPAD are used for this.

 By default, the world coordinate system is located in the base of the robot
(Robroot).

 The velocity can be modified (jog override: HOV).

 Jogging is only possible in T1 mode.

 The enabling switch must be pressed.

Space Mouse

 The Space Mouse allows intuitive motion of the robot and is the ideal
choice for jogging in the world coordinate system.

 The mouse position and degrees of freedom can be modified.

Principle of

jogging in the

world coordinate

system

A robot can be moved in a coordinate system in two different ways:

 Translational (in a straight line) along the orientation directions of the co-
ordinate system: X, Y, Z

 Rotational (turning/pivoting) about the orientation directions of the coordi-
nate system: angles A, B and C

Fig. 2-7: Principle of jogging in the world coordinate system
Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

2 Moving the robot
In the case of a motion command (e.g. jog key pressed), the controller first cal-
culates a path. The starting point of the path is the tool center point (TCP). The
direction of the path is specified by the world coordinate system. The controller
then controls the axes to guide the tool along this path (translation) or about it
(rotation).

Advantages of using the world coordinate system:

 The motion of the robot is always predictable.

 The motions are always unambiguous, as the origin and coordinate axes
are always known.

 The world coordinate system can always be used with a mastered robot.

 The Space Mouse allows intuitive operator control.

Using the Space Mouse

 All motion types are possible with the Space Mouse:

 Translational: by pushing and pulling the Space Mouse

 Rotational: by turning the Space Mouse

Fig. 2-8: Cartesian coordinate system

Fig. 2-9: Example: motion to the left
25 / 175Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

26 / 175

Robot Programming 1
 The Space Mouse position can be adapted to the position of the operator
relative to the robot.

Executing a

translational

motion (world)

1. Set the KCP position by moving the slider control (1).

Fig. 2-10: Example: rotational motion about Z – angle A

Fig. 2-11: Space Mouse: 0° and 270°
Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

2 Moving the robot
2. Select World as the option for the Space Mouse.

3. Set jog override.

4. Press the enabling switch into the center position and hold it down.
27 / 175Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

28 / 175

Robot Programming 1
5. Move in the corresponding direction using the Space Mouse.

6. Alternatively, the jog keys can be used:

2.6 Moving the robot in the tool coordinate system

Jogging in the

tool coordinate

system

Fig. 2-12: Robot tool coordinate system
Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

2 Moving the robot
 In the case of jogging in the tool coordinate system, the robot can be
moved relative to the coordinate axes of a previously calibrated tool.

The coordinate system is thus not fixed (cf. world/base coordinate sys-
tem), but guided by the robot.

In this case, all required robot axes move. Which axes these are is deter-
mined by the system and depends on the motion.

The origin of the tool coordinate system is called the TCP and corresponds
to the working point of the tool.

 The jog keys or Space Mouse of the KUKA smartPAD are used for this.

 There are 16 tool coordinate systems to choose from.

 The velocity can be modified (jog override: HOV).

 Jogging is only possible in T1 mode.

 The enabling switch must be pressed.

Principle of

jogging – tool

A robot can be moved in a coordinate system in two different ways:

 Translational (in a straight line) along the orientation directions of the co-
ordinate system: X, Y, Z

 Rotational (turning/pivoting) about the orientation directions of the coordi-
nate system: angles A, B and C

Advantages of using the tool coordinate system:

 The motion of the robot is always predictable as soon as the tool coordi-
nate system is known.

 It is possible to move in the tool direction or to orient about the TCP.

The tool direction is the working or process direction of the tool: the direction
in which adhesive is dispensed from an adhesive nozzle, the direction of
gripping when gripping a workpiece, etc.

In the case of jogging, uncalibrated tool coordinate systems always
correspond to the flange coordinate system.

Fig. 2-13: Cartesian coordinate system
29 / 175Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

30 / 175

Robot Programming 1
Procedure 1. Select Tool as the coordinate system to be used.

2. Select the tool number.

.

3. Set jog override.
Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

2 Moving the robot
4. Press the enabling switch into the center position and hold it down.

5. Move the robot using the jog keys.

6. Alternatively: Move in the corresponding direction using the Space Mouse.
31 / 175Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

32 / 175

Robot Programming 1
2.7 Moving the robot in the base coordinate system

Motion in the

base coordinate

system

Description of bases

 The robot tool can be moved with reference to the coordinate axes of the
base coordinate system. Base coordinate systems can be calibrated indi-
vidually and are often oriented along the edges of workpieces, workpiece
locations or pallets. This allows convenient jogging!

In this case, all required robot axes move. Which axes these are is deter-
mined by the system and depends on the motion.

 The jog keys or Space Mouse of the KUKA smartPAD are used for this.

 There are 32 base coordinate systems to choose from.

 The velocity can be modified (jog override: HOV).

 Jogging is only possible in T1 mode.

 The enabling switch must be pressed.

Principle of

jogging – base

A robot can be moved in a coordinate system in two different ways:

 Translational (in a straight line) along the orientation directions of the co-
ordinate system: X, Y, Z

Fig. 2-14: Jogging in the base coordinate system

Fig. 2-15: Cartesian coordinate system
Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

2 Moving the robot
 Rotational (turning/pivoting) about the orientation directions of the coordi-
nate system: angles A, B and C

In the case of a motion command (e.g. jog key pressed), the controller first cal-
culates a path. The starting point of the path is the tool center point (TCP). The
direction of the path is specified by the world coordinate system. The controller
then controls the axes to guide the tool along this path (translation) or about it
(rotation).

Advantages of using the base coordinate system:

 The motion of the robot is always predictable as soon as the base coordi-
nate system is known.

 Here also, the Space Mouse allows intuitive operator control. A precondi-
tion is that the operator is standing correctly relative to the robot or the
base coordinate system.

Procedure 1. Select Base as the option for the jog keys.

If the correct tool coordinate system is also set, re-orien-
tation about the TCP is possible in the base coordinate

system.
33 / 175Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

34 / 175

Robot Programming 1
2. Select tool and base.

3. Set jog override.

4. Press the enabling switch into the center position and hold it down.
Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

2 Moving the robot
5. Move in the desired direction using the jog keys.

6. Alternatively, jogging can be carried out using the Space Mouse.

Stop reactions Stop reactions of the industrial robot are triggered in response to operator ac-
tions or as a reaction to monitoring functions and error messages. The follow-
ing tables show the different stop reactions according to the operating mode
that has been set.

Term Description

Safe operational stop The safe operational stop is a standstill monitoring function. It does not
stop the robot motion, but monitors whether the robot axes are station-
ary. If these are moved during the safe operational stop, a safety stop
STOP 0 is triggered.

The safe operational stop can also be triggered externally.

When a safe operational stop is triggered, the robot controller sets an
output to the field bus. The output is set even if not all the axes were sta-
tionary at the time of triggering, thereby causing a safety stop STOP 0 to
be triggered.

Safety STOP 0 A stop that is triggered and executed by the safety controller. The safety
controller immediately switches off the drives and the power supply to
the brakes.

Note: This stop is called safety STOP 0 in this document.
35 / 175Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

36 / 175

Robot Programming 1
Safety STOP 1 A stop that is triggered and monitored by the safety controller. The brak-
ing process is performed by the non-safety-oriented part of the robot
controller and monitored by the safety controller. As soon as the manip-
ulator is at a standstill, the safety controller switches off the drives and
the power supply to the brakes.

When a safety STOP 1 is triggered, the robot controller sets an output to
the field bus.

The safety STOP 1 can also be triggered externally.

Note: This stop is called safety STOP 1 in this document.

Safety STOP 2 A stop that is triggered and monitored by the safety controller. The brak-
ing process is performed by the non-safety-oriented part of the robot
controller and monitored by the safety controller. The drives remain acti-
vated and the brakes released. As soon as the manipulator is at a stand-
still, a safe operational stop is triggered.

When a safety STOP 2 is triggered, the robot controller sets an output to
the field bus.

The safety STOP 2 can also be triggered externally.

Note: This stop is called safety STOP 2 in this document.

Stop category 0 The drives are deactivated immediately and the brakes are applied. The
manipulator and any external axes (optional) perform path-oriented
braking.

Note: This stop category is called STOP 0 in this document.

Stop category 1 The manipulator and any external axes (optional) perform path-main-
taining braking. The drives are deactivated after 1 s and the brakes are
applied.

Note: This stop category is called STOP 1 in this document.

Stop category 2 The drives are not deactivated and the brakes are not applied. The
manipulator and any external axes (optional) are braked with a path-
maintaining braking ramp.

Note: This stop category is called STOP 2 in this document.

Term Description
Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

2 Moving the robot
2.8 Exercise: Operator control and jogging

Aim of the

exercise

On successful completion of this exercise, you will be able to carry out the fol-
lowing activities:

 Switch the robot controller on and off

 Basic operator control of the robot using the KCP

 Jog the robot (axis-specific and in the WORLD coordinate system) by
means of the jog keys and Space Mouse

 Interpret and reset first simple system messages

Preconditions The following are preconditions for successful completion of this exercise:

 Completion of safety instruction

 Theoretical knowledge of the general operator control of a KUKA industrial
robot system

 Theoretical knowledge of axis-specific jogging and jogging in the WORLD
coordinate system

Task description Carry out the following tasks:

1. Switch the control cabinet on and wait for the system to boot.

2. Release and acknowledge the EMERGENCY STOP.

3. Ensure that T1 mode is set.

4. Activate axis-specific jogging.

5. Perform axis-specific jogging of the robot with various different jog over-
ride (HOV) settings using the jog keys and Space Mouse.

Trigger T1, T2 AUT, AUT EXT

Start key released STOP 2 -

STOP key pressed STOP 2

Drives OFF STOP 1

“Motion enable” input
drops out

STOP 2

Robot controller switched
off (power failure)

STOP 0

Internal error in non-
safety-oriented part of the
robot controller

STOP 0 or STOP 1

(dependent on the cause of the error)

Operating mode changed
during operation

Safety stop 2

Safety gate opened (oper-
ator safety)

- Safety stop 1

Releasing the enabling
switch

Safety stop 2 -

Enabling switch pressed
fully down or error

Safety stop 1 -

E-STOP pressed Safety stop 1

Error in safety controller
or periphery of the safety
controller

Safety stop 0

Note!
Safety instruction must be completed and documented before commencing
this exercise!
37 / 175Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

38 / 175

Robot Programming 1
6. Explore the motion range of the individual axes, being careful to avoid any
obstacles present, such as a table or cube magazine with fixed tool (ac-
cessibility investigation).

7. On reaching the software limit switches, observe the message window.

8. In joint (axis-specific) mode, move the tool (gripper) to the reference tool
(black metal tip) from several different directions.

9. Repeat this procedure in the World coordinate system.

Questions on the exercise

1. How can messages be acknowledged?

. .

. .

2. Which icon represents the world coordinate system?

3. What is the name of the velocity setting for jog mode?

. .

4. What operating modes are there?

. .

. .

a) b) c) d)
Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

2 Moving the robot
2.9 Jogging with a fixed tool

Advantages and

areas of appli-

cation

Some production and machining processes require the robot to handle the
workpiece and not the tool. The advantage is that it is not necessary to set
the workpiece down first before it can be machined – thus saving on clamping
fixtures. This is the case, for example, for:

 Adhesive bonding applications

 Welding applications

 etc.

Modified motion

sequence with

fixed tool

Although the tool is a fixed (non-mobile) object, it nonetheless has a tool ref-
erence point with an associated coordinate system. In this case, the reference
point is called the external TCP. Since it is a non-mobile coordinate system,
the data are managed in the same way as a base coordinate system and cor-
respondingly saved as Base!

The (mobile) workpiece, on the other hand, is saved as Tool. This means that
motion along the workpiece edges relative to the TCP is possible!

Procedure for

jogging with a

fixed tool

1. Select the robot-guided workpiece in the tool selection window.

Fig. 2-16: Example of a fixed tool

In order to program such an application successfully,
both the external TCP of the fixed tool and the workpiece

must be calibrated.

It must be taken into consideration that the motions dur-
ing jogging with a fixed tool are relative to the external

TCP!

Fig. 2-17: Selecting the external TCP in the Options menu
39 / 175Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

40 / 175

Robot Programming 1
2. Select the fixed tool in the base selection window.

3. Set IpoMode selection to “External tool”.

4. Set Tool as the option for the jog keys/Space Mouse:

 Set tool in order to be able to jog in the coordinate system of the work-
piece.

 Set base in order to be able to jog in the coordinate system of the ex-
ternal tool.

5. Set jog override

6. Press the enabling switch into the center position and hold it down.

7. Move in the desired direction using the jog keys/Space Mouse.

Selecting Ext. tool in the option window Jog options switches the controller:
all motions are now carried out relative to the external TCP and not to a robot-
guided tool.

2.10 Exercise: Jogging with a fixed tool

Aim of the

exercise

On successful completion of this exercise, you will be able to carry out the fol-
lowing activities:

 Jog a robot guiding a workpiece relative to a fixed tool

Preconditions The following are preconditions for successful completion of this exercise:

 Theoretical knowledge of the general operator control of a KUKA industrial
robot system

 Theoretical knowledge of jogging with an external tool

Task description 1. Set the tool coordinate system “Panel”.

2. Set the base coordinate system “External pen”.

3. In the option window “Jog options”, set “Ext. tool”.

4. Move the panel to the external pen.

5. Move and orient the panel at the external pen. Test the differences be-
tween Tool and Base.

6. In the option window “Jog options”, set “Flange”.

7. Move and orient the panel at the external pen.
Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

3 Starting up the robot
3 Starting up the robot

3.1 Mastering principle

Why is mastering

carried out?

An industrial robot can only be used optimally if it is also completely and cor-
rectly mastered. Only then can it exploit its pose accuracy and path accuracy
to the full, or be moved using programmed motions at all.

A complete mastering operation includes the mastering of every single axis.
With the aid of a technical tool (EMD = Electronic Mastering Device), a refer-
ence value (e.g. 0°) is assigned to every axis in its mechanical zero position.
Since, in this way, the mechanical and electrical positions of the axis are
matched, every axis receives an unambiguous angle value.

The mastering position is similar, but not identical, for all robots. The exact po-
sitions may even vary between individual robots of a single robot type.

Angle values of the mechanical zero position (= reference values)

During mastering, a reference value is assigned to every axis.

Fig. 3-1: Positions of the mastering cartridges

Axis
 “Quantec” robot

generation

Other robot types (e.g.

Series 2000, KR 16, etc.)

A1 -20° 0°

A2 -120° -90°

A3 +120° +90°

A4 0° 0°

A5 0° 0°

A6 0° 0°
41 / 175Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

42 / 175

Robot Programming 1
When is

mastering carried

out?

A robot must always be mastered. Mastering must be carried out in the follow-
ing cases:

 During commissioning

 Following maintenance work to components that are involved in the acqui-
sition of position values (e.g. motor with resolver or RDC)

 If robot axes are moved without the controller (e.g. by means of a release
device)

 Following mechanical repairs/problems, the robot must first be unmas-
tered before mastering can be carried out:

 After exchanging a gear unit.

 After an impact with an end stop at more than 250 mm/s

 After a collision.

Safety instruc-

tions for

mastering

The functionality of the robot is severely restricted if robot axes are not mas-
tered:

 Program mode is not possible: programmed points cannot be executed.

 No translational jogging: motions in the coordinate systems are not possi-
ble.

 Software limit switches are deactivated.

Performing

mastering

Mastering is carried out by determining the mechanical zero point of the axis.
The axis is moved until the mechanical zero point is reached. This is the case
when the gauge pin has reached the lowest point in the reference notch. Every
axis is thus equipped with a mastering cartridge and a mastering mark.

Before carrying out maintenance work, it is generally a
good idea to check the current mastering.

Warning!
The software limit switches of an unmastered robot are

deactivated. The robot can hit the end stop buffers, thus damaging them and
making it necessary to exchange them. An unmastered robot must not be
jogged, if at all avoidable. If it must be jogged, the jog override must be re-
duced as far as possible.

Fig. 3-2: EMD in operation
Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

3 Starting up the robot
3.2 Mastering the robot

Robot mastering

options

Why teach the

offset?

Due to the weight of the tool mounted on the flange, the robot is subjected to
a static load. Material-related elasticity of the components and gear units can
result in the robot positions being different for a loaded robot and an unloaded
robot. These differences of just a few increments affect the accuracy of the ro-
bot.

Fig. 3-3: EMD mastering sequence

1 EMD (Electronic Mastering
Device)

4 Reference notch

2 Gauge cartridge 5 Premastering mark

3 Gauge pin

Fig. 3-4: Mastering options
43 / 175Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

44 / 175

Robot Programming 1
“Teach offset” is carried out with a load. The difference from the first mastering
(without a load) is saved.

If the robot is operated with different loads, the function “Teach offset” must be
carried out for every load. In the case of grippers used for picking up heavy
workpieces, “Teach offset” must be carried out for the gripper both with and
without the workpiece.

Only a robot mastered with load correction has the required accuracy. For this
reason, an offset must be taught for every load case! A precondition is that the
geometric calibration of the tool has already been carried out and that the tool
has thus been assigned a tool number.

Procedure for

first mastering

1. Move robot to the pre-mastering position.

Fig. 3-5: Teach offset

Mastery.logMastery.logMastering offset values
file

The calculated offsets are saved in the file Mastery.log. The file is located in
the directory C:\KRC\ROBOTER\LOG on the hard drive and contains the
specific mastering data:

 Time stamp (date, time)

 Axis

 Serial number of the robot

 Tool number

 Offset value (Encoder Difference) in degrees

 Sample Mastery.log:

Date: 22.03.11 Time: 10:07:10
Axis 1 Serialno.: 863334 Tool Teaching for Tool No 5
(Encoder Difference: -0.001209)

Date: 22.03.11 Time: 10:08:44
Axis 2 Serialno.: 863334 Tool Teaching for Tool No 5
Encoder Difference: 0.005954)

...

First mastering may only be carried out if the robot is
without a load. There must be no tool or supplementary

load mounted.
Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

3 Starting up the robot
2. Select Start-up > Master > EMD > With load correction > First master-
ing in the main menu.

A window opens. All axes to be mastered are displayed. The axis with the
lowest number is highlighted.

3. Remove the protective cap of the gauge cartridge on the axis highlighted
in the window. (Turned around, the EMD can be used as a screwdriver.)
Screw the EMD onto the gauge cartridge.

Then attach the signal cable to the EMD and plug into connector X32 on
the robot junction box.

Fig. 3-6: Examples of the pre-mastering position

Fig. 3-7: EMD screwed onto gauge cartridge

Fig. 3-8: EMD cable, connected
45 / 175Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

46 / 175

Robot Programming 1
4. Press Master.

5. Press the enabling switch into the center position and hold it down, and
press and hold down the Start key.

When the EMD has passed through the lowest point of the reference
notch, the mastering position is reached. The robot stops automatically.
The values are saved. The axis is no longer displayed in the window.

6. Remove the signal cable from the EMD. Then remove the EMD from the
gauge cartridge and replace the protective cap.

7. Repeat steps 2 to 5 for all axes to be mastered.

8. Close the window.

9. Remove signal cable from connection X32.

Procedure for

teaching an offset

“Teach offset” is carried out with a load. The difference from the first mastering
is saved.

1. Move the robot into the pre-mastering position.

2. Select Start-up > Master > EMD > With load correction > Teach offset
in the main menu.

3. Enter tool number. Confirm with Tool OK.

A window opens. All axes for which the tool has not yet been taught are
displayed. The axis with the lowest number is highlighted.

4. Remove the protective cap of the gauge cartridge on the axis highlighted
in the window. Screw the EMD onto the gauge cartridge. Then attach sig-
nal cable to EMD and plug into connector X32 on the base frame junction
box.

5. Press Learn.

6. Press an enabling switch and the Start key.

When the EMD detects the lowest point of the reference notch, the mas-
tering position is reached. The robot stops automatically. A window opens.
The deviation of this axis from the first mastering is indicated in degrees
and increments.

7. Click OK to confirm. The axis is no longer displayed in the window.

Caution!
The EMD must always be screwed onto the gauge cartridge without the sig-
nal cable attached. Only then may the signal cable be attached to the EMD.
Otherwise, the signal cable could be damaged.
Similarly, when removing the EMD, the signal cable must always be removed
from the EMD first. Only then may the EMD be removed from the gauge car-
tridge.
After mastering, remove the signal cable from connection X32. Failure to do
so may result in interference signals or damage.

Fig. 3-9: Enabling switch and start key
Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

3 Starting up the robot
8. Remove the signal cable from the EMD. Then remove the EMD from the
gauge cartridge and replace the protective cap.

9. Repeat steps 3 to 7 for all axes to be mastered.

10. Remove signal cable from connection X32.

11. Exit the window by means of Close.

Procedure for set/

check load

mastering with

offset

Load mastering with offset is carried out with a load. The first mastering is cal-
culated.

1. Move robot to the pre-mastering position.

2. In the main menu, select Start-up > Master > EMD > With load correc-
tion > Master load > With offset.

3. Enter tool number. Confirm with Tool OK.

4. Remove the cover from connection X32 and connect the signal cable.

5. Remove the protective cap of the gauge cartridge on the axis highlighted
in the window. (Turned around, the EMD can be used as a screwdriver.)

6. Screw the EMD onto the gauge cartridge.

7. Attach the signal cable to the EMD, aligning the red dot on the connector
with the groove in the EMD.

8. Press Check.

9. Hold down an enabling switch and press the Start key.

10. If required, press “Save” to save the values. The old mastering values are
deleted. To restore a lost first mastering, always save the values.

11. Remove the signal cable from the EMD. Then remove the EMD from the
gauge cartridge and replace the protective cap.

12. Repeat steps 4 to 10 for all axes to be mastered.

13. Close the window.

14. Remove signal cable from connection X32.

3.3 Exercise: Robot mastering

Aim of the

exercise

On successful completion of this exercise, you will be able to carry out the fol-
lowing activities:

 Move to pre-mastering position

 Select the correct mastering type

 Work with the “Electronic Mastering Device” (EMD)

 Master all axes using the EMD

Preconditions The following are preconditions for successful completion of this exercise:

 Theoretical knowledge of the general procedure for mastering

 Theoretical knowledge of the location of the pre-mastering position

1 Axis not in pre-mastering position

2 Axis in pre-mastering position
47 / 175Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

48 / 175

Robot Programming 1
 Correct connection of the EMD to the robot

 Mastering via the Setup menu

Task description Carry out the following tasks:

1. Unmaster all robot axes

2. Move all robot axes to the pre-mastering position in joint mode

3. Perform load mastering with offset for all axes using the EMD

4. Display the actual position in joint mode.

Questions on the exercise

1. Why is mastering carried out?

. .

. .

2. Specify the angles of all 6 axes in the mechanical zero position.

3. What must be taken into consideration with an unmastered robot?

. .

. .

. .

4. Which mastering tool should be used for preference?

. .

. .

5. What is the danger of moving the robot with the EMD (dial gauge) screwed
in place?

. .

. .

A1: A2:

A3: A4:

A5: A6:
Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

3 Starting up the robot
3.4 Loads on the robot

3.4.1 Tool load data

What are tool load

data?

Tool load data refer to all the loads mounted on the robot flange. They form an
additional mass mounted on the robot that must also be moved together with
the robot.

The values to enter are the mass, the position of the center of gravity (point on
which the mass acts) and the mass moments of inertia with the corresponding
principal inertia axes.

The payload data must be entered in the robot controller and assigned to the
correct tool.

Exception: If the payload data have already been transferred to the robot con-
troller by KUKA.LoadDataDetermination, no manual entry is required.

Tool load data can be obtained from the following sources:

 Software option KUKA.LoadDetect (only for payloads)

 Manufacturer information

 Manual calculation

 CAD programs

Effects of the load

data

The entered load data affect a wide range of controller processes. These in-
clude, for example:

 Control algorithms (calculation of acceleration)

 Velocity and acceleration monitoring

Fig. 3-10: Loads on the robot

1 Payload 3 Supplementary load on axis 2

2 Supplementary load on axis 3 4 Supplementary load on axis 1
49 / 175Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

50 / 175

Robot Programming 1
 Torque monitoring

 Collision detection

 Energy monitoring

 and many more.

It is thus very important that the load data are entered correctly. If the robot
executes its motions with correctly entered load data...

 one profits from its great accuracy.

 motion sequences with optimal cycle times are possible.

 the robot has a long service life (due to reduced wear).

Procedure 1. In the main menu, select Setup > Measure > Tool > Payload data.

2. Enter the number of the tool in the box Tool no.. Confirm with Continue.

3. Enter the payload data:

 Box M: Mass

 Boxes X, Y, Z: Position of the center of gravity relative to the flange

 Boxes A, B, C: Orientation of the principal inertia axes relative to the
flange

 Boxes JX, JY, JZ: Mass moments of inertia

(JX is the inertia about the X axis of the coordinate system that is ro-
tated relative to the flange by A, B and C. JY and JZ are the analogous
inertia about the Y and Z axes.)

4. Confirm with Continue.

5. Press Save.

3.4.2 Supplementary loads on the robot

Supplementary

loads on the

robot

Supplementary loads are additional components mounted on the base frame,
link arm or arm, e.g.:

 Energy supply system

 Valves

 Materials feeder

 Materials supply
Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

3 Starting up the robot
The supplementary load data must be entered in the robot controller. Required
specifications include:

 Mass (m) in kg

 Distance from center of mass to the reference system (X, Y and Z) in mm

 Orientation of the principal inertia axes relative to the reference system (A,
B and C) in degrees (°)

 Mass moments of inertia about the inertia axes (Jx, Jy and Jz) in kgm²

Reference systems of the X, Y and Z values for each supplementary load:

Supplementary load data can be obtained from the following sources:

 Manufacturer information

 Manual calculation

 CAD programs

Influence of the

supplementary

loads on the

robot motion

Specification of the load data influences the robot motion in various ways:

 Path planning

 Accelerations

 Cycle time

 Wear

Fig. 3-11: Supplementary loads on the robot

Load Reference system

Supplementary load
A1

ROBROOT coordinate system

A1 = 0°

Supplementary load
A2

ROBROOT coordinate system

A2 = -90°

Supplementary load
A3

FLANGE coordinate system

A4 = 0°, A5 = 0°, A6 = 0°

If a robot is operated with incorrect load data or an un-
suitable load, this can result in danger to life and limb

and/or substantial material damage.
51 / 175Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

52 / 175

Robot Programming 1
Procedure 1. In the main menu, select Setup > Measure > Supplementary load data.

2. Enter the number of the axis on which the supplementary load is to be
mounted. Confirm with Continue.

3. Enter the load data. Confirm with Continue.

4. Press Save.

3.5 Tool calibration

Description Tool calibration means the generation of a coordinate system which has its or-
igin in a reference point of the tool. This reference point is called the TCP (Tool
Center Point); the coordinate system is the TOOL coordinate system.

Tool calibration thus consists of calibration...

 of the TCP (origin of the coordinate system).

 of the orientation/alignment of the coordinate system.

During calibration, the distance between the origin of the tool coordinate sys-
tem (in X, Y and Z) and the flange coordinate system, and their rotation relative
to one another (angles A, B and C), is saved.

Advantages If a tool has been calibrated precisely, this has the following practical advan-
tages for the operating and programming personnel:

 Improved jogging

 Reorientation about the TCP (e.g. tool tip) is possible.

A maximum of 16 TOOL coordinate systems can be
saved. (Variable: TOOL_DATA[1…16].

Fig. 3-12: TCP calibration principle
Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

3 Starting up the robot
 Moving the robot in the tool direction

 Use during motion programming

 The programmed velocity is maintained at the TCP along the path.

Fig. 3-13: Reorientation about the TCP

Fig. 3-14: Tool working direction
53 / 175Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

54 / 175

Robot Programming 1
 Furthermore, a defined orientation along the path is possible.

Fig. 3-15: Program mode with TCP

Fig. 3-16: Examples of calibrated tools
Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

3 Starting up the robot
Tool calibration

options

Tool calibration consists of 2 steps:

TCP calibration:

XYZ 4-point

method

The TCP of the tool to be calibrated is moved to a reference point from 4 dif-
ferent directions. The reference point can be freely selected. The robot con-
troller calculates the TCP from the different flange positions.

Procedure for XYZ 4-point method:

1. Select the menu Setup > Measure > Tool > XYZ 4-point.

2. Assign a number and a name for the tool to be calibrated. Confirm with
Next.

3. Move the TCP to a reference point. Press the Calibrate softkey and con-
firm the dialog “Apply current position? Resuming calibration.” with Yes.

4. Move the TCP to the reference point from a different direction. Press Cal-
ibrate again and answer the dialog with Yes.

Step Description

1

Definition of the origin of the TOOL coordinate system

The following methods are available:

 XYZ 4-point

 XYZ Reference

2

Definition of the orientation of the TOOL coordinate sys-
tem

The following methods are available:

 ABC World

 ABC 2-point

Alterna-
tive

Direct entry of the values for the distance from the flange cen-
ter point (X,Y,Z) and the rotation (A, B, C).

 Numeric input

The 4 flange positions at the reference point must be sufficiently dif-
ferent from one another and must not lie in a plane.
55 / 175Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

56 / 175

Robot Programming 1
5. Repeat step 4 twice.

6. The load data entry window is opened. Enter the load data correctly and
confirm with Next.

7. The window with the calculated X, Y and Z values for the TCP opens and
the calibration inaccuracy can be read under “Errors”. Data can be saved
directly by pressing Save.

TCP calibration:

XYZ Reference

method

In the case of the XYZ Reference method, a new tool is calibrated with a tool
that has already been calibrated. The robot controller compares the flange po-
sitions and calculates the TCP of the new tool.

Procedure

1. A precondition here is that a calibrated tool is mounted on the flange and
that the data of the TCP are known.

2. In the main menu, select Start-up > Calibrate > Tool > XYZ Reference.

3. Assign a number and a name for the new tool. Confirm with Next.

4. Enter the TCP data of the calibrated tool. Confirm with Next.

Fig. 3-17: XYZ 4-Point method

Fig. 3-18
Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

3 Starting up the robot
5. Move the TCP to a reference point. Press Calibrate. Confirm with Next.

6. Move the tool away and remove it. Mount the new tool.

7. Move the TCP of the new tool to the reference point. Press Calibrate.
Confirm with Next.

8. Press Save. The data are saved and the window is closed.

Or press Load data. The data are saved and a window is opened in which the
payload data can be entered.

Orientation

calibration: ABC

World method

The axes of the TOOL coordinate system are aligned parallel to the axes of
the WORLD coordinate system. This communicates the orientation of the
TOOL coordinate system to the robot controller.

There are 2 variants of this method:

 5D: Only the tool direction is communicated to the robot controller. By de-
fault, the tool direction is the X axis. The directions of the other axes are
defined by the system and cannot be detected easily by the user.

Area of application: e.g. MIG/MAG welding, laser cutting or waterjet cutting

 6D: The directions of all 3 axes are communicated to the robot controller.

Area of application: e.g. for weld guns, grippers or adhesive nozzles

Procedure for ABC World method

a. In the main menu, select Start-up > Calibrate > Tool > ABC World.

b. Enter the number of the tool. Confirm with Next.

c. Select a variant in the box 5D/6D. Confirm with Next.

d. If 5D is selected:

Align +XTOOL parallel to -ZWORLD. (+XTOOL = tool direction)

e. If 6D is selected:

Align +XTOOL parallel to -ZWORLD. (+XTOOL = tool direction)

Fig. 3-19: ABC World method
57 / 175Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

58 / 175

Robot Programming 1
Align +YTOOL parallel to +YWORLD. (+XTOOL = tool direction)

Align +ZTOOL parallel to +XWORLD. (+XTOOL = tool direction)

f. Confirm with Calibrate. Confirm the message “Apply current position?
Resuming calibration.” with Yes.

g. Another window opens. The load data must be entered here.

h. Then complete the operation with Next and Save.

i. Close the menu.

Orientation

calibration: ABC

2-point method

The axes of the TOOL coordinate system are communicated to the robot con-
troller by moving to a point on the X axis and a point in the XY plane.

This method is used if it is necessary to define the axis directions with partic-
ular precision.

1. A precondition is that the TCP has already been calibrated by means of
the XYZ method.

2. In the main menu, select Start-up > Calibrate > Tool > ABC 2-point.

3. Enter the number of the mounted tool. Confirm with Next.

The following procedure applies if the tool direction is the default tool
direction (= X axis). If the tool direction has been changed to Y or Z,
the procedure must also be changed accordingly.

Fig. 3-20: ABC 2-point method
Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

3 Starting up the robot
4. Move the TCP to any reference point. Press Calibrate. Confirm with Next.

5. Move the tool so that the reference point on the X axis has a negative X
value (i.e. move against the tool direction). Press Calibrate. Confirm with
Next.

6. Move the tool so that the reference point in the XY plane has a negative Y
value. Press Calibrate. Confirm with Next.

7. Either press Save. The data are saved and the window is closed.

Or press Load data. The data are saved and a window is opened in which
the payload data can be entered.

Gripper safety

instructions for

training mode

Great care must be taken when clamping workpieces (cube, pen).

Fig. 3-21: Crushing hazards on the training gripper

Warning!
When using the gripper system there is a risk of crushing

and cutting. Anyone using the gripper must ensure that no part of the body
can be crushed by the gripper.
59 / 175Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

60 / 175

Robot Programming 1
The collision protection device is triggered in the event of a collision.

The robot can be moved clear after the collision protection device has been
triggered during a collision. One course participant presses the button (1) and
keeps all parts of his/her body well away from the robot, the collision protection
device and the gripper. Before moving the robot clear, the second participant
ensures that no-one will be put at risk by the motion of the robot.

Fig. 3-22: Clamping objects in the training gripper

Item Comments

1 Clamping the cube

2 Clamped cube

3 Clamping a pen

4 Clamped pen
Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

3 Starting up the robot
3.6 Exercise: Tool calibration, pen

Aim of the

exercise

On successful completion of this exercise, you will be able to carry out the fol-
lowing activities:

 Calibration of a tool using the XYZ 4-Point and ABC World methods

 Activation of a calibrated tool

 Moving the robot in the tool coordinate system

 Moving the robot in the tool direction

 Reorientation of the tool about the Tool Center Point (TCP)

Preconditions The following are preconditions for successful completion of this exercise:

 Theoretical knowledge of the various TCP calibration methods, especially
the XYZ 4-Point method

 Theoretical knowledge of the various tool orientation calibration methods,
especially the ABC World method

Fig. 3-23: Button for clearing the collision protection device
61 / 175Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

62 / 175

Robot Programming 1
 Theoretical knowledge of robot load data and how to enter them

Task description Carry out the following tasks: pen calibration

1. Calibrate the TCP of the pen using the XYZ 4-Point method. Use the black
metal tip as the reference point. Remove the uppermost pen from the pen
magazine and clamp it in the gripper. Use the tool number 2 and assign
the name Pen1. The tolerance should not exceed 0.95 mm.

2. Save the tool data.

3. Calibrate the tool orientation using the ABC World 5D method.

4. Enter the load data.

Load data for the gripper with pen as tool number 2:

5. Save the TOOL data and test the robot motion with the pen in the TOOL
coordinate system

Questions on the exercise

1. Why should a robot-guided tool be calibrated?

. .

. .

1 Payload 3 Supplementary load on axis 2

2 Supplementary load on axis 3 4 Supplementary load on axis 1

Mass:

M = 7.32 kg

Center of mass:

X= 21 mm Y= 21 mm Z= 23 mm

Orientation:

A = 0° B = 0° C = 0°

Moments of inertia:

JX = 0 kgm2 JY = 0.2 kgm2 JZ = 0.3 kgm2
Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

3 Starting up the robot
 .

2. What is calculated using the XYZ 4-Point method?

 .

 .

3. What tool calibration methods are there?

 .

 .

 .

 .
63 / 175Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

64 / 175

Robot Programming 1
3.7 Exercise: Tool calibration of gripper, 2-point method

Aim of the

exercise

On successful completion of this exercise, you will be able to carry out the fol-
lowing activities:

 Tool calibration using the XYZ 4-point and ABC 2-point methods

 Activation of a calibrated tool

 Moving the robot in the tool coordinate system

 Moving the robot in the tool direction

 Reorientation of the tool about the Tool Center Point (TCP)

Preconditions The following are preconditions for successful completion of this exercise:

 Theoretical knowledge of the various TCP calibration methods, especially
the 2-point method

 Theoretical knowledge of robot load data and how to enter them

Task description Carry out the following tasks: Gripper calibration to number ...

1. Calibrate the TCP of the gripper using the XYZ 4-point method as illustrat-
ed:

2. Calibrate the orientation of the gripper coordinate system using the ABC
2-point method.

3. Enter the load data.

Load data for the gripper:

4. Save the TOOL data and test jogging with the gripper in the TOOL coordi-
nate system.

Alternatively, the gripper can also be calibrated by means of numeric input:

Mass:

M = 6.68 kg

Center of mass:

X= 23 mm Y= 11 mm Z= 41 mm

Orientation:

A = 0° B = 0° C = 0°

Moments of inertia:

JX = 0 kgm2 JY = 0.4 kgm2 JZ = 0.46 kgm2

X Y Z A B C

132.05
mm

171.30
mm

173.00
mm

45° 0° 180°
Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

3 Starting up the robot
Questions on the exercise

1. Which icon represents the tool coordinate system?

2. What is the maximum number of tools that the controller can manage?

 .

3. What does the value -1 in the tool load data mean?

 .

 .

Fig. 3-24: College gripper: position of the TCP

a) b) c) d)
65 / 175Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

66 / 175

Robot Programming 1
3.8 Base calibration

Description Calibration of a base means the creation of a coordinate system at a specific
point in the robot environment, relative to the world coordinate system. The ob-
jective is for the motions and the programmed robot positions to refer to this
coordinate system. For this reason, defined edges of workpiece locations,
shelves, outer edges of pallets or machines, for example, are useful as refer-
ence points for a base coordinate system.

Base calibration is carried out in two steps:

1. Determination of the coordinate origin

2. Definition of the coordinate axes

Advantages Base calibration has the following advantages:

 Motion along the edges of the workpiece:

The TCP can be jogged along the edges of the work surface or workpiece.

Fig. 3-25: Base calibration

Fig. 3-26: Advantages of base calibration: motion direction
Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

3 Starting up the robot
 Reference coordinate system:

Taught points refer to the selected coordinate system.

 Correction / offset of the coordinate system:

Points can be taught relative to the base. If it is necessary to offset the
base, e.g. because the work surface has been offset, the points move with
it and do not need to be retaught.

 Using multiple base coordinate systems:

Up to 32 different coordinate systems can be created and used depending
on the specific program sequence.

Fig. 3-27: Advantages of base calibration: reference to the desired coor-
dinate system

Fig. 3-28: Advantages of base calibration: offset of the base coordinate
system
67 / 175Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

68 / 175

Robot Programming 1
Base calibration

options

The following base calibration methods are available:

Procedure for 3-

point method

1. In the main menu, select Start-up > Calibrate > Base > ABC 3-point.

2. Assign a number and a name for the base. Confirm with Next.

3. Enter the number of the tool whose TCP is to be used for for base calibra-
tion. Confirm with Next.

4. Move the TCP to the origin of the new base. Press the Calibrate softkey
and confirm the position with Yes.

Fig. 3-29: Advantages of base calibration: use of multiple base coordi-
nate systems

Methods Description

3-point
method

1. Definition of the origin

2. Definition of the positive X axis

3. Definition of the positive Y axis (XY plane)

Indirect
method

The indirect method is used if it is not possible to move to the
origin of the base, e.g. because it is inside a workpiece or out-
side the workspace of the robot.

The TCP is moved to 4 points in the base, the coordinates of
which must be known (CAD data). The robot controller calcu-
lates the base from these points.

Numeric
input

Direct entry of the values for the distance from the world coor-
dinate system (X,Y,Z) and the rotation (A, B, C).

Further information about indirect calibration can be found in the
Operating and Programming Instructions for KUKA System Software 8.

Base calibration can only be carried out with a previously
calibrated tool (TCP must be known).
Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

3 Starting up the robot
5. Move the TCP to a point on the positive X axis of the new base. Press Cal-
ibrate and confirm the position with Yes.

6. Move the TCP to a point in the XY plane with a positive Y value. Press Cal-
ibrate and confirm the position with Yes.

7. Press Save.

8. Close the menu.

Fig. 3-30: First point: origin

Fig. 3-31: Second point: X axis

Fig. 3-32: Third point: XY plane
69 / 175Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

70 / 175

Robot Programming 1
3.9 Displaying the current robot position

Options for

displaying robot

positions

The current robot position can be displayed in two different ways:

 Axis-specific:

The current axis angle is displayed for every axis: this corresponds to the
absolute axis angle relative to the mastering position.

 Cartesian:

The three calibration points must not be in a straight line. A minimum
angle (default setting 2.5°) between the points must be maintained.

Fig. 3-33: Axis-specific robot position
Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

3 Starting up the robot
The current position of the current TCP (tool coordinate system) is dis-
played relative to the currently selected base coordinate system.

If no tool coordinate system is selected, the flange coordinate system ap-
plies!

If no base coordinate system is selected, the world coordinate system ap-
plies!

Cartesian

position with

different base

coordinate

systems

Looking at the Figure below, it is immediately apparent that the robot is in the
same position in all three instances. The position display contains different val-
ues in each of the three cases, however:

The position of the tool coordinate system/TCP is displayed in the respective
base coordinate system:

 for base 1

 for base 2

Fig. 3-34: Cartesian position

Fig. 3-35: Three robot positions – one robot position!
71 / 175Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

72 / 175

Robot Programming 1
 for base $NULLFRAME: this corresponds to the robot root point coordi-
nate system (in most cases identical to the world coordinate system)!

Displaying the

robot position

Procedure:

 Select Display > Actual position in the menu. The Cartesian actual po-
sition is displayed.

 To display the axis-specific actual position, press Axis spec..

 To display the Cartesian actual position again, press Cartesian.

3.10 Exercise: Base calibration of table, 3-point method

Aim of the

exercise

On successful completion of this exercise, you will be able to carry out the fol-
lowing activities:

 Define any base

 Calibrate a base

 Activate a calibrated base for jogging

 Move the robot in the base coordinate system

Preconditions The following are preconditions for successful completion of this exercise:

 Theoretical knowledge of the base calibration methods, especially the 3-
Point method

Task description Carry out the following tasks:

1. Calibrate the blue base on the table using the 3-Point method. Assign the
base number 1 and the name blue. Use pen1 which has already been
calibrated (tool number 2) as the calibration tool.

2. Save the data of the calibrated base.

3. Calibrate the red base on the table using the 3-Point method. Assign the
base number 2 and the name red. Use pen1 which has already been cal-
ibrated (tool number 2) as the calibration tool.

4. Save the data of the calibrated base.

5. Move the tool to the origin of the blue coordinate system, thus causing the
actual position to be displayed in ”Cartesian” mode.

The Cartesian actual value display only provides the expected values
if the correct base and tool are selected!

X Y Z A B C

...............

Fig. 3-36: Base calibration on the table
Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

3 Starting up the robot
Questions on the exercise

1. Why should a base be calibrated?

 .

 .

 .

2. Which icon represents the base coordinate system?

3. What base calibration methods are there?

 .

 .

 .

4. What is the maximum number of base systems that the controller can man-
age?

 .

5. Describe calibration using the 3-Point method

 .

 .

 .

a) b) c) d)
73 / 175Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

74 / 175

Robot Programming 1
3.11 Calibration of a fixed tool

Overview Calibration of the fixed tool consists of two steps:

1. Calculation of the distance between the external TCP of the fixed tool and
the origin of the world coordinate system.

2. Orientation of the coordinate system at the external TCP.

As illustrated in (1) (>>> Fig. 3-37), the external TCP is managed relative to
$WORLD (or $ROBROOT), i.e. in the same way as a base coordinate system.

Description of

calibration

 A calibrated, robot-guided tool is required for determining the TCP.

 To determine the orientation, the flange coordinate system is aligned par-
allel to the new coordinate system. There are 2 variants:

 5D: Only the tool direction of the fixed tool is communicated to the ro-
bot controller. By default, the tool direction is the X axis. The orienta-

Fig. 3-37: Calibration of the fixed tool

Fig. 3-38: Moving to the external TCP
Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

3 Starting up the robot
tion of the other axes is defined by the system and cannot be detected
easily by the user.

 6D: The orientation of all 3 axes is communicated to the robot control-
ler.

Procedure 1. In the main menu, select Start-up > Calibrate > Fixed tool > Tool.

2. Assign a number and a name for the fixed tool. Confirm with Next.

3. Enter the number of the reference tool used. Confirm with Next.

4. Select a variant in the box 5D/6D. Confirm with Next.

5. Move the TCP of the calibrated tool to the TCP of the fixed tool. Press Cal-
ibrate. Confirm position with Yes.

6. If 5D is selected:

Align +XBASE parallel to -ZFLANGE.

(i.e. align the mounting flange perpendicular to the tool direction of the
fixed tool.)

If 6D is selected:

Align the mounting flange so that its axes are parallel to the axes of the
fixed tool:

 +XBASE parallel to -ZFLANGE

(i.e. align the mounting flange perpendicular to the tool direction.)

 +YBASE parallel to +YFLANGE

 +ZBASE parallel to +XFLANGE

7. Press Calibrate. Confirm position with Yes.

8. Press Save.

Fig. 3-39: Aligning the coordinate systems parallel to one another
75 / 175Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

76 / 175

Robot Programming 1
3.12 Calibration of a robot-guided workpiece

Overview: Direct

calibration

Description The origin and 2 further points of the workpiece are communicated to the robot
controller. These 3 points uniquely define the workpiece.

Only the direct measuring method is explained here. In-
direct calibration is extremely rare and is described in

greater detail in the documentation KUKA System Software 8.1 – Operating and
Programming Instructions.

Fig. 3-40: Workpiece calibration by means of direct measuring

Part Calibration

2 Calibration of the workpiece

Fig. 3-41
Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

3 Starting up the robot
Procedure 1. Select the menu Setup > Measure > Fixed tool > Workpiece > Direct
measuring.

2. Assign a number and a name for the workpiece. Confirm with Next.

3. Enter the number of the fixed tool. Confirm with Next.

4. Move the origin of the workpiece coordinate system to the TCP of the fixed
tool.

Press Calibrate and confirm the position with Yes.

5. Move a point on the positive X axis of the workpiece coordinate system to
the TCP of the fixed tool.

Press Calibrate and confirm the position with Yes.

6. Move a point with a positive Y value in the XY plane of the workpiece co-
ordinate system to the TCP of the fixed tool.

Press Calibrate and confirm the position with Yes.

7. Enter the load data of the workpiece and confirm with Next.

8. Press Save.

3.13 Exercise: Calibrating an external tool and robot-guided workpiece

Aim of the

exercise

On successful completion of this exercise, you will be able to carry out the fol-
lowing activities:

 Calibrate fixed tools

 Calibrate movable workpieces

 Carry out jogging with an external tool

Fig. 3-42: Workpiece calibration: direct method
77 / 175Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

78 / 175

Robot Programming 1
Preconditions The following are preconditions for successful completion of this exercise:

 Theoretical knowledge of the methods for calibrating fixed tools
Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

3 Starting up the robot
 Theoretical knowledge of workpiece calibration with fixed tools, especially
the direct method

Task description Carry out the following tasks: calibrate nozzle and panel

1. For the calibration of the fixed tool, pen1 that is already calibrated (tool
number 2) is to be used as a reference tool. Assign the tool number 10
and the name Nozzle for the fixed tool.

 Be sure to save your data each time you carry out calibration!

2. Calibrate the workpiece guided by the robot. Assign the workpiece num-
ber 12 and the name Panel.

 Enter the load data.

Load data for the gripper with the panel:

Mass:

M = 8.54 kg

Center of mass:

X= 46 mm Y= 93 mm Z= 5 mm

Orientation:

A = 0° B = 0° C = 0°

Moments of inertia:

JX = 0.3 kgm2 JY = 0.5 kgm2 JZ = 0.6 kgm2
79 / 175Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

80 / 175

Robot Programming 1
3. Once calibration is complete, activate the external tool for jogging. Make
appropriate use of the Base and Tool coordinate systems to move the ro-
bot.

4. Move the TCP to the BASE coordinate origin of the tool being measured,
causing the actual position to be displayed in “Cartesian” mode.

Actual position:

Questions on the exercise

1. How is a base calibrated for a workpiece mounted on the robot flange?

. .

. .

. .

2. How is the TCP of an external tool determined?

. .

. .

. .

3. Why do you need an external TCP?

. .

. .

. .

4. What settings are required to move in the tool direction with an external
TCP?

. .

. .

. .

X Y Z A B C

...............
Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

3 Starting up the robot
3.14 Disconnecting the smartPAD

Description of

smartPAD

disconnection

 The smartPAD can be disconnected while the robot controller is running.

 The connected smartPAD assumes the current operating mode of the ro-
bot controller.

 A smartPAD can be connected at any time.

 When connecting a smartPAD, it must be ensured that it is the same vari-
ant (firmware version) as the device that was disconnected.

 The EMERGENCY STOP and enabling switches are not operational again
until 30 s after connection.

 The smartHMI (user interface) is automatically displayed again (this takes
no longer than 15 s).

smartPAD

disconnection

function

Procedure for

disconnecting a

smartPAD

Disconnection:

1. Press the disconnect button on the smartPAD.

A message and a counter are displayed on the smartHMI. The counter
runs for 25 s. During this time, the smartPAD can be disconnected from
the robot controller.

If the smartPAD is disconnected, the system can no lon-
ger be switched off by means of the EMERGENCY

STOP button on the smartPAD. For this reason, an external EMERGENCY
STOP must be connected to the robot controller.

The operator must ensure that disconnected smartPADs
are immediately removed from the system and stored out

of sight and reach of personnel working on the industrial robot. This serves
to prevent operational and non-operational EMERGENCY STOP facilities
from becoming interchanged.

Failure to observe these precautions may result in death
to persons, severe physical injuries or considerable dam-

age to property.

The user connecting a smartPAD to the robot controller
must subsequently stay with the smartPAD for at least

30 s, i.e. until the EMERGENCY STOP and enabling switches are operation-
al once again. This prevents another user from trying to activate a non-oper-
ational EMERGENCY STOP in an emergency situation, for example.

Fig. 3-43: Button for disconnecting the smartPAD
81 / 175Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

82 / 175

Robot Programming 1
2. Open the door of the (V)KR C4 control cabinet.

3. Disconnect the smartPAD from the robot controller.

4. Close the door of the (V)KR C4 control cabinet.

Connection:

1. Ensure that the same smartPAD variant is used again.

2. Open the door of the (V)KR C4 control cabinet.

3. Connect the smartPAD connector.

If the smartPAD is disconnected without the counter run-
ning, this triggers an EMERGENCY STOP. The EMER-

GENCY STOP can only be canceled by plugging the smartPAD back in.

Fig. 3-44: Disconnecting the smartPAD

1 Connector connected

2 Turn the upper black part approx. 25° in the direction indicated
by the arrow.

3 Pull the connector downwards.

If the counter expires without the smartPAD having been
disconnected, this has no effect. The disconnect button

can be pressed again at any time to display the counter again.

Pay heed to the markings on the female connector and
the smartPAD connector.
Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

3 Starting up the robot
4. Close the door of the (V)KR C4 control cabinet.

Fig. 3-45: Connecting the smartPAD

1 Connector disconnected (observe marking)

2 Push connector upwards. The upper black part automatically
turns approx. 25° while it is being pushed up.

3 The connector automatically locks in place, i.e. the markings
are aligned.

The user connecting a smartPAD to the robot controller
must subsequently stay with the smartPAD for at least

30 s, i.e. until the EMERGENCY STOP and enabling switches are operation-
al once again. This prevents another user from trying to activate a non-oper-
ational EMERGENCY STOP in an emergency situation, for example.
83 / 175Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

84 / 175

Robot Programming 1
Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

4 Executing robot programs
4 Executing robot programs

4.1 Performing an initialization run

BCO run The initialization run of a KUKA robot is called a BCO run.

A BCO run is carried out in the following cases:

 Program selection (example 1)

 Program reset (example 1)

 Jogging in program mode (example 1)

 Program modifications (example 2)

 Block selection (example 3)

Examples for the performance of a BCO run

Reasons for a

BCO run

A BCO run is necessary to ensure that the current robot position matches the
coordinates of the current point in the robot program.

Path planning can only be carried out if the current robot position is the same
as a programmed position. The TCP must therefore always be moved onto the
path.

BCO stands for Block COincidence. Coincidence means “coming to-
gether” of events in time/space.

Fig. 4-1: Examples of reasons for a BCO run

1 BCO run to the home position following program selection or reset

2 BCO run following modification of a motion command: point deleted,
taught, etc.

3 BCO run following block selection
85 / 175Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

86 / 175

Robot Programming 1
4.2 Selecting and starting robot programs

Selecting and

starting robot

programs

If a robot program is to be executed, it must be selected. The robot programs
are available in the Navigator in the user interface. Motion programs are gen-
erally created in folders. The Cell program (management program for control-
ling the robot from a PLC) is always located in the folder “R1”.

Fig. 4-2: Example of a BCO run

1 BCO run to the home position following program selection or reset
Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

4 Executing robot programs
The Start forwards and Start backwards keys are available for starting
a program.

Fig. 4-3: Navigator

1 Navigator: directory/drive structure

2 Navigator: directory/data list

3 Selected program

4 Button for selecting a program
87 / 175Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

88 / 175

Robot Programming 1
When a program is executed, there are various program run modes available
for program-controlled robot motion:

Fig. 4-4: Program execution directions: forwards/backwards

GO

 Program runs continuously to the end of the program.

 In test mode, the Start key must be held down.

MSTEP

 In the program run mode Motion Step, each motion com-
mand is executed separately.

 At the end of each motion, Start must be pressed again.

ISTEP | Only available in the user group “Expert”!

 In Incremental Step mode, the program is executed line by
line (irrespective of the contents of the individual lines).

 The Start key must be pressed again after every line.
Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

4 Executing robot programs
What does a

robot program

look like?

Program state

Fig. 4-5: Structure of a robot program

1

Only visible in the user group “Expert”:

 “DEF Program name()” always stands at the start of a program.

 “END” defines the end of a program.

2
 The “INI” line contains calls of standard parameters that are re-

quired for correct execution of the program.

 The “INI” line must always be executed first!

3

 Actual program text with motion commands, wait commands, log-
ic commands, etc.

 The motion command “PTP Home” is often used at the start and
end of a program, as this is a known and clearly defined position.

Icon Color Description

Gray No program is selected.

Yellow The block pointer is situated on the first line
of the selected program.

Green The program is selected and is being exe-
cuted.

Red The selected and started program has been
stopped.

Black The block pointer is situated at the end of
the selected program.
89 / 175Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

90 / 175

Robot Programming 1
Starting a

program

Procedure for starting robot programs:

1. Select program.

2. Set program velocity (program override, POV).

3. Press enabling switch.

4. Press and hold down the Start (+) key.

 The “INI” line is executed.

 The robot performs the BCO run.

Fig. 4-6: Program selection

Fig. 4-7: POV setting

Fig. 4-8: Enabling switches
Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

4 Executing robot programs
5. Once the end position has been reached, the motion is stopped.

The notification message “Programmed path reached (BCO)” is displayed.

6. Continued sequence (depending on what operating mode is set):

 T1 and T2: Continue the program by pressing the Start key.

 AUT: Activate drives.

Then start the program by pressing Start.

 In the Cell program, switch the operating mode to EXT and transfer the
motion command from the PLC.

4.3 Exercise: Executing robot programs

Aim of the

exercise

On successful completion of this exercise, you will be able to carry out the fol-
lowing activities:

 Select and deselect programs

Fig. 4-9: Program execution directions: forwards/backwards

A BCO run is executed as a PTP motion from the actual
position to the target position if the selected motion block

contains the motion command PTP. If the selected motion block contains LIN
or CIRC, the BCO run is executed as a LIN motion. Observe the motion to
avoid collisions. The velocity is automatically reduced during the BCO run.
91 / 175Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

92 / 175

Robot Programming 1
 Run, stop and reset programs in the required operating modes (test pro-
gram execution)

 Perform and understand block selection

 Carry out a BCO run

Preconditions The following are preconditions for successful completion of this exercise:

 Theoretical knowledge of how to use the Navigator

 Knowledge of selecting and canceling programs

Task description 1. Select the module “Air”.

2. Test the program in the different operating modes as follows:

 T1 with 100%

 T2 with 10%, 30%, 50%, 75%, 100%

 Automatic with 100%

3. Test the program in the program run modes Go and MSTEP.

Danger!
The safety regulations contained in the safety instruction must be observed!
Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

5 Working with program files
5 Working with program files

5.1 Creating program modules

Program modules

in Navigator

Program modules should always be stored in the folder “Program”. It is also
possible to create new folders and save program modules there. Modules are
identified by the icon with the letter “M”. A module can be provided with a com-
ment. A comment may contain a brief description of the functions of the pro-
gram, for example.

Properties of

program modules

A module always consists of two parts:

 Source code: The SRC file contains the program code.

Fig. 5-1: Modules in Navigator

1 Main folder for programs: “Program”

2 Subfolder for additional programs

3 Program module/module

4 Comment of a program module

Fig. 5-2
93 / 175Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

94 / 175

Robot Programming 1
 Data list: The DAT file contains permanent data and point coordinates.

Procedure for

creating program

modules

1. In the directory structure, select the folder in which the program is to be
created, e.g. the folder Program and then switch to the file list.

2. Press the New softkey.

3. Enter a name for the program, and a comment if desired, and confirm it
with OK.

5.2 Editing program modules

Editing options Just like in other commonly-used file systems, program modules can also be
edited in the Navigator of the KUKA smartPad.

Editing tasks include:

 Duplicate/Copy

 Delete

 Rename

Procedure for

deleting a

program

1. In the directory structure, select the folder in which the file is located.

2. Select the file in the file list.

3. Press the Delete softkey.

4. Confirm the request for confirmation with Yes. The module is deleted.

Procedure for

renaming a

program

1. In the directory structure, select the folder in which the file is located.

2. Select the file in the file list.

3. Select the softkey Program > Rename.

4. Overwrite the file name with the new name and confirm with OK.

Procedure for

duplicating a

program

1. In the directory structure, select the folder in which the file is located.

2. Select the file in the file list.

3. Press the Duplicate softkey.

4. Give the new module a new file name and confirm it with OK.

DEF MAINPROGRAM ()
INI
PTP HOME Vel= 100% DEFAULT
PTP POINT1 Vel=100% PDAT1 TOOL[1] BASE[2]
PTP P2 Vel=100% PDAT2 TOOL[1] BASE[2]
…
END

DEFDAT MAINPROGRAM ()
DECL E6POS XPOINT1={X 900, Y 0, Z 800, A 0, B 0, C 0, S 6, T 27, E1
0, E2 0, E3 0, E4 0, E5 0, E6 0}
DECL FDAT FPOINT1 …
…
ENDDAT

In the user group “Expert” with the filter setting “Detail”, two files are
displayed in the Navigator for each module (SRC and DAT file). If this
is the case, both files must be deleted! Deleted files cannot be re-

stored!

In the user group “Expert” with the filter setting “Detail”, two files are
displayed in the Navigator for each module (SRC and DAT file). If this
is the case, both files must be renamed!
Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

5 Working with program files
5.3 Archiving and restoring robot programs

Archiving options Every archiving operation generates a ZIP file on the corresponding target me-
dium with the same name as the robot. The name of the individual file can be
modified under Robot data.

File paths: There are three different file paths available:

 USB (KCP) | USB stick on KCP (smartPAD)

 USB (cabinet) | USB stick on robot control cabinet

 Network | Archiving to a network path

The desired network path must be configured under Robot data.

Data: The following selections can be made for archiving data:

 All:

The data that are required to restore an existing system are archived.

 Applications:

All user-defined KRL modules (programs) and their corresponding system
files are archived.

 Machine data:

The machine data are archived.

 Log data:

The log files are archived.

 KrcDiag:

Archiving of data for fault analysis by KUKA Roboter GmbH. A folder is
generated here (name KRCDiag) in which up to ten ZIP files can be writ-
ten. Parallel to this, archiving is carried out on the controller under C:\KU-
KA\KRCDiag.

Restoring data

The following menu items are available for restoring data:

 All

 Applications

 Configuration

In the user group “Expert” with the filter setting “Detail”, two files are
displayed in the Navigator for each module (SRC and DAT file). If this
is the case, both files must be duplicated!

Parallel to the ZIP file generated on the selected storage medium dur-
ing every archiving operation, an additional archive file (INTERN.ZIP)
is stored on drive D:\.

Generally, only archives with the right software version
may be loaded. If other archives are loaded, the following

may occur:

 Error messages

 Robot controller is not operable.

 Personal injury and damage to property.

The system generates an error message in the following cases:

If the archived data have a different version from those in the sys-
tem.

 If the version of the technology packages does not match the installed
version.
95 / 175Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

96 / 175

Robot Programming 1
Procedure for

archiving

1. Select the menu sequence File > Archive > USB (KCP) or USB (cabinet)
and the desired menu item.

2. Confirm the request for confirmation with Yes.

Once the archiving is completed, this is indicated in the message window.

3. The stick can be removed when the LED on the stick is no longer lit.

Procedure for

restoration

1. Select the menu sequence File > Restore and then the desired subitems.

2. Confirm the request for confirmation with Yes. Archived files are restored
to the robot controller. A message indicates completion of the restoration
process.

3. If data have been restored from a USB stick: remove the USB storage me-
dium.

4. Reboot the robot controller.

5.4 Tracking program modifications and changes of state by means of the log-
book

Logging options The operator actions on the smartPAD are automatically logged. The com-
mand Logbook displays the logbook.

Only the KUKA.USB data stick may be used. Data may
be lost or modified if any other USB stick is used.

In the case of restoring data from a USB medium: the
medium must not be removed until the LED on the USB

medium is no longer lit. Otherwise, the medium could be damaged.
Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

5 Working with program files
Fig. 5-3: Logbook, Log tab

Item Description

1 Type of log event

The individual filter types and filter classes are listed on the Filter
tab.

2 Log event number

3 Date and time of the log event

4 Brief description of the log event

5 Detailed description of the selected log event

6 Indication of the active filter
97 / 175Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

98 / 175

Robot Programming 1
Filtering log

events

Using the

logbook function

Viewing and configuration can be carried out in any user group.

Displaying the logbook:

 In the main menu, select Diagnosis > Logbook > Display.

Configuring the logbook:

1. In the main menu, select Diagnosis > Logbook > Configuration.

2. Make the relevant settings:

 Add/remove filter types

 Add/remove filter classes

3. Press OK to save the configuration and close the window.

Fig. 5-4: Logbook, Filter tab

Fig. 5-5: Logbook configuration window
Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

5 Working with program files
1 Apply filter settings for the display. If the check box is not activated,
the display is unfiltered.

2 Path for the text file.

3 Log data deleted because of a buffer overflow are indicated in gray in
the text file.
99 / 175Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

100 / 175

Robot Programming 1
Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

6 Creating and modifying programmed motions
6 Creating and modifying programmed motions

6.1 Creating new motion commands

Programming

robot motions

When robot motions have to be programmed, many questions are raised:

This information must be transferred when programming robot motions using
the teaching method. Inline forms, into which the information can easily be en-
tered, are used for this.

Fig. 6-1: Robot motion

Question Solution Keyword

How does the robot remember
its positions?

The positions of the tool in space are saved
(robot position in accordance with the tool and
base that are set).

POS

How does the robot know how
to move?

From the specification of the motion type:
point-to-point, linear or circular.

PTP

LIN

CIRC

How fast does the robot
move?

The velocity between two points and the accel-
eration are specified during programming.

Vel.

Acc.

Does the robot have to stop at
every point?

To save cycle time, points can also be approxi-
mated; no exact positioning is carried out in
this case.

CONT

What orientation does the tool
adopt when a point is
reached?

The orientation control can be set individually
for each motion.

ORI_TYPE

Does the robot recognize
obstacles?

No, the robot “stubbornly” follows its pro-
grammed path. The programmer is responsible
for ensuring that there is no risk of collisions.

There is also a collision monitoring function,
however, for protecting the machine.

Collision de-
tection
101 / 175Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

102 / 175

Robot Programming 1
Motion types Various motion types are available for programming motion commands. Mo-
tions can be programmed in accordance with the specific requirements of the
robot’s work process.

 Axis-specific motions (PTP: point-to-point)

 CP motions: LIN (linear) and CIRC (circular)

 SPLINE: Spline is a motion type that is suitable for particularly complex,
curved paths. Such paths can generally also be generated using LIN and
CIRC motions, but Spline nonetheless has advantages.

6.2 Creating cycle-time optimized motion (axis motion)

PTP

Fig. 6-2: Inline form for motion programming

Spline motions are not covered by this training documentation. More
detailed information can be found in the Operating and Programming
Instructions for KUKA System Software 8.2.

Motion type Meaning
Application

example

Point-to-point:

 Axis-specific motion: The robot guides the
TCP along the fastest path to the end point.
The fastest path is generally not the shortest
path and is thus not a straight line. As the mo-
tions of the robot axes are rotational, curved
paths can be executed faster than straight
paths.

 The exact path of the motion cannot be pre-
dicted.

 The leading axis is the axis that takes longest
to reach the end point.

 SYNCHRO PTP: All axes start together and
also stop in a synchronized manner.

 The first motion in the program must be a PTP
motion, as Status and Turn are evaluated
only here.

Point applications,
e.g.:

 Spot welding

 Transfer

 Measuring, in-
spection

Auxiliary positions:

 Intermediate
points

 Free points in
space
Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

6 Creating and modifying programmed motions
Approximate

positioning

In order to accelerate the motion sequence, the controller is able to approxi-
mate motion commands labeled with CONT. Approximate positioning means
that the point coordinates are not addressed exactly. The robot leaves the path
of the exact positioning contour before it reaches them. The TCP is guided
along an approximate positioning contour that leads into the exact positioning
contour of the next motion command.

Advantages of approximate positioning

 Reduced wear

 Shorter cycle times

In order to be able to perform an approximate positioning motion, the controller
must be able to load the following motion commands. This is carried out by the
computer advance run.

Fig. 6-3: Approximating a point

Fig. 6-4: Comparison of exact positioning and approximate positioning
103 / 175Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

104 / 175

Robot Programming 1
Approximate positioning in the PTP motion type

Procedure for

creating PTP

motions

Preconditions

 T1 mode is set.

 A robot program is selected.

1. Move the TCP to the position that is to be taught as the end point.

2. Position the cursor in the line after which the motion instruction is to be in-
serted.

3. Menu sequence Commands > Motion > PTP.

Alternatively, the softkey Motion can be pressed in the corresponding line.

An inline form appears:

 Inline form “PTP”

4. Enter parameters in the inline form.

Motion type Feature
Approximation

distance

 The approximate
positioning con-
tour cannot be
predicted!

Specified in %

Fig. 6-5: Motion command

Fig. 6-6: Inline form for PTP motions
Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

6 Creating and modifying programmed motions
5. Enter the correct data for the tool and base coordinate system in the option
window “Frames”, together with details of the interpolation mode (external
TCP: on/off) and the collision monitoring function.

Ite
m

Description

1 Motion type PTP, LIN or CIRC

2 The name of the end point is issued automatically, but can be over-
written as required.

To edit the point data, touch the arrow; the option window Frames
opens.

In the case of CIRC, an auxiliary point must be taught in addition to
the end point: move to the position of the auxiliary point and press
Teach Aux.

3 CONT: end point is approximated.

 [Empty box]: the motion stops exactly at the end point.

4 Velocity

 PTP motions: 1 … 100%

 CP motions: 0.001 … 2 m/s

5 Motion data set:

 Acceleration

 Approximation distance (if CONT is entered in box (3))

 Orientation control (only for CP motions)

Fig. 6-7: Option window “Frames”

Item Description

1 Tool selection.

If True in the box External TCP: workpiece selection.

Range of values: [1] … [16]

2 Base selection.

If True in the box External TCP: fixed tool selection.

Range of values: [1] … [32]
105 / 175Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

106 / 175

Robot Programming 1
6. The acceleration can be reduced from the maximum value in the option
window “Motion parameters”. If approximate positioning has been activat-
ed, the approximation distance can also be modified. Depending on the
configuration, the distance is set in mm or %.

7. Save instruction with Cmd Ok. The current position of the TCP is taught
as the end point.

3 Interpolation mode

 False: The tool is mounted on the mounting flange.

 True: the tool is a fixed tool.

4 True: For this motion, the robot controller calculates the
axis torques. These are required for collision detection.

 False: For this motion, the robot controller does not calcu-
late the axis torques. Collision detection is thus not possi-
ble for this motion.

Fig. 6-8: Option window “Motion parameter” (PTP)

Item Description

1 Acceleration

Refers to the maximum value specified in the machine data. The
maximum value depends on the robot type and the selected oper-
ating mode. The acceleration applies to the leading axis for this
motion block.

 1 … 100%

2 This box is only displayed if CONT was selected in the inline form.

Furthest distance before the end point at which approximate posi-
tioning can begin.

Maximum distance: half the distance between the start point and
the end point relative to the contour of the PTP motion without
approximate positioning

 1 … 100%

 1 ... 1000 mm

Item Description
Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

6 Creating and modifying programmed motions
6.3 Exercise: Dummy program – program handling and PTP motions

Aim of the

exercise

On successful completion of this exercise, you will be able to carry out the fol-
lowing activities:

 Select and deselect programs

 Run, stop and reset programs in the required operating modes (test pro-
gram execution)

 Delete motion blocks and insert new PTP motions

 Change the program run mode and carry out step-by-step movement to
programmed points

 Perform and understand block selection

 Carry out a BCO run

Preconditions The following are preconditions for successful completion of this exercise:

 Theoretical knowledge of how to use the Navigator

 Theoretical knowledge of the PTP motion type

Fig. 6-9: Saving the point coordinates with “Cmd OK” and “Touchup”
107 / 175Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

108 / 175

Robot Programming 1
Task description Carry out the following tasks: Create and test programs.

1. Create a new module with the name Air_PROG.

2. Create a sequence of approx. five PTP motion blocks.

3. If the motion is not collision-free, delete the relevant point(s) and create a
new one in each case.

4. Test the program in T1 mode at different program velocities (POV).

5. Test the program in T2 mode at different program velocities (POV).

6. Test the program in Automatic mode.

Task, part B Carry out the following tasks: Program correction

1. Set various velocities for your space points.

2. Call the same point several times in the program.

3. Delete the motion blocks and insert new ones at a different point in the pro-
gram.

4. Carry out a block selection.

5. Stop your program during testing and use the function Program start
backwards.

6. Test your program in the modes T1, T2 and Automatic.

Questions on the exercise

1. What is the difference between selecting a program and opening it?

. .

. .

2. What program run modes are there and what are they used for?

. .

. .

. .

3. What is a BCO run?

. .

. .

. .

4. How can you influence the program velocity?

. .

. .

. .

5. What are the characteristics of a PTP motion?

. .

. .

. .

Danger!
The safety regulations contained in the safety instruction must be observed!
Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

6 Creating and modifying programmed motions
6.4 Creating CP motions

LIN and CIRC

Singularity

positions

KUKA robots with 6 degrees of freedom have 3 different singularity positions.

A singularity position is characterized by the fact that unambiguous reverse
transformation (conversion of Cartesian coordinates to axis-specific values) is
not possible, even though Status and Turn are specified. In this case, or if very
slight Cartesian changes cause very large changes to the axis angles, one
speaks of singularity positions. This is a mathematical property, not a mechan-
ical one, and thus only exists for CP motions and not axis motions.

Overhead singu-

larity α1

In the overhead singularity, the wrist root point (= center point of axis A5) is
located vertically above axis A1 of the robot.

The position of axis A1 cannot be determined unambiguously by means of re-
verse transformation and can thus take any value.

Motion type Meaning Application example

Linear:

 Motion in a straight line:

 The TCP of the tool is guided from the start
point to the end point with constant velocity
and a defined orientation.

 The velocity and orientation refer to the
TCP.

Path applications,
e.g.:

 Arc welding

 Adhesive bonding

 Laser welding /
cutting

Circular:

 Circular path motion is defined by a start
point, auxiliary point and end point.

 The TCP of the tool is guided from the start
point to the end point with constant velocity
and a defined orientation.

 The velocity and orientation refer to the
TCP.

Path applications,
similar to LIN:

 Circles, radii,
curves

Fig. 6-10: Overhead singularity (α1 position)
109 / 175Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

110 / 175

Robot Programming 1
Extended

position singu-

larity α2

In the extended position, the wrist root point (= center point of axis A5) is lo-
cated in the extension of axes A2 and A3 of the robot.

The robot is at the limit of its work envelope.

Although reverse transformation does provide unambiguous axis angles, low
Cartesian velocities result in high axis velocities for axes A2 and A3.

Wrist axis singu-

larity α5

In the wrist axis singularity position, the axes A4 and A6 are parallel to one an-
other and axis A5 is within the range ±0.01812°.

The position of the two axes cannot be determined unambiguously by reverse
transformation. There is an infinite number of possible axis positions for axes
A4 and A6 with identical axis angle sums.

Fig. 6-11: Extended position (α2 position)

Fig. 6-12: Wrist axis singularity (α5 position)
Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

6 Creating and modifying programmed motions
Orientation

control with CP

motions

In the case of CP motions, it is possible to define the orientation control pre-
cisely. The orientation of a tool can be different at the start point and end point
of a motion.

Orientation control with the motion type LIN

 Standard or Wrist PTP

The orientation of the tool changes continuously during the motion.

Use Wrist PTP if, with Standard, the robot passes through a wrist axis sin-
gularity, as the orientation is carried out by means of linear transformation
(axis-specific jogging) of the wrist axis angles.

 Constant

The orientation of the tool remains constant during the motion, i.e. as
taught at the start point. The orientation taught at the end point is disre-
garded.

Orientation control with the motion type CIRC

 Standard or Wrist PTP

The orientation of the tool changes continuously during the motion.

Use Wrist PTP if, with Standard, the robot passes through a wrist axis sin-
gularity, as the orientation is carried out by means of linear transformation
(axis-specific jogging) of the wrist axis angles.

Fig. 6-13: Standard

Fig. 6-14: Orientation control - Constant
111 / 175Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

112 / 175

Robot Programming 1
 Constant

The orientation of the tool remains constant during the motion, i.e. as
taught at the start point. The orientation taught at the end point is disre-
garded.

Approximation of

CP motions

Fig. 6-15: Standard + base-related

Fig. 6-16: Constant orientation control + base-related

The approximate positioning function is not suitable for generating cir-
cular motions. It is purely for preventing an exact stop at the point.
Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

6 Creating and modifying programmed motions
Approximate positioning in the motion types LIN and CIRC

Procedure for the

creation of LIN

and CIRC

motions

Preconditions

 T1 mode is set.

 A robot program is selected.

1. Move the TCP to the position that is to be taught as the end point.

2. Position the cursor in the line after which the motion instruction is to be in-
serted.

3. Select the menu sequence Commands > Motion > LIN or CIRC.

Alternatively, the softkey Motion can be pressed in the corresponding line.

An inline form appears:

 Inline form “LIN”

 Inline form “CIRC”

Motion type Feature
Approximation

distance

 Path corresponds to
two parabolic branch-
es

Specified in mm

 Path corresponds to
two parabolic branch-
es

Specified in mm

Fig. 6-17: Motion command with LIN and CIRC

Fig. 6-18: Inline form for LIN motions
113 / 175Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

114 / 175

Robot Programming 1
4. Enter parameters in the inline form.

5. Enter the correct data for the tool and base coordinate system in the option
window “Frames”, together with details of the interpolation mode (external
TCP: on/off) and the collision monitoring function.

Fig. 6-19: Inline form for CIRC motions

Ite
m

Description

1 Motion type PTP, LIN or CIRC

2 The name of the end point is issued automatically, but can be over-
written as required.

To edit the point data, touch the arrow; the option window Frames
opens.

In the case of CIRC, an auxiliary point must be taught in addition to
the end point: move to the position of the auxiliary point and press
Teach Aux. The orientation of the tool at the auxiliary point is irrele-
vant.

3 CONT: end point is approximated.

 [Empty box]: the motion stops exactly at the end point.

4 Velocity

 PTP motions: 1 … 100%

 CP motions: 0.001 … 2 m/s

5 Motion data set:

 Acceleration

 Approximation distance (if CONT is entered in box (3))

 Orientation control (only for CP motions)

Fig. 6-20: Option window “Frames”
Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

6 Creating and modifying programmed motions
6. The acceleration can be reduced from the maximum value in the option
window “Motion parameters”. If approximate positioning has been activat-
ed, the approximation distance can also be modified. Furthermore, the ori-
entation control can also be modified.

Item Description

1 Tool selection.

If True in the box External TCP: workpiece selection.

Range of values: [1] … [16]

2 Base selection.

If True in the box External TCP: fixed tool selection.

Range of values: [1] … [32]

3 Interpolation mode

 False: The tool is mounted on the mounting flange.

 True: the tool is a fixed tool.

4 True: For this motion, the robot controller calculates the
axis torques. These are required for collision detection.

 False: For this motion, the robot controller does not calcu-
late the axis torques. Collision detection is thus not possi-
ble for this motion.

Fig. 6-21: Option window “Motion parameter” (LIN, CIRC)

Item Description

1 Acceleration

Refers to the maximum value specified in the machine data. The
maximum value depends on the robot type and the selected oper-
ating mode.

2 Furthest distance before the end point at which approximate posi-
tioning can begin

The maximum permissible value is half the distance between the
start point and the end point. If a higher value is entered, this is
ignored and the maximum value is used.

This box is only displayed if CONT was selected in the inline form.

3 Orientation control selection.

 Standard

 Wrist PTP

 Constant

 (>>> "Orientation control with CP motions" Page 111)
115 / 175Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

116 / 175

Robot Programming 1
7. Save instruction with Cmd Ok. The current position of the TCP is taught
as the end point.

6.5 Modifying motion commands

Modifying motion

commands

There are different reasons for modifying existing motion commands:

Effects of

modifying motion

commands

Modifying position data

 Only the data set of the point is modified: the point receives new coordi-
nates, as the values are updated with “Touchup”.

The old point coordinates are overwritten and are subsequently no longer
available!

Fig. 6-22: Saving the point coordinates with “Cmd OK” and “Touchup”

Examples of reasons Modification to be made

Position of the part to be gripped
changes.

The position of one of five boreholes
changes during processing.

A weld seam needs to be shortened.

Modification of the position data

Position of the pallet changes. Modification of the frame data:
base and/or tool

A position has been inadvertently
taught with the wrong base.

Modification of the frame data:
base and/or tool with update of
position

Processing too slow: the cycle time
must be improved.

Modification of the motion data:
velocity, acceleration

Modification of the motion type
Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

6 Creating and modifying programmed motions
Modifying frame data

 When modifying frame data (e.g. tool, base), the position is offset (cf. “vec-
tor translation”).

 The robot position changes!

The old coordinates of the point remain saved and valid. Only the refer-
ence is changed (e.g. the base).

 The workspace may be exceeded! Certain robot positions are thus not ac-
cessible.

 If the robot position is to remain the same despite modification of the frame
parameters, the coordinates must be updated by means of “Touchup” in
the desired position following modification of the parameters (e.g. Base)!

Fig. 6-23: Modification of the robot position with “Touchup”

A user dialog also warns: “Caution: risk of collision when
changing point-related frame parameters!”

Fig. 6-24: Modifying frame data (example: base)
117 / 175Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

118 / 175

Robot Programming 1
Modifying motion data

 Modifying the velocity or acceleration changes the motion profile. This can
have an effect on the process, particularly in the case of CP applications:

 Thickness of an adhesive bead.

 Quality of a weld seam.

Modifying the motion type

 Modification of the motion type always results in a modification of the path
planning! In unfavorable circumstances, this can result in collisions, as the
path may change unpredictably.

Safety instruc-

tions relating to

the modification

of motion

commands

Modifying motion

parameters –

Frames

1. Position the cursor in the line containing the instruction that is to be
changed.

2. Press Change. The inline form for this instruction is opened.

3. Open the option window “Frames”.

4. Set new “Tool” or “Base” or “External TCP”.

5. Confirm the user dialog “Caution: risk of collision when changing point-re-
lated frame parameters!” with OK.

6. If you wish to retain the current robot position with modified tool and/or
base settings, it is essential to press the Touch Up key to recalculate and
save the current position.

7. Save changes by pressing Cmd Ok.

Modifying the

position

Procedure for modifying the robot position:

Fig. 6-25: Modifying the motion type

Every time motion commands are modified, the robot
program must be tested at reduced velocity (T1 mode).

Starting the robot program immediately at high velocity can result in damage
to the robot system and the overall system, as unforeseeable motions may
occur. There is a danger of life-threatening injuries to any person in the dan-
ger zone.

If frame parameters are modified, the programs must be
tested again to ensure there is no risk of a collision.
Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

6 Creating and modifying programmed motions
1. Set T1 mode and position the cursor in the line containing the instruction
that is to be changed.

2. Move the robot into the desired position.

3. Press Change. The inline form for this instruction is opened.

4. For PTP and LIN motions:

 Press Touchup to accept the current position of the TCP as the new
end point.

For CIRC motions:

 Press Teach Aux to accept the current position of the TCP as the new
auxiliary point.

 Or press Teach End to accept the current position of the TCP as the
new end point.

5. Confirm the request for confirmation with Yes.

6. Save change by pressing Cmd Ok.

Modifying motion

parameters

This procedure can be used for the following modifications:

 Motion type

 Velocity

 Acceleration

 Approximate positioning

 Approximation distance

1. Position the cursor in the line containing the instruction that is to be
changed.

2. Press Change. The inline form for this instruction is opened.

3. Modify parameters.

4. Save changes by pressing Cmd Ok.

6.6 Exercise: CP motion and approximate positioning

Aim of the

exercise

On successful completion of this exercise, you will be able to carry out the fol-
lowing activities:

 Create simple motion programs with the motion types PTP, LIN and CIRC

 Create motion programs with exact positioning points and approximate po-
sitioning

 Handle programs in the Navigator (copy, duplicate, rename, delete)

Preconditions The following are preconditions for successful completion of this exercise:

 Basic principles of motion programming with the motion types PTP, LIN
and CIRC

 Theoretical knowledge of approximation of motions

If motion parameters are modified, the programs must be
checked again for process reliability and to ensure there

is no risk of a collision.
119 / 175Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

120 / 175

Robot Programming 1
 Theoretical knowledge of the HOME position

Task, part A Carry out the following tasks: program creation, component contour 1

1. Create a new program with the name Component_contour1

2. Teach the component contour 1 marked on the worktable, using the blue
base and pen1 as the tool

 The jog velocity on the worktable is 0.3 m/s

 Make sure that the longitudinal axis of the tool is always perpendicular
to the path contour (orientation control)

3. Test your program in the modes T1, T2 and Automatic. Observe the rele-
vant safety instructions.

Task, part B Carry out the following tasks: copying the program and approximate position-
ing

1. Create a duplicate of the program Component_contour1 with the name
Component1_CONT.

2. Insert the approximate positioning instruction into the motion commands
of the new program so that the robot follows the contour continuously

3. The corners of the contour are to be approximated using different approx-
imation parameters.

4. Test your program in the modes T1, T2 and Automatic. Observe the rele-
vant safety instructions.

Supplementary

task

Carry out the following tasks: program creation, component contour 2

1. Create a second program with the name Component_contour2 Use the
same base and the same tool.

 The jog velocity on the worktable is 0.3 m/s

 Make sure that the longitudinal axis of the tool is always perpendicular
to the path contour (orientation control)

2. Test your program in the modes T1, T2 and Automatic. Observe the rele-
vant safety instructions.

3. Create a duplicate of the program Component_contour2 with the name
Component2_CONT.

4. Insert the approximate positioning instruction into the motion commands
of the new program so that the robot follows the contour continuously

Fig. 6-26: CP motion and approximate positioning: component contour 1
and 2

1 Start points 2 Direction of motion

3 Reference base 4 Component contour 1

5 Component contour 2
Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

6 Creating and modifying programmed motions
5. Test your program in the modes T1, T2 and Automatic. Observe the rele-
vant safety instructions.

Questions on the exercise

1. What are the characteristics of LIN and CIRC motions?

 .

 .

 .

2. How is the velocity specified for PTP, LIN and CIRC motions and what does
this velocity refer to?

 .

 .

 .

3. How is the approximation distance specified for PTP, LIN and CIRC mo-
tions?

 .

 .

4. What must be taken into consideration when programming new CONT state-
ments?

 .

 .

5. What must be taken into consideration when changing the HOME position?

 .

 .

6. What must be taken into consideration when correcting or modifying pro-
grammed points?

 .

 .
121 / 175Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

122 / 175

Robot Programming 1
6.7 Motion programming with external TCP

Motion

programming

with external TCP

In the case of motion programming with a fixed tool, the motion sequence dif-
fers from that of a standard motion in the following ways:

 Labeling in inline form: the entry External TCP in the option window
Frames must be set to TRUE.

 The motion velocity then refers to the external TCP.

 The orientation along the path then also refers to the external TCP.

 Both the correct base coordinate system (fixed tool/external TCP) and the
correct tool coordinate system (moving workpiece) must be specified.

6.8 Exercise: Motion programming with external TCP

Aim of the

exercise

On successful completion of this exercise, you will be able to carry out the fol-
lowing activities:

 Program motions with a robot guiding a workpiece relative to a fixed tool

Preconditions The following are preconditions for successful completion of this exercise:

 Knowledge of how to activate an external tool when programming motions

Fig. 6-27: Option window “Frames”: External TCP

Fig. 6-28: Coordinate systems for fixed tool
Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

6 Creating and modifying programmed motions
Task description Carry out the following tasks: Program the contour for adhesive application

1. Manually clamp the panel in the gripper

2. Teach the contour on the plastic panel using the program name
Glue_panel.

 Do this using your calibrated external tool Nozzle and workpiece Pan-
el.

 Make sure that the longitudinal axis of the fixed tool is always perpen-
dicular to the adhesive application contour

 The jog velocity on the plastic panel is 0.2 m/s.

3. Test your program in accordance with the instructions.

4. Archive your program.

Questions on the exercise

1. What does the adhesive velocity you have programmed refer to?

 .

 .

2. How do you activate the external tool in your program?

 .

 .
123 / 175Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

124 / 175

Robot Programming 1
Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

7 Using logic functions in the robot program
7 Using logic functions in the robot program

7.1 Introduction to logic programming

Use of inputs and

outputs in logic

programming

In order to implement communication with the periphery of the robot controller,
digital and analog inputs/outputs can be used.

Explanation of terms

Input and output signals are used for logic statements in the programming of
KUKA robots:

 OUT | Switches an output at a specific point in the program

 WAIT FOR | Signal-dependent wait function: the controller waits for a sig-
nal here:

 Input IN

 Output OUT

 Time signal TIMER

 Internal memory address in the controller (cyclical flag/1-bit memory)
FLAG or CYCFLAG (if continuously and cyclically evaluated)

 WAIT | Time-dependent wait function: the controller waits a specified time
at this point in the program.

Fig. 7-1: Digital inputs and outputs

Term Explanation Example

Communica-
tion

Signal exchange via a
serial interface

Polling a state (gripper
open/closed)

Periphery “Surroundings” Tool (e.g. gripper, weld gun,
etc.), sensors, material
conveyor systems, etc.

Digital Digital technology: value-
and time-discrete signals

Sensor signal: part present:
value 1 (TRUE), part not
present: value 0 (FALSE)

Analog Mapping of a physical
variable

Temperature measurement

Inputs The signals arriving in the
controller via the field bus
interface

Sensor signal: gripper is
open / gripper is closed

Outputs The signals sent by the
controller to the periphery
via the field bus interface

Command for switching a
valve to close a finger grip-
per.
125 / 175Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

126 / 175

Robot Programming 1
7.2 Programming wait functions

Computer

advance run

The computer advance run loads the motion blocks in the advance run (not
visible for the operator) to allow the controller to carry out path planning in the
case of approximate positioning commands. It is not only motion data that are
processed in the advance run, however, but also arithmetical data and com-
mands for controlling the periphery.

Certain statements trigger an advance run stop. These include statements
that influence the periphery, e.g. OUT statements (close gripper, open weld
gun). If the advance run pointer is stopped, approximate positioning cannot be
carried out.

Wait functions Wait functions in a motion program can be programmed very simply using in-
line forms. A distinction is made between time-dependent wait functions and
signal-dependent wait functions.

With WAIT, the robot motion is stopped for a programmed time. WAIT always
triggers an advance run stop.

Example program:

Fig. 7-2: Computer advance run

1 Position of the main run pointer (gray bar)

2 Command set that triggers an advance run stop

3 Possible position of the advance run pointer (not visible)

Fig. 7-3: Inline form “WAIT”

Item Description

1 Wait time

 ≥ 0 s

PTP P1 Vel=100% PDAT1
PTP P2 Vel=100% PDAT2
WAIT Time=2 sec
PTP P3 Vel=100% PDAT3
Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

7 Using logic functions in the robot program
WAIT FOR sets a signal-dependent wait function.

If required, several signals (maximum 12) can be linked. If a logic operation is
added, boxes are displayed in the inline form for the additional signals and
links.

Fig. 7-4: Example motion for logic

Item Comments

1 Motion is interrupted for 2 seconds at point P2

Fig. 7-5: Inline form “WAITFOR”

Item Description

1 Add external logic operation. The operator is situated between the
bracketed expressions.

 AND

 OR

 EXOR

Add NOT.

 NOT

 [Empty box]

Enter the desired operator by means of the corresponding button.

2 Add internal logic operation. The operator is situated inside a
bracketed expression.

 AND

 OR

 EXOR

Add NOT.

 NOT

 [Empty box]

Enter the desired operator by means of the corresponding button.
127 / 175Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

128 / 175

Robot Programming 1
Logic operations If signal-dependent wait functions are used, so too are logic operations. Logic
operations can be used for combined polling of different signals or states: de-
pendencies can be created, for example, or specific states can be excluded.

The result of a function with a logic operator always provides a truth value, i.e.
“True” (value 1) or “False” (value 0).

Operators for logic operations are:

 NOT | This operand is used for negation, i.e. the value is inverted (“True”
becomes “False”).

 AND | The result of the expression is true if both linked expressions are
true.

 OR | The result of the expression is true if at least one of the linked expres-
sions is true.

 EXOR | The result of the expression is true if both of the expressions linked
by the operator have different truth values.

Processing with

and without

advance run

(CONT)

Signal-dependent wait functions can be programmed with or without process-
ing in the advance run. Without advance run means that the motion will al-
ways stop at the point and that the signal will be checked there: (1) (>>> Fig. 7-
7). In other words, the point cannot be approximated.

3 Signal for which the system is waiting

 IN

 OUT

 CYCFLAG

 TIMER

 FLAG

4 Number of the signal

 1 … 4096

5 If a name exists for the signal, this name is displayed.

Only for the user group “Expert”:

A name can be entered by pressing Long text. The name is freely
selectable.

6 CONT: Execution in the advance run

 [Empty box]: Execution with advance run stop

If the entry CONT is used, it must be taken into consider-
ation that the signal is polled in the advance run. A signal

change after the advance run will not be detected.

Item Description

Fig. 7-6: Example and principle of a logic operation
Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

7 Using logic functions in the robot program
Signal-dependent wait functions programmed with advance run allow ap-
proximate positioning to be carried out for the point before the command line.
However, the current position of the advance run pointer is not unambiguous
(default value: three motion blocks), so the precise moment at which the signal
will be checked is not specified (1) (>>> Fig. 7-8). Furthermore, signal chang-
es after the signal has been checked are not detected!

Procedure 1. Position the cursor in the line after which the logic instruction is to be in-
serted.

2. Select the menu sequence Commands > Logic > WAIT FOR or WAIT.

3. Set the parameters in the inline form.

4. Save instruction with Cmd Ok.

7.3 Programming simple switching functions

Simple switching

function

A switching function can be used to send a digital signal to the periphery. For
this, an output number defined beforehand and corresponding to the interface
is used.

Fig. 7-7: Example motion for logic

PTP P1 Vel=100% PDAT1
PTP P2 CONT Vel=100% PDAT2
WAIT FOR IN 10 'door_signal'
PTP P3 Vel=100% PDAT3

Fig. 7-8: Example motion for logic with advance run

PTP P1 Vel=100% PDAT1
PTP P2 CONT Vel=100% PDAT2
WAIT FOR IN 10 'door_signal' CONT
PTP P3 Vel=100% PDAT3
129 / 175Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

130 / 175

Robot Programming 1
The signal is set statically, i.e. it remains active until a different value is as-
signed to the output. The switching function is implemented in the program by
means of an inline form:

Pulsed switching

functions

As in the case of simple switching functions, the value of an output is changed
here, as well. With pulsing, however, the signal is withdrawn again after a de-
fined time.

Once again, programming is carried out by means of an inline form in which a
pulse of a defined length is set.

Fig. 7-9: Static switching function

Fig. 7-10: Inline form “OUT”

Item Description

1 Output number

 1 … 4096

2 If a name exists for the output, this name is displayed.

Only for the user group “Expert”:

A name can be entered by pressing Long text. The name is freely
selectable.

3 State to which the output is switched

 TRUE

 FALSE

4 CONT: Execution in the advance run

 [Empty box]: Execution with advance run stop

If the entry CONT is used, it must be taken into consider-
ation that the signal is set in the advance run.

Fig. 7-11: Pulsed signal level
Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

7 Using logic functions in the robot program
Effects of CONT

on switching

functions

If the entry CONT is left out in the inline form OUT, an advance run stop is
forced during the switching operation and exact positioning is carried out at the
point before the switching command. Once the output has been set, the mo-
tion is resumed.

Setting the entry CONT has the effect that the advance run pointer is not
stopped (no advance run stop is triggered). This means that a motion before
the switching command can be approximated. The signal is set in the advance
run.

Fig. 7-12: Inline form “PULSE”

Item Description

1 Output number

 1 … 4096

2 If a name exists for the output, this name is displayed.

Only for the user group “Expert”:

A name can be entered by pressing Long text. The name is freely
selectable.

3 State to which the output is switched

 TRUE: “High” level

 FALSE: “Low” level

4 CONT: Execution in the advance run

 [Empty box]: Execution with advance run stop

5 Length of the pulse

 0.10 … 3.00 s

LIN P1 Vel=0.2 m/s CPDAT1
LIN P2 CONT Vel=0.2 m/s CPDAT2
LIN P3 CONT Vel=0.2 m/s CPDAT3
OUT 5 'rob_ready' State=TRUE
LIN P4 Vel=0.2 m/s CPDAT4

Fig. 7-13: Example motion with switching with advance run stop

LIN P1 Vel=0.2 m/s CPDAT1
LIN P2 CONT Vel=0.2 m/s CPDAT2
LIN P3 CONT Vel=0.2 m/s CPDAT3
OUT 5 'rob_ready' State=TRUE CONT
LIN P4 Vel=0.2 m/s CPDAT4
131 / 175Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

132 / 175

Robot Programming 1
Procedure 1. Position the cursor in the line after which the logic instruction is to be in-
serted.

2. Select the menu sequence Commands > Logic > OUT > OUT or PULSE.

3. Set the parameters in the inline form.

4. Save instruction with Cmd Ok.

7.4 Programming time-distance functions

General A time-distance function can be used to set an output at a specific point on the
path without interrupting the robot motion. A distinction is made between “stat-
ic” (SYN OUT) and “dynamic” (SYN Pulse) switching. In the case of SYN OUT
5 switching, the same signal is switched as with SYN PULSE 5. It is only the
switching method that differs.

Option Start/End A switching action can be triggered relative to the start or end point of a motion
block. The switching action can be delayed or brought forward in time. The
reference motion block can be a LIN, CIRC or PTP motion.

Fig. 7-14: Example motion with switching in the advance run

The default value for the advance run pointer is three
lines. The advance run may vary, however; i.e. it has to

be taken into consideration that the switching point may not always occur at
the same time!

Fig. 7-15: Inline form “SYN OUT”, option “START”

Fig. 7-16: Inline form “SYN OUT”, option “END”
Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

7 Using logic functions in the robot program
Option PATH With the option PATH, a switching action can be triggered relative to the end
point of a motion block. The switching action can be shifted in space and/or
delayed or brought forward. The reference motion block can be a LIN or CIRC
motion. It must not be a PTP motion.

Item Description Range of values

1 Output number 1 … 4096

2 If a name exists for the output, this name is
displayed.

Only for the user group “Expert”: A name
can be entered by pressing the Longtext
softkey.

Freely selectable

3 State to which the output is switched TRUE, FALSE

4 Point at which switching is carried out

 START: Switching is carried out relative
to the start point of the motion block.

 END: Switching is carried out relative to
the end point of the motion block.

START, END

Option PATH:

5 Switching action delay

Note: The time specification is absolute.
The position of the switching point thus var-
ies according to the velocity of the robot.

-1000 …
+1000 ms

Fig. 7-17: Inline form “SYN OUT”, option “PATH”

Item Description Range of values

1 Output number 1 … 4096

2 If a name exists for the output, this name is
displayed.

Only for the user group “Expert”: A name
can be entered by pressing the Longtext
softkey.

Freely selectable

3 State to which the output is switched TRUE, FALSE

4 Point at which switching is carried out

 PATH: Switching is carried out relative to
the end point of the motion block.

START, END

Option PATH:

5 Switching action offset

Note: The specification of the location is rel-
ative to the end point of the motion block.
The position of the switching point thus does
not vary if the velocity of the robot changes.

-1000 …
+1000 ms

6 Switching action delay

Note: The delay is relative to the offset.
133 / 175Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

134 / 175

Robot Programming 1
Effect of the

switching options

Start/End

Example program 1: Option Start

Example program 2: Option Start with CONT and positive delay

Example program 3: Option End with negative delay

Fig. 7-18: SYN OUT Start with positive delay

LIN P1 VEL=0.3m/s CPDAT1
LIN P2 VEL=0.3m/s CPDAT2
;Schaltfunktion bezogen auf P2
SYN OUT 8 'SIGNAL 8' State= TRUE at Start Delay=20ms
LIN P3 VEL=0.3m/s CPDAT3
LIN P4 VEL=0.3m/s CPDAT4

Fig. 7-19: SYN OUT Start with CONT and positive delay

LIN P1 VEL=0.3m/s CPDAT1
LIN P2 CONT VEL=0.3m/s CPDAT2
;Schaltfunktion bezogen auf P2
SYN OUT 8 'SIGNAL 8' State= TRUE at Start Delay=10ms
LIN P3 CONT VEL=0.3m/s CPDAT3
LIN P4 VEL=0.3m/s CPDAT4
Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

7 Using logic functions in the robot program
Example program 4: Option End with CONT and negative delay

Example program 5: Option End with CONT and positive delay

Fig. 7-20: SYN OUT END with negative delay

LIN P1 VEL=0.3m/s CPDAT1
LIN P2 VEL=0.3m/s CPDAT2
;Schaltfunktion bezogen auf P3
SYN OUT 9 'SIGNAL 9' Status= TRUE at End Delay=-20ms
LIN P3 VEL=0.3m/s CPDAT3
LIN P4 VEL=0.3m/s CPDAT4

Fig. 7-21: SYN OUT with option END with negative delay

LIN P1 VEL=0.3m/s CPDAT1
LIN P2 VEL=0.3m/s CPDAT2
;Schaltfunktion bezogen auf P3
SYN OUT 9 'SIGNAL 9' Status= TRUE at End Delay=-10ms
LIN P3 VEL=0.3m/s CPDAT3
LIN P4 VEL=0.3m/s CPDAT4
135 / 175Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

136 / 175

Robot Programming 1
Switching limits without CONT

Switching limits with CONT:

Fig. 7-22: SYN OUT with option END and positive delay

LIN P1 VEL=0.3m/s CPDAT1
LIN P2 VEL=0.3m/s CPDAT2
;Schaltfunktion bezogen auf P3
SYN OUT 9 'SIGNAL 9' Status= TRUE at End Delay=10ms
LIN P3 VEL=0.3m/s CPDAT3
LIN P4 VEL=0.3m/s CPDAT4

Fig. 7-23: Switching limits, option Start/End without CONT

Fig. 7-24: Switching limits, option Start/End with CONT
Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

7 Using logic functions in the robot program
Effect of the

switching option

PATH

Example program:

A milling tool has to be switched on the path. Machining of the workpiece is to
begin 20 mm after P3. For the milling tool to have reached its full speed 20 mm
(Path=20) after P3, it must already be switched on 5 ms beforehand (Delay=-
5ms).

Switching limits

Procedure 1. Position the cursor in the line after which the logic instruction is to be in-
serted.

2. Select the menu sequence Commands > Logic > OUT > SYN OUT or
SYN PULSE.

3. Set the parameters in the inline form.

4. Save instruction with Cmd Ok.

Fig. 7-25

LIN P1 VEL=0.3m/s CPDAT1
;Schaltfunktion bezogen auf P2
SYN OUT 9 'SIGNAL 9' Status= True Path=20 Delay=-5ms
LIN P2 CONT VEL=0.3m/s CPDAT2
LIN P3 CONT VEL=0.3m/s CPDAT3
LIN P4 VEL=0.3m/s CPDAT4

Fig. 7-26
137 / 175Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

138 / 175

Robot Programming 1
7.5 Exercise: Logic statements and switching functions

Aim of the

exercise

On successful completion of this exercise, you will be able to carry out the fol-
lowing activities:

 Program simple logic statements

 Execute simple switching functions

 Execute path-related switching functions

 Program signal-dependent wait functions

Preconditions The following are preconditions for successful completion of this exercise:

 Theoretical knowledge of programming of simple logic statements

 Knowledge of simple switching functions

 Knowledge of simple pulse functions

 Knowledge of path-related switching functions

 Knowledge of path-related pulse functions

 Knowledge of wait functions

Task description Carry out the following tasks: logic programming component contour 1 with ad-
hesive application

1. Create a duplicate of the program Component1_CONT with the name
Adhesive_contour

2. Add the following logic functions to the program:

 The PLC is to issue an enabling signal (input 11) before the robot
leaves the HOME position.

 The adhesive nozzle must be activated 0.5 seconds before it reaches
the component (output 13).

 A signal lamp is to be activated at the transition from the flat part of the
table to the curved part of the component and deactivated again at the
transition from the curved part back to the flat part of the table (output
12).

 The adhesive nozzle must be deactivated again 0.75 seconds before
it leaves the component (output 13).

 A “finished” signal is to be sent to the PLC 50 mm before the end of
work on the component. This signal (output 11) for the PLC is to be ac-
tive for 2 seconds.

3. Test your program in accordance with the instructions.

Fig. 7-27: Inputs and outputs: adhesive application

1 Component contour 1 2 Direction of motion

3 Reference base 4 Component start and end point
Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

7 Using logic functions in the robot program
Questions on the exercise

1. What is the difference between the OUT and OUT CONT statements? What
must be taken into consideration when using them?

 .

 .

2. What is the difference between the PULSE and OUT statements?

 .

 .

3. When are SYN OUT statements used?

 .

 .

4. What are the restrictions when using SYN OUT Path statements in motion
programming?

 .

 .

5. What is the danger of using the WAIT FOR statement with a CONT state-
ment?

 .

 .

5 Transition from flat to curve 6 Transition from curve to flat

7 Point before end of component
139 / 175Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

140 / 175

Robot Programming 1
Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

8 Working with variables
8 Working with variables

8.1 Displaying and modifying variable values

Overview of

variables

Variables are placeholders for values that arise during a computing process.
Variables are labeled with their memory location, type, name and content.

The memory location of a variable is very important for its validity. A global
variable is created in the system files and is valid in all programs. A local vari-
able is created in the application program and is thus only valid (and readable)
in the running program.

Examples of variables used:

Availability and

validity of

variables in the

display

The memory location of a variable is very important for the display option of a
variable:

 global | If the variable is global, it can be displayed at any time. In such a
case, the variable must be stored as a global variable in a system file (e.g.
config.dat, machine.dat) or in a local data list.

 local | In the case of local variables, a distinction is made between local in
the program file (.src) and local in the local data list (*.dat). If the variable
is declared in the .src file, it only exists during the runtime of the program.
This is referred to as a “runtime variable”. If a variable is declared as local
in the .dat file, it is only known in the corresponding program file, but its
value remains active after the program has been deselected.

Displaying and

modifying the

value of a variable

1. In the main menu, select Display > Variable > Single.

The Variable display - Single window is opened.

2. Enter the name of the variable in the Name box.

3. If a program has been selected, it is automatically entered in the Module
box.

Fig. 8-1: Labeling of variables

Variable Memory location Type Name Value

Current tool global | KUKA sys-
tem variable

Integer $ACT_T
OOL

5

Current base: global | KUKA sys-
tem variable

Integer $ACT_B
ASE

12

Part counter local | application
program

Integer zaehler 3

Negative angle
value for the
software limit
switch of axis
2

global | machine.dat Floating-
point
number

$SoftN_
End[2]

-104.5

Error state global | e.g. in con-
fig.dat

True/
False
value

stoerung True
141 / 175Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

142 / 175

Robot Programming 1
If a variable from a different program is to be displayed, enter the program
as follows:

/R1/Program name

Do not specify a folder between /R1/ and the program name. Do not add
a file extension to the file name.

4. Press Enter.

The current value of the variable is displayed in the Current value box. If
nothing is displayed, no value has yet been assigned to the variable.

5. Enter the desired value in the New value box.

6. Press Enter.

The new value is displayed in the Current value box.

8.2 Displaying robot states

Internal system

values

Much information about the status of the robot can be obtained by displaying
internal system values. These values can be displayed at any time.

System variables available for monitoring robot states include the following:

 Timers

 Flags

Fig. 8-2: Variable Overview - Single window

Item Description

1 Name of the variable to be modified.

2 New value to be assigned to the variable.

3 Program in which the search for the variable is to be carried out.

In the case of system variables, the Module box is irrelevant.

4 This box has two states:

 : The displayed value is not refreshed automatically.

 : The displayed value is refreshed automatically.

Switching between the states:

 Press Refresh.

Internal system values are referred to as “system variables”.
A variable is a reserved memory location. This memory location (or
placeholder for values) always has a name and a specific address in

the memory of the computer.
Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

8 Working with variables
 Counter

 Input and output signals (IN/OUT) are also managed as system variables.

Features of

system variables

KUKA system variables always begin with the “$” sign. System variables can
always be displayed, as they are always valid. The global data lists serve as
memory locations.

System infor-

mation display

Procedure for displaying flags, counters and timers:

 Select Monitor > Variable in the main menu.

The various system variables are available for selection:

 Cyclical flags

 Flags

 Counters

 Timers

Procedure for displaying inputs and outputs:

 Select Monitor > I/O > Digital Outputs or Digital Inputs in the main
menu.

8.3 Exercise: Displaying system variables

Aim of the

exercise

On successful completion of this exercise, you will be able to carry out the fol-
lowing activities:

 Open the variable display

 Display system variables

Preconditions The following are preconditions for successful completion of this exercise:

 Theoretical knowledge about displaying system variables

 Theoretical knowledge of system variables

Task description Carry out the following tasks:

1. Open the variable display.

2. Display the current home position (variable name: XHOME).

3. Display the current robot position (variable name: $pos_act).

4. Determine the position of the software limit switches for axes 1-3 of your
robot (variable name: $softn_end[Axis] and $softp_end[Axis]).

5. Determine the value of the advance run pointer (variable name: $ad-
vance).

System variable Examples of use of the display function

$TIMER[1..64] Checking wait times of the robot (cooling of compo-
nents, wait time due to process duration, etc.).

$FLAG[1..1024]

$CYCFLAG[1..256]

Flags that have been used in the program can also
be monitored outside the program (global).

Cyclical flags are also evaluated continuously.

I[1..20] Counter that counts the processing steps.

$IN[1..4096] Checks whether a gripper is open or closed (the
sensors of the gripper signal the status via an input
signal).

$OUT[1..4096] Checking a gripper command (an output signal
transfers a command to the actuators of the grip-
per).
143 / 175Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

144 / 175

Robot Programming 1
Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

9 Using technology packages
9 Using technology packages

9.1 Gripper operation with KUKA.GripperTech

Technology

package

KUKA.GripperTec

h

KUKA.Gripper&SpotTech is an add-on technology package. It simplifies the
use of a gripper in terms of:

The following technology keys are required for operating the gripper:

Procedure for

gripper operation

1. Select the gripper using the technology key.

2. Activate operating mode T1 or T2.

3. Press enabling switch.

4. Control the gripper using the technology key.

9.2 Gripper programming with KUKA.GripperTech

Programming

gripper

commands

The technology package KUKA.GripperTech allows the programming of grip-
per commands directly in the selected program using ready-made inline
forms. Two commands are available for this:

 SET Gripper | Command for opening/closing the gripper in the program

 CHECK Gripper | Command for checking the gripper state

Technology
key

Description

Select gripper.

The number of the gripper is displayed.

 Pressing the upper key counts upwards.

 Pressing the lower key counts downwards.

Toggle between the gripper states (e.g. open or close).

The current state is not displayed. The possible states
depend on the configured gripper type. In the case of
weld guns, the possible states depend on the configura-
tion of the manual gun control.

Before a gripper can be operated using the technology
keys, the technology keys must first be activated!

In the main menu, select Configure > Status keys > GripperTech.

Warning!
When using the gripper system there is a risk of crushing

and cutting. Anyone using the gripper must ensure that no part of the body
can be crushed by the gripper.
145 / 175Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

146 / 175

Robot Programming 1
Gripper

programming

functions

Gripper command during motion

 It is generally possible to program the gripper command so that it is exe-
cuted relative to the start or end point.

 To do so, simply activate the entry CONT in the inline form and specify the
duration of the delay in ms (Delay).

Gripper settings for exact positioning

 Use gripper monitoring:

 If gripper monitoring is activated with ON, the parameterized sensor
systems are polled.

 If there is no feedback from the sensors, a timeout error occurs and the
sensor can be simulated in test mode.

 If gripper monitoring is deactivated with OFF, the system waits for the
parameterized wait time before the program is resumed.

Procedure for

gripper

programming

Procedure

1. Select the menu sequence Commands > GripperTech > Gripper.

2. Set the parameters in the inline form.

3. Save with Cmd Ok.

Fig. 9-1: Schematic diagram of delay

Gripper commands to be processed during the motion
must be selected carefully, as careless use can result in

injuries and material damage due to flying parts or collisions!

Fig. 9-2: Gripper adjustments

Fig. 9-3: Inline form for gripper with approximate positioning
Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

9 Using technology packages
Fig. 9-4: Inline form for gripper without approximate positioning

Item Description

1 Select gripper.

 All configured grippers are available for selection.

2 Select the switching state of the gripper.

 The number depends on the gripper type.

 The designation depends on the configuration.

3 Execution in the advance run.

 CONT: Execution in the advance run.

 [blank]: Execution with advance run stop.

4 Box only available if CONT selected.

 START: The gripper action is executed at the start point of the
motion.

 END: The gripper action is executed at the end point of the mo-
tion.

5 Box only available if CONT selected.

Define a wait time, relative to the start or end point of the motion,
for execution of the gripper action.

 -200 ... 200 ms

6 Data set with gripper parameters

Fig. 9-5: Gripper adjustments

Item Description

1 Wait time after which the programmed motion is resumed.

 0 … 10 s

2 Gripper control

 OFF (default), ON
147 / 175Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

148 / 175

Robot Programming 1
Procedure for

programming

gripper

monitoring

Procedure

1. Select the menu sequence Commands > GripperTech > Check Gripper.

2. Set the parameters in the inline form.

3. Save with Cmd Ok.

9.3 KUKA.GripperTech configuration

Configuration

options and

gripper types

KUKA.GripperTech allows gripper configuration by the user. For this, five pre-
defined gripper types are available for selection. Additionally, user-defined
grippers can also be configured.

Gripper types

Fig. 9-6: Inline form “Check Gripper”

Item Description

1 Select gripper.

 All configured grippers are available for selection.

2 Select the switching state of the gripper.

 The number depends on the gripper type.

 The designation depends on the configuration.

3 Select the time at which the sensor interrogation is executed.

 START: The sensor interrogation is executed at the start point
of the motion.

 END: The sensor interrogation is executed at the end point of
the motion.

4 Define a wait time, relative to the start or end point of the motion,
for execution of the sensor interrogation.

Up to 16 different grippers can be configured on the con-
troller.

Type
OU

T

I

N

State

s
Example

Type 1 2 4 2 Simple gripper with the functions OPEN
and CLOSE

Type 2 2 2 3 Slide with center position

Type 3 2 2 3 Vacuum gripper with the functions SUC-
TION, RELEASE and OFF

Type 4 3 2 3 The same as type 3 but with three control
outputs

Type 5 2 4 2 The same as type 1 but with a pulse sig-
nal instead of a continuous signal

Not
assigned

Freely configurable
Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

9 Using technology packages
Fig. 9-7: Example: predefined gripper

Item Description

1 Number of the gripper

 1 … 16

2 Name of the gripper

The name is displayed in the inline form. The default name can be
changed.

 1 … 24 characters

3 Type

 For predefined grippers: 1 … 5

4 Designation of the gripper type (not updated until saved)

The designation cannot be changed.

5 Assignment of the output numbers

Outputs that are not required can be assigned the value “0”. In this
way, they are immediately identifiable as unused. If they are none-
theless assigned a number, this has no effect.
149 / 175Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

150 / 175

Robot Programming 1
Free gripper

types

A freely programmable gripper type has been integrated in order to cover all
user requirements. Any number of completely freely definable grippers can be
configured by means of entries in the files $CONFIG.DAT, USERGRP.DAT
and USER_GRP.SRC.

Procedure for

gripper configu-

ration

Configuration with predefined gripper type

1. In the main menu, select Configure > I/O > Gripper. A window opens.

2. Select the desired gripper number with Next or Previous.

3. If desired, change the default name of the gripper.

4. Assign one of the types 1 to 5 to the gripper.

5. Assign the inputs and outputs.

6. If desired, change the default names of the states.

7. Save the configuration with Change.

9.4 Exercise: Gripper programming – plastic panel

Aim of the

exercise

On successful completion of this exercise, you will be able to carry out the fol-
lowing activities:

 Program statements for controlling and monitoring grippers and weld guns
(KUKA.Gripper & SpotTech)

 Activate and work with the technology-specific status keys

Preconditions The following are preconditions for successful completion of this exercise:

 Theoretical knowledge of the KUKA.Gripper & SpotTech technology pack-
age

Task description Carry out the following tasks: fetch and set down plastic panel

1. Create a new program with the name Fetch_panel, using the gripper tool
and the blue base.

2. Teach the “Fetch_panel” process with the setdown and pick-up positions
illustrated in the figure (>>> Fig. 9-8).

3. Test your program in the modes T1, T2 and Automatic. Observe the rele-
vant safety instructions.

4. Create a second program with the name Set_down_panel, using the nec-
essary base and the corresponding tool.

5. Teach the procedure “Set_down_panel”.

6. Test your program in the modes T1, T2 and Automatic. Observe the rele-
vant safety instructions.

7. Archive your programs.

6 Assignment of the input numbers

Inputs that are not required can be assigned the value “0”. In this
way, they are immediately identifiable as unused. If they are none-
theless assigned a number, this has no effect.

7 Switching states

The default names can be changed. The names are displayed in
the inline forms if the corresponding gripper is selected there.

Item Description

More detailed information about the configuration of grip-
pers can be found in the operating instructions for KUKA

System Technology KUKA.Gripper&SpotTech 3.0.
Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

9 Using technology packages
Questions on the exercise

1. When should safety instruction be carried out? (min. 4 answers)

 .

 .

 .

 .

2. What is the release device on a KUKA robot?

 .

 .

 .

Fig. 9-8: Panel with setdown position

1 Panel 2 Setdown position
151 / 175Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

152 / 175

Robot Programming 1
9.5 Exercise: Gripper programming – pen

Aim of the

exercise

On successful completion of this exercise, you will be able to carry out the fol-
lowing activities:

 Program statements for controlling and monitoring grippers and weld guns
(KUKA.Gripper & SpotTech)

 Activate and work with the technology-specific status keys

Preconditions The following are preconditions for successful completion of this exercise:

 Theoretical knowledge of the KUKA.Gripper & SpotTech technology pack-
age

Task description Carry out the following tasks: fetch and set down pen 1

1. Create two new programs with the names Fetch_pen1 and
Set_down_pen1 (duplicate).

2. During programming, make use of the advantages of jogging in the tool di-
rection

3. Make sure that the jog velocity when fetching pens from the pen magazine
and setting them down in the pen magazine does not exceed 0.3 m/s

4. Before fetching a pen, carry out a safety query with regard to the gripper
position

Questions on the exercise

1. What is the difference between a wait time and “Gripper monitoring ON/
OFF”?

. .

. .

3. You receive the notification message Approximation not possible. What are
the possible causes of this?

Fig. 9-9: Pen magazine

1 Pen magazine 2 Pen 1

3 Pen 2 4 Pen 3
Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

9 Using technology packages
 .

 .

 .

4. How many standard KUKA gripper types are there?

 .

 .
153 / 175Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

154 / 175

Robot Programming 1
Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

10 Successful programming in KRL
10 Successful programming in KRL

10.1 Structure and creation of robot programs

Program

execution control

In addition to dedicated motion commands and communication commands
(switching functions and wait functions), robot programs also include a large
number of routines that can be used for program execution control. This in-
cludes:

 Loops | Loops are control structures. They go on repeating a block of in-
structions until a break condition is fulfilled.

 Endless loops

 Counting loops

 Rejecting and non-rejecting loops

 Branches | Branches can be used if program sections are only to be exe-
cuted under certain conditions.

 Conditional branches

 Multiple branches

Endless loop An endless loop repeats the instruction block infinitely. The loop can be exited,
however, by means of a premature termination (using the EXIT function).

Examples of a LOOP instruction:

 without EXIT

 The motion commands to P1 and P2 are executed permanently.

 with EXIT

The motion commands to P1 and P2 are executed until input 30 is
switched to TRUE.

Fig. 10-1: Program flowchart: endless loop

LOOP
 PTP P1 Vel=100% PDAT1
 PTP P2 Vel=100% PDAT2
ENDLOOP
155 / 175Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

156 / 175

Robot Programming 1
Counting loop The counting loop (FOR loop) can be used to repeat instructions a defined
number of times. The number of repetitions is controlled by means of a count-
ing variable.

Example of a FOR loop: Outputs 1 to 5 are consecutively switched to TRUE.
The integer variable “i” is used to count the number of times the loop is repeat-
ed.

Rejecting loop A WHILE loop is a rejecting or pre-test loop that checks the break condition be-
fore the instruction section of the loop is executed.

LOOP
 PTP P1 Vel=100% PDAT1
 PTP P2 Vel=100% PDAT2
 IF $IN[30]==TRUE THEN
 EXIT
 ENDIF
ENDLOOP

Fig. 10-2: Program flowchart: FOR loop

INT i
...
FOR i=1 TO 5
 $OUT[i] = TRUE
ENDFOR
Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

10 Successful programming in KRL
Example of a WHILE loop: Output 17 is switched to TRUE, output 18 is
switched to FALSE and the robot is moved to the home position, but only if the
condition (input 22 is TRUE) is met at the start of the loop.

Non-rejecting

loop

A REPEAT loop is a non-rejecting or post-test loop that does not check the break
condition until after the instruction section of the loop has been executed for
the first time.

Fig. 10-3: Program flowchart WHILE

WHILE $IN[22]==TRUE
 $OUT[17]=TRUE
 $OUT[18]=FALSE
 PTP HOME
ENDWHILE
157 / 175Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

158 / 175

Robot Programming 1
Example of a REPEAT loop: Output 17 is switched to TRUE, output 18 is
switched to FALSE and the robot is moved to the home position. Only then is
the condition checked.

Conditional

branch

A conditional branch (IF statement) consists of a condition and two instruction
sections. If the condition is fulfilled, the first instruction can be executed. If the
condition is not met, the second instruction is executed.

There are also alternatives to IF statements:

 The second instruction section can be omitted: IF statement without ELSE.
This means that if the condition is not met, the program is resumed directly
after the branch.

 Several IF statements can be nested in each other (multiple branch): the
statements are executed in sequence until a condition is met.

Fig. 10-4: Program flowchart REPEAT

REPEAT
 $OUT[17]=TRUE
 $OUT[18]=FALSE
 PTP HOME
UNTIL $IN[22]==TRUE
Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

10 Successful programming in KRL
Example of an IF statement: If the condition is met (input 30 must be TRUE),
the robot moves to point P3, otherwise to point P4.

Switch statement A SWITCH branch is a switch statement or multiple branch. First of all, an expres-
sion is evaluated. The value of the expression is then compared with the value
of one of the case sections (CASE). If they match, the instructions of the cor-
responding case are executed.

Fig. 10-5: Program flowchart: IF branch

...
IF $IN[30]==TRUE THEN
 PTP P3
ELSE
 PTP P4
ENDIF
159 / 175Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

160 / 175

Robot Programming 1
First of all, the value of the integer variable with the name “status” is checked.
If the value of the variable is 1, CASE 1 is executed: the robot moves to point
P5. If the value of the variable is 2, CASE 2 is executed: the robot moves to
point P6. If the value of the variable is not contained in one of the cases (here:
anything other than 1 or 2), the DEFAULT branch is executed: an error mes-
sage.

10.2 Structuring robot programs

Robot program

structuring

options

The structure of a robot program is an important factor for its usability. The
more structured a program is, the more comprehensible, effective, legible and
economical it will be. The following techniques can be used for structuring a
program:

 Commenting | Comment and stamp

 Indentation | Spaces

 Hiding | Folds

 Module technique | Subprograms

Comments and

stamps

The addition of a comment makes it possible to store a text in the robot pro-
gram, destined solely for the reader of the program. The text is thus not loaded
by the robot interpreter. The text is only there to make the program more leg-
ible.

Fig. 10-6: Program flowchart: SWITCH – CASE statements

INT status
...
SWITCH status
 CASE 1
 PTP P5
 CASE 2
 PTP P6
 ...
 DEFAULT
 ERROR_MSG
ENDSWITCH
Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

10 Successful programming in KRL
Comments can be used in many different ways in robot programs:

 Information about the program text | Author, version, creation date

 Structuring the program text | Particularly using graphic means (special
characters: #, *, ~,)

 Commenting out (Expert level) | Starting a program line with a semicolon
turns it into a comment, i.e. the text is recognized as a comment and is ig-
nored during program execution.

 Explanations relating to individual lines and notes about work to be
done | Labeling of inadequate program sections

Comments can be inserted in three different ways:

 By inserting a semicolon (Expert level) | If a semicolon (“ ; ”) is inserted,
the following part of the line is turned into a comment.

 Insertion of the inline form “Comment”

Fig. 10-7: Example of a comment: Information

Fig. 10-8: Example of a comment: Structure

Fig. 10-9: Example of a comment: Commenting out

Fig. 10-10: Example of a comment: Explanations

Comments are only of any use if they are kept up to date.
It is vital to ensure that the comments are updated follow-

ing subsequent modification of the corresponding instructions!

Fig. 10-11: Inline form “Comment”
161 / 175Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

162 / 175

Robot Programming 1
 Insertion of the inline form “Stamp” | An additional time stamp is inserted.
In addition, the name of the editor can also be inserted.

Procedure for

inserting

comments and

stamps

1. Select the line after which the comment or stamp is to be inserted.

2. Select the menu sequence Commands > Comment > Normal or Stamp.

3. Enter the desired data. If a comment or stamp has already been entered
previously, the inline form still contains the same entries.

 In the case of a comment, the box can be cleared using New text
ready for entry of a new text.

 In the case of a stamp, the system time can also be updated using
New time and the NAME box can be cleared using New name.

4. Save with Cmd Ok.

Indenting

program lines

Indenting program lines is an effective way of increasing the legibility of a robot
program. It highlights program modules that belong together.

Hiding program

lines by means of

folds

The KUKA Robot Language offers the possibility of grouping program lines to-
gether and hiding them in folds. This makes program lines invisible for the user,
making the program easier to read. Folds can be opened and edited in the
user group Expert.

Item Description

1 Any text

Fig. 10-12: Inline form “Stamp”

Item Description

1 System date (cannot be edited)

2 System time (cannot be edited)

3 Name or ID of the user

4 Any text

Fig. 10-13: Indenting program lines

The effect of indentation is purely optical. Indented pro-
gram sections are processed during program execution

in exactly the same way as program sections that are not indented.
Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

10 Successful programming in KRL
Color coding of folds:

10.3 Linking robot programs

Subprograms The use of subprograms makes it possible to structure robot programs in a
modular manner, thus giving them a more efficient layout. The aim is not to
write all commands into a program, but to outsource certain sequences, cal-
culations or processes to separate programs.

There are numerous advantages to using subprograms:

 The main program receives a clear structure and is easier to read, as the
program length is reduced.

 Subprograms can be developed independently of one another: the pro-
gramming effort can be shared and error sources are minimized.

 Subprograms can be used repeatedly.

A basic distinction is made between two different types of subprogram:

 Global subprograms

Fig. 10-14: Closed fold

Fig. 10-15: Opened fold

Color Description

Dark red Closed fold

Light red Opened fold

Dark blue Closed sub-fold

Light blue Opened sub-fold

Green Contents of the fold
163 / 175Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

164 / 175

Robot Programming 1
A global subprogram is an independent robot program that is called from
a different robot program. The branching of the programs can be require-
ment-specific, i.e. the program can function as a main program on one oc-
casion and as a subprogram on a different occasion.

 Local subprograms

Local subprograms are programs that are integrated into a main program,
i.e. the commands are contained in the same SRC file. Point coordinates
of the subprogram are thus saved in the same DAT file.

Subprogram call

sequence

Every program begins with a DEF line and ends with an END line. If a subpro-
gram is called in a main program, the subprogram is executed by default from
DEF to END. Once the END line is reached, the program pointer jumps back
to the program (main program) from which the subprogram was called.

Fig. 10-16: Example diagram for global subprograms

Fig. 10-17: Schematic diagram: local subprograms
Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

10 Successful programming in KRL
Procedure for

calling a

subprogram

In order to be able to program a subprogram call, the user group Expert must
be selected. The syntax for a subprogram call is:

Name()

1. Select Configuration > User group in the main menu. The current user
group is displayed.

2. Press Login... to switch to a different user group. Select the user group
Expert.

3. Enter the password kuka and confirm with Login.

4. Load the desired main program into the editor with Open.

5. Position the cursor in the desired line.

6. Enter the subprogram name with both brackets, e.g. myprog()

7. Close the editor by means of the Close icon and save the changes.

10.4 Exercise: Programming in KRL

Aim of the

exercise

On successful completion of this exercise, you will be able to carry out the fol-
lowing activities:

 Program endless loops

 Program subprogram calls

 Adapt CELL.SRC for Automatic External mode

Fig. 10-18: Subprogram call sequence

In order to exit a subprogram prematurely (i.e. before the
END line), the command RETURN can be programmed

in the subprogram. When this program line is read, the subprogram is termi-
nated prematurely.

INI

PTP HOME Vel= 100% DEFAULT

PTP HOME Vel= 100% DEFAULT

INI

PTP HOME Vel= 100% DEFAULT
myprog()
PTP HOME Vel= 100% DEFAULT
165 / 175Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

166 / 175

Robot Programming 1
Preconditions The following are preconditions for successful completion of this exercise:

 Knowledge of using the Navigator at Expert level

 Basic knowledge of programming at Expert level (KRL)

 Knowledge of subprogram and loop programming

 Knowledge of the structure of CELL.SRC

Task description Carry out the following tasks:

1. Create a new module at Expert level with the name Procedure. All other
programs will be called as subprograms from this central program.

2. The exact program sequence is indicated in the program flowchart.
(>>> Fig. 10-19)

3. Test your new program Procedure in T1, T2 and Automatic modes. Ob-
serve the relevant safety instructions.

4. Extend CELL.SRC as follows:

 When program number 1 is sent, the pen is fetched from the maga-
zine.

 When program number 2 is sent, the contour on the table is executed.

 When program number 3 is sent, the pen is returned to the magazine.

5. Test your CELL.SRC program.
Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

10 Successful programming in KRL
Questions on the exercise

1. What do the KUKA filename extensions SRC and DAT mean?

 .

 .

2. What statement can you use to leave an endless loop?

 .

 .

3. What syntax is required for a SWITCH statement?

 .

 .

 .

Fig. 10-19: Program flowchart: program Procedure
167 / 175Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

168 / 175

Robot Programming 1
. .
Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

11 Working with a higher-level controller
11 Working with a higher-level controller

11.1 Preparation for program start from PLC

Robot in system

group

If robot processes are to be controlled centrally (by a host computer or PLC),
this is carried out using the Automatic External interface.

System structure

principle

The following is required for successful communication between the KR C4
and a PLC:

 Automatic External mode: Operating mode in which a host computer or
PLC assumes control of the robot system.

 CELL.SRC: Organization program for selecting robot programs from out-
side.

 Signal exchange between PLC and robot: Automatic External interface
for configuration of the input and output signals:

 Control signals to the robot (inputs): start and stop signal, program
number, error acknowledgement

 Robot status (outputs): status of drives, position, errors, etc.

Safety instruc-

tions – external

program start

Once the CELL program has been selected, a BCO run must be carried out.

If the BCO run is successful, no further BCO run is performed in the case of
the external start.

Procedure –

external program

start

Preconditions

 T1 or T2 operating mode

Fig. 11-1: PLC connection

A BCO run is executed as a PTP motion from the actual
position to the target position if the selected motion block

contains the motion command PTP. If the selected motion block contains LIN
or CIRC, the BCO run is executed as a LIN motion. Observe the motion to
avoid collisions. The velocity is automatically reduced during the BCO run.

There is no BCO run in Automatic External mode. This
means that the robot moves to the first programmed po-

sition after the start at the programmed (not reduced) velocity and does not
stop there.
169 / 175Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

170 / 175

Robot Programming 1
 Inputs/outputs for Automatic External and the program CELL.SRC are
configured.

1. Select the program CELL.SRC in the Navigator. The CELL program is al-
ways located in the directory KRC:\R1.

2. Set program override to 100%. (This is the recommended setting. A differ-
ent value can be set if required.)

3. Carry out a BCO run:
Hold down the enabling switch. Then press the Start key and hold it down
until the message “Programmed path reached (BCO)” is displayed in the
message window.

4. Select “Automatic External” mode.

5. Start the program from a higher-level controller (PLC).

11.2 Adapting the PLC interface (Cell.src)

Cell.src organi-

zation program

The organization program Cell.src is used to manage the program numbers
transferred by the PLC. It is located in the folder “R1”. Like any other program,
the Cell program can be customized, but the basic structure of the program
must be retained.

Fig. 11-2: Cell selection and jog override setting

1 Jog override setting

2 Cell.src selection
Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

11 Working with a higher-level controller
Structure and

functionality of

the Cell program

Procedure 1. Switch to the user group “Expert”.

2. Open CELL.SRC.

3. In the “CASE” sections, replace the name “EXAMPLE” with the name of
the program that is to be called via the respective program number. Delete
the semicolon in front of the name.

Fig. 11-3: Cell program

1 Initialization and home position

 Initialization of the basic parameters

 Check of the robot position after the home position

 Initialization of the Automatic External interface

2

Endless loop:

 Polling of program numbers by the "P00" module

 Entry into the selection loop with the program number determined.

3 Program number selection loop

 Depending on the program number (stored in the variable “PG-
NO”), the program jumps to the corresponding branch (“CASE”).

 The robot program entered in the branch is then executed.

 Invalid program numbers cause the program to jump to the default
branch.

 Once executed, the loop is repeated.
171 / 175Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

172 / 175

Robot Programming 1
4. Close the program and save the changes.

Fig. 11-4: Example of an adapted Cell program
Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

Index
Index

A
Acknowledgement message 15
Approximate positioning 106, 115
Approximate positioning CIRC 112
Approximate positioning LIN 112
Approximate positioning PTP 103
Archiving 95
Automatic External 169
Axis-specific jogging 19

B
Base calibration 66
Base coordinate system 23
BCO 85
Branch 155
Branch conditional 158
Branch multiple 159

C
Calibration of a fixed tool 74
Calibration of a robot-guided workpiece 76
CIRC motion 109
Comment 160
Connection manager 10
Coordinate system 23
Counting loop 156

D
Delete program 94
Dialog message 16
Displaying a variable, single 141
Displaying variables 141
Duplicate program 94

E
EMERGENCY STOP 10
EMERGENCY STOP button 13
Endless loop 155
Exercise, 3-point method 72
Exercise, approximate positioning 119
Exercise, base calibration of table 72
Exercise, calibrating an external tool 77
Exercise, CELL.SRC 165
Exercise, CP motion 119
Exercise, displaying system variables 143
Exercise, dummy program 107
Exercise, executing robot programs 91
Exercise, gripper programming – plastic panel
150
Exercise, gripper programming, pen 152
Exercise, jogging with a fixed tool 40
Exercise, KRL 165
Exercise, load mastering with offset 47
Exercise, logic 138
Exercise, motion programming with external
TCP 122
Exercise, operator control and jogging 37
Exercise, programming 165

Exercise, robot mastering 47
Exercise, switching functions 138
Exercise, tool calibration, ABC World 61
Exercise, tool calibration, gripper 64
Exercise, tool calibration, numeric 64
Exercise, tool calibration, pen 61
Exercise, tool calibration, XYZ 4-point 61

F
Fixed tool, jogging 39
Flange coordinate system 23
Fold 162
FOR loop 156

G
Gripper configuration 148
Gripper operation 145
Gripper programming 145

I
IF statement 158
Indenting 162
Initialization 85
Inline form 101
Interpolation mode 106, 115

J
Jog keys 11
Jogging, base 32
Jogging, fixed tool 39
Jogging, tool 28
Jogging, world 24

K
Keyboard 11
Keyboard key 11
KUKA.GripperTech 145

L
LIN motion 109
Loads on the robot 49
Logbook 96
Logic, general 125
LOOP 155
Loop counting loop 156
Loop endless loop 155
Loop non-rejecting 157
Loop rejecting 156
Loops 155

M
Mastering 41
Messages 15
Modifying a variable 141
Modifying motion commands 116
Motion programming 101
Moving individual axes 19
173 / 175Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

174 / 175

Robot Programming 1
N
Non-rejecting loop 157
Notification message 15

O
Operating mode 16
Orientation control 111, 115

P
Panic position 20
Payload data (menu item) 50
Program execution control 155
Program selection 86
Program start 86
Program start from PLC 169
Program structure 155
Programming, external TCP 122
PTP motion 102

R
Rejecting loop 156
Release device 21
Rename program 94
REPEAT loop 157
Restoring 95
Robot safety 13
Robroot 23

S
Safe operational stop 35
Safety STOP 0 35
Safety STOP 1 36
Safety STOP 2 36
Safety STOP 0 35
Safety STOP 1 36
Safety STOP 2 36
Safety stop, external 14
Single (menu item) 141
Singularity 109
Space Mouse 11
Stamp 160
Start backwards key 11
Start key 11
Status message 15
STOP 0 36
STOP 1 36
STOP 2 36
Stop category 0 36
Stop category 1 36
Stop category 2 36
STOP key 11
Subprogram global 163
Subprogram local 164
Subprograms 163
Supplementary load data (menu item) 52
Switch statement 159
Switching functions, simple 129
Switching functions, time-distance 132
System variables 142

T
Technology keys 11
Tool calibration 52
Tool coordinate system 23
Tool load data 49

V
Variables 141

W
WAIT 126
WAIT FOR 127
Wait function 126
Wait message 15
WHILE loop 156
World coordinate system 23
Wrist root point 109, 110
Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

175 / 175Issued: 31.05.2011 Version: COL P1KSS8 Roboterprogrammierung 1 V1 en

Robot Programming 1

	Robot Programming 1
	1 Structure and function of a KUKA robot system
	1.1 Introduction to robotics
	1.2 Robot arm of a KUKA robot
	1.3 (V)KR C4 robot controller
	1.4 The KUKA smartPAD
	1.5 Overview of smartPAD
	1.6 Robot programming
	1.7 Robot safety

	2 Moving the robot
	2.1 Reading and interpreting robot controller messages
	2.2 Selecting and setting the operating mode
	2.3 Moving individual robot axes
	2.4 Coordinate systems in conjunction with robots
	2.5 Moving the robot in the world coordinate system
	2.6 Moving the robot in the tool coordinate system
	2.7 Moving the robot in the base coordinate system
	2.8 Exercise: Operator control and jogging
	2.9 Jogging with a fixed tool
	2.10 Exercise: Jogging with a fixed tool

	3 Starting up the robot
	3.1 Mastering principle
	3.2 Mastering the robot
	3.3 Exercise: Robot mastering
	3.4 Loads on the robot
	3.4.1 Tool load data
	3.4.2 Supplementary loads on the robot

	3.5 Tool calibration
	3.6 Exercise: Tool calibration, pen
	3.7 Exercise: Tool calibration of gripper, 2-point method
	3.8 Base calibration
	3.9 Displaying the current robot position
	3.10 Exercise: Base calibration of table, 3-point method
	3.11 Calibration of a fixed tool
	3.12 Calibration of a robot-guided workpiece
	3.13 Exercise: Calibrating an external tool and robot-guided workpiece
	3.14 Disconnecting the smartPAD

	4 Executing robot programs
	4.1 Performing an initialization run
	4.2 Selecting and starting robot programs
	4.3 Exercise: Executing robot programs

	5 Working with program files
	5.1 Creating program modules
	5.2 Editing program modules
	5.3 Archiving and restoring robot programs
	5.4 Tracking program modifications and changes of state by means of the logbook

	6 Creating and modifying programmed motions
	6.1 Creating new motion commands
	6.2 Creating cycle-time optimized motion (axis motion)
	6.3 Exercise: Dummy program – program handling and PTP motions
	6.4 Creating CP motions
	6.5 Modifying motion commands
	6.6 Exercise: CP motion and approximate positioning
	6.7 Motion programming with external TCP
	6.8 Exercise: Motion programming with external TCP

	7 Using logic functions in the robot program
	7.1 Introduction to logic programming
	7.2 Programming wait functions
	7.3 Programming simple switching functions
	7.4 Programming time-distance functions
	7.5 Exercise: Logic statements and switching functions

	8 Working with variables
	8.1 Displaying and modifying variable values
	8.2 Displaying robot states
	8.3 Exercise: Displaying system variables

	9 Using technology packages
	9.1 Gripper operation with KUKA.GripperTech
	9.2 Gripper programming with KUKA.GripperTech
	9.3 KUKA.GripperTech configuration
	9.4 Exercise: Gripper programming – plastic panel
	9.5 Exercise: Gripper programming – pen

	10 Successful programming in KRL
	10.1 Structure and creation of robot programs
	10.2 Structuring robot programs
	10.3 Linking robot programs
	10.4 Exercise: Programming in KRL

	11 Working with a higher-level controller
	11.1 Preparation for program start from PLC
	11.2 Adapting the PLC interface (Cell.src)

	Index

