OMRON

AC Servomotors/Servo Drives

1S-series with Built-in

EtherCAT® Communications

User's Manual

R88M-1L□/-1M□ (AC Servomotors)

R88D-1SN□-ECT (AC Servo Drives)

NOTE -

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any means, mechanical, electronic, photocopying, recording, or otherwise, without the prior written permission of OMRON.

No patent liability is assumed with respect to the use of the information contained herein. Moreover, because OMRON is constantly striving to improve its high-quality products, the information contained in this manual is subject to change without notice. Every precaution has been taken in the preparation of this manual. Nevertheless, OMRON assumes no responsibility for errors or omissions. Neither is any liability assumed for damages resulting from the use of the information contained in this publication.

Trademarks

- Sysmac and SYSMAC are trademarks or registered trademarks of OMRON Corporation in Japan and other countries for OMRON factory automation products.
- EtherCAT® is registered trademark and patented technology, licensed by Beckhoff Automation GmbH, Germany.
- Safety over EtherCAT® is registered trademark and patented technology, licensed by Beckhoff Automation GmbH, Germany.
- ODVA, CIP, CompoNet, DeviceNet, and EtherNet/IP are trademarks of ODVA.

Other company names and product names in this document are the trademarks or registered trademarks of their respective companies.

Introduction

Thank you for purchasing a 1S-series Servo Drive. This User's Manual describes the installation and wiring methods of the 1S-series Servo Drives and parameter setting method which is required for the operation, as well as troubleshooting and inspection methods.

Intended Audience

This User's Manual is intended for the following personnel, who must also have electrical knowledge (certified electricians or individuals who have equivalent knowledge).

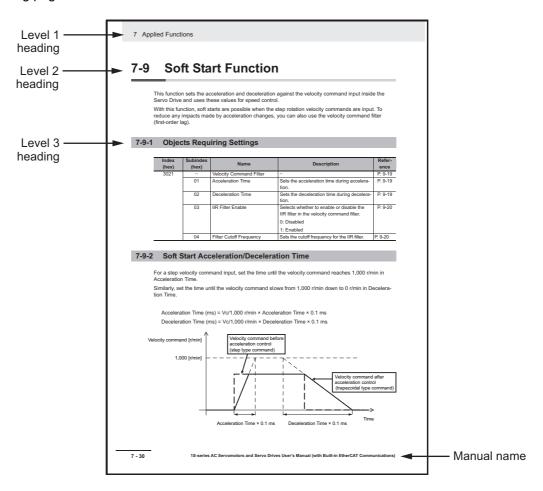
- · Personnel in charge of introducing the FA equipment
- · Personnel in charge of designing the FA systems
- · Personnel in charge of installing and connecting the FA equipment
- · Personnel in charge of managing the FA systems and facilities

Notice

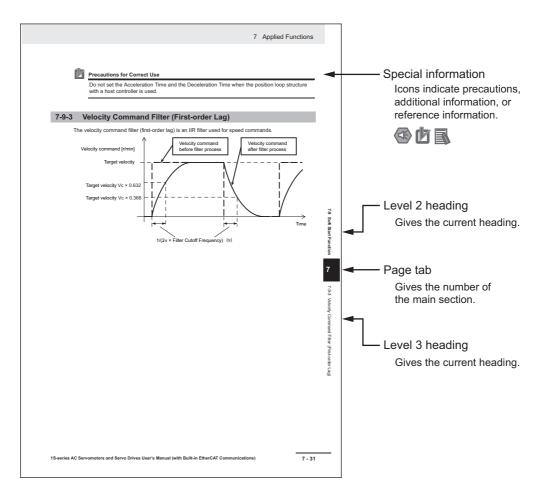
This User's Manual contains information you need to know to correctly use the 1S-series Servo Drives and peripheral equipment.

Before using the Servo Drive, read this User's Manual and gain a full understanding of the information provided herein.

After you finished reading this User's Manual, keep it in a convenient place so that it can be referenced at any time.


Make sure this User's Manual is delivered to the end user.

Manual Structure


This section explains the page structure and symbol icons.

Page Structure

The following page structure is used in this manual.

Note The above page is only a sample for illustrative purposes. It is not the actual content of this User's Manual.

Note This illustration is provided only as a sample. It may not literally appear in this manual.

Special Information

Special information in this manual is classified as follows:

Precautions for Safe Use

Precautions on what to do and what not to do to ensure safe usage of the product.

Precautions for Correct Use

Precautions on what to do and what not to do to ensure proper operation and performance.

Additional Information

Additional information to read as required.

This information is provided to increase understanding or make operation easier.

Version Information

Information on differences in specifications and functionality for Servo Drives with different unit versions and for different versions of the Sysmac Studio is given.

Manual Configuration

This User's Manual consists of the following sections.

Read the necessary section or sections by reference to the following table.

Section		Outline		
Section 1	Features and System Configuration	This section explains the features of the Servo Drive and name of each part.		
Section 2	Models and Exter- nal Dimensions	This section explains the models of Servo Drives, Servomotors, Decelerators, and peripheral devices, and provides the external dimensions and mounting dimensions.		
Section 3	Specifications	This section provides the general specifications, characteristics, connector specifications, and I/O circuits of the Servo Drives as well as the general specifications, characteristics, encoder specifications of the Servomotors and other peripheral devices.		
Section 4	Configuration and Wiring	This section explains the conditions for installing Servo Drives, Servomotors, and Decelerators, the wiring methods including wiring conforming to EMC Directives, the regenerative energy calculation methods, as well as the performance of External Regeneration Resistors.		
Section 5	EtherCAT Communications	This section explains EtherCAT communications under the assumption that the Servo Drive is connected to a Machine Automation Controller NJ/NX-series CPU Unit or Position Control Unit (Model: CJ1W-NC□8□)		
Section 6	Basic Control Functions	This section explains the outline and settings of basic control functions.		
Section 7	Applied Functions	This section provides the outline and settings of the applied functions such as electronic gear and gain switching.		
Section 8	Safety Function	This function stops the motor based on a signal from a safety controller. This section provides the outline of the function and examples of operation and connection.		
Section 9	Details on Servo Parameters	This section explains the details on each servo parameter, including the set values, settings, and the display.		
Section 10	Operation	This section provides the operational procedure and explains how to operate in each mode.		
Section 11	Adjustment Func- tions	This section explains the functions, setting methods, and items to note regarding adjustments.		
Section 12	Troubleshooting	This section explains the items to check when problems occur, and trouble- shooting by the use of error displays or operation state.		
Section 13	Maintenance and Inspection	This section explains maintenance and inspection of the Servomotors and Servo Drives.		
Appendices		The appendices provide explanation for the profile that is used to control the Servo Drive, lists of objects, and Sysmac error status codes.		

Sections in this Manual

					1	10
1	Features and System Configuration	10	Operation		2	11
	Configuration			/ /	3	12
2	Models and External Dimensions	11	Adjustment Functions			
=		=			4	13
3	Specifications	12	Troubleshooting	///	5	Α
4	Configuration and Wiring	13	Maintenance and Inspection	///	6	1
5	EtherCAT Communications	Α	Appendices			7
6	Basic Control Functions	П	Index			8
7	Applied Functions	_				9
				/ / /		
8	Safety Function					
9	Details on Servo Parar	neters				

CONTENTS

	Intro	oduction	1
	Man	nual Structure	2
	Man	rual Configuration	4
	Sect	tions in this Manual	5
	Torn	ns and Conditions Agreement	16
	Safe	ety Precautions	.18
	ltem	ns to Check After Unpacking	. 30
	Rela	ated Manuals	.41
	Tern	minology	. 44
	Revi	ision History	. 46
Sect	tion 1	Features and System Configuration	
	1-1	Outline	
		1-1-1 Features of 1S-series Servo Drives	
		1-1-2 EtherCAT	
	1-2	System Configuration	
	1-3	Names and Functions	
	. •	1-3-1 Servo Drive Part Names	
		1-3-2 Servo Drive Functions	
		1-3-3 Servomotor Part Names	1-17
		1-3-4 Servomotor Functions	
		1-3-5 Shield Clamp Part Names	1-20
	1-4	System Block Diagram1	I -21
	1-5	Applicable Standards1	-29
		1-5-1 EU Directives	1-29
		1-5-2 UL and cUL Standards	
		1-5-3 Korean Radio Regulations (KC)	
		1-5-4 National Standard (GB)	
		1-5-5 SEMI F47	
		1-5-6 Australian EMC Labeling Requirements (RCM)	
		1-5-7 EAC Requirements	
	1-6	Unit Versions1	
		1-6-1 Confirmation Method	
		1-6-2 Unit Versions and Sysmac Studio Versions	
	1-7	Procedures to Start Operation1	
		1-7-1 Overall Procedure	
		1-7-2 Procedure Details	1-36

Section 2 Models and External Dimensions

2-1	Servo System Configuration	2-2
2-2	How to Read Model Numbers	2-4
	2-2-1 Servo Drive	
	2-2-2 Servomotor	2-5
	2-2-3 Encoder Cable	2-6
	2-2-4 Motor Power Cable without Brake Wire	2-7
	2-2-5 Motor Power Cable with Brake Wire	2-8
	2-2-6 Decelerator	2-9
2-3	Model Tables	2-11
	2-3-1 Servo Drive Model Table	
	2-3-2 Servomotor Model Tables	
	2-3-3 Servo Drive and Servomotor Combination Tables	2-17
	2-3-4 Decelerator Model Tables	2-19
	2-3-5 Servomotor and Decelerator Combination Tables	2-23
	2-3-6 Cable and Connector Model Tables	2-25
	2-3-7 External Regeneration Resistor and External Regeneration Resistance Unit	
	Model Tables	
	2-3-8 External Dynamic Brake Resistor Model Table	
	2-3-9 Reactor Model Table	
	2-3-10 Footprint-type Noise Filters Model Table	2-36
2-4	External and Mounting Dimensions	2-37
	2-4-1 Servo Drive Dimensions	
	2-4-2 Servomotor Dimensions	
	2-4-3 Cable Outlet Direction	
	2-4-4 Cable Wiring Dimension for a Case of Motor Installing	
	2-4-5 Decelerator Dimensions	
	2-4-6 Dimensions of External Regeneration Resistors and External Regeneration	
	Resistance Units	2-120
	2-4-7 Dimensions of External Dynamic Brake Resistors	
	2-4-8 Reactor Dimensions	2-122
	2-4-9 Noise Filter Dimensions	2-131
Section 3	Specifications	
	•	
3-1	Servo Drive Specifications	
	3-1-1 General Specifications	
	3-1-2 Characteristics	
	3-1-3 EtherCAT Communications Specifications	
	3-1-4 Main Circuit and Motor Connections	
	3-1-5 Control I/O Connector (CN1) Specifications	
	3-1-6 Control Input Circuits	
	·	
	3-1-8 Control Output Circuits	
	3-1-10 Encoder Pulse Output Specifications	
	3-1-11 Safety I/O Specifications	
	3-1-12 Brake Interlock Connector (CN12) Specifications	
	3-1-13 Encoder Connector (CN2) Specifications	
	3-1-14 EtherCAT Communications Connector (RJ45) Specifications	
	3-1-15 USB Connector (CN7) Specifications	
	3-1-16 Power ON Sequence	
	3-1-17 Overload Characteristics (Electronic Thermal Function)	
3-2	Servomotor Specifications	
J-2	3-2-1 General Specifications	
	3-2-1 General Specifications	
	3-2-3 Characteristics	
• •		
3-3	Decelerator Specifications	3-70

3-4	Cable and Connector Specifications	
	3-4-1 Encoder Cable Specifications	3-77
	3-4-2 Motor Power Cable Specifications	3-84
	3-4-3 Combination of Power Cable and Extension Cable	
	3-4-4 Resistance to Bending of Flexible Cable	
	3-4-5 Connector Specifications	
	3-4-6 Cable Wire Specifications	
	3-4-7 EtherCAT Communications Cable Specifications	
0.5		0-140
3-5	Specifications of External Regeneration Resistors and External Regeneration Resistance Units	2 446
	3-5-1 General Specifications	
	3-5-2 Characteristics	
	3-5-3 External Regeneration Resistance Unit Specifications	
3-6	External Dynamic Brake Resistor	
	3-6-1 General Specifications	
	3-6-2 Characteristics	3-151
3-7	Reactor Specifications	3-152
	3-7-1 General Specifications	3-152
	3-7-2 Characteristics	3-152
	3-7-3 Terminal Block Specifications	
3-8	Noise Filter Specifications	3_15/
3-0	3-8-1 General Specifications	
	3-8-2 Characteristics	
	3-8-3 Terminal Block Specifications	
Section 4	Configuration and Wiring	4.0
4-1	Installation Conditions	
	4-1-1 Servo Drive Installation Conditions	
	4-1-2 Servomotor Installation Conditions	
	4-1-3 Decelerator Installation Conditions	4-11
	4-1-4 External Regeneration Resistor and External Regeneration Resistance Unit Installation Conditions	1 11
	4-1-5 Noise Filter Installation Conditions	
	,	
4-2	Wiring	
	4-2-1 Peripheral Equipment Connection Examples	4-20
	4-2-2 Procedure for Wiring Terminal Block and Procedure for Mounting Shield Clamp	
	to Servo Drive	
	4-2-3 Connector Attachment Procedure	
	4-2-4 Procedure for Change of Cable Outlet Direction for Connector Type M23 or M40	
	4-2-5 Terminal Block Wiring Procedure for Footprint-type Noise Filter	4-50
4-3	Wiring Conforming to EMC Directives	4-51
	4-3-1 Peripheral Equipment Connection Examples	
	4-3-2 Selecting Connection Component	
4-4	Regenerative Energy Absorption	4-72
	4-4-1 Calculating the Regenerative Energy	
	4-4-2 Servo Drive Regeneration Absorption Capacity	
	4-4-3 Regenerative Energy Absorption by an External Regeneration Resistance Device	
	4-4-4 Connecting an External Regeneration Resistor	
4-5	Adjustment for Large Load Inertia	4-78
4-6	Machine Accuracy for Servomotor	4-79
4-7	Noise Filter Installation Conditions When the Total Wire Length Is Long	4-80
• •	4-7-1 Noise Filters for Motor Power Cables That Are Longer Than 20 Meters	
	4-7-2 Noise Filter to Connect to More Than One Servo Drive	
	. , 2	

Section 5	EtherCAT Communications		
5-1	Display Area and Settings	5-2	
	5-1-1 Node Address Setting	5-2	
	5-1-2 Status Indicators		
5-2	Structure of the CAN Application Protocol over EtherCAT	5-5	
5-3	EtherCAT State Machine	5-6	
5-4	Process Data Objects (PDOs)		
	5-4-1 PDO Mapping Settings5-4-2 Sync Manager PDO Assignment Settings		
	5-4-3 Fixed PDO Mapping		
	5-4-4 Variable PDO Mapping		
	5-4-5 Sync Manager PDO Mapping Assignment Settings		
5-5	Service Data Objects (SDOs)		
5-6	Synchronization Mode and Communications Cycle		
	5-6-2 Free-Run Mode		
5-7	Emergency Messages	5-15	
5-8	Sysmac Device Features	5-16	
5-9	Cable Redundancy Function	5-20	
	5-9-1 Objects Requiring Settings	5-20	
	5-9-2 Description of Operation		
	5-9-3 Procedure of Checking Operation		
Section 6	Basic Control Functions		
6-1	Outline of Control Functions		
	6-1-1 Basic Control and Control Methods		
6-2	Control Blocks		
6-2	6-2-1 Block Diagram for Position Control		
	6-2-2 Block Diagram for Velocity Control	6-7	
	6-2-3 Block Diagram for Torque Control	6-9	
6-3	Cyclic Synchronous Position Mode	6-10	
6-4	Cyclic Synchronous Velocity Mode	6-12	
6-5	Cyclic Synchronous Torque Mode	6-14	
6-6	Profile Position Mode	6-16	
6-7	Profile Velocity Mode	6-21	
6-8	Homing Mode	6-24	
6-9	Connecting with OMRON Controllers	6-25	
Section 7	Applied Functions		
7-1	General-purpose Input Signals	7-3	
	7-1-1 Objects Requiring Settings		
	7-1-2 Default Setting7-1-3 Function Input Details		

7-2

General-purpose Output Signals7-8

		7-2-2 Default Setting	
	7-3	Drive Prohibition Functions	
	7-3	7-3-1 Objects Requiring Settings	
		7-3-2 Description of Operation	
	7-4	Software Position Limit Functions	7-17
		7-4-1 Operating Conditions	7-17
		7-4-2 Objects Requiring Settings	
		7-4-3 Description of Operation	
	7-5	Backlash Compensation	
		7-5-1 Operating Conditions	
		7-5-2 Objects Requiring Settings	
	7-6	Brake Interlock	
	7-0	7-6-1 Objects Requiring Settings	
		7-6-2 Description of Operation	
		7-6-3 Operation Timing	7-25
	7-7	Electronic Gear Function	7-29
		7-7-1 Objects Requiring Settings	
		7-7-2 Operation Example	7-30
	7-8	Torque Limit Switching	7-31
		7-8-1 Operating Conditions	
		7-8-2 Objects Requiring Settings	
		7-8-3 Torque Limit Switching Method	
	7-9	Soft Start	
		7-9-1 Objects Requiring Settings	
		7-9-3 Velocity Command First-order Lag Filter	
	7-10	Gain Switching Function	
	7 10	7-10-1 Objects Requiring Settings	
		7-10-2 Mode Selection	
		7-10-3 Gain Switching in Position Control	7-38
	7-11	Touch Probe Function (Latch Function)	
		7-11-1 Related Objects	
		7-11-2 Trigger Signal Settings	
	- 40		
	7-12	Fig. 2.1 Objects Requiring Settings	
		7-12-1 Objects Requiring Settings	
		7-12-3 Output Reverse Selection	
		7-12-4 Z-phase Output	7-45
	7-13	Dynamic Brake	7-46
		7-13-1 Operating Conditions	
		7-13-2 Objects Requiring Settings	
		7-13-3 Description of Operation	
	7-14	Command Compensation Function for Communications Error	
		7-14-1 Operating Conditions	
		7-14-2 Operation Example	7-30
Section	n 8	Safety Function	
	8-1	•	0.0
		Safe Torque OFF Function	
	8-2	STO Function via Safety Input Signals	
		8-2-1 I/O Signal Specifications	
		8-2-3 Connection Example	
		,	

8-3	STO Function via EtherCAT Communications	8-10
	8-3-1 Connection and Setting	8-10
	8-3-2 Operation Example	8-12
	8-3-3 Connection Example	8-14
Section 9	Details on Servo Parameters	
9-1	Object Description Format	9-4
9-2	Common Control Objects	9-6
~ -	9-2-1 3000 hex: Basic Functions	
	9-2-2 3001 hex: Machine	
	9-2-3 3002 hex: Optimized Parameters	
	9-2-4 3010 hex: Position Command	
	9-2-5 3011 hex: Position Command Filter	
	9-2-6 3012 hex: Damping Control	
	9-2-7 3013 hex: Damping Filter 1	
	9-2-8 3014 hex: Damping Filter 2	
	9-2-9 3020 hex: Velocity Command	
	9-2-10 3021 hex: Velocity Command Filter	
	9-2-11 3030 hex: Torque Command	
	9-2-12 3031 hex: Velocity Limit in Torque Control	9-24
	9-2-13 3040 hex: Profile Command	9-25
	9-2-14 3041 hex: Command Dividing Function	9-26
9-3	Control Method Objects	0.28
9-3	9-3-1 3112 hex: ODF Velocity Feed-forward	
	9-3-2 3113 hex: ODF Velocity Feed-lotward	
	9-3-3 3120 hex: TDF Position Control	
	9-3-4 3121 hex: TDF Velocity Control	
	•	
9-4	Control Loop Objects	
	9-4-1 3210 hex: Internal Position Command	
	9-4-2 3211 hex: Position Detection	
	9-4-3 3212 hex: Gain Switching in Position Control	
	9-4-4 3213 hex: 1st Position Control Gain	
	9-4-5 3214 hex: 2nd Position Control Gain	
	9-4-6 3220 hex: Internal Velocity Command	
	9-4-7 3221 hex: Velocity Detection	
	9-4-8 3222 hex: Gain Switching in Velocity Control	
	9-4-9 3223 hex: 1st Velocity Control Gain	
	9-4-10 3224 hex: 2nd Velocity Control Gain	
	9-4-11 3230 hex: Internal Torque Command	
	9-4-12 3231 hex: Torque Detection9-4-13 3232 hex: Filter Switching in Torque Control	
	9-4-14 3233 hex: 1st Torque Command Filter	
	9-4-15 3234 hex: 2nd Torque Command Filter	
	·	
9-5	Torque Output Setting Objects	
	9-5-1 3310 hex: Torque Compensation	
	9-5-2 3320 hex: Adaptive Notch Filter	
	9-5-3 3321 hex: 1st Notch Filter	
	9-5-4 3322 hex: 2nd Notch Filter	
	9-5-5 3323 hex: 3rd Notch Filter	
	9-5-6 3324 hex: 4th Notch Filter	
	9-5-7 3330 hex: Torque Limit	9-54
9-6	Homing Objects	9-56
9-7	Applied Function Objects	9-60
	9-7-1 3B10 hex: Drive Prohibition	
	9-7-2 3B11 hex: Software Position Limit	
	9-7-3 3B20 hex: Stop Selection	9-63
	9-7-4 3B21 hex: Deceleration Stop	
	9-7-5 3B30 hex: Touch Probe 1	
	9-7-6 3B31 hex: Touch Probe 2	9-70

	077	0D40 h 7 N-45545 4	0.74
	9-7-7	3B40 hex: Zone Notification 1	
	9-7-8	3B41 hex: Zone Notification 2	
	9-7-9	3B50 hex: Position Detection Function	
		3B51 hex: Positioning Completion Notification	
		3B52 hex: Positioning Completion Notification 2	
		3B60 hex: Speed Detection Function	
	9-7-13	3B70 hex: Vibration Detection	9-76
		3B71 hex: Runaway Detection	
	9-7-15	3B80 hex: Load Characteristic Estimation	9-78
9-8	Error-	and Warning-related Objects	9-81
3- 0	9-8-1	4000 hex: Error Full Code	
		4000 Nex: Error Full Code	
	9-8-2		
	9-8-3	4021 hex: Warning Output 1 Setting	
	9-8-4	4022 hex: Warning Output 2 Setting	
	9-8-5	4030 hex: Information Customization	
9-9	Monito	oring-related Objects	9-88
	9-9-1	4110 hex: Monitor Data via PDO	
	9-9-2	4120 hex: EtherCAT Communications Error Count	
	9-9-3	4130 hex: Safety Status Monitor	
	9-9-4	4131 hex: Safety Command Monitor 1	
	9-9-5	4132 hex: Safety Command Monitor 2	
	9-9-6	4140 hex: Lifetime Information	
	9-9-7	4150 hex: Overload	
9-10	Displa	y-related Objects	9-97
9-11	Power	Device-related Objects	9-98
•		4310 hex: Regeneration	
		4320 hex: Main Circuit Power Supply	
9-12	Extern	al Device-related Objects	9-101
	9-12-1	4410 hex: Motor Identity	9-101
	9-12-2	4412 hex: Motor Advanced Setting	9-102
9-13	Encod	ler-related Objects	9_104
		-	
9-14	I/O-rel	ated Objects	9-107
	9-14-1	4600 hex: I/O Monitor	9-107
	9-14-2	4601 hex: Function Input	9-108
	9-14-3	4602 hex: Function Output	9-110
	9-14-4	4604 hex: Control Input Change Count	9-111
	9-14-5	4605 hex: Control Output Change Count	9-112
	9-14-6	4610 hex: Brake Interlock Output	9-113
	9-14-7	4620 hex: Encoder Dividing Pulse Output	9-114
9-15		- '	
9-15		al-purpose Input Setting Objects	
		Setting	
		4630 hex: Positive Drive Prohibition Input	
		4631 hex: Negative Drive Prohibition Input	
		4632 hex: External Latch Input 1	
		4633 hex: External Latch Input 2	
		4634 hex: Home Proximity Input	
		4635 hex: Positive Torque Limit Input	
		4636 hex: Negative Torque Limit Input	
		4637 hex: Error Stop Input	
) 4638 hex: Monitor Input 1	
		4639 hex: Monitor Input 2	
		2 463A hex: Monitor Input 3	
		3 463B hex: Monitor Input 4	
	9-15-14	463C hex: Monitor Input 5	9-121
		5 463D hex: Monitor Input 6	
		6 463E hex: Monitor Input 7	
		7 463F hex: Monitor Input 8	
9-16		al-purpose Output Setting Objects	
3-10	Gener	ai-bui buse Uulbul Selliilu Ubiells	y-123
	0.46.4		
		Setting	9-123

	9-16-3 4651 nex: Servo Ready Output	
	9-16-4 4652 hex: Positioning Completion Output 1	
	9-16-5 4653 hex: Positioning Completion Output 2	
	9-16-6 4654 hex: Velocity Attainment Detection Output	
	9-16-7 4655 hex: Torque Limit Output	
	9-16-8 4656 hex: Zero Speed Detection Output	
	9-16-9 4657 hex: Velocity Conformity Output	
	9-16-10 4658 hex: Warning Output 1	
	9-16-11 4659 hex: Warning Output 2	
	9-16-12 465A hex: Velocity Limiting Output	
	9-16-13 465B hex: Error Clear Attribute Output	
	9-16-14 465C hex: Remote Output 1	
	9-16-15 465D hex: Remote Output 2	
	9-16-17 465F hex: Zone Notification Output 1	
	9-16-17 4660 hex: Zone Notification Output 1	
	9-16-19 4661 hex: Position Command Status Output	
	9-16-20 4662 hex: Distribution Completed Output	
	9-16-21 4663 hex: External Brake Interlock Output	
Section 10	- P	
10-1	Operational Procedure	10-2
10-2	Preparing for Operation	10-3
	10-2-1 Items to Check Before Turning ON the Power Supply	10-3
	10-2-2 Turning ON the Power Supply	
	10-2-3 Checking the Displays	
	10-2-4 Absolute Encoder Setup	
	10-2-5 Setting Up an Absolute Encoder from the Sysmac Studio	10-7
	10 2 0 Cotting op an Absolute Energel Home are Cysmas Stadio	
10-3		10-8
10-3	Test Run	
10-3	Test Run	10-8
10-3 Section 11	Test Run	10-8
	Test Run 10-3-1 Preparations for Test Run 10-3-2 Test Run via USB Communications from the Sysmac Studio	10-8
Section 11	Test Run 10-3-1 Preparations for Test Run 10-3-2 Test Run via USB Communications from the Sysmac Studio Adjustment Functions Outline of Adjustment Functions 11-1-1 Adjustment Methods	10-8 10-9
Section 11	Test Run 10-3-1 Preparations for Test Run 10-3-2 Test Run via USB Communications from the Sysmac Studio Adjustment Functions Outline of Adjustment Functions	10-8 10-9
Section 11 ———————————————————————————————————	Test Run 10-3-1 Preparations for Test Run	10-8 10-9 11-3 11-4
Section 11	Test Run 10-3-1 Preparations for Test Run 10-3-2 Test Run via USB Communications from the Sysmac Studio Adjustment Functions Outline of Adjustment Functions 11-1-1 Adjustment Methods 11-1-2 Adjustment Procedure Easy Tuning	
Section 11 ———————————————————————————————————	Test Run 10-3-1 Preparations for Test Run 10-3-2 Test Run via USB Communications from the Sysmac Studio Adjustment Functions Outline of Adjustment Functions 11-1-1 Adjustment Methods 11-1-2 Adjustment Procedure Easy Tuning 11-2-1 Objects That Are Set	
Section 11 11-1 11-2	Test Run 10-3-1 Preparations for Test Run	10-811-311-411-611-8
Section 11 ———————————————————————————————————	Test Run 10-3-1 Preparations for Test Run	
Section 11 11-1 11-2	Test Run 10-3-1 Preparations for Test Run	
Section 11 11-1 11-2	Test Run 10-3-1 Preparations for Test Run	
Section 11 11-1 11-2	Test Run 10-3-1 Preparations for Test Run	
Section 11 11-1 11-2 11-3	Test Run 10-3-1 Preparations for Test Run 10-3-2 Test Run via USB Communications from the Sysmac Studio Adjustment Functions Outline of Adjustment Functions 11-1-1 Adjustment Methods 11-1-2 Adjustment Procedure Easy Tuning 11-2-1 Objects That Are Set 11-2-2 Executing Easy Tuning Advanced Tuning 11-3-1 Objects That Are Set 11-3-2 Executing Advanced Tuning	
Section 11 11-1 11-2 11-3	Test Run 10-3-1 Preparations for Test Run 10-3-2 Test Run via USB Communications from the Sysmac Studio Adjustment Functions Outline of Adjustment Functions 11-1-1 Adjustment Methods 11-1-2 Adjustment Procedure Easy Tuning 11-2-1 Objects That Are Set 11-2-2 Executing Easy Tuning Advanced Tuning 11-3-1 Objects That Are Set 11-3-2 Executing Advanced Tuning Manual Tuning	
Section 11 11-1 11-2 11-3	Test Run 10-3-1 Preparations for Test Run 10-3-2 Test Run via USB Communications from the Sysmac Studio Adjustment Functions Outline of Adjustment Functions 11-1-1 Adjustment Methods	
Section 11 11-1 11-2 11-3 11-4	Test Run 10-3-1 Preparations for Test Run 10-3-2 Test Run via USB Communications from the Sysmac Studio Adjustment Functions Outline of Adjustment Functions 11-1-1 Adjustment Methods 11-1-2 Adjustment Procedure Easy Tuning 11-2-1 Objects That Are Set 11-2-2 Executing Easy Tuning Advanced Tuning 11-3-1 Objects That Are Set 11-3-2 Executing Advanced Tuning Manual Tuning 11-4-1 Objects That Are Set 11-4-2 Executing Manual Tuning	10-8 10-9 11-3 11-3 11-4 11-6 11-8 11-9 11-10 11-11 11-11
Section 11 11-1 11-2 11-3 11-4 11-5 11-6	Test Run 10-3-1 Preparations for Test Run 10-3-2 Test Run via USB Communications from the Sysmac Studio Adjustment Functions Outline of Adjustment Functions 11-1-1 Adjustment Methods 11-1-2 Adjustment Procedure Easy Tuning 11-2-1 Objects That Are Set 11-2-2 Executing Easy Tuning Advanced Tuning 11-3-1 Objects That Are Set 11-3-2 Executing Advanced Tuning Manual Tuning 11-4-1 Objects That Are Set 11-4-2 Executing Manual Tuning Data Trace FFT	
Section 11 11-1 11-2 11-3 11-4 11-5	Test Run 10-3-1 Preparations for Test Run 10-3-2 Test Run via USB Communications from the Sysmac Studio Adjustment Functions Outline of Adjustment Functions 11-1-1 Adjustment Methods 11-1-2 Adjustment Procedure Easy Tuning 11-2-1 Objects That Are Set 11-2-2 Executing Easy Tuning Advanced Tuning 11-3-1 Objects That Are Set 11-3-2 Executing Advanced Tuning Manual Tuning 11-4-1 Objects That Are Set 11-4-2 Executing Manual Tuning Data Trace FFT Damping Control	10-8 10-9 11-3 11-3 11-4 11-6 11-8 11-9 11-10 11-11 11-11 11-11 11-13
Section 11 11-1 11-2 11-3 11-4 11-5 11-6	Test Run 10-3-1 Preparations for Test Run 10-3-2 Test Run via USB Communications from the Sysmac Studio Adjustment Functions Outline of Adjustment Functions 11-1-1 Adjustment Methods. 11-1-2 Adjustment Procedure. Easy Tuning 11-2-1 Objects That Are Set 11-2-2 Executing Easy Tuning. Advanced Tuning. 11-3-1 Objects That Are Set 11-3-2 Executing Advanced Tuning. Manual Tuning 11-4-1 Objects That Are Set 11-4-2 Executing Manual Tuning. Data Trace FFT Damping Control 11-7-1 Objects Requiring Settings.	10-8 10-9 11-3 11-3 11-4 11-6 11-8 11-9 11-10 11-11 11-11 11-11 11-12 11-13
Section 11 11-1 11-2 11-3 11-4 11-5 11-6	Test Run 10-3-1 Preparations for Test Run 10-3-2 Test Run via USB Communications from the Sysmac Studio Adjustment Functions Outline of Adjustment Functions 11-1-1 Adjustment Methods	10-8 10-9 11-3 11-3 11-4 11-6 11-9 11-10 11-11 11-11 11-11 11-12 11-14 11-14
11-1 11-2 11-3 11-4 11-5 11-6 11-7	Test Run 10-3-1 Preparations for Test Run 10-3-2 Test Run via USB Communications from the Sysmac Studio Adjustment Functions Outline of Adjustment Functions 11-1-1 Adjustment Methods 11-1-2 Adjustment Procedure Easy Tuning 11-2-1 Objects That Are Set 11-2-2 Executing Easy Tuning Advanced Tuning 11-3-1 Objects That Are Set 11-3-2 Executing Advanced Tuning Manual Tuning 11-4-1 Objects That Are Set 11-4-2 Executing Manual Tuning Data Trace FFT Damping Control 11-7-1 Objects Requiring Settings 11-7-2 Operating Procedure 11-7-3 Setting Frequency with Sysmac Studio	10-8 10-9 11-3 11-3 11-4 11-6 11-9 11-10 11-11 11-11 11-12 11-13 11-14 11-14 11-16
Section 11 11-1 11-2 11-3 11-4 11-5 11-6	Test Run 10-3-1 Preparations for Test Run 10-3-2 Test Run via USB Communications from the Sysmac Studio Adjustment Functions Outline of Adjustment Functions 11-1-1 Adjustment Methods 11-1-2 Adjustment Procedure Easy Tuning 11-2-1 Objects That Are Set 11-2-2 Executing Easy Tuning Advanced Tuning 11-3-1 Objects That Are Set 11-3-2 Executing Advanced Tuning Manual Tuning 11-4-1 Objects That Are Set 11-4-2 Executing Manual Tuning Data Trace FFT Damping Control 11-7-1 Objects Requiring Settings 11-7-2 Operating Procedure 11-7-3 Setting Frequency with Sysmac Studio Load Characteristic Estimation	10-8 10-9 11-3 11-3 11-4 11-10 11-11 11-11 11-12 11-13 11-14 11-17 11-17
11-1 11-2 11-3 11-4 11-5 11-6 11-7	Test Run 10-3-1 Preparations for Test Run 10-3-2 Test Run via USB Communications from the Sysmac Studio Adjustment Functions Outline of Adjustment Functions 11-1-1 Adjustment Methods 11-1-2 Adjustment Procedure Easy Tuning 11-2-1 Objects That Are Set 11-2-2 Executing Easy Tuning Advanced Tuning 11-3-1 Objects That Are Set 11-3-2 Executing Advanced Tuning Manual Tuning 11-4-1 Objects That Are Set 11-4-2 Executing Manual Tuning Data Trace FFT Damping Control 11-7-1 Objects Requiring Settings 11-7-2 Operating Procedure 11-7-3 Setting Frequency with Sysmac Studio Load Characteristic Estimation 11-8-1 Objects Requiring Settings	10-8 10-9 11-3 11-3 11-4 11-10 11-10 11-11 11-11 11-12 11-13 11-14 11-16 11-17 11-18
11-1 11-2 11-3 11-4 11-5 11-6 11-7	Test Run 10-3-1 Preparations for Test Run 10-3-2 Test Run via USB Communications from the Sysmac Studio Adjustment Functions Outline of Adjustment Functions 11-1-1 Adjustment Methods 11-1-2 Adjustment Procedure Easy Tuning 11-2-1 Objects That Are Set 11-2-2 Executing Easy Tuning Advanced Tuning 11-3-1 Objects That Are Set 11-3-2 Executing Advanced Tuning Manual Tuning 11-4-1 Objects That Are Set 11-4-2 Executing Manual Tuning Data Trace FFT Damping Control 11-7-1 Objects Requiring Settings 11-7-2 Operating Procedure 11-7-3 Setting Frequency with Sysmac Studio Load Characteristic Estimation	10-8 10-9 11-3 11-3 11-4 11-10 11-10 11-11 11-11 11-12 11-13 11-14 11-16 11-17 11-18

11-9	Adaptive Notch Filter	
	11-9-1 Objects Requiring Settings	
	11-9-2 Operating Procedure	11-22
11-10	Notch Filters	11-23
11-10	11-10-1 Objects Requiring Settings	
	11-10-2 Notch Filter Width and Depth	
44.44	·	
11-11	Friction Torque Compensation Function	
	11-11-1 Operating Conditions	
	11-11-2 Objects Requiring Settings	
	·	
11-12	Feed-forward Function	
	11-12-1 Feed-forward Control in TDF Control	
	11-12-2 Feed-forward Control in ODF Control	11-31
Section 12	Troubleshooting	
12-1	Actions for Problems	12-2
	12-1-1 Preliminary Checks When a Problem Occurs	12-2
	12-1-2 Precautions When a Problem Occurs	
	12-1-3 Replacing the Servomotor or Servo Drive	12-4
12-2	Warnings	12-6
12-2	12-2-1 Related Objects	
	12-2-2 Warning List	
40.0	<u> </u>	
12-3	Errors	
	12-3-1 Error List	
	12-3-2 Deceleration Stop Operation at Errors	
12-4	Information	12-14
	12-4-1 Related Objects	
	12-4-2 Information List	12-14
12-5	Troubleshooting	12-15
	12-5-1 Troubleshooting Using Error Displays	
	12-5-2 Troubleshooting Using AL Status Codes	
	12-5-3 Troubleshooting Using the Operation State	
Section 13	Maintenance and Inspection	
13-1	Periodic Maintenance	13-2
13-2	Servo Drive Lifetime	12 2
13-3	Servomotor Lifetime	
13-4	Method for Ring Disconnection Maintenance and Inspection	13-5
Appendice	s	
A-1	CiA 402 Drive Profile	A-2
	A-1-1 Controlling the State Machine of the Servo Drive	
	A-1-2 Modes of Operation	
	A-1-3 Modes of Operation and Applied/Adjustment Functions	A-5
	A-1-4 Changing the Mode of Operation	
	A-1-5 Homing Mode Specifications	A-7
A-2	CoE Objects	A-12
	A-2-1 Object Dictionary Area	
	A-2-2 Data Type	
	A-2-3 Object Description Format	
	A-2-4 Communication Objects	A-14

	A-2-5	PDO Mapping Objects	A-20
	A-2-6	Sync Manager Communication Objects	
	A-2-7	Manufacturer Specific Objects	A-38
	A-2-8	Servo Drive Profile Object	A-41
	A-2-9	Safety Function Objects	
A-3	Obje	ct List	A-68
A-4	Sysm	nac Error Status Codes	A-100
	A-4-1	Error List	
	A-4-2	Error Descriptions	A-113
A-5	Resp	onse Time in EtherCAT Process Data Communications	A-178
	A-5-1	Input Response Time	
	A-5-2	Output Response Time	
A-6	Versi	on Information	A-179
	A-6-1	Relationship between Unit Versions and Sysmac Studio Versions	
	A-6-2	Functions That Were Added or Changed for Each Unit Version	A-181
A-7	Conn	nection Examples	A-184
	A-7-1		

Index

Terms and Conditions Agreement

Warranty, Limitations of Liability

Warranties

Exclusive Warranty

Omron's exclusive warranty is that the Products will be free from defects in materials and workmanship for a period of twelve months from the date of sale by Omron (or such other period expressed in writing by Omron). Omron disclaims all other warranties, express or implied.

Limitations

OMRON MAKES NO WARRANTY OR REPRESENTATION, EXPRESS OR IMPLIED, ABOUT NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OF THE PRODUCTS. BUYER ACKNOWLEDGES THAT IT ALONE HAS DETERMINED THAT THE PRODUCTS WILL SUITABLY MEET THE REQUIREMENTS OF THEIR INTENDED USE.

Omron further disclaims all warranties and responsibility of any type for claims or expenses based on infringement by the Products or otherwise of any intellectual property right.

Buyer Remedy

Omron's sole obligation hereunder shall be, at Omron's election, to (i) replace (in the form originally shipped with Buyer responsible for labor charges for removal or replacement thereof) the non-complying Product, (ii) repair the non-complying Product, or (iii) repay or credit Buyer an amount equal to the purchase price of the non-complying Product; provided that in no event shall Omron be responsible for warranty, repair, indemnity or any other claims or expenses regarding the Products unless Omron's analysis confirms that the Products were properly handled, stored, installed and maintained and not subject to contamination, abuse, misuse or inappropriate modification. Return of any Products by Buyer must be approved in writing by Omron before shipment. Omron Companies shall not be liable for the suitability or unsuitability or the results from the use of Products in combination with any electrical or electronic components, circuits, system assemblies or any other materials or substances or environments. Any advice, recommendations or information given orally or in writing, are not to be construed as an amendment or addition to the above warranty.

See http://www.omron.com/global/ or contact your Omron representative for published information.

Limitation on Liability; Etc

OMRON COMPANIES SHALL NOT BE LIABLE FOR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, LOSS OF PROFITS OR PRODUCTION OR COMMERCIAL LOSS IN ANY WAY CONNECTED WITH THE PRODUCTS, WHETHER SUCH CLAIM IS BASED IN CONTRACT, WARRANTY, NEGLIGENCE OR STRICT LIABILITY.

Further, in no event shall liability of Omron Companies exceed the individual price of the Product on which liability is asserted.

Application Considerations

Suitability of Use

Omron Companies shall not be responsible for conformity with any standards, codes or regulations which apply to the combination of the Product in the Buyer's application or use of the Product. At Buyer's request, Omron will provide applicable third party certification documents identifying ratings and limitations of use which apply to the Product. This information by itself is not sufficient for a complete determination of the suitability of the Product in combination with the end product, machine, system, or other application or use. Buyer shall be solely responsible for determining appropriateness of the particular Product with respect to Buyer's application, product or system. Buyer shall take application responsibility in all cases.

NEVER USE THE PRODUCT FOR AN APPLICATION INVOLVING SERIOUS RISK TO LIFE OR PROPERTY OR IN LARGE QUANTITIES WITHOUT ENSURING THAT THE SYSTEM AS A WHOLE HAS BEEN DESIGNED TO ADDRESS THE RISKS, AND THAT THE OMRON PRODUCT(S) IS PROPERLY RATED AND INSTALLED FOR THE INTENDED USE WITHIN THE OVERALL EQUIPMENT OR SYSTEM.

Programmable Products

Omron Companies shall not be responsible for the user's programming of a programmable Product, or any consequence thereof.

Disclaimers

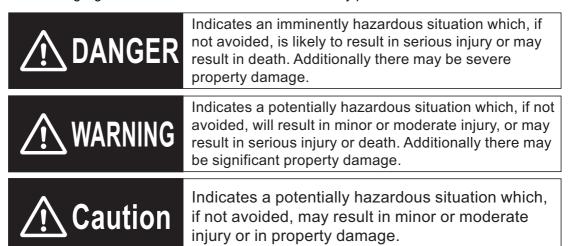
Performance Data

Data presented in Omron Company websites, catalogs and other materials is provided as a guide for the user in determining suitability and does not constitute a warranty. It may represent the result of Omron's test conditions, and the user must correlate it to actual application requirements. Actual performance is subject to the Omron's Warranty and Limitations of Liability.

Change in Specifications

Product specifications and accessories may be changed at any time based on improvements and other reasons. It is our practice to change part numbers when published ratings or features are changed, or when significant construction changes are made. However, some specifications of the Product may be changed without any notice. When in doubt, special part numbers may be assigned to fix or establish key specifications for your application. Please consult with your Omron's representative at any time to confirm actual specifications of purchased Product.

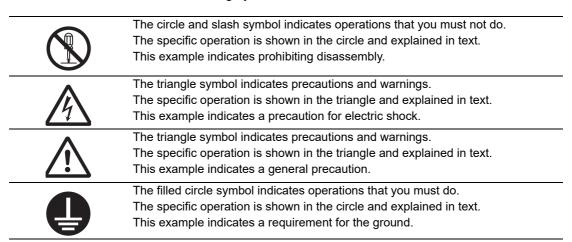
Errors and Omissions


Information presented by Omron Companies has been checked and is believed to be accurate; however, no responsibility is assumed for clerical, typographical or proofreading errors or omissions.

Safety Precautions

- To ensure that the 1S-series Servomotor/Servo Drive as well as peripheral equipment are used safely and correctly, be sure to read this *Safety Precautions* section and the main text before using the product. Learn all items you should know before use, regarding the equipment as well as the required safety information and precautions.
- · Make an arrangement so that this User's Manual also gets to the end user of this product.
- After reading this User's Manual, keep it in a convenient place so that it can be referenced at any time.

Explanation of Displays


- The precautions indicated here provide important information for safety. Be sure to heed the information provided with the precautions.
- The following signal words are used to indicate and classify precautions in this User's Manual.

Even those items denoted by the caution symbol may lead to a serious outcome depending on the situation. Accordingly, be sure to observe all safety precautions.

Explanation of Symbols

This User's Manual uses the following symbols.

Precautionary Information

- Illustrations contained in this manual sometimes depict conditions without covers and safety shields
 for the purpose of showing the details. When you use this product, be sure to install the covers and
 shields as specified and use the product according to this manual.
- If the product has been stored for an extended period of time, contact your OMRON sales representative.

Handling of Safety Products

If the functions of safety products cannot attain their full potential, it will result in minor or moderate injury, or may result in serious injury or death. When building the system, observe the following warnings and optimize safety product selection for your equipment and devices to ensure the integrity of the safety-related components.

Setting Up a Risk Assessment System

The process of selecting these products should include the development and execution of a risk assessment system early in the design development stage to help identify potential dangers in your equipment and optimize safety product selection.

The following is an example of related international standards.

• ISO12100 General Principles for Design - Risk Assessment and Risk Reduction

Protective Measure

When developing a safety system for the equipment and devices that use safety products, make every effort to understand and conform to the entire series of international and industry standards available, such as the examples given below.

The following are examples of related international standards.

- ISO12100 General Principles for Design Risk Assessment and Risk Reduction
- IEC60204-1 Electrical Equipment of Machines Part 1: General Requirements
- ISO13849-1, -2 Safety-related Parts of Control Systems
- ISO14119 Interlocking Devices Associated with Guards Principles for Design and Selection
- IEC/TS 62046 Application of Protective Equipment to Detect the Presence of Persons

Role of Safety Products

Safety products incorporate standardized safety functions and mechanisms, but the benefits of these functions and mechanisms are designed to attain their full potential only within properly designed safety-related systems. Make sure you fully understand all functions and mechanisms, and use that understanding to develop systems that will ensure optimal usage.

The following are examples of related international standards.

- ISO14119 Interlocking Devices Associated with Guards Principles for Design and Selection
- ISO13857 Safety Distances to Prevent Hazard Zones being Reached by Upper and Lower Limbs

Installing Safety Products

Qualified engineers must develop your safety-related system and install safety products in devices and equipment. Prior to machine commissioning, verify through testing that the safety products work as expected.

The following are examples of related international standards.

- ISO12100 General Principles for Design Risk Assessment and Risk Reduction
- IEC60204-1 Electrical Equipment of Machines Part 1: General Requirements
- ISO13849-1, -2 Safety-related Parts of Control Systems
- ISO14119 Interlocking Devices Associated with Guards Principles for Design and Selection

Observing Laws and Regulations

Safety products must conform to pertinent laws, regulations, and standards. Make sure that they are installed and used in accordance with the laws, regulations, and standards of the country where the devices and equipment incorporating these products are distributed.

Observing Usage Precautions

Carefully read the specifications and precautions as well as all items in the Instruction Manual for your safety product to learn appropriate usage procedures. Any deviation from instructions will lead to unexpected device or equipment failure not anticipated by the safety-related system.

Transferring Devices and Equipment

When you transfer devices and equipment, be sure to retain one copy of the Instruction Manual for safety devices and the User's Manual, and supply another copy with the device or equipment so the person receiving it will have no problems with operation and maintenance.

The following are examples of related international standards.

- ISO12100 General Principles for Design Risk Assessment and Risk Reduction
- IEC60204-1 Electrical Equipment of Machines Part 1: General Requirements
- ISO13849-1, -2 Safety-related Parts of Control Systems
- IEC62061 Functional Safety of Safety-related Electrical, Electronic and Programmable Electronic Control Systems
- IEC61508 Functional Safety of Electrical/Electronic/Programmable Electronic Safety-related Systems

Transporting and Unpacking

Do not damage, pull, or put excessive stress or heavy objects on the cables.

Doing so may cause electric shock, malfunction, or burning.

Installation, Wiring and Maintenance

MARNING

Install the Servo Drive, Servomotor, and peripheral equipment before wiring.

Not doing so may cause electric shock.

Be sure to ground the 100-VAC or 200-VAC input model Servo Drive and Servomotor to 100 Ω or less, and the 400-VAC input model to 10 Ω or less.

Not doing so may cause electric shock.

Do not remove the front cover, terminal covers, cables, or peripheral equipment while the power is supplied.

Doing so may cause electric shock.

Before carrying out wiring or inspection, turn OFF the main circuit power and wait for at least the following specific time.

Not doing so may cause electric shock or burning.

10 minutes: R88D-1SN06F-ECT, R88D-1SN10F-ECT, R88D-1SN15F-ECT, R88D-1SN20F-ECT, R88D-1SN30F-ECT, R88D-1SN55F-ECT,

R88D-1SN75F-ECT, R88D-1SN150F-ECT

15 minutes: R88D-1SN01L-ECT, R88D-1SN02L-ECT, R88D-1SN01H-ECT,

R88D-1SN02H-ECT, R88D-1SN04H-ECT

 $20 \ minutes: R88D-1SN04L-ECT, \ R88D-1SN08H-ECT, \ R88D-1SN10H-ECT, \\$

R88D-1SN15H-ECT, R88D-1SN20H-ECT, R88D-1SN30H-ECT, R88D-1SN55H-ECT, R88D-1SN75H-ECT, R88D-1SN150H-ECT

Do not damage, pull, or put excessive stress or heavy objects on the cables.

Doing so may cause electric shock, malfunction, or burning.

Use appropriate tools to wire terminals and connectors. Check that there is no short-circuit before use.

Not doing so may cause electric shock.

Not doing so may cause electric shock.

Provide safety measures, such as a fuse, to protect against short circuiting of external wiring and failure of the Servo Drive. Not doing so may cause a fire.

Install the Servomotor, Servo Drive, and peripheral equipment on non-flammable materials such as metals. Not doing so may cause a fire.

Keep conductive or flammable foreign objects such as screws, metal pieces, and oil out of the Servo Drive and connectors. Pay particular attention to the connector on the top part of Servo Drive. Not doing so may cause a fire or electric shock.

Design the configuration to cut off the main circuit power supply when the ERR signal (normally close contact) of the control output function is output (open).

Not doing so may cause a fire.

Do not bundle the motor cables.

Not doing so may cause fire.

Lock the power cable and extension cable connectors.

Not doing so may cause fire.

When you connect more than one Servo Drive to one noise filter, ensure that the size of wires used for the input side of the noise filter and the size of wires used between the noise filter and the relay terminal blocks are thick enough to pass at least the rated current of the noise filter.

Not doing so may cause a fire or electric shock.

Operation Check

Use the Servomotor, Servo Drive and motor cable in a specified combination. Not doing so may cause fire or equipment damage.

Usage

⚠ WARNING

Do not enter the operating area during operation.

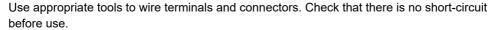
Doing so may cause injury.

Do not touch the Servo Drive radiator, Regeneration Resistor, or Servomotor while the power is supplied or for a while after the power is turned OFF because they get hot.

Doing so may cause fire or a burn injury.

Take appropriate measures to ensure that the specified power with the rated voltage is supplied. Be particularly careful in locations where the power supply is unstable.

Not doing so may cause failure.



When the power is restored after a momentary power interruption, the machine may restart suddenly. Do not come close to the machine when restoring power.

Implement measures to ensure safety of people nearby even when the machine is restarted.

Doing so may cause injury.

Not doing so may cause electric shock.

Be sure to observe the radiator plate installation conditions that are specified in the manual. Not doing so may cause the Servo Drive or Servomotor to burn.

If the load that exceeds the allowable range is installed, it may cause the dynamic brake to be damaged. Be sure to use the appropriate load. For the selection of the appropriate load, refer to *4-5 Adjustment for Large Load Inertia* on page 4-78.

Not doing so may cause the Servo Drive to be damaged.

The dynamic brake is intended for the stop at the time of an error and therefore it has a short-time rating.

If the dynamic brake is activated, provide an interval of 3 minutes or more before the next activation to prevent a circuit failure and burning of the Dynamic Brake Resistor.

Make a design of equipment with consideration of a distance until a Servomotor stops while safety monitoring functions are used.

Not doing so may cause injury and equipment damage.

Do not place flammable materials near the Servomotor, Servo Drive, or peripheral equipment. Not doing so may cause a fire.

If the Servo Drive fails, cut off the power supply to the Servo Drive at the power supply. Not doing so may cause a fire.

Use an appropriate External Regeneration Resistor. Install an external protective device such as temperature sensor to ensure safety when using the External Regeneration Resistor. Not doing so run the risk of burnout.

An External Regeneration Resistor or an External Regeneration Resistor Unit may become hot. In order to ensure safety, install an external protection such as a guard so as not to touch them easily. Not doing so may cause a burn injury.

Use an appropriate External Dynamic Break Resistor.

Not doing so may cause fire, crash or equipment damage.

Use the extension cables in a specified combination.

Not doing so may cause fire, equipment damage.

Before operating the Servo Drive in an actual environment, check if it operates correctly based on the newly set parameters.

Not doing so may cause equipment damage.

When constructing a system that includes safety functions, be sure you understand the relevant safety standards and all related information in user documentation, and design the system to comply with the standards.

Not doing so may cause injury, equipment damage.

Transporting and Unpacking

Caution

When transporting the Servo Drive, do not hold it by the cables, shield clamp, connectors or motor shaft.

 \triangle

Injury or failure may result.

Do not step on the Servo Drive or place heavy articles on it.

Injury or failure may result.

Do not overload the product.

Injury or failure may result.

Be sure to observe the specified amount when piling up products.

Injury or failure may result.

The allowable number of piled-up products Servo Drive, Servomotor, Reactor:

Follow the instructions on the individual package.

External Regeneration Resistor: 12

External Regeneration Resistance Unit: 4

Noise Filter: 15

Wiring

Be careful about sharp parts such as the corner of the equipment when handling the Servo Drive and Servomotor.

Injury may result.

Wire the cables correctly and securely.

Damage to Servo Drive or fire may result.

Precautions for Safe Use

General Precaution

• Do not store or install the Servo Drive in the following locations. Doing so may result in electric shock, fire, equipment damage, or malfunction.

Locations subject to direct sunlight

Locations subject to temperatures outside the range specified in the specifications

Locations subject to humidity outside the range specified in the specifications

Locations subject to condensation as the result of severe changes in temperature

Locations subject to corrosive or flammable gases

Locations subject to dust (especially iron dust) or salts

Locations subject to exposure to water, oil, or chemicals

Locations subject to shock or vibration

- · Medical electronics such as cardiac pacemakers may malfunction or injury may result.
- If an error occurs, remove the cause of the error and ensure safety, and then perform the error reset and restart the operation. Injury, equipment damage, or burning may result.

Mounting

- Do not move a power connector of a Servomotor with 4 kW or more over 5 times. Electric shock, equipment damage, or burning may result.
- · Be sure to observe the installation conditions. Burning or failure may result.

Wiring

- Use a robot cable for the wiring to separately install the Servo Drive and Servomotor to moving and fixed parts of the equipment. Equipment damage may result.
- Connect the Servo Drive to the Servomotor without a contactor, etc. Malfunction or equipment damage may result.
- Wire the cables correctly and securely. Runaway motor, unintended operation of a brake, injury, or failure may result.
- Take appropriate and sufficient countermeasures to provide shielding when installing systems in the following locations. Failure may result.

Locations subject to static electricity or other forms of noise

Locations subject to strong electromagnetic fields

Locations subject to possible exposure to radioactivity

Locations close to power lines

Be careful when you lock the lever of a connector. You may get your finger caught in that.

Precautions for Correct Use

General Precaution

- When unpacking, transporting, or installing the products, observe the following instructions. Injury or failure may result.
 - a) When lifting the products, do not drop the products.
 - b) Do not grasp a plastic part of the product.
 - c) When lifting a Servomotor, always lift the product by grasping a metal part other than the shaft.
 - d) When lifting the products at 20 kg or more, always have two people lift the products.

```
Relevant Servomotor models: R88M-1M2K010T0-B□, R88M-1M3K010T-□, R88M-1M2K010C-B□, R88M-1M3K010C-□, R88M-1M4K015T-□, R88M-1M5K015T-□, R88M-1M4K015C-□, R88M-1M5K515C-□, R88M-1M7K515T-□, R88M-1M7K515T-□, R88M-1M1K015T-□, R88M-1M15K015T-□, R88M-1M15K015T-□, R88M-1M15K015C-□ Relevant motor power cable models: R88A-CA1E050S, R88A-CA1E040B, R88A-CA1E050B, R88A-CA1F040S, R88A-CA1F050S, R88A-CA1F050S, R88A-CA1F050B, R88A-CA1F050B, R88A-CA1F050BF, R88A-CA1F050BF, R88A-CA1F050BF, R88A-CA1K020BF, R88A
```

e) When lifting a Servo Drive with the following the product model, always have two people lift the product by grasping a terminal block at the upper/bottom side of Servo Drive.

Do not grasp a plastic part and a connector.

Relevant model: R88D-1SN150H-ECT

f) When lifting a Servo Drive with the following the product model, always have two people lift the product by holding grips at the upper/bottom side of a Servo Drives.

Do not grasp a plastic part and a connector.

Relevant model: R88D-1SN150F-ECT

Transporting and Unpacking

· Check that the eye bolts are not loose after replacing them.

If they are loose, the screws can come off and the Servomotor may fall during the transportation by the use of eye bolts.

Do not put the human body under the Servomotor during the transportation.

Installation

- · Be sure to observe the mounting direction. Failure may result.
- Provide the specified clearance between the Servo Drive and the inner surface of the control panel or other equipment. Fire or failure may result.
- Do not apply strong impact on the motor shaft, connectors and Servo Drive. Failure may result.
- Do not touch the key grooves with bare hands if the Servomotor with shaft-end key grooves is used. Injury may result.
- Use non-magnetic mounting screws. Note also that the depth of any mounted screw does not reach the effective thread length. Equipment damage may result.
- Be sure to observe the allowable axial load for the Servomotor. Equipment damage may result.
- Install equipment to prevent crash and reduce shock. Do not run the Servomotor outside the operable range by the use of the drive prohibition function such as overtravel. Crash against the stroke edge may occur depending on stopping distance and equipment damage may result.
- Do not block the intake or exhaust openings. Do not allow foreign objects to enter the Servo Drive. Fire may result.

• Secure a sufficient rigidity when you install a Servomotor into equipment. Equipment damage or malfunction may result.

Wiring

- Tighten the mounting screws, terminal block screws, cable screws and shield clamp bracket screws for the Servo Drive, Servomotor, and peripheral equipment to the specified torque. Failure may result
- Use crimp terminals to wire screw type terminal blocks. Do not connect bare stranded wires directly to terminals blocks. Fire may result.
- · Always use the power supply voltage specified in this document. Burning may result.
- Do not apply a commercial power supply directly to the Servomotor. Fire or failure may result.
- Disconnect all connections to the Servo Drive and Servomotor before attempting a megger test (insulation resistance measurement) on the Servo Drive or Servomotor. Not doing so may result in Servo Drive or Servomotor failure. Do not perform a dielectric strength test on the Servo Drive or Servomotor. Doing so may result in damage of the internal elements.
- Carefully perform the wiring and assembling. Injury may result.
- Wear the protective equipment when installing or removing the main circuit connector, main circuit connector A, main circuit connector B, main circuit connector E, control power supply connector, or motor connector. Do not apply a force after the protrusion of the connector opener reaches the bottom dead center. (As a guide, do not apply a force of 100 N or more.)
- Do not block the intake or exhaust openings. Do not allow foreign objects to enter the Servo Drive. Fire may result.
- Be sure to install surge suppressors when you connect a load with an induction coil such as a relay to the control output terminal.
 Malfunction or equipment damage may result.
- Do not hammer or apply any impact on connectors. Damage may result.
- · Be sure to attach a shield clamp by the specified method. Electric shock may result.

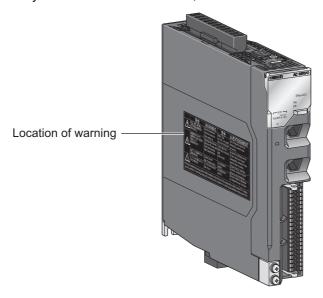
Adjustment

- Install an immediate stop device externally to the machine so that the operation can be stopped and the power supply is cut off immediately. Injury may result.
- Do not adjust or set parameters to extreme values, because it will make the operation unstable. Injury may result.
- If a problem occurs in serial communications or the computer during a test operation, you have no means to stop the Servomotor.
 - Connect an externally installed emergency stop switch, etc. to the Error Stop Input of the general-purpose input so that the Servomotor can be stopped without fail.
- When using the Servomotor with key, run the Servomotor in a state in which the key cannot jump out of the shaft.
 - Not doing so may result in hurting people around the equipment due to the jumping key.

Operation Check

- Do not adjust or set parameters to extreme values, because it will make the operation unstable. Injury may result.
- · Do not drive the Servomotor by the use of an external drive source. Fire may result.

Usage


- Tighten the mounting screws, terminal block screws, cable screws and shield clamp screws for the Servo Drive, Servomotor, and peripheral equipment to the specified torque. Failure may result.
- Install a stopping device on the machine to ensure safety.
 The holding brake is not a stopping device to ensure safety. Injury may result.
- Install an immediate stop device externally to the machine so that the operation can be stopped and the power supply is cut off immediately. Injury may result.
- Conduct a test operation after confirming that the equipment is not affected. Equipment damage may result.
- Do not use the built-in brake of the Servomotor for normal braking operation. Failure may result.
- · After an earthquake, be sure to conduct safety checks. Electric shock, injury, or fire may result.
- Connect an emergency stop (immediate stop) relay in series with the brake interlock output. Injury or failure may result.
- · Do not use the cable when it is laying in oil or water. Electric shock, injury, or fire may result.
- Install safety devices to prevent idling or locking of the electromagnetic brake or the gear head, or leakage of grease from the gear head. Injury, damage, or taint damage result.
- Be sure to turn OFF the power supply when not using the Servo Drive for a prolonged period of time. Not doing so may result in injury or malfunction.
- If the Servomotor is not controlled, it may not be possible to maintain the stop. To ensure safety, install a stop device. Equipment damage or injury may result.
- Periodically run the Servomotor approximately one rotation when the oscillation operation continues at a small angle of 45° or smaller. Servomotor failure may result.
- When a difference between a position indicated by the Servo Drive before the power supply OFF and
 a position after the power supply ON is one rotation or more, check that devices are placed in appropriate areas.
- Immediately stop the operation and cut off the power supply when unusual smell, noise, smoking, abnormal heat generation, or vibration occurs. Not doing so may result in Servo Drive or Servomotor damage or burning.
- · Fully check the shaft when you reset a brake interlock from PC tool.

Maintenance

- After replacing the Servo Drive, transfer to the new Servo Drive all data needed to resume operation, before restarting operation. Equipment damage may result.
- · Do not repair the Servo Drive by disassembling it. Electric shock or injury may result.

Location of Warning Display

The Servo Drive bears a warning label at the following location to provide handling warnings. When you handle the Servo Drive, be sure to observe the instructions provided on this label.

Instructions on Warning Display

	警告	WARNING	警告	AVERTISSEMENT	
Δ	使用、設置、保守前に	Read the manual and	在使用、安装、	Lire le manuel et suivre les	
/I \	必ず取扱説明書を読み、	follow the instruction	维护之前,请务必按照	instructions avant la mise	
<u> </u>	指示に従うこと	before setting up.	使用说明书的指示操作	en service	
	放電時間は15分です。	Discharge time is 15min.	电容放电需15分钟。	Le temps de décharge est de	
	電源を切った後,15分間は 触らないこと! 感電の恐れあり!	After turn off power, wait	切断电源15分钟内请勿	15 min. Après avoir coupé	
			触摸。	l'alimentation, attendez 15 min	
		Risk of electric shock.	有触电的危险!	avant la mise en service.	
<u> </u>				Risque de choc électrique.	
	必ずアースに配線すること!	Connect ground!	务必安装接地线!	Connecter la mise à la terre!	
	感電の恐れあり	Risk of electric shock.	以防窟电	Risque de choc electrique	
Λ	ヒートシンクに触らないこと!	Do not touch heatsink!	请勿脫摸散热器!	Ne pas toucher le dissipateur	
	やけどの恐れあり	Risk of burn.	以防灼伤	de chaleur! Risque de brûlure.	
In Canada, transient surge suppression shall be installed on the line side of this equipment and shall be rated 277 V (phase to ground), suitable for overvoltage category III, and shall provide protection for a rated impulse withstand voltage peak of 6 kV.					

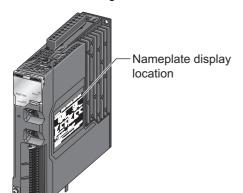
Note The above is an example of warning display.

Disposal

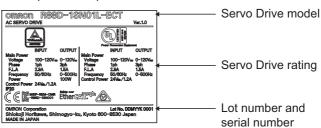
Comply with the local ordinance and regulations when disposing of the product.

Dispose of in accordance with WEEE Directive

Items to Check After Unpacking


After you unpack the product, check the following items.

- · Is this the model you ordered?
- · Was there any damage sustained during shipment?


Servo Drive

Nameplate of Servo Drive

The model, rating and lot number of the 1S-series Servo Drive are given on the product nameplate.

Name plate example: 100 VAC 100 W Servo Drive

The notifications and their meanings of lot number and serial number are explained below.

· Capacity 3 kW or less:

Notation: Lot No. DDMYY□ xxxx

DDMYY: Lot number, □: For use by OMRON, xxxx: Serial number

DD gives the date.

"M" gives the month (1 to 9: January to September, X: October, Y: November, Z: December)

YY gives the last two digits of the year.

Capacity 5.5 kW or more:

Notation: Lot No. MMYYDD□ xxx

MMYYDD: Lot number, □: For use by OMRON, xxx: Serial number

MM gives the month.

YY gives the last two digits of the year.

DD gives the date.

Accessories of Servo Drive

This product comes with the following accessories.

- INSTRUCTION MANUAL × 1 copy
- · Warning label × 1 sheet
- · General Compliance Information and instructions for EU × 1 copy
- Attached connectors (Depends on the model. Refer to the following table.)

When UL/CSA certification is required, attach the warning label to a place around the Servo Drive.

Connectors, mounting screws, mounting brackets, and other accessories other than those in the table below are not supplied. They must be prepared by the customer.

If any item is missing or a problem is found such as Servo Drive damage, contact the OMRON dealer or sales office where you purchased your product.

Specifications		Control I/O connector (CN1)	Brake interlock connector (CN12)	Main circuit connector and main circuit connector A (CNA)
Single- phase 100 VAC	100 W		Included	
	200 W			
	400 W			*2 *4
0:!	100 W 200 W			Included*2 *4
Single- phase/3-ph	400 W			
ase 200 VAC	750 W	Included ^{*1}		
	1.5 kW			Included*3 *4
	1 kW			Included*2 *4
	2 kW			Included*3 *4
3-phase	3 kW			
200 VAC	5.5 kW			Included ^{*3}
	7.5 kW			included *
	15 kW			
	600 W			Included*3 *4
	1 kW			
3-phase 400 VAC	1.5 kW			
	2 kW			
	3 kW			
	5.5 kW 7.5 kW			Included ^{*3}
	15 kW			Included

^{*1.} Four short-circuit wires are connected.

^{*4.} One opener is included.

Specifications		Main circuit connector B (CNB)	Motor connector (CNC)	Control power supply connector (CND)	Main circuit connector E (CNE)
Single- phase 100 VAC	100 W		Included ^{*2}		
	200 W				
	400 W				
Single-	100 W]			
	200 W				
phase/3-ph ase 200	400 W				
VAC	750 W				
	1.5 kW	Included*1 *3	Included ^{*3}	Included*4	
	1 kW		Included ^{*2}		
	2 kW	Included*1 *3	Included ^{*3}	Included*4	
3-phase 200 VAC	3 kW				
	5.5 kW			Included	Included ^{*1}
	7.5 kW				
	15 kW	Included ^{*5}			

^{*2.} Two short-circuit wires are connected.

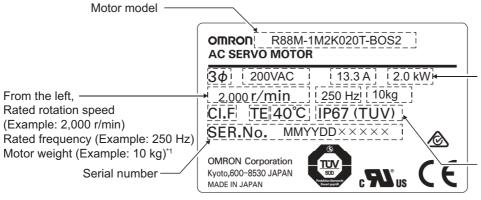
^{*3.} One short-circuit wire is connected.

Specifications		Main circuit connector B (CNB)	Motor connector (CNC)	Control power supply connector (CND)	Main circuit connector E (CNE)
3-phase 400 VAC 3 5.5 7.5	600 W	Included*1 *3	Included*4 Included*3 Included	Included*4	
	1 kW				
	1.5 kW				
	2 kW				
	3 kW				
	5.5 kW			Included	Included*1
	7.5 kW				
	15 kW	Included*5			

^{*1.} One short-circuit wire is connected.

^{*2.} The connector with 3 terminals is included.

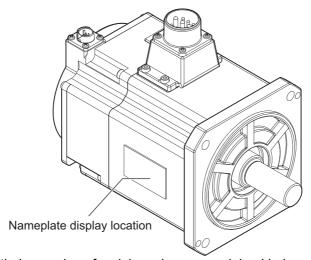
^{*3.} The connector with 4 terminals is included.


^{*4.} One opener is included.

^{*5.} The connector with 2 terminals is included.

Servomotor

Nameplate of Servomotor


The model, rating and serial number of the 1S-series Servomotor are given on the product nameplate.

*1. The weight is not given for the Servomotor with a flange size of 80 x 80 or less. From the left, Number of phases (Example: 3) Rated voltage (Example: 200 VAC) Rated current (Example: 13.3 A) Rated output (Example: 2.0 kW)

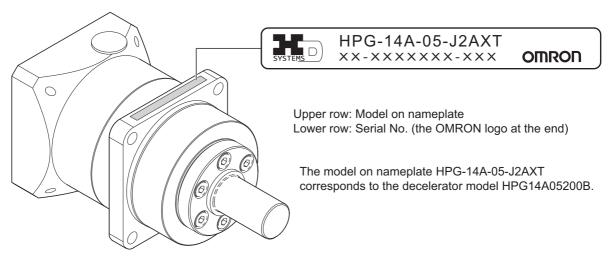
From the left, Insulation class (Example: F) Totally enclosed protection type motor (Example: TE) Operating ambient temperature (Example: 40°C)

Protective structure (Example: IP67)

The notation and their meaning of serial number are explained below.

Notation: SER.No. DDMMYY × × × × ×

- · DD gives the date.
- · MM gives the month.
- · YY gives the last two digits of the year.
- ××××× gives the serial number.


Accessories of Servomotor

This product comes with an instruction manual.

Decelerator (Backlash: 3 Arcminutes Max.)

For Decelerators (backlash: 3 arcminutes max.), the model number given on the nameplate does not match the model number of the Decelerator. Therefore, refer to the following table for correspondence between the model numbers on nameplates and Decelerators.

Example of nameplate: 200-W Decelerator (backlash: 3 arcminutes max., reduction ratio: 1/5) for 3,000-r/min Servomotors

• Decelerator (backlash: 3 arcminutes max.) for 3,000-r/min Servomotors

Specifications		Without key		With key and tap	
Servo- motor rated output	Reduc- tion ratio	Decelerator model	Model on nameplate	Decelerator model	Model on nameplate
50W	1/21	R88G- HPG14A21100B	HPG-14A-21-J2ABK	R88G- HPG14A21100BJ	HPG-14A-21-J6ABK
	1/33	R88G- HPG14A33050B	HPG-14A-33-J2ABL	R88G- HPG14A33050BJ	HPG-14A-33-J6ABL
	1/45	R88G- HPG14A45050B	HPG-14A-45-J2ABL	R88G- HPG14A45050BJ	HPG-14A-45-J6ABL
100 W	1/5	R88G- HPG11B05100B	HPG-11B-05-J2ADG	R88G- HPG11B05100BJ	HPG-11B-05-J6ADG
	1/11	R88G- HPG14A11100B	HPG-14A-11-J2ABK	R88G- HPG14A11100BJ	HPG-14A-11-J6ABK
	1/21	R88G- HPG14A21100B	HPG-14A-21-J2ABK	R88G- HPG14A21100BJ	HPG-14A-21-J6ABK
	1/33	R88G- HPG20A33100B	HPG-20A-33-J2JBLA	R88G- HPG20A33100BJ	HPG-20A-33-J6JBLA
	1/45	R88G- HPG20A45100B	HPG-20A-45-J2JBLA	R88G- HPG20A45100BJ	HPG-20A-45-J6JBLA

Specifications		With	out key	With key and tap	
Servo- motor rated output	Reduc- tion ratio	Decelerator model	Model on nameplate	Decelerator model	Model on nameplate
	1/5	R88G- HPG14A05200B	HPG-14A-05-J2AXT	R88G- HPG14A05200BJ	HPG-14A-05-J6AXT
	1/11	R88G- HPG14A11200B	HPG-14A-11-J2AXU	R88G- HPG14A11200BJ	HPG-14A-11-J6AXU
200 W	1/21	R88G- HPG20A21200B	HPG-20A-21-J2GDH	R88G- HPG20A21200BJ	HPG-20A-21-J6GDH
	1/33	R88G- HPG20A33200B	HPG-20A-33-J2GDI	R88G- HPG20A33200BJ	HPG-20A-33-J6GDI
	1/45	R88G- HPG20A45200B	HPG-20A-45-J2GDI	R88G- HPG20A45200BJ	HPG-20A-45-J6GDI
	1/5	R88G- HPG14A05400B	HPG-14A-05-J2AXW	R88G- HPG14A05400BJ	HPG-14A-05-J6AXW
	1/11	R88G- HPG20A11400B	HPG-20A-11-J2GDK	R88G- HPG20A11400BJ	HPG-20A-11-J6GDK
400 W	1/21	R88G- HPG20A21400B	HPG-20A-21-J2GDK	R88G- HPG20A21400BJ	HPG-20A-21-J6GDK
	1/33	R88G- HPG32A33400B	HPG-32A-33-J2NELA	R88G- HPG32A33400BJ	HPG-32A-33-J6NELA
	1/45	R88G- HPG32A45400B	HPG-32A-45-J2NELA	R88G- HPG32A45400BJ	HPG-32A-45-J6NELA
	1/5	R88G- HPG20A05750B	HPG-20A-05-J2FFO	R88G- HPG20A05750BJ	HPG-20A-05-J6FFO
	1/11	R88G- HPG20A11750B	HPG-20A-11-J2FFP	R88G- HPG20A11750BJ	HPG-20A-11-J6FFP
750 W (200 V)	1/21	R88G- HPG32A21750B	HPG-32A-21-J2NAI	R88G- HPG32A21750BJ	HPG-32A-21-J6NAI
	1/33	R88G- HPG32A33750B	HPG-32A-33-J2NAJ	R88G- HPG32A33750BJ	HPG-32A-33-J6NAJ
	1/45	R88G- HPG32A45750B	HPG-32A-45-J2NAJ	R88G- HPG32A45750BJ	HPG-32A-45-J6NAJ
	1/5	R88G- HPG32A052K0B	HPG-32A-05-J2NFG	R88G- HPG32A052K0BJ	HPG-32A-05-J6NFG
	1/11	R88G- HPG32A112K0B	HPG-32A-11-J2NFH	R88G- HPG32A112K0BJ	HPG-32A-11-J6NFH
750 W (400 V)	1/21	R88G- HPG32A211K5B	HPG-32A-21-J2NFI	R88G- HPG32A211K5BJ	HPG-32A-21-J6NFI
	1/33	R88G- HPG32A33600SB	HPG-32A-33-J2NFJ	R88G- HPG32A33600SBJ	HPG-32A-33-J6NFJ
	1/45	R88G- HPG50A451K5B	HPG-50A-45-J2ADBA	R88G- HPG50A451K5BJ	HPG-50A-45-J6ADBA
	1/5	R88G- HPG32A052K0B	HPG-32A-05-J2NFG	R88G- HPG32A052K0BJ	HPG-32A-05-J6NFG
	1/11	R88G- HPG32A112K0B	HPG-32A-11-J2NFH	R88G- HPG32A112K0BJ	HPG-32A-11-J6NFH
1 kW	1/21	R88G- HPG32A211K5B	HPG-32A-21-J2NFI	R88G- HPG32A211K5BJ	HPG-32A-21-J6NFI
	1/33	R88G- HPG50A332K0B	HPG-50A-33-J2ADBA	R88G- HPG50A332K0BJ	HPG-50A-33-J6ADBA
	1/45	R88G- HPG50A451K5B	HPG-50A-45-J2ADBA	R88G- HPG50A451K5BJ	HPG-50A-45-J6ADBA

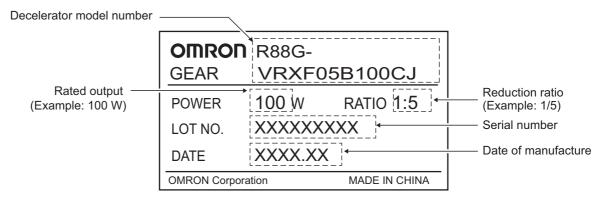
Specific	ations	With	out key	With key and tap	
Servo- motor rated output	Reduc- tion ratio	Decelerator model Model on namepla		Decelerator model	Model on nameplate
	1/5	R88G- HPG32A052K0B	HPG-32A-05-J2NFG	R88G- HPG32A052K0BJ	HPG-32A-05-J6NFG
	1/11	R88G- HPG32A112K0B	HPG-32A-11-J2NFH	R88G- HPG32A112K0BJ	HPG-32A-11-J6NFH
1.5 kW	1/21	R88G- HPG32A211K5B	HPG-32A-21-J2NFI	R88G- HPG32A211K5BJ	HPG-32A-21-J6NFI
	1/33	R88G- HPG50A332K0B	HPG-50A-33-J2ADBA	R88G- HPG50A332K0BJ	HPG-50A-33-J6ADBA
	1/45	R88G- HPG50A451K5B	HPG-50A-45-J2ADBA	R88G- HPG50A451K5BJ	HPG-50A-45-J6ADBA
	1/5	R88G- HPG32A052K0B	HPG-32A-05-J2NFG	R88G- HPG32A052K0BJ	HPG-32A-05-J6NFG
0 144	1/11	R88G- HPG32A112K0B	HPG-32A-11-J2NFH	R88G- HPG32A112K0BJ	HPG-32A-11-J6NFH
2 kW	1/21	R88G- HPG50A212K0B	HPG-50A-21-J2ADBA	R88G- HPG50A212K0BJ	HPG-50A-21-J6ADBA
	1/33	R88G- HPG50A332K0B	HPG-50A-33-J2ADBA	R88G- HPG50A332K0BJ	HPG-50A-33-J6ADBA
	1/5	R88G- HPG32A053K0B	HPG-32A-05-J2MCK	R88G- HPG32A053K0BJ	HPG-32A-05-J6MCK
3 kW	1/11	R88G- HPG50A113K0B	HPG-50A-11-J2AABB	R88G- HPG50A113K0BJ	HPG-50A-11-J6AABB
	1/21	R88G- HPG50A213K0B	HPG-50A-21-J2AABB	R88G- HPG50A213K0BJ	HPG-50A-21-J6AABB
1 k\\\	1/5	R88G- HPG32A054K0B	HPG-32A-05-J2PAO	R88G- HPG32A054K0BJ	HPG-32A-05-J6PAO
4 kW	1/11	R88G- HPG50A115K0B	HPG-50A-11-J2BADC	R88G- HPG50A115K0BJ	HPG-50A-11-J6BADC
4.7 kW	1/5	R88G- HPG50A055K0B	HPG-50A-05-J2BACC	R88G- HPG50A055K0BJ	HPG-50A-05-J6BACC
5 kW	1/11	R88G- HPG50A115K0B	HPG-50A-11-J2BADC	R88G- HPG50A115K0BJ	HPG-50A-11-J6BADC

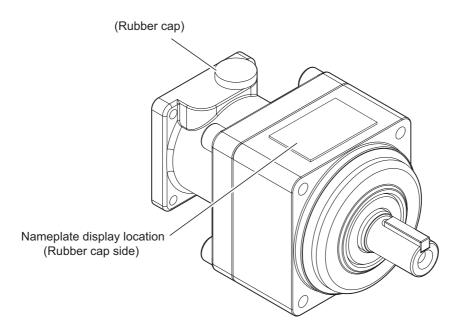
● Decelerator (backlash: 3 arcminutes max.) for 2,000-r/min Servomotors

Specifications		With	out key	With ke	y and tap
Servo- motor rated output	Reduc- tion ratio	Decelerator model	Model on nameplate	Decelerator model	Model on nameplate
	1/5	R88G- HPG32A052K0B	HPG-32A-05-J2NFG	R88G- HPG32A052K0BJ	HPG-32A-05-J6NFG
	1/11	R88G- HPG32A112K0B	HPG-32A-11-J2NFH	R88G- HPG32A112K0BJ	HPG-32A-11-J6NFH
400 W	1/21	R88G- HPG32A211K5B	HPG-32A-21-J2NFI	R88G- HPG32A211K5BJ	HPG-32A-21-J6NFI
	1/33	R88G- HPG32A33600SB	HPG-32A-33-J2NFJ	R88G- HPG32A33600SBJ	HPG-32A-33-J6NFJ
	1/45	R88G- HPG32A45400SB	HPG-32A-45-J2NFJ	R88G- HPG32A45400SBJ	HPG-32A-45-J6NFJ

Specifications		With	out key	With key and tap		
Servo- motor rated output	Reduc- tion ratio	Decelerator model	Model on nameplate	Decelerator model	Model on nameplate	
	1/5	R88G- HPG32A052K0B	HPG-32A-05-J2NFG	R88G- HPG32A052K0BJ	HPG-32A-05-J6NFG	
	1/11	R88G- HPG32A112K0B	HPG-32A-11-J2NFH	R88G- HPG32A112K0BJ	HPG-32A-11-J6NFH	
600 W	1/21	R88G- HPG32A211K5B	HPG-32A-21-J2NFI	R88G- HPG32A211K5BJ	HPG-32A-21-J6NFI	
	1/33	R88G- HPG32A33600SB	HPG-32A-33-J2NFJ	R88G- HPG32A33600SBJ	HPG-32A-33-J6NFJ	
	1/45	R88G- HPG50A451K5B	HPG-50A-45-J2ADBA	R88G- HPG50A451K5BJ	HPG-50A-45-J6ADBA	
	1/5	R88G- HPG32A053K0B	HPG-32A-05-J2MCK	R88G- HPG32A053K0BJ	HPG-32A-05-J6MCK	
	1/11	R88G- HPG32A112K0SB	HPG-32A-11-J2MCL	R88G- HPG32A112K0SBJ	HPG-32A-11-J6MCL	
1 kW	1/21	R88G- HPG32A211K0SB	HPG-32A-21-J2MCM	R88G- HPG32A211K0SBJ	HPG-32A-21-J6MCM	
	1/33	R88G- HPG50A332K0SB	HPG-50A-33-J2AABB	R88G- HPG50A332K0SBJ	HPG-50A-33-J6AABB	
	1/45	R88G- HPG50A451K0SB	HPG-50A-45-J2AABB	R88G- HPG50A451K0SBJ	HPG-50A-45-J6AABB	
	1/5	R88G- HPG32A053K0B	HPG-32A-05-J2MCK	R88G- HPG32A053K0BJ	HPG-32A-05-J6MCK	
1.5 kW	1/11	R88G- HPG32A112K0SB	HPG-32A-11-J2MCL	R88G- HPG32A112K0SBJ	HPG-32A-11-J6MCL	
1.5 KVV	1/21	R88G- HPG50A213K0B	HPG-50A-21-J2AABB	R88G- HPG50A213K0BJ	HPG-50A-21-J6AABB	
	1/33	R88G- HPG50A332K0SB	HPG-50A-33-J2AABB	R88G- HPG50A332K0SBJ	HPG-50A-33-J6AABB	
	1/5	R88G- HPG32A053K0B	HPG-32A-05-J2MCK	R88G- HPG32A053K0BJ	HPG-32A-05-J6MCK	
0.1344	1/11	R88G- HPG32A112K0SB	HPG-32A-11-J2MCL	R88G- HPG32A112K0SBJ	HPG-32A-11-J6MCL	
2 kW	1/21	R88G- HPG50A213K0B	HPG-50A-21-J2AABB	R88G- HPG50A213K0BJ	HPG-50A-21-J6AABB	
	1/33	R88G- HPG50A332K0SB	HPG-50A-33-J2AABB	R88G- HPG50A332K0SBJ	HPG-50A-33-J6AABB	
	1/5	R88G- HPG32A054K0B	HPG-32A-05-J2PAO	R88G- HPG32A054K0BJ	HPG-32A-05-J6PAO	
0.1144	1/11	R88G- HPG50A115K0B	HPG-50A-11-J2BADC	R88G- HPG50A115K0BJ	HPG-50A-11-J6BADC	
3 kW	1/21	R88G- HPG50A213K0SB	HPG-50A-21-J2BADC	R88G- HPG50A213K0SBJ	HPG-50A-21-J6BADC	
	1/25	R88G- HPG65A253K0SB	HPG-65A-25-J2BACC	R88G- HPG65A253K0SBJ	HPG-65A-25-J6BACC	

• Decelerator (backlash: 3 arcminutes max.) for 1,500-r/min Servomotors


Specific	ations	With	out key	With key and tap	
Servo- motor rated output	Reduc- tion ratio	Decelerator model	Model on nameplate	Decelerator model	Model on nameplate
	1/5	R88G- HPG50A055K0SB	HPG-50A-05-J2EBCH	R88G- HPG50A055K0SBJ	HPG-50A-05-J6EBCH
4.1344	1/11	R88G- HPG50A115K0SB	HPG-50A-11-J2EBDH	R88G- HPG50A115K0SBJ	HPG-50A-11-J6EBDH
4 kW	1/20	R88G- HPG65A205K0SB	HPG-65A-20-J2EBCH	R88G- HPG65A205K0SBJ	HPG-65A-20-J6EBCH
	1/25	R88G- HPG65A255K0SB	HPG-65A-25-J2EBCH	R88G- HPG65A255K0SBJ	HPG-65A-25-J6EBCH
	1/5	R88G- HPG50A054K5TB	HPG-50A-05-J2EBCG	R88G- HPG50A054K5TBJ	HPG-50A-05-J6EBCG
5 kW 5.5 kW	1/12	R88G- HPG65A127K5SB	HPG-65A-12-J2CBAI	R88G- HPG65A127K5SBJ	HPG-65A-12-J6CBAI
	1/20	R88G- HPG50A054K5TB	HPG-65A-20-J2CBAI	R88G- HPG65A204K5TBJ	HPG-65A-20-J6CBAI


• Decelerator (backlash: 3 arcminutes max.) for 1,000-r/min Servomotors

Specific	cations	With	out key	With key and tap	
Servo- motor rated output	Reduc- tion ratio	Decelerator model	Model on nameplate	Decelerator model	Model on nameplate
	1/5	R88G- HPG32A05900TB	HPG-32A-05-J2PAK	R88G- HPG32A05900TBJ	HPG-32A-05-J6PAK
000 W	1/11	R88G- HPG32A11900TB	HPG-32A-11-J2PAL	R88G- HPG32A11900TBJ	HPG-32A-11-J6PAL
900 W	1/21	R88G- HPG50A21900TB	HPG-50A-21-J2BADB	R88G- HPG50A21900TBJ	HPG-50A-21-J6BADB
	1/33	R88G- HPG50A33900TB	HPG-50A-33-J2BADB	R88G- HPG50A33900TBJ	HPG-50A-33-J6BADB
	1/5	R88G- HPG32A052K0TB	HPG-32A-05-J2PBS	R88G- HPG32A052K0TBJ	HPG-32A-05-J6PBS
2 kW	1/11	R88G- HPG50A112K0TB	HPG-50A-11-J2BBDH	R88G- HPG50A112K0TBJ	HPG-50A-11-J6BBDH
Z KVV	1/21	R88G- HPG50A212K0TB	HPG-50A-21-J2BBDH	R88G- HPG50A212K0TBJ	HPG-50A-21-J6BBDH
	1/25	R88G- HPG65A255K0SB	HPG-65A-25-J2EBCH	R88G- HPG65A255K0SBJ	HPG-65A-25-J6EBCH
	1/5	R88G- HPG50A055K0SB	HPG-50A-05-J2EBCH	R88G- HPG50A055K0SBJ	HPG-50A-05-J6EBCH
3 kW	1/11	R88G- HPG50A115K0SB	HPG-50A-11-J2EBDH	R88G- HPG50A115K0SBJ	HPG-50A-11-J6EBDH
	1/20	R88G- HPG65A205K0SB	HPG-65A-20-J2EBCH	R88G- HPG65A205K0SBJ	HPG-65A-20-J6EBCH
	1/25	R88G- HPG65A255K0SB	HPG-65A-25-J2EBCH	R88G- HPG65A255K0SBJ	HPG-65A-25-J6EBCH

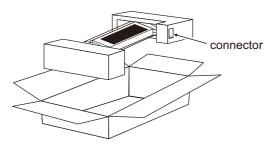
Decelerator (Backlash: 15 Arcminutes Max.)

For Decelerators (backlash: 15 arcminutes max.), the product nameplate indicates the model number, rated output, reduction ratio, serial number, and date of manufacture.

Motor Power Cable

The following product models come with a shield clamp. The shield clamp is used for mounting to a Servo Drive. Keep it until the use.

Applicable models: R88A-CA1H DDDF, R88A-CA1J DDDF, R88A-CA1K DDDF


As for a shield clamp, refer to Shield Clamp Bracket on page 2-33.

39

External Regeneration Resistor Unit

The following product models come with an instruction manual and a connector. Use the connector when wiring an external regeneration resistance unit to a Servo Drive.

Applicable models: R88A-RR550□

External Dynamic Brake Resistor

This product comes with an instruction manual and two connectors to extend a wiring.

Shield Clamp

This product comes with two screws (M4×12) for mounting.

Related Manuals

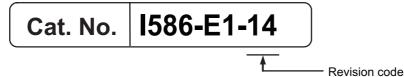
The following are the manuals related to this manual. Use these manuals for reference.

Manual name	Cat. No.	Model numbers	Application	Description
NX-series CPU Unit Hardware User's Manual	W535	NX701-□□□□	Learning the basic specifications of the NX-series CPU Units, including introductory information, designing, installation, and maintenance. Mainly hardware information is provided.	An introduction to the entire NX-series system is provided along with the following information on the CPU Unit. • Features and system configuration • Introduction • Part names and functions • General specifications • Installation and wiring • Maintenance and inspection Use this manual together with the NJ-series CPU Unit Software User's Manual (Cat. No. W501).
NX-series NX102 CPU Unit Hardware User's Manual	W593	NX102-□□□	Learning the basic specifications of the NX102 CPU Units, including introductory information, designing, installation, and maintenance. Mainly hardware information is provided.	An introduction to the entire NX102 system is provided along with the following information on the CPU Unit. Features and system configuration Introduction Part names and functions General specifications Installation and wiring Maintenance and inspection
NX-series NX1P2 CPU Unit Hardware User's Manual	W578	NX1P2-□□□□	Learning the basic specifications of the NX1P2 CPU Units, including introductory information, designing, installation, and maintenance. Mainly hardware information is provided.	An introduction to the entire NX1P2 system is provided along with the following information on the CPU Unit. • Features and system configuration • Introduction • Part names and functions • General specifications • Installation and wiring • Maintenance and inspection

Manual name	Cat. No.	Model numbers	Application	Description
Manual name NJ-series CPU Unit Hardware User's Manual	W500	NJ501-□□□□ NJ301-□□□□ NJ101-□□□□	Application Learning the basic specifications of the NJ-series CPU Units, including introductory information, designing, installation, and maintenance. Mainly hardware information is provided.	Description An introduction to the entire NJ-series system is provided along with the following infor- mation on the CPU Unit. Features and system con- figuration Introduction Part names and functions General specifications Installation and wiring Maintenance and inspec- tion Use this manual together with the NJ-series CPU Unit Software User's Manual
NJ/NX-series CPU Unit Software User's Manual	W501	NX701-□□□□ NX1P2-□□□□ NJ501-□□□□ NJ301-□□□□ NJ101-□□□□	Learning how to program and set up an NJ/NX-series CPU Unit. Mainly software information is provided.	(Cat. No. W501). The following information is provided on a Controller built with an NJ/NX-series CPU Unit. CPU Unit operation CPU Unit features Initial settings Programming based on IEC 61131-3 language specifications Use this manual together with the NX-series CPU Unit Hardware User's Manual (Cat. No. W535) or NJ-series CPU Unit Hardware User's
NJ/NX-series CPU Unit Built-in Ether- CAT® Port User's Manual	W505	NX701-□□□□ NX102-□□□□ NX1P2-□□□□ NJ501-□□□□ NJ301-□□□□	Learning how to configure the EtherCAT communications system.	Manual (Cat. No. W500). Describes setup procedures for building the EtherCAT communications system.
NJ/NX-series CPU Unit Motion Con- trol User's Manual	W507	NX701-□□□□ NX1P2-□□□□ NJ501-□□□□ NJ301-□□□□ NJ101-□□□□	Learning about motion control settings and programming concepts.	The settings and operation of the CPU Unit and programming concepts for motion control are described. When programming, use this manual together with the NX-series CPU Unit Hardware User's Manual (Cat. No. W535) or NJ-series CPU Unit Hardware User's Manual (Cat. No. W500) and with the NJ/NX-series CPU Unit Software User's Manual (Cat. No. W501).

Manual name	Cat. No.	Model numbers	Application	Description
NX-series Safety	Z930	NX-SL	Learning how to use the	Describes the hardware,
Control Units		NX-SI	NX-series Safety Con-	setup methods and functions
User's Manual		NX-SO□□□□	trol Units.	of the NX-series Safety Control Units.
Sysmac Studio	W504	SYSMAC-SE2	Learning about the oper-	Describes the operating pro-
Version 1 Opera-			ating procedures and	cedures of the Sysmac Stu-
tion Manual			functions of the Sysmac Studio.	dio.
Sysmac Studio Drive Functions Operation Manual	1589	SYSMAC-SE2	Learning how to set up and adjust the Servo Drives.	Describes the operating procedures of the Sysmac Studio
SYSMAC	W487	CJ1W-NC281	Learning about the NC	Describes the setup meth-
CJ-series Position		CJ1W-NC481	Units (CJ1W-NC281/	ods and operating proce-
Control Unit Operation Manual		CJ1W-NC881	481/ 881/ F81/ 482/ 882/ F82).	dures of the NC Units.
ation Manual		CJ1W-NCF81	roz).	
		CJ1W-NC482		
		CJ1W-NC882		
		CJ1W-NCF82		
G9SP-series	Z922	G9SP-N10S	Learning how to use the	Describes the hardware,
Safety Controller		G9SP-N10D	G9SP-series safety Con-	setup methods and functions
Operation Manual		G9SP-N20S	trollers.	of the G9SP-series safety Controllers.

Terminology


T	Abbrevi-	Description
Term	ation	Description
Cable Redundancy Function		A function to continue communications with Ether-CAT slaves even if a communications cable is broken in the EtherCAT communications path.
CAN application protocol over EtherCAT	CoE	A CAN application protocol service implemented on EtherCAT.
CAN in Automation	CiA	CiA is the international users' and manufacturers' group that develops and supports higher-layer protocols.
Device Profile		Collection of device dependent information and functionality providing consistency between similar devices of the same device type.
Distributed Clocks	DC	Method to synchronize slaves and maintain a global time base.
EtherCAT Slave Controller	ESC	A controller for EtherCAT slave communication.
EtherCAT Slave Information	ESI	An XML file that contains setting information for an EtherCAT slave.
EtherCAT State Machine	ESM	An EtherCAT communication state machine.
EtherCAT Technology Group	ETG	The ETG is a global organization in which OEM, End Users and Technology Providers join forces to support and promote the further technology development.
Fieldbus Memory Management Unit	FMMU	Single element of the fieldbus memory management unit: one correspondence between a coherent logical address space and a coherent physical memory location.
Index		Address of an object within an application process.
Object		Abstract representation of a particular component within a device, which consists of data, parameters, and methods.
Object Dictionary	OD	Data structure addressed by Index and Subindex that contains description of data type objects, communication objects and application objects.
Physical Device Internal Interface	PDI	A series of elements to access data link services from the application layer.
Power Drive System	PDS	A power drive system consisting of a Servo Drive, an inverter, and other components.
Process Data		Collection of application objects designated to be transferred cyclically or acyclically for the purpose of measurement and control.
Process Data Object	PDO	Structure described by mapping parameters that contain one or several process data entities.
Receive PDO	RxPDO	A process data object received by an EtherCAT slave.
Ring disconnection status		A status in which communications continue even if an EtherCAT physical layer link is disconnected in a ring topology on the EtherCAT system.
safe state		The status of a device or piece of equipment when the risk of danger to humans has been reduced to an acceptable level.

Term	Abbrevi- ation	Description
safety control		A type of control that uses devices, functions, and data that are designed with special safety measures.
Safety over EtherCAT	FSoE	A system to communicate for the functional safety over EtherCAT.
safety process data communications		A type of I/O data communications that is used for safety control purposes.
safety reaction time		The time required for the system to enter a safe state in a worst-case scenario after the occurrence of a safety-related input (press of an emergency stop pushbutton switch, interruption of a light curtain, opening of a safety door, etc.) or device failure.
		The reaction time of the system includes the reaction times of sensors and actuators, just like the reaction time for a Controller or network.
Service Data Object	SDO	CoE asynchronous mailbox communications where all objects in the object dictionary can be read and written.
Slave Information Interface	SII	Slave information stored in the nonvolatile memory of each slave.
standard control		A type of control that use devices, functions, and data that are designed for general control purposes. This term is used to differentiate from a safety control.
Subindex		Sub-address of an object within the object dictionary.
Sync Manager	SM	Collection of control elements to coordinate access to concurrently used objects.
Transmit PDO	TxPDO	A process data object sent from an EtherCAT slave.

Revision History

The manual revision code is a number appended to the end of the catalog number found in the front and back cover.

Example

Revision code	Date	Revised content
01	June 2016	Original production
		Made changes accompanying release of R88M-1L□
		Corrected mistakes.
03	March 2017	Revised for the upgrade to the unit version 1.1.
		Corrected mistakes.
04	October 2017	Added Decelerators.
		Corrected mistakes.
05	April 2018	Revised for the upgrade to the unit version 1.2.
		Corrected mistakes.
06	May 2018	Revised Safety Precautions.
07	September 2018	Made changes accompanying release of R88M-1M05030□
		Corrected mistakes.
08	August 2019	Made changes accompanying release of R88D-1SN55□-ECT, etc.
		Corrected mistakes.
09	October 2019	Corrected mistakes.
10	March 2020	Corrected mistakes.
11	September 2020	Made changes accompanying release of R88M-1L4K730T-□, etc.
		Corrected mistakes.
12	October 2020	Revised for the upgrade to the unit version 1.4.
		Corrected mistakes.
13	November 2020	Made changes accompanying the support of cable redundancy
		function.
		Corrected mistakes.
14	December 2021	Revised for the upgrade to the motor power cable version 1.1.
		Made changes accompanying the release of new models.
		Added 4-7 Noise Filter Installation Conditions When the Total Wire
		Length Is Long on page 4-80.
		Corrected mistakes.

Features and System Configuration

This section explains the features of the Servo Drive and name of each part.

1-1	Outline			
	1-1-1	Features of 1S-series Servo Drives	1-2	
	1-1-2	EtherCAT	1-3	
	1-1-3	Object Dictionary	1-4	
1-2	System	Configuration	. 1-5	
1-3	Names and Functions			
	1-3-1	Servo Drive Part Names	1-6	
	1-3-2	Servo Drive Functions	. 1-14	
	1-3-3	Servomotor Part Names	. 1-17	
	1-3-4	Servomotor Functions	. 1-19	
	1-3-5	Shield Clamp Part Names	. 1-20	
1-4	System	n Block Diagram	1-21	
1-5	Applica	able Standards	1-29	
	1-5-1	EU Directives	. 1-29	
	1-5-2	UL and cUL Standards	. 1-30	
	1-5-3	Korean Radio Regulations (KC)	. 1-31	
	1-5-4	National Standard (GB)	. 1-31	
	1-5-5	SEMI F47	. 1-32	
	1-5-6	Australian EMC Labeling Requirements (RCM)	. 1-32	
	1-5-7	EAC Requirements	. 1-32	
1-6	Unit Ve	rsions	1-33	
	1-6-1	Confirmation Method	. 1-33	
	1-6-2	Unit Versions and Sysmac Studio Versions	. 1-33	
1-7	Proced	ures to Start Operation	1-34	
	1-7-1	Overall Procedure	. 1-34	
	1-7-2	Procedure Details	. 1-36	

Outline

The 1S-series Servo Drives with Built-in EtherCAT communications support 100-Mbps EtherCAT.

When you use the 1S-series Servo Drive with a Machine Automation Controller NJ/NX-series CPU Unit or Position Control Unit with EtherCAT (Model: CJ1W-NC□8□), you can construct a high-speed and sophisticated positioning control system.

You need only one communications cable to connect the Servo Drive and the Controller. Therefore, you can realize a position control system easily with reduced wiring effort.

With adjustment functions, adaptive notch filter, notch filter, and damping control, you can set up a system that provides stable operation by suppressing vibration in low-rigidity machines.

Moreover, with the two-degree-of-freedom (TDF) control structure, you can easily adjust high-precision positioning.

1-1-1 Features of 1S-series Servo Drives

The 1S-series Servo Drives have the following features.

Optimal Functionality and Operability by Standardizing Specifications

As a Sysmac Device, 1S-series Servo Drives with built-in EtherCAT communications is designed to achieve optimum functionality and ease of operation when it is used together with the NJ/NX-series Machine Automation Controller and the Sysmac Studio Automation Software.

Sysmac Device is a generic term for OMRON control devices such as an EtherCAT Slave, designed with unified communications specifications and user interface specifications.

Data Transmission Using EtherCAT Communications

Combining the 1S-series Servo Drive with a Machine Automation Controller NJ/NX-series CPU Unit or Position Control Unit with EtherCAT (Model: CJ1W-NC 8) enables you to exchange all position information with the controller in high-speed data communications.

Since the various control commands are transmitted via data communications, Servomotor's operational performance is maximized without being limited by interface specifications such as the response frequency of the encoder feedback pulses.

You can use the Servo Drive's various control parameters and monitor data on a host controller, and unify the system data for management.

EtherCAT Communications Cycle of 125 µs

Combination with an NX7 Machine Automation Controller enables high-speed and high-precision motion control at the communications cycle of 125 µs.

High Equipment Utilization Efficiency with 400-V Models

The 400-V models are provided for use with large equipment, at overseas facilities and in wide-ranging applications and environment. Since the utilization ratio of facility equipment also increases, the TCO (Total Cost of Ownership) will come down.

Safe Torque OFF (STO) Function to Ensure Safety

You can cut off the motor current to stop the motor based on a signal from an emergency stop button or other safety equipment. This can be used for an emergency stop circuit that is compliant with safety standards without using an external contactor. Even during the torque OFF status, the present position of the motor is monitored by the control circuits to eliminate the need to perform the homing at the time of restart.

Achievement of Safety on EtherCAT Network

You can use NX-series Safety Control Units to integrate safety controls in a sequence and motion control system.

The 1S-series Servo Drive supports the FSoE (Safety over EtherCAT) protocol as the safety communications. You can build the safety system that uses the STO function from the safety controller on the EtherCAT network.

Suppressing Vibration of Low-rigidity Machines During Acceleration/Deceleration

The damping control function suppresses vibration of low-rigidity machines or devices whose tips tend to vibrate. The function can also be used for damping control for larger constructions as it supports vibration ranging from 0.5 to 300 Hz. You can maximize the performance of the Servomotor by adjusting the trade-off between the damping time and the amount of peak control.

Easy Adjustment with TDF Control Structure

The TDF control structure allows you to separately adjust the amount of overshooting and the resistance against disturbance. With this feature, you can easily achieve high-precision positioning, which is difficult to achieve with the one-degree-of-freedom (ODF) control.

1-1-2 EtherCAT

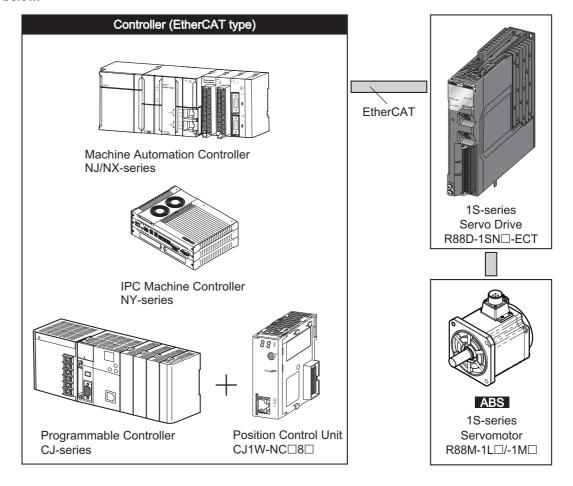
EtherCAT is an open high-speed industrial network system that conforms to Ethernet (IEEE 802.3). Each node achieves a short communications cycle time by transmitting Ethernet frames at high speed. A mechanism that allows sharing clock information enables high-precision synchronization control with low communications jitter.

1-1-3 **Object Dictionary**

1S-series Servo Drives with Built-in EtherCAT Communications use the object dictionary for CAN application protocol over EtherCAT (CoE) as a base for communications.

An object is an abstract representation of a particular component within a device, which consists of data, parameters, and methods.

An object dictionary is a data structure that contains description of data type objects, communication objects and application objects.

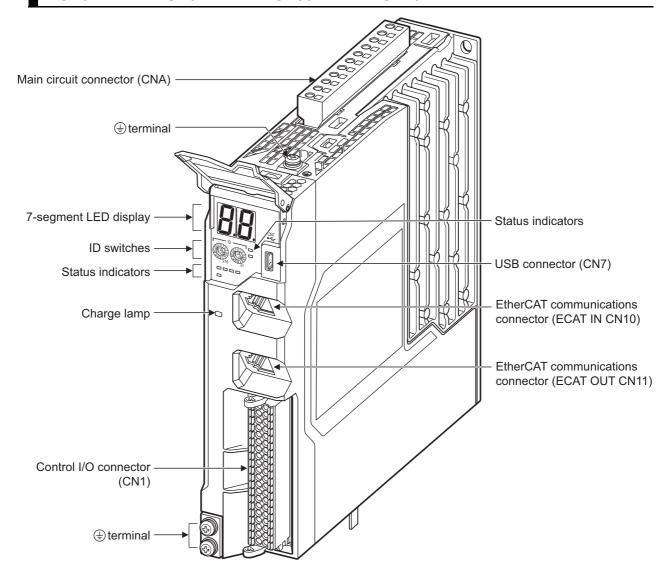

All objects are assigned four-digit hexadecimal indexes in the areas shown in the following table.

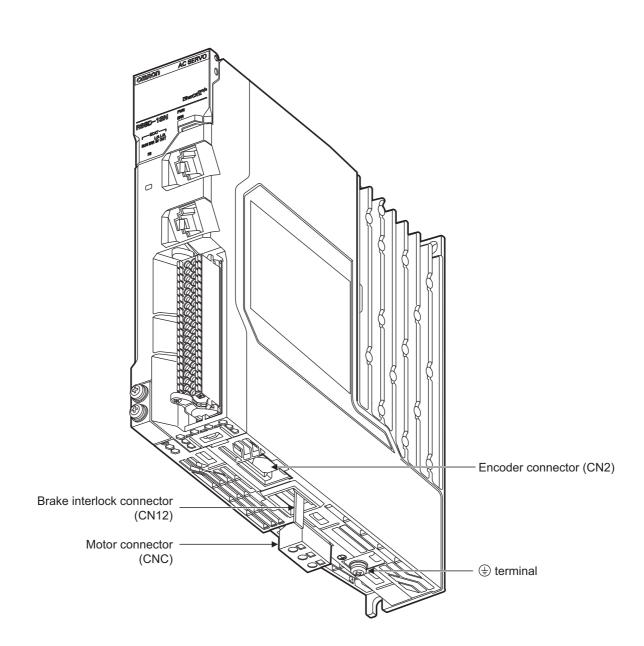
Index (hex)	Area	Description
0000 to 0FFF	Data Type Area	Definitions of data types.
1000 to 1FFF	CoE Communications Area	Definitions of objects that can be used by all servers for designated communications.
2000 to 2FFF	Manufacturer Specific Area 1	Objects with common definitions for all OMRON products.
3000 to 5FFF	Manufacturer Specific Area 2	Objects with common definitions for all 1S-series
		Servo Drives (servo parameters).*1
6000 to DFFF	Device Profile Area	Variables defined in the Servo Drive's CiA402 drive profile.
E000 to EFFF	Device Profile Area 2	Objects defined in the Servo Drive's FSoE CiA402
		slave connection.
F000 to FFFF	Device Area	Objects defined in a device.

^{*1.} For details on servo parameters, refer to Section 9 Details on Servo Parameters.

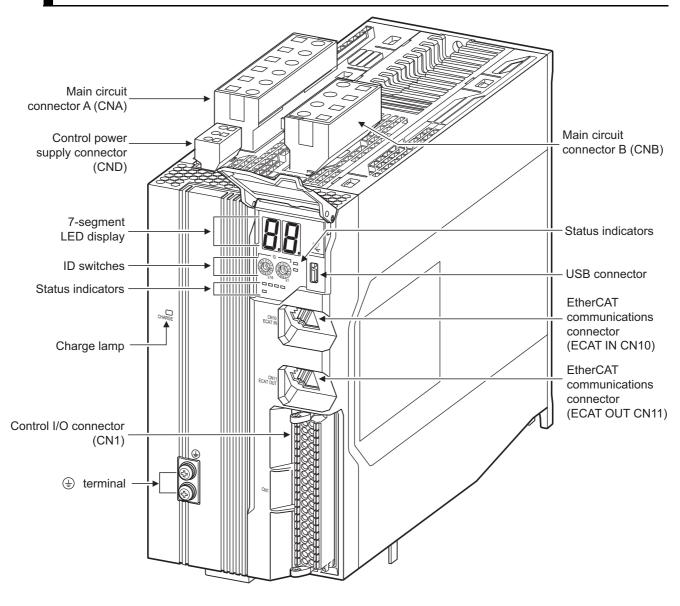
1-2 System Configuration

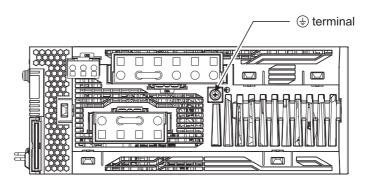
The system configuration for a 1S-series Servo Drive with Built-in EtherCAT Communications is shown below.

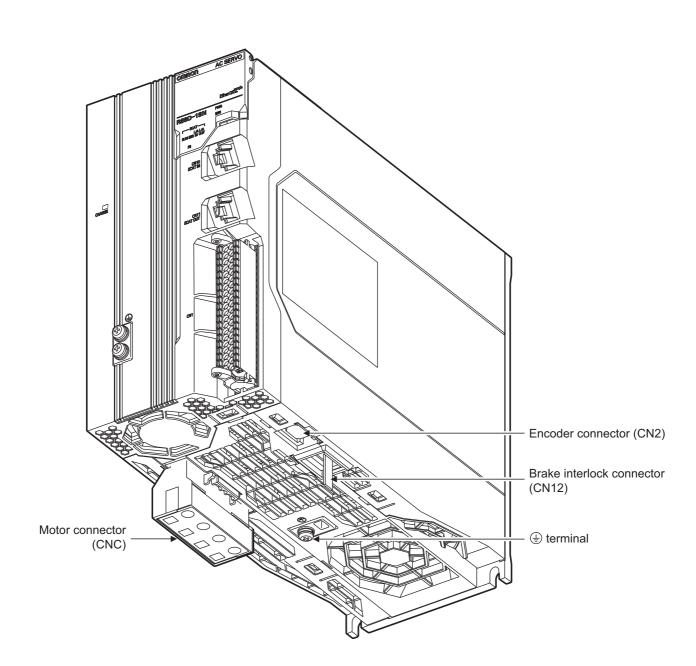

Names and Functions


This section describes the names and functions of Servo Drive parts.

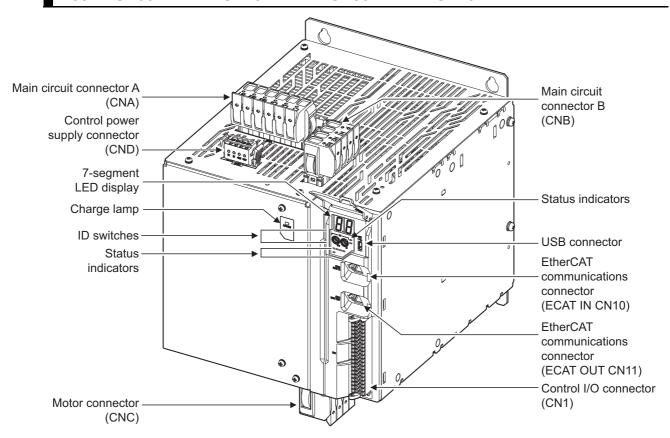
1-3-1 **Servo Drive Part Names**

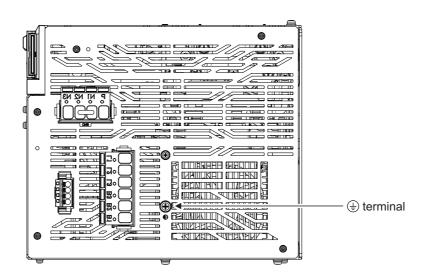

The Servo Drive part names are given below.


R88D-1SN01L-ECT/-1SN02L-ECT/-1SN04L-ECT/-1SN01H-ECT/-1SN02H-ECT/-1SN04H-ECT/-1SN08H-ECT/-1SN10H-ECT

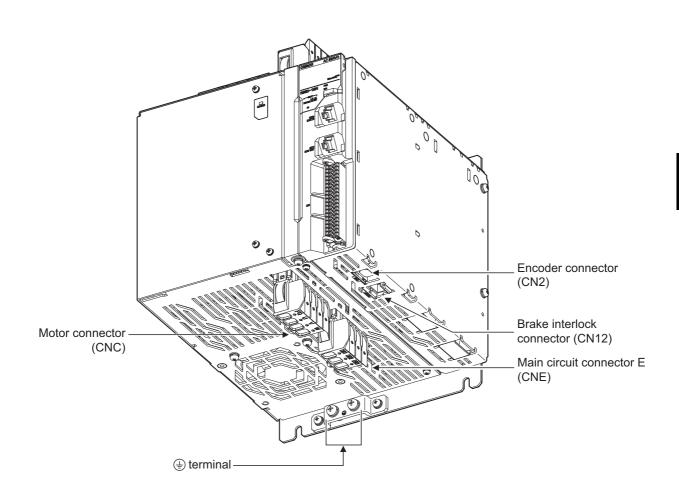


R88D-1SN15H-ECT/-1SN20H-ECT/-1SN30H-ECT/-1SN06F-ECT/-1SN10F-ECT/-1SN15F-ECT/-1SN20F-ECT/-1SN30F-ECT

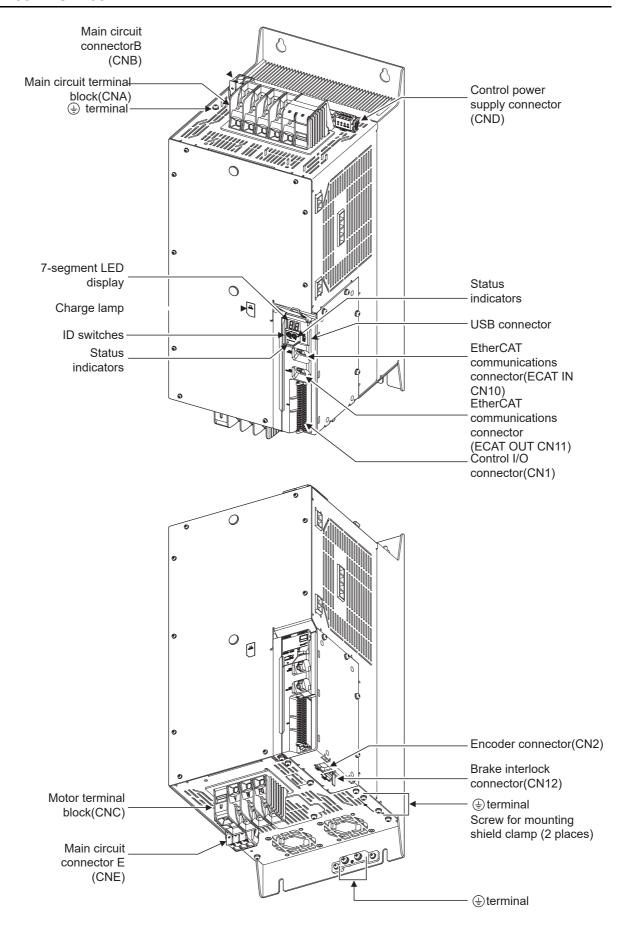




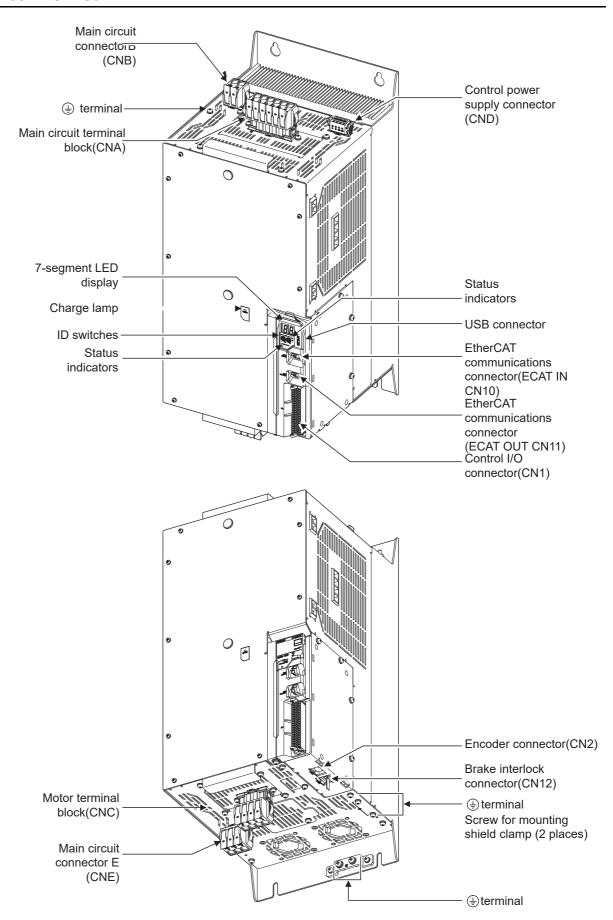
Top view




R88D-1SN55H-ECT/-1SN75H-ECT/-1SN55F-ECT/-1SN75F-ECT

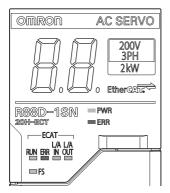


Top view



R88D-1SN150H-ECT

R88D-1SN150F-ECT



1-3-2 **Servo Drive Functions**

The functions of each part of the Servo Drive are described below.

Status Indicators

The following seven indicators are mounted.

Name	Color	Description
PWR	Green	Displays the status of control power supply.
ERR	Red	Gives the Servo Drive error status.
ECAT-RUN	Green	Displays the EtherCAT communications status.
ECAT-ERR	Red	
ECAT-L/A IN,	Green	Lights or flashes according to the status of a link in the EtherCAT physical
ECAT-L/A OUT		layer.
FS	Red/green	Displays the safety communications status.

For details on display, refer to 5-1-2 Status Indicators on page 5-3.

7-segment LED Display

A 2-digit 7-segment LED display shows error numbers, the Servo Drive status, and other information. Refer to 10-2-3 Checking the Displays on page 10-5 for details.

ID Switches

Two rotary switches (0 to F hex) are used to set the EtherCAT node address.

Charge Lamp

Lights when the main circuit power supply carries electric charge.

Control I/O Connector (CN1)

Used for command input signals, I/O signals, and as the safety device connector. The short-circuit wire is installed on the safety signals before shipment.

Encoder Connector (CN2)

Connector for the encoder installed in the Servomotor.

EtherCAT Communications Connectors (ECAT IN CN10, ECAT OUT CN11)

These connectors are for EtherCAT communications.

USB Connector (CN7)

USB-Micro B Communications connector for the computer. This connector enables USB 2.0 Full Speed (12 Mbps) communications.

Brake Interlock Connector (CN12)

Used for brake interlock signals.

Main Circuit Connector (CNA)

Connector for the main circuit power supply input, control power supply input, external regeneration resistor, and DC reactor.

Applicable models: R88D-1SN01L-ECT/-1SN02L-ECT/-1SN04L-ECT/-1SN01H-ECT/

-1SN02H-ECT/-1SN04H-ECT/-1SN08H-ECT/-1SN10H-ECT

Main Circuit Connector A (CNA)

Connector for the main circuit power supply input and external regeneration resistor.

The connector differs depending on the model.

Applicable models: R88D-1SN15H-ECT/-1SN20H-ECT/-1SN30H-ECT/-1SN55H-ECT/

- -1SN75H-ECT/-1SN06F-ECT/-1SN10F-ECT/-1SN15F-ECT/-1SN20F-ECT/
- -1SN30F-ECT/-1SN55F-ECT/-1SN75F-ECT

Main Circuit Terminal Block (CNA)

Connector for the main circuit power supply input.

Applicable models: R88D-1SN150H-ECT

Main Circuit Connector A (CNA)

Connector for the main circuit power supply input and AC reactor.

Applicable models: R88D-1SN150F-ECT

Main Circuit Connector B (CNB)

Connector for a DC reactor.

The connector differs depending on the model.

Applicable models: R88D-1SN15H-ECT/-1SN20H-ECT/-1SN30H-ECT/-1SN55H-ECT/

- -1SN75H-ECT/-1SN06F-ECT/-1SN10F-ECT/-1SN15F-ECT/-1SN20F-ECT/
- -1SN30F-ECT/-1SN55F-ECT/-1SN75F-ECT

Main Circuit Connector B (CNB)

Connector for an external regeneration resistor.

Applicable models: R88D-1SN150H-ECT/-1SN150F-ECT

Control Power Supply Connector (CND)

Connector for control power supply input.

The connector differs depending on the model.

Applicable models: R88D-1SN15H-ECT/-1SN20H-ECT/-1SN30H-ECT/-1SN55H-ECT/

- -1SN75H-ECT/-1SN150H-ECT/-1SN06F-ECT/-1SN10F-ECT/-1SN15F-ECT/
- -1SN20F-ECT/-1SN30F-ECT/-1SN55F-ECT/-1SN75F-ECT/-1SN150F-ECT

Motor Connector (CNC)

Connector for the power line to the phase U, V, and W of the Servomotor.

The connector differs depending on the model.

Motor Terminal Block (CNC)

Connector for the power line to the phase U, V, and W of the Servomotor.

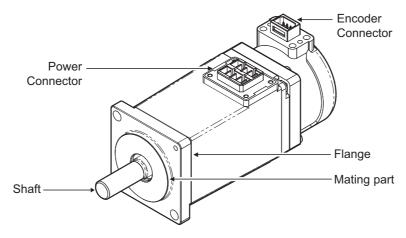
Applicable models: R88D-1SN150H-ECT

Main Circuit Connector E (CNE)

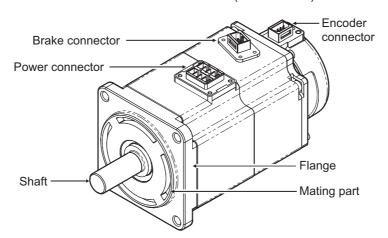
Connector for an External Dynamic Brake Resistor.

Applicable models:R88D-1SN55H-ECT/-1SN75H-ECT/-1SN150H-ECT/-1SN55F-ECT/ -1SN75F-ECT/-1SN150F-ECT

Terminal

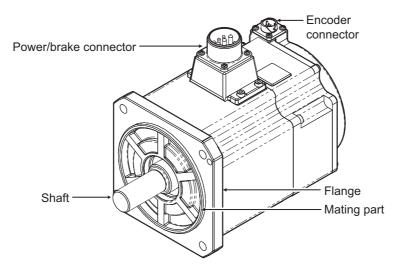

The number of \oplus terminals of the Servo Drives and their connection targets are as follows.

Servo Drive model	Number of 🖶 terminals	Connection to
R88D-1SN01L-ECT/	1 on top	PE wire of the main circuit power supply cable.
-1SN02L-ECT/-1SN04L-ECT/	2 on front	FG wire inside the control panel, and FG wire for
-1SN01H-ECT/-1SN02H-ECT/	1 on bottom	the motor cable and shielded wire.
-1SN04H-ECT/-1SN08H-ECT/		
-1SN10H-ECT		
R88D-1SN15H-ECT/	1 on top	PE wire of the main circuit power supply cable.
-1SN20H-ECT/-1SN30H-ECT/	2 on front	FG wire inside the control panel and the motor
-1SN06F-ECT/-1SN10F-ECT/	1 on bottom	cable shielded wire.
-1SN15F-ECT/-1SN20F-ECT/		
-1SN30F-ECT		
R88D-1SN55H-ECT/	1 on top	PE wire of the main circuit power supply cable.
-1SN75H-ECT/-1SN150H-ECT/	2 on front	FG wire inside the control panel and the motor cable shielded clamp.
-1SN55F-ECT/-1SN75F-ECT/	2 on bottom	
-1SN150F-ECT		

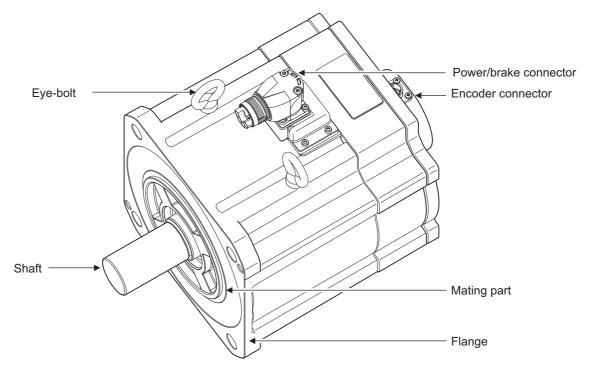

1-3-3 Servomotor Part Names

The Servomotor part names are given below.

Flange Size of 80 × 80 or less



100 VAC 100 W Servomotors (without Brake)


200 VAC 200 W Servomotors (with Brake)

Flange Size of 100 × 100 or more

200 VAC 1.5 kW Servomotors (with Brake)

Flange Size of 130 × 130 or more (4 kW or more)

200 VAC 4 kW Servomotors (with Brake)

1-3-4 Servomotor Functions

The functions of each part of the Servomotor are described below.

Shaft

The load is mounted on this shaft.

The direction which is in parallel with the shaft is called the thrust direction, and the direction which is perpendicular to the shaft is called the radial direction.

Flange

Used for mounting the Servomotor on the equipment.

Fit the mating part into the equipment and use the mounting holes to screw the Servomotor.

Power Connector

Used for supplying power to the phase U, V, and W of the Servomotor.

For Servomotors with a brake and flange size of 100×100 or more, the pins for power and brake are set on the same connector.

For Servomotors with the flange size of 130×130 or more, a cable outlet direction can be changed. The change shall be up to five times.

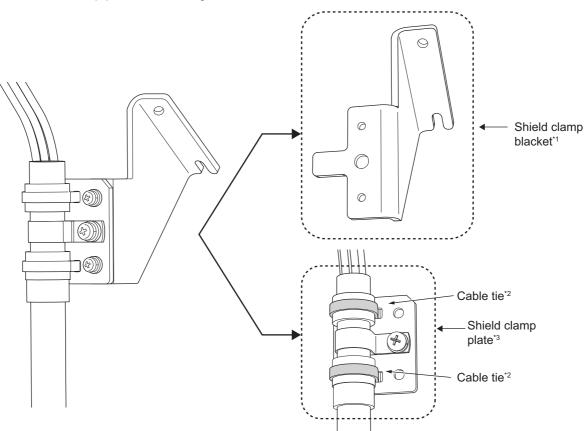
Encoder Connector

Used for supplying power to the encoder of the Servomotor and communicating with the Servo Drive.

For Servomotors at 3000 r/min 4 kW or more and at 1500 r/min, use encoder cables with metal shell type (for applicable Servomotor type B, 4 kW or more).

Brake Connector

Used for supplying power to the brake coil of the Servomotor.

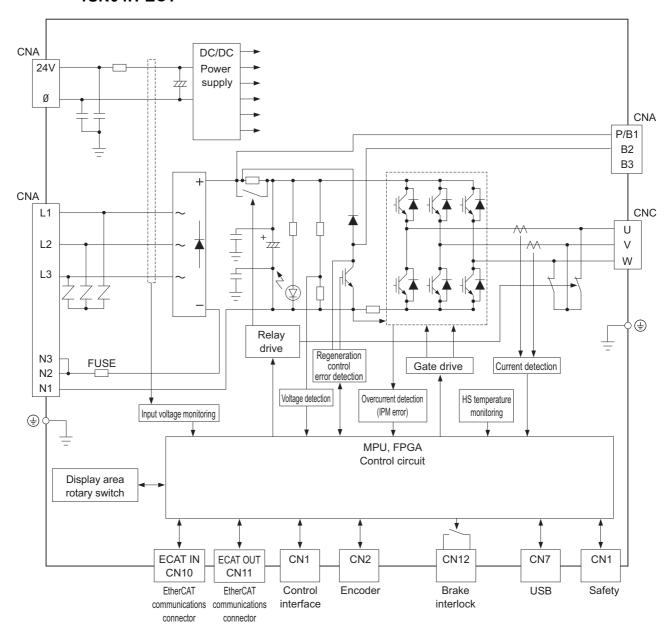

This part is attached only to the Servomotors with a brake and flange size of 80 x 80 or less.

Eye bolt

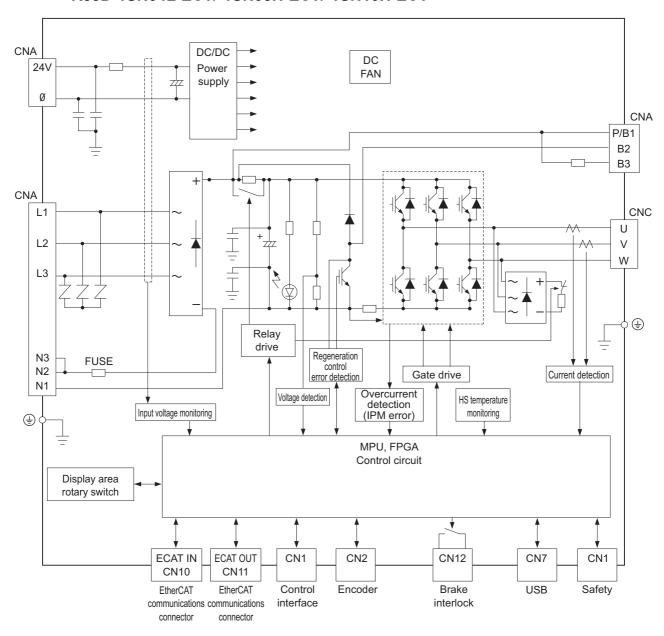
Used for moving the Servomotor by hanging it up with wire ropes, etc. hooked through the rings.

1-3-5 **Shield Clamp Part Names**

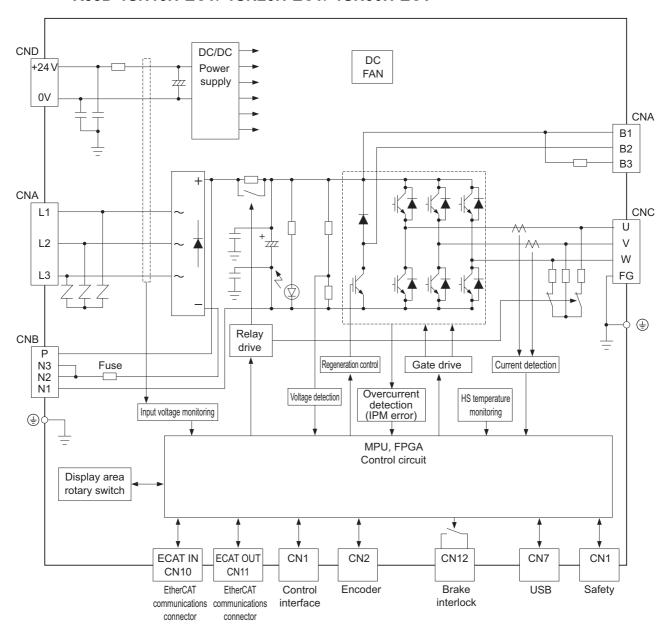
The shield clamp part names are given below.

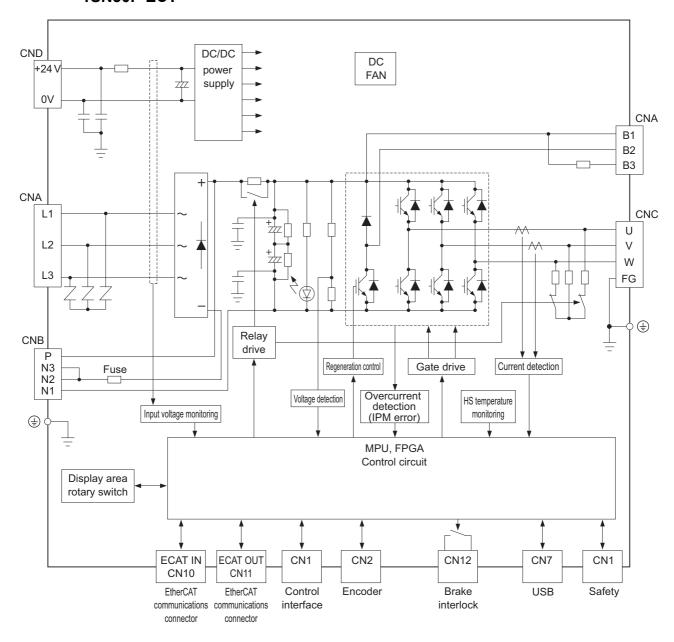


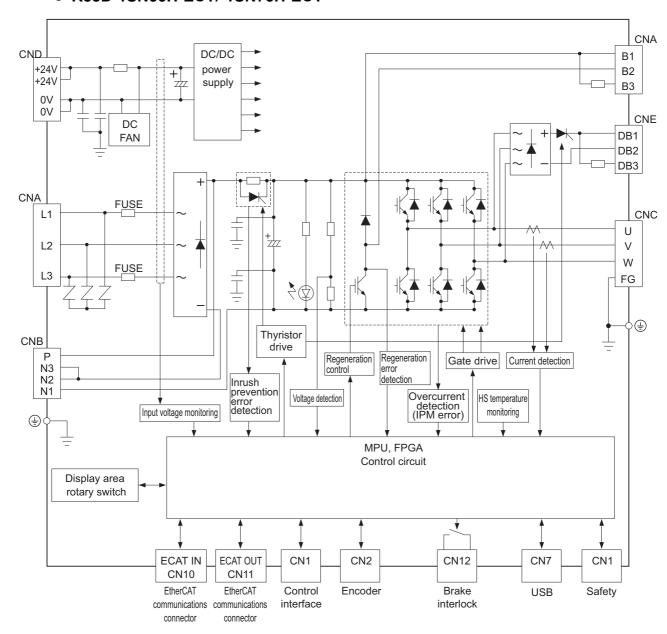
- *1. It comes with a cable.
- *2. Do not cut cable ties.
- *3. It is equipped with a cable.

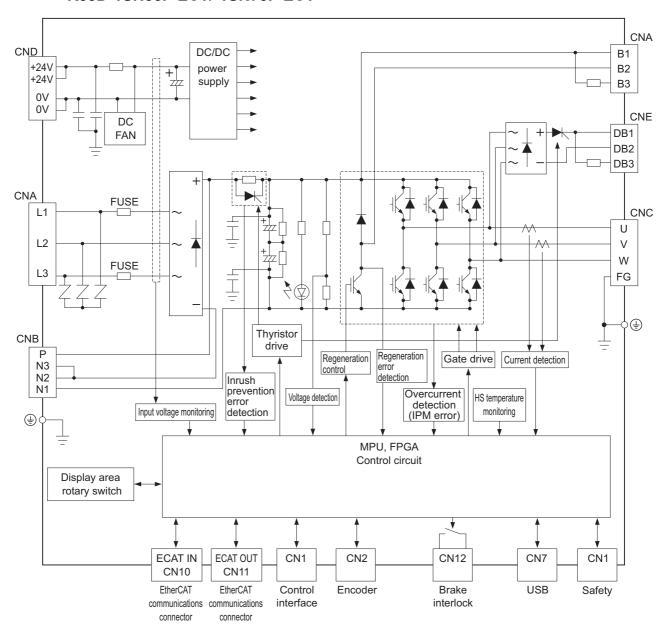

1-4 System Block Diagram

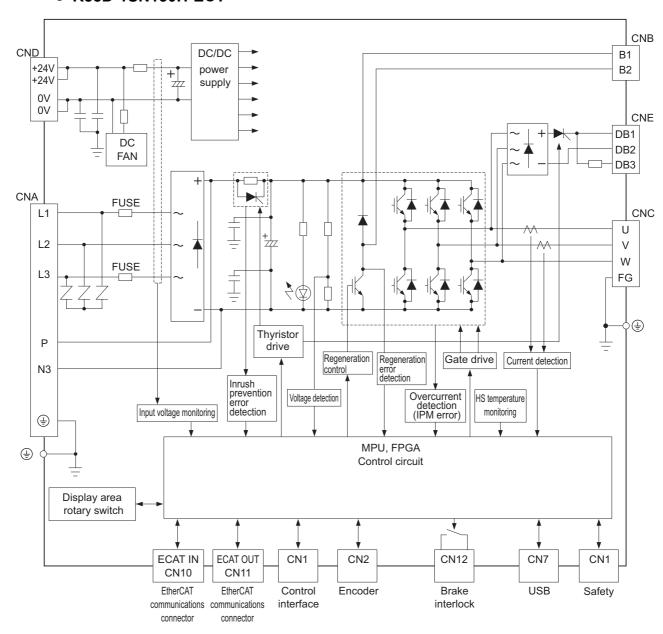
The block diagram of a 1S-series Servo Drive with Built-in EtherCAT Communications is shown below.

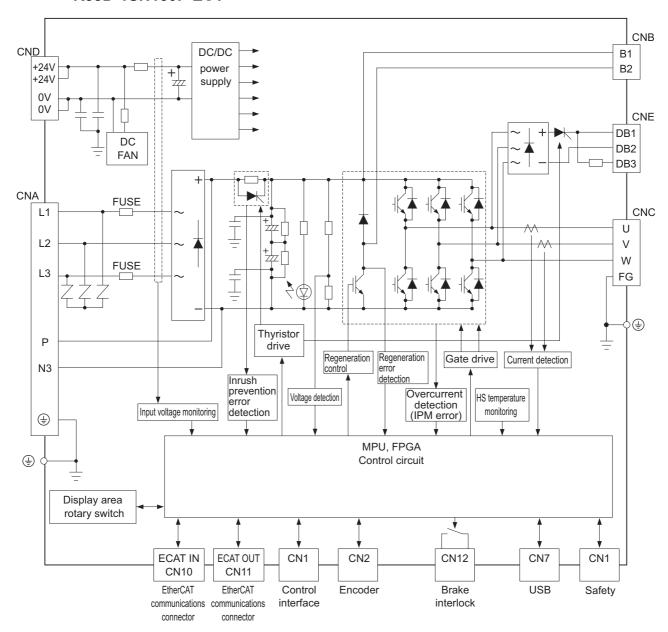

R88D-1SN01L-ECT/-1SN02L-ECT/-1SN01H-ECT/-1SN02H-ECT/-1SN04H-ECT


• R88D-1SN04L-ECT/-1SN08H-ECT/-1SN10H-ECT


• R88D-1SN15H-ECT/-1SN20H-ECT/-1SN30H-ECT


• R88D-1SN06F-ECT/-1SN10F-ECT/-1SN15F-ECT/-1SN20F-ECT/ -1SN30F-ECT


R88D-1SN55H-ECT/-1SN75H-ECT


R88D-1SN55F-ECT/-1SN75F-ECT

● R88D-1SN150H-ECT

• R88D-1SN150F-ECT

1-5 Applicable Standards

This section describes applicable standards.

1-5-1 EU Directives

The 1S-series Servomotors, Servo Drives, and Footprint-type Noise Filters conform to the following standards.

EU Directives	Product	Applicable standards
EMC Directive	Servo Drives	EN61800-3 second environment,
		C3 Category
Low Voltage Directive	Servo Drives	EN 61800-5-1
	Servomotors	EN 60034-1/-5
	Footprint-type Noise	EN 60939-2
	Filters	
Machinery Directive	Servo Drives	EN ISO 13849-1 (Cat.3)
		EN 61508
		EN 62061
		EN 61800-5-2

Note To conform to EMC Directives, install the Servo Drive and Servomotor under the conditions described in 4-3 Wiring Conforming to EMC Directives on page 4-51.

The Servo Drives and Servomotors comply with EN 61800-5-1 as long as the following installation conditions (a) and (b) are met.

- (a) Use the Servo Drive in pollution degree 2 or 1 environment as specified in IEC 60664-1. Example: Installation inside an IP54 control panel.
- (b) Connect a fuse or a breaker
 - The Servo Drives with its capacity 3 kW or less

Be sure to connect a fuse or an equivalent that the fusing time is shorter, which complies with IEC 60269-1 CLASS gG, between the power supply and noise filter.

Select a fuse that satisfies the maximum current rating of the following table.

Servo Drive model	Maximum current rating
R88D-1SN01L-ECT	16 A
R88D-1SN02L-ECT	16 A
R88D-1SN04L-ECT	16 A
R88D-1SN01H-ECT	16 A
R88D-1SN02H-ECT	16 A
R88D-1SN04H-ECT	16 A
R88D-1SN08H-ECT	16 A
R88D-1SN10H-ECT	16 A
R88D-1SN15H-ECT	40 A
R88D-1SN20H-ECT	40 A
R88D-1SN30H-ECT	40 A
R88D-1SN06F-ECT	20 A
R88D-1SN10F-ECT	20 A
R88D-1SN15F-ECT	20 A
R88D-1SN20F-ECT	20 A
R88D-1SN30F-ECT	20 A

The Servo Drives with its capacity 5.5 kW or more

Connect the IEC60947 breaker or IEC 60269-1 CLASS qG fuse which should have the fusing time shorter than the UL class RK5 fuse or equivalence.

Select a breaker or a fuse that satisfies the maximum current rating of the following table.

Servo Drive model	Maximum current rating	
R88D-1SN55H-ECT	60 A	
R88D-1SN75H-ECT	60 A	
R88D-1SN150H-ECT	125A	
R88D-1SN55F-ECT	30 A	
R88D-1SN75F-ECT	30A	
R88D-1SN150F-ECT	60A	

UL and cUL Standards 1-5-2

The 1S-series Servomotors, Servo Drives, and Footprint-type Noise Filters conform to the following standards.

Standard	Product	Applicable standards	File number
UL standards	Servo Drives	UL 61800-5-1	E179149
	Servomotors	UL 1004-1, UL 1004-6	E331224
	Footprint-type Noise Filters	UL1283	E191135
CSA standards ^{*1}	Servo Drives	CSA C22.2 No. 274	E179149
	Servomotors	CSA C22.2 No. 100	E331224
	Footprint-type Noise Filters	CSA C22.2 No. 8-13	E191135

^{*1.} IN CANADA, TRANSIENT SURGE SUPPRESSION SHALL BE INSTALLED ON THE LINE SIDE OF THIS EQUIPMENT AND SHALL BE RATED 277 V (PHASE TO GROUND), SUITABLE FOR OVERVOLTAGE CATEGORY III, AND SHALL PROVIDE PROTECTION FOR A RATED IMPULSE WITHSTAND VOLTAGE PEAK OF 6 KV

The Servo Drives and Servomotors comply with UL 61800-5-1 as long as the following installation conditions (a) and (b) are met.

Use copper wiring with a temperature rating of 75°C or higher.

- (a) Use the Servo Drive in pollution degree 2 or 1 environment as specified in IEC 60664-1. Example: Installation inside an IP54 control panel.
- (b) Connect a fuse or a breaker
 - · The Servo Drives with its capacity 3 kW or less

Be sure to connect a fuse, which is a UL-listed product with LISTED and (mark, between the power supply and noise filter.

Select the fuse from the following table as well as an equivalent, or the fuse that belongs to the following class: CC, CF, G, J, R or T.

Servo Drive model	Fuse
R88D-1SN01L-ECT	UL CLASS RK5 15 A
R88D-1SN02L-ECT	UL CLASS RK5 15 A
R88D-1SN04L-ECT	UL CLASS RK5 15 A
R88D-1SN01H-ECT	UL CLASS RK5 15 A
R88D-1SN02H-ECT	UL CLASS RK5 15 A
R88D-1SN04H-ECT	UL CLASS RK5 15 A
R88D-1SN08H-ECT	UL CLASS RK5 15 A
R88D-1SN10H-ECT	UL CLASS RK5 15 A
R88D-1SN15H-ECT	UL CLASS RK5 40 A
R88D-1SN20H-ECT	UL CLASS RK5 40 A

Servo Drive model	Fuse
R88D-1SN30H-ECT	UL CLASS RK5 40 A
R88D-1SN06F-ECT	UL CLASS RK5 20 A
R88D-1SN10F-ECT	UL CLASS RK5 20 A
R88D-1SN15F-ECT	UL CLASS RK5 20 A
R88D-1SN20F-ECT	UL CLASS RK5 20 A
R88D-1SN30F-ECT	UL CLASS RK5 20 A

The Servo Drives with its capacity 5.5 kW or more
 Use the UL-listed breaker or UL class fuse (RK5, CC, CF, G, J, R or T) which has the rated current in the table.

Servo Drive model	Voltage (Minimum)	Ampere
R88D-1SN55H-ECT	240 V	60 A
R88D-1SN75H-ECT	240 V	60 A
R88D-1SN150H-ECT	240 V	125 A
R88D-1SN55F-ECT	480 V	30 A
R88D-1SN75F-ECT	480 V	30 A
R88D-1SN150F-ECT	480 V	60 A

Refer to 3-1-2 Characteristics on page 3-5 for SCCR of the Servo Drives.

1-5-3 Korean Radio Regulations (KC)

· Observe the following precaution if you use this product in Korea.

사용자안내문

이 기기는 업무용 환경에서 사용할 목적으로 적합성평가를 받은 기기로서 가정용 환경에서 사용하는 경우 전파간섭의 우려가 있습니다.

Guide for Users

This equipment has been evaluated for conformity in a commercial environment.

When used in a residential environment, it may cause radio interference.

- The 1S-series Servo Drives comply with the Korean Radio Regulations (KC).
- The 1S-series Servomotors are exempt from the Korean Radio Regulations (KC).

1-5-4 National Standard (GB)

Rated output 550 W or more Servomotors without brake comply with the following national standard (GB).

功率 550 W 以上且无制动器的电机符合中国的 《永磁同步伺服电动机能源效率标识实施规则 (CEL038-2020) GB30253-2013》

1-5-5 **SEMIF47**

- The main power supply inputs can conform to the SEMI F47 standard for momentary power interruptions (voltage sag immunity) for no-load operation.
- This standard applies to semiconductor manufacturing equipment.

Precautions for Correct Use

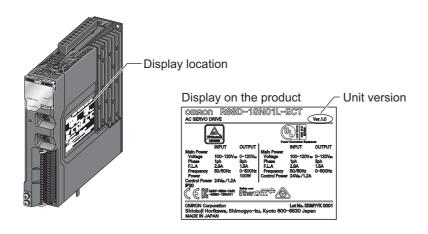
- This standard does not apply to the 24-VDC control power input. Use the power supply.
- This standard does not apply to single-phase 100-V Servo Drives.
- Be sure to perform evaluation tests for SEMI F47 compliance in the entire machine and system.

1-5-6 **Australian EMC Labeling Requirements (RCM)**

- The 1S-series Servo Drives comply with the Australian EMC Labeling Requirements (RCM).
- The 1S-series Servomotors comply with the Australian EMC Labeling Requirements (RCM).

1-5-7 **EAC Requirements**

- The 1S-series Servo Drives comply with the EAC requirements.
- The 1S-series Servomotors comply with the EAC requirements.


1-6 Unit Versions

The 1S-series Servo Drive uses unit versions.

Unit versions are used to manage differences in supported functions due to product upgrades, etc.

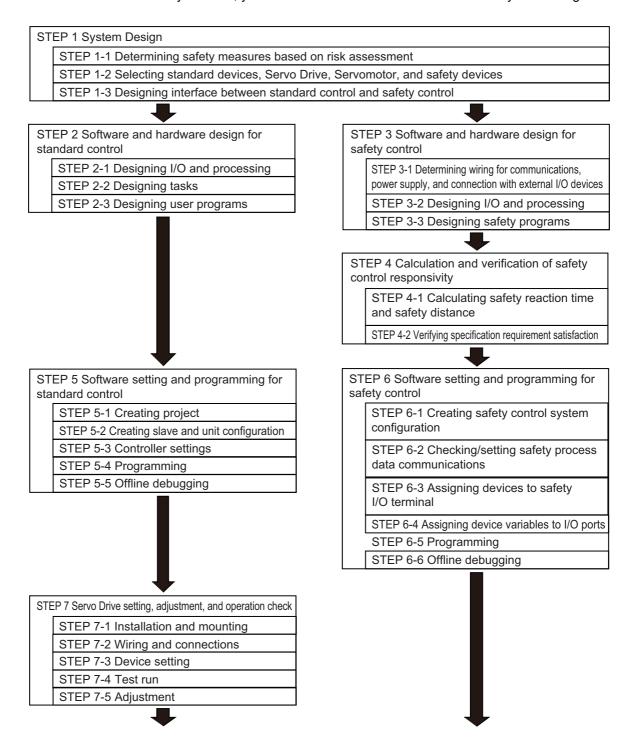
1-6-1 Confirmation Method

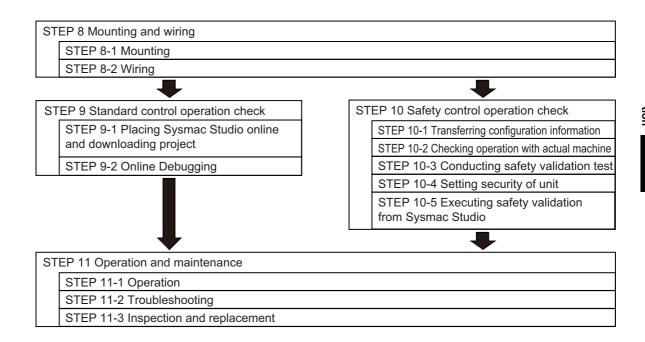
The unit version of 1S-series is displayed at the location shown below.

1-6-2 Unit Versions and Sysmac Studio Versions

The supported functions depend on the unit version of the 1S-series. When you use the functions that were added for an upgrade, you must use the version of Sysmac Studio that supports those functions.

Refer to *A-6 Version Information* on page A-179 for the relationship between the unit versions and the Sysmac Studio versions, and for the functions that are supported by each unit version.


Procedures to Start Operation


This section explains the procedures to operate a system that incorporates 1S-series Servo Drives.

1-7-1 **Overall Procedure**

Use the following procedures to build a system that incorporates 1S-series Servo Drives.

To use the Servo Drive safety function, you must build the standard control and safety control together.

1-7-2 **Procedure Details**

As described previously, the procedures for the standard control and safety control are performed in parallel.

This section explains the procedure details for using the Servo Drive safety function.

If you use an NJ/NX-series CPU Unit to perform the standard control, refer to NJ/NX-series CPU Unit Software User's Manual (Cat. No. W501) together with this manual.

If you use an NX-series Safety Control Unit to perform the safety control, refer to NX-series Safety Control Unit User's Manual (Cat. No. Z930) together with this manual.

STEP 1 System Design		
Procedure	Description	Reference
STEP 1-1	Identify the source of danger and perform the risk	
Determining safety mea-	assessment (estimation and evaluation).	
sures based on risk	Consider and determine the measures for risk mini-	
assessment	mization.	
•		
STEP 1-2	Select the device that configures inputs, logics, and	Manuals for each unit
Selecting standard	outputs for standard control.	
device, Servo Drive, Ser-	Select the Servo Drive and Servomotor.	
vomotor, and safety	Select the safety device used to configure inputs,	
device	logics, and outputs for safety control.	
•		
STEP 1-3	Design the interface between the standard control and	Safety Control Unit User's
Designing interface	safety control.	Manual
between standard con-		
trol and safety control		

STEP 2 Software and Hardware Design for Standard Control			
Procedure	Description	Reference	
STEP 2-1 Designing I/O and pro- cessing	Design I/O and processing. External I/O devices and unit configuration Refresh periods for external devices Program contents	NJ/NX-series CPU Unit User's Manuals	
•			
STEP 2-2 Designing tasks	Design the tasks. Task configuration Relationship between tasks and programs Task periods Slave and Unit refresh times Exclusive control methods for variables between tasks	NJ/NX-series CPU Unit User's Manuals	
1			
STEP 2-3 Designing user programs	Design POUs (Program Organization Unit). Design variables.	NJ/NX-series CPU Unit User's Manuals	

STEP 3 Software and Hardware Design for Safety Control			
Procedure	Description	Reference	
STEP 3-1 Determining wiring for communications, power supply, and connection with external I/O devices	Determine wiring used for the communication network, power supply, and safety I/O devices.	Safety Control Unit User's Manual	
•			
STEP 3-2 Designing I/O and pro-	Design the configuration of the safety I/O devices and Safety I/O Unit.	Safety Control Unit User's Manual	

	STEP 3-2	Design the configuration of the safety I/O devices and Safety I/O Unit.	Safety Control Unit User's Manual
Designing I/O and pro- cessing	Safety I/O devices		
		Program contents	
		Program contents	

STEP 3-3	Design POUs (Program Organization Unit).	Safety Control Unit User's
Designing safety pro-	• Programs	Manual
grams	Function blocks	

STEP 4 Calculation and Verification of Safety Control Responsivity			
Procedure	Description	Reference	
STEP 4-1	Calculate the safety reaction time and then determine	Safety Control Unit User's	
Calculating safety reac-	the safety distance.	Manual	
tion time and safety dis-			
tance			
•			
STEP 4-2	Verify whether the specification requirements are satis-	Safety Control Unit User's	
Verifying specification	fied. If not, reconsider the system design.	Manual	
requirement satisfaction			

Procedure	Description	Reference
	·	NJ/NX-series CPU Unit
STEP 5-1	Create a new project in the Sysmac Studio.	
Creating project	Insert a Controller.	User's Manuals
•		
	Create the slave configuration and Unit configuration	NJ/NX-series CPU Unit
	either offline or online.	User's Manuals
	Include the safety PDOs (1710 hex and 1B10 hex) in	
STEP 5-2	PDO mapping for the Servo Drive.	
Creating slave and unit configuration	Register the device variables in the variable table.	
comiguration	Create the axes and set them as real axes or virtual	
	axes. Create axes groups to perform interpolated	
	axes control.	
+		
STEP 5-3	Set PLC Function Modules, Motion Control Function	NJ/NX-series CPU Unit
Controller settings	Modules, etc. in the Sysmac Studio.	User's Manuals

Procedure	Description	Reference	
	Register variables in the Sysmac Studio.	NJ/NX-series CPU Unit	
STEP 5-4	Write the algorithms for the POUs (programs, func-	User's Manuals	
Programming	tion blocks, and functions) in the required languages.		
	Make task settings.		
•			
STEP 5-5	Check the algorithms and task execution times on the	NJ/NX-series CPU Unit	
Offline Debugging	Simulator (virtual controller).	User's Manuals	

	STEP 6 Software Design and Programming for Safety Control				
Procedure	Description	Reference			
STEP 6-1	Arrange the Communications Coupler Unit, Safety	Safety Control Unit User's			
Creating safety control	CPU Unit, and Safety I/O Unit in the Sysmac Studio.	Manual			
system configuration					
	Select Safety Controller from the Controller Selection	Safety Control Unit User's			
STEP 6-2	Box in the Sysmac Studio.	Manual			
Checking/setting Safety	Check or change the settings of Safety Process Data				
Process Data Communi-	Communications.				
cations	Make sure that the Servo Drive is displayed, and				
	then select the Active check box.				
1					
STEP 6-3	In the parameter setting view for the Safety I/O Unit,	Safety Control Unit User's			
Assigning devices to	select the safety I/O devices connected to the safety	Manual			
safety I/O terminal	I/O terminal.	Wallaal			
	i vo terriman	<u> </u>			
STEP 6-4	Register the device variables in the variable table.	Safety Control Unit User's			
Assigning device vari-	(Variable names are user defined or automatically cre-	Manual			
ables to I/O ports	ated.)	iviariuai			
ables to iro ports	atou.)				
		T =			
	Register the variables used by more than one POU	Safety Control Unit User's			
	in the global variable table with the Sysmac Studio.	Manual			
	Register the variables in the local variable table for				
STEP 6-5	each program.				
Programming	Register the variables in the local variable table for each function block.				
	Write the algorithms for the POUs (programs and				
	function blocks) in FBD language.				
		1			
STEP 6-6	Execute program debugging with the Simulator.	Safety Control Unit User's			

STEP 7 Servo Drive Setting, Adjustment, and Operation Check				
Procedure	Description	Reference		
STEP 7-1 Installation and mount- ing	Install the Servomotor and Servo Drive according to the installation conditions. Do not connect the Servomotor to mechanical systems before checking the operation without any load.	Section 4, 4-1		

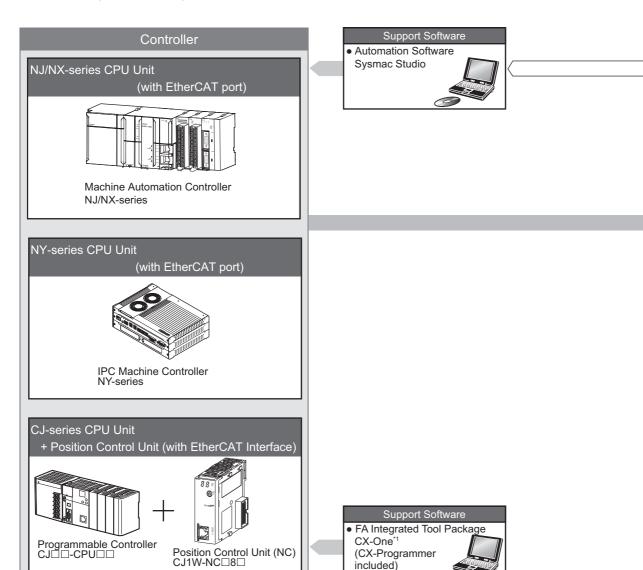
STEP 7 Servo Drive Setting, Adjustment, and Operation Check				
Procedure	Description	Reference		
STEP 7-2 Wiring and connections	Connect the Servomotor and Servo Drive to the power supply and peripheral equipment. Satisfy specified installation and wiring conditions, particularly for models that conforms to the EU Directives.	Section 4, 4-2		
-				
STEP 7-3 Device setting	Set the objects related to the functions required for application conditions.	Section 9		
+				
STEP 7-4 Test run	First, check motor operation without any load. Then turn the power supply OFF and connect the Servomotor to mechanical systems. Use the STO function via safety input signals if you need the function while you perform the test run or adjustment using the Servo Drive with no load.	Section 10, 10-3		
-				
STEP 7-5 Adjustment	Manually adjust the gain if necessary.	Section 11		

STEP 8 Mounting and Wiring				
Procedure	Description Referenc			
STEP 8-1	Install each unit according to the installation conditions.	Manuals for each unit		
Mounting				
•				
STEP 8-2 Wiring	Connect the network cables and wire the I/O.	Manuals for each unit		

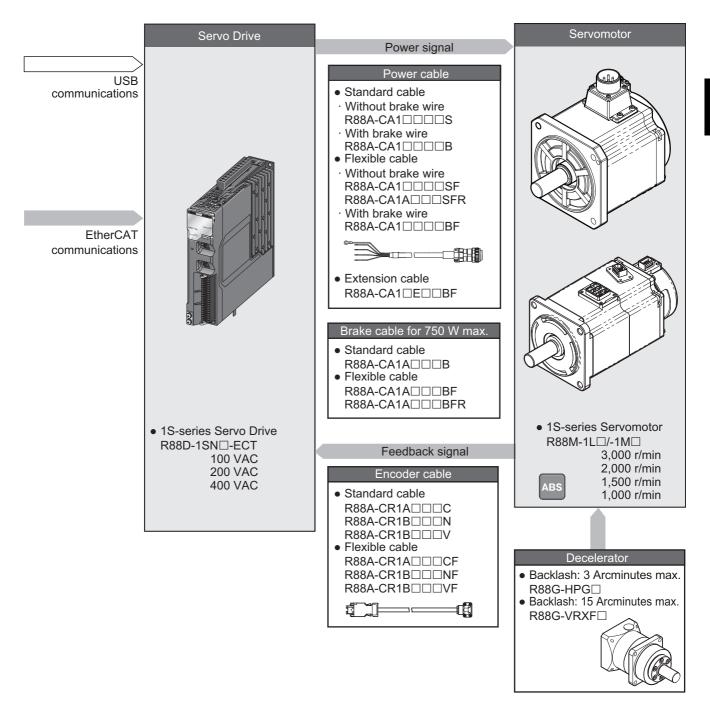
STEP 9 Standard Control Operation Check				
Procedure	Description	Reference		
STEP 9-1 Placing Sysmac Studio online and downloading project	 Turn ON the power supply to the Controller and place the Sysmac Studio online. Download the project. 	NJ/NX-series CPU Unit User's Manuals		
+				
STEP 9-2 Online Debugging	 Check the wiring by using forced refreshing of real I/O from the I/O Map or Watch Tab Page. For motion control, use the MC Test Run operations in PROGRAM mode to check the wiring. Then check the motor rotation directions for jogging, travel distances for relative positioning (e.g., for electronic gear settings), and homing operation. Change the Controller to RUN mode and check the operation of the user program. 	NJ/NX-series CPU Unit User's Manuals		

STEP 10 Safety Control O	peration Check			
Procedure	Description	Reference		
STEP 10-1 Transferring configura- tion information	 Connect the computer (Sysmac Studio) to the NJ/NX-series CPU Unit. Download the project data to the CPU Unit. In the Safety CPU Unit Setup and Programming View, change the mode of the Safety CPU Unit to DEBUG mode. By doing this, the safety application data is transferred to the Safety CPU Unit and the test run for debugging is enabled. 	 NJ/NX-series CPU Unit User's Manuals Safety Control Unit User's Manual 		
•				
STEP 10-2	Perform the wiring check and program operation check	Safety Control Unit User's		
Checking operation with	to confirm that the Safety Control Unit operates as	Manual		
actual machine	intended.			
•				
STEP 10-3	Conduct the test to check whether all safety functions	Safety Control Unit User's		
Conducting safety vali-	operate as designed.	Manual		
dation test				
•				
STEP 10-4	Set the safety password.	Safety Control Unit User's		
Setting security of unit		Manual		
•				
STEP 10-5 Executing safety valida- tion from Sysmac Studio	If the safety validation test is completed successfully, then execute the safety validation command from Sysmac Studio. By doing this, the safety application data is transferred to the non-volatile memory in the Safety CPU Unit, and	Safety Control Unit User's Manual		
	the operation-ready status is established.			

STEP 11 Operation and Maintenance				
Procedure	Description	Reference		
STEP 11-1	Start actual operation.			
Operation				
•				
STEP 11-2	In case of an error, use the troubleshooting function of	Section 9		
Troubleshooting	the Sysmac Studio to check the error and identify its	Manuals for each unit		
.	cause, and then remove the cause of the error.			
•				
STEP11-3	Perform periodic maintenance.	Section 10		
Inspection and replace-	If any defect is found during inspection, replace the	Manuals for each unit		
ment	device.			


Models and External Dimensions

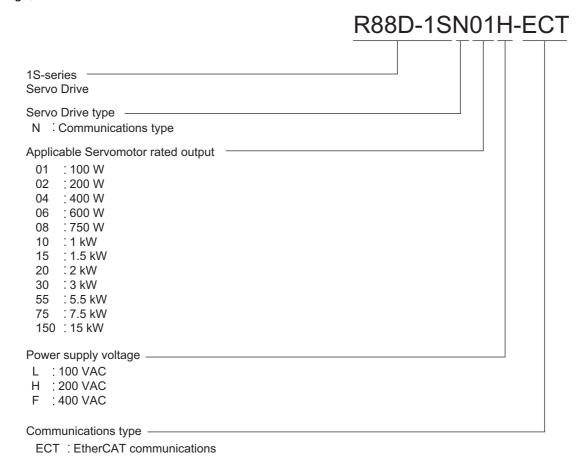
This section explains the models of Servo Drives, Servomotors, Decelerators, and peripheral devices, and provides the external dimensions and mounting dimensions.


2-1	Servo S	System Configuration	2-2
2-2	How to	Read Model Numbers	2-4
	2-2-1	Servo Drive	2-4
	2-2-2	Servomotor	2-5
	2-2-3	Encoder Cable	2-6
	2-2-4	Motor Power Cable without Brake Wire	2-7
	2-2-5	Motor Power Cable with Brake Wire	2-8
	2-2-6	Decelerator	2-9
2-3	Model 7	Tables	. 2-11
	2-3-1	Servo Drive Model Table	2-11
	2-3-2	Servomotor Model Tables	2-12
	2-3-3	Servo Drive and Servomotor Combination Tables	2-17
	2-3-4	Decelerator Model Tables	2-19
	2-3-5	Servomotor and Decelerator Combination Tables	2-23
	2-3-6	Cable and Connector Model Tables	2-25
	2-3-7	External Regeneration Resistor and External Regeneration Resistance U Model Tables	
	2-3-8	External Dynamic Brake Resistor Model Table	
	2-3-9	Reactor Model Table	
	2-3-10	Footprint-type Noise Filters Model Table	2-36
2-4	Externa	al and Mounting Dimensions	. 2-37
	2-4-1	Servo Drive Dimensions	2-37
	2-4-2	Servomotor Dimensions	2-44
	2-4-3	Cable Outlet Direction	. 2-100
	2-4-4	Cable Wiring Dimension for a Case of Motor Installing	. 2-101
	2-4-5	Decelerator Dimensions	. 2-103
	2-4-6	Dimensions of External Regeneration Resistors and External Regeneration	
	2.4.7	Resistance Units	
	2-4-7 2-4-8	Dimensions of External Dynamic Brake Resistors	
	2-4-8 2-4-9	Noise Filter Dimensions	
	∠-4-9	NOISE FILLEI DIIIIENSIONS	. 2-13

Servo System Configuration 2-1

This section shows the Servo system configuration that consists of Controllers, Servo Drives, Servomotors, Decelerators, and other devices.

*1. You cannot use the CX-One to make the settings of 1S-series Servo Drives. Obtain the Sysmac Studio.



How to Read Model Numbers 2-2

This section describes how to read and understand the model numbers of Servo Drives, Servomotors, and Decelerators.

2-2-1 **Servo Drive**

The Servo Drive model number tells the Servo Drive type, applicable Servomotor, power supply voltage, etc.

2-2-2 Servomotor

The Servomotor model number tells the Servomotor type, rated output, rated rotation speed, voltage, etc.

R88M-1M10030S-BOS2

1S-series Servomotor

Servomotor type

L : Low inertia
M : Middle inertia

Rated output -

050 : 50 W 2K0 : 2 kW 100 : 100 W 3K0 : 3 kW 200 : 200 W 4K0 : 4 kW 400 : 400 W 4K7 : 4.7 kW 600 : 600 W 5K0 : 5 kW 750 : 750 W 5K5 : 5.5 kW 900 : 900 W 7K5 : 7.5 kW 1K0 : 1 kW 11K0:11 kW 1K5 : 1.5 kW 15K0: 15 kW

Rated rotation speed -

10 : 1,000 r/min 15 : 1,500 r/min 20 : 2,000 r/min 30 : 3,000 r/min

Servo Drive main power supply voltage and encoder type -

S : 100 VAC absolute encoder T : 200 VAC absolute encoder C : 400 VAC absolute encoder

Options -

Brake

None: Without brake

B: With 24-VDC brake

Oil seal

None: Without oil seal
O: With oil seal

Key and tap

None: Straight shaft S2: With key and tap

Combinations of Options

	Without oil seal		With oil seal	
Straight shaft With key and tap		Straight shaft	With key and tap	
Without brake	None	-S2	-0	-OS2
With brake	-B	-BS2	-BO	-BOS2

2-2-3 **Encoder Cable**

: Flexible cable

The cable model number tells the cable type, applicable Servomotor type, cable length, connector type, etc.

R88A-CR1A003CF Cable type R88A-CR1 : 1S Series Encoder cable Applicable Servomotor type : 100 VAC, 200 VAC 3,000 r/min Servomotor 50 W to 750 W : 200 VAC В 3,000 r/min Servomotor 1 kW or more 400 VAC 3,000 r/min Servomotor 200 VCA, 400 VAC 2,000 r/min Servomotor 1,500 r/min Servomotor 1,000 r/min Servomotor Cable length 003 : 3 m 005 : 5 m 010 : 10 m 015 : 15 m 020 : 20 m 030 : 30 m 040 : 40 m 050 : 50 m Connector type*1 С : Plastic shell type (for applicable Servomotor type A) : Metal shell type (for applicable Servomotor type B, 3 kW or less) : Metal shell type (for applicable Servomotor type B, 4 kW or more) Others : Standard specifications Blank

^{*1.} For an encoder cable for B type Applicable Servomotor, connector types vary in rated output of Servomotors. Refer to 2-3-6 Cable and Connector Model Tables on page 2-25 to check its combination with Applicable Servomotors when you select the cable.

2-2-4 Motor Power Cable without Brake Wire

The cable model number tells the cable type, applicable Servomotor type, cable length, connector type, etc.

R88A-CA1A003SFR

Cable R88	type A-CA1 : 1S Series Mot	or Power cable
Applic	cable Servomotor type	
Α	: 100 VAC, 200 VAC	3,000 r/min Servomotor 50 W, 100 W, 200 W, 400 W, 750 W
В	: 200 VAC	3,000 r/min Servomotor 1 kW
		2,000 r/min Servomotor 1 kW
		1,000 r/min Servomotor 900 W
С	: 200 VAC	3,000 r/min Servomotor 1.5 kW
		2,000 r/min Servomotor 1.5 kW
	400 VAC	3,000 r/min Servomotor 750 W to 2 kW
		2,000 r/min Servomotor 400 W to 2 kW
_		1,000 r/min Servomotor 900 W
E	: 200 VAC, 400 VAC	3,000 r/min Servomotor 2 kW (200 VAC), 3 kW (200 VAC / 400 VAC)
		2,000 r/min Servomotor 2 kW (200 VAC), 3 kW (200 VAC / 400 VAC)
_	. 000 \ // 0	1,000 r/min Servomotor 2 kW (200 VAC / 400 VAC), 3 kW (400 VAC)
F H	: 200 VAC : 200 VAC	1,000 r/min Servomotor 3 kW
П	. 200 VAC	3,000 r/min Servomotor 4 kW, 4.7 kW
	400 \/A C	1,500 r/min Servomotor 5 kW
	400 VAC	3,000 r/min Servomotor 4 kW, 5 kW
J	: 400 VAC	1,500 r/min Servomotor 4 kW, 5.5 kW, 7.5 kW 1,500 r/min Servomotor 11 kW, 15 kW
K	: 200 VAC	1,500 r/min Servomotor 7.5 kW, 11 kW, 15 kW
K	. 200 VAC	1,500 Milli Servomotor 7.5 kvv, 11 kvv, 15 kvv
Cable	length	
003	: 3 m	
005	: 5 m	
010	: 10 m	
	: 15 m	
020	: 20 m	
	: 30 m ^{*1}	
	: 40 m*1	
050	: 50 m ^{*1}	
Conne	ector type ———	
S	: without Brake Wire	
Others	s ———	
Blar	nk : Standard spec	cifications*1
F	: Flexible cable	
D: .		

Direction for handling cable

Blank : Load side cable R : Non-load side cable 2

^{*1.} Only for Applicable Servomotor type A to F.

^{*2.} Only for Applicable Servomotor type A.

Motor Power Cable with Brake Wire 2-2-5

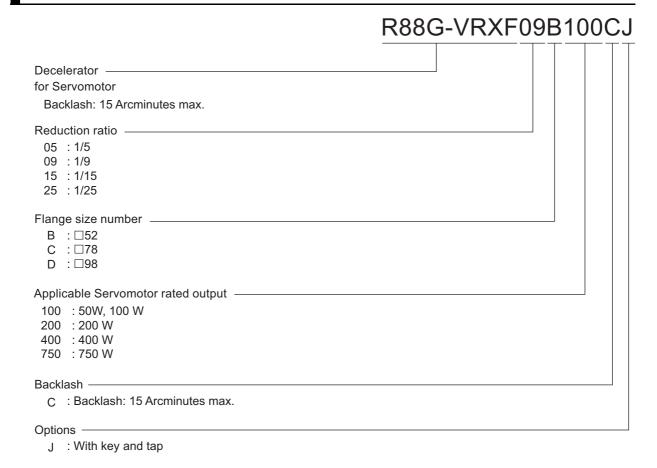
The cable model number tells the cable type, applicable Servomotor type, cable length, connector type, etc.

R88A-CA1A003BFR Cable type R88A-CA1 : 1S Series Motor Power cable Applicable Servomotor type : 100 VAC, 200 VAC 3,000 r/min Servomotor 50 W, 100 W, 200 W, 400 W, 750 W В : 200 VAC 3,000 r/min Servomotor 1 kW 2,000 r/min Servomotor 1 kW 1,000 r/min Servomotor 900 W С : 200 VAC 3,000 r/min Servomotor 1.5 kW 2,000 r/min Servomotor 1.5 kW D : 400 VAC 3,000 r/min Servomotor 750 W, 1 kW, 1.5 kW, 2 kW 2,000 r/min Servomotor 400 W, 600 W, 1 kW, 1.5 kW, 2 kW 1,000 r/min Servomotor 900 W Ε 3,000 r/min Servomotor 2 kW (200 VAC), 3 kW (200 VAC / 400 VAC) : 200 VAC, 400 VAC 2,000 r/min Servomotor 2 kW (200 VAC), 3 kW (200 VAC / 400 VAC) 1,000 r/min Servomotor 2 kW (200 VAC / 400 VAC), 3kW (400 VAC) F : 200 VAC 1,000 r/min Servomotor 3 kW Н : 200 VAC 3,000 r/min Servomotor 4 kW, 4.7 kW 1,500 r/min Servomotor 5 kW 400 VAC 3,000 r/min Servomotor 4 kW, 5 kW 1,500 r/min Servomotor 4 kW, 5.5 kW, 7.5 kW : 400 VAC 1,500 r/min Servomotor 11 kW, 15 kW Κ : 200 VAC 1,500 r/min Servomotor 7.5 kW, 11 kW, 15 kW Cable length Motor Power cable 003 : 3 m 005 : 5 m 010 : 10 m 015 : 15 m 020 : 20 m 030 : 30 m*2 040 : 40 m*2 050 : 50 m*2 Motor Power Extension cable*3 E10 : 10 m E20 : 20 m Connector type : with Brake Wire Others Blank : Standard specifications*2 : Flexible cable Direction for handling cable

- Blank : Load side cable
 - : Non-load side cable*4
- *1. This is a cable to be connected only to a brake. Prepare a power cable without a brake wire separately.
- *2. Only for Applicable Servomotor type A to F.
- *3. Only cable for Applicable Servomotor type H to K. This cable can be used when extending a power cable without a brake wire.
- *4. Only for Applicable Servomotor type A.

2-2-6 Decelerator

The Decelerator model number tells the Decelerator series, flange size number, reduction ratio, backlash, etc.


Backlash: 3 Arcminutes Max.

R88G-HPG14A05100SBJ Decelerator for Servomotor Backlash: 3 Arcminutes max. Flange size number -11B : 40 x 40 14A : 60 x 60 20A : 90 x 90 32A : 120 x 120 50A : 170 x 170 65A : 230 x 230 Reduction ratio -05 : 1/5 : 1/11 11 : 1/12 12 20 : 1/20 : 1/21 21 25 : 1/25 33 : 1/33 : 1/45 45 Applicable Servomotor rated output *1 -050 : 50 W 100 : 100 W 200 : 200 W 400 : 400 W 600 : 600 W 750 : 750 W 900 : 900 W 1K0 : 1 kW 1K5 : 1.5 kW 2K0 : 2 kW 3K0 : 3 kW 4K0 : 4 kW 4K5 : 4.5 kW 5K0 : 5 kW 7K5 : 7.5 kW Servomotor type*1 None: 3,000-r/min Servomotors S : 2,000-r/min Servomotors T : 1,000-r/min Servomotors Backlash -: Backlash: 3 Arcminutes max. В Options -None: Straight shaft

: With key and tap

^{*1.} These are based on typical Servomotor's specifications. For the selection, check the Servomotor and Decelerator Combination Tables.

Backlash: 15 Arcminutes Max.

2-3 Model Tables

This section lists the models of Servo Drives, Servomotors, Decelerators, cables, connectors, peripheral devices, etc. in the tables.

2-3-1 Servo Drive Model Table

The following table lists the Servo Drive models.

Specificatio	ns	Model	Reference
Single-phase 100 VAC	100 W	R88D-1SN01L-ECT	P. 2-37
	200 W	R88D-1SN02L-ECT	P. 2-38
	400 W	R88D-1SN04L-ECT	P. 2-39
Single-phase/3-phase	100 W	R88D-1SN01H-ECT	P. 2-37
200 VAC	200 W	R88D-1SN02H-ECT	
	400 W	R88D-1SN04H-ECT	P. 2-38
	750 W	R88D-1SN08H-ECT	P. 2-39
	1.5 kW	R88D-1SN15H-ECT	P. 2-40
3-phase 200 VAC	1 kW	R88D-1SN10H-ECT	P. 2-39
	2 kW	R88D-1SN20H-ECT	P. 2-40
	3 kW	R88D-1SN30H-ECT	
	5.5 kW	R88D-1SN55H-ECT	P. 2-41
	7.5 kW	R88D-1SN75H-ECT	
	15 kW	R88D-1SN150H-ECT	P. 2-42
3-phase 400 VAC	600 W	R88D-1SN06F-ECT	P. 2-40
	1 kW	R88D-1SN10F-ECT	
	1.5 kW	R88D-1SN15F-ECT	
	2 kW	R88D-1SN20F-ECT	
	3 kW	R88D-1SN30F-ECT	
	5.5 kW	R88D-1SN55F-ECT	P. 2-41
	7.5 kW	R88D-1SN75F-ECT	
	15 kW	R88D-1SN150F-ECT	P. 2-43

2-3-2 **Servomotor Model Tables**

The following tables list the Servomotor models by the rated motor speed.

3,000-r/min Servomotors

		Model				
Specificat	tions	Withou	ut oil seal		oil seal	Refer-
		Straight shaft	With key and tap	Straight shaft	With key and tap	ence
≤ 100 VAC	50 W	R88M-	R88M-	R88M-	R88M-	P. 2-44
≦ #	"	1M05030S	1M05030S-S2	1M05030S-O	1M05030S-OS2	
100 VAC	100 W	R88M-	R88M-	R88M-	R88M-	P. 2-46
핰		1M10030S	1M10030S-S2	1M10030S-O	1M10030S-OS2	
<u>a</u>	200 W	R88M-	R88M-	R88M-	R88M-	P. 2-48
		1M20030S	1M20030S-S2	1M20030S-O	1M20030S-OS2	
	400 W	R88M-	R88M-	R88M-	R88M-	P. 2-48
		1M40030S	1M40030S-S2	1M40030S-O	1M40030S-OS2	
200 VAC	50 W	R88M-	R88M-	R88M-	R88M-	P. 2-44
		1M05030T	1M05030T-S2	1M05030T-O	1M05030T-OS2	
	100 W	R88M-	R88M-	R88M-	R88M-	P. 2-46
		1M10030T	1M10030T-S2	1M10030T-O	1M10030T-OS2	
	200 W	R88M-	R88M-	R88M-	R88M-	P. 2-48
		1M20030T	1M20030T-S2	1M20030T-O	1M20030T-OS2	
	400 W	R88M-	R88M-	R88M-	R88M-	P. 2-48
		1M40030T	1M40030T-S2	1M40030T-O	1M40030T-OS2	
	750 W	R88M-	R88M-	R88M-	R88M-	P. 2-50
		1M75030T	1M75030T-S2	1M75030T-O	1M75030T-OS2	
	1 kW	R88M-	R88M-	R88M-	R88M-	P. 2-52
		1L1K030T	1L1K030T-S2	1L1K030T-O	1L1K030T-OS2	
	1.5 kW	R88M-	R88M-	R88M-	R88M-	P. 2-52
		1L1K530T	1L1K530T-S2	1L1K530T-O	1L1K530T-OS2	
	2 kW	R88M-	R88M-	R88M-	R88M-	P. 2-52
		1L2K030T	1L2K030T-S2	1L2K030T-O	1L2K030T-OS2	
	3 kW	R88M-	R88M-	R88M-	R88M-	P. 2-54
		1L3K030T	1L3K030T-S2	1L3K030T-O	1L3K030T-OS2	
	4 KW	R88M-	R88M-	R88M-	R88M-	P. 2-56
		1L4K030T	1L4K030T-S2	1L4K030T-O	1L4K030T-OS2	
	4.7 KW	R88M-	R88M-	R88M-	R88M-	P. 2-56
		1L4K730T	1L4K730T-S2	1L4K730T-O	1L4K730T-OS2	
400 VAC	750 W	R88M-	R88M-	R88M-	R88M-	P. 2-58
		1L75030C	1L75030C-S2	1L75030C-O	1L75030C-OS2	
	1 kW	R88M-	R88M-	R88M-	R88M-	P. 2-58
		1L1K030C	1L1K030C-S2	1L1K030C-O	1L1K030C-OS2	
	1.5 kW	R88M-	R88M-	R88M-	R88M-	P. 2-58
		1L1K530C	1L1K530C-S2	1L1K530C-O	1L1K530C-OS2	
	2 kW	R88M-	R88M-	R88M-	R88M-	P. 2-58
		1L2K030C	1L2K030C-S2	1L2K030C-O	1L2K030C-OS2	
	3 kW	R88M-	R88M-	R88M-	R88M-	P. 2-60
		1L3K030C	1L3K030C-S2	1L3K030C-O	1L3K030C-OS2	
	4 KW	R88M-	R88M-	R88M-	R88M-	P. 2-62
		1L4K030C	1L4K030C-S2	1L4K030C-O	1L4K030C-OS2	
	5 KW	R88M-	R88M-	R88M-	R88M-	P. 2-62
		1L5K030C	1L5K030C-S2	1L5K030C-O	1L5K030C-OS2	<u> </u>

			Mo	odel		D. (
Specificat	tions	Withou	ut oil seal	With oil seal		Refer-
		Straight shaft	With key and tap	Straight shaft	With key and tap	ence
≤ 100 VAC	50 W	R88M-	R88M-	R88M-	R88M-	P. 2-45
ii		1M05030S-B	1M05030S-BS2	1M05030S-BO	1M05030S-BOS2	
With brake	100 W	R88M-	R88M-	R88M-	R88M-	P. 2-47
r r		1M10030S-B	1M10030S-BS2	1M10030S-BO	1M10030S-BOS2	
	200 W	R88M-	R88M-	R88M-	R88M-	P. 2-49
		1M20030S-B	1M20030S-BS2	1M20030S-BO	1M20030S-BOS2	
	400 W	R88M-	R88M-	R88M-	R88M-	P. 2-49
		1M40030S-B	1M40030S-BS2	1M40030S-BO	1M40030S-BOS2	
200 VAC	50 W	R88M-	R88M-	R88M-	R88M-	P. 2-45
		1M05030T-B	1M05030T-BS2	1M05030T-BO	1M05030T-BOS2	
	100 W	R88M-	R88M-	R88M-	R88M-	P. 2-47
		1M10030T-B	1M10030T-BS2	1M10030T-BO	1M10030T-BOS2	
	200 W	R88M-	R88M-	R88M-	R88M-	P. 2-49
		1M20030T-B	1M20030T-BS2	1M20030T-BO	1M20030T-BOS2	
	400 W	R88M-	R88M-	R88M-	R88M-	P. 2-49
		1M40030T-B	1M40030T-BS2	1M40030T-BO	1M40030T-BOS2	
	750 W	R88M-	R88M-	R88M-	R88M-	P. 2-51
		1M75030T-B	1M75030T-BS2	1M75030T-BO	1M75030T-BOS2	5 2 -2
	1 kW	R88M-	R88M-	R88M-	R88M-	P. 2-53
	4.5.114	1L1K030T-B	1L1K030T-BS2	1L1K030T-BO	1L1K030T-BOS2	D 0 50
	1.5 kW	R88M-	R88M-	R88M-	R88M-	P. 2-53
	0.1147	1L1K530T-B	1L1K530T-BS2	1L1K530T-BO	1L1K530T-BOS2	D 0 50
	2 kW	R88M-	R88M-	R88M-	R88M-	P. 2-53
	2 144	1L2K030T-B	1L2K030T-BS2	1L2K030T-BO	1L2K030T-BOS2	P. 2-55
	3 kW	R88M-	R88M-	R88M-	R88M-	P. 2-55
	4 kW	1L3K030T-B	1L3K030T-BS2 R88M-	1L3K030T-BO R88M-	1L3K030T-BOS2	P. 2-57
	4 KVV	R88M- 1L4K030T-B	1L4K030T-BS2	1L4K030T-BO	R88M- 1L4K030T-BOS2	P. 2-37
	4.7 kW	R88M-	R88M-	R88M-	R88M-	P. 2-57
	4.7 KVV	1L4K730T-B	1L4K730T-BS2	1L4K730T-BO	1L4K730T-BOS2	F. 2-31
400 VAC	750 W	R88M-	R88M-	R88M-	R88M-	P. 2-59
400 VAC	730 VV	1L75030C-B	1L75030C-BS2	1L75030C-BO	1L75030C-BOS2	1.2-33
	1 kW	R88M-	R88M-	R88M-	R88M-	P. 2-59
	1 100	1L1K030C-B	1L1K030C-BS2	1L1K030C-BO	1L1K030C-BOS2	1.2-00
	1.5 kW	R88M-	R88M-	R88M-	R88M-	P. 2-59
	1.0 KVV	1L1K530C-B	1L1K530C-BS2	1L1K530C-BO	1L1K530C-BOS2	1.2-00
	2 kW	R88M-	R88M-	R88M-	R88M-	P. 2-59
	ZKW	1L2K030C-B	1L2K030C-BS2	1L2K030C-BO	1L2K030C-BOS2	1.200
	3 kW	R88M-	R88M-	R88M-	R88M-	P. 2-61
		1L3K030C-B	1L3K030C-BS2	1L3K030C-BO	1L3K030C-BOS2	1201
	4 kW	R88M-	R88M-	R88M-	R88M-	P. 2-63
		1L4K030C-B	1L4K030C-BS2	1L4K030C-BO	1L4K030C-BOS2	1 2 00
	5 kW	R88M-	R88M-	R88M-	R88M-	P. 2-63
	0 1.00	1L5K030C-B	1L5K030C-BS2	1L5K030C-BO	1L5K030C-BOS2	1.2.00

2,000-r/min Servomotors

	Model					D. (
	Specificat	ions	Withou	ıt oil seal	With	oil seal	Refer-
			Straight shaft	With key and tap	Straight shaft	With key and tap	ence
- 5	200 VAC	1 kW	R88M-	R88M-	R88M-	R88M-	P. 2-64
Ę			1M1K020T	1M1K020T-S2	1M1K020T-O	1M1K020T-OS2	
ŭ		1.5 kW	R88M-	R88M-	R88M-	R88M-	P. 2-64
Without brake			1M1K520T	1M1K520T-S2	1M1K520T-O	1M1K520T-OS2	
â		2 kW	R88M-	R88M-	R88M-	R88M-	P. 2-64
			1M2K020T	1M2K020T-S2	1M2K020T-O	1M2K020T-OS2	
		3 kW	R88M-	R88M-	R88M-	R88M-	P. 2-66
			1M3K020T	1M3K020T-S2	1M3K020T-O	1M3K020T-OS2	
	400 VAC	400 W	R88M-	R88M-	R88M-	R88M-	P. 2-68
			1M40020C	1M40020C-S2	1M40020C-O	1M40020C-OS2	
		600 W	R88M-	R88M-	R88M-	R88M-	P. 2-68
			1M60020C	1M60020C-S2	1M60020C-O	1M60020C-OS2	
		1 kW	R88M-	R88M-	R88M-	R88M-	P. 2-70
			1M1K020C	1M1K020C-S2	1M1K020C-O	1M1K020C-OS2	
		1.5 kW	R88M-	R88M-	R88M-	R88M-	P. 2-70
			1M1K520C	1M1K520C-S2	1M1K520C-O	1M1K520C-OS2	
		2 kW	R88M-	R88M-	R88M-	R88M-	P. 2-70
			1M2K020C	1M2K020C-S2	1M2K020C-O	1M2K020C-OS2	
		3 kW	R88M-	R88M-	R88M-	R88M-	P. 2-72
			1M3K020C	1M3K020C-S2	1M3K020C-O	1M3K020C-OS2	
≤	200 VAC	1 kW	R88M-	R88M-	R88M-	R88M-	P. 2-65
5			1M1K020T-B	1M1K020T-BS2	1M1K020T-BO	1M1K020T-BOS2	
With brake		1.5 kW	R88M-	R88M-	R88M-	R88M-	P. 2-65
â			1M1K520T-B	1M1K520T-BS2	1M1K520T-BO	1M1K520T-BOS2	
		2 kW	R88M-	R88M-	R88M-	R88M-	P. 2-65
			1M2K020T-B	1M2K020T-BS2	1M2K020T-BO	1M2K020T-BOS2	
		3 kW	R88M-	R88M-	R88M-	R88M-	P. 2-67
			1M3K020T-B	1M3K020T-BS2	1M3K020T-BO	1M3K020T-BOS2	
	400 VAC	400 W	R88M-	R88M-	R88M-	R88M-	P. 2-69
			1M40020C-B	1M40020C-BS2	1M40020C-BO	1M40020C-BOS2	
		600 W	R88M-	R88M-	R88M-	R88M-	P. 2-69
			1M60020C-B	1M60020C-BS2	1M60020C-BO	1M60020C-BOS2	
		1 kW	R88M-	R88M-	R88M-	R88M-	P. 2-71
			1M1K020C-B	1M1K020C-BS2	1M1K020C-BO	1M1K020C-BOS2	
		1.5 kW	R88M-	R88M-	R88M-	R88M-	P. 2-71
			1M1K520C-B	1M1K520C-BS2	1M1K520C-BO	1M1K520C-BOS2	
		2 kW	R88M-	R88M-	R88M-	R88M-	P. 2-71
			1M2K020C-B	1M2K020C-BS2	1M2K020C-BO	1M2K020C-BOS2	
		3 kW	R88M-	R88M-	R88M-	R88M-	P. 2-73
			1M3K020C-B	1M3K020C-BS2	1M3K020C-BO	1M3K020C-BOS2	

1,500-r/min Servomotors

			Model				
	Specifica	tions	Without oil seal With oil seal		oil seal	Refer-	
			Straight shaft	With key and tap	Straight shaft	With key and tap	ence
- €	200 VAC	4 kW	R88M-	R88M-	R88M-	R88M-	P. 2-74
itho			1M4K015T	1M4K015T-S2	1M4K015T-O	1M4K015T-OS2	
Without brake		5 kW	R88M-	R88M-	R88M-	R88M-	P. 2-76
řak		7.5.114	1M5K015T	1M5K015T-S2	1M5K015T-O	1M5K015T-OS2	D 0 70
Ō		7.5 kW	R88M-	R88M-	R88M-	R88M-	P. 2-78
			1M7K515T	1M7K515T-S2	1M7K515T-O	1M7K515T-OS2	
		11 kW	R88M-	R88M-	R88M-	R88M-	P. 2-80
			1M11K015T	1M11K015T-S2	1M11K015T-O	1M11K015T-OS2	
		15 kW	R88M-	R88M-	R88M-	R88M-	P. 2-80
			1M15K015T	1M15K015T-S2	1M15K015T-O	1M15K015T-OS2	
	400 VAC	4 kW	R88M-	R88M-	R88M-	R88M-	P. 2-82
			1M4K015C	1M4K015C-S2	1M4K015C-O	1M4K015C-OS2	
		5.5 kW	R88M-	R88M-	R88M-	R88M-	P. 2-84
		7.5.1.147	1M5K515C	1M5K515C-S2	1M5K515C-O	1M5K515C-OS2	D 0 04
		7.5 kW	R88M-	R88M-	R88M-	R88M-	P. 2-84
			1M7K515C	1M7K515C-S2	1M7K515C-O	1M7K515C-OS2	
		11 kW	R88M-	R88M-	R88M-	R88M-	P. 2-86
			1M11K015C	1M11K015C-S2	1M11K015C-O	1M11K015C-OS2	
		15 kW	R88M-	R88M-	R88M-	R88M-	P. 2-86
			1M15K015C	1M15K015C-S2	1M15K015C-O	1M15K015C-OS2	
≦	200 VAC	4 kW	R88M-	R88M-	R88M-	R88M-	P. 2-75
With brake			1M4K015T-B	1M4K015T-BS2	1M4K015T-BO	1M4K015T-BOS2	
řak		5 kW	R88M-	R88M-	R88M-	R88M-	P. 2-77
Ф		7.5 kW	1M5K015T-B R88M-	1M5K015T-BS2 R88M-	1M5K015T-BO R88M-	1M5K015T-BOS2 R88M-	P. 2-79
		7.5 KVV					F. Z-19
		44 144/	1M7K515T-B	1M7K515T-BS2	1M7K515T-BO	1M7K515T-BOS2	D 0 04
		11 kW	R88M-	R88M-	R88M-	R88M-	P. 2-81
		45114/	1M11K015T-B	1M11K015T-BS2	1M11K015T-BO	1M11K015T-BOS2	D 0 04
		15 kW	R88M-	R88M-	R88M-	R88M-	P. 2-81
			1M15K015T-B	1M15K015T-BS2	1M15K015T-BO	1M15K015T-BOS2	
	400 VAC	4 kW	R88M-	R88M-	R88M-	R88M-	P. 2-83
		E E 144/	1M4K015C-B	1M4K015C-BS2	1M4K015C-BO	1M4K015C-BOS2	D 2 05
		5.5 kW	R88M- 1M5K515C-B	R88M- 1M5K515C-BS2	R88M- 1M5K515C-BO	R88M- 1M5K515C-BOS2	P. 2-85
		7.5 kW	R88M-	R88M-	R88M-	R88M-	P. 2-85
		7.5 KVV					1.2-00
		11 kW	1M7K515C-B R88M-	1M7K515C-BS2 R88M-	1M7K515C-BO R88M-	1M7K515C-BOS2 R88M-	P. 2-87
		II KVV					F. 2-01
		1E 1381	1M11K015C-B	1M11K015C-BS2	1M11K015C-BO	1M11K015C-BOS2	D 0 07
		15 kW	R88M-	R88M-	R88M-	R88M-	P. 2-87
			1M15K015C-B	1M15K015C-BS2	1M15K015C-BO	1M15K015C-BOS2	

1,000-r/min Servomotors

			Model				
	Specificat	ions	Without oil seal		With	With oil seal	
			Straight shaft	With key and tap	Straight shaft	With key and tap	ence
- ≤	200 VAC	900 W	R88M-	R88M-	R88M-	R88M-	P. 2-88
Without brake			1M90010T	1M90010T-S2	1M90010T-O	1M90010T-OS2	
υţ		2 kW	R88M-	R88M-	R88M-	R88M-	P. 2-90
bra			1M2K010T	1M2K010T-S2	1M2K010T-O	1M2K010T-OS2	
â		3 kW	R88M-	R88M-	R88M-	R88M-	P. 2-92
			1M3K010T	1M3K010T-S2	1M3K010T-O	1M3K010T-OS2	
	400 VAC	900 W	R88M-	R88M-	R88M-	R88M-	P. 2-94
			1M90010C	1M90010C-S2	1M90010C-O	1M90010C-OS2	
		2 kW	R88M-	R88M-	R88M-	R88M-	P. 2-96
			1M2K010C	1M2K010C-S2	1M2K010C-O	1M2K010C-OS2	
		3 kW	R88M-	R88M-	R88M-	R88M-	P. 2-98
			1M3K010C	1M3K010C-S2	1M3K010C-O	1M3K010C-OS2	
	200 VAC	900 W	R88M-	R88M-	R88M-	R88M-	P. 2-89
With brake			1M90010T-B	1M90010T-BS2	1M90010T-BO	1M90010T-BOS2	
bra		2 kW	R88M-	R88M-	R88M-	R88M-	P. 2-91
k e			1M2K010T-B	1M2K010T-BS2	1M2K010T-BO	1M2K010T-BOS2	
		3 kW	R88M-	R88M-	R88M-	R88M-	P. 2-93
			1M3K010T-B	1M3K010T-BS2	1M3K010T-BO	1M3K010T-BOS2	
	400 VAC	900 W	R88M-	R88M-	R88M-	R88M-	P. 2-95
			1M90010C-B	1M90010C-BS2	1M90010C-BO	1M90010C-BOS2	
		2 kW	R88M-	R88M-	R88M-	R88M-	P. 2-97
			1M2K010C-B	1M2K010C-BS2	1M2K010C-BO	1M2K010C-BOS2	
		3 kW	R88M-	R88M-	R88M-	R88M-	P. 2-99
			1M3K010C-B	1M3K010C-BS2	1M3K010C-BO	1M3K010C-BOS2	

2-3-3 Servo Drive and Servomotor Combination Tables

The following tables show the possible combinations of 1S-series Servo Drives and Servomotors. The Servomotors and Servo Drives can only be used in the listed combinations. "□" at the end of the motor model number is for options, such as the shaft type and brake.

3,000-r/min Servomotors and Servo Drives

Main circuit power supply voltage	Servomotor rated output	Servomotor	Servo Drive
Single-phase 100 VAC	50 W	R88M-1M05030S-□	R88D-1SN01L-ECT
	100 W	R88M-1M10030S-□	R88D-1SN01L-ECT
	200 W	R88M-1M20030S-□	R88D-1SN02L-ECT
	400 W	R88M-1M40030S-□	R88D-1SN04L-ECT
Single-phase/3-phase	50 W	R88M-1M05030T-□	R88D-1SN01H-ECT
200 VAC	100 W	R88M-1M10030T-□	R88D-1SN01H-ECT
	200 W	R88M-1M20030T-□	R88D-1SN02H-ECT
	400 W	R88M-1M40030T-□	R88D-1SN04H-ECT
	750 W	R88M-1M75030T-□	R88D-1SN08H-ECT
	1.5 kW	R88M-1L1K530T-□	R88D-1SN15H-ECT
3-phase 200 VAC	1 kW	R88M-1L1K030T-□	R88D-1SN10H-ECT
	2 kW	R88M-1L2K030T-□	R88D-1SN20H-ECT
	3 kW	R88M-1L3K030T-□	R88D-1SN30H-ECT
	4 kW	R88M-1L4K030T-□	R88D-1SN55H-ECT
	4.7 kW	R88M-1L4K730T-□	
3-phase 400 VAC	750 W	R88M-1L75030C-□	R88D-1SN10F-ECT
	1 kW	R88M-1L1K030C-□	R88D-1SN10F-ECT
	1.5 kW	R88M-1L1K530C-□	R88D-1SN15F-ECT
	2 kW	R88M-1L2K030C-□	R88D-1SN20F-ECT
	3 kW	R88M-1L3K030C-□	R88D-1SN30F-ECT
	4 kW	R88M-1L4K030C-□	R88D-1SN55F-ECT
	5 kW	R88M-1L5K030C-□]

2,000-r/min Servomotors and Servo Drives

Main circuit power supply voltage	Servomotor rated output	Servomotor	Servo Drive
Single-phase/3-phase 200 VAC	1.5 kW	R88M-1M1K520T-□	R88D-1SN15H-ECT
3-phase 200 VAC	1 kW	R88M-1M1K020T-□	R88D-1SN10H-ECT
	2 kW	R88M-1M2K020T-□	R88D-1SN20H-ECT
	3 kW	R88M-1M3K020T-□	R88D-1SN30H-ECT
3-phase 400 VAC	400 W	R88M-1M40020C-□	R88D-1SN06F-ECT
	600 W	R88M-1M60020C-□	R88D-1SN06F-ECT
	1 kW	R88M-1M1K020C-□	R88D-1SN10F-ECT
	1.5 kW	R88M-1M1K520C-□	R88D-1SN15F-ECT
	2 kW	R88M-1M2K020C-□	R88D-1SN20F-ECT
	3 kW	R88M-1M3K020C-□	R88D-1SN30F-ECT

1,500-r/min Servomotors and Servo Drives

Main circuit power supply voltage	Servomotor rated output	Servomotor	Servo Drive
3-phase 200 VAC	4 kW	R88M-1M4K015T-□	R88D-1SN55H-ECT
	5 kW	R88M-1M5K015T-□	
	7.5 kW	R88M-1M7K515T-□	R88D-1SN75H-ECT
	11 kW	R88M-1M11K015T-□	R88D-1SN150H-ECT
	15 kW	R88M-1M15K015T-□	
3-phase 400 VAC	4 kW	R88M-1M4K015C-□	R88D-1SN55F-ECT
	5.5 kW	R88M-1M5K515C-□	
	7.5 kW	R88M-1M7K515C-□	R88D-1SN75F-ECT
	11 kW	R88M-1M11K015C-□	R88D-1SN150F-ECT
	15 kW	R88M-1M15K015C-□	

1,000-r/min Servomotors and Servo Drives

Main circuit power supply voltage	Servomotor rated output	Servomotor	Servo Drive
3-phase 200 VAC	900 W	R88M-1M90010T-□	R88D-1SN10H-ECT
	2 kW	R88M-1M2K010T-□	R88D-1SN20H-ECT
	3 kW	R88M-1M3K010T-□	R88D-1SN30H-ECT
3-phase 400 VAC	900 W	R88M-1M90010C-□	R88D-1SN10F-ECT
	2 kW	R88M-1M2K010C-□	R88D-1SN20F-ECT
	3 kW	R88M-1M3K010C-□	R88D-1SN30F-ECT

2-3-4 Decelerator Model Tables

The following tables list the Decelerator models for 1S-series Servomotors.

The standard shaft type is a straight shaft. A model with a key and tap is indicated with "J" at \square of the Decelerator model number in the following table. Select an appropriate model based on the Servomotor rated output.

Backlash: 3 Arcminutes Max.

• For 3,000-r/min Servomotors

Specifica	itions		
Servomotor rated output	Reduction ratio	Model	Reference
50 W	1/21	R88G-HPG14A21100B□	P. 2-103
	1/33	R88G-HPG14A33050B□	
	1/45	R88G-HPG14A45050B□	
100 W	1/5	R88G-HPG11B05100B□	
	1/11	R88G-HPG14A11100B□	
	1/21	R88G-HPG14A21100B□	
	1/33	R88G-HPG20A33100B□	
	1/45	R88G-HPG20A45100B□	
200 W	1/5	R88G-HPG14A05200B□	
	1/11	R88G-HPG14A11200B□	
	1/21	R88G-HPG20A21200B□	
	1/33	R88G-HPG20A33200B□	
	1/45	R88G-HPG20A45200B□	
400 W	1/5	R88G-HPG14A05400B□	P. 2-105
	1/11	R88G-HPG20A11400B□	
	1/21	R88G-HPG20A21400B□	
	1/33	R88G-HPG32A33400B□	
	1/45	R88G-HPG32A45400B□	
750 W (200 V)	1/5	R88G-HPG20A05750B□	
	1/11	R88G-HPG20A11750B□	
	1/21	R88G-HPG32A21750B□	
	1/33	R88G-HPG32A33750B□	
	1/45	R88G-HPG32A45750B□	
750 W (400 V)	1/5	R88G-HPG32A052K0B□	
	1/11	R88G-HPG32A112K0B□	
	1/21	R88G-HPG32A211K5B□	
	1/33	R88G-HPG32A33600SB□	
	1/45	R88G-HPG50A451K5B□	

Specifications			
Servomotor rated output	Reduction ratio	Model	Reference
1 kW	1/5	R88G-HPG32A052K0B□	P. 2-107
	1/11	R88G-HPG32A112K0B□	
	1/21	R88G-HPG32A211K5B□	
	1/33	R88G-HPG50A332K0B□	
	1/45	R88G-HPG50A451K5B□	
1.5 kW	1/5	R88G-HPG32A052K0B□	
	1/11	R88G-HPG32A112K0B□	
	1/21	R88G-HPG32A211K5B□	
	1/33	R88G-HPG50A332K0B□	
	1/45	R88G-HPG50A451K5B□	
2 kW	1/5	R88G-HPG32A052K0B□	P. 2-107
	1/11	R88G-HPG32A112K0B□	
	1/21	R88G-HPG50A212K0B□	
	1/33	R88G-HPG50A332K0B□	
3 kW	1/5	R88G-HPG32A053K0B□	
	1/11	R88G-HPG50A113K0B□	
	1/21	R88G-HPG50A213K0B□	
4 kW	1/5	R88G-HPG32A054K0B□	P. 2-107
	1/11	R88G-HPG50A115K0B□	
4.7 kW	1/5	R88G-HPG50A055K0B□	
5 kW	1/11	R88G-HPG50A115K0B□	

• For 2,000-r/min Servomotors

Specifica	itions		
Servomotor rated output	Reduction ratio	Model	Reference
400 W	1/5	R88G-HPG32A052K0B□	P. 2-110
	1/11	R88G-HPG32A112K0B□	
	1/21	R88G-HPG32A211K5B□	
	1/33	R88G-HPG32A33600SB□	
	1/45	R88G-HPG32A45400SB□	
600 W	1/5	R88G-HPG32A052K0B□	
	1/11	R88G-HPG32A112K0B□	
	1/21	R88G-HPG32A211K5B□	
	1/33	R88G-HPG32A33600SB□	
	1/45	R88G-HPG50A451K5B□	
1 kW	1/5	R88G-HPG32A053K0B□	
	1/11	R88G-HPG32A112K0SB□	
	1/21	R88G-HPG32A211K0SB□	
	1/33	R88G-HPG50A332K0SB□	
	1/45	R88G-HPG50A451K0SB□	
1.5 kW	1/5	R88G-HPG32A053K0B□	P. 2-112
	1/11	R88G-HPG32A112K0SB□	
	1/21	R88G-HPG50A213K0B□	
	1/33	R88G-HPG50A332K0SB□	
2 kW	1/5	R88G-HPG32A053K0B□	
	1/11	R88G-HPG32A112K0SB□	
	1/21	R88G-HPG50A213K0B□	
	1/33	R88G-HPG50A332K0SB□	
3 kW	1/5	R88G-HPG32A054K0B□	
	1/11	R88G-HPG50A115K0B□	
	1/21	R88G-HPG50A213K0SB□	
	1/25	R88G-HPG65A253K0SB□	

• For 1,500-r/min Servomotors

Specifications			
Servomotor rated output	Reduction ratio	Model	Reference
4 kW	1/5	R88G-HPG50A055K0SB□	P. 2-114
4 KVV	1/3	R00G-HFG30A033R03BL	P. 2-114
	1/11	R88G-HPG50A115K0SB□	
	1/20	R88G-HPG65A205K0SB□	
	1/25	R88G-HPG65A255K0SB□	
5 kW	1/5	R88G-HPG50A054K5TB□	
5.5 kW	1/12	R88G-HPG65A127K5SB□	
	1/20	R88G-HPG65A204K5TB□	

• For 1,000-r/min Servomotors

Specificat	tions		
Servomotor	Reduction	Model	Reference
rated output	ratio		
900 W	1/5	R88G-HPG32A05900TB□	P. 2-116
	1/11	R88G-HPG32A11900TB□	
	1/21	R88G-HPG50A21900TB□	
	1/33	R88G-HPG50A33900TB□	
2 kW	1/5	R88G-HPG32A052K0TB□	
	1/11	R88G-HPG50A112K0TB□	
	1/21	R88G-HPG50A212K0TB□	
	1/25	R88G-HPG65A255K0SB□	
3 kW	1/5	R88G-HPG50A055K0SB□	
	1/11	R88G-HPG50A115K0SB□	
	1/20	R88G-HPG65A205K0SB□	
	1/25	R88G-HPG65A255K0SB□	

Backlash: 15 Arcminutes Max.

• For 3,000-r/min Servomotors

Specifica	tions		
Servomotor	Reduction	Model	Reference
rated output	ratio		
50 W	1/5	R88G-VRXF05B100CJ	P. 2-118
	1/9	R88G-VRXF09B100CJ	
	1/15	R88G-VRXF15B100CJ	
	1/25	R88G-VRXF25B100CJ	
100 W	1/5	R88G-VRXF05B100CJ	
	1/9	R88G-VRXF09B100CJ	
	1/15	R88G-VRXF15B100CJ	
	1/25	R88G-VRXF25B100CJ	
200 W	1/5	R88G-VRXF05B200CJ	
	1/9	R88G-VRXF09C200CJ	
	1/15	R88G-VRXF15C200CJ	
	1/25	R88G-VRXF25C200CJ	
400 W	1/5	R88G-VRXF05C400CJ	
	1/9	R88G-VRXF09C400CJ	
	1/15	R88G-VRXF15C400CJ	
	1/25	R88G-VRXF25C400CJ	
750 W (200 V)	1/5	R88G-VRXF05C750CJ	
	1/9	R88G-VRXF09D750CJ	
	1/15	R88G-VRXF15D750CJ	
	1/25	R88G-VRXF25D750CJ	

2-3-5 Servomotor and Decelerator Combination Tables

The following tables show the possible combinations of 1S-series Servomotors and Decelerators. You cannot use a Servomotor with a key and tap (model numbers with -S2 at the end) in combination with a Decelerator.

Backlash: 3 Arcminutes Max.

Combinations of 3,000-r/min motors and decelerators

Servomotor	Reduction ratio					
models	1/5 1/11		1/21	1/33	1/45	
R88M- 1M05030□			R88G-HPG 14A21100B□	R88G-HPG 14A33050B□	R88G-HPG 14A45050B□	
R88M- 1M10030□	R88G-HPG 11B05100B□	R88G-HPG 14A11100B□		R88G-HPG 20A33100B□	R88G-HPG 20A45100B□	
R88M- 1M20030□	R88G-HPG 14A05200B□	R88G-HPG 14A11200B□	R88G-HPG 20A21200B□	R88G-HPG 20A33200B□	R88G-HPG 20A45200B□	
R88M- 1M40030□	R88G-HPG 14A05400B□	R88G-HPG 20A11400B□	R88G-HPG 20A21400B□	R88G-HPG 32A33400B□	R88G-HPG 32A45400B□	
R88M- 1M75030□ (200 VAC)	R88G-HPG 20A05750B□	R88G-HPG 20A11750B□	R88G-HPG 32A21750B□	R88G-HPG 32A33750B□	R88G-HPG 32A45750B□	
R88M- 1L75030□ (400 VAC)				R88G-HPG 32A33600SB□		
R88M- 1L1K030□ R88M- 1L1K530□	R88G-HPG - 32A052K0B□	R88G-HPG 32A112K0B□	R88G-HPG 32A211K5B□	R88G-HPG 50A332K0B□	- R88G-HPG 50A451K5B□	
R88M- 1L2K030□			R88G-HPG 50A212K0B□			
R88M- 1L3K030□	R88G-HPG 32A053K0B□	R88G-HPG 50A113K0B□	R88G-HPG 50A213K0B□			
R88M- 1L4K030□	R88G-HPG 32A054K0B□					
R88M- 1L4K730□	R88G-HPG 50A055K0B□	R88G-HPG 50A115K0B□				
R88M- 1L5K030□						

• Combinations of 2,000-r/min motors and decelerators

Servomotor	Reduction ratio						
models	1/5	1/11	1/21	1/25	1/33	1/45	
R88M- 1M40020□ (400 VAC)	R88G-HPG	R88G-HPG	R88G-HPG		R88G-HPG	R88G-HPG 32A45400SB□	
R88M- 1M60020□ (400 VAC)	32A052K0B□	32A112K0B□	32A211K5B□		32A33600SB□	R88G-HPG 50A451K5B□	
R88M- 1M1K020□			R88G-HPG 32A211K0SB□			R88G-HPG 50A451K0SB□	
R88M- 1M1K520□	R88G-HPG 32A053K0B□	R88G-HPG 32A112K0SB□	R88G-HPG		R88G-HPG 50A332K0SB□		
R88M- 1M2K020□			50A213K0B□				
R88M- 1M3K020□	R88G-HPG 32A054K0B□	R88G-HPG 50A115K0B□	R88G-HPG 50A213K0SB□	R88G-HPG 65A253K0SB□			

• Combinations of 1,500-r/min motors and decelerators

Servomotor					
models	1/5	1/11	1/12	1/20	1/25
R88M- 1M4K015□	R88G-HPG 50A055K0SB□	R88G-HPG 50A115K0SB□		R88G-HPG 65A205K0SB□	R88G-HPG 65A255K0SB□
R88M- 1M5K□15□	R88G-HPG 50A054K5TB□		R88G-HPG 65A127K5SB□	R88G-HPG 65A204K5TB□	

• Combinations of 1,000-r/min motors and decelerators

Servomotor	Reduction ratio						
models	models 1/5 1/11 1/20		1/21	1/25	1/33		
R88M- 1M90010□	R88G-HPG 32A05900TB□	R88G-HPG 32A11900TB□		R88G-HPG 50A21900TB□		R88G-HPG 50A33900TB□	
R88M- 1M2K010□	R88G-HPG 32A052K0TB□	R88G-HPG 50A112K0TB□		R88G-HPG 50A212K0TB□	R88G-HPG		
R88M- 1M3K010□	R88G-HPG 50A055K0SB□	R88G-HPG 50A115K0SB□	R88G-HPG 65A205K0SB□		65A255K0SB□		

Backlash: 15 Arcminutes Max.

• Combinations of 3,000-r/min motors and decelerators

Servomotor	Reduction ratio					
models	1/5	1/9	1/15	1/25		
R88M-1M05030□	R88G-VRXF05B100CJ	R88G-VRXF09B100CJ	R88G-VRXF15B100CJ	R88G-VRXF25B100CJ		
R88M-1M10030□						
R88M-1M20030□	R88G-VRXF05B200CJ	R88G-VRXF09C200CJ	R88G-VRXF15C200CJ	R88G-VRXF25C200CJ		
R88M-1M40030□	R88G-VRXF05C400CJ	R88G-VRXF09C400CJ	R88G-VRXF15C400CJ	R88G-VRXF25C400CJ		
R88M-1M75030□ (AC200V)	R88G-VRXF05C750CJ	R88G-VRXF09D750CJ	R88G-VRXF15D750CJ	R88G-VRXF25D750CJ		

2-3-6 Cable and Connector Model Tables

The following tables list the models of cables, shield clamp and connectors. The cables include encoder cables, motor power cables, and brake cables.

Encoder Cables (Standard Cable)

	Applicable Servomotor		Model
100 V	3,000-r/min Servomotors of 50 W, 100 W,	3 m	R88A-CR1A003C
200 V	200 W, 400 W, and 750 W	5 m	R88A-CR1A005C
		10 m	R88A-CR1A010C
		15 m	R88A-CR1A015C
		20 m	R88A-CR1A020C
		30 m	R88A-CR1A030C
		40 m	R88A-CR1A040C
		50 m	R88A-CR1A050C
200V	200V	3 m	R88A-CR1B003N
400V	3,000-r/min Servomotors of 1 kW to 3 kW	5 m	R88A-CR1B005N
	2,000-r/min Servomotors	10 m	R88A-CR1B010N
	1,000-r/min Servomotors	15 m	R88A-CR1B015N
	, and the second	20 m	R88A-CR1B020N
	400V	30 m	R88A-CR1B030N
	3,000-r/min Servomotors of 3 kW or less	40 m	R88A-CR1B040N
	2,000-r/min Servomotors	50 m	R88A-CR1B050N
	1,000-r/min Servomotors		
200 V	3,000-r/min Servomotors of 4 kW or more	3 m	R88A-CR1B003V
400 V	1,500-r/min Servomotors	5 m	R88A-CR1B005V
	,	10 m	R88A-CR1B010V
		15 m	R88A-CR1B015V
		20 m	R88A-CR1B020V
		30 m	R88A-CR1B030V
		40 m	R88A-CR1B040V
		50 m	R88A-CR1B050V

Motor Power Cables (Standard Cable)

For the motor power cables, there are two types of cable versions available: version 1.0 and 1.1. Refer to 3-4-2 Motor Power Cable Specifications on page 3-84 for details.

	Amplicable Comremeter	Mo	del	
	Applicable Servomotor		Without brake wire	With brake wire
100 V	3,000-r/min Servomotors of 100 W, 200 W, 400	3 m	R88A-CA1A003S	
200 V	W, and 750 W ^{*1}	5 m	R88A-CA1A005S	
		10 m	R88A-CA1A010S	
		15 m	R88A-CA1A015S	
		20 m	R88A-CA1A020S	
		30 m	R88A-CA1A030S	
		40 m	R88A-CA1A040S	
		50 m	R88A-CA1A050S	
200 V	3,000-r/min Servomotors of 1 kW	3 m	R88A-CA1B003S	R88A-CA1B003B
	2,000-r/min Servomotors of 1 kW	5 m	R88A-CA1B005S	R88A-CA1B005B
	1,000-r/min Servomotors of 900 W	10 m	R88A-CA1B010S	R88A-CA1B010B
		15 m	R88A-CA1B015S	R88A-CA1B015B
		20 m	R88A-CA1B020S	R88A-CA1B020B
		30 m	R88A-CA1B030S	R88A-CA1B030B
		40 m	R88A-CA1B040S	R88A-CA1B040B
		50 m	R88A-CA1B050S	R88A-CA1B050B
200 V	3,000-r/min Servomotors of 1.5 kW	3 m	R88A-CA1C003S	R88A-CA1C003B
	2,000-r/min Servomotors of 1.5 kW	5 m	R88A-CA1C005S	R88A-CA1C005B
		10 m	R88A-CA1C010S	R88A-CA1C010B
		15 m	R88A-CA1C015S	R88A-CA1C015B
		20 m	R88A-CA1C020S	R88A-CA1C020B
		30 m	R88A-CA1C030S	R88A-CA1C030B
		40 m	R88A-CA1C040S	R88A-CA1C040B
		50 m	R88A-CA1C050S	R88A-CA1C050B
400 V	3,000-r/min Servomotors of 750 W, 1 kW, 1.5	3 m	R88A-CA1C003S	R88A-CA1D003B
	kW, and 2 kW	5 m	R88A-CA1C005S	R88A-CA1D005B
	2,000-r/min Servomotors of 400 W, 600 W, 1 kW,	10 m	R88A-CA1C010S	R88A-CA1D010B
	1.5 kW, and 2kW	15 m	R88A-CA1C015S	R88A-CA1D015B
	1,000-r/min Servomotors of 900 W	20 m	R88A-CA1C020S	R88A-CA1D020B
	,	30 m	R88A-CA1C030S	R88A-CA1D030B
		40 m	R88A-CA1C040S	R88A-CA1D040B
		50 m	R88A-CA1C050S	R88A-CA1D050B
200 V	3,000-r/min Servomotors of 2 kW (200 V) and 3	3 m	R88A-CA1E003S	R88A-CA1E003B
400 V	kW (200 V/400 V)	5 m	R88A-CA1E005S	R88A-CA1E005B
	2,000-r/min Servomotors of 2 kW (200 V) and 3	10 m	R88A-CA1E010S	R88A-CA1E010B
	kW (200 V/400 V)	15 m	R88A-CA1E015S	R88A-CA1E015B
	1,000-r/min Servomotors of 2 kW (200 V/400 V)	20 m	R88A-CA1E020S	R88A-CA1E020B
	and 3 kW (400 V)	30 m	R88A-CA1E030S	R88A-CA1E030B
	, ,	40 m	R88A-CA1E040S	R88A-CA1E040B
		50 m	R88A-CA1E050S	R88A-CA1E050B

	Applicable Servomotor	Model		
Applicable del volllotol			Without brake wire	With brake wire
200 V	1,000-r/min Servomotors of 3 kW	3 m	R88A-CA1F003S	R88A-CA1F003B
		5 m	R88A-CA1F005S	R88A-CA1F005B
		10 m	R88A-CA1F010S	R88A-CA1F010B
		15 m	R88A-CA1F015S	R88A-CA1F015B
		20 m	R88A-CA1F020S	R88A-CA1F020B
		30 m	R88A-CA1F030S	R88A-CA1F030B
		40 m	R88A-CA1F040S	R88A-CA1F040B
		50 m	R88A-CA1F050S	R88A-CA1F050B

^{*1.} The Servomotors of 50 W are exempt from the applicable Servomotors. Use these combinations with caution.

Brake Cables (Standard Cable)

Applicable Servomotor			Model
100 V	3,000-r/min Servomotors of 100 W, 200 W,	3 m	R88A-CA1A003B
200 V	400 W, and 750 W ^{*1} 5 m		R88A-CA1A005B
		10 m	R88A-CA1A010B
		15 m	R88A-CA1A015B
		20 m	R88A-CA1A020B
		30 m	R88A-CA1A030B
		40 m	R88A-CA1A040B
		50 m	R88A-CA1A050B

^{*1.} The Servomotors of 50 W are exempt from the applicable Servomotors. Use these combinations with caution.

Encoder Cables (Flexible Cable)

Applicable Servomotor			Model
100 V	3,000-r/min Servomotors of 50 W, 100 W,	3 m	R88A-CR1A003CF
200 V	200 W, 400 W, and 750 W	5 m	R88A-CR1A005CF
		10 m	R88A-CR1A010CF
		15 m	R88A-CR1A015CF
		20 m	R88A-CR1A020CF
		30 m	R88A-CR1A030CF
		40 m	R88A-CR1A040CF
		50 m	R88A-CR1A050CF
200 V	200V	3 m	R88A-CR1B003NF
400 V	3,000-r/min Servomotors of 1 kW to 3 kW	5 m	R88A-CR1B005NF
	2,000-r/min Servomotors	10 m	R88A-CR1B010NF
	1,000-r/min Servomotors	15 m	R88A-CR1B015NF
	,	20 m	R88A-CR1B020NF
	400V	30 m	R88A-CR1B030NF
	3,000-r/min Servomotors or 3 kW or less	40 m	R88A-CR1B040NF
	2,000-r/min Servomotors	50 m	R88A-CR1B050NF
	1,000-r/min Servomotors		

	Applicable Servomotor	Model	
200 V	3,000-r/min Servomotors of 4 kW or more	3 m	R88A-CR1B003VF
400 V	1,000-1/11111 GCI VOITIOLOIS		R88A-CR1B005VF
			R88A-CR1B010VF
		15 m	R88A-CR1B015VF
		20 m	R88A-CR1B020VF
		30 m	R88A-CR1B030VF
		40 m	R88A-CR1B040VF
		50 m	R88A-CR1B050VF

Motor Power Cables (Flexible Cable)

For the motor power cables, there are two types of cable versions available: version 1.0 and 1.1. Refer to 3-4-2 Motor Power Cable Specifications on page 3-84 for details.

Applicable Convenedor			Mo	del
	Applicable Servomotor		Without brake wire	With brake wire
100 V	3,000-r/min Servomotors of 100 W, 200 W, 400	3 m	R88A-CA1A003SF	
200 V	W, and 750 W ^{*1}	5 m	R88A-CA1A005SF	
		10 m	R88A-CA1A010SF	
		15 m	R88A-CA1A015SF	
		20 m	R88A-CA1A020SF	
		30 m	R88A-CA1A030SF	
		40 m	R88A-CA1A040SF	
		50 m	R88A-CA1A050SF	
200 V	3,000-r/min Servomotors of 1 kW	3 m	R88A-CA1B003SF	R88A-CA1B003BF
	2,000-r/min Servomotors of 1 kW	5 m	R88A-CA1B005SF	R88A-CA1B005BF
	1,000-r/min Servomotors of 900 W	10 m	R88A-CA1B010SF	R88A-CA1B010BF
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	15 m	R88A-CA1B015SF	R88A-CA1B015BF
		20 m	R88A-CA1B020SF	R88A-CA1B020BF
		30 m	R88A-CA1B030SF	R88A-CA1B030BF
		40 m	R88A-CA1B040SF	R88A-CA1B040BF
		50 m	R88A-CA1B050SF	R88A-CA1B050BF
200 V	3,000-r/min Servomotors of 1.5 kW	3 m	R88A-CA1C003SF	R88A-CA1C003BF
	2,000-r/min Servomotors of 1.5 kW	5 m	R88A-CA1C005SF	R88A-CA1C005BF
		10 m	R88A-CA1C010SF	R88A-CA1C010BF
		15 m	R88A-CA1C015SF	R88A-CA1C015BF
		20 m	R88A-CA1C020SF	R88A-CA1C020BF
		30 m	R88A-CA1C030SF	R88A-CA1C030BF
		40 m	R88A-CA1C040SF	R88A-CA1C040BF
		50 m	R88A-CA1C050SF	R88A-CA1C050BF
400 V	3,000-r/min Servomotors of 750 W, 1 kW, 1.5	3 m	R88A-CA1C003SF	R88A-CA1D003BF
	kW, and 2 kW	5 m	R88A-CA1C005SF	R88A-CA1D005BF
	2,000-r/min Servomotors of 400 W, 600 W, 1 kW,	10 m	R88A-CA1C010SF	R88A-CA1D010BF
	1.5 kW, and 2kW	15 m	R88A-CA1C015SF	R88A-CA1D015BF
	1,000-r/min Servomotors of 900 W	20 m	R88A-CA1C020SF	R88A-CA1D020BF
		30 m	R88A-CA1C030SF	R88A-CA1D030BF
		40 m	R88A-CA1C040SF	R88A-CA1D040BF
		50 m	R88A-CA1C050SF	R88A-CA1D050BF

Augliochle Occurrentes			Mo	del
	Applicable Servomotor		Without brake wire	With brake wire
200 V	3,000-r/min Servomotors of 2 kW (200 V) and 3	3 m	R88A-CA1E003SF	R88A-CA1E003BF
400 V	kW (200 V/400 V)	5 m	R88A-CA1E005SF	R88A-CA1E005BF
	2,000-r/min Servomotors of 2 kW (200 V) and 3	10 m	R88A-CA1E010SF	R88A-CA1E010BF
	kW (200 V/400 V)	15 m	R88A-CA1E015SF	R88A-CA1E015BF
	1,000-r/min Servomotors of 2 kW (200 V/400 V)	20 m	R88A-CA1E020SF	R88A-CA1E020BF
	and 3 kW (400 V)	30 m	R88A-CA1E030SF	R88A-CA1E030BF
		40 m	R88A-CA1E040SF	R88A-CA1E040BF
		50 m	R88A-CA1E050SF	R88A-CA1E050BF
200 V	1,000-r/min Servomotors of 3 kW	3 m	R88A-CA1F003SF	R88A-CA1F003BF
		5 m	R88A-CA1F005SF	R88A-CA1F005BF
		10 m	R88A-CA1F010SF	R88A-CA1F010BF
		15 m	R88A-CA1F015SF	R88A-CA1F015BF
		20 m	R88A-CA1F020SF	R88A-CA1F020BF
		30 m	R88A-CA1F030SF	R88A-CA1F030BF
		40 m	R88A-CA1F040SF	R88A-CA1F040BF
		50 m	R88A-CA1F050SF	R88A-CA1F050BF
200 V	200 V	3 m	R88A-CA1H003SF	R88A-CA1H003BF
400 V	3,000-r/min Servomotors of 4 kW and 4.7 kW	5 m	R88A-CA1H005SF	R88A-CA1H005BF
	1,500-r/min Servomotors of 4 kW and 5 kW	10 m	R88A-CA1H010SF	R88A-CA1H010BF
	400 V	15 m	R88A-CA1H015SF	R88A-CA1H015BF
	3,000-r/min Servomotors of 4 kW and 5 kW	20 m	R88A-CA1H020SF	R88A-CA1H020BF
	1,500-r/min Servomotors of 4 kW, 5.5 kW, and 7.5 kW			
400 V	1,500-r/min Servomotors of 11 kW and 15 kW	3 m	R88A-CA1J003SF	R88A-CA1J003BF
		5 m	R88A-CA1J005SF	R88A-CA1J005BF
		10 m	R88A-CA1J010SF	R88A-CA1J010BF
		15 m	R88A-CA1J015SF	R88A-CA1J015BF
		20 m	R88A-CA1J020SF	R88A-CA1J020BF
200 V	1,500-r/min Servomotors of 7.5 kW, 11 kW and	3 m	R88A-CA1K003SF	R88A-CA1K003BF
	15 kW	5 m	R88A-CA1K005SF	R88A-CA1K005BF
		10 m	R88A-CA1K010SF	R88A-CA1K010BF
		15 m	R88A-CA1K015SF	R88A-CA1K015BF
-		20 m	R88A-CA1K020SF	R88A-CA1K020BF

^{*1.} The Servomotors of 50 W are exempt from the applicable Servomotors. Use these combinations with caution.

Motor Power Cables (Non-load side, Flexible Cable)

When you use the motor power cable with cable on non-load side such as R88A-CA1A□□□SFR and the brake cable together, use the brake cable with cable on non-load side such as R88A-CA1A□□□BFR.

For the motor power cables, there are two types of cable versions available: version 1.0 and 1.1. Refer to 3-4-2 Motor Power Cable Specifications on page 3-84 for details.

	Applicable Servemeter		Мо	del
Applicable Servomotor		Without brake wire	With brake wire	
100 V	3,000-r/min Servomotors of 50 W, 200	3 m	R88A-CA1A003SFR	
200 V	W, 400 W, and 750 W ^{*1}	5 m	R88A-CA1A005SFR	
		10 m	R88A-CA1A010SFR	
		15 m	R88A-CA1A015SFR	
		20 m	R88A-CA1A020SFR	
		30 m	R88A-CA1A030SFR	
		40 m	R88A-CA1A040SFR	
		50 m	R88A-CA1A050SFR	

^{*1.} The Servomotors of 100 W are exempt from the applicable Servomotors. Use these combinations with caution.

Extension Motor Power Cables

Use the following extension motor power cables when extending motor power cables whether they have brake wires or not. For the extension motor power cables, only cable version 1.0 is available. Refer to 3-4-2 Motor Power Cable Specifications on page 3-84 for details.

Applicable Servomotor			Model
200 V	200 V	10 m	R88A-CA1HE10BF
400 V	3,000-r/min Servomotors of 4 kW and 4.7 kW	20 m	R88A-CA1HE20BF
	1,500-r/min Servomotors of 4 kW and 5 kW		
	400 V		
	3,000-r/min Servomotors of 4 kW and 5 kW		
	1,500-r/min Servomotors of 4 kW, 5 kW, and		
	7.5 kW		
400 V	1,500-r/min Servomotors of 11 kW and 15 kW	10 m	R88A-CA1JE10BF
		20 m	R88A-CA1JE20BF
200 V	1,500-r/min Servomotors of 7.5 kW, 11 kW and	10 m	R88A-CA1KE10BF
	15 kW	20 m	R88A-CA1KE20BF

Brake Cables (Flexible Cable)

	Applicable Servomotor	Model	
100 V	3,000-r/min Servomotors of 100 W, 200 W, 400	3 m	R88A-CA1A003BF
200 V	W, and 750 W ^{*1}	5 m	R88A-CA1A005BF
		10 m	R88A-CA1A010BF
		15 m	R88A-CA1A015BF
		20 m	R88A-CA1A020BF
		30 m	R88A-CA1A030BF
		40 m	R88A-CA1A040BF
		50 m	R88A-CA1A050BF

^{*1.} The Servomotors of 50 W are exempt from the applicable Servomotors. Use these combinations with caution.

Brake Cables (Non-load side, Flexible Cable)

When you use the brake cable with cable on non-load side such as R88A-CA1A□□□BFR, use it in combination with the motor power cable with cable on non-load side such as R88A-CA1A□□□SFR.

	Applicable Servomotor	Model	
100 V	3,000-r/min Servomotors of 50 W, 200 W, 400	3 m	R88A-CA1A003BFR
200 V	W, and 750 W ^{*1}	5 m	R88A-CA1A005BFR
		10 m	R88A-CA1A010BFR
		15 m	R88A-CA1A015BFR
		20 m	R88A-CA1A020BFR
		30 m	R88A-CA1A030BFR
		40 m	R88A-CA1A040BFR
		50 m	R88A-CA1A050BFR

^{*1.} The Servomotors of 100 W are exempt from the applicable Servomotors. Use these combinations with caution.

Peripheral Connector

Servo Drive side connector

Name and application	Model
Main circuit connector (CNA)*1	R88A-CN102P*4
For R88D-1SN01L-ECT/ -1SN02L-ECT/ -1SN04L-ECT/ -1SN01H-ECT/	
-1SN02H-ECT/ -1SN04H-ECT/ -1SN08H-ECT/ -1SN10H-ECT	
Main circuit connector A (CNA)*2	R88A-CN103P*4
For R88D-1SN15H-ECT/ -1SN20H-ECT/ -1SN30H-ECT/ -1SN06F-ECT/	
-1SN10F-ECT/ -1SN15F-ECT/ -1SN20F-ECT/ -1SN30F-ECT	
Main circuit connector A (CNA)*2	R88A-CN106P
For R88D-1SN55H-ECT/ -1SN75H-ECT/ -1SN55F-ECT/ -1SN75F-ECT	
Main circuit connector A (CNA)	R88A-CN108P
For R88D-1SN150F-ECT	
Main circuit connector B (CNB)*2	R88A-CN104P*4
For R88D-1SN15H-ECT/ -1SN20H-ECT/ -1SN30H-ECT/ -1SN06F-ECT/	
-1SN10F-ECT/ -1SN15F-ECT/ -1SN20F-ECT/ -1SN30F-ECT	
Main circuit connector B (CNB)*2	R88A-CN107P
For R88D-1SN55H-ECT/ -1SN75H-ECT/ -1SN55F-ECT/ -1SN75F-ECT	
Main circuit connector B (CNB)	R88A-CN101E
For R88D-1SN150H-ECT/ -1SN150F-ECT	
Motor connector (CNC)	R88A-CN101A*4
For R88D-1SN01L-ECT/ -1SN02L-ECT/ -1SN04L-ECT/	
-1SN01H-ECT/-1SN02H-ECT/ -1SN04H-ECT/ -1SN08H-ECT/ -1SN10H-ECT	
Motor connector (CNC)	R88A-CN102A*4
For R88D-1SN15H-ECT/ -1SN20H-ECT/ -1SN30H-ECT/ -1SN06F-ECT/	
-1SN10F-ECT/ -1SN15F-ECT/ -1SN20F-ECT/ -1SN30F-ECT	
Motor connector (CNC)	R88A-CN103A
For R88D-1SN55H-ECT/ -1SN75H-ECT/ -1SN55F-ECT/ -1SN75F-ECT/ -1SN150F-ECT	
Control power supply connector (CND)	R88A-CN101P*4
For R88D-1SN15H-ECT/ -1SN20H-ECT/ -1SN30H-ECT/ -1SN06F-ECT/	
-1SN10F-ECT/ -1SN15F-ECT/ -1SN20F-ECT/ -1SN30F-ECT	
Control power supply connector (CND)	R88A-CN105P
For R88D-1SN55H-ECT/ -1SN75H-ECT/ -1SN150H-ECT/ -1SN55F-ECT/ -1SN75F-ECT/ -1SN75F-ECT/	
Main circuit connector E (CNE)*2	R88A-CN101D
For R88D-1SN55H-ECT/ -1SN75H-ECT/ -1SN150H-ECT/ -1SN55F-ECT/	
-1SN75F-ECT/ -1SN150F-ECT	R88A-CN101C
Control I/O connector (CN1)*3 Encoder connector (CN2)	R88A-CN101R
Brake interlock connector (CN12)	R88A-CN101R R88A-CN101B
DIAVE HITCHOOK CONHECTOR (CIAIS)	LOOM-CIVIOID

^{*1.} Two short-circuit wires are connected to the connector.

^{*2.} One short-circuit wire is connected to the connector.

^{*3.} Four short-circuit wires are connected to the connector.

^{*4.} One opener is included.

Servomotor side connector

	Model		
Encoder connector	100 V, 200 V	For 3,000 r/min (50 to 750 W)	R88A-CNK02R
	200 V	For 3,000 r/min (1 to 3 kW)	R88A-CN104R
		For 2,000 r/min and 1,000 r/min	
	400 V	For 3,000 r/min (750 W to 3 kW)	
		For 2,000 r/min and 1,000 r/min	
	200 V, 400V	For 3000 r/min (4 to 5 kW)	R88A-CN105R
		For 1500 r/min	
Power connector (for 750 W ma	R88A-CN111A		
Brake connector (for 750 W ma	R88A-CN111B		

^{*1.} This connector is used for power cables with cable on load side such as R88A-CA1A□□□S and R88A-CA1A□□□SF. This connector cannot be used for power cables with cable on non-load side such as R88A-CA1A□□□SFR.

Connector for External Regeneration Resistor

Name and application	Model
Connector for external regeneration resistor	R88A-CN101E*1
For R88A-RR550□	

^{*1.} Same as main circuit connector B (CNB) for R88D-1SN150H-ECT/ -1SN150F-ECT.

Shield Clamp Bracket

A shield clamp is used for fixing a power cable and connecting a shield wire of the power cable with FG in Servo Drives. A shield clamp consists of a shield clamp bracket and a shield clamp plate. For the each parts name, refer to 1-3-5 Shield Clamp Part Names on page 1-20.

Name	Applicable Servo Drive	Applicable power cable	Model
Shield Clamp	R88D-1SN55□-ECT	R88A-CA1H□□□□F	R88A-SC10CA
Bracket L	R88D-1SN75F-ECT		
	R88D-1SN150F-ECT	R88A-CA1J□□□F	
	R88D-1SN75H-ECT	R88A-CA1K□□□□F	
	R88D-1SN150H-ECT		

Note A shield clamp bracket comes with an integrated cable.

An extension cable does not come with a shield clamp bracket.

Precautions for Correct Use

For methods for mounting a shield clamp to a Servo Drive and for wiring power cables, refer to Section. 4-2-2 Procedure for Wiring Terminal Block and Procedure for Mounting Shield Clamp to Servo Drive on page 4-38. Use the shield clamp as described in this manual. Malfunction of ambient equipment may result due to deterioration of noise immunity and radiated noise.

External Regeneration Resistor and External Regeneration 2-3-7 **Resistance Unit Model Tables**

The following tables list the models of External Regeneration Resistors and External Regeneration Resistance Units.

External Regeneration Resistors

Applicable Servo Drive	Model	Specifications
R88D-1SN01L-ECT/ -1SN02L-ECT	R88A-RR12015	Regeneration process
		capacity: 24 W, 15 Ω
R88D-1SN01H-ECT/ -1SN02H-ECT	R88A-RR12025	Regeneration process
		capacity: 24 W, 25 Ω
R88D-1SN150H-ECT	R88A-RR30002R5	Regeneration process
		capacity: 60 W, 2.5 Ω
R88D-1SN75H-ECT	R88A-RR30004	Regeneration process
		capacity: 60 W, 4 Ω
R88D-1SN55H-ECT	R88A-RR30005R4	Regeneration process
		capacity: 60 W, 5.4 Ω
R88D-1SN20H-ECT/ -1SN30H-ECT/ -1SN150F-ECT	R88A-RR30010	Regeneration process
		capacity: 60 W, 10 Ω
R88D-1SN01L-ECT/ -1SN02L-ECT	R88A-RR30015	Regeneration process
		capacity: 60 W, 15 Ω
R88D-1SN55F-ECT/ -1SN75F-ECT	R88A-RR30016	Regeneration process
		capacity: 60 W, 16 Ω
R88D-1SN15H-ECT	R88A-RR30017	Regeneration process
		capacity: 60 W, 17 Ω
R88D-1SN04L-ECT/ -1SN08H-ECT/ -1SN10H-ECT/	R88A-RR30020	Regeneration process
-1SN20F-ECT*1/ -1SN30F-ECT*1		capacity: 60 W, 20 Ω
R88D-1SN01H-ECT/ -1SN02H-ECT/	R88A-RR30025	Regeneration process
-1SN04H-ECT		capacity: 60 W, 25 Ω
R88D-1SN06F-ECT*1/ -1SN10F-ECT*1/	R88A-RR30033	Regeneration process
-1SN15F-ECT ^{*1}		capacity: 60 W, 33 Ω

^{*1.} Use two series-connected External Regeneration Resistors for this model.

External Regeneration Resistance Units

Applicable Servo Drive	Model	Specifications
R88D-1SN150H-ECT	R88A-RR55002R5	Regeneration process capacity: 110 W, 2.5 Ω
R88D-1SN75H-ECT	R88A-RR55004	Regeneration process capacity: 110 W, 4 Ω
R88D-1SN55H-ECT	R88A-RR55005R4	Regeneration process capacity: 110 W, 5.4 Ω
R88D-1SN150F-ECT	R88A-RR55010	Regeneration process capacity: 110 W, 10 Ω
R88D-1SN55F-ECT/ -1SN75F-ECT	R88A-RR55016	Regeneration process capacity: 110 W, 16 Ω
R88D-1SN150H-ECT	R88A-RR1K602R5	Regeneration process capacity: 640 W, 2.5 Ω

Applicable Servo Drive	Model	Specifications
R88D-1SN75H-ECT	R88A-RR1K604	Regeneration process
		capacity: 640 W, 4 Ω
R88D-1SN55H-ECT	R88A-RR1K605R4	Regeneration process
		capacity: 640 W, 5.4 Ω
R88D-1SN20H-ECT/ -1SN30H-ECT	R88A-RR1K610	Regeneration process
		capacity: 640 W, 10 Ω
R88D-1SN55F-ECT/ -1SN75F-ECT/ -1SN150F-ECT	R88A-RR1K616	Regeneration process
		capacity: 640 W, 16 Ω
R88D-1SN15H-ECT	R88A-RR1K617	Regeneration process
		capacity: 640 W, 17 Ω
R88D-1SN08H-ECT/ -1SN10H-ECT/	R88A-RR1K620	Regeneration process
-1SN20F-ECT*1/ -1SN30F-ECT*1/ -1SN55F-ECT		capacity: 640 W, 20 Ω
R88D-1SN20F-ECT/ -1SN30F-ECT	R88A-RR1K640	Regeneration process
		capacity: 640 W, 40 Ω
R88D-1SN06F-ECT/ -1SN10F-ECT/	R88A-RR1K666	Regeneration process
-1SN15F-ECT		capacity: 640 W, 66 Ω

^{*1.} Use two series-connected External Regeneration Resistance Units for this model.

2-3-8 External Dynamic Brake Resistor Model Table

The following table lists the External Dynamic Brake Resistor models.

Applicable Servo Drive	Model	Specifications
R88D-1SN150H-ECT	R88A-DBR30001R2	1.25 Ω
R88D-1SN55H-ECT/ -1SN75H-ECT	R88A-DBR30001R5	1.5 Ω
R88D-1SN55F-ECT/ -1SN75F-ECT	R88A-DBR30004	4 Ω
R88D-1SN150F-ECT	R88A-DBR30005	5 Ω

2-3-9 Reactor Model Table

The following table lists the Reactor models.

For a recommended reactor for applicable Servomotor at 5.5 kW or more, refer to 4-3 Wiring Conforming to EMC Directives on page 4-51.

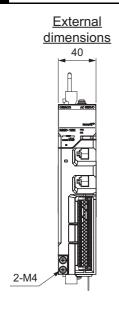
Applicable Servo Drive	Model	Type of Reactor
R88D-1SN01L-ECT/-1SN01H-ECT/-1SN02H-ECT	R88A-PD2002	DC reactor
R88D-1SN02L-ECT/-1SN04H-ECT	R88A-PD2004	
R88D-1SN04L-ECT/-1SN08H-ECT	R88A-PD2007	
R88D-1SN10H-ECT/-1SN15H-ECT	R88A-PD2015	
R88D-1SN20H-ECT	R88A-PD2022	
R88D-1SN30H-ECT	R88A-PD2037	
R88D-1SN06F-ECT	R88A-PD4007	
R88D-1SN10F-ECT/-1SN15F-ECT	R88A-PD4015	
R88D-1SN20F-ECT	R88A-PD4022	
R88D-1SN30F-ECT	R88A-PD4037	

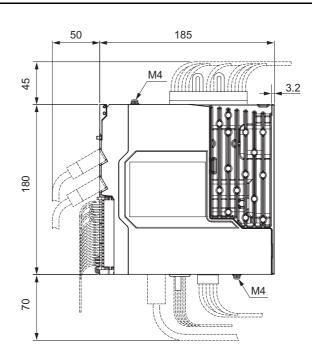
2-3-10 Footprint-type Noise Filters Model Table

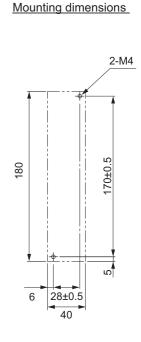
The following table lists the Footprint-type Noise Filter models.

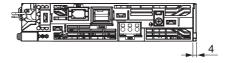
Be sure to use book-type noise filters for Servo Drives at 5.5 kW or more. For the book-type noise filters, refer to 4-3 Wiring Conforming to EMC Directives on page 4-51.

Applicable Servo Drive	Model
R88D-1SN01L-ECT/-1SN01H-ECT/-1SN02H-ECT (Single-phase input)	R88A-FI1S103
R88D-1SN02L-ECT/-1SN04H-ECT (Single-phase input)	R88A-FI1S105
R88D-1SN04L-ECT/-1SN08H-ECT (Single-phase input)	R88A-FI1S109
R88D-1SN15H-ECT (Single-phase input)	R88A-FI1S116
R88D-1SN01H-ECT/-1SN02H-ECT (3-phase input)	R88A-FI1S202 or R88A-FI1S203
R88D-1SN04H-ECT (3-phase input)	R88A-FI1S203
R88D-1SN08H-ECT (3-phase input) /-1SN10H-ECT	R88A-FI1S208
R88D-1SN15H-ECT (3-phase input) /-1SN20H-ECT/-1SN30H-ECT	R88A-FI1S216
R88D-1SN06F-ECT/-1SN10F-ECT/-1SN15F-ECT/-1SN20F-ECT/	R88A-FI1S309
-1SN30F-ECT	

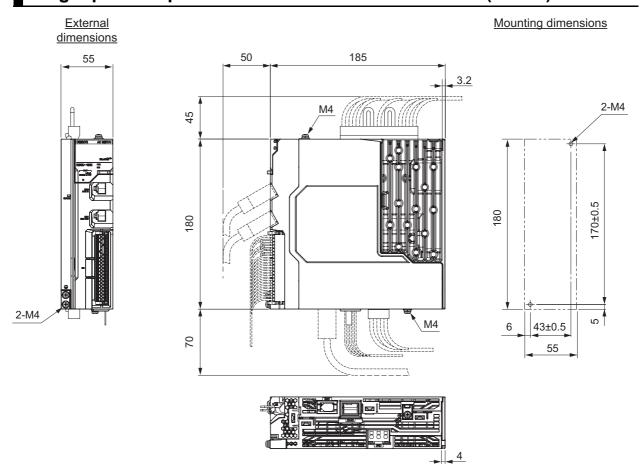

2-4 External and Mounting Dimensions

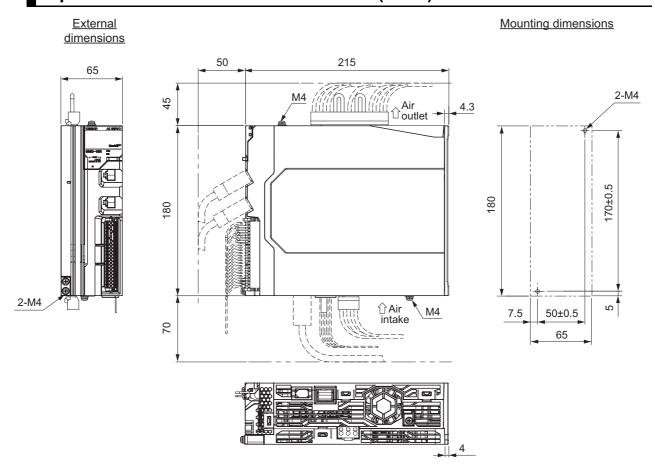

This section provides the external dimensions and mounting dimensions of Servo Drives, Servomotors, Decelerators, and peripheral devices.


2-4-1 Servo Drive Dimensions

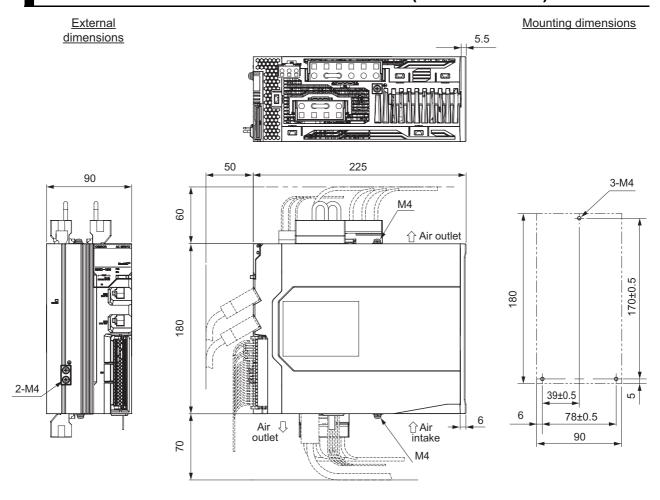

The Servo Drives are described in order of increasing rated output of the applicable Servomotors.

Single-phase 100 VAC: R88D-1SN01L-ECT (100 W) Single-phase/3-phase 200 VAC: R88D-1SN01H-ECT/-1SN02H-ECT (100 to 200 W)

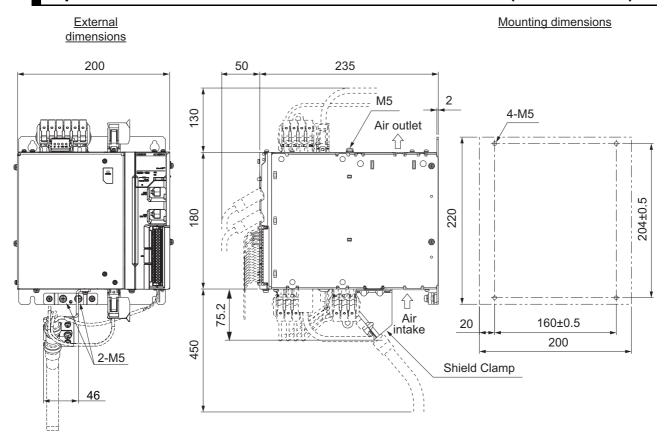




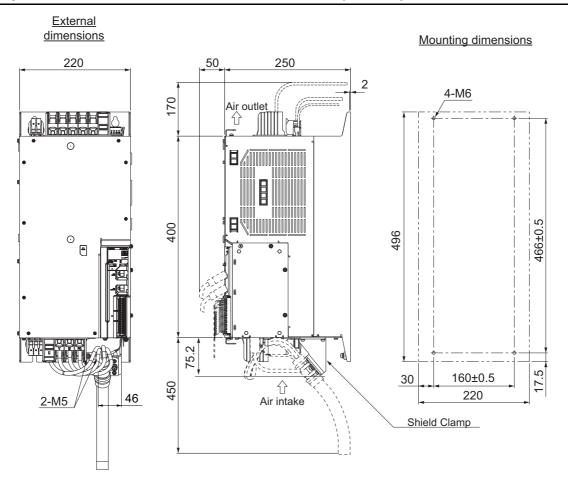
Single-phase 100 VAC: R88D-1SN02L-ECT (200 W) Single-phase/3-phase 200 VAC: R88D-1SN04H-ECT (400 W)

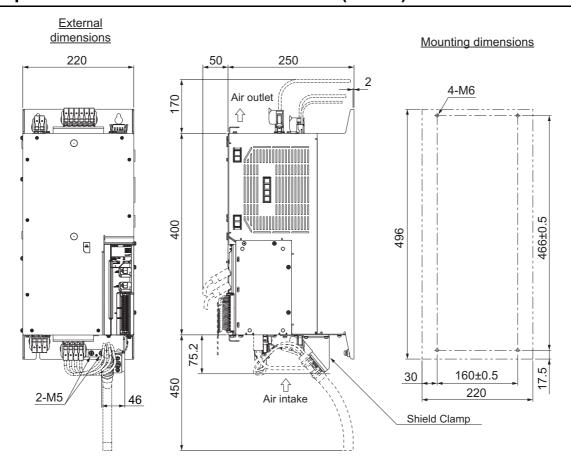

Single-phase 100 VAC: R88D-1SN04L-ECT (400 W)

Single-phase/3-phase 200 VAC: R88D-1SN08H-ECT (750 W) 3-phase 200 VAC: R88D-1SN10H-ECT (1 kW)



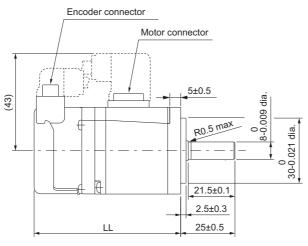
Single-phase/3-phase 200 VAC: R88D-1SN15H-ECT (1.5 kW) 3-phase 200 VAC: R88D-1SN20H-ECT/-1SN30H-ECT (2 to 3 kW) 3-phase 400 VAC: R88D-1SN06F-ECT/-1SN10F-ECT/

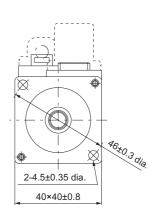

-1SN15F-ECT/-1SN20F-ECT/-1SN30F-ECT (600 W to 3 kW)


3-phase 200 VAC: R88D-1SN55H-ECT/ -1SN75H-ECT (5.5 to 7.5 kW) 3-phase 400 VAC: R88D-1SN55F-ECT/ -1SN75F-ECT (5.5 to 7.5 kW)

3-phase 200 VAC: R88D-1SN150H-ECT (15 kW)

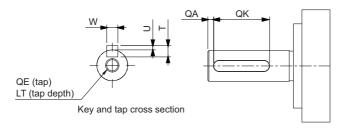
3-phase 400 VAC: R88D-1SN150F-ECT (15 kW)


2-4-2 **Servomotor Dimensions**


Servomotors are grouped by rated rotation speed, and described in order of increasing rated output.

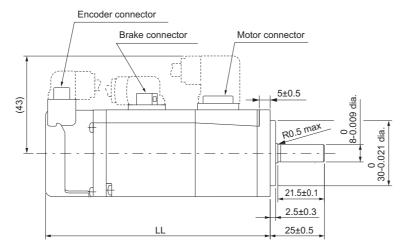
3,000-r/min Servomotors (100 V and 200 V)

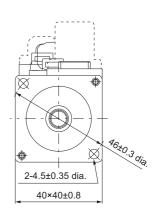
• 50 W (without Brake)


R88M-1M05030S(-O/-S2/-OS2) R88M-1M05030T(-O/-S2/-OS2)

Model	Dimensions [mm]
Wiodei	LL
R88M-1M05030S(-S2)	67.5±1
R88M-1M05030T(-S2)	
R88M-1M05030S-O(S2)	72.5±1
R88M-1M05030T-O(S2)	

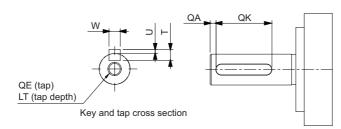
Note The standard shaft type is a straight shaft. Models with a key and tap are indicated with "S2" at the end of the model number. Models with an oil seal are indicated with "O" at the end of the model number.



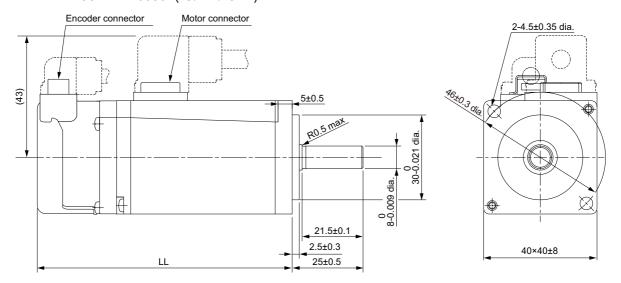

Model	Dimensions [mm]						
Wiodei	QA	QK	W	Т	U	QE	LT
R88M-1M05030S(-S2/-OS2)	2	12	3 ⁰ -0.025	3	1.2 0	М3	8
R88M-1M05030T(-S2/-OS2)	2	12	3 ⁰ _{-0.025}	3	1.2 0	M3	8

• 50 W (with Brake)

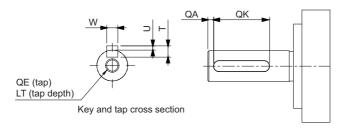
R88M-1M05030S-B(O/S2/OS2)


R88M-1M05030T-B(O/S2/OS2)

Model	Dimensions [mm]
Wiodei	LL
R88M-1M05030S-B(S2)	103.5±1
R88M-1M05030T-B(S2)	
R88M-1M05030S-BO(S2)	108.5±1
R88M-1M05030T-BO(S2)	


Note The standard shaft type is a straight shaft. Models with a key and tap are indicated with "S2" at the end of the model number. Models with an oil seal are indicated with "O" at the end of the model number.

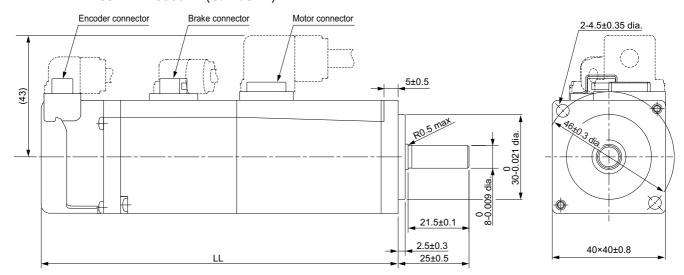
Model	Dimensions [mm]						
Wiodei	QA	QK	W	Т	U	QE	LT
R88M-1M05030S-B(S2/OS2)	2	12	3 0 -0.025	3	1.2 0	M3	8
R88M-1M05030T-B(S2/OS2)	2	12	3 ⁰ -0.025	3	1.2 0	M3	8


• 100 W (without Brake)

R88M-1M10030S(-O/-S2/-OS2) R88M-1M10030T(-O/-S2/-OS2)

Model	Dimensions [mm]
Wiodei	LL
R88M-1M10030S(-S2)	90±1
R88M-1M10030T(-S2)	
R88M-1M10030S-O(S2)	95±1
R88M-1M10030T-O(S2)	

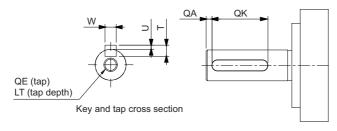
Note The standard shaft type is a straight shaft. Models with a key and tap are indicated with "S2" at the end of the model number. Models with an oil seal are indicated with "O" at the end of the model number.



Model	Dimensions [mm]							
Model	QA	QK	W	Т	U	QE	LT	
R88M-1M10030S(-S2/-OS2)	2	12	3 ⁰ -0.025	3	1.2 0	М3	8	
R88M-1M10030T(-S2/-OS2)	2	12	3 0 -0.025	3	1.2 0	М3	8	

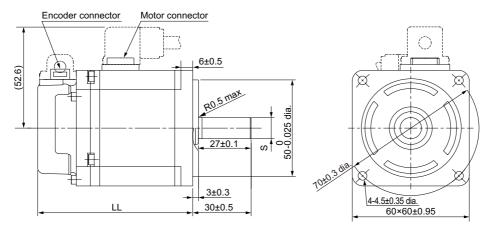
• 100 W (with Brake)

R88M-1M10030S-B(O/S2/OS2)


R88M-1M10030T-B(O/S2/OS2)

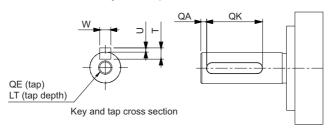
Model	Dimensions [mm]
Model	LL
R88M-1M10030S-B(S2)	126±1
R88M-1M10030T-B(S2)	
R88M-1M10030S-BO(S2)	131±1
R88M-1M10030T-BO(S2)	

Note The standard shaft type is a straight shaft. Models with a key and tap are indicated with "S2" at the end of the model number.


Models with an oil seal are indicated with "O" at the end of the model number.

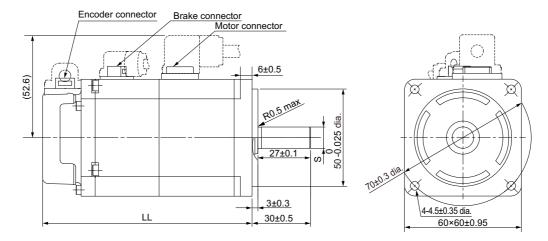
Model		Dimensions [mm]							
Wiodei	QA	QK	W	Т	U	QE	LT		
R88M-1M10030S-B(S2/OS2)	2	12	3 ⁰ -0.025	3	1.2 0	М3	8		
R88M-1M10030T-B(S2/OS2)	2	12	3 ⁰ -0.025	3	1.2 0	М3	8		

• 200 W/400 W (without Brake)


R88M-1M20030S(-O/-S2/-OS2)/R88M-1M20030T(-O/-S2/-OS2) R88M-1M40030S(-O/-S2/-OS2)/R88M-1M40030T(-O/-S2/-OS2)

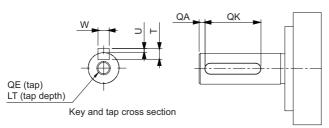
Model	Dimensions [mm]				
Wiodei		S	LL		
R88M-1M20030S(-S2)	11	0	79.5±1		
R88M-1M20030T(-S2)		-0.011 dia			
R88M-1M40030S(-S2)	14	0	105.5±1		
R88M-1M40030T(-S2)		-0.011 dia			
R88M-1M20030S-O(S2)	11	0	86.5±1		
R88M-1M20030T-O(S2)		-0.011 dia			
R88M-1M40030S-O(S2)	14	0	112.5±1		
R88M-1M40030T-O(S2)		-0.011 dia			

Note The standard shaft type is a straight shaft. Models with a key and tap are indicated with "S2" at the end of the model number.


Models with an oil seal are indicated with "O" at the end of the model number.

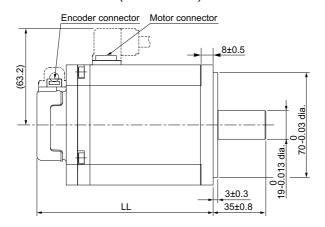
Model	Dimensions [mm]							
Wiodei	QA	QK	W	T	U	QE	LT	
R88M-1M20030S(-S2/-OS2)	2	20	4 0 -0.03	4	1.5 0	M4	10	
R88M-1M20030T(-S2/-OS2)	2	20	4 0 -0.03	4	1.5 0	M4	10	
R88M-1M40030S(-S2/-OS2)	2	20	5 0 -0.03	5	2 0 -0.2	M5	12	
R88M-1M40030T(-S2/-OS2)	2	20	5 0 -0.03	5	2 0 -0.2	M5	12	

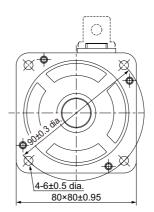
• 200 W/400 W (with Brake)


R88M-1M20030S-B(O/S2/OS2)/R88M-1M20030T-B(O/S2/OS2) R88M-1M40030S-B(O/S2/OS2)/R88M-1M40030T-B(O/S2/OS2)

Model	Dimensions [mm]					
Wiodei	S		LL			
R88M-1M20030S-B(S2)	11 0		107.5±1			
R88M-1M20030T-B(S2)	-0).011 dia				
R88M-1M40030S-B(S2)	14 0		133.5±1			
R88M-1M40030T-B(S2)	-0).011 dia				
R88M-1M20030S-BO(S2)	11 0		114.5±1			
R88M-1M20030T-BO(S2)	-0).011 dia				
R88M-1M40030S-BO(S2)	14 0		140.5±1			
R88M-1M40030T-BO(S2)	-0).011 dia				

Note The standard shaft type is a straight shaft. Models with a key and tap are indicated with "S2" at the end of the model number.

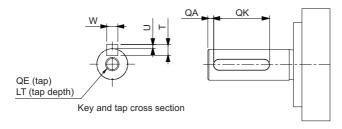

Models with an oil seal are indicated with "O" at the end of the model number.



Model	Dimensions [mm]								
Wiodei	QA	QK	W	Т	U	QE	LT		
R88M-1M20030S-B(S2/OS2)	2	20	4 0 -0.03	4	1.5 0	M4	10		
R88M-1M20030T-B(S2/OS2)	2	20	4 0 -0.03	4	1.5 0	M4	10		
R88M-1M40030S-B(S2/OS2)	2	20	5 0 -0.03	5	2 0 -0.2	M5	12		
R88M-1M40030T-B(S2/OS2)	2	20	5 0 -0.03	5	2 0 -0.2	M5	12		

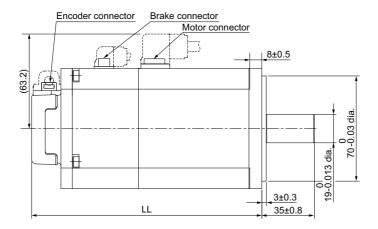
• 750 W (without Brake)

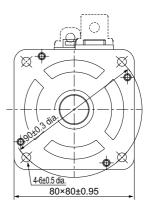
R88M-1M75030T(-O/-S2/-OS2)



Model	Dimensions [mm]			
Wiodei	LL			
R88M-1M75030T(-S2)	117.3±1			
R88M-1M75030T-O(S2)	124.3±1			

Note The standard shaft type is a straight shaft. Models with a key and tap are indicated with "S2" at the end of the model number.

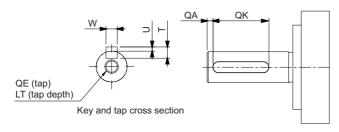

Models with an oil seal are indicated with "O" at the end of the model number.



Model	Dimensions [mm]						
Widdel	QA	QK	W	Т	U	QE	LT
R88M-1M75030T(-S2/-OS2)	3	24	6 0 -0.03	6	2.5 0 -0.2	M5	12

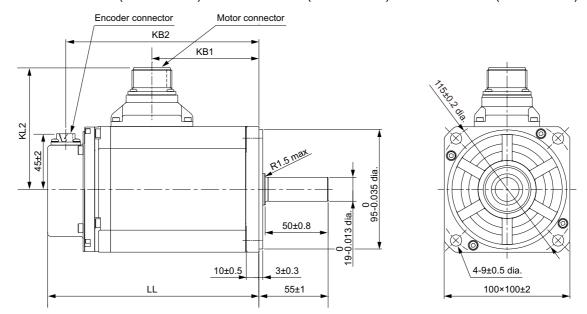
• 750 W (with Brake)

R88M-1M75030T-B(O/S2/OS2)



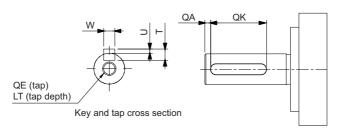
Model	Dimensions [mm]			
Model	LL			
R88M-1M75030T-B(S2)	153±1			
R88M-1M75030T-BO(S2)	160±1			

Note The standard shaft type is a straight shaft. Models with a key and tap are indicated with "S2" at the end of the model number.


Models with an oil seal are indicated with "O" at the end of the model number.

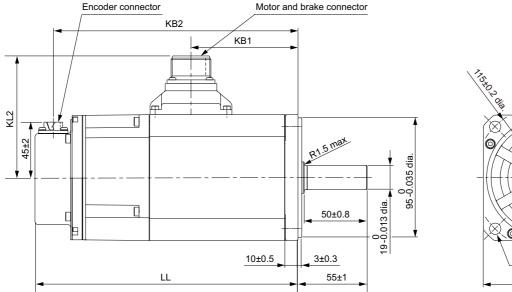
Model	Dimensions [mm]						
Wiodei	QA	QK	W	Т	U	QE	LT
R88M-1M75030T-B(S2/OS2)	3	24	6 0 -0.03	6	2.5 0	M5	12

• 1 kW/1.5 kW/2 kW (without Brake)


R88M-1L1K030T(-O/-S2/-OS2)/R88M-1L1K530T(-O/-S2/-OS2)/R88M-1L2K030T(-O/-S2/-OS2)

Model	Dimensions [mm]						
Wiodei	LL	KB1	KB2	KL2			
R88M-1L1K030T(-O/-S2/-OS2)	168±2	85±1	153±2	97±2			
R88M-1L1K530T(-O/-S2/-OS2)	168±2	85±1	153±2	97±2			
R88M-1L2K030T(-O/-S2/-OS2)	179±2	96±1	164±2	102±2			

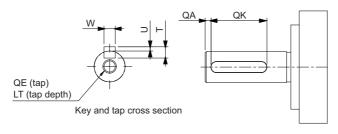
Note The standard shaft type is a straight shaft. Models with a key and tap are indicated with "S2" at the end of the model number.


Models with an oil seal are indicated with "O" at the end of the model number.

Model	Dimensions [mm]						
	QA	QK	W	T	U	QE	LT
R88M-1L1K030T(-S2/-OS2)	3	42	6 0 -0.03	6	2.5 0 -0.2	M5	12
R88M-1L1K530T(-S2/-OS2)	3	42	6 0 -0.03	6	2.5 0	M5	12
R88M-1L2K030T(-S2/-OS2)	3	42	6 0 -0.03	6	2.5 0 -0.2	M5	12

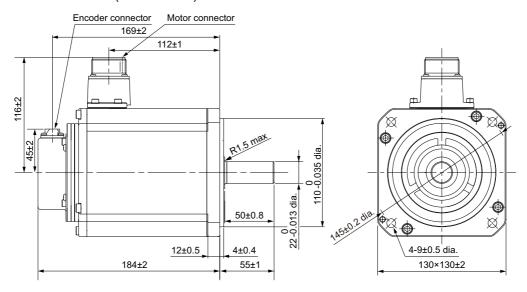
• 1 kW/1.5 kW/2 kW (with Brake)

R88M-1L1K030T-B(O/S2/OS2)/R88M-1L1K530T-B(O/S2/OS2)/ R88M-1L2K030T-B(O/S2/OS2)

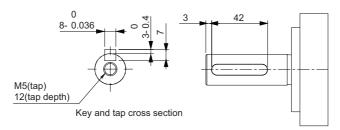


Model	Dimensions [mm]						
Wodel	LL	KB1	KB2	KL2			
R88M-1L1K030T-B(O/S2/OS2)	209±3	85±1	194±2	97±2			
R88M-1L1K530T-B(O/S2/OS2)	209±3	85±1	194±2	97±2			
R88M-1L2K030T-B(O/S2/OS2)	220±3	96±1	205±2	104±2			

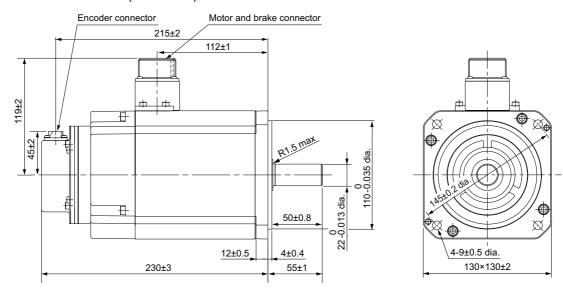
Note The standard shaft type is a straight shaft. Models with a key and tap are indicated with "S2" at the end of the model number.


Models with an oil seal are indicated with "O" at the end of the model number.

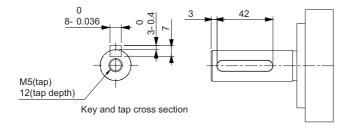
Model	Dimensions [mm]						
	QA	QK	W	Т	U	QE	LT
R88M-1L1K030T-B(S2/OS2)	3	42	6 0 -0.03	6	2.5 0	M5	12
R88M-1L1K530T-B(S2/OS2)	3	42	6 0 -0.03	6	2.5 0	M5	12
R88M-1L2K030T-B(S2/OS2)	3	42	6 0 -0.03	6	2.5 0 -0.2	M5	12


• 3 kW (without Brake)

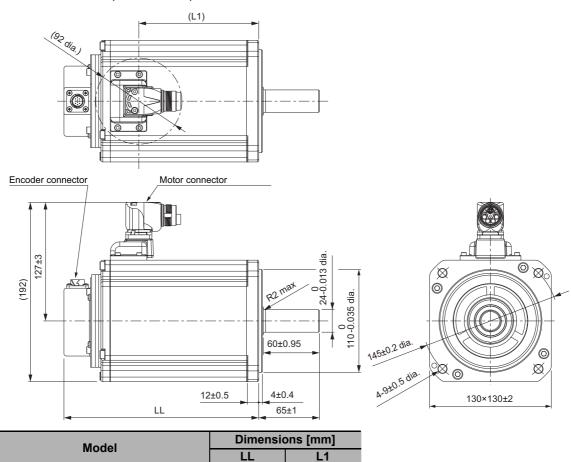
R88M-1L3K030T(-O/-S2/-OS2)


Note The standard shaft type is a straight shaft. Models with a key and tap are indicated with "S2" at the end of the model number.

Models with an oil seal are indicated with "O" at the end of the model number.


• 3 kW (with Brake)

R88M-1L3K030T-B(O/S2/OS2)


Note The standard shaft type is a straight shaft. Models with a key and tap are indicated with "S2" at the end of the model number.

Models with an oil seal are indicated with "O" at the end of the model number.

• 4 kW/4.7 kW (without Brake)

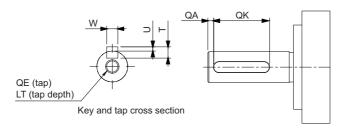
R88M-1L4K030T(-O/-S2/-OS2) R88M-1L4K730T(-O/-S2/-OS2)

Note The standard shaft type is a straight shaft. Models with a key and tap are indicated with "S2" at the end of the model number.

128

152

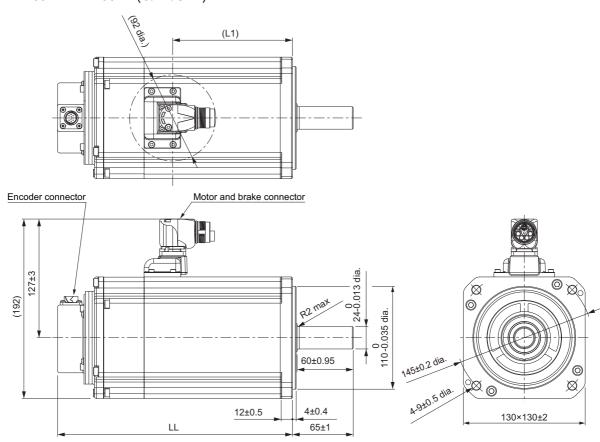
Models with an oil seal are indicated with "O" at the end of the model number.


208±3

232±3

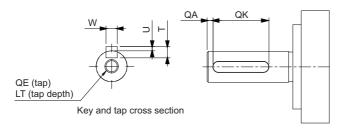
Shaft-end with key and tap

R88M-1L4K030T(-O/-S2/-OS2)


R88M-1L4K730T(-O/-S2/-OS2)

Model	Dimensions [mm]							
Model	QA	QK	W	T	U	QE	LT	
R88M-1L4K030T(-S2/-OS2)	3	52	8 ⁰ -0.036	7	3 ⁰ _{-0.4}	M8	20	
R88M-1L4K730T(-S2/-OS2)	3	52	8 0 -0.036	7	3 ⁰ _{-0.4}	M8	20	

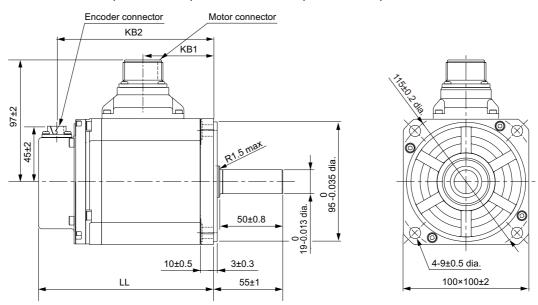
• 4 kW/4.7 kW (with Brake)


R88M-1L4K030T-B(O/S2/OS2) R88M-1L4K730T-B(O/S2/OS2)

Model	Dimensions [mm]			
	LL	L1		
R88M-1L4K030T-B(O/S2/OS2)	251±3	128		
R88M-1L4K730T-B(O/S2/OS2)	730T-B(O/S2/OS2) 275±3 15			

Note The standard shaft type is a straight shaft. Models with a key and tap are indicated with "S2" at the end of the model number.

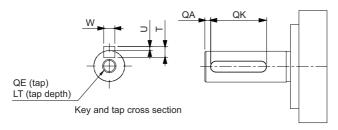
Models with an oil seal are indicated with "O" at the end of the model number.



Model	Dimensions [mm]							
Iviodel	QA	QK	W	T	U	QE	LT	
R88M-1L4K030T-B(S2/OS2)	3	52	8 ⁰ -0.036	7	3 ⁰ -0.4	M8	20	
R88M-1L4K730T-B(S2/OS2)	3	52	8 ⁰ _{-0.036}	7	3 0 -0.4	M8	20	

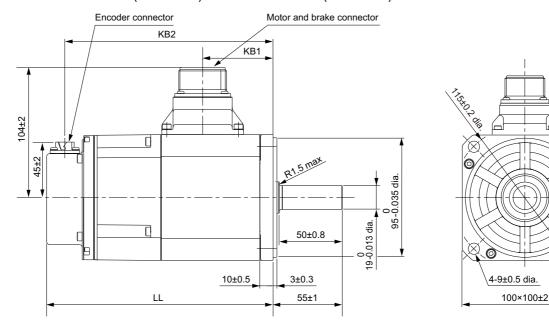
3,000-r/min Servomotors (400 V)

• 750 W/1 kW/1.5 kW/2 kW (without Brake)


R88M-1L75030C(-O/-S2/-OS2)/R88M-1L1K030C(-O/-S2/-OS2) R88M-1L1K530C(-O/-S2/-OS2)/R88M-1L2K030C(-O/-S2/-OS2)

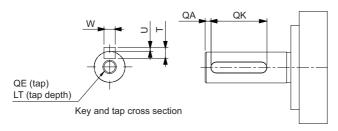
Model	Dimensions [mm]					
Wiodei	LL	KB1	KB2			
R88M-1L75030C(-O/-S2/-OS2)	139±2	56±1	124±2			
R88M-1L1K030C(-O/-S2/-OS2)	168±2	85±1	153±2			
R88M-1L1K530C(-O/-S2/-OS2)	168±2	85±1	153±2			
R88M-1L2K030C(-O/-S2/-OS2)	179±2	96±1	164±2			

Note The standard shaft type is a straight shaft. Models with a key and tap are indicated with "S2" at the end of the model number.


Models with an oil seal are indicated with "O" at the end of the model number.

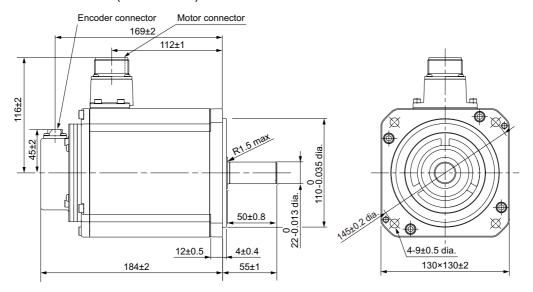
Model	Dimensions [mm]							
Wiodei	QA	QK	W	Т	U	QE	LT	
R88M-1L75030C(-S2/-OS2)	3	42	6 -0.03	6	2.5 ⁰ -0.2	M5	12	
R88M-1L1K030C(-S2/-OS2)	3	42	6 -0.03	6	2.5 ⁰ -0.2	M5	12	
R88M-1L1K530C(-S2/-OS2)	3	42	6 -0.03	6	2.5 ⁰ -0.2	M5	12	
R88M-1L2K030C(-S2/-OS2)	3	42	6 ⁰ -0.03	6	2.5 ⁰ -0.2	M5	12	

• 750 W/1 kW/1.5 kW/2 kW (with Brake)

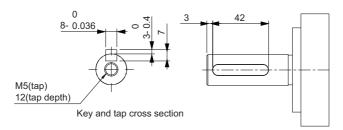

R88M-1L75030C-B(O/S2/OS2)/R88M-1L1K030C-B(O/S2/OS2) R88M-1L1K530C-B(O/S2/OS2)/R88M-1L2K030C-B(O/S2/OS2)

Model	Dimensions [mm]					
Model	LL	KB1	KB2			
R88M-1L75030C-B(O/S2/OS2)	180±2	56±1	165±2			
R88M-1L1K030C-B(O/S2/OS2)	209±3	85±1	194±2			
R88M-1L1K530C-B(O/S2/OS2)	209±3	85±1	194±2			
R88M-1L2K030C-B(O/S2/OS2)	220±3	96±1	205±2			

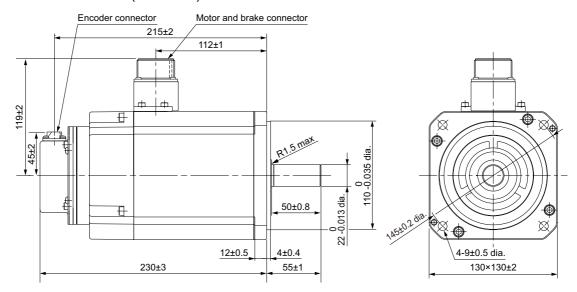
Note The standard shaft type is a straight shaft. Models with a key and tap are indicated with "S2" at the end of the model number.


Models with an oil seal are indicated with "O" at the end of the model number.

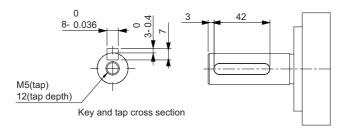
Model		Dimensions [mm]					
Woder	QA	QK	W	T	U	QE	LT
R88M-1L75030C-B(S2/OS2)	3	42	6 -0.03	6	2.5 0	M5	12
R88M-1L1K030C-B(S2/OS2)	3	42	6 -0.03	6	2.5 0	M5	12
R88M-1L1K530C-B(S2/OS2)	3	42	6 0 -0.03	6	2.5 0	M5	12
R88M-1L2K030C-B(S2/OS2)	3	42	6 0 -0.03	6	2.5 0	M5	12


• 3 kW (without Brake)

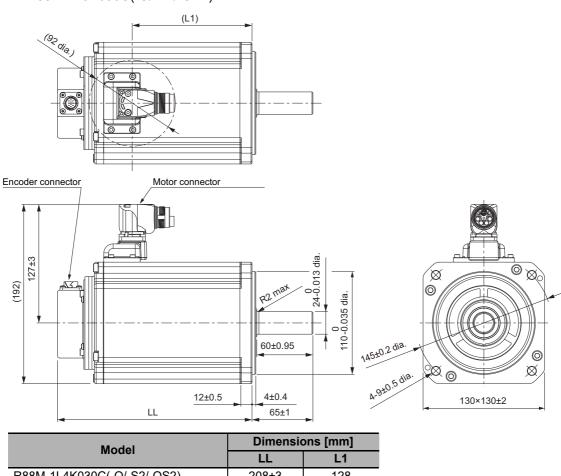
R88M-1L3K030C(-O/-S2/-OS2)


Note The standard shaft type is a straight shaft. Models with a key and tap are indicated with "S2" at the end of the model number.

Models with an oil seal are indicated with "O" at the end of the model number.

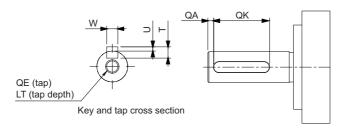

• 3 kW (with Brake)

R88M-1L3K030C-B(O/S2/OS2)


Note The standard shaft type is a straight shaft. Models with a key and tap are indicated with "S2" at the end of the model number.

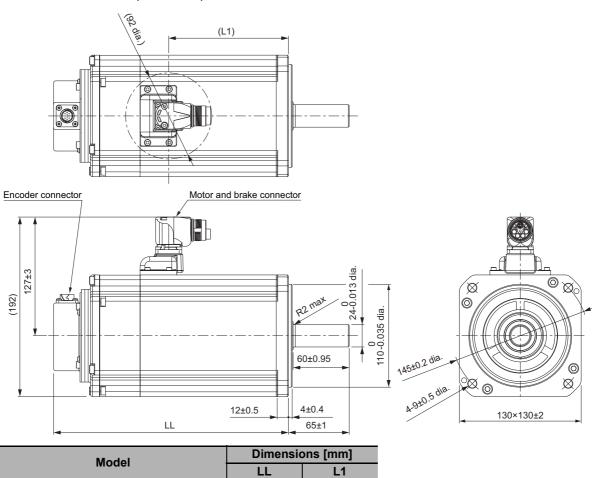
Models with an oil seal are indicated with "O" at the end of the model number.

• 4 kW/5 kW (without Brake)


R88M-1L4K030C(-O/-S2/-OS2) R88M-1L5K030C(-O/-S2/-OS2)

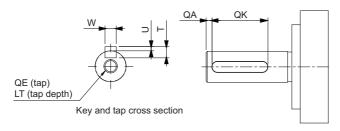
R88M-1L4K030C(-O/-S2/-OS2) 128 208±3 R88M-1L5K030C(-O/-S2/-OS2) 232±3 152

Note The standard shaft type is a straight shaft. Models with a key and tap are indicated with "S2" at the end of the model number.


Models with an oil seal are indicated with "O" at the end of the model number.

Model	Dimensions [mm]							
lviodei	QA	QK	W	T	U	QE	LT	
R88M-1L4K030C(-S2/-OS2)	3	52	8 ⁰ -0.036	7	3 0 -0.4	M8	20	
R88M-1L5K030C(-S2/-OS2)	3	52	8 -0.036	7	3 0 -0.4	M8	20	

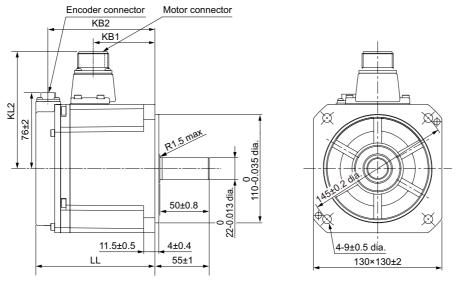
• 4 kW/5 kW (with Brake)


R88M-1L4K030C-B(O/S2/OS2) R88M-1L5K030C-B(O/S2/OS2)

Model	Dimensions [mm]			
Wiodei	LL	L1		
R88M-1L4K030C-B(O/S2/OS2)	251±3	128		
R88M-1L5K030C-B(O/S2/OS2)	275±3	152		

Note The standard shaft type is a straight shaft. Models with a key and tap are indicated with "S2" at the end of the model number.

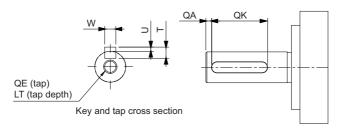
Models with an oil seal are indicated with "O" at the end of the model number.



Model	Dimensions [mm]							
iviouei	QA	QK	W	T	U	QE	LT	
R88M-1L4K030C-B(S2/OS2)	3	52	8 ⁰ -0.036	7	3 0 -0.4	M8	20	
R88M-1L5K030C-B(S2/OS2)	3	52	8 ⁰ -0.036	7	3 0 -0.4	M8	20	

2,000-r/min Servomotors (200 V)

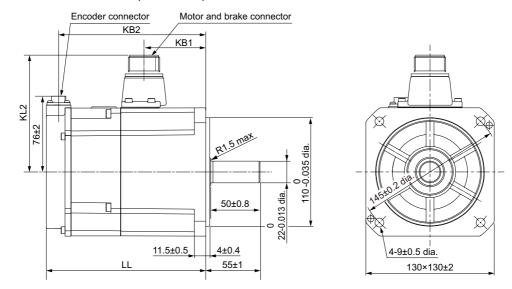
• 1 kW/1.5 kW/2 kW (without Brake)


R88M-1M1K020T(-O/-S2/-OS2)/R88M-1M1K520T(-O/-S2/-OS2) R88M-1M2K020T(-O/-S2/-OS2)

Model	Dimensions [mm]						
Model	LL	KB1	KB2	KL2			
R88M-1M1K020T(-O/-S2/-OS2)	120.5±2	63±1	109±2	118±2			
R88M-1M1K520T(-O/-S2/-OS2)	138±2	79±1	125±2	118±2			
R88M-1M2K020T(-O/-S2/-OS2)	160±2	99±1	147±2	116±2			

Note The standard shaft type is a straight shaft. Models with a key and tap are indicated with "S2" at the end of the model number.

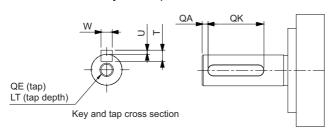
Models with an oil seal are indicated with "O" at the end of the model number.



Model	Dimensions [mm]							
Wiodei	QA	QK	W	Т	U	QE	LT	
R88M-1M1K020T(-S2/-OS2)	3	42	8 ⁰ -0.036	7	3 ⁰ _{-0.4}	M5	12	
R88M-1M1K520T(-S2/-OS2)	3	42	8 ⁰ -0.036	7	3 0 -0.4	M5	12	
R88M-1M2K020T(-S2/-OS2)	3	42	8 ⁰ -0.036	7	3 ⁰ _{-0.4}	M5	12	

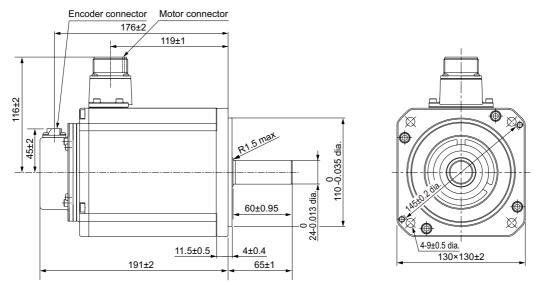
• 1 kW/1.5 kW/2 kW (with Brake)

R88M-1M1K020T-B (O/S2/OS2)/R88M-1M1K520T-B(O/S2/OS2)

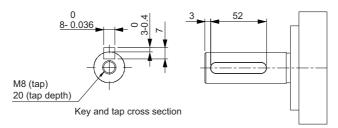

R88M-1M2K020T-B(O/S2/OS2)

Model	Dimensions [mm]					
Model	LL	KB1	KB2	KL2		
R88M-1M1K020T-B(O/S2/OS2)	162±2	63±1	149±2	118±2		
R88M-1M1K520T-B(O/S2/OS2)	179±2	79±1	166±2	118±2		
R88M-1M2K020T-B(O/S2/OS2)	201±3	99±1	189±2	119±2		

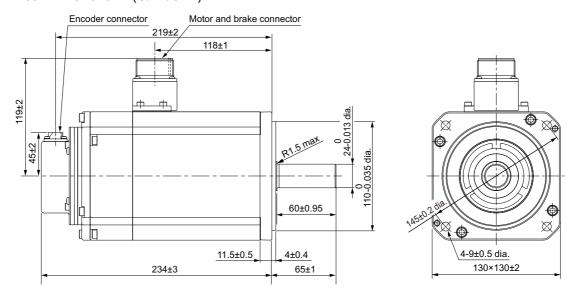
Note The standard shaft type is a straight shaft. Models with a key and tap are indicated with "S2" at the end of the model number.


Models with an oil seal are indicated with "O" at the end of the model number.

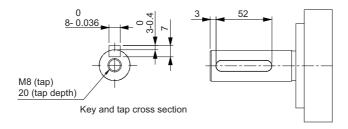
Model			Dime	nsions [n	nm]		
Wiodei	QA	QK	W	Т	U	QE	LT
R88M-1M1K020T-B(S2/OS2)	3	42	8 ⁰ -0.036	7	3 ⁰ _{-0.4}	M5	12
R88M-1M1K520T-B(S2/OS2)	3	42	8 ⁰ -0.036	7	3 0 -0.4	M5	12
R88M-1M2K020T-B(S2/OS2)	3	42	8 ⁰ -0.036	7	3 ⁰ _{-0.4}	M5	12


• 3 kW (without Brake)

R88M-1M3K020T(-O/-S2/-OS2)


Note The standard shaft type is a straight shaft. Models with a key and tap are indicated with "S2" at the end of the model number.

Models with an oil seal are indicated with "O" at the end of the model number.


• 3 kW (with Brake)

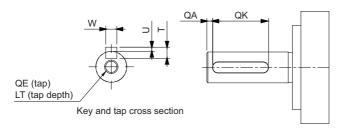
R88M-1M3K020T-B(O/S2/OS2)

Note The standard shaft type is a straight shaft. Models with a key and tap are indicated with "S2" at the end of the model number.

Models with an oil seal are indicated with "O" at the end of the model number.

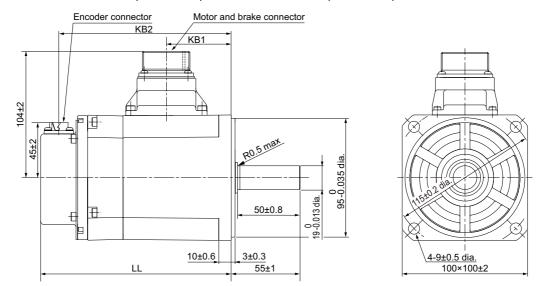
2,000-r/min Servomotors (400 V)

• 400 W/600 W (without Brake)


R88M-1M40020C(-O/-S2/-OS2)/R88M-1M60020C(-O/-S2/-OS2)

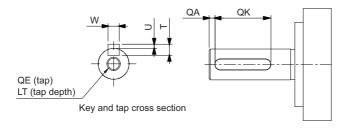
Model	Dimensions [mm]					
Wiodei	LL	KB1	KB2			
R88M-1M40020C(-O/-S2/-OS2)	134.8±1	52±1	120.5±2			
R88M-1M60020C(-O/-S2/-OS2)	151.8±1	69±1	137.5±2			

Note The standard shaft type is a straight shaft. Models with a key and tap are indicated with "S2" at the end of the model number.


Models with an oil seal are indicated with "O" at the end of the model number.

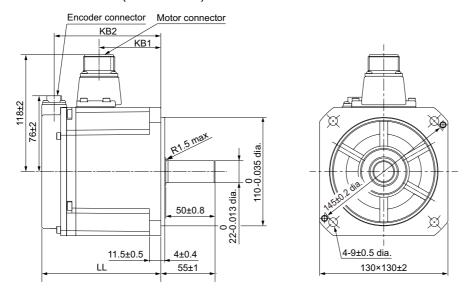
Model	Dimensions [mm]						
Wiodei	QA	QK	W	Т	U	QE	LT
R88M-1M40020C(-S2/-OS2)	3	42	6 0 -0.03	6	2.5 0	M5	12
R88M-1M60020C(-S2/-OS2)	3	42	6 0 -0.03	6	2.5 0	M5	12

• 400 W/600 W (with Brake)


R88M-1M40020C-B(O/S2/OS2)/R88M-1M60020C-B(O/S2/OS2)

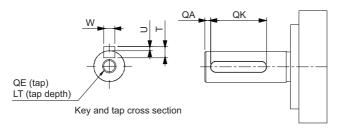
Model	Dimensions [mm]					
Model	LL	KB1	KB2			
R88M-1M40020C-B(O/S2/OS2)	152.3±1	52±1	138±2			
R88M-1M60020C-B(O/S2/OS2)	169.3±1	69±1	155±2			

Note The standard shaft type is a straight shaft. Models with a key and tap are indicated with "S2" at the end of the model number.


Models with an oil seal are indicated with "O" at the end of the model number.

Model			Dim	ensions [mm]		
Wodel	QA	QK	W	T	U	QE	LT
R88M-1M40020C-B(S2/OS2)	3	42	6 0 -0.03	6	2.5 0	M5	12
R88M-1M60020C-B(S2/OS2)	3	42	6 0 -0.03	6	2.5 0	M5	12

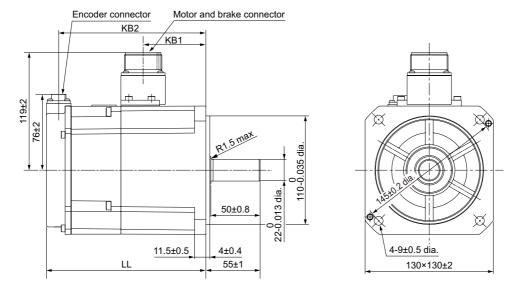
• 1 kW/1.5 kW/2 kW (without Brake)


R88M-1M1K020C(-O/-S2/-OS2)/R88M-1M1K520C(-O/-S2/-OS2) R88M-1M2K020C(-O/-S2/-OS2)

Model	Dimensions [mm]				
Wiodei	LL	KB1	KB2		
R88M-1M1K020C(-O/-S2/-OS2)	120.5±2	63±1	109±2		
R88M-1M1K520C(-O/-S2/-OS2)	138±2	79±1	125±2		
R88M-1M2K020C(-O/-S2/-OS2)	160±2	98±1	148±2		

Note The standard shaft type is a straight shaft. Models with a key and tap are indicated with "S2" at the end of the model number.

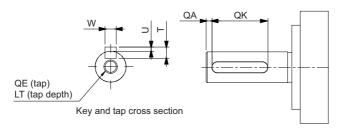
Models with an oil seal are indicated with "O" at the end of the model number.



Model	Dimensions [mm]						
Wiodei	QA	QK	W	T	U	QE	LT
R88M-1M1K020C(-S2/-OS2)	3	42	8 ⁰ -0.036	7	3 ⁰ _{-0.4}	M5	12
R88M-1M1K520C(-S2/-OS2)	3	42	8 ⁰ -0.036	7	3 0 -0.4	M5	12
R88M-1M2K020C(-S2/-OS2)	3	42	8 ⁰ -0.036	7	3 0 -0.4	M5	12

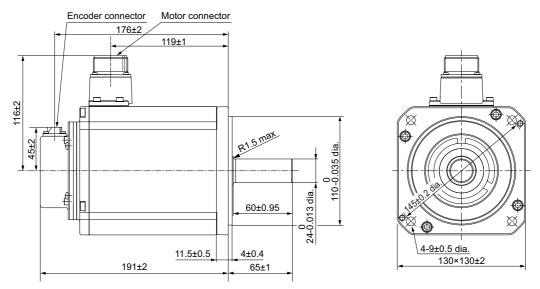
• 1 kW/1.5 kW/2 kW (with Brake)

R88M-1M1K020C-B(O/S2/OS2)/R88M-1M1K520C-B(O/S2/OS2)

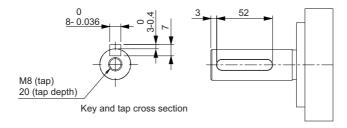

R88M-1M2K020C-B(O/S2/OS2)

Model	Dimensions [mm]				
Model	LL	KB1	KB2		
R88M-1M1K020C-B(O/S2/OS2)	162±2	64±1	150±2		
R88M-1M1K520C-B(O/S2/OS2)	179±2	81±1	167±2		
R88M-1M2K020C-B(O/S2/OS2)	201±3	99±1	189±2		

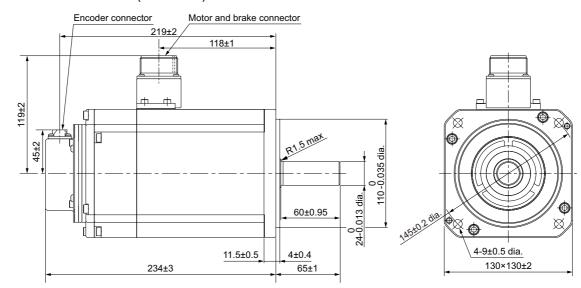
Note The standard shaft type is a straight shaft. Models with a key and tap are indicated with "S2" at the end of the model number.


Models with an oil seal are indicated with "O" at the end of the model number.

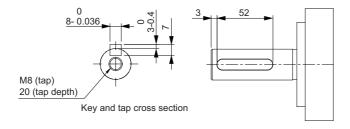
Model			Dime	nsions [n	nm]		
Niodei	QA	QK	W	T	U	QE	LT
R88M-1M1K020C-B(S2/OS2)	3	42	8 ⁰ -0.036	7	3 ⁰ _{-0.4}	M5	12
R88M-1M1K520C-B(S2/OS2)	3	42	8 ⁰ -0.036	7	3 ⁰ -0.4	M5	12
R88M-1M2K020C-B(S2/OS2)	3	42	8 ⁰ -0.036	7	3 0 -0.4	M5	12


• 3 kW (without Brake)

R88M-1M3K020C(-O/-S2/-OS2)

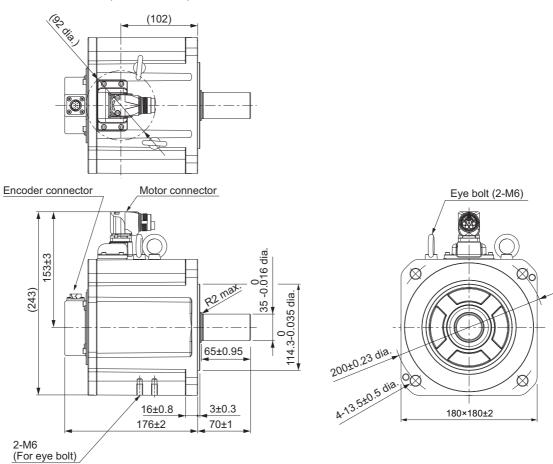

Note The standard shaft type is a straight shaft. Models with a key and tap are indicated with "S2" at the end of the model number.

Models with an oil seal are indicated with "O" at the end of the model number.

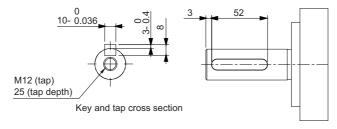

• 3 kW (with Brake)

R88M-1M3K020C-B(O/S2/OS2)

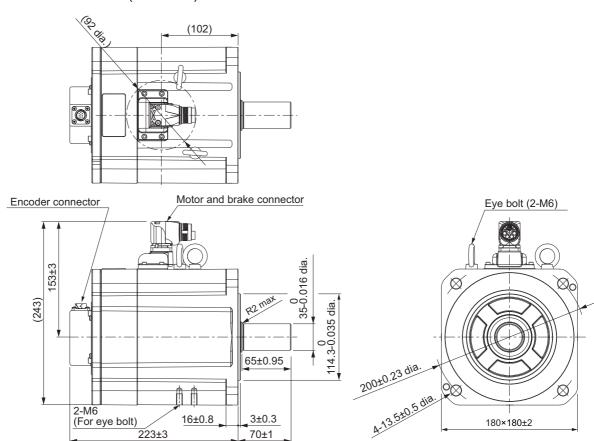
Note The standard shaft type is a straight shaft. Models with a key and tap are indicated with "S2" at the end of the model number.


Models with an oil seal are indicated with "O" at the end of the model number.

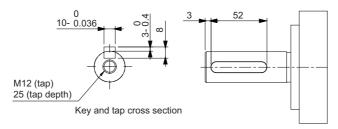
1,500-r/min Servomotors (200 V)


• 4 kW (without Brake)

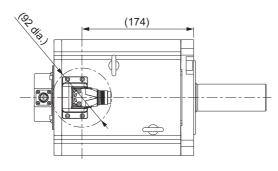
R88M-1M4K015T(-O/-S2/-OS2)

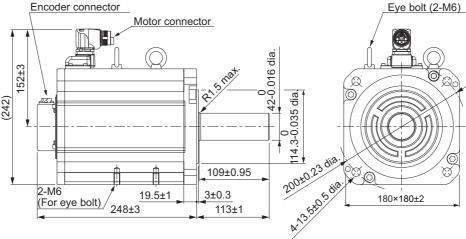

Note The standard shaft type is a straight shaft. Models with a key and tap are indicated with "S2" at the end of the model number.

Models with an oil seal are indicated with "O" at the end of the model number.

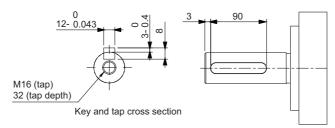

• 4 kW (with Brake)

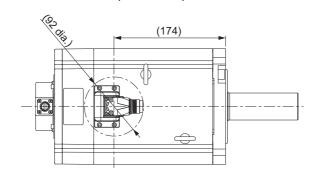
R88M-1M4K015T-B(O/S2/OS2)

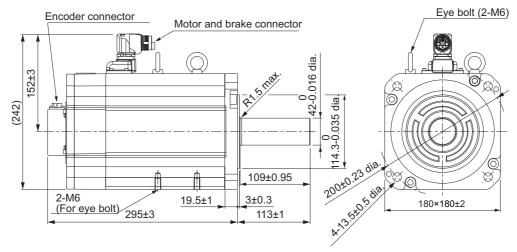

Note The standard shaft type is a straight shaft. Models with a key and tap are indicated with "S2" at the end of the model number.


Models with an oil seal are indicated with "O" at the end of the model number.

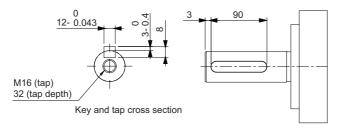
• 5 kW (without Brake)

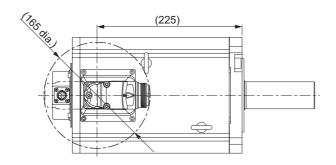

R88M-1M5K015T(-O/-S2/-OS2)

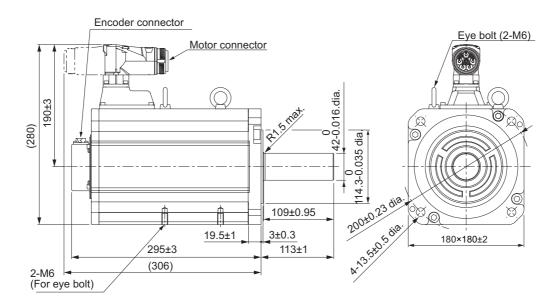

Note The standard shaft type is a straight shaft. Models with a key and tap are indicated with "S2" at the end of the model number.


Models with an oil seal are indicated with "O" at the end of the model number.

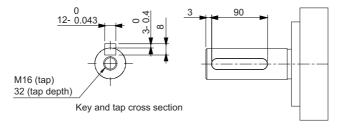
• 5 kW (with Brake)

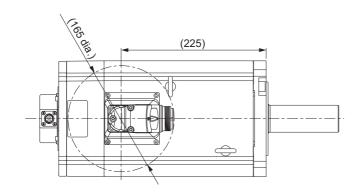

R88M-1M5K015T-B(O/S2/OS2)

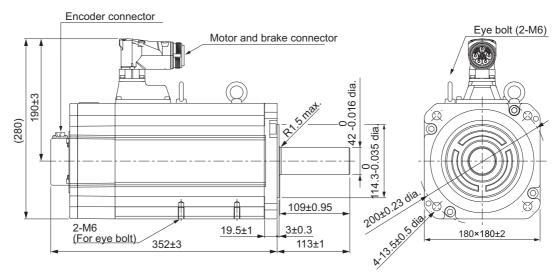

Note The standard shaft type is a straight shaft. Models with a key and tap are indicated with "S2" at the end of the model number.


Models with an oil seal are indicated with "O" at the end of the model number.

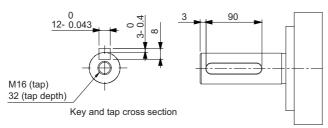
• 7.5 kW (without Brake)

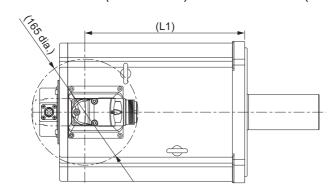

R88M-1M7K515T(-O/-S2/-OS2)

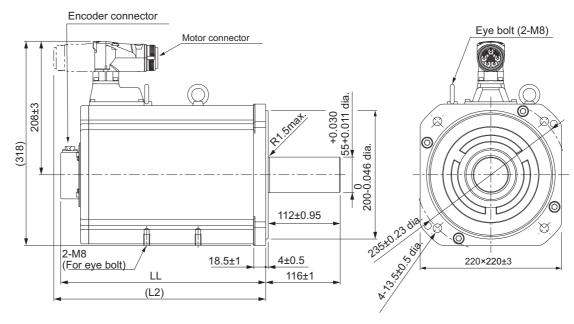

Note The standard shaft type is a straight shaft. Models with a key and tap are indicated with "S2" at the end of the model number.


Models with an oil seal are indicated with "O" at the end of the model number.

• 7.5 kW (with Brake)

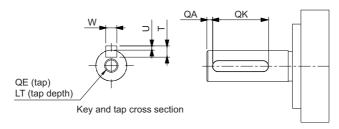

R88M-1M7K515T-B(O/S2/OS2)


Note The standard shaft type is a straight shaft. Models with a key and tap are indicated with "S2" at the end of the model number.


Models with an oil seal are indicated with "O" at the end of the model number.

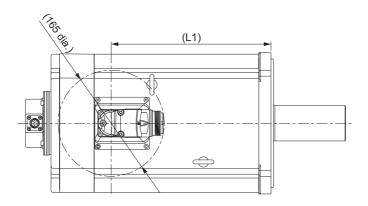
• 11 kW/15 kW (without Brake)

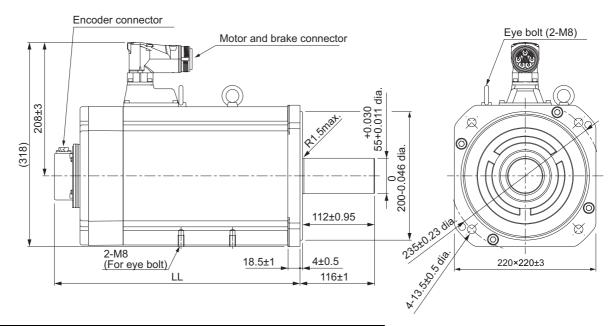
R88M-1M11K015T(-O/-S2/-OS2)/R88M-1M15K015T(-O/-S2/-OS2)



Model	Dimensions [mm]				
Wiodei	LL	L1	L2		
R88M-1M11K015T(-O/-S2/-OS2)	319±3	249	330		
R88M-1M15K015T(-O/-S2/-OS2)	397±3	327	408		

Note The standard shaft type is a straight shaft. Models with a key and tap are indicated with "S2" at the end of the model number.

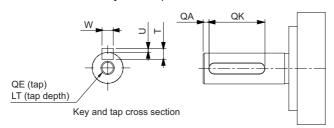

Models with an oil seal are indicated with "O" at the end of the model number.



Model	Dimensions [mm]						
Wiodei	QA	QK	W	Т	U	QE	LT
R88M-1M11K015T(-S2/-OS2)	3	93	0	10	, 0	M20	40
R88M-1M15K015T(-S2/-OS2)			¹⁶ -0.043		⁴ -0.4		

• 11 kW/15 kW (with Brake)

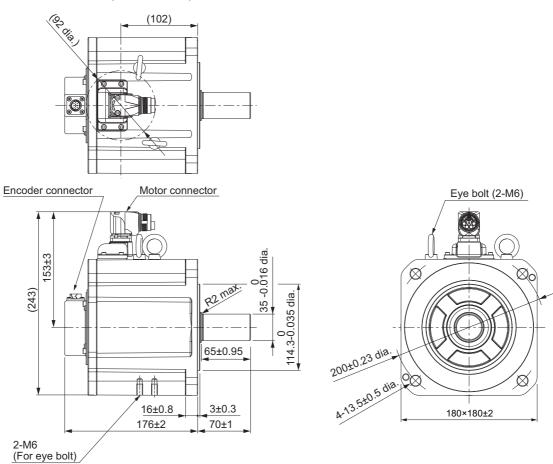
R88M-1M11K015T-B(O/S2/OS2)/R88M-1M15K015T-B(O/S2/OS2)



Model	Dimensions [mm]			
Wiodei	LL	L1		
R88M-1M11K015T-B(O/S2/OS2)	382±3	249		
R88M-1M15K015T-B(O/S2/OS2)	493±3	327		

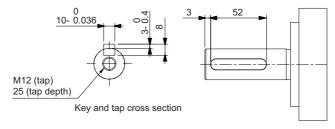
Note The standard shaft type is a straight shaft. Models with a key and tap are indicated with "S2" at the end of the model number.

Models with an oil seal are indicated with "O" at the end of the model number.

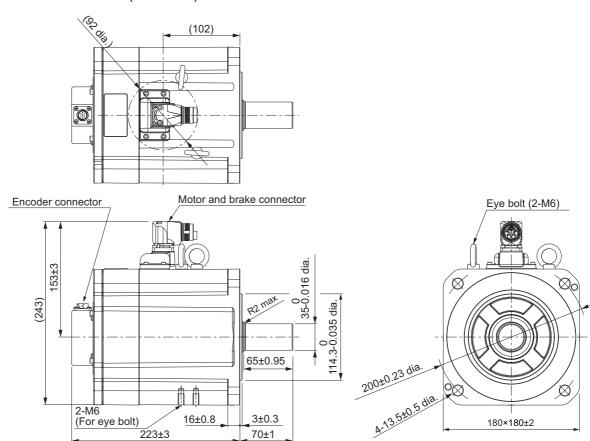


Model	Dimensions [mm]							
Wiodei	QA	QK	W	T	U	QE	LT	
R88M-1M11K015T-B(S2/OS2)	3	93	0	10	, 0	M20	40	
R88M-1M15K015T-B(S2/OS2)			¹⁶ -0.043		⁴ -0.4			

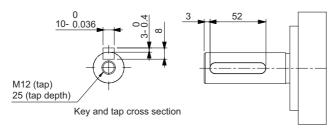
1,500-r/min Servomotors (400 V)


• 4 kW (without Brake)

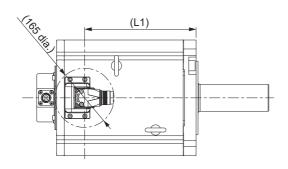
R88M-1M4K015C(-O/-S2/-OS2)

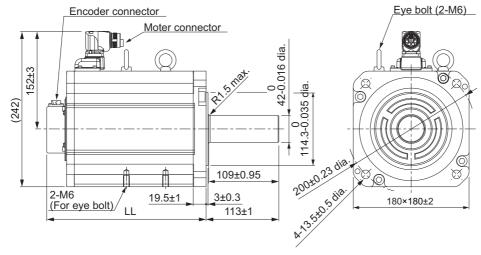

Note The standard shaft type is a straight shaft. Models with a key and tap are indicated with "S2" at the end of the model number.

Models with an oil seal are indicated with "O" at the end of the model number.


• 4 kW (with Brake)

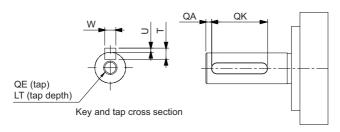
R88M-1M4K015C-B(O/S2/OS2)


Note The standard shaft type is a straight shaft. Models with a key and tap are indicated with "S2" at the end of the model number.


Models with an oil seal are indicated with "O" at the end of the model number.

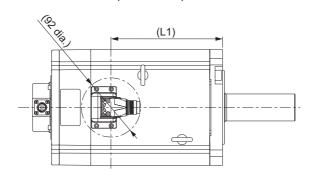
• 5.5 kW/7.5 kW (without Brake)

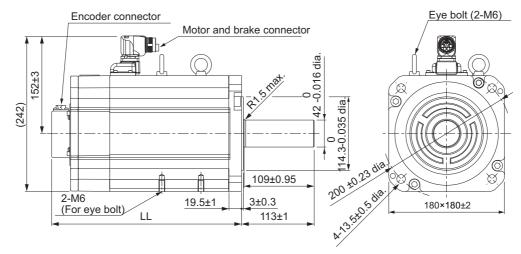
R88M-1M5K515C(-O/-S2/-OS2)/R88M-1M7K515C(-O/-S2/-OS2)



Model	Dimensions [mm]			
Wiodei	LL	L1		
R88M-1M5K515C(-O/-S2/-OS2)	248±3	174		
R88M-1M7K515C(-O/-S2/-OS2)	295±3	221		

Note The standard shaft type is a straight shaft. Models with a key and tap are indicated with "S2" at the end of the model number.

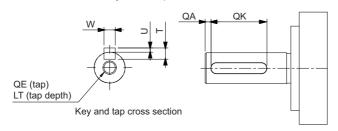

Models with an oil seal are indicated with "O" at the end of the model number.



Model	Dimensions [mm]							
	QA	QK	W	Т	U	QE	LT	
R88M-1M5K515C(-S2/-OS2)	3	90	12 ⁰ -0.043	8	3 -0.4	M16	32	
R88M-1M7K515C(-S2/-OS2)	3	90	12 ⁰ -0.043	8	3 0 -0.4	M16	32	

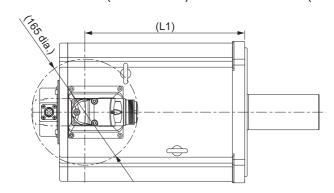
• 5.5 kW/7.5 kW (with Brake)

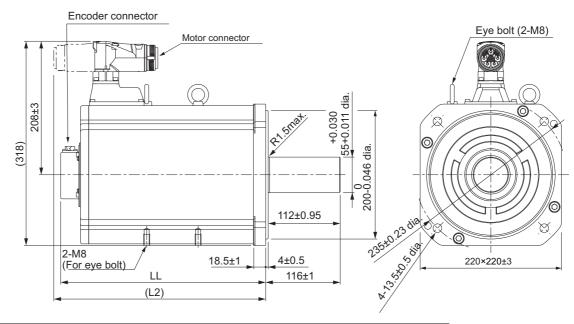
R88M-1M5K515C-B(O/S2/OS2)/R88M-1M7K515C-B(O/S2/OS2)



Model	Dimensions [mm]			
Wiodei	LL	L1		
R88M-1M5K515C-B(O/S2/OS2)	295±3	174		
R88M-1M7K515C-B(O/S2/OS2)	352±3	221		

Note The standard shaft type is a straight shaft. Models with a key and tap are indicated with "S2" at the end of the model number.

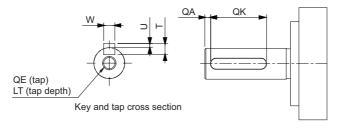

Models with an oil seal are indicated with "O" at the end of the model number.



Model	Dimensions [mm]							
	QA	QK	W	Т	U	QE	LT	
R88M-1M5K515C-B(S2/OS2)	3	90	12 ⁰ -0.043	8	3 0 -0.4	M16	32	
R88M-1M7K515C-B(S2/OS2)	3	90	12 ⁰ -0.043	8	3 0 -0.4	M16	32	

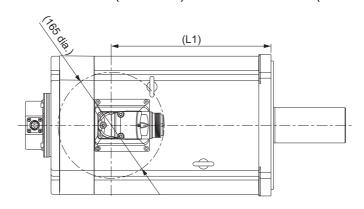
• 11 kW/15 kW (without Brake)

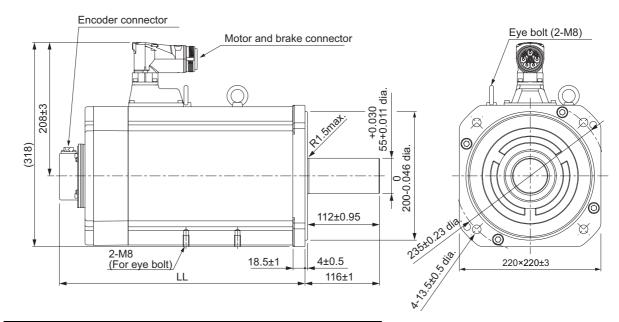
R88M-1M11K015C(-O/-S2/-OS2)/R88M-1M15K015C(-O/-S2/-OS2)



Model	Dimensions [mm]					
Wiodei	LL	L1	L2			
R88M-1M11K015C(-O/-S2/-OS2)	319±3	249	330			
R88M-1M15K515C(-O/-S2/-OS2)	392±3	327	408			

Note The standard shaft type is a straight shaft. Models with a key and tap are indicated with "S2" at the end of the model number.

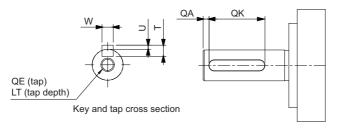

Models with an oil seal are indicated with "O" at the end of the model number.



Model			Dim	ensions [mm]		
Wiodei	QA	QK	W	T	U	QE	LT
R88M-1M11K015C(-S2/-OS2)	3	93	. 0	10	. 0	M20	40
R88M-1M15K015C(-S2/-OS2)			¹⁶ -0.043		4 -0.4		

• 11 kW/15 kW (with Brake)

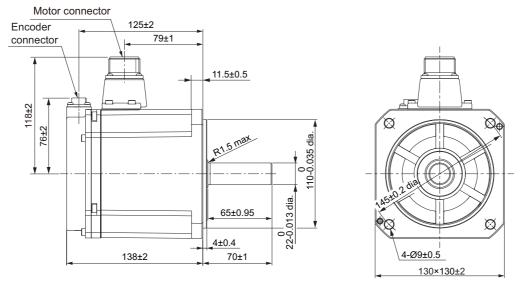
R88M-1M11K015C-B(O/S2/OS2)/R88M-1M15K015C-B(O/S2/OS2)



Model	Dimensions [mm]			
Wiodei	LL	L1		
R88M-1M11K015C-B(O/S2/OS2)	382±3	249		
R88M-1M15K515C-B(O/S2/OS2)	493±3	327		

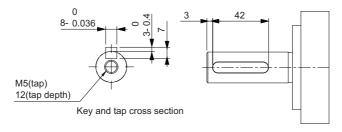
Note The standard shaft type is a straight shaft. Models with a key and tap are indicated with "S2" at the end of the model number.

Models with an oil seal are indicated with "O" at the end of the model number.

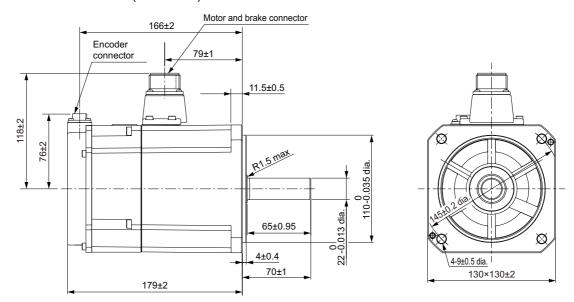


Model			Dim	ensions [ı	nm]		
Wiodei	QA	QK	W	T	U	QE	LT
R88M-1M11K015C-B(S2/OS2)	3	93	0	10	. 0	M20	40
R88M-1M15K015C-B(S2/OS2)			¹⁶ -0.043		4 -0.4		

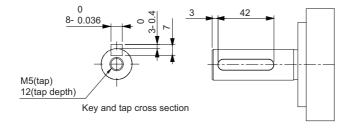
1,000-r/min Servomotors (200 V)


• 900 W (without Brake)

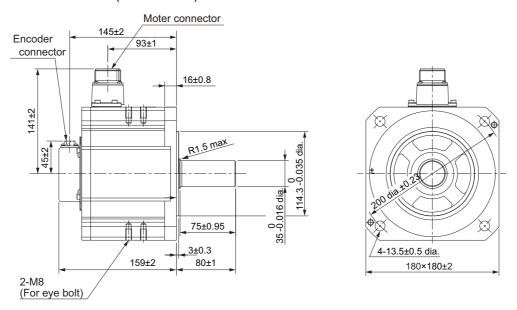
R88M-1M90010T(-O/-S2/-OS2)


Note The standard shaft type is a straight shaft. Models with a key and tap are indicated with "S2" at the end of the model number.

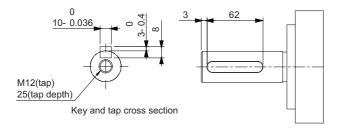
Models with an oil seal are indicated with "O" at the end of the model number.


• 900 W (with Brake)

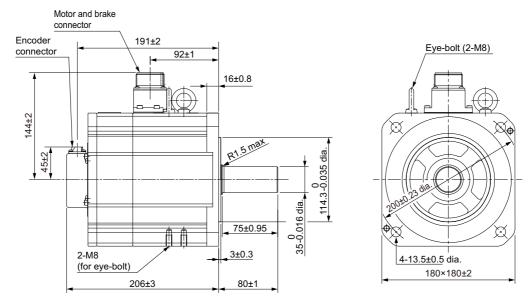
R88M-1M90010T-B(O/S2/OS2)


Note The standard shaft type is a straight shaft. Models with a key and tap are indicated with "S2" at the end of the model number.

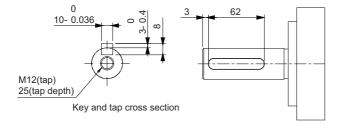
Models with an oil seal are indicated with "O" at the end of the model number.


• 2 kW (without Brake)

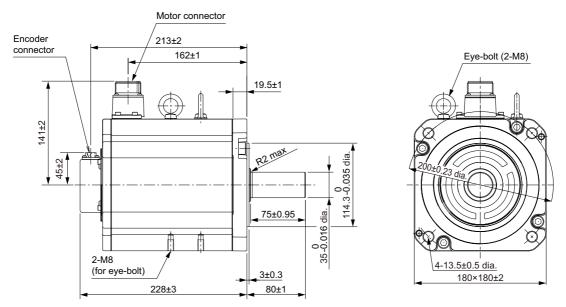
R88M-1M2K010T(-O/-S2/-OS2)


Note The standard shaft type is a straight shaft. Models with a key and tap are indicated with "S2" at the end of the model number.

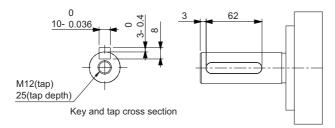
Models with an oil seal are indicated with "O" at the end of the model number.


• 2 kW (with Brake)

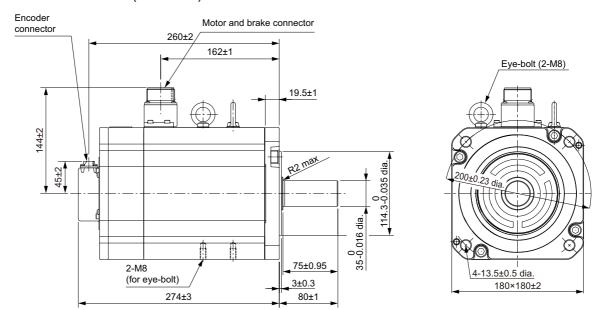
R88M-1M2K010T-B(O/S2/OS2)


Note The standard shaft type is a straight shaft. Models with a key and tap are indicated with "S2" at the end of the model number.

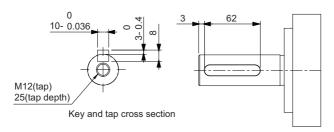
Models with an oil seal are indicated with "O" at the end of the model number.


• 3 kW (without Brake)

R88M-1M3K010T(-O/-S2/-OS2)

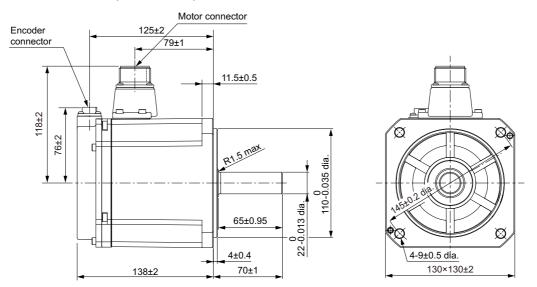

Note The standard shaft type is a straight shaft. Models with a key and tap are indicated with "S2" at the end of the model number.

Models with an oil seal are indicated with "O" at the end of the model number.

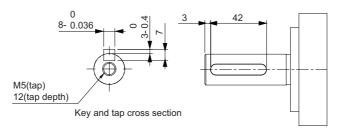

• 3 kW (with Brake)

R88M-1M3K010T-B(O/S2/OS2)

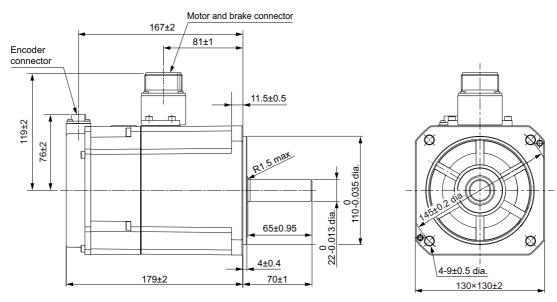
Note The standard shaft type is a straight shaft. Models with a key and tap are indicated with "S2" at the end of the model number.


Models with an oil seal are indicated with "O" at the end of the model number.

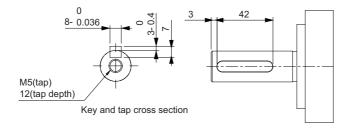
1,000-r/min Servomotors (400 V)


• 900 W (without Brake)

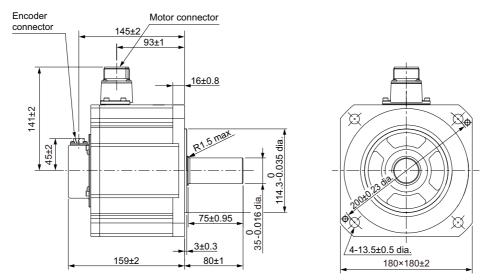
R88M-1M90010C(-O/-S2/-OS2)


Note The standard shaft type is a straight shaft. Models with a key and tap are indicated with "S2" at the end of the model number.

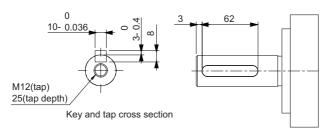
Models with an oil seal are indicated with "O" at the end of the model number.


• 900 W (with Brake)

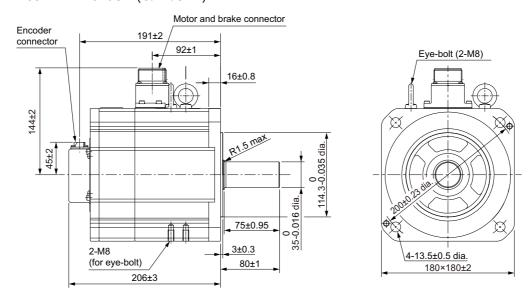
R88M-1M90010C-B(O/S2/OS2)


Note The standard shaft type is a straight shaft. Models with a key and tap are indicated with "S2" at the end of the model number.

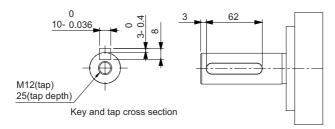
Models with an oil seal are indicated with "O" at the end of the model number.


• 2 kW (without Brake)

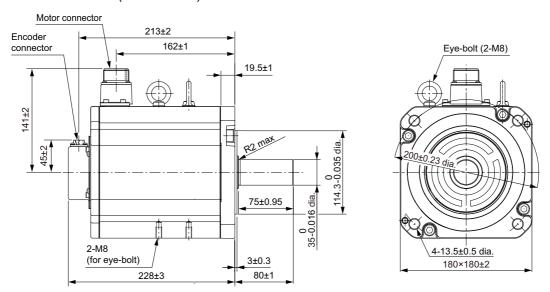
R88M-1M2K010C(-O/-S2/-OS2)


Note The standard shaft type is a straight shaft. Models with a key and tap are indicated with "S2" at the end of the model number.

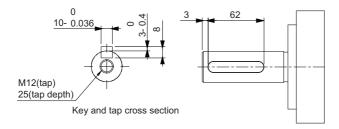
Models with an oil seal are indicated with "O" at the end of the model number.


• 2 kW (with Brake)

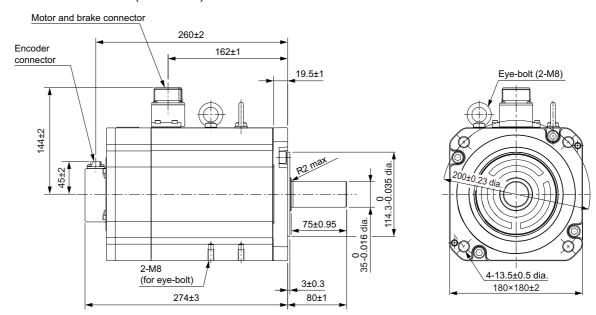
R88M-1M2K010C-B(O/S2/OS2)


Note The standard shaft type is a straight shaft. Models with a key and tap are indicated with "S2" at the end of the model number.

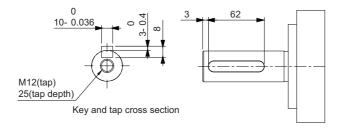
Models with an oil seal are indicated with "O" at the end of the model number.


• 3 kW (without Brake)

R88M-1M3K010C(-O/-S2/-OS2)

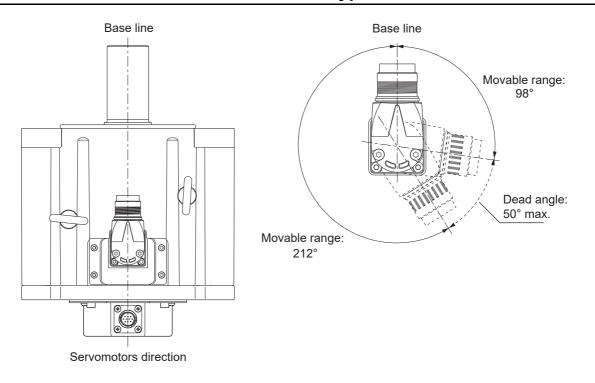

Note The standard shaft type is a straight shaft. Models with a key and tap are indicated with "S2" at the end of the model number.

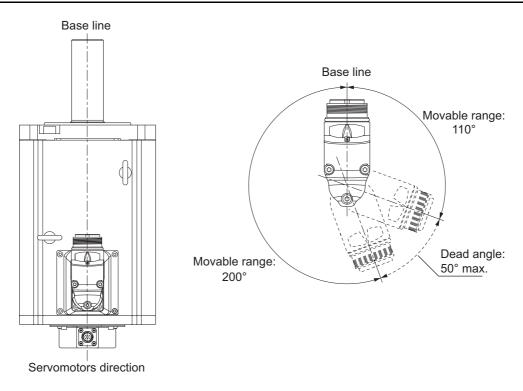
Models with an oil seal are indicated with "O" at the end of the model number.


• 3 kW (with Brake)

R88M-1M3K010C-B(O/S2/OS2)

Note The standard shaft type is a straight shaft. Models with a key and tap are indicated with "S2" at the end of the model number.

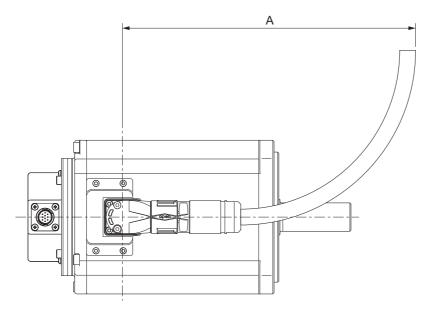

Models with an oil seal are indicated with "O" at the end of the model number.


2-4-3 **Cable Outlet Direction**

The cable outlet direction of the Servomotor for connector type M23 or M40 can be selected. The below shows the selectable range. The change of the cable outlet direction shall be up to five times. For a procedure of the change of the cable outlet direction, refer to 4-2-4 Procedure for Change of Cable Outlet Direction for Connector Type M23 or M40 on page 4-48.

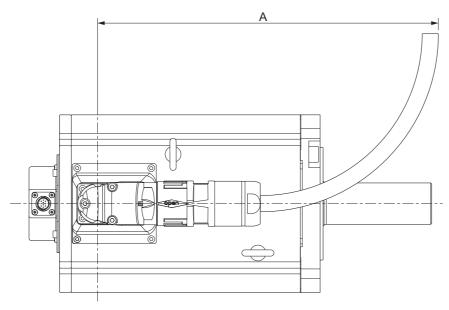
Cable Outlet Direction for Connector Type M23

Cable Outlet Direction for Connector Type M40



2-4-4 Cable Wiring Dimension for a Case of Motor Installing

Cable wiring dimensions are shown below the table when you install a Servomotor for connector type M23 and M40.


The dimensions from the rotation center of the connector to the cable surrounding are indicated as A when you wire a cable with the minimum bending radius (ten times as outer dimension of sheath wire).

Motor for Connector Type M23

Model	Dimension [mm]
WIOGEI	Α
R88M-1L4K030T(-S2/-O/-OS2/-B/-BS2/-BO/-BOS2)	265
R88M-1L4K030C(-S2/-O/-OS2/-B/-BS2/-BO/-BOS2)	
R88M-1L4K730T(-S2/-O/-OS2/-B/-BS2/-BO/-BOS2)	
R88M-1L5K030C(-S2/-O/-OS2/-B/-BS2/-BO/-BOS2)	
R88M-1M4K015T(-S2/-O/-OS2/-B/-BS2/-BO/-BOS2)	
R88M-1M4K015C(-S2/-O/-OS2/-B/-BS2/-BO/-BOS2)	
R88M-1M5K015T(-S2/-O/-OS2/-B/-BS2/-BO/-BOS2)	
R88M-1M5K515C(-S2/-O/-OS2/-B/-BS2/-BO/-BOS2)	
R88M-1M7K515C(-S2/-O/-OS2/-B/-BS2/-BO/-BOS2)	

Motor for Connector Type M40

Model	Dimension [mm]
Wiodei	Α
R88M-1M7K515T(-S2/-O/-OS2/-B/-BS2/-BO/-BOS2)	421
R88M-1M11K015T(-S2/-O/-OS2/-B/-BS2/-BO/-BOS2)	421
R88M-1M11K015C(-S2/-O/-OS2/-B/-BS2/-BO/-BOS2)	356
R88M-1M15K015T(-S2/-O/-OS2/-B/-BS2/-BO/-BOS2)	421
R88M-1M15K015C(-S2/-O/-OS2/-B/-BS2/-BO/-BOS2)	356

2-4-5 Decelerator Dimensions

The following tables show the dimensions of Decelerators.

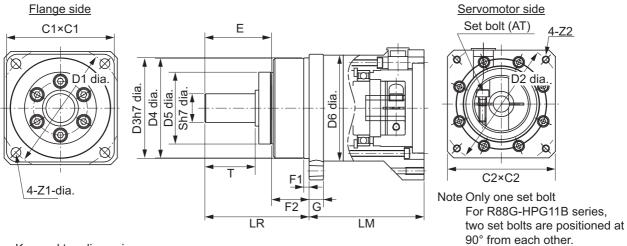
Backlash: 3 Arcminutes Max.

● For 3,000-r/min Servomotors (50 to 200 W)

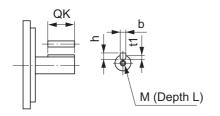
Servo-	Reduc-								Dimen	sions [mm]					
motor rated output	tion ratio	Model	Outline drawing	LM	LR	C1	C2	D1	D2	D3	D4	D5	D6*2	E	F1	F2
50 W	1/21	R88G-HPG14A21100B□	1	64.0	58	60	60 x 60	70	46	56	55.5	40		37	2.5	21
	1/33	R88G-HPG14A33050B□	1	64.0	58	60	60 x 60	70	46	56	55.5	40		37	2.5	21
	1/45	R88G-HPG14A45050B□	1	64.0	58	60	60 x 60	70	46	56	55.5	40		37	2.5	21
100 W	1/5	R88G-HPG11B05100B□	1*1	39.5	42	40	40 x 40	46	46	40	39.5	29		27	2.2	15
	1/11	R88G-HPG14A11100B□	1	64.0	58	60	60 x 60	70	46	56	55.5	40		37	2.5	21
	1/21	R88G-HPG14A21100B□	1	64.0	58	60	60 x 60	70	46	56	55.5	40		37	2.5	21
	1/33	R88G-HPG20A33100B□	2	66.5	80	90	55 dia.	105	46	85	84	59	89	53	7.5	27
	1/45	R88G-HPG20A45100B□	2	66.5	80	90	55 dia.	105	46	85	84	59	89	53	7.5	27
200 W	1/5	R88G-HPG14A05200B□	1	64.0	58	60	60 x 60	70	70	56	55.5	40		37	2.5	21
	1/11	R88G-HPG14A11200B□	1	64.0	58	60	60 x 60	70	70	56	55.5	40		37	2.5	21
	1/21	R88G-HPG20A21200B□	2	71.0	80	90	89 dia.	105	70	85	84	59		53	7.5	27
	1/33	R88G-HPG20A33200B□	2	71.0	80	90	89 dia.	105	70	85	84	59		53	7.5	27
	1/45	R88G-HPG20A45200B□	2	71.0	80	90	89 dia.	105	70	85	84	59		53	7.5	27

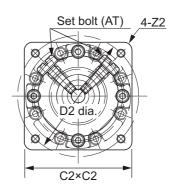
Servo-	Reduc-							Dimension	ıs [mm]					
motor rated	tion	Model	G	s	т	Z1	Z 2	* -*3		K	еу		Ta	ар
output	ratio		G	3	'	21	22	AT ^{*3}	QK	b	h	t1	M	L
50 W	1/21	R88G-HPG14A21100B□	8	16	28	5.5	M4 × 10	М3	25	5	5	3	M4	8
	1/33	R88G-HPG14A33050B□	8	16	28	5.5	M4 × 10	М3	25	5	5	3	M4	8
	1/45	R88G-HPG14A45050B□	8	16	28	5.5	M4 × 10	М3	25	5	5	3	M4	8
100 W	1/5	R88G-HPG11B05100B□	5	8	20	3.4	M4 × 9	М3	15	3	3	1.8	М3	6
	1/11	R88G-HPG14A11100B□	8	16	28	5.5	M4 × 10	М3	25	5	5	3	M4	8
	1/21	R88G-HPG14A21100B□	8	16	28	5.5	M4 × 10	М3	25	5	5	3	M4	8
	1/33	R88G-HPG20A33100B□	10	25	42	9	M4 × 10	M4	36	8	7	4	M6	12
	1/45	R88G-HPG20A45100B□	10	25	42	9	M4 × 10	M4	36	8	7	4	M6	12
200 W	1/5	R88G-HPG14A05200B□	8	16	28	5.5	M4 × 10	M4	25	5	5	3	M4	8
	1/11	R88G-HPG14A11200B□	8	16	28	5.5	M4 × 10	M4	25	5	5	3	M4	8
	1/21	R88G-HPG20A21200B□	10	25	42	9	M4 × 10	M4	36	8	7	4	M6	12
	1/33	R88G-HPG20A33200B□	10	25	42	9	M4 × 10	M4	36	8	7	4	M6	12
	1/45	R88G-HPG20A45200B□	10	25	42	9	M4 × 10	M4	36	8	7	4	M6	12

^{*1.} Two set bolts are positioned at 90° from each other.

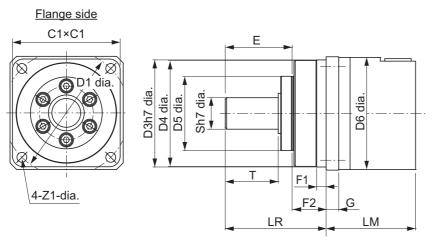

- Note 1. The standard shaft type is a straight shaft.
 - 2. A model with a key and tap is indicated with "J" at \square of the model number. (Example: R88G-HPG11B05100BJ)
 - The diameter of the motor shaft insertion hole is the same as the shaft diameter of the corresponding Servomotor.
 - 4. You cannot use this type of Decelerator for the Servomotor with key.
 - 5. The dimensional drawings in this document are for showing main dimensions only, and they do not give the details of the product shape.

^{*2.} D6 is the maximum diameter of the decelerator body between the flange side and Servomotor side.

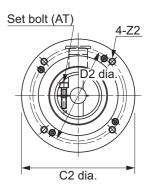

(Refer to the Outline Drawing) The value is given only when the diameter is larger than the diameters of these two sides.

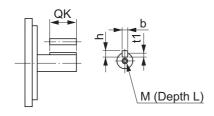

Take heed of this when you mount the decelerator to the machine.

^{*3.} Indicates set bolt.



Key and tap dimensions




Outline Drawing 2

Servomotor side

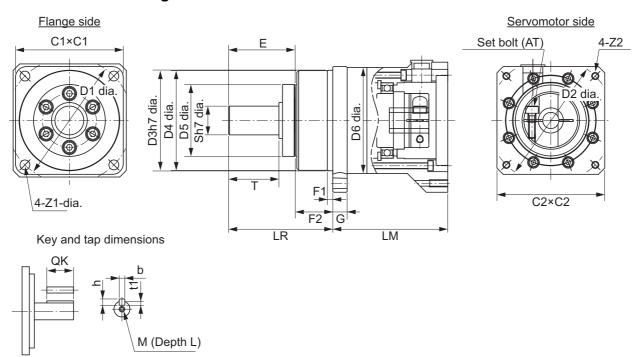
Key and tap dimensions

• For 3,000-r/min Servomotors (400 to 750 W)

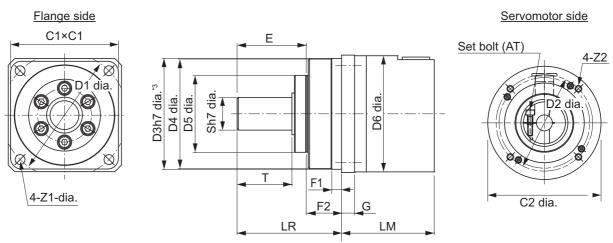
Servo-	Re-								Dimer	nsions	[mm]					
motor rated output	duc- tion ratio	Model	Outline drawing	LM	LR	C1	C2	D1	D2	D3	D4	D5	D6*1	E	F1	F2
400 W	1/5	R88G-HPG14A05400B□	1	64	58	60	60 x 60	70	70	56	55.5	40		37	2.5	21
	1/11	R88G-HPG20A11400B□	2	71	80	90	89 dia.	105	70	85	84	59		53	7.5	27
	1/21	R88G-HPG20A21400B□	2	71	80	90	89 dia.	105	70	85	84	59		53	7.5	27
	1/33	R88G-HPG32A33400B□	2	104	133	120	122 dia.	135	70	115	114	84		98	12.5	35
	1/45	R88G-HPG32A45400B□	2	104	133	120	122 dia.	135	70	115	114	84		98	12.5	35
750 W (200 V)	1/5	R88G-HPG20A05750B□	1	78	80	90	80 x 80	105	90	85	84	59	89	53	7.5	27
(200 V)	1/11	R88G-HPG20A11750B□	1	78	80	90	80 x 80	105	90	85	84	59	89	53	7.5	27
	1/21	R88G-HPG32A21750B□	2	104	133	120	122 dia.	135	90	115	114	84		98	12.5	35
	1/33	R88G-HPG32A33750B□	2	104	133	120	122 dia.	135	90	115	114	84		98	12.5	35
	1/45	R88G-HPG32A45750B□	2	104	133	120	122 dia.	135	90	115	114	84		98	12.5	35
750 W (400 V)	1/5	R88G-HPG32A052K0B□	2	110	133	120	135 dia.	135	115	115	114	84		98	12.5	35
	1/11	R88G-HPG32A112K0B□	2	110	133	120	135 dia.	135	115	115	114	84		98	12.5	35
	1/21	R88G-HPG32A211K5B□	2	110	133	120	135 dia.	135	115	115	114	84		98	12.5	35
	1/33	R88G-HPG32A33600SB	2	110	133	120	135 dia.	135	115	115	114	84		98	12.5	35
	1/45	R88G-HPG50A451K5B□	2	123	156	170	170 dia.	190	115	165	163	122		103	12	53

Servo-	Re-						D	imension	s [mm]					
motor rated	duc- tion	Model			т	74	70	*?		K	ey		Ta	ар
output	ratio		G	S	'	Z1	Z2	AT ^{*2}	QK	b	h	t1	М	L
400 W	1/5	R88G-HPG14A05400B□	8	16	28	5.5	M4 × 10	M4	25	5	5	3	M4	8
	1/11	R88G-HPG20A11400B□	10	25	42	9	M4 × 10	M4	36	8	7	4	M6	12
	1/21	R88G-HPG20A21400B□	10	25	42	9	M4 × 10	M4	36	8	7	4	M6	12
	1/33	R88G-HPG32A33400B□	13	40	82	11	M4 × 10	M4	70	12	8	5	M10	20
	1/45	R88G-HPG32A45400B□	13	40	82	11	M4 × 10	M4	70	12	8	5	M10	20
750 W	1/5	R88G-HPG20A05750B□	10	25	42	9	M5 × 12	M4	36	8	7	4	M6	12
(200 V)	1/11	R88G-HPG20A11750B□	10	25	42	9	M5 × 12	M4	36	8	7	4	M6	12
	1/21	R88G-HPG32A21750B□	13	40	82	11	M5 × 12	M6	70	12	8	5	M10	20
	1/33	R88G-HPG32A33750B□	13	40	82	11	M5 × 12	M6	70	12	8	5	M10	20
	1/45	R88G-HPG32A45750B□	13	40	82	11	M5 × 12	M6	70	12	8	5	M10	20
750 W	1/5	R88G-HPG32A052K0B□	13	40	82	11	M8 × 10	M6	70	12	8	5	M10	20
(400 V)	1/11	R88G-HPG32A112K0B□	13	40	82	11	M8 × 10	M6	70	12	8	5	M10	20
	1/21	R88G-HPG32A211K5B□	13	40	82	11	M8 × 10	M6	70	12	8	5	M10	20
	1/33	R88G-HPG32A33600SB□	13	40	82	11	M8 × 10	M6	70	12	8	5	M10	20
	1/45	R88G-HPG50A451K5B□	16	50	82	14	M8 × 10	M6	70	14	9	5.5	M10	20

^{*1.} D6 is the maximum diameter of the decelerator body between the flange side and Servomotor side.

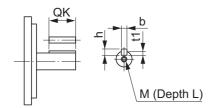

(Refer to the Outline Drawing) The value is given only when the diameter is larger than the diameters of these two sides.

Take heed of this when you mount the decelerator to the machine.


*2. Indicates set bolt.

- Note 1. The standard shaft type is a straight shaft.
 - 2. A model with a key and tap is indicated with "J" at \square of the model number. (Example: R88G-HPG14A05400BJ)
 - 3. The diameter of the motor shaft insertion hole is the same as the shaft diameter of the corresponding Servomotor.

- 4. You cannot use this type of Decelerator for the Servomotor with key.
- 5. The dimensional drawings in this document are for showing main dimensions only, and they do not give the details of the product shape.

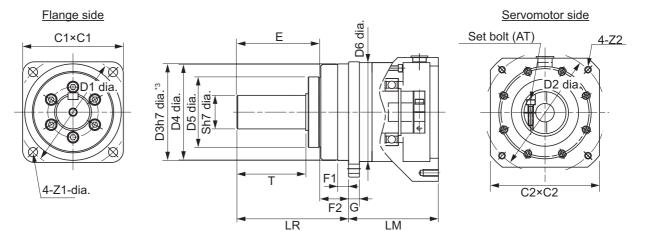


Outline Drawing 2

Key and tap dimensions

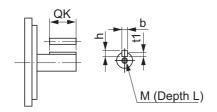
*3. The tolerance is "h8" for R88G-HPG50□.

• For 3,000-r/min Servomotors (1 to 5 kW)

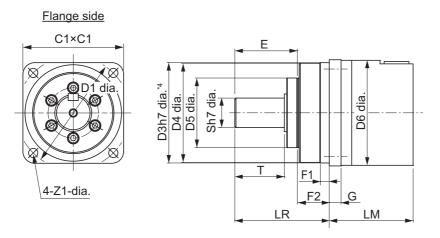

Servo-	Re-								Dimen	sions [ı	mm]					
motor rated output	duc- tion ratio	Model	Outline drawing	LM	LR	C1	C2	D1	D2	D3	D4	D5	D6*1	E	F1	F2
1 kW	1/5	R88G-HPG32A052K0B□	2	110	133	120	135 dia.	135	115	115	114	84		98	12.5	35
	1/11	R88G-HPG32A112K0B□	2	110	133	120	135 dia.	135	115	115	114	84		98	12.5	35
	1/21	R88G-HPG32A211K5B□	2	110	133	120	135 dia.	135	115	115	114	84		98	12.5	35
	1/33	R88G-HPG50A332K0B□	2	123	156	170	170 dia.	190	115	165	163	122		103	12	53
	1/45	R88G-HPG50A451K5B□	2	123	156	170	170 dia.	190	115	165	163	122		103	12	53
1.5 kW	1/5	R88G-HPG32A052K0B□	2	110	133	120	135 dia.	135	115	115	114	84		98	12.5	35
	1/11	R88G-HPG32A112K0B□	2	110	133	120	135 dia.	135	115	115	114	84		98	12.5	35
	1/21	R88G-HPG32A211K5B□	2	110	133	120	135 dia.	135	115	115	114	84		98	12.5	35
	1/33	R88G-HPG50A332K0B□	2	123	156	170	170 dia.	190	115	165	163	122		103	12	53
	1/45	R88G-HPG50A451K5B□	2	123	156	170	170 dia.	190	115	165	163	122		103	12	53
2 kW	1/5	R88G-HPG32A052K0B□	2	110	133	120	135 dia.	135	115	115	114	84		98	12.5	35
	1/11	R88G-HPG32A112K0B□	2	110	133	120	135 dia.	135	115	115	114	84		98	12.5	35
	1/21	R88G-HPG50A212K0B□	2	123	156	170	170 dia.	190	115	165	163	122		103	12	53
	1/33	R88G-HPG50A332K0B□	2	123	156	170	170 dia.	190	115	165	163	122		103	12	53
3 kW	1/5	R88G-HPG32A053K0B□	1	107	133	120	130 x 130	135	145	115	114	84		98	12.5	35
	1/11	R88G-HPG50A113K0B□	2	123	156	170	170 dia.	190	145	165	163	122		103	12	53
	1/21	R88G-HPG50A213K0B□	2	123	156	170	170 dia.	190	145	165	163	122		103	12	53
4 kW	1/5	R88G-HPG32A054K0B□	1	129	133	120	130 x 130	135	145	115	114	84		98	12.5	35
	1/11	R88G-HPG50A115K0B□	1	149	156	170	130 x 130	190	145	165	163	122	170	103	12	53
4.7 kW	1/5	R88G-HPG50A055K0B□	1	149	156	170	130 x 130	190	145	165	163	122	170	103	12	53
5 kW	1/11	R88G-HPG50A115K0B□	1	149	156	170	130 x 130	190	145	165	163	122	170	103	12	53

Servo-	Re-						[Dimension	s [mm]					
motor rated	duc- tion	Model	G	s	т	Z1	Z 2	AT *2		K	еу		Ta	ар
output	ratio		6	3	'	21	22	Al -	QK	b	h	t1	M	L
1 kW	1/5	R88G-HPG32A052K0B□	13	40	82	11	M8 × 10	M6	70	12	8	5	M10	20
	1/11	R88G-HPG32A112K0B□	13	40	82	11	M8 × 10	M6	70	12	8	5	M10	20
	1/21	R88G-HPG32A211K5B□	13	40	82	11	M8 × 10	M6	70	12	8	5	M10	20
	1/33	R88G-HPG50A332K0B□	16	50	82	14	M8 × 10	M6	70	14	9	5.5	M10	20
	1/45	R88G-HPG50A451K5B□	16	50	82	14	M8 × 10	M6	70	14	9	5.5	M10	20
1.5 kW	1/5	R88G-HPG32A052K0B□	13	40	82	11	M8 × 10	M6	70	12	8	5	M10	20
	1/11	R88G-HPG32A112K0B□	13	40	82	11	M8 × 10	M6	70	12	8	5	M10	20
	1/21	R88G-HPG32A211K5B□	13	40	82	11	M8 × 10	M6	70	12	8	5	M10	20
	1/33	R88G-HPG50A332K0B□	16	50	82	14	M8 × 10	M6	70	14	9	5.5	M10	20
	1/45	R88G-HPG50A451K5B□	16	50	82	14	M8 × 10	M6	70	14	9	5.5	M10	20
2 kW	1/5	R88G-HPG32A052K0B□	13	40	82	11	M8 × 10	M6	70	12	8	5	M10	20
	1/11	R88G-HPG32A112K0B□	13	40	82	11	M8 × 10	M6	70	12	8	5	M10	20
	1/21	R88G-HPG50A212K0B□	16	50	82	14	M8 × 10	M6	70	14	9	5.5	M10	20
	1/33	R88G-HPG50A332K0B□	16	50	82	14	M8 × 10	M6	70	14	9	5.5	M10	20
3 kW	1/5	R88G-HPG32A053K0B□	13	40	82	11	M8 × 18	M6	70	12	8	5	M10	20
	1/11	R88G-HPG50A113K0B□	16	50	82	14	M8 × 16	M6	70	14	9	5.5	M10	20
	1/21	R88G-HPG50A213K0B□	16	50	82	14	M8 × 16	M6	70	14	9	5.5	M10	20
4 kW	1/5	R88G-HPG32A054K0B□	13	40	82	11	M8 × 25	M6	70	12	8	5	M10	20
	1/11	R88G-HPG50A115K0B□	16	50	82	14	M8 × 25	M6	70	14	9	5.5	M10	20
4.7 kW	1/5	R88G-HPG50A055K0B□	16	50	82	14	M8 × 25	M6	70	14	9	5.5	M10	20
5 kW	1/11	R88G-HPG50A115K0B□	16	50	82	14	M8 × 25	M6	70	14	9	5.5	M10	20

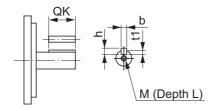
^{*1.} D6 is the maximum diameter of the decelerator body between the flange side and Servomotor side. (Refer to the Outline Drawing) The value is given only when the diameter is larger than the diameters of these two sides. Take heed of this when you mount the decelerator to the machine.

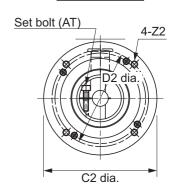

*2. Indicates set bolt.

- Note 1. The standard shaft type is a straight shaft.
 - 2. A model with a key and tap is indicated with "J" at \square of the model number. (Example: R88G-HPG32A052K0BJ)
 - 3. The diameter of the motor shaft insertion hole is the same as the shaft diameter of the corresponding Servomotor.
 - 4. You cannot use this type of Decelerator for the Servomotor with key.
 - 5. The dimensional drawings in this document are for showing main dimensions only, and they do not give the details of the product shape.



Key and tap dimensions

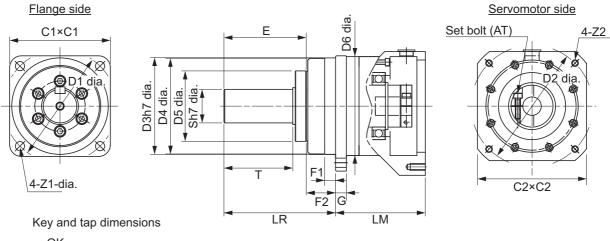

*3. The tolerance is "h8" for R88G-HPG50□.

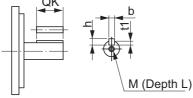

Outline Drawing 2

Key and tap dimensions $^{\star}4$. The tolerance is "h8" for R88G-HPG50 \square .

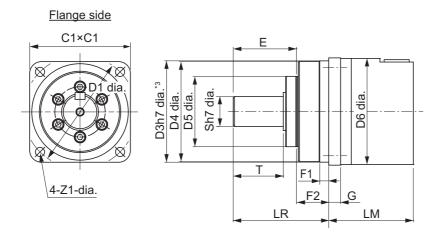
Servomotor side

• For 2,000-r/min Servomotors (400 W to 1 kW)

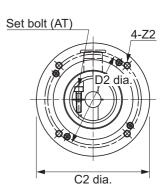

Servo-	Re-								Dimen	sions [mm]					
motor rated output	duc- tion ratio	Model	Outline drawing	LM	LR	C1	C2	D1	D2	D3	D4	D5	D6*1	E	F1	F2
400 W	1/5	R88G-HPG32A052K0B□	2	110	133	120	135 dia.	135	115	115	114	84		98	12.5	35
(400 V)	1/11	R88G-HPG32A112K0B□	2	110	133	120	135 dia.	135	115	115	114	84		98	12.5	35
	1/21	R88G-HPG32A211K5B□	2	110	133	120	135 dia.	135	115	115	114	84		98	12.5	35
	1/33	R88G-HPG32A33600SB□	2	110	133	120	135 dia.	135	115	115	114	84		98	12.5	35
	1/45	R88G-HPG32A45400SB□	2	110	133	120	135 dia.	135	115	115	114	84		98	12.5	35
600 W	1/5	R88G-HPG32A052K0B□	2	110	133	120	135 dia.	135	115	115	114	84		98	12.5	35
(400 V)	1/11	R88G-HPG32A112K0B□	2	110	133	120	135 dia.	135	115	115	114	84		98	12.5	35
	1/21	R88G-HPG32A211K5B□	2	110	133	120	135 dia.	135	115	115	114	84		98	12.5	35
	1/33	R88G-HPG32A33600SB□	2	110	133	120	135 dia.	135	115	115	114	84		98	12.5	35
	1/45	R88G-HPG50A451K5B□	2	123	156	170	170 dia.	190	115	165	163	122		103	12	53
1 kW	1/5	R88G-HPG32A053K0B□	1	107	133	120	130 x 130	135	145	115	114	84		98	12.5	35
	1/11	R88G-HPG32A112K0SB□	1	107	133	120	130 x 130	135	145	115	114	84		98	12.5	35
	1/21	R88G-HPG32A211K0SB□	1	107	133	120	130 x 130	135	145	115	114	84		98	12.5	35
	1/33	R88G-HPG50A332K0SB□	2	123	156	170	170 dia.	190	145	165	163	122		103	12	53
	1/45	R88G-HPG50A451K0SB□	2	123	156	170	170 dia.	190	145	165	163	122		103	12	53

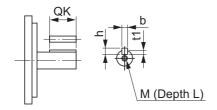

Servo-	Re-							Dimensio	ns [mm]					
motor rated	duc- tion	Model	G	s	т	Z1	Z 2	.=*2		K	ey		Ta	ар
output	ratio		G	3	'	21	22	AT*2	QK	b	h	t1	M	L
400 W	1/5	R88G-HPG32A052K0B□	13	40	82	11	M8 × 10	M6	70	12	8	5	M10	20
(400 V)	1/11	R88G-HPG32A112K0B□	13	40	82	11	M8 × 10	M6	70	12	8	5	M10	20
	1/21	R88G-HPG32A211K5B□	13	40	82	11	M8 × 10	M6	70	12	8	5	M10	20
	1/33	R88G-HPG32A33600SB□	13	40	82	11	M8 × 10	M6	70	12	8	5	M10	20
	1/45	R88G-HPG32A45400SB□	13	40	82	11	M8 × 10	M6	70	12	8	5	M10	20
600 W	1/5	R88G-HPG32A052K0B□	13	40	82	11	M8 × 10	M6	70	12	8	5	M10	20
(400 V)	1/11	R88G-HPG32A112K0B□	13	40	82	11	M8 × 10	M6	70	12	8	5	M10	20
	1/21	R88G-HPG32A211K5B□	13	40	82	11	M8 × 10	M6	70	12	8	5	M10	20
	1/33	R88G-HPG32A33600SB□	13	40	82	11	M8 × 10	M6	70	12	8	5	M10	20
	1/45	R88G-HPG50A451K5B□	16	50	82	14	M8 × 10	M6	70	14	9	5.5	M10	20
1 kW	1/5	R88G-HPG32A053K0B□	13	40	82	11	M8 × 18	M6	70	12	8	5	M10	20
	1/11	R88G-HPG32A112K0SB□	13	40	82	11	M8 × 18	M6	70	12	8	5	M10	20
	1/21	R88G-HPG32A211K0SB□	13	40	82	11	M8 × 18	M6	70	12	8	5	M10	20
	1/33	R88G-HPG50A332K0SB□	16	50	82	14	M8 × 16	M6	70	14	9	5.5	M10	20
	1/45	R88G-HPG50A451K0SB□	16	50	82	14	M8 × 16	M6	70	14	9	5.5	M10	20

^{*1.} D6 is the maximum diameter of the decelerator body between the flange side and Servomotor side. (Refer to the Outline Drawing) The value is given only when the diameter is larger than the diameters of these two sides. Take heed of this when you mount the decelerator to the machine.


*2. Indicates set bolt.

- Note 1. The standard shaft type is a straight shaft.
 - 2. A model with a key and tap is indicated with "J" at \square of the model number. (Example: R88G-HPG32A052K0BJ)
 - 3. The diameter of the motor shaft insertion hole is the same as the shaft diameter of the corresponding Servomotor.
 - 4. You cannot use this type of Decelerator for the Servomotor with key.
 - 5. The dimensional drawings in this document are for showing main dimensions only, and they do not give the details of the product shape.

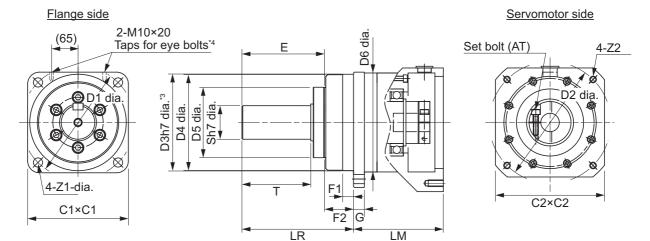



Outline Drawing 2

Servomotor side

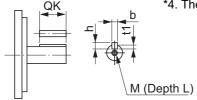
Key and tap dimensions *3. The tolerance is "h8" for R88G-HPG50 \square .

• For 2,000-r/min Servomotors (1.5 to 3 kW)

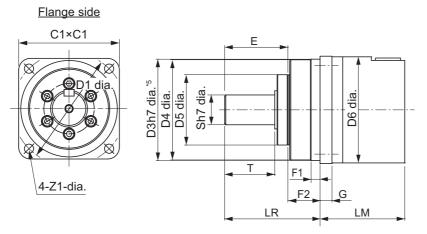

Servo-	Re-								Dimen	sions	[mm]					
motor rated output	duc- tion ratio	Model	Outline drawing	LM	LR	C1	C2	D1	D2	D3	D4	D5	D6*1	E	F1	F2
1.5 kW	1/5	R88G-HPG32A053K0B□	1	107	133	120	130 x 130	135	145	115	114	84		98	12.5	35
	1/11	R88G-HPG32A112K0SB□	1	107	133	120	130 x 130	135	145	115	114	84		98	12.5	35
	1/21	R88G-HPG50A213K0B□	2	123	156	170	170 dia.	190	145	165	163	122		103	12	53
	1/33	R88G-HPG50A332K0SB□	2	123	156	170	170 dia.	190	145	165	163	122		103	12	53
2 kW	1/5	R88G-HPG32A053K0B□	1	107	133	120	130 x 130	135	145	115	114	84		98	12.5	35
	1/11	R88G-HPG32A112K0SB□	1	107	133	120	130 x 130	135	145	115	114	84		98	12.5	35
	1/21	R88G-HPG50A213K0B□	2	123	156	170	170 dia.	190	145	165	163	122		103	12	53
	1/33	R88G-HPG50A332K0SB□	2	123	156	170	170 dia.	190	145	165	163	122		103	12	53
3 kW	1/5	R88G-HPG32A054K0B□	1	129	133	120	130 x 130	135	145	115	114	84		98	12.5	35
	1/11	R88G-HPG50A115K0B□	1	149	156	170	130 x 130	190	145	165	163	122	170	103	12	53
	1/21	R88G-HPG50A213K0SB□	1	149	156	170	130 x 130	190	145	165	163	122	170	103	12	53
	1/25	R88G-HPG65A253K0SB□	1	231	222	230	130 x 130	260	145	220	214	168	220	165	12	57

Servo-	Re-						D	imensior	ns [mm]					
motor rated	duc- tion	Model	G	s	_	Z1	Z 2	AT *2		K	ey		Ta	ар
output	ratio		6	3	'	21	22	AT ²	QK	b	h	t1	M	L
1.5 kW	1/5	R88G-HPG32A053K0B□	13	40	82	11	M8 × 18	M6	70	12	8	5	M10	20
	1/11	R88G-HPG32A112K0SB□	13	40	82	11	M8 × 18	М6	70	12	8	5	M10	20
	1/21	R88G-HPG50A213K0B□	16	50	82	14	M8 × 16	M6	70	14	9	5.5	M10	20
	1/33	R88G-HPG50A332K0SB□	16	50	82	14	M8 × 16	M6	70	14	9	5.5	M10	20
2 kW	1/5	R88G-HPG32A053K0B□	13	40	82	11	M8 × 18	M6	70	12	8	5	M10	20
	1/11	R88G-HPG32A112K0SB□	13	40	82	11	M8 × 18	M6	70	12	8	5	M10	20
	1/21	R88G-HPG50A213K0B□	16	50	82	14	M8 × 16	М6	70	14	9	5.5	M10	20
	1/33	R88G-HPG50A332K0SB□	16	50	82	14	M8 × 16	M6	70	14	9	5.5	M10	20
3 kW	1/5	R88G-HPG32A054K0B□	13	40	82	11	M8 × 25	M6	70	12	8	5	M10	20
	1/11	R88G-HPG50A115K0B□	16	50	82	14	M8 × 25	M6	70	14	9	5.5	M10	20
	1/21	R88G-HPG50A213K0SB□	16	50	82	14	M8 × 25	M6	70	14	9	5.5	M10	20
	1/25	R88G-HPG65A253K0SB□	25	80	130	18	M8 × 25	M8	110	22	14	9	M16	35

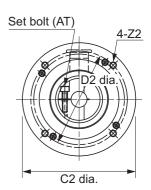
^{*1.} D6 is the maximum diameter of the decelerator body between the flange side and Servomotor side. (Refer to the Outline Drawing) The value is given only when the diameter is larger than the diameters of these two sides. Take heed of this when you mount the decelerator to the machine.


*2. Indicates set bolt.

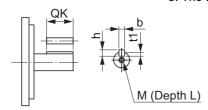
- Note 1. The standard shaft type is a straight shaft.
 - 2. A model with a key and tap is indicated with "J" at \square of the model number. (Example: R88G-HPG32A053K0BJ)
 - 3. The diameter of the motor shaft insertion hole is the same as the shaft diameter of the corresponding
 - 4. You cannot use this type of Decelerator for the Servomotor with key.
 - 5. The dimensional drawings in this document are for showing main dimensions only, and they do not give the details of the product shape.



Key and tap dimensions


- *3. The tolerance is "h8" for R88G-HPG50□ and R88G-HPG65□.
- *4. The model R88G-HPG65□ has the taps for eye bolts.

Outline Drawing 2

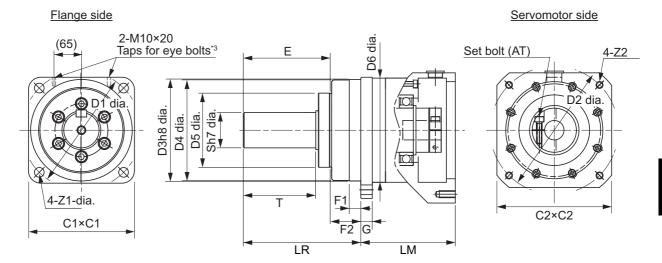


Servomotor side

Key and tap dimensions

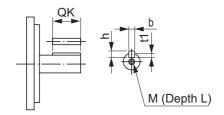
*5. The tolerance is "h8" for R88G-HPG50□.

• For 1,500-r/min Servomotors (4 kW to 5.5 kW)


Servo-	Re-								Dimens	ions [n	nm]					
motor rated output	duc- tion ratio	Model	Outline drawing	LM	LR	C1	C2	D1	D2	D3	D4	D5	D6*1	E	F1	F2
4 kW	1/5	R88G-HPG50A055 K0SB□	1	149	156	170	180 x 180	190	200	165	163	122		103	12	53
	1/11	R88G-HPG50A115 K0SB□	1	149	156	170	180 x 180	190	200	165	163	122		103	12	53
	1/20	R88G-HPG65A205 K0SB□	1	231	222	230	180 x 180	260	200	220	214	168	220	165	12	57
	1/25	R88G-HPG65A255 K0SB□	1	231	222	230	180 x 180	260	200	220	214	168	220	165	12	57
5 kW 5.5 kW	1/5	R88G-HPG50A054 K5TB□	1	149	156	170	180 x 180	190	200	165	163	122		103	12	53
	1/12	R88G-HPG65A127 K5SB□	1	245.5	222	230	180 x 180	260	200	220	214	168	220	165	12	57
	1/20	R88G-HPG65A204 K5TB□	1	254.5	222	230	180 x 180	260	200	220	214	168	220	165	12	57

Servo-	Re-		Dimensions [mm]												
motor rated	duc- tion	Model	G	S	_	Z 1	Z2	AT *2		K	Тар				
output	ratio		G	3	•				QK	b	h	t1	M	L	
4 kW	1/5	R88G-HPG50A055K0SB□	16	50	82	14	M12× 25	M6	70	14	9	5.5	M10	20	
	1/11	R88G-HPG50A115K0SB□	16	50	82	14	M12× 25	M6	70	14	9	5.5	M10	20	
	1/20	R88G-HPG65A205K0SB□	25	80	130	18	M12× 25	M8	110	22	14	9	M16	35	
	1/25	R88G-HPG65A255K0SB□	25	80	130	18	M12× 25	M8	110	22	14	9	M16	35	
5 kW	1/5	R88G-HPG50A054K5TB□		50	82	14	M12× 25	M6	70	14	9	5.5	M10	20	
5.5 kW	1/12	R88G-HPG65A127K5SB□	25	80	130	18	M12× 25	M8	110	22	14	9	M16	35	
	1/20	R88G-HPG65A204K5TB□	25	80	130	18	M12× 25	M8	110	22	14	9	M16	35	

^{*1.} D6 is the maximum diameter of the decelerator body between the flange side and Servomotor side. (Refer to the Outline Drawing) The value is given only when the diameter is larger than the diameters of these two sides. Take heed of this when you mount the decelerator to the machine.

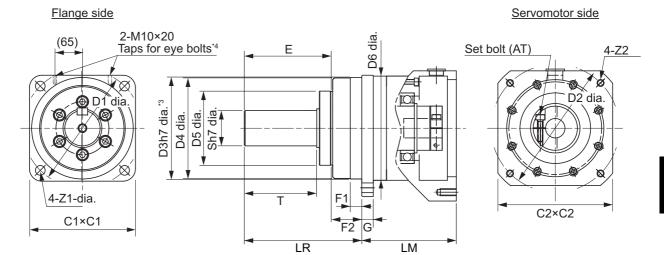

*2. Indicates set bolt.

- Note 1. The standard shaft type is a straight shaft.
 - 2. A model with a key and tap is indicated with "J" at □ of the model number. (Example: R88G-HPG50A055K0SBJ)
 - 3. The diameter of the motor shaft insertion hole is the same as the shaft diameter of the corresponding Servomotor.
 - 4. You cannot use this type of Decelerator for the Servomotor with key.
 - 5. The dimensional drawings in this document are for showing main dimensions only, and they do not give the details of the product shape.

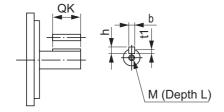
Key and tap dimensions

*3. The model R88G-HPG65 \square has the taps for eye bolts.

• For 1,000-r/min Servomotors (900 W to 3 kW)


Servo-	Re-	Model	Outline drawing	Dimensions [mm]												
motor rated output	duc- tion ratio			LM	LR	C1	C2	D1	D2	D3	D4	D5	D6*1	E	F1	F2
900 W	1/5	R88G-HPG32A05900TB□	1	129	133	120	130 x 130	135	145	115	114	84		98	12.5	35
	1/11	R88G-HPG32A11900TB□	1	129	133	120	130 x 130	135	145	115	114	84		98	12.5	35
	1/21	R88G-HPG50A21900TB□	1	149	156	170	130 x 130	190	145	165	163	122	170	103	12	53
	1/33	R88G-HPG50A33900TB□	1	149	156	170	130 x 130	190	145	165	163	122	170	103	12	53
2 kW	1/5	R88G-HPG32A052K0TB□	1	129	133	120	180 x 180	135	200	115	114	84		98	12.5	35
	1/11	R88G-HPG50A112K0TB□	1	149	156	170	180 x 180	190	200	165	163	122		103	12	53
	1/21	R88G-HPG50A212K0TB□	1	149	156	170	180 x 180	190	200	165	163	122		103	12	53
	1/25	R88G-HPG65A255K0SB□	1	231	222	230	180 x 180	260	200	220	214	168	220	165	12	57
3 kW	1/5	R88G-HPG50A055K0SB□	1	149	156	170	180 x 180	190	200	165	163	122		103	12	53
	1/11	R88G-HPG50A115K0SB□	1	149	156	170	180 x 180	190	200	165	163	122		103	12	53
	1/20	R88G-HPG65A205K0SB□	1	231	222	230	180 x 180	260	200	220	214	168	220	165	12	57
	1/25	R88G-HPG65A255K0SB□	1	231	222	230	180 x 180	260	200	220	214	168	220	165	12	57

Servo-	Re-		Dimensions [mm]												
motor rated	duc- tion	Model	G	s		Z1	Z2	AT *2		K	Тар				
output	ratio		G	3		21			QK	b	h	t1	М	L	
900 W	1/5	R88G-HPG32A05900TB□	13	40	82	11	M8 × 25	M6	70	12	8	5	M10	20	
	1/11	R88G-HPG32A11900TB□	13	40	82	11	M8 × 25	M6	70	12	8	5	M10	20	
	1/21	R88G-HPG50A21900TB□	16	50	82	14	M8 × 25	M6	70	14	9	5.5	M10	20	
	1/33	R88G-HPG50A33900TB□	16	50	82	14	M8 × 25	M6	70	14	9	5.5	M10	20	
2 kW	1/5	R88G-HPG32A052K0TB□	13	40	82	11	M12 × 25	M6	70	12	8	5	M10	20	
	1/11	R88G-HPG50A112K0TB□	16	50	82	14	M12 × 25	M6	70	14	9	5.5	M10	20	
	1/21	R88G-HPG50A212K0TB□	16	50	82	14	M12 × 25	M6	70	14	9	5.5	M10	20	
	1/25	R88G-HPG65A255K0SB□	25	80	130	18	M12 × 25	M8	110	22	14	9	M16	35	
3 kW	1/5	R88G-HPG50A055K0SB□	16	50	82	14	M12 × 25	M6	70	14	9	5.5	M10	20	
	1/11	R88G-HPG50A115K0SB□	16	50	82	14	M12 × 25	M6	70	14	9	5.5	M10	20	
	1/20	R88G-HPG65A205K0SB□	25	80	130	18	M12 × 25	M8	110	22	14	9	M16	35	
	1/25	R88G-HPG65A255K0SB□	25	80	130	18	M12 × 25	M8	110	22	14	9	M16	35	

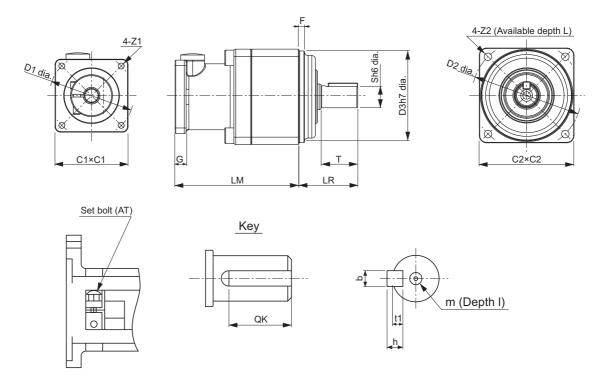

^{*1.} D6 is the maximum diameter of the decelerator body between the flange side and Servomotor side. (Refer to the Outline Drawing) The value is given only when the diameter is larger than the diameters of these two sides. Take heed of this when you mount the decelerator to the machine.

*2. Indicates set bolt.

- Note 1. The standard shaft type is a straight shaft.
 - 2. A model with a key and tap is indicated with "J" at \square of the model number. (Example: R88G-HPG32A05900TBJ)
 - 3. The diameter of the motor shaft insertion hole is the same as the shaft diameter of the corresponding
 - 4. You cannot use this type of Decelerator for the Servomotor with key.
 - 5. The dimensional drawings in this document are for showing main dimensions only, and they do not give the details of the product shape.

- Key and tap dimensions
- *3. The tolerance is "h8" for R88G-HPG50 \square and R88G-HPG65 \square .
- *4. The model R88G-HPG65□ has the taps for eye bolts.

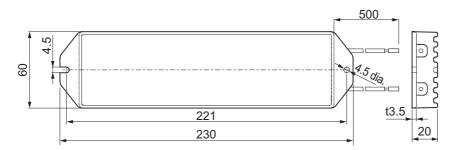
Backlash: 15 Arcminutes Max.

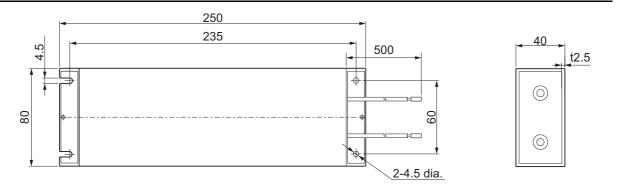

● For 3,000-r/min Servomotors

Model				Dimensions [mm]											
			LM	LR	C1	C2	D1	D2	D3	F	G	S	T		
50 W	1/5	R88G-VRXF05B100CJ	67.5	32	40	52	46	60	50	3	6	12	20		
	1/9	R88G-VRXF09B100CJ	67.5	32	40	52	46	60	50	3	6	12	20		
	1/15	R88G-VRXF15B100CJ	78.0	32	40	52	46	60	50	3	6	12	20		
	1/25	R88G-VRXF25B100CJ	78.0	32	40	52	46	60	50	3	6	12	20		
100 W	1/5	R88G-VRXF05B100CJ	67.5	32	40	52	46	60	50	3	6	12	20		
	1/9	R88G-VRXF09B100CJ	67.5	32	40	52	46	60	50	3	6	12	20		
	1/15	R88G-VRXF15B100CJ	78.0	32	40	52	46	60	50	3	6	12	20		
	1/25	R88G-VRXF25B100CJ	78.0	32	40	52	46	60	50	3	6	12	20		
200 W	1/5	R88G-VRXF05B200CJ	72.5	32	60	52	70	60	50	3	10	12	20		
	1/9	R88G-VRXF09C200CJ	89.5	50	60	78	70	90	70	3	8	19	30		
	1/15	R88G-VRXF15C200CJ	100.0	50	60	78	70	90	70	3	8	19	30		
	1/25	R88G-VRXF25C200CJ	100.0	50	60	78	70	90	70	3	8	19	30		
400 W	1/5	R88G-VRXF05C400CJ	89.5	50	60	78	70	90	70	3	8	19	30		
	1/9	R88G-VRXF09C400CJ	89.5	50	60	78	70	90	70	3	8	19	30		
	1/15	R88G-VRXF15C400CJ	100.0	50	60	78	70	90	70	3	8	19	30		
	1/25	R88G-VRXF25C400CJ	100.0	50	60	78	70	90	70	3	8	19	30		
750 W	1/5	R88G-VRXF05C750CJ	93.5	50	80	78	90	90	70	3	10	19	30		
(200 V)	1/9	R88G-VRXF09D750CJ	97.5	61	80	98	90	115	90	5	10	24	40		
	1/15	R88G-VRXF15D750CJ	110.0	61	80	98	90	115	90	5	10	24	40		
	1/25	R88G-VRXF25D750CJ	110.0	61	80	98	90	115	90	5	10	24	40		

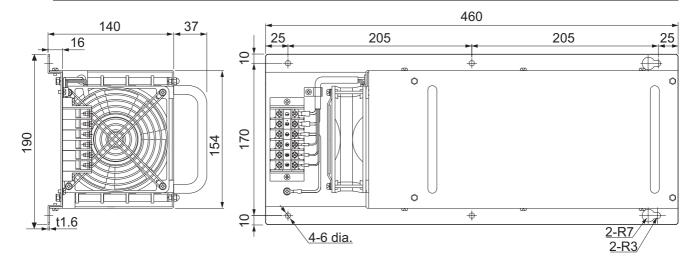
			Dimensions [mm]											
		Model	Z1	Z 2	AT*1	٦		K	Тар					
			21	22	AI '		QK	b	h	t1	m	I		
50 W	1/5	R88G-VRXF05B100CJ	M4	M5	M4	12	16	4	4	2.5	M5	10		
	1/9	R88G-VRXF09B100CJ	M4	M5	M4	12	16	4	4	2.5	M5	10		
	1/15	R88G-VRXF15B100CJ	M4	M5	M4	12	16	4	4	2.5	M5	10		
	1/25	R88G-VRXF25B100CJ	M4	M5	M4	12	16	4	4	2.5	M5	10		
100 W	1/5	R88G-VRXF05B100CJ	M4	M5	M4	12	16	4	4	2.5	M5	10		
	1/9	R88G-VRXF09B100CJ	M4	M5	M4	12	16	4	4	2.5	M5	10		
	1/15	R88G-VRXF15B100CJ	M4	M5	M4	12	16	4	4	2.5	M5	10		
	1/25	R88G-VRXF25B100CJ	M4	M5	M4	12	16	4	4	2.5	M5	10		
200 W	1/5	R88G-VRXF05B200CJ	M4	M5	M4	12	16	4	4	2.5	M5	10		
	1/9	R88G-VRXF09C200CJ	M4	M6	M5	20	22	6	6	3.5	M6	12		
	1/15	R88G-VRXF15C200CJ	M4	M6	M5	20	22	6	6	3.5	M6	12		
	1/25	R88G-VRXF25C200CJ	M4	M6	M5	20	22	6	6	3.5	M6	12		
400 W	1/5	R88G-VRXF05C400CJ	M4	M6	M5	20	22	6	6	3.5	M6	12		
	1/9	R88G-VRXF09C400CJ	M4	M6	M5	20	22	6	6	3.5	M6	12		
	1/15	R88G-VRXF15C400CJ	M4	M6	M5	20	22	6	6	3.5	M6	12		
	1/25	R88G-VRXF25C400CJ	M4	M6	M5	20	22	6	6	3.5	M6	12		
750 W	1/5	R88G-VRXF05C750CJ	M5	M6	M6	20	22	6	6	3.5	M6	12		
(200 V)	1/9	R88G-VRXF09D750CJ	M5	M8	M6	20	30	8	7	4	M8	16		
	1/15	R88G-VRXF15D750CJ	M5	M8	M6	20	30	8	7	4	M8	16		
	1/25	R88G-VRXF25D750CJ	M5	M8	M6	20	30	8	7	4	M8	16		

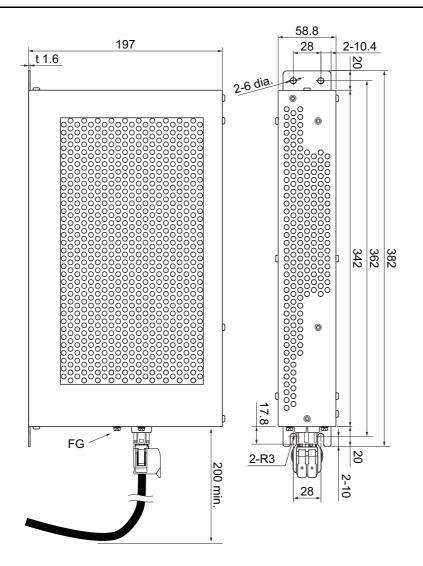
^{*1.} Indicates set bolt.


- Note 1. The standard shaft type is a shaft with key and tap.
 - 2. The diameter of the motor shaft insertion hole is the same as the shaft diameter of the corresponding Servomotor.
 - 3. You cannot use this type of Decelerator for the Servomotor with key.
 - 4. The dimensional drawings in this document are for showing main dimensions only, and they do not give the details of the product shape.

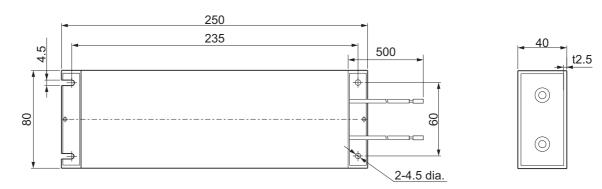

2-4-6 **Dimensions of External Regeneration Resistors and External Regeneration Resistance Units**

The following are the dimensions of External Regeneration Resistors and External Regeneration Resistance Units.

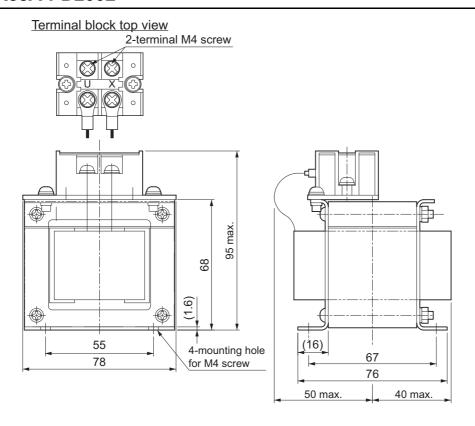

R88A-RR120□□

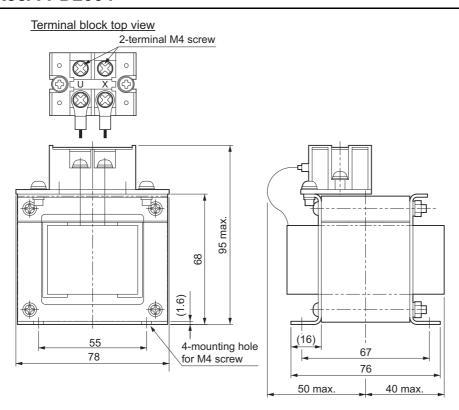

R88A-RR300□□

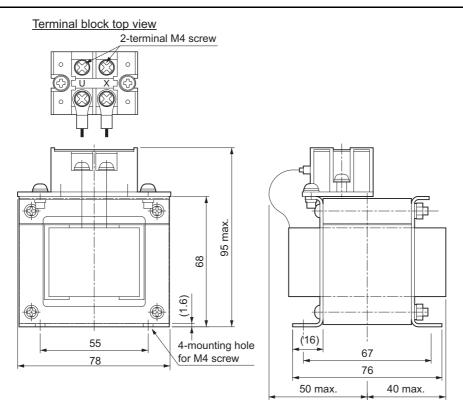
R88A-RR1K6□□

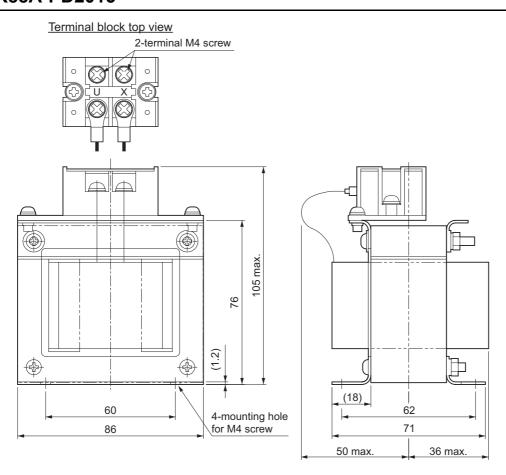

R88A-RR550□□

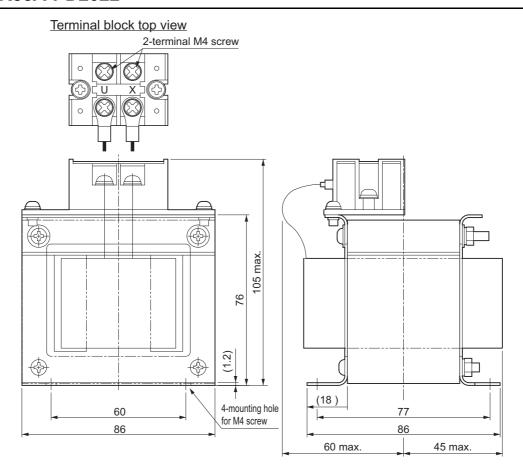
2-4-7 Dimensions of External Dynamic Brake Resistors

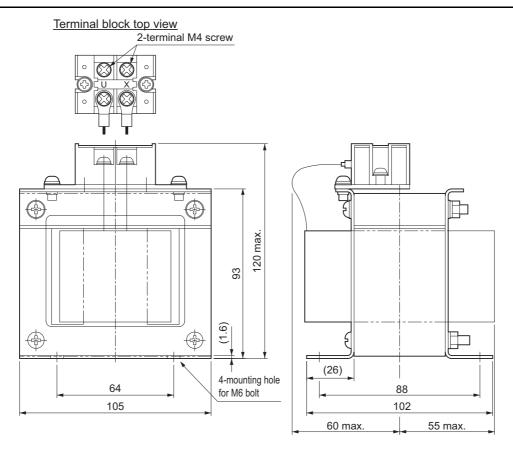

The following are the dimensions of External Dynamic Brake Resistors.

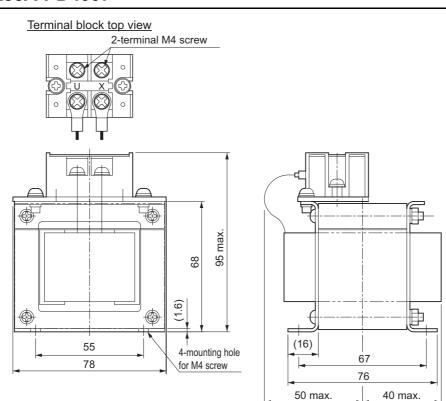

R88A-DBR300□□

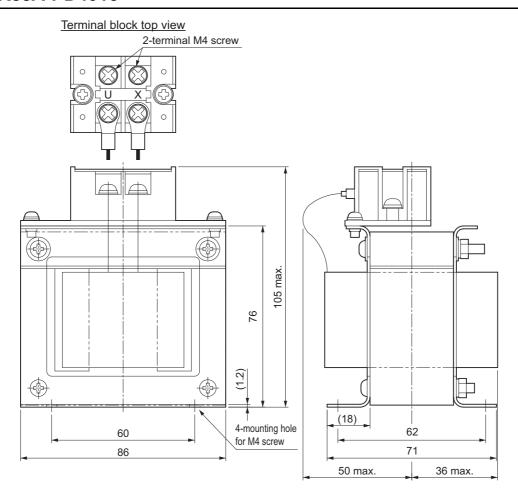


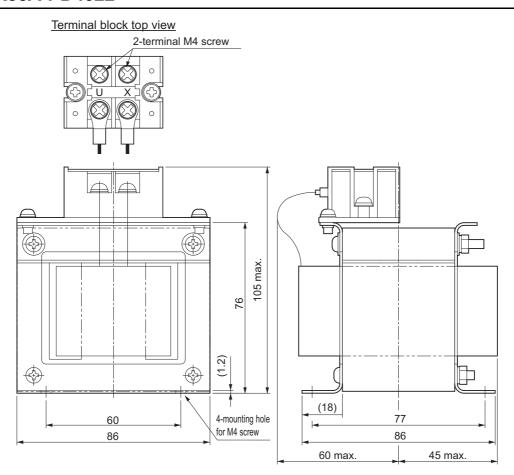

2-4-8 **Reactor Dimensions**

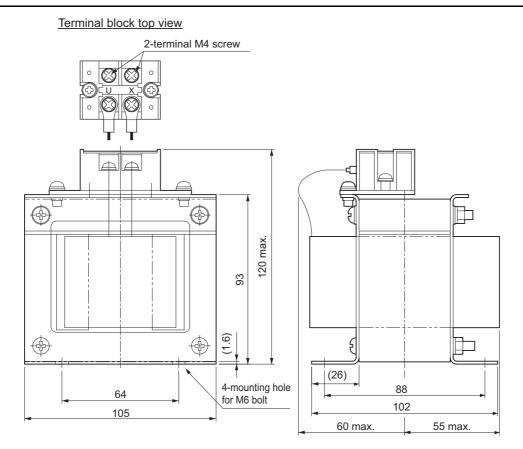

The following are the dimensions of Reactors.



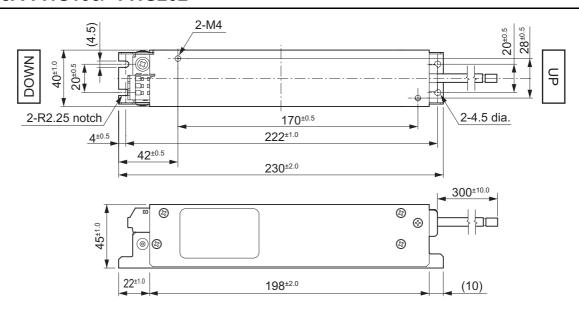


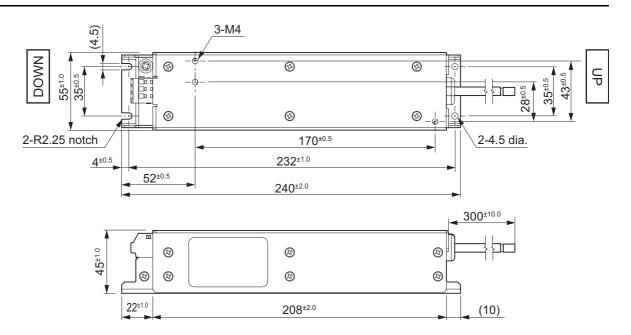




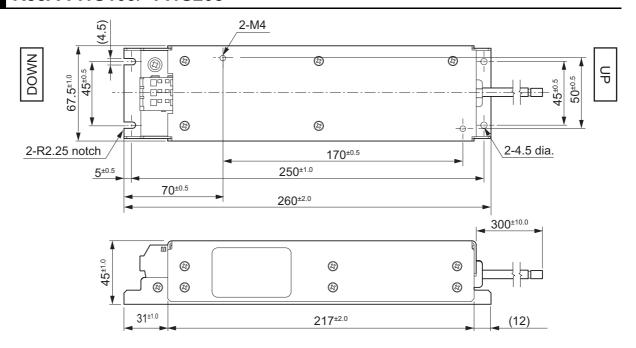


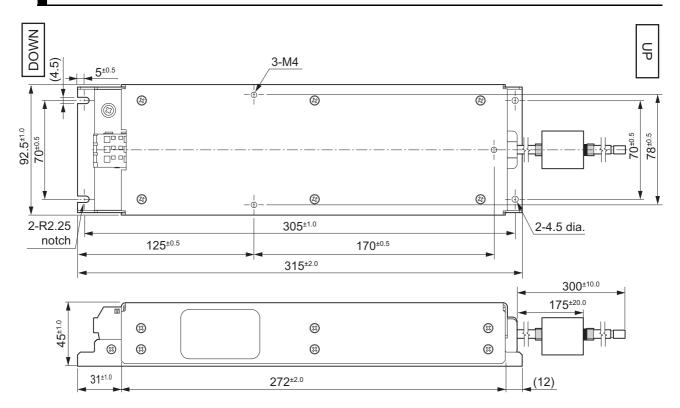
R88A-PD4022

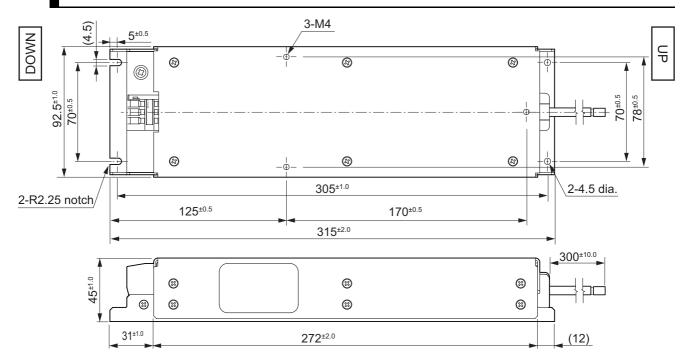

R88A-PD4037


2-4-9 Noise Filter Dimensions

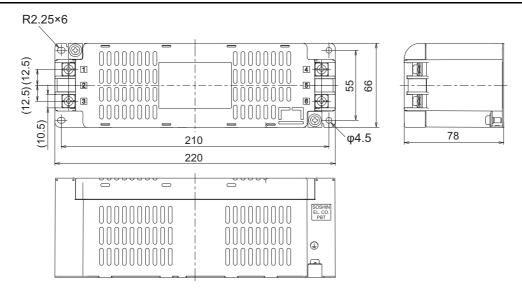
The following are the dimensions of Footprint-type Noise Filters.


R88A-FI1S103/ -FI1S202

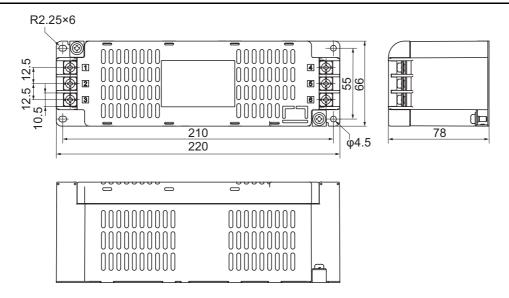

R88A-FI1S105/-FI1S203


R88A-FI1S109/ -FI1S208

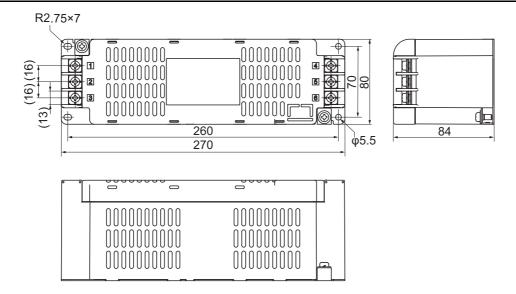
R88A-FI1S116/-FI1S216

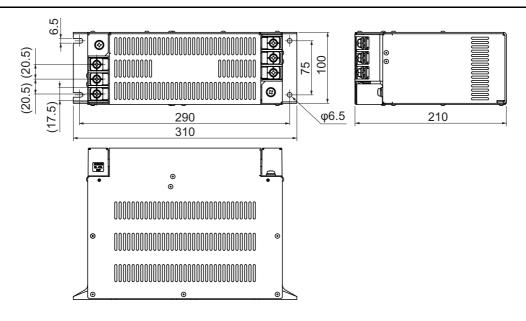


R88A-FI1S309



The following are the dimensions of Book-type Noise Filters.


HF2020A-SZC-33DDD


HF3020C-SZC/HF3020C-SZC-33DDD/HF3020C-SZL

HF3040C-SZA-33EDD/HF3040C-SZA-47DDD/HF3050C-SZB-33EDD

HF3080C-SZC-33EDE/HF3080C-SZC-47EDE/HF3100C-SZC-33EDE

FSB-30-254-HU

Specifications

This section provides the general specifications, characteristics, connector specifications, and I/O circuits of the Servo Drives as well as the general specifications, characteristics, encoder specifications of the Servomotors and other peripheral devices.

3-1	Servo E	Orive Specifications	3-3
	3-1-1	General Specifications	3-3
	3-1-2	Characteristics	3-5
	3-1-3	EtherCAT Communications Specifications	3-13
	3-1-4	Main Circuit and Motor Connections	3-14
	3-1-5	Control I/O Connector (CN1) Specifications	3-27
	3-1-6	Control Input Circuits	3-30
	3-1-7	Control Input Details	3-30
	3-1-8	Control Output Circuits	3-31
	3-1-9	Control Output Details	3-32
	3-1-10	Encoder Pulse Output Specifications	3-32
	3-1-11	Safety I/O Specifications	3-33
	3-1-12	Brake Interlock Connector (CN12) Specifications	3-35
	3-1-13	Encoder Connector (CN2) Specifications	3-35
	3-1-14	EtherCAT Communications Connector (RJ45) Specifications	3-36
	3-1-15	USB Connector (CN7) Specifications	3-36
	3-1-16	Power ON Sequence	3-37
	3-1-17	Overload Characteristics (Electronic Thermal Function)	3-38
3-2	Servom	notor Specifications	3-43
	3-2-1	General Specifications	3-43
	3-2-2	Encoder Specifications	3-44
	3-2-3	Characteristics	3-45
3-3	Deceler	rator Specifications	3-70
3-4	Cable a	and Connector Specifications	3-77
	3-4-1	Encoder Cable Specifications	3-77
	3-4-2	Motor Power Cable Specifications	3-84
	3-4-3	Combination of Power Cable and Extension Cable	3-134
	3-4-4	Resistance to Bending of Flexible Cable	3-135
	3-4-5	Connector Specifications	3-137
	3-4-6	Cable Wire Specifications	3-141
	3-4-7	EtherCAT Communications Cable Specifications	3-143

3-5	•	cations of External Regeneration Resistors and External eration Resistance Units	3-146
	3-5-1	General Specifications	3-146
	3-5-2	Characteristics	3-147
	3-5-3	External Regeneration Resistance Unit Specifications	3-149
3-6	Externa	al Dynamic Brake Resistor	3-151
	3-6-1	General Specifications	3-151
	3-6-2	Characteristics	3-151
3-7	Reacto	r Specifications	3-152
	3-7-1	General Specifications	3-152
	3-7-2	Characteristics	3-152
	3-7-3	Terminal Block Specifications	3-153
3-8	Noise F	Filter Specifications	3-154
	3-8-1	General Specifications	3-154
	3-8-2	Characteristics	3-156
	3-8-3	Terminal Block Specifications	3-159

3-1 Servo Drive Specifications

Select a Servo Drive that matches the Servomotor to be used. Refer to 2-3-3 Servo Drive and Servomotor Combination Tables on page 2-17.

3-1-1 General Specifications

The specifications of the Servo Drives are shown below.

Item			Specifications	
Operating ambien	nt temperature an	d humidity	0 to 55°C, 90% max. (with no condensation)	
Storage ambient temperature and humidity			-20 to 65°C, 90% max. (with no condensation)	
Operating and sto	orage atmosphere	•	No corrosive gases	
Operating altitude	•		1,000 m max.	
Vibration resistan	ce		10 to 60 Hz and at an acceleration of 5.88 m/s ² or less (Not to be run continuously at the resonance frequency)	
Insulation resistar	nce		Between power supply terminals/power terminals and PE terminals: 0.5 M Ω min. (at 500 VDC)	
Dielectric strength	1		Between power supply terminals/power terminals and PE terminals: 1,500 VAC for 1 min (at 50/60 Hz)	
Protective structu	re		IP20 (Built into IP54 panel)	
International	International EU Directives EMC Direc-		EN 61800-3 second environment, C3 category	
standard		tive		
		Low Voltage Directive	EN 61800-5-1	
		Machinery Directive	EN ISO 13849-1 (Cat.3), EN 61508, EN 62061, EN 61800-5-2	
	UL standards		UL 61800-5-1	
	CSA standards		CSA C22.2 No. 274	
	Korean Radio F (KC)		Compliant	
	Australian EMC	Labeling	Compliant	
Requirements (RCM) EAC requirements		,		
		nts	Compliant	
	SEMI standards	3	Can conform to the standard for momentary power interruptions (for no-load operation).	
	Ship standards	(NK/LR)	Not compliant	

Note The above items reflect individual evaluation testing. The results may differ under compound conditions.

The detail of Machinery Directive is as follows:

The STO function via safety input signals: EN ISO 13849-1 (Cat3 PLe), EN 61508 (SIL3), EN 62061 (SIL3), EN 61800-5-2 (STO)

The STO function via EtherCAT communications: EN ISO 13849-1 (Cat.3 PLd), EN 61508 (SIL2), EN 62061 (SIL2), EN 61800-5-2 (STO)

Precautions for Correct Use

Disconnect all connections to the Servo Drive before attempting a megger test (insulation resistance measurement) on a Servo Drive. Not doing so may result in the Servo Drive failure.

Do not perform a dielectric strength test on the Servo Drive. Internal elements may be damaged.

3-1-2 Characteristics

The characteristics of the Servo Drives are shown below.

100-VAC Input Models

	Servo Drive model (R	88D-)	1SN01L-ECT	1SN02L-ECT	1SN04L-ECT	
	Item		100 W 200 W 400 W			
Input	Main circuit	Power sup-	Single-phas	e 100 to 120 VAC (85	to 132 V) *1	
		ply voltage		ise time 500 ms max.		
		Frequency	50	/60 Hz (47.5 to 63 Hz)*1	
	Control circuit	Power sup-		24 VDC (21.6 to 26.4))	
		ply voltage				
		Current con-		600 mA		
		sumption*3				
	Rated input current	Single-phase	2.9	4.9	8.4	
	[A (rms)] (Main circuit	3-phase				
	power supply voltage:					
	120 VAC)					
Out-	Rated current [A (rms)]		1.5	2.5	4.8	
put	Maximum current [A (rm	s)]	4.7	8.4	14.7	
Heating	g value [W]	Main circuit ^{*4}	14.8	23.4	33.1	
		Control cir- cuit	11	11	13.2	
Applica	able Servomotor rated out	put [W]	100	200	400	
3,000-	r/min Servomotor	Batteryless	1M05030S	1M20030S	1M40030S	
(R88M-) 23-bit ABS		23-bit ABS	1M10030S			
	me at momentary power i	•	10 ms (Load condition: rated output)*5			
(Main	circuit power supply voltag	je: 100 VAC)	1 -7			
SCCR	[Arms]			5,000		
Weight	t [kg]		1.2	1.5	1.9	

^{*1.} The values outside parentheses indicate the rated value, and the values inside parentheses indicate the range of acceptable variation.

- *2. If the power supply is turned ON slowly, a Regeneration Circuit Error Detected during Power ON (Error No. 14.02) may occur. Check that the power supply has a capacity sufficiently greater than the total capacity of the Servo Drive and the peripheral devices.
- *3. Select a DC power supply in consideration of the current values that are specified in the current consumption. The rated current value that is printed on the product nameplate is a condition to apply the 1S-series product for the UL/Low Voltage Directive.
 - Therefore, you do not need to consider it when you select a DC power supply for each model.
- *4. This is the maximum heating value in applicable Servomotors.

 Refer to Relationship between Servo Drive, Servomotors and the Main Circuit Heating Value on page 3-12 for the heating value of each applicable Servomotor.
- *5. It is a hold time at momentary power interruption of the main circuit. Use a DC power supply to fulfill the following conditions so that the power supply of the control circuit is held during momentary power interruption.

 Reinforced insulation or double insulation, and the output hold time of 10 ms or more

200-VAC Input Models

S	ervo Drive mode	el (R88D-)	1SN01H-ECT	1SN02H-ECT	1SN04H-ECT	1SN08H-ECT			
	Item		100 W	200 W	400 W	750 W			
Input	Main circuit	Power sup- ply voltage	Single-phase and 3-phase 200 to 240 VAC (170 to 252 V) ^{*1} Rise time 500 ms max. ^{*2}						
		Frequency		50/60 Hz (47.5 to 63 Hz)*1					
	Control circuit	Power sup- ply voltage		24 VDC (21	.6 to 26.4 V)				
		Current consumption*3		600	mA				
	Rated current [A (rms)]	Single- phase	1.8	2.7	4.6	7.3			
	(Main circuit power supply voltage: 240 VAC)	3-phase	1.0	1.5	2.7	4.0			
Out-	Rated current [A	(rms)]	0.8	1.5	2.5	4.6			
put	Maximum curre	nt [A (rms)]	3.1	5.6	9.1	16.9			
Heatir	ng value [W]	Main cir- cuit ^{*5}	15.7/15.3 ^{*5}	15.2/14.6 ^{*5}	22.4/22.4*5	40/39.7 ^{*5}			
		Control cir- cuit	11	11	11	13.2			
Applic [W]	cable Servomotor	rated output	100	200	400	750			
tor (R		Batteryless 23-bit ABS	1M05030T 1M10030T	1M20030T	1M40030T	1M75030T			
tor (R	2,000-r/min Servomo- tor (R88M-) Batteryless 23-bit ABS								
	1,000-r/min Servomo- tor (R88M-) Batteryless 23-bit ABS								
Hold time at momentary power interruption (Main circuit power supply voltage: 200 VAC)			10 ms (Load condition: rated output)*6						
SCCF	R [Arms]			5,0	000				
Weigh	nt [kg]		1.2	1.2	1.5	2.0			

	Servo Drive mode	el (R88D-)	1SN10H -ECT	1SN15H -ECT	1SN20H -ECT	1SN30H -ECT
	Item	1 kW	1.5 kW	2 kW	3 kW	
Input	Main circuit	ain circuit Power supply voltage		Single-phase and 3-phase 200 to 240 VAC (170 to 252 V)*1	3-phase 200 to 2 252	•
					00 ms max.*2	
		Frequency		50/60 Hz (47	,	
	Control circuit	Power supply voltage		24 VDC (21	.6 to 26.4 V)	
		Current con- sumption*3	600 mA		900 mA	
	Rated current [A (rms)]	Single- phase		15.7		
	(Main circuit power supply voltage: 240 VAC)	3-phase	5.8	9.0	13.0	15.9
Out-	Rated current [A (rms)]	7.7	9.7	16.2	22.3
put	Maximum current	[A (rms)]	16.9	28.4	41.0	54.7
Heatin	g value [W]	Main circuit*4	46.5	85.5/85.5 ^{*5}	128.9	167.5
		Control circuit	13.2	20.4	20.4	20.4
Applica	able Servomotor rat	ed output [W]	1,000	1,500	2,000	3,000
3,000- (R88M	r/min Servomotor I-)	Batteryless 23-bit ABS	1L1K030T	1L1K530T	1L2K030T	1L3K030T
2,000-r/min Servomotor (R88M-)		Batteryless 23-bit ABS	1M1K020T	1M1K520T	1M2K020T	1M3K020T
1,000-	r/min Servomotor	Batteryless	1M90010T		1M2K010T	1M3K010T
(R88M-) 23-bit ABS						
Hold time at momentary power interruption			10 ms (Load condition: rated output)*6			
(Main circuit power supply voltage: 200 VAC)						
SCCR	[Arms]			5,0	000	
Weigh	t [kg]		2.0	3.4	3.4	3.4

- *1. The values outside parentheses indicate the rated value, and the values inside parentheses indicate the range of acceptable variation.
- *2. If the power supply is turned ON slowly, a Regeneration Circuit Error Detected during Power ON (Error No. 14.02) may occur. Check that the power supply has a capacity sufficiently greater than the total capacity of the Servo Drive and the peripheral devices.
- *3. Select a DC power supply in consideration of the current values that are specified in the current consumption. The rated current value that is printed on the product nameplate is a condition to apply the 1S-series product for the UL/Low Voltage Directive.
 - Therefore, you do not need to consider it when you select a DC power supply for each model.
- *4. This is the maximum heating value in applicable Servomotors.

 Refer to Relationship between Servo Drive, Servomotors and the Main Circuit Heating Value on page 3-12 for the heating value of each applicable Servomotor.
- *5. The first value is for single-phase input power and the second value is for 3-phase input power.
- *6. It is a hold time at momentary power interruption of the main circuit. Use a DC power supply to fulfill the following conditions so that the power supply of the control circuit is held during momentary power interruption. Reinforced insulation or double insulation, and the output hold time of 10 ms or more

	Servo Drive model	I (R88D-)	1SN55H-ECT	1SN75H-ECT	1SN150H-ECT	
	Item		5.5 kW 7.5 kW 15 kW			
Input	Main circuit	Power supply	3-phase 200 to 240 VAC (170 to 252 V)*1			
		voltage	Rise time 500 ms max.*2			
		Frequency	50	/60 Hz (47.5 to 63 H:	z)*1	
	Control circuit	Power supply		4 VDC (21.6 to 26.4		
		voltage		(-,	
		Current consump-	900) mA	1,200 mA	
		tion*3				
	Rated current [A	3-phase	27.0	38.0	77.0	
	(rms)]					
	(Main circuit power					
	supply voltage: 240					
	VAC)	_		10.0		
Output	Rated current [A (rms	,-	28.6	42.0	70.0	
	Maximum current [A (, ,-	84.8	113.0	169.0	
Heating	value [W]	Main circuit*4	290	360	610	
		Control circuit	19.9		29.7	
Applicat	ole Servomotor rated ou	utput [W]	5,500	7,500	15,000	
3,000-r/	min Servomotor	Batteryless 23-bit	1L4K030T			
(R88M-))	ABS	1L4K730T			
	min Servomotor	Batteryless 23-bit				
(R88M-)		ABS				
-	min Servomotor	Batteryless 23-bit	1M4K015T	1M7K515T	1M11K015T	
(R88M-)		ABS	1M5K015T		1M15K015T	
1,000-r/min Servomotor		Batteryless 23-bit				
(R88M-) ABS						
	ne at momentary power		10 ms (L	oad condition: rated	output)*5	
	rcuit power supply volta	age: 200 VAC)				
SCCR [•			5,000	T	
Weight	[kg]		9.4	9.4	21	

^{*1.} The values outside parentheses indicate the rated value, and the values inside parentheses indicate the range of acceptable variation.

- *2. If the power supply is turned ON slowly, a Regeneration Circuit Error Detected during Power ON (Error No. 14.02) may occur. Check that the power supply has a capacity sufficiently greater than the total capacity of the Servo Drive and the peripheral devices.
- *3. Select a DC power supply in consideration of the current values that are specified in the current consumption. The rated current value that is printed on the product nameplate is a condition to apply the 1S-series product for the UL/Low Voltage Directive.
 - Therefore, you do not need to consider it when you select a DC power supply for each model.
- *4. This is the maximum heating value in applicable Servomotors. Refer to Relationship between Servo Drive, Servomotors and the Main Circuit Heating Value on page 3-12 for the heating value of each applicable Servomotor.
- *5. It is a hold time at momentary power interruption of the main circuit. Use a DC power supply to fulfill the following conditions so that the power supply of the control circuit is held during momentary power interruption. Reinforced insulation or double insulation, and the output hold time of 10 ms or more

400-VAC Input Models

Use a neutral grounded 400 VAC 3-phase power supply for the 400 VAC input models.

Servo Drive (R88D-)		1SN06F-ECT	1SN10F-ECT	1SN15F-ECT		
Item		600 W	1 kW	1.5 kW		
Input Main circuit	Power sup-	3-phase 380 to 480 VAC (323 to 504 V) ^{*1}				
	ply voltage	Rise time 500 ms max.*2				
	Frequency	į.	50/60 Hz (47.5 to 63 Hz)*	1		
Control circuit	Power sup-		24 VDC (21.6 to 26.4 V)			
	ply voltage					
	Current con-		900 mA			
	sumption*3					
Rated current [A (rms)] (Main circuit	3-phase	2.4	3.1	4.3		
power supply voltage: 480 VAC)						
Output	Rated cur- rent [A (rms)]	1.8	4.1	4.7		
	Maximum current [A (rms)]	5.5	9.6	14.1		
Heating value [W]	Main cir-	20.2	52.1	77.5		
	Control cir- cuit	20.4	20.4	20.4		
Applicable Servomotor [W]	rated output	600	1,000	1,500		
3,000-r/min Servomotor (R88M-)	Batteryless 23-bit ABS		1L75030C 1L1K030C	1L1K530C		
2,000-r/min Servomotor (R88M-)	Batteryless 23-bit ABS	1M40020C 1M60020C	1M1K020C	1M1K520C		
1,500-r/min Servomotor (R88M-)	Batteryless 23-bit ABS					
1,000-r/min Servomo- tor (R88M-) Batteryless 23-bit ABS			1M90010C			
Hold time at momenta ruption (Main circuit power su 400 VAC)		10 ms (Load condition: rated output)*5				
SCCR [Arms]			5,000			
Weight [kg]		3.4	3.4	3.4		

Servo Drive model (R88D-)			1SN20F-ECT	1SN30F-ECT	1SN55F-ECT	1SN75F-ECT	1SN150F -ECT	
	ltem		2 kW	3 kW	5.5 kW	7.5 kW	15 kW	
Input	Main circuit	Power supply voltage Frequency		Rise	to 480 VAC (32 e time 500 ms m	nax. ^{*2}		
	Control cir- cuit	Power supply voltage		50/60 Hz (47.5 to 63 Hz)*1 24 VDC (21.6 to 26.4 V)				
		Current consump- tion*3			mA		1.200 mA	
	Rated current [A (rms)] (Main circuit power supply voltage: 480 VAC)	3-phase	6.5	8.4	16.0	23.0	40.0	
Outpu	it	Rated cur- rent [A (rms)]	7.8	11.3	14.5	22.6	33.9	
		Maximum current [A (rms)]	19.8	28.3	42.4	56.5	84.8	
Heatir	ng value [W]	Main cir- cuit ^{*4}	106.8	143.3	280.0	280.0	440.0	
		Control cir- cuit	20.4	20.4	19.9	19.9	29.7	
output			2,000	3,000	5,500	7,500	15,000	
	-r/min Servo- (R88M-)	Battery- less 23-bit ABS	1L2K030C	1L3K030C	1L4K030C 1L5K030C			
	-r/min Servo- (R88M-)	Battery- less 23-bit ABS	1M2K020C	1M3K020C				
	-r/min Servo- (R88M-)	Battery- less 23-bit ABS			1M4K015C 1M5K515C	1M7K515C	1M11K015C 1M15K015C	
	-r/min Servo- (R88M-)	Battery- less 23-bit ABS	1M2K010C	1M3K010C				
Hold time at momentary power interruption (Main circuit power supply voltage: 400 VAC)			10 ms (Loa	ad condition: rat	ed output) ^{*5}			
SCCR [Arms]					5,000			
Weigh	nt [kg]		3.4	3.4	9.4	9.4	21	

^{*1.} The values outside parentheses indicate the rated value, and the values inside parentheses indicate the range of acceptable variation.

^{*2.} If the power supply is turned ON slowly, a Regeneration Circuit Error Detected during Power ON (Error No. 14.02) may occur. Check that the power supply has a capacity sufficiently greater than the total capacity of the Servo Drive and the peripheral devices.

- *3. Select a DC power supply in consideration of the current values that are specified in the current consumption. The rated current value that is printed on the product nameplate is a condition to apply the 1S-series product for the UL/Low Voltage Directive.
 - Therefore, you do not need to consider it when you select a DC power supply for each model.
- *4. This is the maximum heating value in applicable Servomotors.

 Refer to *Relationship between Servo Drive*, *Servomotors and the Main Circuit Heating Value* on page 3-12 for the heating value of each applicable Servomotor.
- *5. It is a hold time at momentary power interruption of the main circuit. Use a DC power supply to fulfill the following conditions so that the power supply of the control circuit is held during momentary power interruption.

 Reinforced insulation or double insulation, and the output hold time of 10 ms or more

Relationship between Servo Drive, Servomotors and the Main Circuit Heating Value

The combination of Servo Drive and Servomotors that changes the main circuit heating value is shown below.

Servo Drive model	Servomotor model	Main circuit heating value [W]
R88D-1SN01L-ECT	R88M-1M05030S-□	11.2
	R88M-1M10030S-□	14.8
R88D-1SN01H-ECT	R88M-1M05030T-□	13.2/13.2 ^{*1}
	R88M-1M10030T-□	15.7/15.3 ^{*1}
R88D-1SN10H-ECT	R88M-1L1K030T-□	46.5
TROOP TOTAL EQ.	R88M-1M1K020T-□	37.7
	R88M-1M90010T-□	42.9
R88D-1SN15H-ECT	R88M-1L1K530T-□	85.5/85.5 ^{*1}
	R88M-1M1K520T-□	84/84*1
R88D-1SN20H-ECT	R88M-1L2K030T-□	128.9
100D-13112011-EC1	R88M-1M2K020T-□	91.3
	R88M-1M2K010T-□	109.1
R88D-1SN30H-ECT	R88M-1L3K030T-□	167.5
100D-13113011-EC1	R88M-1M3K020T-□	125.5
	R88M-1M3K010T-□	156.7
R88D-1SN55H-ECT	R88M-1L4K030T-□	250
100D-13113311-EC1	R88M-1M4K015T-□	270
	R88M-1L4K730T-□	290
	R88M-1M5K015T-□	290
R88D-1SN75H-ECT	R88M-1M7K515T-□	360
R88D-1SN150H-ECT	R88M-1M11K015T-□	490
1000-101110011-201	R88M-1M15K015T-□	610
R88D-1SN06F-ECT	R88M-1M40020C-□	14.4
1000-101001-201	R88M-1M60020C-□	20.2
R88D-1SN10F-ECT	R88M-1L75030C-□	51.1
1000-101101-201	R88M-1L1K030C-□	52.1
	R88M-1M1K020C-□	33.4
	R88M-1M90010C-□	40.2
R88D-1SN15F-ECT	R88M-1L1K530C-□	77.5
TOOD-TOIVIOL-EOT	R88M-1M1K520C-□	47.9
R88D-1SN20F-ECT	R88M-1L2K030C-□	106.8
11000 1011201 201	R88M-1M2K020C-□	65.7
	R88M-1M2K010C-□	79.6
R88D-1SN30F-ECT	R88M-1L3K030C-□	143.3
reed remot Let	R88M-1M3K020C-□	96.5
	R88M-1M3K010C-□	115.5
R88D-1SN55F-ECT	R88M-1L4K030C-□	250
	R88M-1M4K015C-□	280
	R88M-1L5K030C-□	250
	R88M-1M5K515C-□	280
R88D-1SN75F-ECT	R88M-1M7K515C-□	280
R88D-1SN150F-ECT	R88M-1M11K015C-□	390
	R88M-1M15K015C-□	440

^{*1.} The first value is for single-phase input power and the second value is for 3-phase input power.

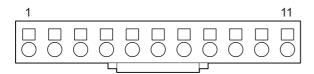
3-1-3 EtherCAT Communications Specifications

The specifications of EtherCAT communications are shown below.

Item	Specifications			
Communications standard	IEC 61158 Type 12, IEC 61800-7 CiA 402 Drive Profile			
Physical layer	100BASE-TX (IEEE802.3)			
Connectors	RJ45 × 2 (shielded)			
	ECAT IN: EtherCAT input			
	ECAT OUT: EtherCAT output			
Communications media	Recommended media:			
	Twisted-pair cable, which is doubly shielded by the aluminum tape and braid, with Ethernet Category 5 (100BASE-TX) or higher			
Communications distance	Distance between nodes: 100 m max.			
Process data	Fixed PDO mapping			
	Variable PDO mapping			
Mailbox (CoE)	Emergency messages, SDO requests, SDO responses, and SDO information			
Synchronization mode	DC Mode (Synchronous with Sync0 Event)			
and communications cycle	Communications cycle: 125 µs, 250 µs, 500 µs, 750 µs, 1 to 10 ms (in 0.25 ms increments)			
	Free Run Mode			
Indicators	ECAT-L/A IN (Link/Activity IN) × 1			
	ECAT-L/A OUT (Link/Activity OUT) × 1			
	ECAT-RUN × 1			
	ECAT-ERR × 1			
CiA 402 Drive Profile	Cyclic synchronous position mode			
	Cyclic synchronous velocity mode			
	Cyclic synchronous torque mode			
	Profile position mode			
	Profile velocity mode			
	Homing mode			
	Touch probe function			
	Torque limit function			

Main Circuit and Motor Connections 3-1-4

When you wire the main circuit, use proper wire sizes, grounding systems, and noise resistance.


R88D-1SN01L-ECT/-1SN02L-ECT/-1SN04L-ECT/-1SN01H-ECT /-1SN02H-ECT/-1SN04H-ECT/-1SN08H-ECT/-1SN10H-ECT

Main Circuit Connector (CNA) Specifications

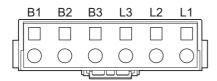
Pin No.	Symbol	Name	Specifications
1	L1	Main circuit power sup-	R88D-1SN□L-ECT
2	L2	ply input	Single-phase *1 100 to 120 VAC (85 to 132 V) 50/60 Hz (47.5
3	L3		to 63 Hz)
			R88D-1SN□H-ECT
			Single-phase*1 200 to 240 VAC (170 to 252 V) 50/60 Hz (47.5 to 63 Hz)
			R88D-1SN□H-ECT
			3-phase 200 to 240 VAC (170 to 252 V) 50/60 Hz (47.5 to 63 Hz)
4	В3	External Regeneration	When the Internal Regeneration Resistor is used*2:
5	B2	Resistor connection ter-	Open between B1 and B2.
6	P/B1	minals	Short-circuit B2 and B3.
			When the External Regeneration Resistor is used:
			Connect the External Regeneration Resistor between B1 and B2.
			Open between B2 and B3.
7	N1	DC reactor connection	When the DC reactor is not used:
8	N2	terminals	Short-circuit N1 and N2.
9	N3		When the DC reactor is used:
			Connect the DC reactor between N1 and N2.
10	24V	Control circuit power	24 VDC (21.6 to 26.4 V)
11	Ø	supply input	Measured current value: 600 mA

^{*1.} For single-phase, connect between any two phases out of the following: L1, L2, and L3.

^{*2.} Internal regeneration resistor is not built in the following product models. Applicable models: R88D-1SN01L-ECT, R88D-1SN02L-ECT, R88D-1SN01H-ECT, R88D-1SN02H-ECT, R88D-1SN04H-ECT

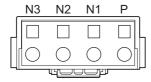
Motor Connector (CNC) Specifications

Pin No.	Symbol	Name		Specifications
1	U	Motor connection termi-	Phase U	These are output terminals to the Servomotor.
2	V	nals	Phase V	
3	W		Phase W	



R88D-1SN15H-ECT/-1SN20H-ECT/-1SN30H-ECT/-1SN06F-ECT/-1SN10F-ECT/-1SN15F-ECT/-1SN20F-ECT/-1SN30F-ECT

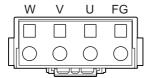
• Main Circuit Connector A (CNA) Specifications


Symbol	Name	Specifications
B1	External Regeneration	When the Internal Regeneration Resistor is used:
B2	Resistor connection termi-	Open between B1 and B2.
В3	nals	Short-circuit B2 and B3.
		When the External Regeneration Resistor is used:
		Connect the External Regeneration Resistor between B1 and B2.
		Open between B2 and B3.
L3	Main circuit power supply	R88D-1SN15H-ECT
L2	input	Single-phase *1 200 to 240 VAC (170 to 252 V) 50/60 Hz (47.5 to 63
L1		Hz)
		R88D-1SN15H-ECT/-1SN20H-ECT/-1SN30H-ECT
		3-phase 200 to 240 VAC (170 to 252 V) 50/60 Hz (47.5 to 63 Hz)
		R88D-1SN□F-ECT
		3-phase 380 to 480 VAC (323 to 504 V) 50/60 Hz (47.5 to 63 Hz)

^{*1.} For single-phase, connect between any two phases out of the following: L1, L2, and L3.

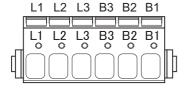
Main Circuit Connector B (CNB) Specifications

Symbol	Name	Specifications
N3	DC reactor connection ter-	When the DC reactor is not used:
N2	minals	Short-circuit N1 and N2.
N1		When the DC reactor is used:
Р		Connect the DC reactor between N1 and N2.

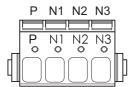

• Control Circuit Connector (CND) Specifications

Pin No.	Symbol	Name	Specifications
1	+24V	Control circuit power sup-	24 VDC (21.6 to 26.4 V)
2	0 V	ply input	Measured current value: 900 mA
3			Do not connect.

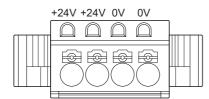
Motor Connector (CNC) Specifications


Symbol	Name		Specifications
W	Motor connection terminals	Phase W	These are output terminals to the Servomotor.
V		Phase V	
U		Phase U	
FG		FG	

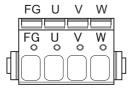
R88D-1SN55H-ECT/-1SN75H-ECT/-1SN55F-ECT/-1SN75F-ECT


• Main Circuit Connector A (CNA) Specifications

Symbol	Name	Specifications
L1	Main circuit power supply	R88D-1SN□□H-ECT
L2	input	3-phase 200 to 240 VAC (170 to 252 VAC) 50/60 Hz (47.5 to 63 Hz)
L3		R88D-1SN□□F-ECT
		3-phase 380 to 480 VAC (323 to 504 VAC) 50/60 Hz (47.5 to 63 Hz)
B3	External Regeneration	When the Internal Regeneration Resistor is used:
B2	Resistor connection termi-	Open between B1 and B2.
B1	nals	Short-circuit B2 and B3.
		When the External Regeneration Resistor is used:
		Connect the External Regeneration Resistor between B1 and B2.
		Open between B2 and B3.


• Main Circuit Connector B (CNB) Specifications

Symbol	Name	Specifications
Р	DC reactor connection ter-	When the DC reactor is not used:
N1	minals	Short-circuit N1 and N2.
N2		When the DC reactor is used:
N3		Connect the DC reactor between N1 and N2.

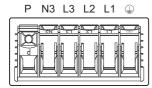

• Control Circuit Connector (CND) Specifications

Pin No.	Symbol	Name	Specifications
1	+24V	Control circuit power sup-	24VDC (21.6 to 26.4 V)
2	+24V	ply input	Measured current value: 900 mA
3	0 V		
4	0 V		


Motor Connector (CNC) Specifications

Symbol	Name		Specifications
FG	Motor connection terminals	FG	These are output terminals to the Servomotor.
U		Phase U	
V		Phase V	
W		Phase W	

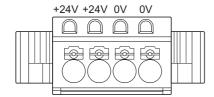
• Main Circuit Connector E (CNE) Specifications


Symbol	Name	Specifications
DB1	External Dynamic Brake	When the Internal Dynamic Brake Resistor is used:
DB2	Resistor connection termi-	Open between DB1 and DB2.
DB3	nals	Short-circuit DB2 and DB3.
		When the External Dynamic Brake Resistor is used:
		Connect the External Dynamic Brake Resistor between DB1 and DB2.
		Open between DB2 and DB3.

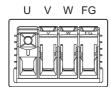
R88D-1SN150H-ECT

• Main Circuit Connector A (CNA) Specifications

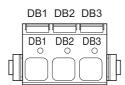
Symbol	Name	Specifications
Р		Do not connect.
N3		The connector is covered for protection. Do not remove the cover.
L3	Main circuit power supply	3-phase 200 to 240 VAC (170 to 252 VAC) 50/60 Hz (47.5 to 63 Hz)
L2	input	
L1		


• Main Circuit Connector B (CNB) Specifications

Symbol	Name	Specifications
B1	External Regeneration	Connect the External Regeneration Resistor between B1 and B2.
B2	Resistor connection termi- nals	This Servo Drive does NOT install Internal Regeneration Resistor.

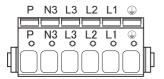

• Control Circuit Connector (CND) Specifications

Pin No.	Symbol	Name	Specifications
1	+24V	Control circuit power sup-	24VDC (21.6 to 26.4 V)
2	+24V	ply input	Measured current value: 1,200 mA
3	0 V		
4	0 V		


• Motor Connector (CNC) Specifications

Symbol	Name	Specifications			
U	Motor connection terminals	Phase U	These are output terminals to the Servomotor.		
V		Phase V			
W		Phase W			
FG		FG			

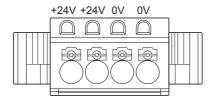
● Main Circuit Connector E (CNE) Specifications


Symbol	Name	Specifications
DB1	External Dynamic Brake	When the Internal Dynamic Brake Resistor is used:
DB2	Resistor connection termi-	Open between DB1 and DB2.
DB3	nals	Short-circuit DB2 and DB3.
		When the External Dynamic Brake Resistor is used:
		Connect the External Dynamic Brake Resistor between DB1 and DB2.
		Open between DB2 and DB3.

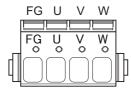
R88D-1SN150F-ECT

• Main Circuit Connector A (CNA) Specifications

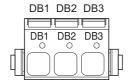
Symbol	Name	Specifications
Р		Do not connect.
N3		
L3	Main circuit power supply	3-phase 380 to 480 VAC (3230 to 504 VAC) 50/60 Hz (47.5 to 63 Hz)
L2	input	
L1		
<u></u>		


• Main Circuit Connector B (CNB) Specifications

Symbol	Name	Specifications
B1	External Regeneration	Connect the External Regeneration Resistor between B1 and B2.
B2	Resistor connection terminals	This Servo Drive does NOT install Internal Regeneration Resistor.


• Control Circuit Connector (CND) Specifications

Pin No.	Symbol	Name	Specifications
1	+24V	Control circuit power sup-	24VDC (21.6 to 26.4 V)
2	+24V	ply input	Measured current value: 1,200 mA
3	0 V		
4	0 V		


Motor Connector (CNC) Specifications

Symbol	Name	Specifications			
FG	Motor connection terminals	FG	These are output terminals to the Servomotor.		
U		Phase U			
V		Phase V			
W		Phase W			

● Main Circuit Connector E (CNE) Specifications

Symbol	Name	Specifications
DB1	External Dynamic Brake	When the Internal Dynamic Brake Resistor is used:
DB2	Resistor connection termi-	Open between DB1 and DB2.
DB3	nals	Short-circuit DB2 and DB3.
		When the External Dynamic Brake Resistor is used:
		Connect the External Dynamic Brake Resistor between DB1 and DB2.
		Open between DB2 and DB3.

Terminal Block Wire Sizes

The following tables show the rated current that flows to the terminal block on the Servo Drive and the applicable wire sizes. Use the wire with the rated voltage of 600 V or higher for the main circuit.

The wire size is determined for when the heat-resistant polyvinyl chloride insulated wire (HIV) is used at the ambient temperature of 50°C.

● Wire Sizes for 100-VAC Input Model: R88D-1SN□□L-ECT

ltem		Unit	Unit Model (R88D-1SN)			
		Oilit	01L-ECT	02L-ECT	04L-ECT	
Power supply capacity		kVA	0.4	0.6	1.0	
Main circuit power supply input (L1,	Rated cur- rent	A(rms)	2.9	4.9	8.4	
L2, and L3) *1	Wire size		AWG 20 to 14,	AWG 18 to 14,	AWG 14,	
			0.5 to 2.0 mm ²	0.75 to 2.0 mm ²	2.0 mm ²	
Control circuit power supply input (24 V, Ø)	Wire size			AWG 20 to 16, 0.5 to 1.5 mm ²		
Motor connection terminals (U, V,	Rated cur- rent	A(rms)	1.5	2.5	4.8	
and W) ^{*2*3}	Wire size		AWG 22 to 14,	AWG 20 to 14,	AWG 18 to 14,	
			0.32 to 2.0 mm ²	0.5 to 2.0 mm ²	0.75 to 2.0 mm ²	
Protective earth	Wire size		AWG 12,			
\bigcirc			2.5 mm ²			
⊕	Screw size		M4			
	Tightening torque	N·m		1.2		

^{*1.} Connect between any two phases out of the following: L1, L2, and L3.

^{*2.} Connect OMRON Power Cables to the motor connection terminals.

^{*3.} Use the wire with the same current capacity for the wiring of the motor connection terminals and for that of B1 and B2.

● Wire Sizes for 200-VAC Input Model: R88D-1SN□H-ECT

Item		l lm!4	Unit Model (R88D-1SN)					
iten	item		01H-ECT	02H-ECT	04H-ECT	08H-ECT	10H-ECT	
Power supply cap	pacity	kVA	0.6	0.6	1.0	1.4	2.0	
Main circuit power supply input (L1, L2, and L3) *1	Rated cur- rent	A(rms)	1.8/1.0 ^{*2}	2.7/1.5 ^{*2}	4.6/2.7 ^{*2}	7.3/4.0 ^{*2}	5.8	
	Wire size		AWG 22 to 14, 0.32 to 2.0 mm ²	AWG 20 to 14, 0.5 to 2.0 mm ²	AWG 18 to 14, 0.75 to 2.0 mm ²		6 to 14, 2.0 mm ²	
Control circuit power supply input (24 V, Ø)	Wire size			AWG 20) to 16, 0.5 to	16, 0.5 to 1.5 mm ²		
Motor connection terminals	Rated cur- rent	A(rms)	0.8	1.5	2.5	4.6	7.7	
(U, V, and W) ^{*3*4}	Wire size		AWG 22 to 14, 0.32 to 2.0 mm ² 14, 0.5 to 14, 0.75 to 14		AWG16 to 14, 1.3 to 2.0 mm ²			
Protective earth	Wire size		AWG 12, 2.5 mm ²					
(1)	Screw size		M4					
	Tightening torque	N·m			1.2			

ltem			Model (R88D-1SN)				
		Unit	15H-ECT	20H-ECT	30H-ECT		
Power supply capacity		kVA	2.5	3.6	4.7		
Main circuit power supply	Rated cur- rent	А	15.7/ 9.0 ^{*2}	13.0	15.9		
input (L1, L2, and L3) ^{*1}	Wire size			AWG 12 to 8, 3.3 to 8.4 mm ²			
Control circuit power supply input (+24 V and 0 V)	Wire size		AWG 20 to 16, 0.5 to 1.5 mm ²				
Motor connec- tion terminals	Rated cur- rent	А	9.7	16.2	22.3		
(U, V, and W) *3*4	Wire size		AWG 14 to 8, 2.0 to 8.4 mm ² AWG 10 to 8, 5.3 to 8.4 mm ²				
Protective earth	Wire size			AWG 12, 2.5 mm ²			
	Screw size			M4			
	Tightening torque	N·m		1.2			

ltem		Unit	Model (R88D-1SN)			
		Unit	55H-ECT	75H-ECT	150H-ECT	
Power supply capacity		kVA	11.2	15.8	32.0	
Main circuit power supply	Rated cur- rent	А	27.0	38.0	77.0	
input (L1, L2, and L3)	Wire size		AWG 10 to 4, 5.3 to 25 mm ²	AWG 8 to 4, 8.4 to 25 mm ²	AWG 4 to 1, 21.2 to 50 mm ²	
Control circuit power supply input (+24 V and 0 V)	Wire size			AWG 20 to 16, 0.5 to 1.5 mm ²		

Item		l lmi4	Model (R88D-1SN)			
		Unit	55H-ECT	75H-ECT	150H-ECT	
Motor connection terminals	Rated cur- rent	А	28.6	42.0	70.0	
(U, V, and W) *3*4	Wire size		AWG 10 to 4, 5.3 to 25 mm ²	AWG 8 to 4, 8.4 to 25 mm ²	AWG 4 to 1/0, 21.2 to 50 mm ²	
Protective earth	Wire size		AWG 10, 5.3 mm ² min.		AWG 6, 13.3 mm ² min.	
	Screw size			_		
	Tightening torque	N·m	2.3			

^{*1.} For single-phase, connect between any two phases out of the following: L1, L2, and L3.

- *3. Connect OMRON Power Cables to the motor connection terminals. For R88A-CA1□□ of the power cable manufactured by OMRON, the wire at rated temperature of 85° is used. In some cases, the wire does not fulfill its size described in the motor terminal block. It does not affect the operation.
- *4. Use the wire with the same current capacity for the wiring of the motor connection terminals and for that of B1 and B2. Refer to Specifications of External Regeneration Resistors and External Regeneration Resistance Units on page 3-146 for the wire size when the external regeneration resistor and the external regeneration resistance unit (both manufactured by OMRON) are used.

^{*2.} The first value is for single-phase input power and the second value is for 3-phase input power.

● Wire Sizes for 400-VAC Input Model: R88D-1SN□□F-ECT

Item		11:4	Model (R88D-1SN)				
		Unit	06F-ECT	10F-ECT	15F-ECT		
Power supply capacity		kVA	1.4	2.0	2.1		
Main circuit power supply input (L1,	Rated cur- rent	A(rms)	2.4	3.1	4.3		
L2, and L3) *1	Wire size		AWG 16 to 8, 1.3 to 8.4 mm ²				
Control circuit power supply input (+24V and 0 V)	Wire size		AWG 20 to 16, 0.5 to 1.5 mm ²				
Motor connection terminals (U, V,	Rated cur- rent	A(rms)	1.8	4.1	4.7		
and W) ^{*1*2}	Wire size		AWG 16 to 8, 1.3 to 8.4 mm ²				
Protective earth	Wire size		AWG 12, 2.5 mm ²				
	Screw size		M4				
	Tightening torque	N·m	1.2				

Item		11		Mo	del (R88D-15	(R88D-1SN)		
		Unit	20F-ECT	30F-ECT	55F-ECT	75F-ECT	150F-ECT	
Power supply capac	eity	kVA	4.2 5.0		13.3	19.1	33.3	
Main circuit power supply input (L1,	Rated cur- rent	A(rms)	6.5	8.4	16.0	23.0	40.0	
L2, and L3) *1	Wire size		AWG 16 to 8, 1.3 to 8.4 mm ²	AWG 14 to 8, 2.0 to 8.4 mm ²	AWG 12 to 4, 3.3 to 25 mm ²	AWG 10 to 4, 5.3 to 25 mm ²	AWG 8 to 4, 8.4 to 25 mm ²	
Control circuit power supply input (+24V and 0 V)	Wire size		AWG 20 to 16, 0.5 to 1.5 mm ²					
Motor connection terminals (U, V,	Rated cur- rent	A(rms)	7.8	11.3	14.5	22.6	33.9	
and W)*1*2	Wire size		AWG 14 to 8, 2.0 to 8.4 mm ²		AWG 12 to 4, 4 to 25 mm ²	AWG 10 to 4, 5.3 to 25 mm ²	AWG 8 to 4, 8.4 to 25 mm ²	
Protective earth	Wire size		AWG 12, 2.5 mm ²					
	Screw size		M4		M5			
	Tightening torque	N·m	1	.2	2.3			

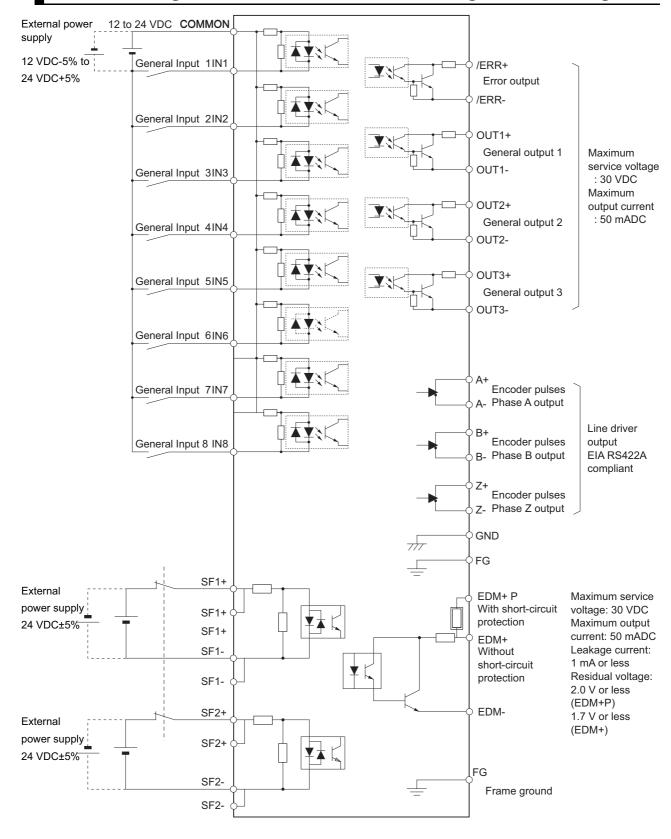
^{*1.} Connect OMRON Power Cables to the motor connection terminals. For R88A-CA1□□ of the power cable manufactured by OMRON, the wire at rated temperature of 85° is used. In some cases, the wire does not fulfill its size described in the motor terminal block. It does not affect the operation.

^{*2.} Use the wire with the same current capacity for the wiring of the motor connection terminals and for that of B1 and B2. Refer to *Specifications of External Regeneration Resistors and External Regeneration Resistance Units* on page 3-146 for the wire size when the external regeneration resistor and the external regeneration resistance unit (both manufactured by OMRON) are used.

Wire Sizes and Allowable Current (Reference)

The following table shows the allowable currents for each wire size.

Select wires carefully so that the specified allowable currents are not exceeded.


• 600-V Heat-resistant Vinyl Wire (HIV)

AWG size	Nominal cross-sec-	Configuration	Conductive resistance	Allowable current [A] for ambient temperature		
	tional area [mm²]	[wires/mm ²]	[Ω/km]	30 °C	40 °C	50 °C
20	0.5	19/0.18	39.5	6.6	5.6	4.5
	0.75	30/0.18	26.0	8.8	7.0	5.5
18	0.9	37/0.18	24.4	9.0	7.7	6.0
16	1.25	50/0.18	15.6	12.0	11.0	8.5
14	2.0	7/0.6	9.53	23	20	16
12	3.5	7/0.8	5.41	33	29	24
10	5.5	7/1.0	3.47	43	38	31
8	8.0	7/1.2	2.41	55	49	40
6	14.0	7/1.6	1.35	79	70	57
4	22.0	7/2.0	0.85	99	88	70

3-1-5 Control I/O Connector (CN1) Specifications

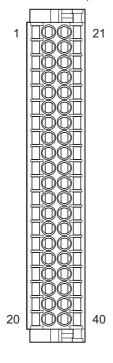
The following shows the specifications of the control I/O connector.

Control I/O Signal Connections and External Signal Processing

Control I/O Signal Table

Pin No.	Symbol	Signal name	Pin No.	Symbol	Signal name	
1	EDM+ P	EDM+ Output with	21	EDM-	EDM- Output	
		short-circuit protection				
2	EDM+	EDM+ Output without	22	SFA	Reserved	
		short-circuit protection				
3	SF1+	SF1+ Input	23	SF1+	SF1+ Input	
4	SF1-	SF1- Input	24	SF1-	SF1- Input	
5	SF2+	SF2+ Input	25	SF2+	SF2+ Input	
6	SF2-	SF2- Input	26	SF2-	SF2- Input	
7	SFB	Reserved	27	NC	NC	
8	/ERR+	Error Output	28	/ERR-	Error Output	
9	OUT1+	General Output 1	29	OUT1-	General Output 1	
10	OUT2+	General Output 2	30	OUT2-	General Output 2	
11	OUT3+	General Output 3	31	OUT3-	General Output 3	
12	IN1	General Input 1	32	IN2	General Input 2	
13	IN3	General Input 3	33	IN4	General Input 4	
14	IN5	General Input 5	34	IN6	General Input 6	
15	IN7	General Input 7	35	IN8	General Input 8	
13		(high-speed)			(high-speed)	
16	GND	GND (for pulse output)	36	COMMON	12 to 24-VDC Power Sup-	
10					ply Input	
17	A+	Encoder Pulse Phase-A+	37	A-	Encoder Pulse Phase-A-	
17		Output			Output	
18	B+	Encoder Pulse Phase-B+	38	B-	Encoder Pulse Phase-B-	
		Output			Output	
19	Z+	Encoder Pulse Phase-Z+	39	Z-	Encoder Pulse Phase-Z-	
		Output			Output	
20	FG	FG	40	FG	FG	

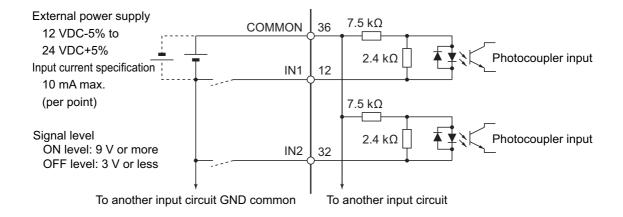
Note When you do not use the STO function via safety input signals use the STO function via safety input signals, short-circuit pins 22 and 23, 24 and 26, 3 and 5, and 6 and 7.

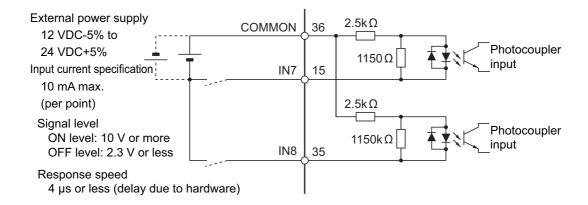

When you use the STO function via safety input signals, remove the attached short-circuit wires and do not connect anything to pins 7 and 22.

Control I/O Connector (40 pins)

Model	Manufacturer	OMRON model
DFMC1,5/20-ST-3,5-LRBKBDMC-21	PHOENIX CONTACT	R88A-CN101C *1

^{*1.} Four short-circuit wires are connected to the connector.


Applicable wire: AWG 24 to 16 (0.2 to 1.5 mm²) (Strip length of the wire insulating cover: 10 mm)


3-1-6 **Control Input Circuits**

The specifications of the control input circuits are shown below.

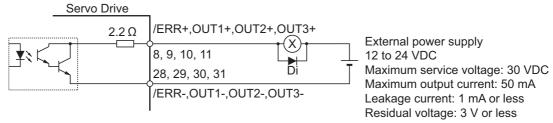
General Inputs (IN1 to IN6)

General Inputs (high-speed) (IN7 to IN8)

3-1-7 **Control Input Details**

The detailed information about the control input pins is shown below.

General Inputs (IN1 to IN8)

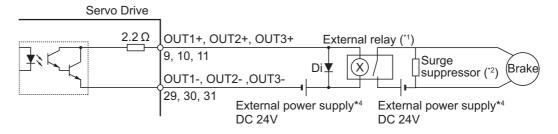

Pin No.	General input	The functions that are allocated by default
12	General input 1 (IN1)	Error Stop Input (ESTP)
32	General input 2 (IN2)	Positive Drive Prohibition Input (POT)
13	General input 3 (IN3)	Negative Drive Prohibition Input (NOT)
33	General input 4 (IN4)	Home Proximity Input (DEC)
14	General input 5 (IN5)	Monitor input 1 (MON1)
34	General input 6 (IN6)	Monitor input 2 (MON2)
15	General input 7	External Latch Input 1 (EXT1)
	(high-speed) (IN7)	
35	General input 8	External Latch Input 2 (EXT2)
	(high-speed) (IN8)	

Note Refer to 7-1 General-purpose Input Signals on page 7-3 for the allocation procedures for general input.

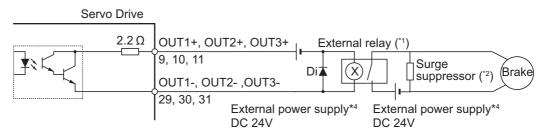
3-1-8 Control Output Circuits

The specifications of the control output circuits are shown below.

Error Output (/ERR), General Output (OUT1 to 3)



Di: Surge voltage prevention diode*1


External Brake Interlock Output (EXTBKIR)

When the brake control is performed with the external brake interlock output (EXTBKIR) allocated to the general output, the connection must be as shown below.

NPN output

PNP output

Di: Surge voltage prevention diode*3

- *1. We recommend you to use the OMRON MY Relay (24V type) for the external relay.
- *2. We recommend you to use the Panasonic Corporation ERZ-V07D390 for the surge suppressor.
- *3. Always insert a diode as shown in the above figure.

 We recommend you to use the Sanken Electric Co., LTD. RU2 for the diode.
- *4. Do not share the external power supply.

^{*1.} When you use an output signal to drive a relay directly, always insert a diode as shown in the above figure. Use a high-speed diode

3-1-9 **Control Output Details**

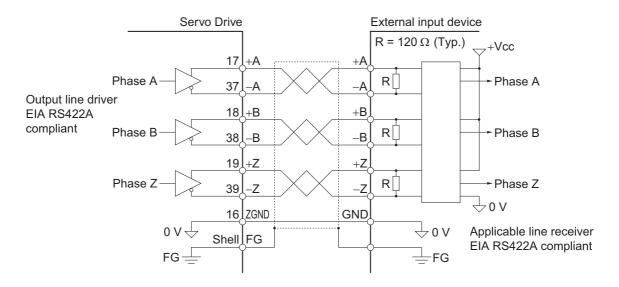
The detailed information about the control output pins is shown below.

Error Output (/ERR)

Pin No.	Error output	Function
8	/ERR+	This output is turned OFF when the Servo Drive detects an
28	/ERR-	error.

General Output (OUT1 to OUT3)

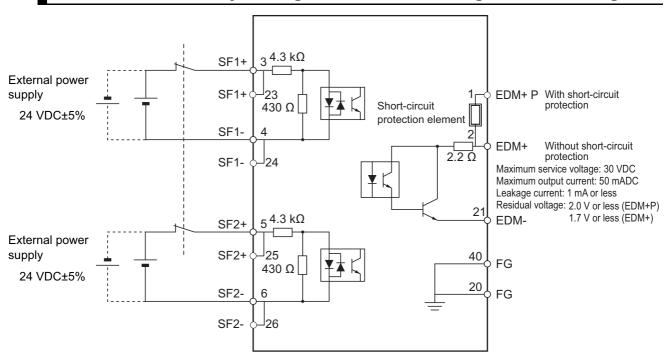
Pin No.	General-purpose output	The functions that are allocated by default	
9	General Output 1 (OUT1+)	Servo Ready Output (READY)	
29	General Output 1 (OUT1-)	Servo Ready Odiput (READT)	
10	General Output 2 (OUT2+)	Remote Output 1 (R-OUT1)	
30	General Output 2 (OUT2-)		
11	General Output 3 (OUT3+)	Remote Output 2 (R-OUT2)	
31	General Output 3 (OUT3-)		


Note Refer to 7-2 General-purpose Output Signals on page 7-8 for the allocation procedures.

3-1-10 Encoder Pulse Output Specifications

The specifications of encoder pulse output signals are shown below.

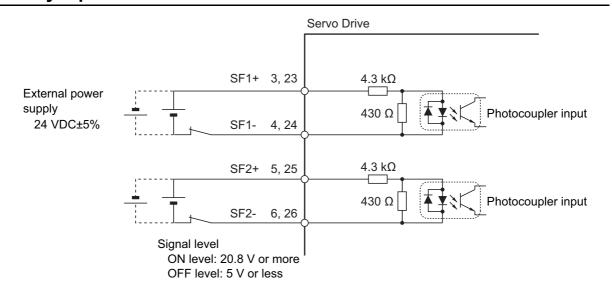
Pin No.	Symbol	Name	Function and interface
17	A+	Encoder phase-A out-	Encoder signal output
37	A-	put	Line driver output
18	B+	Encoder Phase-B out-	EIARS422A compliant (load resistance: 120 Ω (Typ.))
38	B-	put	Maximum output frequency: 4 Mpps (quadruple multi-
19	Z+	Encoder Phase-Z out-	plier)
39	Z-	put	Pilot /
16	GND	Encoder GND	GND for Encoder


Encoder Pulse Output Circuit

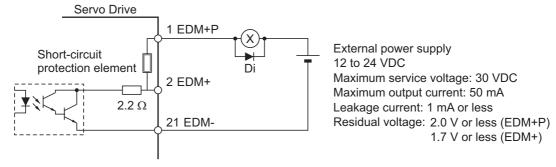
3-1-11 Safety I/O Specifications

The specifications of the safety I/O are shown below.

Connection of Safety I/O Signals and Processing of External Signals


Safety I/O Signal Table

Pin No.	Symbol	Name	Function and interface
3 and 23	SF1+	Safety input 1	Inputs 1 and 2 for operating the STO function, which are two inde-
4 and 24	SF1-		pendent circuits. This input turns OFF the power transistor drive
5 and 25	SF2+	Safety input 2	signals in the Servo Drive to cut off the current output to the motor.
6 and 26	SF2-		
1	EDM+ P	EDM Output	A monitor signal is output to detect a safety function failure.
2	EDM+		
21	EDM-		


Note When you do not use the STO function via safety input signals, short-circuit pins 22 and 23, 24 and 26, 3 and 5, and 6 and 7.

When you use the STO function via safety input signals, remove the attached short-circuit wires and do not connect anything to pins 7 and 22.

Safety Input Circuits

EDM Output Circuit

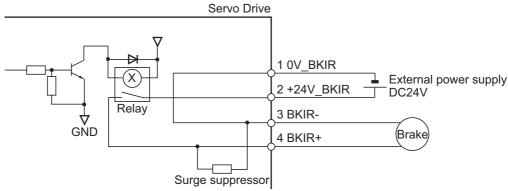
Di: Surge voltage prevention diode*1

^{*1.} When you use an output signal to drive a relay directly, always insert a diode as shown in the above figure. Use a high-speed diode.

3-1-12 Brake Interlock Connector (CN12) Specifications

The specifications of the brake interlock connector are shown below.

Pin No.	Symbol	Name
1	0V BKIR	24-V power supply for
	OV_DKIK	brake (-)
2	+24V BKIR	24-V power supply for
	+24V_DNIK	brake (+)
3	BKIR-	Brake output (-)
4	BKIR+	Brake output (+)


Connectors (4 Pins)

Model	Manufacturer	Omron model
2091-1104/0002-1000	WAGO	R88A-CN101B

Applicable wire: AWG 24 to 16 (0.2 to 1.5 mm²) (Strip length of the wire insulating cover: 10 mm)

Brake Interlock Output Circuits

*1. Relay and surge suppressor are built-in.

3-1-13 Encoder Connector (CN2) Specifications

The specifications of the encoder connectors are shown below.

Pin No.	Symbol	Name
1	E5V	Encoder power supply voltage
2	E0V	Encoder power supply GND
3	Not used.	NC
4	Not used.	NC
5	PS+	Encoder + phase S I/O
6	PS-	Encoder - phase S I/O
Shell	FG	Frame ground

Connectors for CN2 (6 Pins)

Name	Model	Manufacturer	OMRON model
Receptacle	3E206-0100KV	3M	R88A-CN101R
Shell kit	3E306-3200-008	3M	

3-1-14 **EtherCAT Communications Connector (RJ45) Specifications**

The EtherCAT twisted-pair cable is connected to a shielded connector.

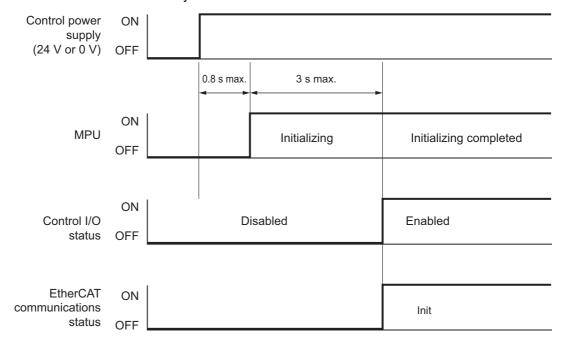
- Electrical characteristics: Conform to IEEE 802.3.
- Connector structure: RJ45 8-pin modular connector (conforms to ISO 8877)

	Pin No.	Signal name	Signal	Direction
	1	Send data +	TD+	Output
	2	Send data -	TD-	Output
	3	Receive data +	RD+	Input
√ 1	4	Not used.		
1 8	5	Not used.		
	6	Receive data -	RD-	Input
	7	Not used.		
	8	Not used.		
	Connector hood	Anti-noise ground		

3-1-15 USB Connector (CN7) Specifications

Through the USB connection with computer, you can perform operations such as servo parameter setting and changing, monitoring of control status, and checking error status and error history.

Pin No.	Symbol	Name	Function and interface
1	VBUS	USB signal terminal	Used for communications with the computer.
2	D-		
3	D+		
4		Not used.	Do not connect.
5	GND	Signal ground	Signal ground


Precautions for Correct Use

Use a commercially available USB cable that is double-shielded, gold-plated, and supports USB 2.0. The Micro B type USB cable can be used.

3-1-16 Power ON Sequence

This section gives the time from when the control power supply for the Servo Drive is turned ON until the control I/O and EtherCAT communications are enabled.

Communications with the master is started after the EtherCAT communications are enabled. Perform Servo ON and send commands only after the EtherCAT communications are established.

3-1-17 Overload Characteristics (Electronic Thermal Function)

The overload protection function (electronic thermal) is built into the Servo Drive to protect the Servo Drive and Servomotor from overloading.

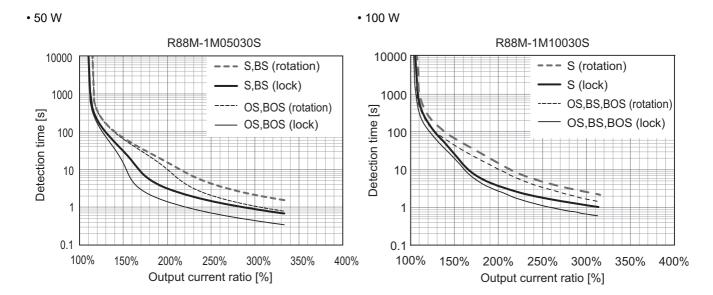
If an overload occurs, first eliminate the cause of the overload and then wait for the Servomotor temperature to drop before you turn ON the power again.

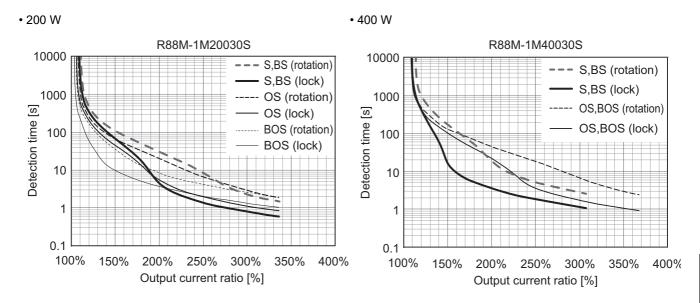
If the error reset is repeated at short intervals, the Servomotor windings may burn out.

The overload protection function (electronic thermal) does not guarantee continuous operation at an output of the rated current or more. Configure the operation settings so that the effective current of the Servomotor becomes the rated current or less.

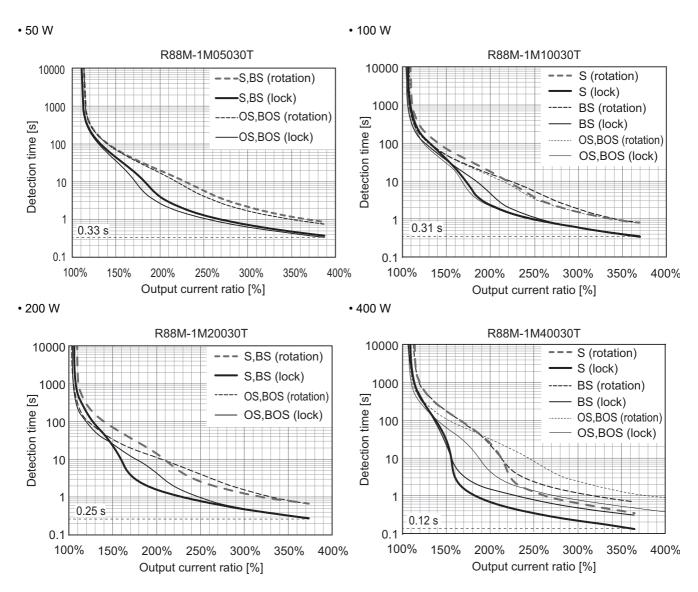
Overload Characteristics Graphs

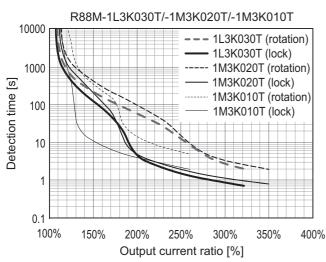
The following graphs show the electronic thermal operation time after continuous operation with 100% load (hot start).

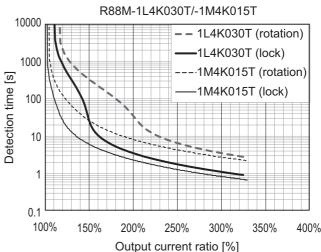

The electronic thermal operation time after a continuous 0% load state (cold start) is longer than that for a hot start.


In cases where models with an oil seal or with a brake have different characteristics, each of their characteristics is described.

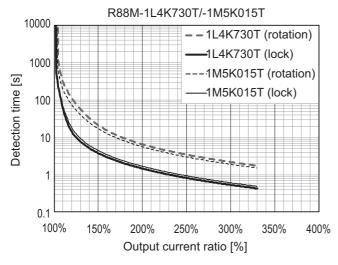
The characteristics are the same as those of models with no option unless otherwise specified.

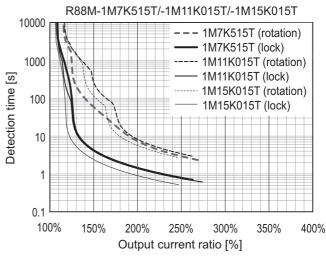

In the some models, the detection time of the overload protection function is shorter than existing models. If the overload warning or error occur, change the operation pattern by increasing the acceleration/deceleration time or the like.


100-VAC Servomotors



200-VAC Servomotors





• 4.7 kW, 5 kW

• 7.5 kW, 11 kW, 15 kW

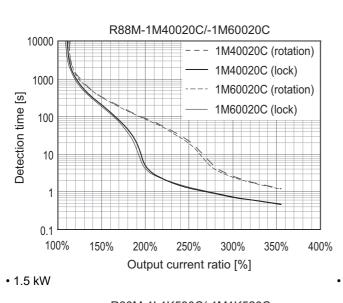
400-VAC Servomotors

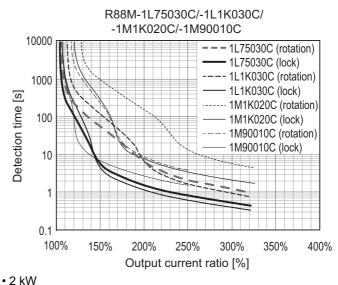
• 400 W, 600 W

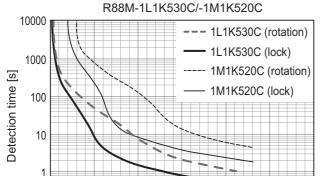
0.1

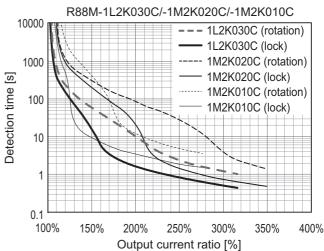
100%

150%


200%


250%


Output current ratio [%]


300%

• 750 W, 900 W, 1 kW

350%

400%

Output current ratio [%]

Output current ratio [%]

3-2 Servomotor Specifications

The following 1S-Series AC Servomotors are available.

- 3,000-r/min Servomotors
- 2,000-r/min Servomotors
- 1,500-r/min Servomotors
- 1,000-r/min Servomotors

There are various options available, such as models with brakes, or different shaft types.

Select a Servomotor based on the mechanical system's load conditions and the installation environment.

3-2-1 General Specifications

	Item		Specifications		
Operating	ambient ter	mperature	0 to 40°C		
and humic	dity		20% to 90% (with no condensation)		
Storage a	mbient temp	erature and	-20 to 65°C		
humidity			20% to 90% (with no condensation)		
Operating	and storage	e atmosphere	No corrosive gases		
Vibration r	esistance ^{*1}		Acceleration of 49 m/s ^{2 *2}		
			24.5 m/s ² max. in X, Y, and Z directions when the motor is stopped		
Impact res	sistance		Acceleration of 98 m/s ² max. 3 times each in X, Y, and Z directions		
Insulation	resistance		Between power terminals and FG terminals: 10 M Ω min. (at 500 VDC Meg-		
			ger)		
Dielectric	strength		Between power terminals and FG terminals: 1,500 VAC for 1 min (voltage 100 V, 200 V)		
			Between power terminals and FG terminals: 1,800 VAC for 1 min (voltage 400 V)		
			Between brake terminal and FG terminals: 1,000 VAC for 1 min		
Insulation	class		Class F		
Protective	structure		IP67 (except for the through-shaft part and connector pins)		
			IP20 if you use a 30-meter or longer encoder cable.		
Interna-	EU Direc-	Low Volt-	EN 60034-1/-5		
tional	tives	age Direc-			
standard		tive			
	UL standa		UL 1004-1/-6		
	CSA stand	ards	CSA C22.2 No.100 (with cUR mark)		

^{*1.} The amplitude may be increased by machine resonance. As a guideline, 80% of the specified value must not be exceeded.

- Note 1. Do not use the cable when it is laying in oil or water.
 - 2. Do not expose the cable outlet or connections to stress due to bending or its own weight.

^{*2.} In the case of Servomotor at 7.5 kW or more, 24.5 m/s².

Encoder Specifications 3-2-2

The encoder specifications are shown below.

Item	Specifications
Encoder system	Optical batteryless absolute encoder
Resolution per rotation	23 bits
Multi-rotation data hold	16 bits
Power supply voltage	5 VDC±10%
Current consumption	230 mA max.
Output signal	Serial communications
Output interface	RS485 compliant

It is possible to use an absolute encoder as an incremental encoder.

Refer to 9-13 Encoder-related Objects on page 9-104 for setting.

3-2-3 Characteristics

3,000-r/min Servomotors

		Mod	del (R88M-)		100	VAC	
	Iter	n	Unit	1M05030S	1M10030S	1M20030S	1M40030S
Rated out	put* ¹ * ²		W	50	100	200	400
	Rated torque*1*2		N·m	0.159	0.318	0.637	1.27
	ation speed	d* ¹ * ²	r/min		3,0	000	I
	rotation s		r/min		6,0	000	
		m torque*1*3	N·m	0.48	0.95	1.91	3.8
Rated cur	rent* ¹ * ²	<u> </u>	A (rms)	1.20	1.50	2.50	4.8
		m current*1	A (rms)	4.00	4.70	8.40	14.7
Rotor iner	•	Without brake	× 10 ⁻⁴	0.0418	0.0890	0.2232	0.4452
			kg·m ²				
		With brake	× 10 ⁻⁴	0.0496	0.0968	0.2832	0.5052
		Trial brane	kg·m ²	0.0100	0.0000	0.2002	0.0002
Applicable	load iner	lia .		0.810	1.62	4.80	8.40
Applicable	o load illeli	lia	× 10 ⁻⁴	0.010	1.02	4.00	0.40
	4		kg·m ²	0.44	0.04	0.00	0.00
Torque co	nstant* ¹		N·m/ A (rms)	0.14	0.24	0.28	0.30
Power rate	<u>*1*4</u>		kW/s	6.7	11.9	18.5	36.6
	e al time cor	1 1 + 4	ms	1.7	1.1	0.76	0.61
	ai time cor time const			0.67	0.84	2.4	2.4
	radial load		ms N	68	68	245	2.4
			N	58	58	88	88
	thrust load						
Weight		nout brake n brake	kg	0.35 0.59	0.52 0.77	1.0	1.4 1.9
Padiator r		nsions (material)	kg mm	0.59			1.9
Brake	1	· · · · · · · · · · · · · · · · · · ·	V			C±10%	
specifi-		n voltage* ⁷ consumption	•	0.27	0.27	0.32	0.32
cations*6	(at 20°C)		Α	0.27	0.27	0.32	0.32
odtions	, ,	ction torque	N·m	0.32 min.	0.32 min.	1.37 min.	1.37 min.
	Attraction		ms	25 max.	25 max.	30 max.	30 max.
	Release		ms	15 max.	15 max.	20 max.	20 max.
	Backlash	1	٥	1.2 max.	1.2 max.	1.2 max.	1.2 max.
	Allowable	e braking work	J	9	9	60	60
		e total work	J	9,000	9,000	60,000	60,000
		e angular	rad/s ²		10,00	0 max.	•
	accelera						
		etime (accelera-			10 million	times min.	
	tion/dece	•					
	Insulation	n class		Class F			

For models with an oil seal, the following derating is used due to increase in friction torque.

Model (R88M-)		1M05030S-O/ -OS2/	1M10030S-O/ -OS2/	1M20030S-O/ -OS2/	1M40030S-O/ -OS2/
Item	Unit	-BO/ -BOS2	-BO/ -BOS2	-BO/ -BOS2	-BO/ -BOS2
Derating rate	%	90	95	95	80
Rated output	W	45	95	190	320
Rated current	Α	1.20	1.50	2.50	4.0
	(rms)				

		Mod	del (R88M-)			200 VAC		
	Iter		Unit	1M05030T	1M10030T	1M20030T	1M40030T	1M75030T
Rated out	put* ¹ * ²		W	50	100	200	400	750
	Rated torque*1*2		N·m	0.159	0.318	0.637	1.27	2.39
	tion spee	d* ¹ * ²	r/min			3,000		
	rotation s		r/min			6,000		
		m torque*1*3	N·m	0.56* ⁹	1.11* ⁹	2.2*9	4.5* ⁹	8.4* ⁹
Rated cur		· · · · · · · · · · · · · · · · · · ·	A (rms)	0.67	0.84	1.5	2.5	4.6
		m current*1	A (rms)	2.60	3.10	5.6	9.1	16.9
Rotor iner		Without brake	× 10 ⁻⁴	0.0418	0.0890	0.2232	0.4452	1.8242
			kg·m ²					
		With brake	× 10 ⁻⁴	0.0496	0.0968	0.2832	0.5052	2.0742
			kg·m ²	0.0.00	0.000	0.2002	0.0002	
Applicable	load iner	l tia	× 10 ⁻⁴	0.810	1.62	4.80	8.40	19.4
тррпоавт	o loud illoi	ard .	kg·m ²	0.010	1.02	1.00	0.10	10.1
	, , , , 1		N·m/ A	0.25	0.42	0.48	0.56	0.59
Torque co	nstant* '		(rms)	0.23	0.42	0.40	0.50	0.55
Power rat	e*1*4		kW/s	6.7	11.9	18.5	36.6	31.4
	al time cor	nstant* ⁴	ms	1.7	1.2	0.78	0.56	0.66
	time const		ms	0.67	0.83	2.4	2.6	3.3
	radial load		N	68	68	245	245	490
Allowable			N	58	58	88	88	196
Weight		nout brake	kg	0.35	0.52	1.0	1.4	2.9
		n brake	kg	0.59	0.77	1.3	1.9	3.9
Radiator p		nsions (material)	mm			250 × t6 (alum		I.
Brake	Excitation	n voltage* ⁷	V			24 VDC ±10%		
specifi-		consumption	Α	0.27	0.27	0.32	0.32	0.37
cations* ⁶	(at 20°C)							
	Static fric	tion torque	N·m	0.32 min.	0.32 min.	1.37 min.	1.37 min.	2.55 min.
	Attraction	n time	ms	25 max.	25 max.	30 max.	30 max.	40 max.
	Release	time* ⁸	ms	15 max.	15 max.	20 max.	20 max.	35 max.
	Backlash		٥	1.2 max.	1.2 max.	1.2 max.	1.2 max.	1.0 max.
		e braking work	J	9	9	60	60	250
		e total work	J	9,000	9,000	60,000	60,000	250,000
		e angular 	rad/s ²			10,000 max.		
	accelerat				40	mailliam Alessa	-:	
	tion/dece	etime (accelera-			10	million times n	IIN.	
	Insulation					Class F		
	A IOGIGUO	. 5.466				014331		

For models with an oil seal the following derating is used due to increase in friction torque.

Model (R88M-)		1M05030T-O/	1M10030T-O/	1M20030T-O/	1M40030T-O/	1M75030T-O/
Item	Unit	-OS2/ -BO/ -BOS2				
Derating rate	%	90	95	95	80	90
Rated output	W	45	95	190	320	675
Rated current	A	0.67	0.84	1.5	2.1	4.2
Nateu current	(rms)	0.07	0.04	1.5	2.1	4.2

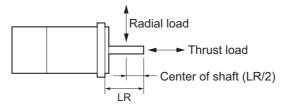
		Mod	del (R88M-)		200	VAC			
	Item		Unit	1L1K030T	1L1K530T	1L2K030T	1L3K030T		
Rated out	tput*1*2		W	1,000	1,500	2,000	3,000		
Rated tor			N·m	3.18	4.77	6.37	9.55		
	ation spee	d*1*2	r/min	3,000					
	rotation s		r/min		5,0	000			
Momenta	ry maximu	m torque* ¹ * ³	N·m	9.55	14.3	19.1	28.7		
Rated cur		·	A (rms)	5.2	8.8	12.5	17.1		
Momenta	rv maximu	m current*1	A (rms)	16.9	28.4	41.0	54.7		
Rotor iner	-	Without brake	× 10 ⁻⁴	2.1042	2.1042	2.4042	6.8122		
			kg·m ²						
		With brake	× 10 ⁻⁴	2.5542	2.5542	2.8542	7.3122		
			kg⋅m²						
Applicable	e load iner	tia	× 10 ⁻⁴	35.3	47.6	60.2	118		
			kg·m ²						
Torque co	nstant* ¹		N·m/ A	0.67	0.58	0.56	0.62		
			(rms)						
Power rat	e*1*4		kW/s	48	108	169	134		
Mechanic	al time co	nstant* ⁴	ms	0.58	0.58	0.50	0.47		
Electrical	time const	tant	ms	5.9	6.1	6.4	11		
Allowable	radial loa	d* ⁵	N	490					
Allowable	thrust loa	d* ⁵	N	196					
Weight	Wit	hout brake	kg	5.7	5.7	6.4	11.5		
	Wit	h brake	kg	7.4	7.4	8.1	12.5		
Radiator	olate dime	nsions (material)	mm	400 × 400 × t	:20 (aluminum)	470 × 470 × t	20 (aluminum)		
Brake	Excitatio	n voltage* ⁷	V		24 VD	C±10%			
specifi-		consumption	Α	0.70	0.70	0.70	0.66		
cations* ⁶	(at 20°C)		NI	0.0	0.0	0.0	40		
	Attraction	ction torque	N·m	9.3 min. 100 max.	9.3 min. 100 max.	9.3 min. 100 max.	12 min. 100 max.		
	Release		ms ms	30 max.	30 max.	30 max.	30 max.		
	Backlash		0	1.0 max.	1.0 max.	1.0 max.	0.8 max.		
		e braking work	J	500	500	500	1,000		
		e total work	J	900,000	900,000	900,000	3,000,000		
		e angular	rad/s ²	/		0 max.			
	accelera	•	144,0		,				
		etime (accelera-			10 million	times min.			
	tion/dece	,							
	Insulation	n class		Class F					

		Мо	del (R88M-)	200	VAC	
	Iter	n	Unit	1L4K030T	1L4K730T	
Rated out	put* ¹ * ²		W	4,000	4,700	
Rated tord	que* ¹ * ²		N·m	12.7	15.0	
Rated rota	ation spee	d* ¹ * ²	r/min	3,0	000	
	rotation s		r/min	5,0	000	
Momentai	ry maximu	m torque*1*3	N·m	38.2	47.7	
Rated cur			A (rms)	22.8	25.7	
		m current*1	A (rms)	74.0	84.8	
Rotor iner		Without brake	× 10 ⁻⁴	8.8122	10.6122	
			kg·m ²			
		With brake	× 10 ⁻⁴	11.3122	13.1122	
			kg·m ²			
Applicable	e load iner	l tia	× 10 ⁻⁴	213	279	
, ibb			kg·m ²		2.0	
	1 1		N·m/A	0.63	0.65	
Torque co	nstant" '		(rms)	0.00	0.00	
Power rat	e* ¹ * ⁴		kW/s	183	209	
	al time cor	nstant* ⁴	ms	0.37	0.37	
	time const		ms	12	12	
Allowable	radial load	<u></u> 1* ⁵	N	880	880	
	thrust load		N	343	343	
Weight		nout brake	kg	13.5	16	
J		n brake	kg	16	18.5	
Radiator	olate dime	nsions (material)	mm	470 × 470 × t20	540 × 540 × t20	
				(aluminum)	(aluminum)	
Brake		n voltage* ⁷	V	24 VD	C±10%	
specifi- cations* ⁶		consumption	Α	0.60	0.60	
callons	(at 20°C)	tion torque	N⋅m	16 min.	16 min.	
	Attraction		ms	150 max.	150 max.	
	Release time*8		ms	50 max.	50 max.	
Backlash		0	0.6 max.	0.6 max.		
		e braking work	J	350	350	
		e total work	J	1,000,000	1,000,000	
		e angular	rad/s ²		0 max.	
	accelerat					
		etime (accelera-		10 million	times min.	
	tion/dece			6:		
	Insulation	n class		Class F		

	Ma	del (R88M-)		400 VAC			
	Item	Unit	1L75030C 1L1K030C 1L1K530				
Rated out	rput*1*2	W	750	1,000	1,500		
	Rated torque*1*2		2.39	3.18	4.77		
	ation speed* ¹ * ²	r/min		3,000			
	rotation speed	r/min		5,000			
	ry maximum torque*1*3	N·m	7.16	9.55	14.3		
Rated cur		A (rms)	3.0	3.0	4.5		
		A (rms)	9.6	9.6	14.1		
Rotor iner	ry maximum current*1	<u> </u>					
Rotor mer	tia Without brake	× 10 ⁻⁴	1.3042	2.1042	2.1042		
		kg·m ²					
	With brake	× 10 ⁻⁴	1.7542	2.5542	2.5542		
		kg⋅m²					
Applicable	e load inertia	× 10 ⁻⁴	38.6	35.3	47.6		
		kg·m ²					
Torque co	.natant*1	N·m/ A	0.91	1.17	1.17		
rorque co	mstant	(rms)	0.01				
Power rat	e*1*4	kW/s	44	48	108		
	al time constant* ⁴	ms	1.09	0.6	0.58		
	time constant	ms	4.3	5.9	5.9		
	radial load* ⁵	N	490				
	thrust load* ⁵	N	196				
Weight	Without brake	kg	4.1	5.7	5.7		
	With brake	kg	5.8	7.4	7.4		
Radiator r	plate dimensions (material)	mm	305 × 305 × t20	400 × 400 × t2			
·	,		(aluminum)		,		
Brake	Excitation voltage*7	V		24 VDC±10%			
specifi-	Current consumption	Α	0.70	0.70	0.70		
cations*6	(at 20°C)						
	Static friction torque	N·m	9.3 min.	9.3 min.	9.3 min.		
	Attraction time	ms	100 max.	100 max.	100 max.		
	Release time*8	ms	30 max.	30 max.	30 max.		
	Backlash	۰	1.0 max.	1.0 max.	1.0 max.		
	Allowable braking work	J	500	500	500		
	Allowable total work	J	900,000	900,000	900,000		
	Allowable angular	rad/s ²		10,000 max.			
	acceleration	.,					
	Brake lifetime (accelera-			10 million times min.			
	tion/deceleration)						
	Insulation class			Class F			

	Mo	odel (R88M-)	400 VAC					
	Item	Unit	1L2K030C	1L3K030C	1L4K030C	1L5K030C		
Rated out	out*1*2	W	2,000	3,000	4,000	5,000		
	Rated torque* ¹ * ²		6.37	9.55	12.7	15.9		
Rated rota	tion speed* ¹ *2	r/min		3,000				
	rotation speed	r/min		5,0	000			
Momentar	y maximum torque* ¹ * ³	N·m	19.1	28.7	38.2	47.7		
Rated curi		A (rms)	6.3	8.7	12.8	13.6		
	y maximum current* ¹	A (rms)	19.8	27.7	42.4	42.4		
Rotor iner		× 10 ⁻⁴	2.4042	6.8122	8.8122	10.6122		
		kg·m ²						
	With brake	× 10 ⁻⁴	2.8542	7.3122	11.3122	13.1122		
		kg·m ²						
Applicable	load inertia	× 10 ⁻⁴	60.2	118	213	279		
• •		kg·m ²						
Torque co	notont*1	N·m/A	1.15	1.23	1.11	1.32		
Torque co	istant	(rms)		20		1.02		
Power rate	e*1*4	kW/s	169	134	183	238		
Mechanica	al time constant* ⁴	ms	0.52	0.49	0.36	0.35		
	ime constant	ms	6.3	11	12	13		
Allowable	radial load ^{*5}	N	490		880			
	thrust load* ⁵	N	196		;	343		
Weight	Without brake	kg	6.4	11.5	13.5	16		
· ·	With brake	kg	8.1	12.5	16	18.5		
Radiator p	late dimensions (material)	mm	470	470 × 470 × t20 (aluminum)		540 × 540 × t20 (aluminum)		
Brake	Excitation voltage*7	V		24 VD	C±10%	,		
specifi- cations* ⁶	Current consumption (at 20°C)	А	0.70	0.66	0.60	0.60		
	Static friction torque	N·m	9.3 min.	12 min.	16 min.	16 min.		
	Attraction time	ms	100 max.	100 max.	150 max.	150 max.		
	Release time*8	ms	30 max.	30 max.	50 max.	50 max.		
	Backlash	٥	1.0 max.	0.8 max.	0.6 max.	0.6 max.		
	Allowable braking work	J	500	1,000	350	350		
	Allowable total work	J	900,000	3,000,000	1,000,000	1,000,000		
Allowable angular acceleration Brake lifetime (acceleration/deceleration) Insulation class		rad/s ²		10,000) max.			
)		10 million	times min.			
			Class F					

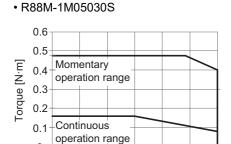
^{*1.} This is a typical value for when the Servomotor is used at a normal temperature (20°C, 65%) in combination with a Servo


^{*2.} The rated values are the values with which continuous operation is possible at an ambient temperature of 40°C when the Servomotor is horizontally installed on a specified radiator plate.

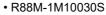
^{*3.} The momentary maximum torque is approximately 300% of the rated torque except for some models.

^{*4.} This value is for models without options.

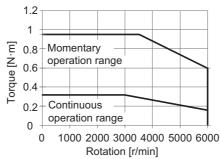
^{*5.} The allowable radial and thrust loads are the values determined for a limit of 20,000 hours at normal operating temperatures.

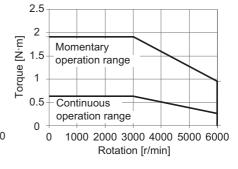

The allowable radial loads are applied as shown in the following diagram.

- *6. When the brake is released for a vertical axis, refer to *7-6 Brake Interlock* on page 7-22 to set an appropriate value for **Brake Interlock Output** (4610 hex).
- *7. This is a non-excitation brake. It is released when excitation voltage is applied.
- *8. This value is a reference value.
- *9. The momentary maximum torque is approximately 350% of the rated torque. The detection time of the overload protection function is short when the momentary maximum torque is output. Refer to 3-1-17 Overload Characteristics (Electronic Thermal Function) on page 3-38.


● Torque-Rotation Speed Characteristics for 3,000-r/min Servomotors (100 VAC)

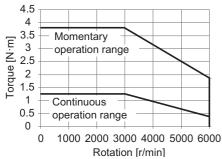
The following graphs show the characteristics with a 3-m standard cable and a 100-VAC input.




1000 2000 3000 4000 5000 6000

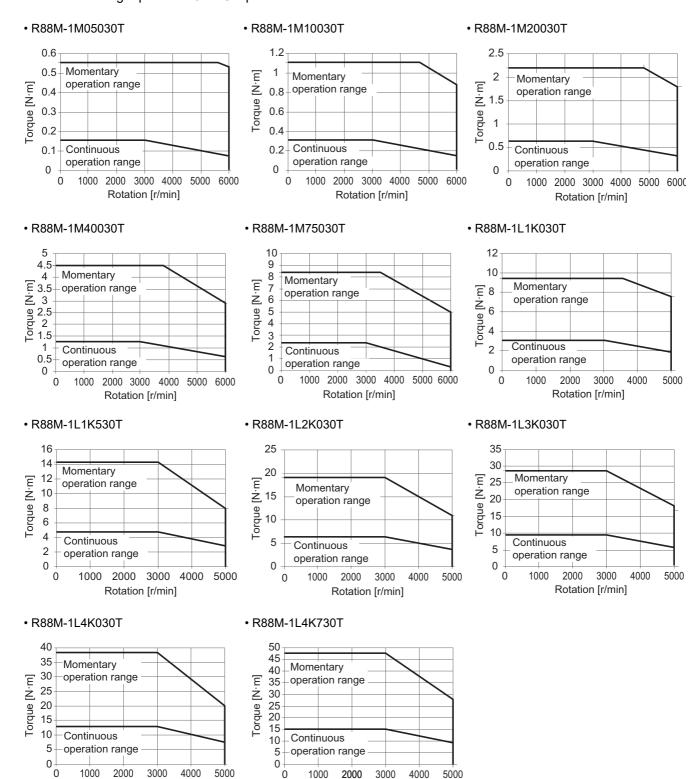
Rotation [r/min]

• R88M-1M20030S



• R88M-1M40030S

0

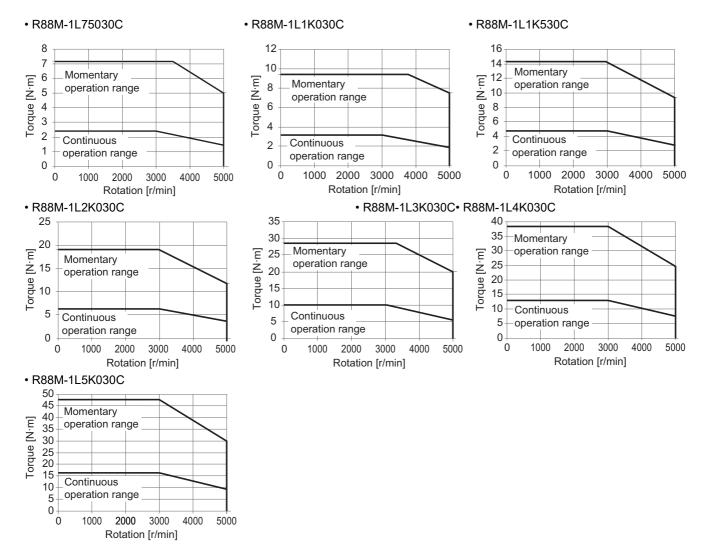

0

Note The continuous operation range is the range in which continuous operation is possible at an ambient temperature of 40°C when the Servomotor is horizontally installed on a specified radiator plate. Continuous operation at the maximum speed is also possible. However, doing so will reduce the output torque.

Torque-Rotation Speed Characteristics for 3,000-r/min Servomotors (200 VAC)

The following graphs show the characteristics with a 3-m standard cable and a 3-phase 200-VAC or single-phase 220-VAC input.

Note The continuous operation range is the range in which continuous operation is possible at an ambient temperature of 40°C when the Servomotor is horizontally installed on a specified radiator plate. Continuous operation at the maximum speed is also possible. However, doing so will reduce the output torque.


Rotation [r/min]

0

Rotation [r/min]

● Torque-Rotation Speed Characteristics for 3,000-r/min Servomotors (400 VAC)

The following graphs show the characteristics with a 3-m standard cable and a 3-phase 400-VAC input.

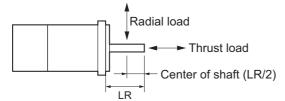
Note The continuous operation range is the range in which continuous operation is possible at an ambient temperature of 40°C when the Servomotor is horizontally installed on a specified radiator plate. Continuous operation at the maximum speed is also possible. However, doing so will reduce the output torque.

2,000-r/min Servomotors

	M	odel (R88M-)		200	VAC	
	Item	Unit	1M1K020T	1M1K520T	1M2K020T	1M3K020T
Rated out	put* ¹ * ²	W	1,000	1,500	2,000	3,000
Rated tord	que* ¹ * ²	N·m	4.77	7.16	9.55	14.3
	ation speed* ¹ * ²	r/min		2,000		I
	rotation speed	r/min		3,0	000	
Momentar	ry maximum torque* ¹	N·m	14.3	21.5	28.7	43.0
Rated cur		A (rms)	5.2	8.6	11.3	15.7
	ry maximum current* ¹	A (rms)	16.9	28.4	40.6	54.7
Rotor iner	-	10 ⁻⁴	6.0042	9.0042	12.2042	15.3122
		kg·m ²				
	With brake	10 ⁻⁴	6.5042	9.5042	12.7042	17.4122
		kg·m ²				
Applicable	e load inertia	10 ⁻⁴	59.0	79.9	100	142
		kg⋅m²				
Torque co	nstant* ¹	N·m/A	0.93	0.83	0.85	0.93
		(rms)				
Power rate	e* ¹ * ³	kW/s	38	57	75	134
Mechanic	al time constant* ³	ms	0.94	0.78	0.81	0.80
Electrical	time constant	ms	13	15	14	19
Allowable	radial load*4	N	490 784			
Allowable	thrust load*4	N	196			343
Weight	Without brake	kg	6.6	8.5	10	12
	With brake	kg	8.6	10.5	12	15
Radiator p	plate dimensions (material)	mm	400 × 400 × t20 (aluminum)	470	× 470 × t20 (alumi	num)
Brake	Excitation voltage*6	V	, ,	24 VD	C±10%	
specifi- cations* ⁵	Current consumption (at 20°C)	А	0.51	0.51	0.66	0.60
	Static friction torque	N·m	9.0 min.	9.0 min.	12 min.	16 min.
	Attraction time	ms	100 max.	100 max.	100 max.	150 max.
	Release time*7	ms	30 max.	30 max.	30 max.	50 max.
	Backlash	٥	0.6 max.	0.6 max.	0.6 max.	0.6 max.
	Allowable braking work	J	1,000	1,000	1,000	350
	Allowable total work	J	3,000,000	3,000,000	3,000,000	1,000,000
	Allowable angular acceleration	rad/s ²		10,000	0 max.	
	Brake lifetime (acceleration/deceleration)			10 million	times min.	
	Insulation class			Cla	ss F	

	Mo	del (R88M-)		400 VAC	
	Item	Unit	1M40020C	1M60020C	1M1K020C
Rated out	put* ¹ * ²	W	400	600	1,000
	Rated torque* ¹ * ²		1.91	2.86	4.77
	ation speed* ¹ * ²	r/min		2,000	
	rotation speed	r/min		3,000	
	ry maximum torque* ¹	N·m	5.73	8.59	14.3
Rated curi		A (rms)	1.1	1.6	2.9
Momentar	ry maximum current*1	A (rms)	3.9	5.5	9.4
Rotor iner		× 10 ⁻⁴	2.5042	3.9042	6.0042
		kg·m ²			
	With brake	× 10 ⁻⁴	2.8472	4.2472	6.5042
		kg·m ²			
Applicable	e load inertia	× 10 ⁻⁴	19.0	23.5	59.0
• •		kg·m ²			
Torque co	nctant*1	N·m/A	1.75	1.84	1.69
Torque co	nstant	(rms)			
Power rate	e*1*3	kW/s	14.6	21.0	38
Mechanica	al time constant* ³	ms	1.57	1.21	0.94
	time constant	ms	6.8 7.8		13
Allowable	radial load*4	N	490		
Allowable	thrust load*4	N			
Weight	Without brake	kg	3.9	4.7	6.6
	With brake	kg	4.8	5.8	8.6
Radiator p	plate dimensions (material)	mm	305 × 305 × t	12 (aluminum)	400 × 400 × t20
Brake		V	24 VDC±10%		(aluminum)
specifi-	Excitation voltage*6		0.20		0.54
cations* ⁵	Current consumption (at 20°C)	Α	0.30	0.30	0.51
	Static friction torque	N·m	3.92 min.	3.92 min.	9.0 min.
	Attraction time	ms	40 max.	40 max.	100 max.
	Release time*7	ms	25 max.	25 max.	30 max.
	Backlash	0	1.0 max.	1.0 max.	0.6 max.
	Allowable braking work	J	330	330	1,000
	Allowable total work	J	330,000	330,000	3,000,000
Allowable angular acceleration		rad/s ²		10,000 max.	
	Brake lifetime (accelera- tion/deceleration)			10 million times min.	
	Insulation class			Class F	

Mod Item			del (R88M-) 400 VAC					
			Unit	1M1K520C	1M2K020C	1M3K020C		
Rated output*1*2			W	1,500	2,000	3,000		
Rated torque*1*2			N·m	7.16 9.55		14.3		
Rated rotation speed*1*2			r/min	2,000				
Maximum rotation speed			r/min	3,000				
Momentary maximum torque*1			N·m	21.5 28.7		43.0		
Rated current*1*2			A (rms)	4.1 5.7		8.6		
Momentary maximum current*1			A (rms)	13.5 19.8		28.3		
Rotor iner			× 10 ⁻⁴	9.0042	12.2042	15.3122		
		brake	kg·m ²		-			
		With brake	× 10 ⁻⁴	9.5042	12.7042	17.4122		
		Trial Branco	kg·m ²	0.0012	12.1012			
Applicable load inertia		× 10 ⁻⁴	79.9	100	142			
Applicable load literila				70.0	100	172		
	1		kg·m ² N·m/A	1.75	1.75	1.74		
Torque constant*1			(rms)	1.73	1.73	1.74		
Power rate*1*3			kW/s	57	75	134		
		netant* ³	ms	0.85	0.80	0.76		
Mechanical time constant*3 Electrical time constant			ms	13	14	20		
	radial loa		N	490		784		
			N	196		343		
Allowable thrust load* ⁴ Weight Without brake			kg	8.5 10		12		
vvoigiti	With brake		kg	10.5		15		
Radiator plate dimensions (mate-			mm	470 × 470 × t20 (aluminum)				
rial)			(,					
Brake	Excitation voltage*6		V	24 VDC±10%				
specifi-	Current consumption		Α	0.51	0.66	0.60		
cations* ⁵	(at 20°C)							
	Static friction torque		N·m	9.0 min.	12 min.	16 min.		
	Attraction time		ms	100 max.	100 max.	150 max.		
	Release time*7		ms 。	30 max.	30 max.	50 max.		
	Backlash			0.6 max.	0.6 max.	0.6 max.		
	Allowable braking work		J	1,000	1,000	350		
	Allowable total work		J 2	3,000,000 3,000,000 1,000,000				
	Allowable angular acceleration		rad/s ²		10,000 max.			
	Brake lifetime (acceler-			10 million times min.				
	ation/deceleration)							
	Insulation class				Class F			
			1	2.400 .				

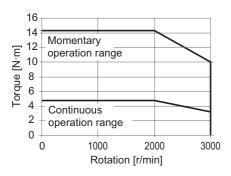

^{*1.} This is a typical value for when the Servomotor is used at a normal temperature (20°C, 65%) in combination with a Servo

^{*2.} The rated values are the values with which continuous operation is possible at an ambient temperature of 40°C when the Servomotor is horizontally installed on a specified radiator plate.

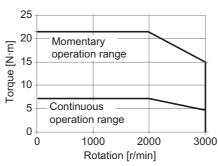
^{*3.} This value is for models without options.

^{*4.} The allowable radial and thrust loads are the values determined for a limit of 20,000 hours at normal operating temperatures.

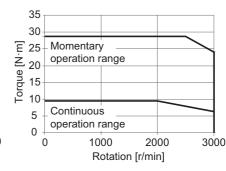

The allowable radial loads are applied as shown in the following diagram.

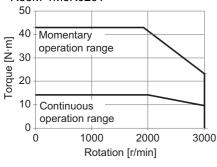


- *5. When the brake is released for a vertical axis, refer to 7-6 Brake Interlock on page 7-22 to set an appropriate value for Brake Interlock Output (4610 hex).
- *6. This is a non-excitation brake. It is released when excitation voltage is applied.
- *7. This value is a reference value.

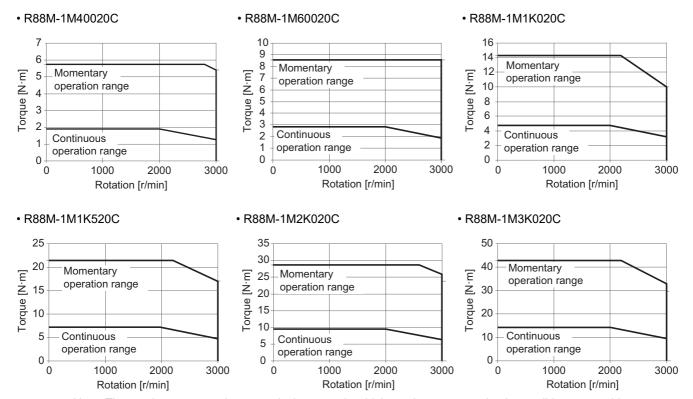

Torque-Rotation Speed Characteristics for 2,000-r/min Servomotors (200 VAC)

The following graphs show the characteristics with a 3-m standard cable and a 3-phase 200-VAC or single-phase 220-VAC input.




• R88M-1M1K520T

• R88M-1M2K020T



Note The continuous operation range is the range in which continuous operation is possible at an ambient temperature of 40°C when the Servomotor is horizontally installed on a specified radiator plate.

Continuous operation at the maximum speed is also possible. However, doing so will reduce the output torque.

● Torque-Rotation Speed Characteristics for 2,000-r/min Servomotors (400 VAC)

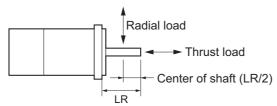
The following graphs show the characteristics with a 3-m standard cable and a 400-VAC input.

Note The continuous operation range is the range in which continuous operation is possible at an ambient temperature of 40°C when the Servomotor is horizontally installed on a specified radiator plate. Continuous operation at the maximum speed is also possible. However, doing so will reduce the output torque.

1,500-r/min Servomotors

		Mod	lel (R88M-)			200 VAC		
	Iter		Unit	1M4K015T	1M5K015T	1M7K515T	1M11K015T	1M15K015T
Rated output*1*2		W	4,000	5,000	7,500	11,000	15,000	
	Rated torque*1*2		N·m	25.5	31.8	47.8	70.0	95.5
	Rated rotation speed*1*2					1,500		l
Maximum rotation speed			r/min		3,000		2,0	000
	Momentary maximum torque* ¹			75.0	95.0	119	175	224
	Rated current*1*2			25.7	25.8	41.2	57.0	60.7
	Momentary maximum current*1		A (rms)	84.8	84.8	113.0	150.0	150.0
Rotor ine		Without brake	× 10 ⁻⁴ kg·m ²	54.0122	77.0122	113.0122	229.0122	340.0122
		With brake	× 10 ⁻⁴ kg·m ²	60.0122	83.0122	118.0122	253.0122	365.0122
Applicable load inertia		× 10 ⁻⁴ kg·m ²	687	955	1,070	2,200	3,110	
Torque constant*1			N·m/A (rms)	1.08	1.36	1.29	1.40	1.79
Power ra	ate* ¹ * ³		kW/s	120	131	202	214	268
Mechani	cal time co	nstant* ³	ms	1.0	1.1	0.75	0.61	0.56
Electrica	Electrical time constant			19	19	24	32	32
Allowable	e radial loa	d*4	N	1,200	1,470	1,470	2,500	2,500
Allowable	e thrust loa	d* ⁴	N	343	490	490	686	686
Weight	•		kg	21	29	39	63	85
	Witl	h brake	kg	26	34	45	73	99
Radiator plate dimensions (material)		mm	470 × 470 × t20 (aluminum)	20 (aluminum)		670 × 630 × t35 (aluminum)		
Brake	Excitation voltage*6		V	24 DC ±10%				
specifi- cat-	Current consumption (at 20°C)		Α	1.0	1.0	1.4	1.7	0.92
ions* ⁵	Static fric	Static friction torque		32 min.	42 min.	54.9 min.	90 min.	100 min.
	Attraction	n time	ms	150 max.	150 max.	300 max.	300 max.	600 max.
	Release time*7		ms	60 max.	60 max.	140 max.	140 max.	215 max.
	Backlash	Backlash		0.8 max.	0.8 max.	0.2 max.	0.2 max.	0.2 max.
		Allowable braking work		1,400	1,400	830	1,400	1,400
		Allowable total work		4,600,000	4,600,000	2,500,000	4,600,000	6,100,000
	Allowable angular acceleration		rad/s ²	10,000 max. 5,000 max. 3,000 max.) max.
	tion/dece	Brake lifetime (acceleration/deceleration)		10 million times min.				
	Insulatio	n class		Class F				

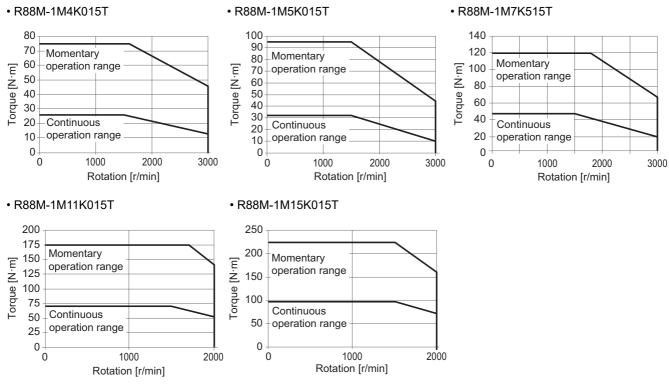
Mod			lel (R88M-)	400 VAC					
	Iter	m	Unit	1M4K015C	1M5K515C	1M7K515C	1M11K015C	1M15K015C	
Rated output*1*2			W	4,000	5,500	7,500	11,000	15,000	
Rated torque*1*2			N·m	25.5	35.0	47.8	70.0	95.5	
Rated rotation speed*1*2			r/min			1,500	1		
	Maximum rotation speed				3,000	·	2.0	000	
	Momentary maximum torque*1			75.0	95.0	119	175	224	
Rated current*1*2			N·m A (rms)	12.8	14.0	22.0	31.4	33.3	
	Momentary maximum current*1		A (rms)	42.4	42.4	56.5	80.7	81.2	
			, ,						
Rotor ine	піа	Without brake	× 10 ⁻⁴	54.0122	77.0122	113.0122	229.0122	340.0122	
			kg⋅m ²						
		With brake	× 10 ⁻⁴	60.0122	83.0122	118.0122	253.0122	365.0122	
			kg⋅m²						
Applicable	e load iner	tia	× 10 ⁻⁴	687	955	1,070	2,200	3,110	
			kg⋅m²						
Torque co	onstant* ¹		N·m/A	2.07	2.68	2.49	2.60	3.27	
			(rms)						
Power rat	Power rate*1*3			120	159	202	214	268	
Mechanic	al time cor	nstant* ³	ms	1.2	1.0	0.78	0.63	0.62	
	time const		ms	18	19	23	29	29	
Allowable	radial load	d*4	N	1,200	1,470	1,470	2,500	2,500	
	thrust load		N	343	490	490	686	686	
Weight		nout brake	kg	21	29	39	63	85	
Ü	With brake		kg	26	34	45	73	99	
Radiator	plate dime	nsions (material)	mm	470 × 470 ×	540 × 540 × t20 670 × 630 × t35			30 × t35	
				t20	(alum	inum)	(alum	inum)	
				(aluminum)					
Brake	Excitation	n voltage* ⁶	V			24 DC ±10%			
specifi-		Current consumption		1.0	1.0	1.4	1.7	0.92	
cations* ⁵		(at 20°C)							
	Static friction torque		N·m	32 min.	42 min.	54.9 min.	90 min.	100 min.	
	Attraction time		ms	150 max.	150 max.	300 max.	300 max.	600 max.	
	Release time*7		ms	60 max.	60 max.	140 max.	140 max.	215 max.	
		Backlash		0.8 max.	0.8 max.	0.2 max.	0.2 max.	0.2 max.	
		Allowable braking work		1,400	1,400	830	1,400	1,400	
	Allowable total work		J	4,600,000	4,600,000	2,500,000	4,600,000	6,100,000	
	Allowable angular acceleration		rad/s ²	10,000 max. 5,000 max. 3,000 max.) max.	
	Brake life	etime (accelera- eleration)		10 million times min.					
	Insulation class			Class F					
	. =::::::::::::::::::::::::::::::::::::								


^{*1.} This is a typical value for when the Servomotor is used at a normal temperature (20°C, 65%) in combination with a Servo

^{*2.} The rated values are the values with which continuous operation is possible at an ambient temperature of 40°C when the Servomotor is horizontally installed on a specified radiator plate.

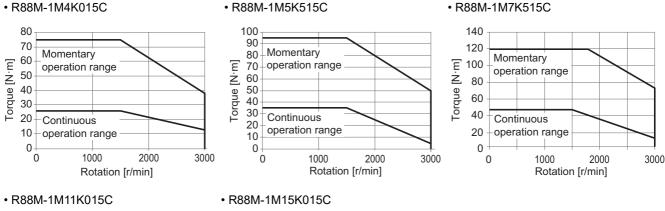
^{*3.} This value is for models without options.

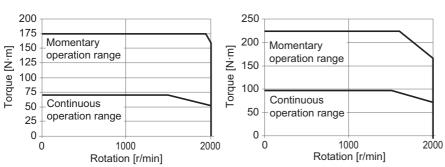
^{*4.} The allowable radial and thrust loads are the values determined for a limit of 20,000 hours at normal operating temperatures.


The allowable radial loads are applied as shown in the following diagram.

- *5. When the brake is released for a vertical axis, refer to *7-6 Brake Interlock* on page 7-22 to set an appropriate value for **Brake Interlock Output** (4610 hex).
- *6. This is a non-excitation brake. It is released when excitation voltage is applied.
- *7. This value is a reference value.

● Torque-Rotation Speed Characteristics for 1,500-r/min Servomotors (200 VAC)


The following graphs show the characteristics with a 3-m standard cable and a 3-phase 200-VAC input.



Note The continuous operation range is the range in which continuous operation is possible at an ambient temperature of 40°C when the Servomotor is horizontally installed on a specified radiator plate. Continuous operation at the maximum speed is also possible. However, doing so will reduce the output torque.

Torque-Rotation Speed Characteristics for 1,500-r/min Servomotors (400 VAC)

The following graphs show the characteristics with a 3-m standard cable and a 400-VAC input.

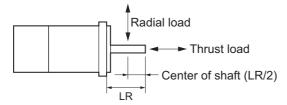
Note The continuous operation range is the range in which continuous operation is possible at an ambient temperature of 40°C when the Servomotor is horizontally installed on a specified radiator plate.

Continuous operation at the maximum speed is also possible. However, doing so will reduce the output torque.

1,000-r/min Servomotors

		Mod	del (R88M-)		200 VAC	
	Iten	ı	Unit	1M90010T	1M2K010T	1M3K010T
Rated out	tput* ¹ * ²		W	900	2,000	3,000
Rated tord			N·m	8.59	19.1	28.7
	ation speed	₁ *1*2	r/min		1,000	-1
	rotation sp		r/min		2,000	
	ry maximur		N·m	19.3	47.7	71.7
Rated cur		<u>'</u>	A (rms)	6.7	14.4	21.2
	ry maximur	n current*1	A (rms)	16.9	40.6	54.7
Rotor iner		Without brake	× 10 ⁻⁴	9.0042	40.0122	68.0122
1 (0(0) 11101	ii d	Trianout branc	1	0.0012	10.0122	00.0122
		\A/:41- 1 1	kg·m ²	0.5040	45 4400	70.4400
		With brake	× 10 ⁻⁴	9.5042	45.1122	73.1122
			kg⋅m²			
Applicable	e load inerti	ia	× 10 ⁻⁴	79.9	314	492
			kg⋅m²			
Torque co	netant*1		N·m/A	1.28	1.45	1.51
ioiqu e co	nistant		(rms)			
Power rat	Power rate* ¹ * ³		kW/s	82	91	121
Mechanic	al time con	stant* ³	ms	0.77	1.0	0.83
	time consta		ms	15	18	22
	radial load		N	686	1,176	1,470
	thrust load		N	196		.90
Weight		out brake	kg	8.5	18	28
rroigin		brake	kg	10.5	22	33
Radiator r		sions (material)	mm		t20 (aluminum)	540 × 540 × t20
rtadiator p	piato all'ilori	iororio (material)			azo (alammam)	(aluminum)
Brake	Excitation	voltage* ⁶	V		24 DC ±10%	,
specifi-		onsumption	Α	0.51	1.2	1.0
cations*5	(at 20°C)	1				
		tion torque	N⋅m	9.0 min.	22 min.	42 min.
	Attraction		ms	100 max.	120 max.	150 max.
	Release t	ime* ⁷	ms	30 max.	50 max.	60 max.
	Backlash	····•	0	0.6 max.	0.8 max.	0.8 max.
		braking work	J	1,000	1,400	1,400
		total work	J	3,000,000	4,600,000	4,600,000
	Allowable		rad/s ²	-,,	10,000 max.	1 .,,
	accelerati	•	Iau/S		,	
	Brake life	time (accelera-			10 million times min.	
	tion/decel	,				
	Insulation	class			Class F	

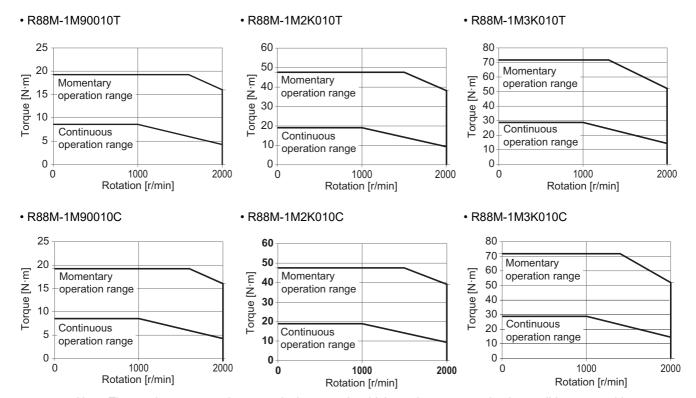
		Mod	del (R88M-)		400 VAC	
	Iter		Unit	1M90010C	1M2K010C	1M3K010C
Rated out	tput* ¹ * ²		W	900	2,000	3,000
Rated tor			N·m	8.59	19.1	28.7
	ation spee	d* ¹ * ²	r/min		1,000	
	rotation s		r/min		2,000	
-		m torque* ¹	N·m	19.3	47.7	71.7
Rated cui			A (rms)	3.6 7.1		10.6
		m current*1	A (rms)	9.0	19.5	27.7
Rotor ine		Without brake	× 10 ⁻⁴	9.0042	40.0122	68.0122
			kg·m ²			
		With brake	× 10 ⁻⁴	9.5042	45.1122	73.1122
		VVIIII BIGICO		0.0012	10.1122	70.1122
Applicable	e load iner	tia	kg·m ²	79.9	314	492
Дриісавіі	e load lilel	ua	× 10 ⁻⁴	19.9	314	492
	4		kg·m ²	0.44	0.00	0.07
Torque co	onstant*1		N·m/A (rms)	2.41	3.00	2.97
Power rat	·_*1*3		kW/s	82	91	121
		, ,,,3		0.88	1.2	0.92
	al time cor		ms			
	time const		ms	13	16	19
-	radial load		N	686	1,176	1,470
Allowable	thrust load		N	196	4	90
Weight		nout brake	kg	8.5	18	28
	With	n brake	kg	10.5	22	33
Radiator	plate dime	nsions (material)	mm	470 × 470 ×	t20 (aluminum)	540 × 540 × t20
	1					(aluminum)
Brake		n voltage* ⁶	V		24 DC ±10%	
specifi- cations* ⁵		consumption	Α	0.51	1.2	1.0
cations	,		N	0.0	22 main	40 main
	Attraction	ction torque	N·m	9.0 min.	22 min. 120 max.	42 min. 150 max.
			ms	100 max.		-
	Release		ms °	30 max.	50 max.	60 max.
	Backlash			0.6 max.	0.8 max.	0.8 max.
		e braking work	J	1,000	1,400	1,400
		e total work	J	3,000,000	4,600,000	4,600,000
	Allowable accelerat	tion	rad/s ²		10,000 max.	
	Brake life tion/dece	etime (accelera- eleration)			10 million times min.	
	Insulation	n class			Class F	


^{*1.} This is a typical value for when the Servomotor is used at a normal temperature (20°C, 65%) in combination with a Servo Drive.

^{*2.} The rated values are the values with which continuous operation is possible at an ambient temperature of 40°C when the Servomotor is horizontally installed on a specified radiator plate.

^{*3.} This value is for models without options.

^{*4.} The allowable radial and thrust loads are the values determined for a limit of 20,000 hours at normal operating temperatures.


The allowable radial loads are applied as shown in the following diagram.

- *5. When the brake is released for a vertical axis, refer to 7-6 Brake Interlock on page 7-22 to set an appropriate value for Brake Interlock Output (4610 hex).
- *6. This is a non-excitation brake. It is released when excitation voltage is applied.
- *7. This value is a reference value.

Torque-Rotation Speed Characteristics for 1,000-r/min Servomotors (200/400 VAC)

The following graphs show the characteristics with a 3-m standard cable and a single-phase 220-VAC or 3-phase 400-VAC input.

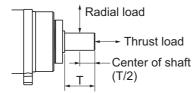
Note The continuous operation range is the range in which continuous operation is possible at an ambient temperature of 40°C when the Servomotor is horizontally installed on a specified radiator plate.

Continuous operation at the maximum speed is also possible. However, doing so will reduce the output torque.

Decelerator Specifications

The following tables list the Decelerator models for 1S-series Servomotors. Select an appropriate model based on the Servomotor rated output.

Backlash: 3 Arcminutes Max.


• For 3,000-r/min Servomotors

Servo- motor rated output	Reduc- tion ratio	Model	Rated rota- tion speed		Effi- ciency	Momen- tary maxi- mum rotation speed	Momen- tary maxi- mum torque	Decelerator inertia	Allow- able radial load	Allow- able thrust load	Weight
			r/min	N·m	%	r/min	N·m	× 10 ⁻⁴ kg·m ²	N	N	kg
50 W (100 V)	1/21	R88G-HPG14A21100B□	142	2.1	62.6	285	8.4	0.05	340	1358	1.0
(100 V)	1/33	R88G-HPG14A33050B□	90	3.6	68.4	181	13.4	0.044	389	1555	1.0
	1/45	R88G-HPG14A45050B□	66	4.9	68.4	133	18.3	0.044	427	1707	1.0
50 W	1/21	R88G-HPG14A21100B□	142	2.1	62.6	285	9.9	0.05	340	1358	1.0
(200 V)	1/33	R88G-HPG14A33050B□	90	3.6	68.4	181	15.9	0.044	389	1555	1.0
	1/45	R88G-HPG14A45050B□	66	4.9	68.4	133	21.7	0.044	427	1707	1.0
100 W	1/5	R88G-HPG11B05100B□	600	1.2	77.0	1200	4.2	0.005	135	538	0.3
(100 V)	1/11	R88G-HPG14A11100B□	272	2.5	72.1	545	9.0	0.06	280	1119	1.0
	1/21	R88G-HPG14A21100B□	142	5.2	77.8	285	17.5	0.05	340	1358	1.0
	1/33	R88G-HPG20A33100B□	90	6.8	65.2	181	26.9	0.065	916	3226	2.4
	1/45	R88G-HPG20A45100B□	66	9.8	68.2	133	37.1	0.063	1006	3541	2.4
100 W	1/5	R88G-HPG11B05100B□	600	1.2	77.0	1200	4.9	0.005	135	538	0.3
(200 V)	1/11	R88G-HPG14A11100B□	272	2.5	72.1	545	10.6	0.06	280	1119	1.0
	1/21	R88G-HPG14A21100B□	142	5.2	77.8	285	20.7	0.05	340	1358	1.0
	1/33	R88G-HPG20A33100B□	90	6.8	65.2	181	31.9	0.065	916	3226	2.4
	1/45	R88G-HPG20A45100B□	66	9.8	68.2	133	44.0	0.063	1006	3541	2.4
200 W	1/5	R88G-HPG14A05200B□	600	2.4	75.4	1200	8.3	0.207	221	883	1.0
(100 V)	1/11	R88G-HPG14A11200B□	272	5.8	82.6	545	18.8	0.197	280	1119	1.1
	1/21	R88G-HPG20A21200B□	142	10.2	76.2	285	35.9	0.49	800	2817	2.9
	1/33	R88G-HPG20A33200B□	90	17.0	80.6	181	57.3	0.45	916	3226	2.9
	1/45	R88G-HPG20A45200B□	66	23.5	82.1	133	78.5	0.45	1006	3541	2.9
200 W	1/5	R88G-HPG14A05200B□	600	2.4	75.4	1200	9.7	0.207	221	883	1.0
(200 V)	1/11	R88G-HPG14A11200B□	272	5.8	82.6	545	21.8	0.197	280	1119	1.1
	1/21	R88G-HPG20A21200B□	142	10.2	76.2	285	41.7	0.49	800	2817	2.9
	1/33	R88G-HPG20A33200B□	90	17.0	80.6	181	66.5	0.45	916	3226	2.9
	1/45	R88G-HPG20A45200B□	66	23.5	82.1	133	91.1	0.45	1006	3541	2.9
400 W	1/5	R88G-HPG14A05400B□	600	5.3	84.2	1200	17.1	0.207	221	883	1.1
(100 V)	1/11	R88G-HPG20A11400B□	272	11.4	81.6	545	38.1	0.57	659	2320	2.9
	1/21	R88G-HPG20A21400B□	142	23.0	86.1	285	74.0	0.49	800	2817	2.9
	1/33	R88G-HPG32A33400B□	90	33.8	80.7	181	114.0	0.62	1565	6240	7.5
	1/45	R88G-HPG32A45400B□	66	46.6	81.5	133	155.9	0.61	1718	6848	7.5
400 W	1/5	R88G-HPG14A05400B□	600	5.3	84.2	1200	20.4	0.207	221	883	1.1
(200 V)	1/11	R88G-HPG20A11400B□	272	11.4	81.6	545	45.5	0.57	659	2320	2.9
	1/21	R88G-HPG20A21400B□	142	23.0	86.1	285	88.1	0.49	800	2817	2.9
	1/33	R88G-HPG32A33400B□	90	33.8	80.7	181	136.2	0.62	1565	6240	7.5
	1/45	R88G-HPG32A45400B□	66	46.6	81.5	133	186.1	0.61	1718	6848	7.5

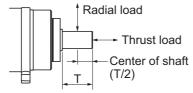
Servo- motor rated output	Reduc- tion ratio	Model	Rated rota- tion speed	Rated torque	Effi- ciency	Momen- tary maxi- mum rotation speed	Momen- tary maxi- mum torque	Decelerator inertia	Allow- able radial load	Allow- able thrust load	Weight
			r/min	N⋅m	%	r/min	N·m	× 10 ⁻⁴ kg·m ²	N	N	kg
750 W	1/5	R88G-HPG20A05750B□	600	9.9	82.9	1200	38.7	0.68	520	1832	2.9
(200 V)	1/11	R88G-HPG20A11750B□	272	20.0*1	87.2	545	86.7	0.6	659	2320	3.1
	1/21	R88G-HPG32A21750B□	142	42.1	84.0	285	163.3	3.0	1367	5448	7.8
	1/33	R88G-HPG32A33750B□	90	69.3	87.9	181	259.7	2.7	1565	6240	7.8
	1/45	R88G-HPG32A45750B□	66	94.9	88.3	133	299.0 ^{*2}	2.7	1718	6848	7.8
750 W	1/5	R88G-HPG32A052K0B□	600	7.7	64.3	1000	30.6	3.8	889	3542	7.4
(400 V)	1/11	R88G-HPG32A112K0B□	272	20.5	78.0	454	70.9	3.4	1126	4488	7.9
	1/21	R88G-HPG32A211K5B□	142	42.1	84.0	238	138.3	3.0	1367	5448	7.9
	1/33	R88G-HPG32A33600SB□	90	69.3	87.9	151	220.4	2.7	1565	6240	7.9
	1/45	R88G-HPG50A451K5B□	66	92.0	85.5	111	298.0	4.7	4538	15694	19.0
1 kW	1/5	R88G-HPG32A052K0B□	600	11.5	72.2	1000	42.0	3.8	889	3542	7.4
	1/11	R88G-HPG32A112K0B□	272	28.9	82.5	454	96.1	3.4	1126	4488	7.9
	1/21	R88G-HPG32A211K5B□	142	58.1	86.9	238	186.5	3.0	1367	5448	7.9
	1/33	R88G-HPG50A332K0B□	90	90.9	86.7	151	292.7	4.8	4135	14300	19.0
	1/45	R88G-HPG50A451K5B□	66	126.1	88.1	111	401.3	4.7	4538	15694	19.0
1.5 kW	1/5	R88G-HPG32A052K0B□	600	19.1	80.1	1000	64.8	3.8	889	3542	7.4
	1/11	R88G-HPG32A112K0B□	272	45.7	87.0	454	146.3	3.4	1126	4488	7.9
	1/21	R88G-HPG32A211K5B□	142	90.1	90.0	238	282.2	3.0	1367	5448	7.9
	1/33	R88G-HPG50A332K0B□	90	141.3	89.8	151	443.2	4.8	4135	14300	19.0
	1/45	R88G-HPG50A451K5B□	66	194.8	90.8	111	606.5	4.7	4538	15694	19.0
2 kW	1/5	R88G-HPG32A052K0B□	600	26.8	84.1	1000	87.9	3.8	889	3542	7.4
	1/11	R88G-HPG32A112K0B□	272	62.5	89.3	454	197.0	3.4	1126	4488	7.9
	1/21	R88G-HPG50A212K0B□	142	119.0	89.0	238	375.7	5.8	3611	12486	19.0
	1/33	R88G-HPG50A332K0B□	90	192.0	91.3	151	595.3	4.8	4135	14300	19.0
3 kW	1/5	R88G-HPG32A053K0B□	600	42.0	88.1	1000	134.0	3.8	889	3542	7.3
	1/11	R88G-HPG50A113K0B□	272	93.9	89.3	454	296.1	7.7	2974	10285	19.0
	1/21	R88G-HPG50A213K0B□	142	183.1	91.3	238	569.2	5.8	3611	12486	19.0
4 kW	1/5	R88G-HPG32A054K0B□	600	57.2	90.0	1000	179.6	3.8	889	3542	7.9
	1/11	R88G-HPG50A115K0B□	272	127.1	91.0	454	396.4	8.8	2974	10285	19.1
4.7 kW	1/5	R88G-HPG50A055K0B□	600	65.6	87.4	1000	222.5	12.0	2347	8118	18.6
	1/11	R88G-HPG50A115K0B□	272	151.4	91.8	454	496.7	8.8	2974	10285	19.1
5 kW	1/5	R88G-HPG50A055K0B□	600	69.9	87.9	1000	222.5	12.0	2347	8118	18.6
	1/11	R88G-HPG50A115K0B□	272	160.9	92.0	454	496.7	8.8	2974	10285	19.1

^{*1.} The value is the allowable continuous output torque of the Decelerator. Take care so that this value is not exceeded.

- Note 1. The Decelerator inertia is the Servomotor shaft conversion value.
 - 2. The protective structure rating of the Servomotor with the Decelerator is IP44.
 - 3. The Allowable radial load column shows the values obtained at the center of the shaft (T/2).

- 4. The standard shaft type is a straight shaft. A model with a key and tap is indicated with "J" at □ of the model number.
- 5. Take care so that the surface temperature of the Decelerator does not exceed 70°C.

^{*2.} The value is the maximum allowable torque of the Decelerator. Take care so that this value is not exceeded.


• For 2,000-r/min Servomotors

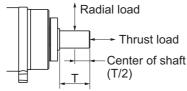
Servo- motor rated output	Reduc- tion ratio	Model	Rated rota- tion speed	Rated torque	Effi- ciency	Momen- tary maxi- mum rotation speed	Momen- tary maxi- mum torque	Decelerator inertia	Allow- able radial load	Allow- able thrust load	Weight
			r/min	N·m	%	r/min	N⋅m	× 10 ⁻⁴ kg·m ²	N	N	kg
400 W	1/5	R88G-HPG32A052K0B□	400	6.5	68.4	600	24.9	3.8	889	3542	7.4
	1/11	R88G-HPG32A112K0B□	181	16.8	79.9	272	57.1	3.4	1126	4488	7.9
	1/21	R88G-HPG32A211K5B□	95	34.0	84.9	142	111.1	3.0	1367	5448	7.9
	1/33	R88G-HPG32A33600SB□	60	55.6	88.2	90	176.6	2.7	1565	6240	7.9
	1/45	R88G-HPG32A45400SB□	44	76.0	88.5	66	241.1	2.7	1718	6848	7.9
600 W	1/5	R88G-HPG32A052K0B□	400	11.1	77.6	600	38.6	3.8	889	3542	7.4
	1/11	R88G-HPG32A112K0B□	181	26.8	85.3	272	87.3	3.4	1126	4488	7.9
	1/21	R88G-HPG32A211K5B□	95	53.2	88.6	142	168.7	3.0	1367	5448	7.9
	1/33	R88G-HPG32A33600SB□	60	85.7	90.8	90	267.2	2.7	1565	6240	7.9
	1/45	R88G-HPG50A451K5B□	44	115.1	89.4	66	362.6	4.7	4538	15694	19.0
1 kW	1/5	R88G-HPG32A053K0B□	400	20.3	85.0	600	66.0	3.8	889	3542	7.3
	1/11	R88G-HPG32A112K0SB□	181	47.0	89.6	272	147.6	3.4	1126	4488	7.8
	1/21	R88G-HPG32A211K0SB□	95	91.7	91.5	142	283.8	2.9	1367	5448	7.8
	1/33	R88G-HPG50A332K0SB□	60	143.9	91.4	90	445.8	4.7	4135	14300	19.0
	1/45	R88G-HPG50A451K0SB□	44	197.6	92.1	66	609.3	4.7	4538	15694	19.0
1.5 kW	1/5	R88G-HPG32A053K0B□	400	31.7	88.7	600	100.6	3.8	889	3542	7.3
	1/11	R88G-HPG32A112K0SB□	181	72.2	91.7	272	223.7	3.4	1126	4488	7.8
	1/21	R88G-HPG50A213K0B□	95	137.6	91.5	142	426.7	5.8	3611	12486	19.0
	1/33	R88G-HPG50A332K0SB□	60	219.6	92.9	90	673.9	4.7	4135	14300	19.0
2 kW	1/5	R88G-HPG32A053K0B□	400	43.2	90.5	600	135.1	3.8	889	3542	7.3
	1/11	R88G-HPG32A112K0SB□	181	97.5	92.8	272	299.7	3.4	1126	4488	7.8
	1/21	R88G-HPG50A213K0B□	95	185.8	92.7	142	571.9	5.8	3611	12486	19.0
	1/33	R88G-HPG50A332K0SB□	60	270.0 ^{*1}	93.5	90	849.0 ^{*2}	4.7	4135	14300	19.0
3 kW	1/5	R88G-HPG32A054K0B□	400	66.0	92.3	600	203.8	3.8	889	3542	7.9
	1/11	R88G-HPG50A115K0B□	181	146.1	92.9	272	449.2	8.8	2974	10285	19.1
	1/21	R88G-HPG50A213K0SB□	95	260.0 ^{*1}	93.6	142	849.0 ^{*2}	6.9	3611	12486	19.1
	1/25	R88G-HPG65A253K0SB□	80	322.9	90.3	120	1011.7	14	7846	28654	52.0

^{*1.} The value is the allowable continuous output torque of the Decelerator. Take care so that this value is not exceeded.

Note 1. The Decelerator inertia is the Servomotor shaft conversion value.

- 2. The protective structure rating of the Servomotor with the Decelerator is IP44.
- 3. The Allowable radial load column shows the values obtained at the center of the shaft (T/2).

- 4. The standard shaft type is a straight shaft. A model with a key and tap is indicated with "J" at □ of the model num-
- 5. Take care so that the surface temperature of the Decelerator does not exceed 70°C .

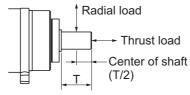

^{*2.} The value is the maximum allowable torque of the Decelerator. Take care so that this value is not exceeded.

• For 1,500-r/min Servomotors

Servo- motor rated output	Reduc- tion ratio	Model	Rated rota- tion speed	Rated torque	Effi- ciency	Momen- tary maxi- mum rotation speed	Momen- tary maxi- mum torque	Decelerator inertia	Allow- able radial load	Allow- able thrust load	Weight
			r/min	N⋅m	%	r/min	N∙m	× 10 ⁻⁴ kg·m ²	N	N	kg
4 kW	1/5	R88G-HPG50A055K0SB□	300	119.0	93.4	600	356.6	11	2347	8118	22.0
	1/11	R88G-HPG50A115K0SB□	136	217.9 ^{*1}	94.3	272	788.2	8.4	2974	10285	23.5
	1/20	R88G-HPG65A205K0SB□	75	474.9	93.1	150	1425.3	14	7338	26799	55.4
	1/25	R88G-HPG65A255K0SB□	60	596.0	93.5	120	1784.0	14	7846	28654	55.4
5 kW	1/5	R88G-HPG50A054K5TB□	300	149.3	93.9	600	452.6	12	2347	8118	22.0
	1/12	R88G-HPG65A127K5SB□	125	354.1	92.8	250	1082.2	66	6295	22991	52.0
	1/20	R88G-HPG65A204K5TB□	75	595.9	93.7	150	1809.3	53	7338	26799	52.0
5.5 kW	1/5	R88G-HPG50A054K5TB□	300	164.6	94.1	600	452.6	12	2347	8118	22.0
	1/12	R88G-HPG65A127K5SB□	125	391.0	93.1	250	1082.2	66	6295	22991	52.0
	1/20	R88G-HPG65A204K5TB□	75	657.3	93.9	150	1809.3	53	7338	26799	52.0

^{*1.} The value is the allowable continuous output torque of the Decelerator. Take care so that this value is not exceeded.

- Note 1. The Decelerator inertia is the Servomotor shaft conversion value.
 - 2. The protective structure rating of the Servomotor with the Decelerator is IP44.
 - 3. The Allowable radial load column shows the values obtained at the center of the shaft (T/2).


- 4. The standard shaft type is a straight shaft. A model with a key and tap is indicated with "J" at □ of the model number
- 5. Take care so that the surface temperature of the Decelerator does not exceed 70°C.

● For 1,000-r/min Servomotors

Servo- motor rated output	Reduc- tion ratio	Model	Rated rota- tion speed	Rated torque	Effi- ciency	Momen- tary maxi- mum rotation speed	Momen- tary maxi- mum torque	Decelerator inertia	Allow- able radial load	Allow- able thrust load	Weight
			r/min	N⋅m	%	r/min	N·m	× 10 ⁻⁴ kg·m ²	N	N	kg
900 W	1/5	R88G-HPG32A05900TB□	200	39.8	92.6	400	91.2	3.8	889	3542	7.9
	1/11	R88G-HPG32A11900TB□	90	88.7	93.9	181	201.8	3.4	1126	4488	8.4
	1/21	R88G-HPG50A21900TB□	47	169.2	93.8	95	385.1	7.0	3611	12486	19.1
	1/33	R88G-HPG50A33900TB□	30	267.5	94.4	60	606.8	5.9	4135	14300	19.1
2 kW	1/5	R88G-HPG32A052K0TB□	200	90.2	94.5	400	227.5	5.2	889	3542	8.90
	1/11	R88G-HPG50A112K0TB□	90	198.9	94.7	181	500.9	8.4	2974	10285	20.1
	1/21	R88G-HPG50A212K0TB□	47	320.1 ^{*1}	94.8	95	849.0*2	6.5	3611	12486	20.1
	1/25	R88G-HPG65A255K0SB□	40	446.7	93.6	80	1133.1	14	7846	28654	55.4
3 kW	1/5	R88G-HPG50A055K0SB□	200	135.4	94.4	400	341.8	11	2347	8118	22.0
	1/11	R88G-HPG50A115K0SB□	90	246.2 ^{*1}	94.9	181	754.4	8.4	2974	10285	23.5
	1/20	R88G-HPG65A205K0SB□	50	540.4	94.2	100	1366.0	14	7338	26799	55.4
	1/25	R88G-HPG65A255K0SB□	40	677.1	94.4	80	1709.1	14	7846	28654	55.4

^{*1.} The value is the allowable continuous output torque of the Decelerator. Take care so that this value is not exceeded.

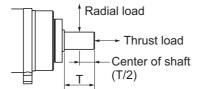
- Note 1. The Decelerator inertia is the Servomotor shaft conversion value.
 - 2. The protective structure rating of the Servomotor with the Decelerator is IP44.
 - 3. The Allowable radial load column shows the values obtained at the center of the shaft (T/2).

- 4. The standard shaft type is a straight shaft. A model with a key and tap is indicated with "J" at □ of the model num-
- 5. Take care so that the surface temperature of the Decelerator does not exceed 70°C.

^{*2.} The value is the maximum allowable torque of the Decelerator. Take care so that this value is not exceeded.

Backlash: 15 Arcminutes Max.

• For 3,000-r/min Servomotors


Servo- motor rated output	Reduc- tion ratio	Model	Rated rota- tion speed	Rated torque	Effi- ciency	Momen- tary maximum rotation speed	Momen- tary maximum torque	Decelerator inertia	Allow- able radial load	Allow- able thrust load	Weight
			r/min	N⋅m	%	r/min	N⋅m	× 10 ⁻⁴ kg·m ²	N	N	kg
50 W	1/5	R88G-VRXF05B100CJ	600	0.65	82	1200	1.97	0.060	392	196	0.55
(100 V)	1/9	R88G-VRXF09B100CJ	333	1.17	82	667	3.54	0.050	441	220	0.55
	1/15	R88G-VRXF15B100CJ	200	1.84	77	400	5.54	0.053	588	294	0.70
	1/25	R88G-VRXF25B100CJ	120	3.06	77	240	9.24	0.051	686	343	0.70
50 W	1/5	R88G-VRXF05B100CJ	600	0.65	82	1200	2.30	0.060	392	196	0.55
(200 V)	1/9	R88G-VRXF09B100CJ	333	1.17	82	667	4.13	0.050	441	220	0.55
	1/15	R88G-VRXF15B100CJ	200	1.84	77	400	6.47	0.053	588	294	0.70
	1/25	R88G-VRXF25B100CJ	120	3.06	77	240	10.78	0.051	686	343	0.70
100 W	1/5	R88G-VRXF05B100CJ	600	1.43	90	1200	4.28	0.060	392	196	0.55
(100 V)	1/9	R88G-VRXF09B100CJ	333	2.58	90	667	7.70	0.050	441	220	0.55
	1/15	R88G-VRXF15B100CJ	200	4.10	86	400	12.26	0.053	588	294	0.70
	1/25	R88G-VRXF25B100CJ	120	6.84	86	240	20.43	0.051	686	343	0.70
100 W	1/5	R88G-VRXF05B100CJ	600	1.43	90	1200	5.00	0.060	392	196	0.55
(200 V)	1/9	R88G-VRXF09B100CJ	333	2.58	90	667	8.23 ^{*1}	0.050	441	220	0.55
	1/15	R88G-VRXF15B100CJ	200	4.10	86	400	14.10 ^{*1}	0.053	588	294	0.70
	1/25	R88G-VRXF25B100CJ	120	6.84	86	240	21.90 ^{*1}	0.051	686	343	0.70
200 W	1/5	R88G-VRXF05B200CJ	600	2.93	92	1200	8.79	0.147	392	196	0.72
(100 V)	1/9	R88G-VRXF09C200CJ	333	4.76	83	667	14.27	0.273	931	465	1.70
	1/15	R88G-VRXF15C200CJ	200	8.22	86	400	24.64	0.302	1176	588	2.10
	1/25	R88G-VRXF25C200CJ	120	13.70	86	240	41.07	0.293	1323	661	2.10
200 W	1/5	R88G-VRXF05B200CJ	600	2.93	92	1200	9.94 ^{*1}	0.147	392	196	0.72
(200 V)	1/9	R88G-VRXF09C200CJ	333	4.76	83	667	16.43	0.273	931	465	1.70
	1/15	R88G-VRXF15C200CJ	200	8.22	86	400	28.38	0.302	1176	588	2.10
	1/25	R88G-VRXF25C200CJ	120	13.70	86	240	47.30	0.293	1323	661	2.10
400 W	1/5	R88G-VRXF05C400CJ	600	5.59	88	1200	16.72	0.370	784	392	1.70
(100 V)	1/9	R88G-VRXF09C400CJ	333	10.06	88	667	30.10	0.273	931	465	1.70
	1/15	R88G-VRXF15C400CJ	200	16.95	89	400	50.73	0.302	1176	588	2.10
	1/25	R88G-VRXF25C400CJ	120	28.26	89	240	84.55	0.293	1323	661	2.10
400 W	1/5	R88G-VRXF05C400CJ	600	5.59	88	1200	19.80	0.370	784	392	1.70
(200 V)	1/9	R88G-VRXF09C400CJ	333	10.06	88	667	34.00 ^{*1}	0.273	931	465	1.70
	1/15	R88G-VRXF15C400CJ	200	16.95	89	400	56.70 ^{*1}	0.302	1176	588	2.10
	1/25	R88G-VRXF25C400CJ	120	28.26	89	240	92.40 ^{*1}	0.293	1323	661	2.10
750 W	1/5	R88G-VRXF05C750CJ	600	10.99	92	1200	38.64	0.817	784	392	2.10
(200 V)	1/9	R88G-VRXF09D750CJ	333	19.57	91	667	63.70 ^{*1}	0.755	1176	588	3.40
	1/15	R88G-VRXF15D750CJ	200	31.91	89	400	106.00 ^{*1}	0.685	1372	686	3.80
	1/25	R88G-VRXF25D750CJ	120	53.18	89	240	177.00 ^{*1}	0.658	1617	808	3.80

^{*1.} It is maximum allowable torque for decelerator. Take a caution not to exceed this value.

Note 1. The Decelerator inertia is the Servomotor shaft conversion value.

^{2.} The protective structure rating of the Servomotor combined with the Decelerator is IP44. (Excluding decelerator and servo motor connecting parts.)

^{3.} The Allowable radial load column shows the values obtained at the center of the shaft (T/2).

- 4. The standard shaft type is a shaft with key and tap. (The key is temporarily assembled to the shaft.)
- 5. Take care so that the surface temperature of the Decelerator does not exceed 90°C.

3-4 Cable and Connector Specifications

This section describes the specifications of the cables to connect between Servo Drives and Servomotors, and the connectors to be used.

Select an appropriate cable for the Servomotor.

Precautions for Correct Use

The regulations for cables differ according to the country in use. (The regulations can also be different in the same country according to the region or where the Servomotors are installed.) Therefore, be sure to check to the respective certificate institution for a cable that conforms to the regulations of each country.

3-4-1 Encoder Cable Specifications

These cables are used to connect the Servo Drive with an encoder installed in the Servomotor. Select an appropriate cable for the Servomotor.

Precautions for Correct Use

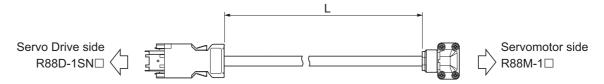
If the cable is used in a moving part, use a flexible cable.

The protective structure rating of the Servomotor with an encoder cable whose length [L] is 30 m or more is IP20.

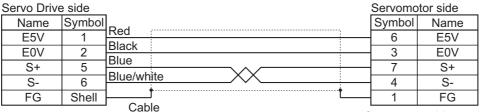
Encoder Cables (Standard Cable)

■ R88A-CR1A□□□C

Applicable Servomotors


100 V and 200 V:

3,000-r/min Servomotors of 50 W, 100 W, 200 W, 400 W, and 750 W


Cable types

Model	Length [L]	Outer diameter of sheath	Weight
R88A-CR1A003C	3 m	5.3 dia.	Approx. 0.3 kg
R88A-CR1A005C	5 m		Approx. 0.4 kg
R88A-CR1A010C	10 m		Approx. 0.7 kg
R88A-CR1A015C	15 m		Approx. 1.0 kg
R88A-CR1A020C	20 m		Approx. 1.4 kg
R88A-CR1A030C	30 m	6.0 dia.	Approx. 2.2 kg
R88A-CR1A040C	40 m		Approx. 3.0 kg
R88A-CR1A050C	50 m		Approx. 3.7 kg

Connection configuration and external dimensions [mm]

Wiring

Servo Drive side connector

AWG22 × 2C + AWG24 × 1P UL20276 (3 to 20 m) AWG18 × 2C + AWG24 × 1P UL20276 (30 to 50 m)

Connector model

Receptacle: 3E206-0100KV (3M) Shell kit: 3E306-3200-008 (3M)

Servomotor side connector Angle clamp model JN6FR07SM1

(Japan Aviation Electronics)

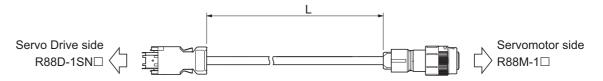
Connector pin model LY10-C1-A1-10000

(Japan Aviation Electronics)

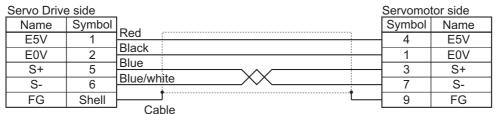
● R88A-CR1B□□□N

Applicable Servomotors

200 V:


3,000-r/min Servomotors of 1 kW to 3 kW, 2,000-r/min Servomotors, and 1,000-r/min Servomotors 400 V:

3,000-r/min Servomotors of 3 kW or less, 2,000-r/min Servomotors, and 1,000-r/min Servomotors


Cable types

Model	Length [L]	Outer diameter of sheath	Weight
R88A-CR1B003N	3 m	6.0 dia.	Approx. 0.3 kg
R88A-CR1B005N	5 m		Approx. 0.4 kg
R88A-CR1B010N	10 m		Approx. 0.8 kg
R88A-CR1B015N	15 m		Approx. 1.1 kg
R88A-CR1B020N	20 m		Approx. 1.5 kg
R88A-CR1B030N	30 m		Approx. 2.3 kg
R88A-CR1B040N	40 m		Approx. 3.0 kg
R88A-CR1B050N	50 m		Approx. 3.7 kg

Connection configuration and external dimensions [mm]

Wiring

Servo Drive side connector

AWG22 × 2C + AWG24 × 1P UL20276 (3 to 20 m) AWG18 × 2C + AWG24 × 1P UL20276 (30 to 50 m)

Connector model

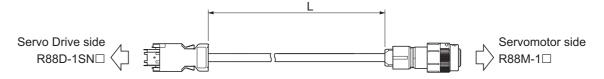
Receptacle: 3E206-0100KV (3M) Shell kit: 3E306-3200-008 (3M) Servomotor side connector Straight plug model JN2DS10SL1-R

(Japan Aviation Electronics)

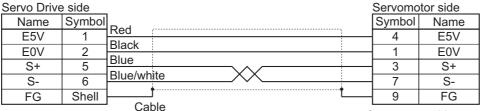
Contact model JN1-22-22S-10000 (Japan Aviation Electronics)

● R88A-CR1B□□□V

Applicable Servomotors


200 V and 400 V:

3,000-r/min Servomotors of 4 kW or more, and 1,500-r/min Servomotors


Cable types

Model	Length [L]	Outer diameter of sheath	Weight
R88A-CR1B003V	3 m	6.0 dia.	Approx. 0.3 kg
R88A-CR1B005V	5 m		Approx. 0.4 kg
R88A-CR1B010V	10 m		Approx. 0.8 kg
R88A-CR1B015V	15 m		Approx. 1.1 kg
R88A-CR1B020V	20 m		Approx. 1.5 kg
R88A-CR1B030V	30 m		Approx. 2.3 kg
R88A-CR1B040V	40 m		Approx. 3.0 kg
R88A-CR1B050V	50 m		Approx. 3.7 kg

Connection configuration and external dimensions [mm]

Wiring

Servo Drive side connector

AWG22 × 2C + AWG24 × 1P UL20276 (3 to 20 m) AWG18 × 2C + AWG24 × 1P UL20276 (30 to 50 m)

Connector model

Receptacle: 3E206-0100KV (3M) Shell kit: 3E306-3200-008 (3M)

Servomotor side connector

Straight plug model JN2VDS10SL1

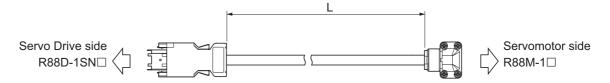
(Japan Aviation Electronics)

Contact model JN2V-22-22S-10000 (Japan Aviation Electronics)

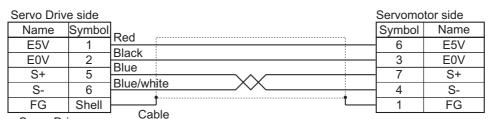
Encoder Cables (Flexible Cable)

● R88A-CR1A□□□CF

Applicable Servomotors


100 V and 200 V:

3,000-r/min Servomotors of 50 W, 100 W, 200 W, 400 W, and 750 W


Cable types

Model	Length [L]	Outer diame- ter of sheath	Minimum bending radius	Weight
R88A-CR1A003CF	3 m	5.3 dia.	33 mm	Approx. 0.3 kg
R88A-CR1A005CF	5 m			Approx. 0.4 kg
R88A-CR1A010CF	10 m			Approx. 0.7 kg
R88A-CR1A015CF	15 m			Approx. 1.0 kg
R88A-CR1A020CF	20 m			Approx. 1.4 kg
R88A-CR1A030CF	30 m	6.0 dia.	42 mm	Approx. 2.2 kg
R88A-CR1A040CF	40 m			Approx. 3.0 kg
R88A-CR1A050CF	50 m			Approx. 3.7 kg

Connection configuration and external dimensions [mm]

Wiring

Servo Drive side connector

AWG22 × 2C + AWG24 × 1P UL20276 (3 to 20 m)

Connector model Receptacle: 3E206-0100KV (3M) Shell kit: 3E306-3200-008 (3M)

Servomotor side connector AWG18 × 2C + AWG24 × 1P UL20276 (30 to 50 m) Angle clamp model JN6FR07SM1

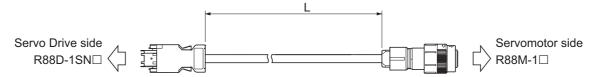
> (Japan Aviation Electronics) Connector pin model LY10-C1-A1-10000

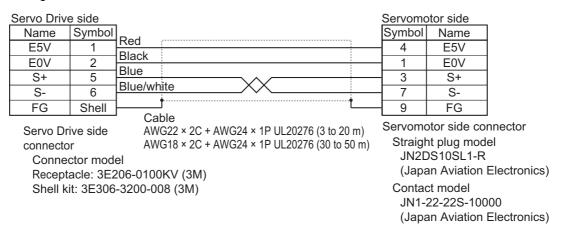
(Japan Aviation Electronics)

● R88A-CR1B□□□NF

Applicable Servomotors

200 V:


3,000-r/min Servomotors of 1 kW to 3 kW, 2,000-r/min Servomotors, and 1,000-r/min Servomotors


3,000-r/min Servomotors of 3 kW or less, 2,000-r/min Servomotors, and 1,000-r/min Servomotors

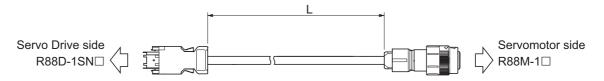
Cable types

Model	Length [L]	Outer diame- ter of sheath	Minimum bending radius	Weight
R88A-CR1B003NF	3 m	6.0 dia.	33 mm	Approx. 0.3 kg
R88A-CR1B005NF	5 m			Approx. 0.4 kg
R88A-CR1B010NF	10 m			Approx. 0.8 kg
R88A-CR1B015NF	15 m			Approx. 1.1 kg
R88A-CR1B020NF	20 m			Approx. 1.5 kg
R88A-CR1B030NF	30 m		42 mm	Approx. 2.3 kg
R88A-CR1B040NF	40 m	1		Approx. 3.0 kg
R88A-CR1B050NF	50 m	1		Approx. 3.7 kg

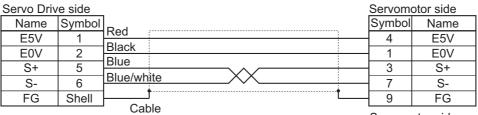
Connection configuration and external dimensions [mm]

● R88A-CR1B□□□VF

Applicable Servomotors


200 V and 400V:

3,000-r/min Servomotors of 4 kW or more, and 1,500-r/min Servomotors


Cable types

Model	Length [L]	Outer diame- ter of sheath	Minimum bending radius	Weight
R88A-CR1B003VF	3 m	6.0 dia.	33 mm	Approx. 0.3 kg
R88A-CR1B005VF	5 m			Approx. 0.4 kg
R88A-CR1B010VF	10 m			Approx. 0.8 kg
R88A-CR1B015VF	15 m			Approx. 1.1 kg
R88A-CR1B020VF	20 m			Approx. 1.5 kg
R88A-CR1B030VF	30 m		42 mm	Approx. 2.3 kg
R88A-CR1B040VF	40 m			Approx. 3.0 kg
R88A-CR1B050VF	50 m			Approx. 3.7 kg

Connection configuration and external dimensions [mm]

Wiring

Servo Drive side AWG22 \times 2C + AWG24 \times 1P UL20276 (3 to 20 m) connector AWG18 \times 2C + AWG24 \times 1P UL20276 (30 to 50 m)

Connector model

Receptacle: 3E206-0100KV (3M) Shell kit: 3E306-3200-008 (3M) Servomotor side connector Straight plug model JN2VDS10SL1

(Japan Aviation Electronics)

Contact model
JN2V-22-22S-10000
(Japan Aviation Electronics)

Motor Power Cable Specifications 3-4-2

These cables are used to connect the Servo Drive and Servomotor. Select an appropriate cable for the Servomotor.

When you use a unit version 1.2 or earlier of Servo Drive, use a motor power cable of 20 m or less.

Precautions for Correct Use

If the cable is used in a moving part, use a flexible cable.

Do not lay the cables close to each other.

When you prepare a power cable yourself, use the same wires as used in OMRON Power Cables.

Cable Version Information

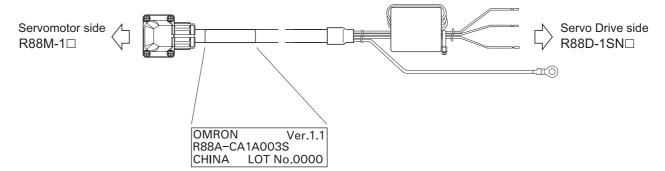
For the motor power cables, there are two types of cable versions available: version 1.0 and 1.1. The following table shows the product lineup by model.

Model	Cable length	Cable version		
Wodei	Cable length	Ver.1.0	Ver.1.1	
R88A-CA1A□□□S	3 m, 5 m, 10 m, 15 m, 20 m	Available	Available	
R88A-CA1A□□□SF	30 m, 40 m, 50 m		Available	
R88A-CA1A□□□SFR				
R88A-CA1A□□□B				
R88A-CA1A□□□BF				
R88A-CA1B□□□S	3 m, 5 m, 10 m, 15 m, 20 m	Available	Available	
R88A-CA1B□□□SF	30 m, 40 m, 50 m		Available	
R88A-CA1B□□□B				
R88A-CA1B□□□BF				
R88A-CA1C□□□S	3 m, 5 m, 10 m, 15 m, 20 m	Available	Available	
R88A-CA1C□□□SF	30 m, 40 m, 50 m		Available	
R88A-CA1C□□□B				
R88A-CA1C□□□BF				
R88A-CA1D□□□B	3 m, 5 m, 10 m, 15 m, 20 m	Available		
R88A-CA1D□□□BF	30 m, 40 m, 50 m	Available		
R88A-CA1E□□□S	3 m, 5 m, 10 m, 15 m, 20 m	Available	Available	
R88A-CA1E□□□SF	30 m, 40 m, 50 m		Available	
R88A-CA1E□□□B				
R88A-CA1E□□□BF				
R88A-CA1F□□□S	3 m, 5 m, 10 m, 15 m, 20 m	Available		
R88A-CA1F□□□SF	30 m, 40 m, 50 m	Available		
R88A-CA1F□□□B				
R88A-CA1F□□□BF				
R88A-CA1H0□□SF	3 m, 5 m, 10 m, 15 m, 20 m	Available		
R88A-CA1H0□□BF				
R88A-CA1HE□□BF	10 m, 20 m	Available		
R88A-CA1J0□□SF	3 m, 5 m, 10 m, 15 m, 20 m	Available		
R88A-CA1J0□□BF				
R88A-CA1JE□□BF	10 m, 20 m	Available		

Model	Cable length	Cable version	
Wodei	Cable leligili	Ver.1.0	Ver.1.1
R88A-CA1K0□□SF	3 m, 5 m, 10 m, 15 m, 20 m	Available	
R88A-CA1K0□□BF			
R88A-CA1KE□□BF	10 m, 20 m	Available	

Differences between Version 1.0 and 1.1

Changes between version 1.0 and 1.1 are as follows:


- Leakage current changes. Refer to 4-3-2 Selecting Connection Component on page 4-62 for details.
- When the wire length is long, noise filter installation conditions change. Refer to 4-7 Noise Filter Installation Conditions When the Total Wire Length Is Long on page 4-80 for details.
- Refer to 3-4-2 Motor Power Cable Specifications on page 3-84 for details on changes in the cable specifications.

Distinguishing Version 1.0 and 1.1

The model label of version 1.1 has "Ver.1.1" printed on it so that the version 1.0 and 1.1 can be distinguished.

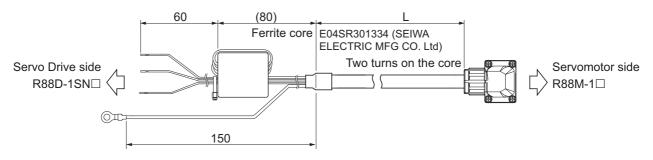
- Version 1.0: The model label has no version information
- Version 1.1: The model label has "Ver.1.1" printed on it

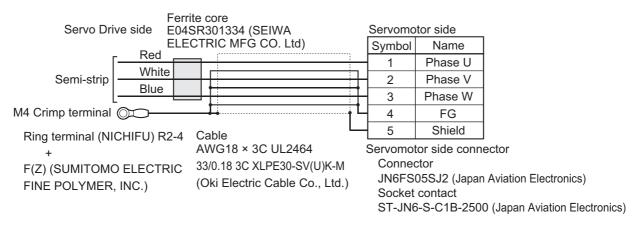
The following figure shows an example of the label of R88A-CA1A003S of cable version 1.1.

Power Cables without Brake Wire (Standard Cable)

● R88A-CA1A□□□S (Ver. 1.0)

Applicable Servomotors


100 V and 200 V:


3,000-r/min Servomotors of 100 W, 200 W, 400 W, and 750 W

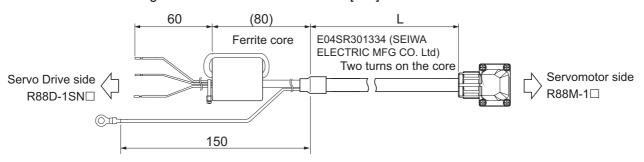
Cable types

Model	Length [L]	Outer diameter of sheath	Weight
R88A-CA1A003S	3 m	6.8 dia.	Approx. 0.4 kg
R88A-CA1A005S	5 m		Approx. 0.6 kg
R88A-CA1A010S	10 m		Approx. 1.1 kg
R88A-CA1A015S	15 m		Approx. 1.5 kg
R88A-CA1A020S	20 m		Approx. 2.0 kg

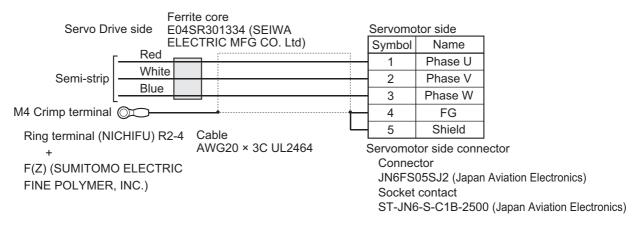
Connection configuration and external dimensions [mm]

● R88A-CA1A□□□S (Ver.1.1)

Applicable Servomotors


100 V and 200 V:

3,000-r/min Servomotors of 100 W, 200 W, 400 W, and 750 W

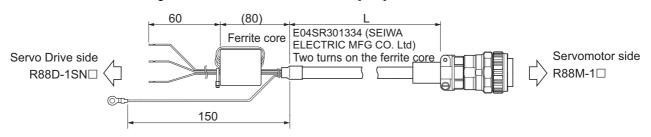

Cable types

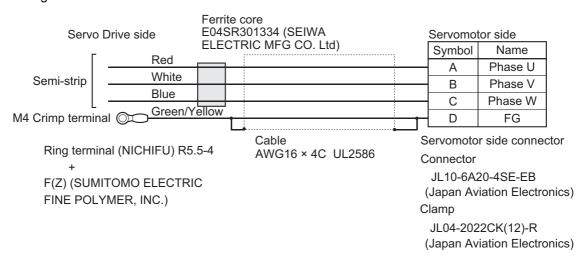
Model	Length [L]	Outer diameter of sheath	Weight
R88A-CA1A003S	3 m	7.2 dia.	Approx. 0.4 kg
R88A-CA1A005S	5 m		Approx. 0.6 kg
R88A-CA1A010S	10 m		Approx. 1.1 kg
R88A-CA1A015S	15 m		Approx. 1.6 kg
R88A-CA1A020S	20 m		Approx. 2.1 kg
R88A-CA1A030S	30 m		Approx. 3.1 kg
R88A-CA1A040S	40 m		Approx. 4.0 kg
R88A-CA1A050S	50 m		Approx. 4.9 kg

Connection configuration and external dimensions [mm]

■ R88A-CA1B□□□S (Ver. 1.0)

Applicable Servomotors


200 V:


3,000-r/min Servomotors of 1 kW, 2,000-r/min Servomotors of 1 kW, and 1,000-r/min Servomotors

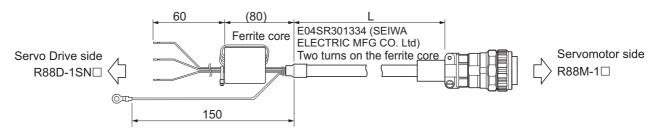
Cable types

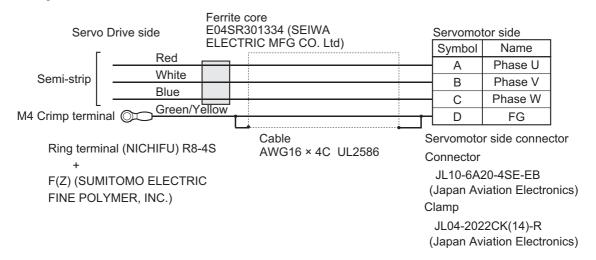
Model	Length [L]	Outer diameter of sheath	Weight
R88A-CA1B003S	3 m	10.8 dia.	Approx. 1.0 kg
R88A-CA1B005S	5 m		Approx. 1.6 kg
R88A-CA1B010S	10 m		Approx. 2.9 kg
R88A-CA1B015S	15 m		Approx. 4.3 kg
R88A-CA1B020S	20 m		Approx. 5.7 kg

Connection configuration and external dimensions [mm]

■ R88A-CA1B□□□S (Ver.1.1)

Applicable Servomotors


200 V:


3,000-r/min Servomotors of 1 kW, 2,000-r/min Servomotors of 1 kW, and 1,000-r/min Servomotors of 900 W

Cable types

Model	Length [L]	Outer diameter of sheath	Weight
R88A-CA1B003S	3 m	13.3 dia.	Approx. 1.4 kg
R88A-CA1B005S	5 m		Approx. 2.0 kg
R88A-CA1B010S	10 m		Approx. 3.7 kg
R88A-CA1B015S	15 m		Approx. 5.4 kg
R88A-CA1B020S	20 m		Approx. 7.2 kg
R88A-CA1B030S	30 m		Approx. 10.4 kg
R88A-CA1B040S	40 m		Approx. 13.7 kg
R88A-CA1B050S	50 m		Approx. 17.0 kg

Connection configuration and external dimensions [mm]

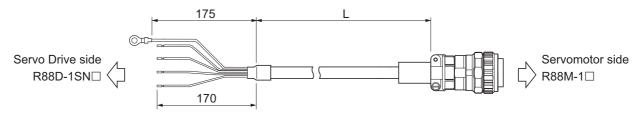
■ R88A-CA1C□□□S (Ver. 1.0)

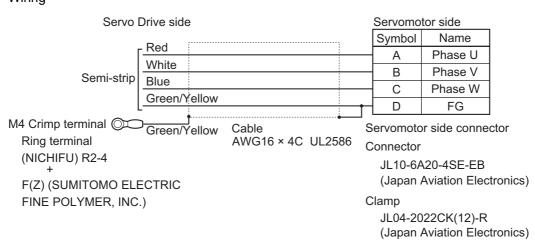
Applicable Servomotors

200 V:

3,000-r/min Servomotors of 1.5 kW and 2,000-r/min Servomotors of 1.5 kW

3,000-r/min Servomotors of 750 W, 1 kW, 1.5 kW, and 2 kW


2,000-r/min Servomotors of 400 W, 600 W, 1 kW, 1.5 kW, and 2 kW


1,000-r/min Servomotors of 900 W

Cable types

Model	Length [L]	Outer diameter of sheath	Weight
R88A-CA1C003S	3 m	10.8 dia.	Approx. 1.0 kg
R88A-CA1C005S	5 m		Approx. 1.6 kg
R88A-CA1C010S	10 m		Approx. 2.9 kg
R88A-CA1C015S	15 m		Approx. 4.3 kg
R88A-CA1C020S	20 m		Approx. 5.7 kg

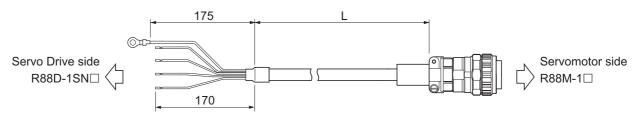
Connection configuration and external dimensions [mm]

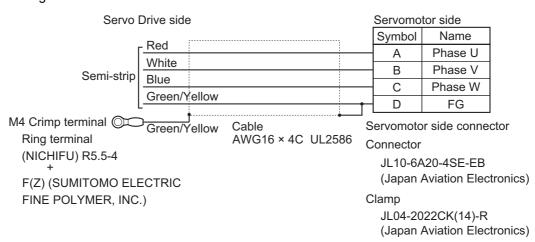
● R88A-CA1C□□□S (Ver.1.1)

Applicable Servomotors

200 V:

3,000-r/min Servomotors of 1.5 kW and 2,000-r/min Servomotors of 1.5 kW


400 V:


- 3,000-r/min Servomotors of 750 W, 1 kW, 1.5 kW, and 2 kW
- 2,000-r/min Servomotors of 400 W, 600 W, 1 kW, 1.5 kW, and 2 kW
- 1,000-r/min Servomotors of 900 W

Cable types

Model	Length [L]	Outer diameter of sheath	Weight
R88A-CA1C003S	3 m	13.3 dia.	Approx. 1.3 kg
R88A-CA1C005S	5 m		Approx. 2.0 kg
R88A-CA1C010S	10 m		Approx. 3.6 kg
R88A-CA1C015S	15 m		Approx. 5.3 kg
R88A-CA1C020S	20 m		Approx. 7.1 kg
R88A-CA1C030S	30 m		Approx. 10.3 kg
R88A-CA1C040S	40 m		Approx. 13.6 kg
R88A-CA1C050S	50 m		Approx. 16.9 kg

Connection configuration and external dimensions [mm]

■ R88A-CA1E□□□S (Ver. 1.0)

Applicable Servomotors

200 V:

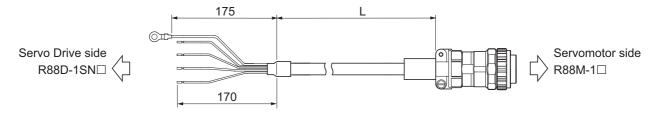
3,000-r/min Servomotors of 2 kW, 3 kW

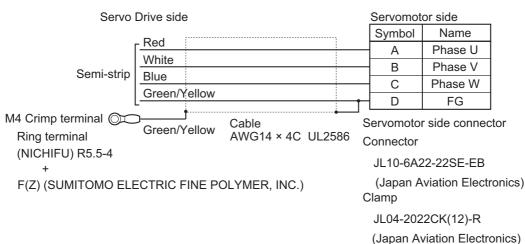
2,000-r/min Servomotors of 2 kW, 3 kW

1,000-r/min Servomotors of 2 kW

400 V:

3,000-r/min Servomotors of 3 kW


2,000-r/min Servomotors of 3 kW


1,000-r/min Servomotors of 2 kW, 3 kW

Cable types

Model	Length [L]	Outer diameter of sheath	Weight
R88A-CA1E003S	3 m	12.0 dia.	Approx. 1.2 kg
R88A-CA1E005S	5 m		Approx. 1.9 kg
R88A-CA1E010S	10 m		Approx. 3.5 kg
R88A-CA1E015S	15 m		Approx. 5.1 kg
R88A-CA1E020S	20 m		Approx. 6.7 kg

Connection configuration and external dimensions [mm]

■ R88A-CA1E□□□S (Ver.1.1)

Applicable Servomotors

200 V:

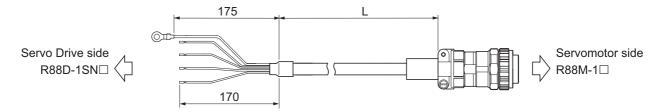
3,000-r/min Servomotors of 2 kW, 3 kW

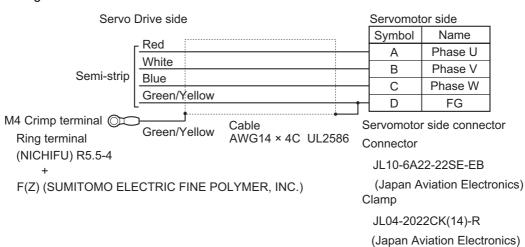
2,000-r/min Servomotors of 2 kW, 3 kW

1,000-r/min Servomotors of 2 kW

400 V:

3,000-r/min Servomotors of 3 kW


2,000-r/min Servomotors of 3 kW


1,000-r/min Servomotors of 2 kW, 3 kW

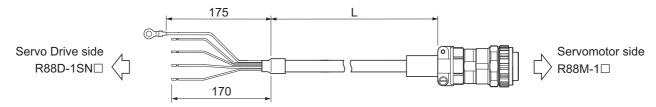
Cable types

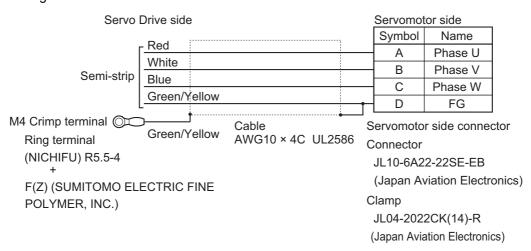
Model	Length [L]	Outer diameter of sheath	Weight
R88A-CA1E003S	3 m	15.0 dia.	Approx. 1.7 kg
R88A-CA1E005S	5 m		Approx. 2.6 kg
R88A-CA1E010S	10 m		Approx. 4.8 kg
R88A-CA1E015S	15 m		Approx. 7.1 kg
R88A-CA1E020S	20 m		Approx. 9.4 kg
R88A-CA1E030S	30 m		Approx. 13.8 kg
R88A-CA1E040S	40 m		Approx. 18.2 kg
R88A-CA1E050S	50 m		Approx. 22.5 kg

Connection configuration and external dimensions [mm]

■ R88A-CA1F□□□S (Ver. 1.0)

Applicable Servomotors


200 V:


1,000-r/min Servomotors of 3 kW

Cable types

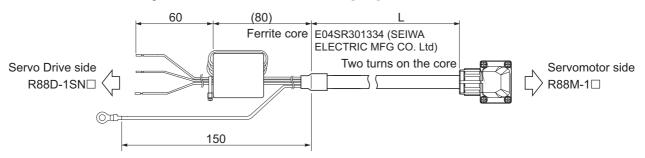
Model	Length [L]	Outer diameter of sheath	Weight
R88A-CA1F003S	3 m	14.5 dia.	Approx. 1.9 kg
R88A-CA1F005S	5 m		Approx. 3.0 kg
R88A-CA1F010S	10 m		Approx. 5.8 kg
R88A-CA1F015S	15 m		Approx. 8.6 kg
R88A-CA1F020S	20 m		Approx. 11.4 kg
R88A-CA1F030S	30 m		Approx. 16.9 kg
R88A-CA1F040S	40 m		Approx. 22.5 kg
R88A-CA1F050S	50 m		Approx. 28.1 kg

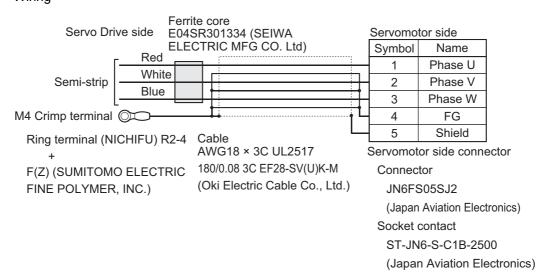
Connection configuration and external dimensions [mm]

Power Cables without Brake Wire (Flexible Cable)

■ R88A-CA1A□□□SF (Ver. 1.0)

Applicable Servomotors


100 V and 200 V:


3,000-r/min Servomotors of 100 W, 200 W, 400 W, and 750 W

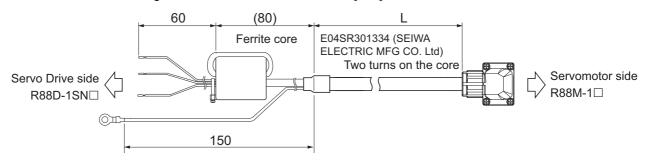
Cable types

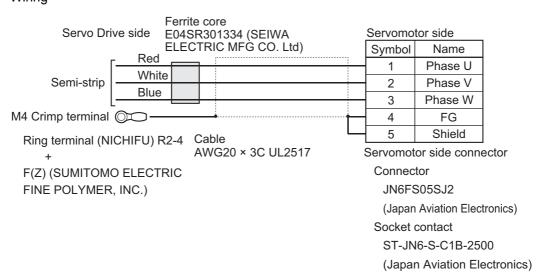
Model	Length [L]	Outer diame- ter of sheath	Minimum bending radius	Weight
R88A-CA1A003SF	3 m	6.8 dia.	40 mm	Approx. 0.4 kg
R88A-CA1A005SF	5 m			Approx. 0.6 kg
R88A-CA1A010SF	10 m			Approx. 1.1 kg
R88A-CA1A015SF	15 m			Approx. 1.5 kg
R88A-CA1A020SF	20 m			Approx. 2.0 kg

Connection configuration and external dimensions [mm]

■ R88A-CA1A□□□SF (Ver.1.1)

Applicable Servomotors


100 V and 200 V:


3,000-r/min Servomotors of 100 W, 200 W, 400 W, and 750 W

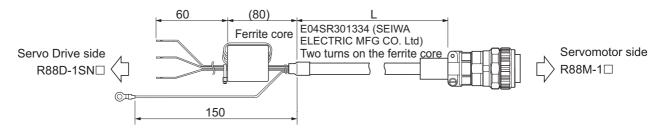
Cable types

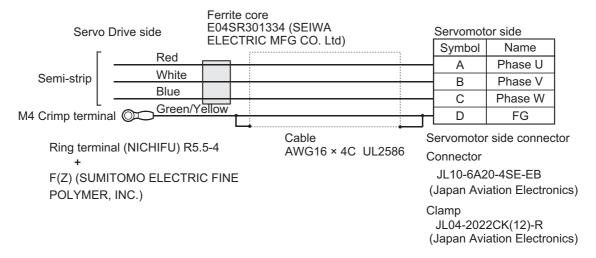
Model	Length [L]	Outer diame- ter of sheath	Minimum bending radius	Weight
R88A-CA1A003SF	3 m	7.2 dia.	40 mm	Approx. 0.4 kg
R88A-CA1A005SF	5 m			Approx. 0.6 kg
R88A-CA1A010SF	10 m			Approx. 1.1 kg
R88A-CA1A015SF	15 m			Approx. 1.6 kg
R88A-CA1A020SF	20 m			Approx. 2.1 kg
R88A-CA1A030SF	30 m			Approx. 3.0 kg
R88A-CA1A040SF	40 m			Approx. 4.0 kg
R88A-CA1A050SF	50 m			Approx. 4.9 kg

Connection configuration and external dimensions [mm]

● R88A-CA1B□□□SF (Ver. 1.0)

Applicable Servomotors


200 V:


3,000-r/min Servomotors of 1 kW, 2,000-r/min Servomotors of 1 kW, and 1,000-r/min Servomotors of 900 W $\,$

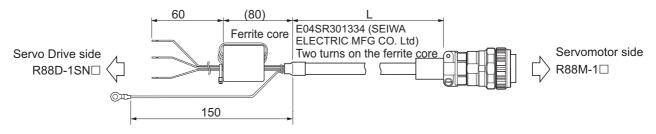
Cable types

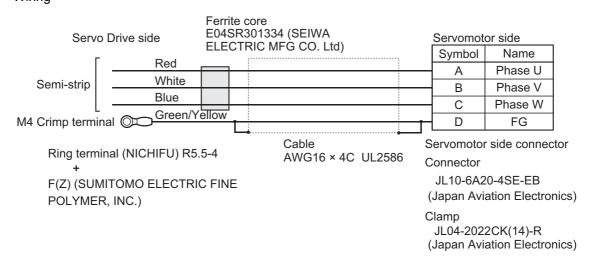
Model	Length [L]	Outer diame- ter of sheath	Minimum bending radius	Weight
R88A-CA1B003SF	3 m	10.8 dia.	90 mm	Approx. 1.0 kg
R88A-CA1B005SF	5 m			Approx. 1.6 kg
R88A-CA1B010SF	10 m			Approx. 2.9 kg
R88A-CA1B015SF	15 m			Approx. 4.3 kg
R88A-CA1B020SF	20 m			Approx. 5.7 kg

Connection configuration and external dimensions [mm]

■ R88A-CA1B□□□SF (Ver.1.1)

Applicable Servomotors


200 V:


3,000-r/min Servomotors of 1 kW, 2,000-r/min Servomotors of 1 kW, and 1,000-r/min Servomotors

Cable types

Model	Length [L]	Outer diame- ter of sheath	Minimum bending radius	Weight
R88A-CA1B003SF	3 m	15.3 dia.	90 mm	Approx. 1.4 kg
R88A-CA1B005SF	5 m			Approx. 2.1 kg
R88A-CA1B010SF	10 m			Approx. 3.9 kg
R88A-CA1B015SF	15 m			Approx. 5.7 kg
R88A-CA1B020SF	20 m			Approx. 7.5 kg
R88A-CA1B030SF	30 m			Approx. 11.0 kg
R88A-CA1B040SF	40 m	1		Approx. 14.5 kg
R88A-CA1B050SF	50 m			Approx. 17.9 kg

Connection configuration and external dimensions [mm]

■ R88A-CA1C□□□SF (Ver. 1.0)

Applicable Servomotors

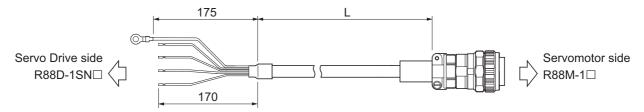
200 V:

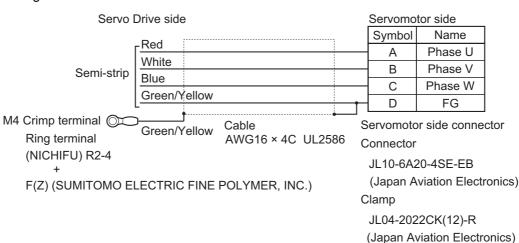
3,000-r/min Servomotors of 1.5 kW

2,000-r/min Servomotors of 1.5 kW

400 V:

3,000-r/min Servomotors of 750 W, 1 kW, 1.5 kW, and 2 kW


2,000-r/min Servomotors of 400 W, 600 W, 1 kW, 1.5 kW, and 2 kW


1,000-r/min Servomotors of 900 W

Cable types

Model	Length [L]	Outer diame- ter of sheath	Minimum bending radius	Weight
R88A-CA1C003SF	3 m	10.8 dia.	90 mm	Approx. 1.0 kg
R88A-CA1C005SF	5 m			Approx. 1.6 kg
R88A-CA1C010SF	10 m			Approx. 2.9 kg
R88A-CA1C015SF	15 m			Approx. 4.3 kg
R88A-CA1C020SF	20 m			Approx. 5.7 kg

Connection configuration and external dimensions [mm]

■ R88A-CA1C□□□SF (Ver.1.1)

Applicable Servomotors

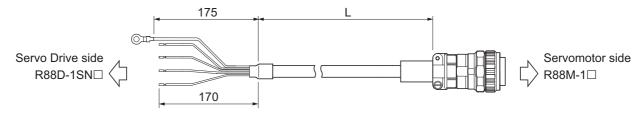
200 V:

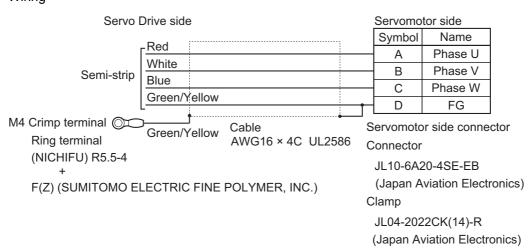
3,000-r/min Servomotors of 1.5 kW

2,000-r/min Servomotors of 1.5 kW

400 V:

3,000-r/min Servomotors of 750 W, 1 kW, 1.5 kW, and 2 kW


2,000-r/min Servomotors of 400 W, 600 W, 1 kW, 1.5 kW, and 2 kW


1,000-r/min Servomotors of 900 W

Cable types

Model	Length [L]	Outer diame- ter of sheath	Minimum bending radius	Weight
R88A-CA1C003SF	3 m	15.3 dia.	90 mm	Approx. 1.3 kg
R88A-CA1C005SF	5 m			Approx. 2.1 kg
R88A-CA1C010SF	10 m			Approx. 3.8 kg
R88A-CA1C015SF	15 m			Approx. 5.6 kg
R88A-CA1C020SF	20 m			Approx. 7.5 kg
R88A-CA1C030SF	30 m			Approx. 10.9 kg
R88A-CA1C040SF	40 m			Approx. 14.4 kg
R88A-CA1C050SF	50 m			Approx. 17.9 kg

Connection configuration and external dimensions [mm]

■ R88A-CA1E□□□SF (Ver. 1.0)

Applicable Servomotors

200 V:

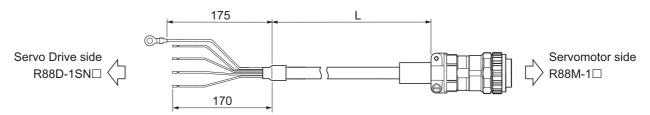
3,000-r/min Servomotors of 2 kW, 3 kW

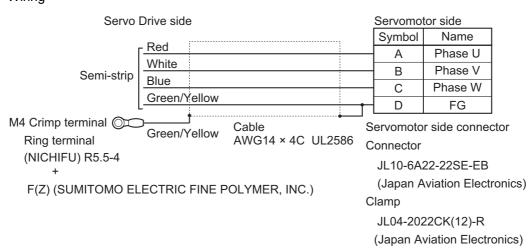
2,000-r/min Servomotors of 2 kW, 3 kW

1,000-r/min Servomotors of 2 kW

400 V:

3,000-r/min Servomotors of 3 kW


2,000-r/min Servomotors of 3 kW


1,000-r/min Servomotors of 2 kW, 3 kW

Cable types

Model	Length [L]	Outer diame- ter of sheath	Minimum bending radius	Weight
R88A-CA1E003SF	3 m	12.0 dia.	90 mm	Approx. 1.2 kg
R88A-CA1E005SF	5 m			Approx. 1.9 kg
R88A-CA1E010SF	10 m			Approx. 3.5 kg
R88A-CA1E015SF	15 m			Approx. 5.1 kg
R88A-CA1E020SF	20 m	1		Approx. 6.7 kg

Connection configuration and external dimensions [mm]

■ R88A-CA1E□□□SF (Ver.1.1)

Applicable Servomotors

200 V:

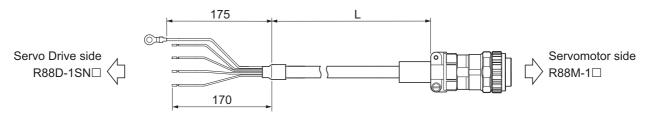
3,000-r/min Servomotors of 2 kW, 3 kW

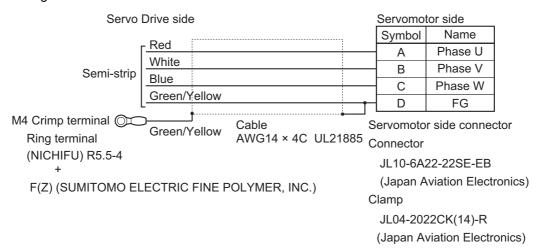
2,000-r/min Servomotors of 2 kW, 3 kW

1,000-r/min Servomotors of 2 kW

400 V:

3,000-r/min Servomotors of 3 kW


2,000-r/min Servomotors of 3 kW


1,000-r/min Servomotors of 2 kW, 3 kW

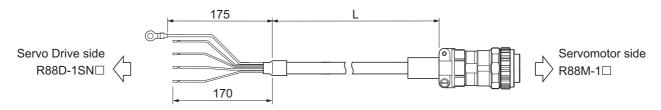
Cable types

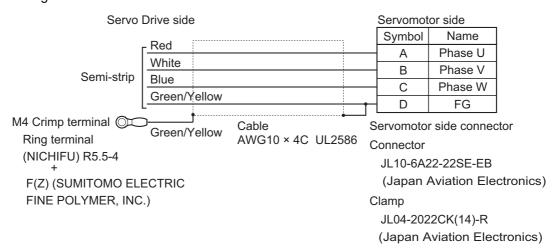
Model	Length [L]	Outer diame- ter of sheath	Minimum bending radius	Weight
R88A-CA1E003SF	3 m	15.5 dia.	90 mm	Approx. 1.4 kg
R88A-CA1E005SF	5 m			Approx. 2.2 kg
R88A-CA1E010SF	10 m			Approx. 4.0 kg
R88A-CA1E015SF	15 m			Approx. 5.9 kg
R88A-CA1E020SF	20 m			Approx. 7.8 kg
R88A-CA1E030SF	30 m			Approx. 11.4 kg
R88A-CA1E040SF	40 m			Approx. 14.9 kg
R88A-CA1E050SF	50 m			Approx. 18.5 kg

Connection configuration and external dimensions [mm]

■ R88A-CA1F□□□SF (Ver. 1.0)

Applicable Servomotors


200 V:


1,000-r/min Servomotors of 3 kW

Cable types

Model	Length [L]	Outer diame- ter of sheath	Minimum bending radius	Weight
R88A-CA1F003SF	3 m	14.5 dia.	100 mm	Approx. 1.9 kg
R88A-CA1F005SF	5 m			Approx. 3.0 kg
R88A-CA1F010SF	10 m			Approx. 5.8 kg
R88A-CA1F015SF	15 m			Approx. 8.6 kg
R88A-CA1F020SF	20 m			Approx. 11.4 kg
R88A-CA1F030SF	30 m			Approx. 16.9 kg
R88A-CA1F040SF	40 m			Approx. 22.5 kg
R88A-CA1F050SF	50 m			Approx. 28.1 kg

Connection configuration and external dimensions [mm]

■ R88A-CA1H□□□SF (Ver. 1.0)

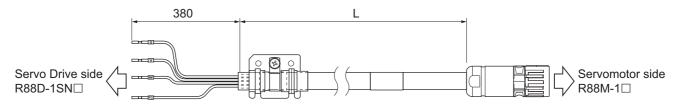
Applicable Servomotors

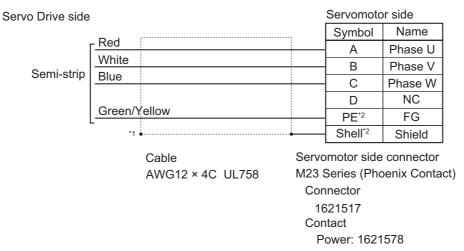
200 V:

3,000-r/min Servomotors of 4 kW, 4.7 kW

1,500-r/min Servomotors of 4 kW, 5 kW

400 V:


3,000-r/min Servomotors of 4 kW, 5 kW


1,500-r/min Servomotors of 4 kW, 5.5 kW, 7.5 kW

Cable types

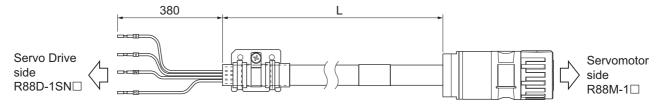
Model	Length [L]	Outer diame- ter of sheath	Minimum bending radius	Weight
R88A-CA1H003SF	3 m	15.0 dia.	150 mm	Approx. 1.9 kg
R88A-CA1H005SF	5 m			Approx. 2.8 kg
R88A-CA1H010SF	10 m]		Approx. 4.9 kg
R88A-CA1H015SF	15 m]		Approx. 7.2 kg
R88A-CA1H020SF	20 m			Approx. 9.4 kg

Connection configuration and external dimensions [mm]

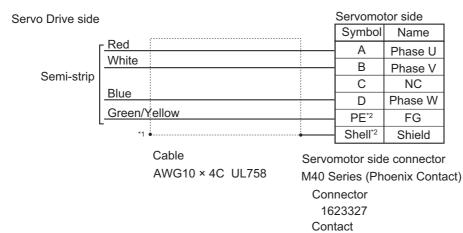
- *1. Connect the cable to the servo drive enclosure using the shield clamp.
- *2. PE and shell are set in the connectors at Servomotor's side.

■ R88A-CA1J□□□SF (Ver. 1.0)

Applicable Servomotors


400 V:

1,500-r/min Servomotors of 11 kW, 15 kW


Cable types

Model	Length [L]	Outer diame- ter of sheath	Minimum bending radius	Weight
R88A-CA1J003SF	3 m	17.3 dia.	173 mm	Approx. 2.4 kg
R88A-CA1J005SF	5 m			Approx. 3.3 kg
R88A-CA1J010SF	10 m			Approx. 6.0 kg
R88A-CA1J015SF	15 m			Approx. 8.7 kg
R88A-CA1J020SF	20 m			Approx. 11.5 kg

Connection configuration and external dimensions [mm]

Wiring

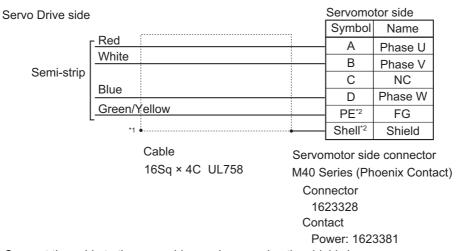
Power: 1623379

- *1. Connect the cable to the servo drive enclosure using the shield clamp.
- *2. PE and shell are set in the connectors at Servomotor's side.

■ R88A-CA1K□□□SF (Ver. 1.0)

Applicable Servomotors


200 V:


1,500-r/min Servomotors of 7.5 kW, 11 kW, 15 kW

Cable types

Model	Length [L]	Outer diame- ter of sheath	Minimum bending radius	Weight
R88A-CA1K003SF	3 m	23.2 dia.	232 mm	Approx. 4.8 kg
R88A-CA1K005SF	5 m			Approx. 6.7 kg
R88A-CA1K010SF	10 m			Approx. 12.5 kg
R88A-CA1K015SF	15 m			Approx. 18.7 kg
R88A-CA1K020SF	20 m	1		Approx. 24.9 kg

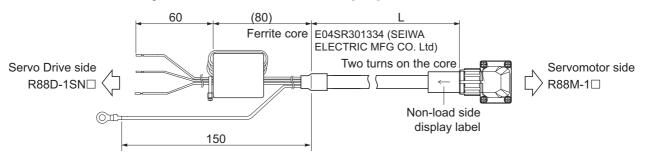
Connection configuration and external dimensions [mm]

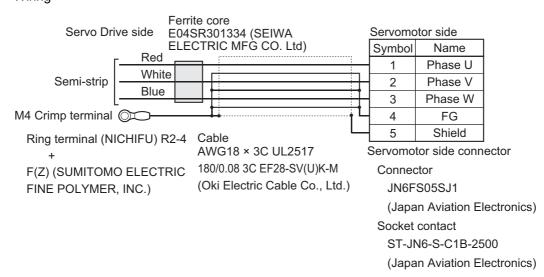
- *1. Connect the cable to the servo drive enclosure using the shield clamp.
- *2. PE and shell are set in the connectors at Servomotor's side.

Power Cables without Brake Wire (Non-load side, Flexible Cable)

■ R88A-CA1A□□□SFR (Ver. 1.0)

Applicable Servomotors


100 V and 200 V:


3,000-r/min Servomotors of 50 W, 200 W, 400 W, and 750 W

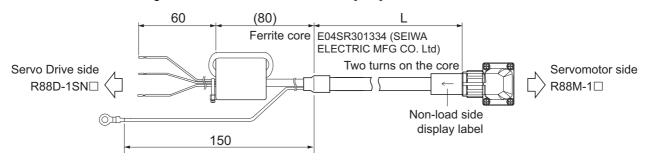
Cable types

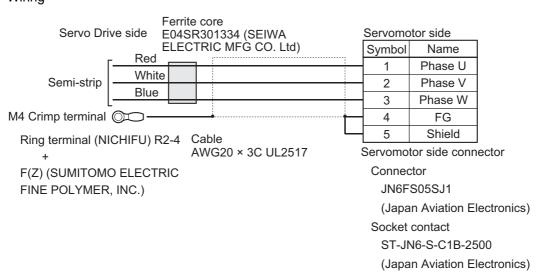
Model	Length [L]	Outer diame- ter of sheath	Minimum bending radius	Weight
R88A-CA1A003SFR	3 m	6.8 dia.	40 mm	Approx. 0.4 kg
R88A-CA1A005SFR	5 m			Approx. 0.6 kg
R88A-CA1A010SFR	10 m			Approx. 1.1 kg
R88A-CA1A015SFR	15 m			Approx. 1.5 kg
R88A-CA1A020SFR	20 m	1		Approx. 2.0 kg

Connection configuration and external dimensions [mm]

■ R88A-CA1A□□□SFR (Ver.1.1)

Applicable Servomotors


100 V and 200 V:


3,000-r/min Servomotors of 50 W, 200 W, 400 W, and 750 W

Cable types

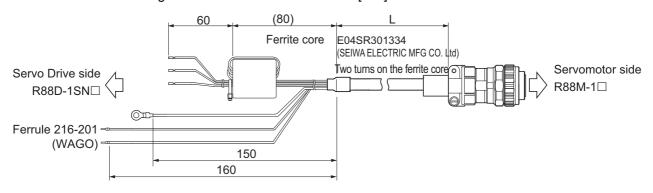
Model	Length [L]	Outer diame- ter of sheath	Minimum bending radius	Weight
R88A-CA1A003SFR	3 m	7.2 dia.	40 mm	Approx. 0.4 kg
R88A-CA1A005SFR	5 m			Approx. 0.6 kg
R88A-CA1A010SFR	10 m			Approx. 1.1 kg
R88A-CA1A015SFR	15 m			Approx. 1.6 kg
R88A-CA1A020SFR	20 m			Approx. 2.1 kg
R88A-CA1A030SFR	30 m			Approx. 3.0 kg
R88A-CA1A040SFR	40 m			Approx. 4.0 kg
R88A-CA1A050SFR	50 m			Approx. 4.9 kg

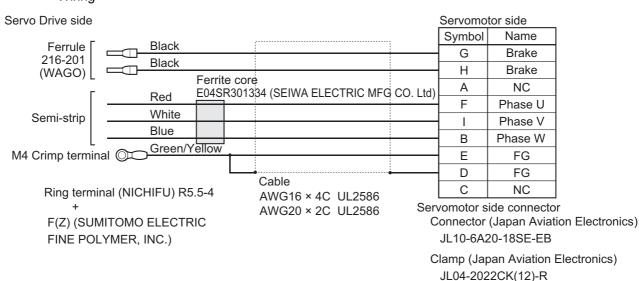
Connection configuration and external dimensions [mm]

Power Cables with Brake Wire (Standard Cable)

■ R88A-CA1B□□□B (Ver. 1.0)

Applicable Servomotors


200 V:


- 3,000-r/min Servomotors of 1 kW
- 2,000-r/min Servomotors of 1 kW
- 1,000-r/min Servomotors of 900 W

Cable types

Model	Length [L]	Outer diameter of sheath	Weight
R88A-CA1B003B	3 m	12.5 dia.	Approx. 1.2 kg
R88A-CA1B005B	5 m		Approx. 1.9 kg
R88A-CA1B010B	10 m		Approx. 3.5 kg
R88A-CA1B015B	15 m		Approx. 5.1 kg
R88A-CA1B020B	20 m		Approx. 6.7 kg

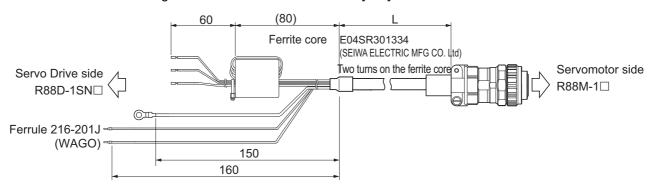
Connection configuration and external dimensions [mm]

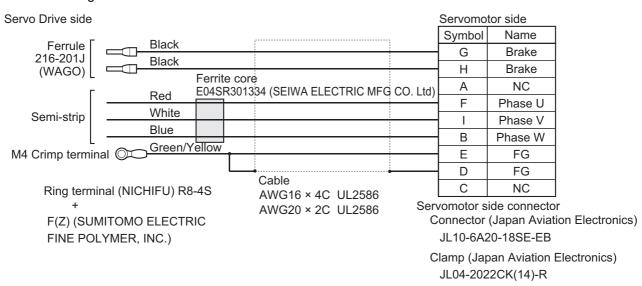
■ R88A-CA1B□□□B (Ver.1.1)

Applicable Servomotors

200 V:

3,000-r/min Servomotors of 1 kW


2,000-r/min Servomotors of 1 kW


1,000-r/min Servomotors of 900 W

Cable types

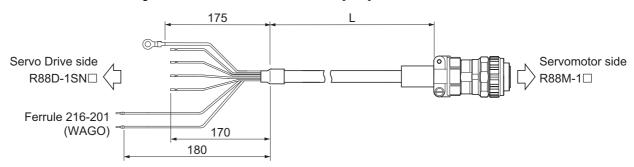
Model	Length [L]	Outer diameter of sheath	Weight
R88A-CA1B003B	3 m	13.3 dia.	Approx. 1.4 kg
R88A-CA1B005B	5 m		Approx. 2.1 kg
R88A-CA1B010B	10 m		Approx. 3.8 kg
R88A-CA1B015B	15 m		Approx. 5.5 kg
R88A-CA1B020B	20 m		Approx. 7.3 kg
R88A-CA1B030B	30 m		Approx. 10.7 kg
R88A-CA1B040B	40 m		Approx. 14.0 kg
R88A-CA1B050B	50 m		Approx. 17.4 kg

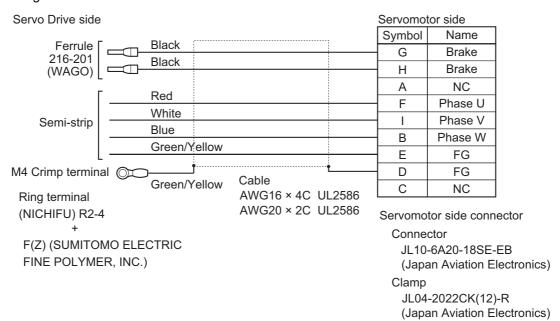
Connection configuration and external dimensions [mm]

■ R88A-CA1C□□□B (Ver. 1.0)

Applicable Servomotors

200 V:


3,000-r/min Servomotors of 1.5 kW


2,000-r/min Servomotors of 1.5 kW

Cable types

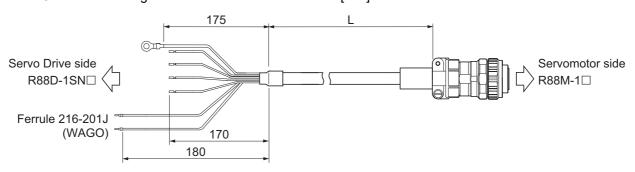
Model	Length [L]	Outer diameter of sheath	Weight
R88A-CA1C003B	3 m	12.5 dia.	Approx. 1.2 kg
R88A-CA1C005B	5 m		Approx. 1.9 kg
R88A-CA1C010B	10 m		Approx. 3.5 kg
R88A-CA1C015B	15 m		Approx. 5.1 kg
R88A-CA1C020B	20 m		Approx. 6.7 kg

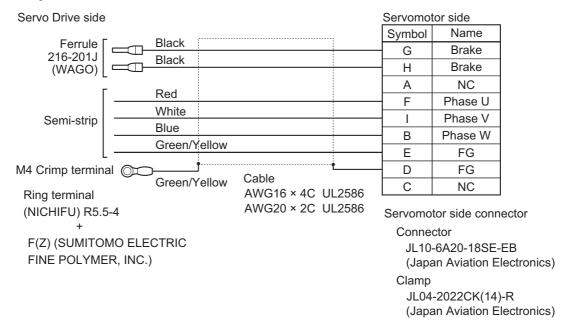
Connection configuration and external dimensions [mm]

■ R88A-CA1C□□□B (Ver.1.1)

Applicable Servomotors

200 V:


3,000-r/min Servomotors of 1.5 kW


2,000-r/min Servomotors of 1.5 kW

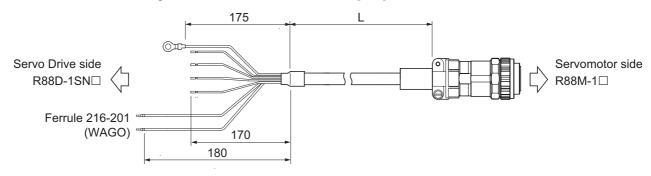
Cable types

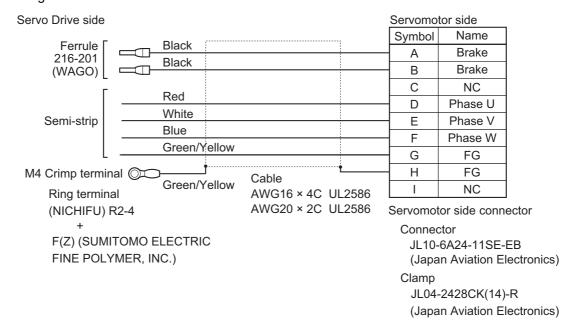
Model	Length [L]	Outer diameter of sheath	Weight
R88A-CA1C003B	3 m	13.3 dia.	Approx. 1.3 kg
R88A-CA1C005B	5 m		Approx. 2.0 kg
R88A-CA1C010B	10 m		Approx. 3.7 kg
R88A-CA1C015B	15 m		Approx. 5.5 kg
R88A-CA1C020B	20 m		Approx. 7.2 kg
R88A-CA1C030B	30 m		Approx. 10.6 kg
R88A-CA1C040B	40 m		Approx. 14.0 kg
R88A-CA1C050B	50 m		Approx. 17.3 kg

Connection configuration and external dimensions [mm]

■ R88A-CA1D□□□B (Ver. 1.0)

Applicable Servomotors


400 V:


- 3,000-r/min Servomotors of 750 W, 1 kW, 1.5 kW, and 2 kW
- 2,000-r/min Servomotors of 400 W, 600 W, 1 kW, 1.5 kW, and 2 kW
- 1,000-r/min Servomotors of 900 W

Cable types

Model	Length [L]	Outer diameter of sheath	Weight
R88A-CA1D003B	3 m	12.5 dia.	Approx. 1.3 kg
R88A-CA1D005B	5 m		Approx. 1.9 kg
R88A-CA1D010B	10 m		Approx. 3.5 kg
R88A-CA1D015B	15 m		Approx. 5.2 kg
R88A-CA1D020B	20 m		Approx. 6.8 kg
R88A-CA1D030B	30 m		Approx. 10.0 kg
R88A-CA1D040B	40 m		Approx. 13.3 kg
R88A-CA1D050B	50 m		Approx. 16.5 kg

Connection configuration and external dimensions [mm]

■ R88A-CA1E□□□B (Ver. 1.0)

Applicable Servomotors

200 V:

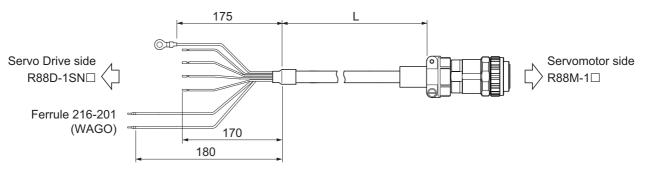
3,000-r/min Servomotors of 2 kW, 3 kW

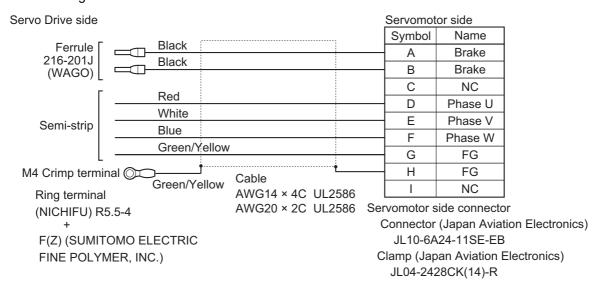
2,000-r/min Servomotors of 2 kW, 3 kW

1,000-r/min Servomotors of 2 kW

400 V:

3,000-r/min Servomotors of 3 kW


2,000-r/min Servomotors of 3 kW


1,000-r/min Servomotors of 2 kW, 3 kW

Cable types

Model	Length [L]	Outer diameter of sheath	Weight
R88A-CA1E003B	3 m	14.0 dia.	Approx. 1.4 kg
R88A-CA1E005B	5 m		Approx. 2.2 kg
R88A-CA1E010B	10 m		Approx. 4.1 kg
R88A-CA1E015B	15 m		Approx. 6.0 kg
R88A-CA1E020B	20 m		Approx. 7.8 kg

Connection configuration and external dimensions [mm]

● R88A-CA1E□□□B (Ver.1.1)

Applicable Servomotors

200 V:

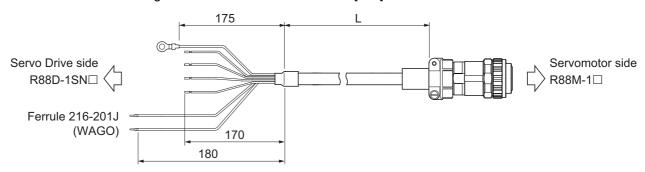
3,000-r/min Servomotors of 2 kW, 3 kW

2,000-r/min Servomotors of 2 kW, 3 kW

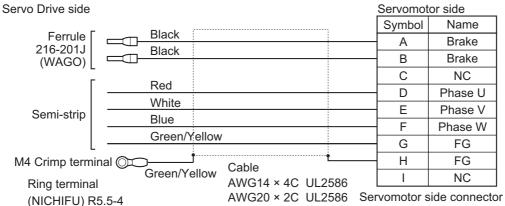
1,000-r/min Servomotors of 2 kW

400 V:

3,000-r/min Servomotors of 3 kW


2,000-r/min Servomotors of 3 kW

1,000-r/min Servomotors of 2 kW, 3 kW


Cable types

Model	Length [L]	Outer diameter of sheath	Weight
R88A-CA1E003B	3 m	15.0 dia.	Approx. 1.8 kg
R88A-CA1E005B	5 m		Approx. 2.8 kg
R88A-CA1E010B	10 m		Approx. 5.1 kg
R88A-CA1E015B	15 m		Approx. 7.5 kg
R88A-CA1E020B	20 m		Approx. 9.9 kg
R88A-CA1E030B	30 m		Approx. 14.5 kg
R88A-CA1E040B	40 m		Approx. 19.1 kg
R88A-CA1E050B	50 m		Approx. 23.7 kg

Connection configuration and external dimensions [mm]

Wiring

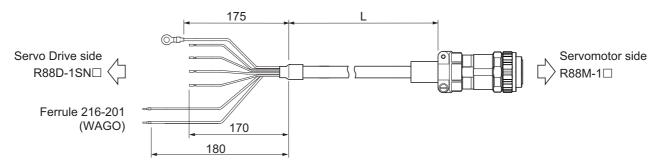
F(Z) (SUMITOMO ELECTRIC FINE POLYMER, INC.)

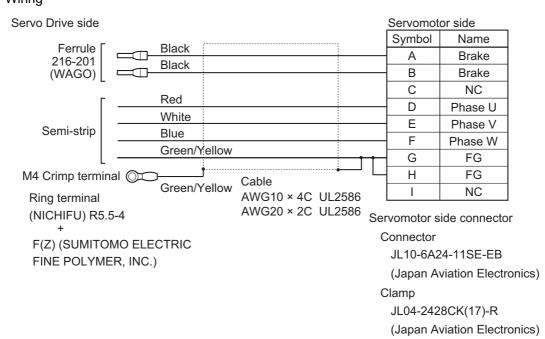
Connector (Japan Aviation Electronics)
JL10-6A24-11SE-EB
Clamp (Japan Aviation Electronics)

JL04-2428CK(17)-R

■ R88A-CA1F□□□B (Ver. 1.0)

Applicable Servomotors


200 V:


1,000-r/min Servomotors of 3 kW

Cable types

Model	Length [L]	Outer diameter of sheath	Weight
R88A-CA1F003B	3 m	17.0 dia.	Approx. 2.2 kg
R88A-CA1F005B	5 m		Approx. 3.5 kg
R88A-CA1F010B	10 m		Approx. 6.7 kg
R88A-CA1F015B	15 m		Approx. 9.9 kg
R88A-CA1F020B	20 m		Approx. 13.0 kg
R88A-CA1F030B	30 m		Approx. 19.4 kg
R88A-CA1F040B	40 m		Approx. 25.8 kg
R88A-CA1F050B	50 m		Approx. 32.1 kg

Connection configuration and external dimensions [mm]

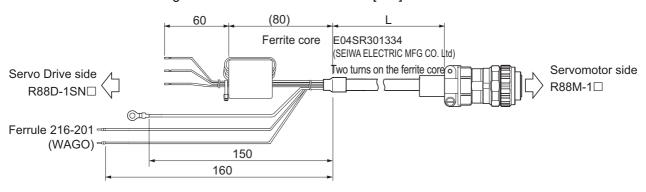
Power Cables with Brake Wire (Flexible Cable)

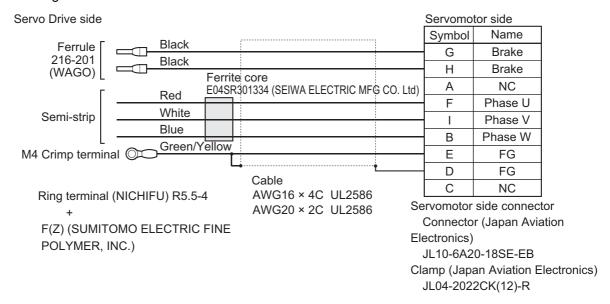
■ R88A-CA1B□□□BF (Ver. 1.0)

Applicable Servomotors

200 V:

3,000-r/min Servomotors of 1 kW


2,000-r/min Servomotors of 1 kW


1,000-r/min Servomotors of 900 W

Cable types

Model	Length [L]	Outer diame- ter of sheath	Minimum bending radius	Weight
R88A-CA1B003BF	3 m	12.5 dia.	90 mm	Approx. 1.2 kg
R88A-CA1B005BF	5 m			Approx. 1.9 kg
R88A-CA1B010BF	10 m			Approx. 3.5 kg
R88A-CA1B015BF	15 m			Approx. 5.1 kg
R88A-CA1B020BF	20 m			Approx. 6.7 kg

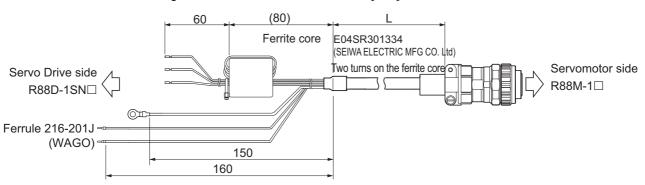
Connection configuration and external dimensions [mm]

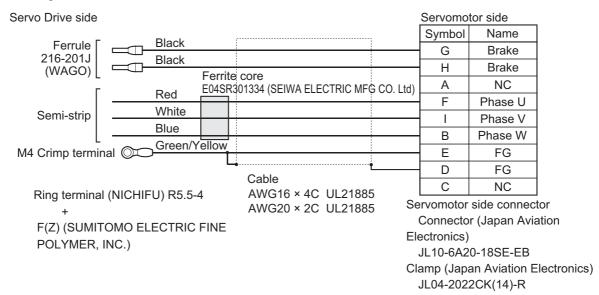
■ R88A-CA1B□□□BF (Ver.1.1)

Applicable Servomotors

200 V:

3,000-r/min Servomotors of 1 kW


2,000-r/min Servomotors of 1 kW


1,000-r/min Servomotors of 900 W

Cable types

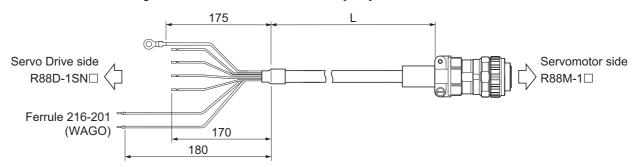
Model	Length [L]	Outer diame- ter of sheath	Minimum bending radius	Weight
R88A-CA1B003BF	3 m	14.7 dia.	90 mm	Approx. 1.3 kg
R88A-CA1B005BF	5 m			Approx. 1.9 kg
R88A-CA1B010BF	10 m			Approx. 3.5 kg
R88A-CA1B015BF	15 m			Approx. 5.1 kg
R88A-CA1B020BF	20 m			Approx. 6.8 kg
R88A-CA1B030BF	30 m			Approx. 9.9 kg
R88A-CA1B040BF	40 m			Approx. 12.9 kg
R88A-CA1B050BF	50 m			Approx. 16.0 kg

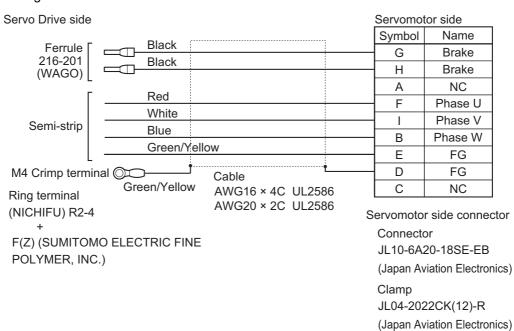
Connection configuration and external dimensions [mm]

■ R88A-CA1C□□□BF (Ver. 1.0)

Applicable Servomotors

200 V:


3,000-r/min Servomotors of 1.5 kW


2,000-r/min Servomotors of 1.5 kW

Cable types

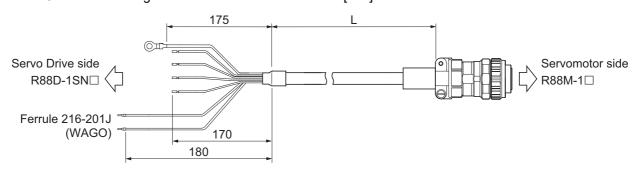
Model	Length [L]	Outer diame- ter of sheath	Minimum bending radius	Weight
R88A-CA1C003BF	3 m	12.5 dia.	90 mm	Approx. 1.2 kg
R88A-CA1C005BF	5 m			Approx. 1.9 kg
R88A-CA1C010BF	10 m			Approx. 3.5 kg
R88A-CA1C015BF	15 m			Approx. 5.1 kg
R88A-CA1C020BF	20 m	1		Approx. 6.7 kg

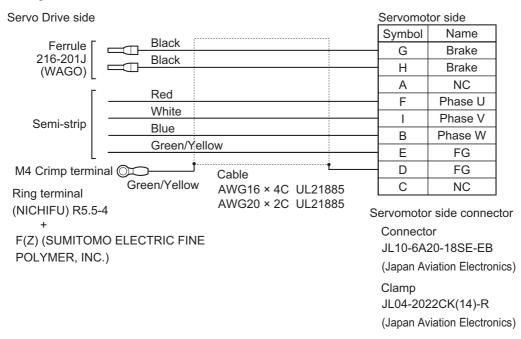
Connection configuration and external dimensions [mm]

■ R88A-CA1C□□□BF (Ver.1.1)

Applicable Servomotors

200 V:


3,000-r/min Servomotors of 1.5 kW


2,000-r/min Servomotors of 1.5 kW

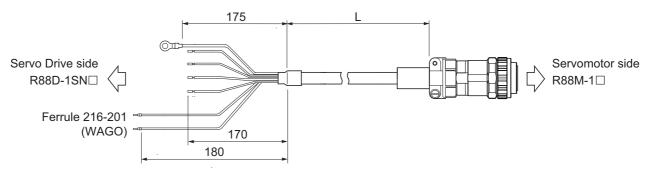
Cable types

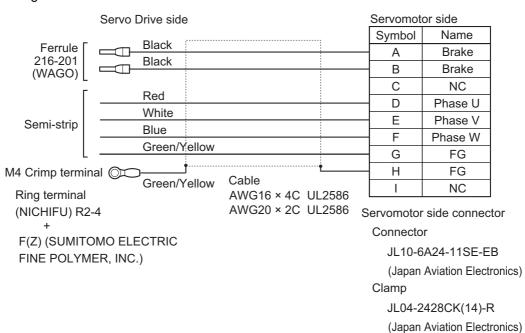
Model	Length [L]	Outer diame- ter of sheath	Minimum bending radius	Weight
R88A-CA1C003BF	3 m	14.7 dia.	90 mm	Approx. 1.2 kg
R88A-CA1C005BF	5 m			Approx. 1.9 kg
R88A-CA1C010BF	10 m			Approx. 3.4 kg
R88A-CA1C015BF	15 m			Approx. 5.1 kg
R88A-CA1C020BF	20 m			Approx. 6.7 kg
R88A-CA1C030BF	30 m			Approx. 9.8 kg
R88A-CA1C040BF	40 m			Approx. 12.9 kg
R88A-CA1C050BF	50 m			Approx. 16.0 kg

Connection configuration and external dimensions [mm]

■ R88A-CA1D□□□BF (Ver. 1.0)

Applicable Servomotors


400 V:


- 3,000-r/min Servomotors of 750 W, 1 kW, 1.5 kW, and 2 kW
- 2,000-r/min Servomotors of 400 W, 600 W, 1 kW, 1.5 kW, and 2 kW
- 1,000-r/min Servomotors of 900 W

Cable types

Model	Length [L]	Outer diameter of sheath	Minimum bending radius	Weight
R88A-CA1D003BF	3 m	12.5 dia.	90 mm	Approx. 1.3 kg
R88A-CA1D005BF	5 m			Approx. 1.9 kg
R88A-CA1D010BF	10 m			Approx. 3.5 kg
R88A-CA1D015BF	15 m			Approx. 5.2 kg
R88A-CA1D020BF	20 m			Approx. 6.8 kg
R88A-CA1D030BF	30 m			Approx. 10.0 kg
R88A-CA1D040BF	40 m			Approx. 13.3 kg
R88A-CA1D050BF	50 m			Approx. 16.5 kg

Connection configuration and external dimensions [mm]

■ R88A-CA1E□□□BF (Ver. 1.0)

Applicable Servomotors

200 V:

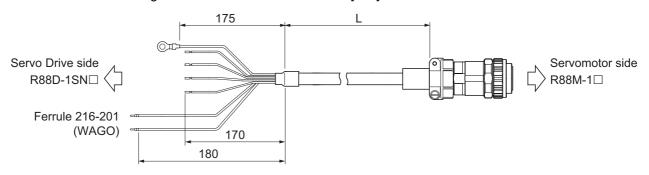
3,000-r/min Servomotors of 2 kW, 3 kW

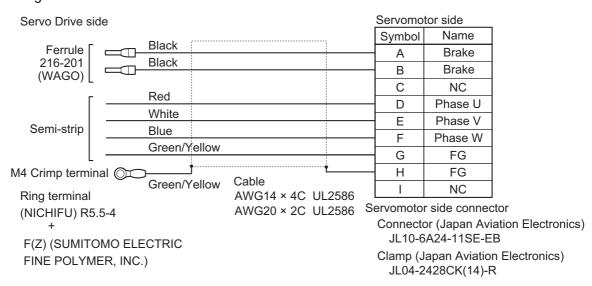
2,000-r/min Servomotors of 2 kW, 3 kW

1,000-r/min Servomotors of 2 kW

400 V:

3,000-r/min Servomotors of 3 kW


2,000-r/min Servomotors of 3 kW


1,000-r/min Servomotors of 2 kW, 3 kW

Cable types

Model	Length [L]	Outer diameter of sheath	Minimum bending radius	Weight
R88A-CA1E003BF	3 m	14.2 dia.	90 mm	Approx. 1.4 kg
R88A-CA1E005BF	5 m			Approx. 2.2 kg
R88A-CA1E010BF	10 m			Approx. 4.1 kg
R88A-CA1E015BF	15 m			Approx. 6.0 kg
R88A-CA1E020BF	20 m	1		Approx. 7.8 kg

Connection configuration and external dimensions [mm]

■ R88A-CA1E□□□BF (Ver.1.1)

Applicable Servomotors

200 V:

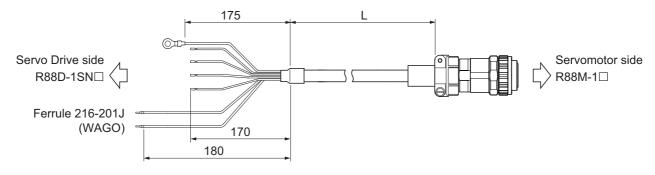
3,000-r/min Servomotors of 2 kW, 3 kW

2,000-r/min Servomotors of 2 kW, 3 kW

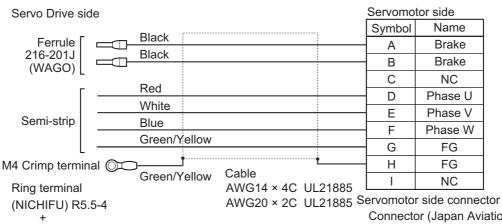
1,000-r/min Servomotors of 2 kW

400 V:

3,000-r/min Servomotors of 3 kW


2,000-r/min Servomotors of 3 kW

1,000-r/min Servomotors of 2 kW, 3 kW


Cable types

Model	Length [L]	Outer diameter of sheath	Minimum bending radius	Weight
R88A-CA1E003BF	3 m	15.5 dia.	90 mm	Approx. 1.5 kg
R88A-CA1E005BF	5 m			Approx. 2.2 kg
R88A-CA1E010BF	10 m			Approx. 4.0 kg
R88A-CA1E015BF	15 m			Approx. 5.9 kg
R88A-CA1E020BF	20 m			Approx. 7.8 kg
R88A-CA1E030BF	30 m			Approx. 11.4 kg
R88A-CA1E040BF	40 m			Approx. 15.0 kg
R88A-CA1E050BF	50 m			Approx. 18.6 kg

Connection configuration and external dimensions [mm]

Wiring

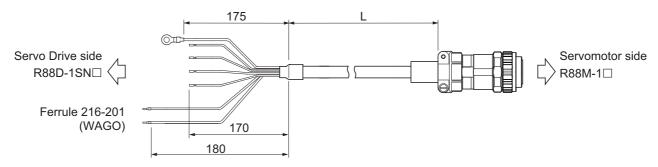
F(Z) (SUMITOMO ELECTRIC FINE POLYMER, INC.)

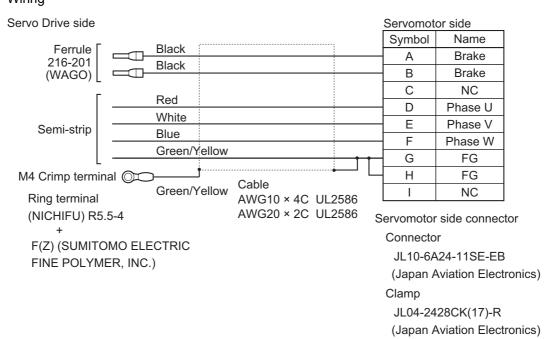
Connector (Japan Aviation Electronics) JL10-6A24-11SE-EB Clamp (Japan Aviation Electronics)

JL04-2428CK(17)-R

■ R88A-CA1F□□□BF (Ver. 1.0)

Applicable Servomotors


200 V:


1,000-r/min Servomotors of 3 kW

Cable types

Model	Length [L]	Outer diameter of sheath	Minimum bending radius	Weight
R88A-CA1F003BF	3 m	17.0 dia.	100 mm	Approx. 2.2 kg
R88A-CA1F005BF	5 m			Approx. 3.5 kg
R88A-CA1F010BF	10 m			Approx. 6.7 kg
R88A-CA1F015BF	15 m			Approx. 9.9 kg
R88A-CA1F020BF	20 m			Approx. 13.0 kg
R88A-CA1F030BF	30 m			Approx. 19.4 kg
R88A-CA1F040BF	40 m			Approx. 25.8 kg
R88A-CA1F050BF	50 m			Approx. 32.1 kg

Connection configuration and external dimensions [mm]

■ R88A-CA1H□□□BF (Ver. 1.0)

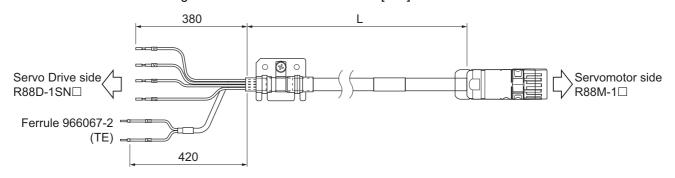
Applicable Servomotors

200 V:

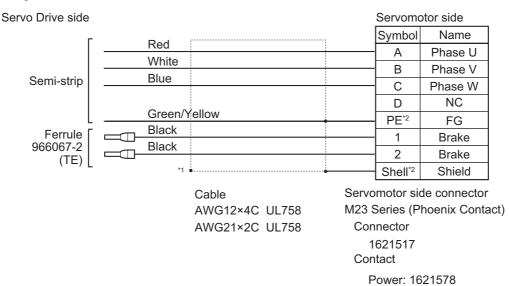
3,000-r/min Servomotors of 4 kW, 4.7 kW

1,500-r/min Servomotors of 4 kW, 5 kW

400 V:


3,000-r/min Servomotors of 4 kW, 5 kW

1,500-r/min Servomotors of 4 kW, 5.5 kW, 7.5 kW


Cable types

Model	Length [L]	Outer diameter of sheath	Minimum bending radius	Weight
R88A-CA1H003BF	3 m	15.0 dia.	150 mm	Approx. 1.9 kg
R88A-CA1H005BF	5 m			Approx. 2.8 kg
R88A-CA1H010BF	10 m			Approx. 4.9 kg
R88A-CA1H015BF	15 m			Approx. 7.2 kg
R88A-CA1H020BF	20 m			Approx. 9.4 kg

Connection configuration and external dimensions [mm]

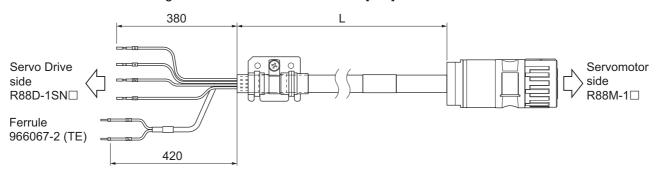
Wiring

- *1. Connect the cable to the servo drive enclosure using the shield clamp.
- *2. PE and shell are set in the connectors at Servomotor's side.

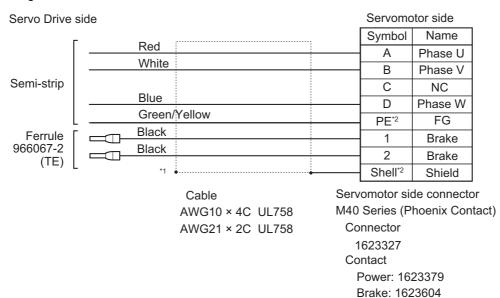
Brake: 1618251

● R88A-CA1J□□□BF (Ver. 1.0)

Applicable Servomotors


400 V:

1,500-r/min Servomotors of 11 kW, 15 kW


Cable types

Model	Length [L]	Outer diameter of sheath	Minimum bending radius	Weight
R88A-CA1J003BF	3 m	17.3 dia.	173 mm	Approx. 2.4 kg
R88A-CA1J005BF	5 m			Approx. 3.3 kg
R88A-CA1J010BF	10 m			Approx. 6.0 kg
R88A-CA1J015BF	15 m			Approx. 8.7 kg
R88A-CA1J020BF	20 m			Approx. 11.5 kg

Connection configuration and external dimensions [mm]

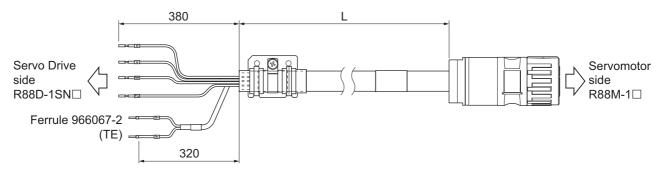
Wiring

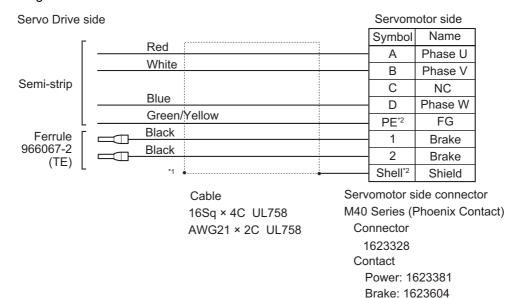
*1. Connect the cable to the servo drive enclosure using the shield clamp.

^{*2.} PE and shell are set in the connectors at Servomotor's side.

● R88A-CA1K□□□BF (Ver. 1.0)

Applicable Servomotors


200 V:


1,500-r/min Servomotors of 7.5 kW, 11 kW, 15 kW

Cable types

Model	Length [L]	Outer diameter of sheath	Minimum bending radius	Weight
R88A-CA1K003BF	3 m	23.2 dia.	232 mm	Approx. 4.8 kg
R88A-CA1K005BF	5 m			Approx. 6.7 kg
R88A-CA1K010BF	10 m			Approx. 12.5 kg
R88A-CA1K015BF	15 m			Approx. 18.7 kg
R88A-CA1K020BF	20 m			Approx. 24.9 kg

Connection configuration and external dimensions [mm]

- *1. Connect the cable to the servo drive enclosure using the shield clamp.
- *2. PE and shell are set in the connectors at Servomotor's side.

Extension Cables

R88A-CA1HE□□BF (Ver. 1.0)

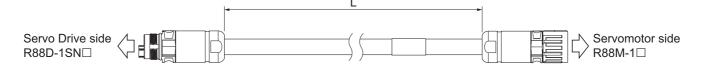
Applicable Servomotors

200 V:

3,000-r/min Servomotors of 4 kW, 4.7 kW

1,500-r/min Servomotors of 4 kW, 5 kW

400 V:


3,000-r/min Servomotors of 4 kW, 5 kW

1,500-r/min Servomotors of 4 kW, 5 kW, 7.5 kW

Cable types

Model	Length [L]	Outer diameter of sheath	Minimum bending radius	Weight
R88A-CA1HE10BF	10 m	15.0 dia.	150 mm	Approx. 5.2kg
R88A-CA1HE20BF	20 m			Approx. 9.7 kg

Connection configuration and external dimensions [mm]

Wiring

Servo Driv	e side			Servomo	otor side
Name	Symbol	Dod	;	Symbol	Name
Phase U	Α	Red White		Α	Phase U
Phase V	В	Blue		В	Phase V
Phase W	С	ыие		С	Phase W
NC	D	0 2 11		D	NC
FG	PE*1	Green/Yellow		PE*1	FG
Brake	1	Black		1	Brake
Brake	2	Black		2	Brake
Shield	Shell*1			Shell*1	Shield

Servo Drive side connector M23 Series (Phoenix Contact)

AWG12×4C UL758 AWG21×2C UL758

Cable

Servomotor side connector M23 Series (Phoenix Contact)

Connector 1621517 Contact

> Power: 1621578 Brake: 1618251

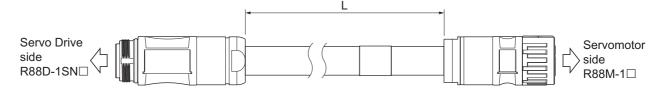
Connector 1621549 Contact

> Power: 1621581 Brake: 1618256

*1. PE and shell are set in the connectors at Servomotor's side.

■ R88A-CA1JE□□BF (Ver. 1.0)

Applicable Servomotors


400 V:

1,500-r/min Servomotors of 11 kW, 15 kW

Cable types

Model	Length [L]	Outer diameter of sheath	Minimum bending radius	Weight
R88A-CA1JE10BF	10 m	17.3 dia.	173 mm	Approx. 6.2 kg
R88A-CA1JE20BF	20 m			Approx. 11.7 kg

Connection configuration and external dimensions [mm]

Wiring

Servo Drive	e side		Servomo	tor side
Name	Symbol	Ded (""""	Symbol	Name
Phase U	Α	Red	A	Phase U
Phase V	В	White	В	Phase V
NC	С		С	NC
Phase W	D	Blue	- D	Phase W
FG	PE*1	Green/Yellow	PE*1	FG
Brake	1	Black	1	Brake
Brake	2	Black	_ 2	Brake
Shield	Shell*1		Shell*1	Shield

Servomotor side connector Servo Drive side connector Cable M40 Series (Phoenix Contact) AWG10 × 4C UL758 AWG21 × 2C UL758 Connector Connector 1623357

Contact

Power: 1623384 Brake: 1623611

M40 Series (Phoenix Contact)

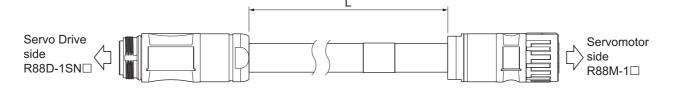
1623327 Contact

> Power: 1623379 Brake: 1623604

^{*1.} PE and shell are set in the connectors at Servomotor's side.

■ R88A-CA1KE□□BF (Ver. 1.0)

Applicable Servomotors


200 V:

1,500-r/min Servomotors of 7.5 kW, 11 kW, 15 kW

Cable types

Model	Length [L]	Outer diameter of sheath	Minimum bending radius	Weight
R88A-CA1KE10BF	10 m	23.2 dia.	232 mm	Approx. 12.8 kg
R88A-CA1KE20BF	20 m			Approx. 25.2 kg

Connection configuration and external dimensions [mm]

Wiring

Servo Drive	side		Servomo	tor side
Name	Symbol	Ded	Symbol	Name
Phase U	Α	Red	Α	Phase U
Phase V	В	White	В	Phase V
NC	С	5.	С	NC
Phase W	D	Blue	D	Phase W
FG	PE*1	Green/Yellow	PE*1	FG
Brake	1	Black	1	Brake
Brake	2	Black	2	Brake
Shield	Shell*1		Shell*1	Shield

Cable Servo Drive side connector M40 Series (Phoenix Contact) 16Sq × 4C UL758 Connector

1623358

AWG21 × 2C UL758

M40 Series (Phoenix Contact) Connector

Servomotor side connector

1623328 Contact

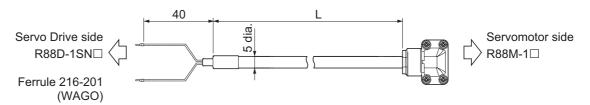
Contact Power: 1623381 Power: 1623386 Brake: 1623604 Brake: 1623611

^{*1.} PE and shell are set in the connectors at Servomotor's side.

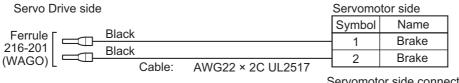
Brake Cables (Standard Cable)

● R88A-CA1A□□□B

Applicable Servomotors


100 V and 200 V:

3,000-r/min Servomotors of 100 W, 200 W, 400 W, and 750 W


Cable types

Model	Length [L]	Outer diameter of sheath	Weight
R88A-CA1A003B	3 m	5.0 dia.	Approx. 0.2 kg
R88A-CA1A005B	5 m		Approx. 0.3 kg
R88A-CA1A010B	10 m		Approx. 0.5 kg
R88A-CA1A015B	15 m		Approx. 0.7 kg
R88A-CA1A020B	20 m		Approx. 0.9 kg
R88A-CA1A030B	30 m		Approx. 1.4 kg
R88A-CA1A040B	40 m		Approx. 1.8 kg
R88A-CA1A050B	50 m		Approx. 2.3 kg

Connection configuration and external dimensions [mm]

Wiring

Servomotor side connector

Connector

JN6FR02SM1

(Japan Aviation Electronics)

Socket contact

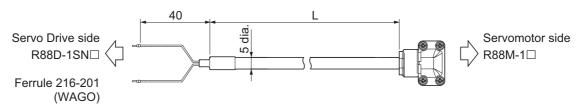
LY10-C1-A1-10000

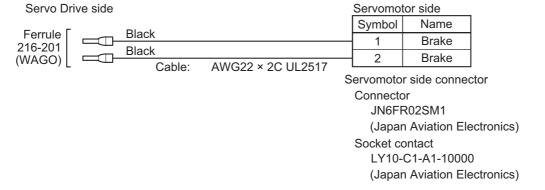
(Japan Aviation Electronics)

Brake Cables (Flexible Cable)

● R88A-CA1A□□□BF

Applicable Servomotors


100 V and 200 V:


3,000-r/min Servomotors of 100 W, 200 W, 400 W, and 750 W

Cable types

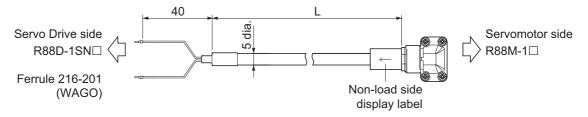
Model	Length [L]	Outer diame- ter of sheath	Minimum bending radius	Weight
R88A-CA1A003BF	3 m	5.0 dia.	30 mm	Approx. 0.2 kg
R88A-CA1A005BF	5 m			Approx. 0.3 kg
R88A-CA1A010BF	10 m			Approx. 0.5 kg
R88A-CA1A015BF	15 m			Approx. 0.7 kg
R88A-CA1A020BF	20 m			Approx. 0.9 kg
R88A-CA1A030BF	30 m			Approx. 1.4 kg
R88A-CA1A040BF	40 m			Approx. 1.8 kg
R88A-CA1A050BF	50 m			Approx. 2.3 kg

Connection configuration and external dimensions [mm]

Brake Cables (Non-load side, Flexible Cable)

● R88A-CA1A□□□BFR

Applicable Servomotors


100 V and 200 V:

3,000-r/min Servomotors of 50 W, 200 W, 400 W, and 750 W


Cable types

Model	Length [L]	Outer diame- ter of sheath	Minimum bending radius	Weight
R88A-CA1A003BFR	3 m	5.0 dia.	30 mm	Approx. 0.2 kg
R88A-CA1A005BFR	5 m			Approx. 0.3 kg
R88A-CA1A010BFR	10 m			Approx. 0.5 kg
R88A-CA1A015BFR	15 m			Approx. 0.7 kg
R88A-CA1A020BFR	20 m			Approx. 0.9 kg
R88A-CA1A030BFR	30 m			Approx. 1.4 kg
R88A-CA1A040BFR	40 m			Approx. 1.8 kg
R88A-CA1A050BFR	50 m			Approx. 2.3 kg

Connection configuration and external dimensions [mm]

Wiring

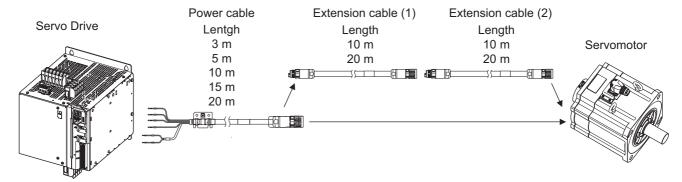
Servomotor side connector

Connector

JN6FR02SM1

(Japan Aviation Electronics)

Socket contact


LY10-C1-A1-10000

(Japan Aviation Electronics)

3-4-3 **Combination of Power Cable and Extension Cable**

This section describes specifications for a case when an power cable is used with extension cables. When Servomotor is 4 kW or more and the power cable is over 20 m, follow the below list that specifies the combination of power cable with extension cable.

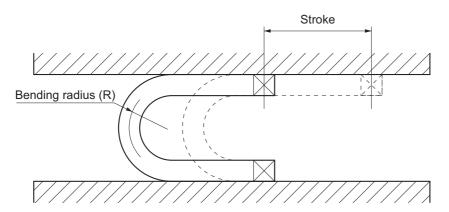
You can use an extension cable when you use a unit version 1.3 or later of Servo Drive. When you use a unit version 1.2 or earlier of Servo Drive, use a motor power cable of 20 m or less.

Length (m)					
Total	Power cable	Extension cable (1)	Extension cable (2)	Combination	
3	3			Power cable	
5	5			Power cable	
10	10			Power cable	
15	15	-		Power cable	
20	20			Power cable	
30	20	10		Power cable + extension cable (1)	
40	20	20		Power cable + extension cable (1)	
50	20	10	20	Power cable + extension cable (1) + extension	
				cable (2)*1	

^{*1.} Extension cable (1); 20 m + Extension cable (2); 10 m can be usable.

3-4-4 Resistance to Bending of Flexible Cable

If the cable is used in a moving part, use a flexible cable.


The flexing life of a Flexible Cable is estimated under the following conditions.

Precautions for Correct Use

- Because the lifetime data on resistance to bending is intended for reference only, use the cable with a sufficient margin.
- The minimum bending radius refers to the value at which the core conductor provides electrical continuity without causing cracks and scratches that can have functional impact on the sheath, which does not cover the disconnection of shielded wire.
- Equipment damage or grounding fault due to dielectric breakdown may occur if cables are used at a radius smaller than the minimum bending radius.

Moving Bend Test

Encoder Cable

	Bend test		
Model	Minimum bending radius [R]	Stroke	Estimated life
R88A-CR1A□□□CF ^{*1}	33 mm	500 to 1,000 mm	20 million times
R88A-CR1B□□□NF*1			
R88A-CR1B□□□VF ^{*1}			
R88A-CR1A△△△CF ^{*2}	42 mm	500 to 1,000 mm	20 million times
R88A-CR1B△△△NF ^{*2}			
R88A-CR1B△△△VF ^{*2}			

^{*1.} $\square\square\square$ represents a number between 003 and 020.

When 030 to 050 cables are used, the bending position on the cables must be at least 100 mm away from the Servomotor's connector.

^{*2.} $\triangle\triangle\triangle$ represents a number between 030 and 050.

Power Cables without Brake Wire

	Bend test		
Model	Minimum bending radius [R]	Stroke	Estimated life
R88A-CA1A□□□SF ^{*1}	40 mm	500 mm	10 million times
R88A-CA1A□□□SFR*1	40 mm	500 mm	10 million times
R88A-CA1B□□□SF ^{*1}	90 mm	500 to 1,000 mm	20 million times
R88A-CA1C□□□SF ^{*1}			
R88A-CA1E□□□SF ^{*1}	90 mm	500 to 1,000 mm	20 million times
R88A-CA1F□□□SF ^{*1}	100 mm	500 to 1,000 mm	20 million times
R88A-CA1H△△△SF ^{*2}	150 mm	500 to 1,000 mm	10 million times
R88A-CA1J△△SF ^{*2}	173 mm	500 to 1,000 mm	10 million times
R88A-CA1K△△SF ^{*2}	232 mm	500 to 1,000 mm	10 million times

^{*1.} $\square\square\square$ represents a number between 003 and 050.

Power Cables with Brake Wire

	Bend test		
Model	Minimum bending radius [R]	Stroke	Estimated life
R88A-CA1B□□□BF*1	90 mm	500 to 1,000 mm	20 million times
R88A-CA1C□□□BF ^{*1}			
R88A-CA1D□□□BF ^{*1}			
R88A-CA1E□□□BF ^{*1}	90 mm	500 to 1,000 mm	20 million times
R88A-CA1F□□□BF ^{*1}	100 mm	500 to 1,000 mm	20 million times
R88A-CA1H△△△BF ^{*2}	150 mm	500 to 1,000 mm	10 million times
R88A-CA1J△△△BF ^{*2}	173 mm	500 to 1,000 mm	10 million times
R88A-CA1K△△△BF ^{*2}	232 mm	500 to 1,000 mm	10 million times

^{*1.} $\square\square\square$ represents a number between 003 and 050.

Extension Cable

	Bend test			
Model	Minimum bending radius [R]	Stroke	Estimated life	
R88A-CA1HE□□BF ^{*1}	150 mm	500 to 1,000 mm	10 million times	
R88A-CA1JE□□BF ^{*1}	173 mm	500 to 1,000 mm	10 million times	
R88A-CA1KE□□BF ^{*1}	232 mm	500 to 1,000 mm	10 million times	

^{*1.} $\square\square\square$ represents a number between 003 and 050.

^{*2.} $\triangle\triangle\triangle$ represents a number between 003 and 020.

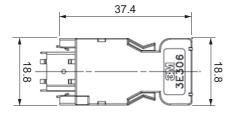
^{*2.} $\triangle\triangle\triangle$ represents a number between 003 and 020.

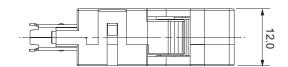
Brake Cable

	Bend test		
Model	Minimum bending radius [R]	Stroke	Estimated life
R88A-CA1A□□□BF ^{*1}	30 mm	500 to 1,000 mm	20 million times
R88A-CA1A□□□BFR*1	30 mm	500 to 1,000 mm	20 million times

^{*1.} $\square\square\square$ represents a number between 003 and 050.

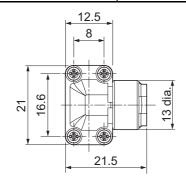
3-4-5 Connector Specifications

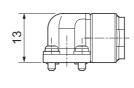

Encoder Cable Connectors


These connectors are used for encoder cables.

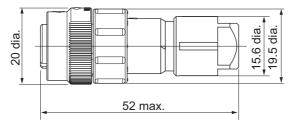
Use them when you prepare an encoder cable by yourself.

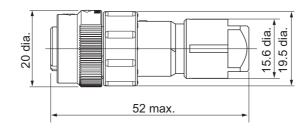
Servo Drive Connector


li	tem	Specifications
Applicable Servomo	or	1S-series Servomotors of all capacities
Connector		This is a soldering-type connector.
	Receptacle	3E206-0100KV (3M)
	Shell kit	3E306-3200-008 (3M)
	Receptacle and	R88A-CN101R (OMRON)
	shell kit	
Applicable cable	Applicable wire	AWG 18 max.
	Insulating cover	2.1 mm dia. max.
	outer diameter	
	Outer diameter of	5.4 to 7.5 mm dia.
	sheath	

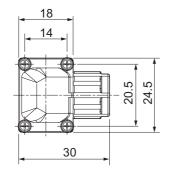


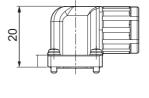
Servomotor Connector


Ite	em	Specifications
Applicable Servo-	100 V	3,000-r/min Servomotors of 50 to 400 W
motor	200 V	3,000-r/min Servomotors of 50 to 750 W
Connector		This is a crimping-type connector. For required tools, contact the manufacturers directly.
	Angle plug	JN6FR07SM1 (Japan Aviation Electronics)
	Connector pin	LY10-C1-A1-10000 (Japan Aviation Electronics)
	Angle plug and con- nector pin	R88A-CNK02R (OMRON)
Applicable cable	Applicable wire	AWG 22 max.
	Insulating cover outer diameter	1.3 mm dia. max.
	Outer diameter of sheath	5.0±0.5 mm dia.


ltem		Specifications
Applicable Servo- 200 V		3,000-r/min Servomotors of 1 to 3 kW
motor		2,000-r/min Servomotors of 1 to 3 kW
		1,000-r/min Servomotors of 900 W to 3 kW
	400 V	3,000-r/min Servomotors of 750 W to 3 kW
		2,000-r/min Servomotors of 400 W to 3 kW
		1,000-r/min Servomotors of 900 W to 3 kW
Connector		This is a crimping-type connector. For required tools, contact the manufacturers directly.
	Straight plug	JN2DS10SL1-R (Japan Aviation Electronics)
	Contact	JN1-22-22S-10000 (Japan Aviation Electronics)
	Straight plug and contact	R88A-CN104R (OMRON)
Applicable cable	Applicable wire	AWG 21 max.
	Outer diameter of sheath	5.7 to 7.3 mm dia.

Ite	em	Specifications
Applicable Servo-	200 V	3,000-r/min Servomotors of 4 to 5 kW
motor		2,000-r/min Servomotors of 4 to 15 kW
	400 V	3,000-r/min Servomotors of 4 to 5 kW
		2,000-r/min Servomotors of 4 to 15 kW
Connector		This is a crimping-type connector. For required tools, contact the
		manufacturers directly.
	Straight plug	JN2VDS10SL1 (Japan Aviation Electronics)
	Contact	JN2V-22-22S-10000 (Japan Aviation Electronics)
	Straight plug and	R88A-CN105R (OMRON)
	contact	
Applicable cable	Applicable wire	AWG 21 max.
	Outer diameter of	5.7 to 7.3 mm dia.
	sheath	

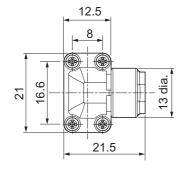


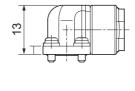


Power Cable Connector

This connector is used for power cables with cable on load side such as R88A-CA1A Section Sect

	Item	Specifications	
Applicable Servo-	100 V	3,000-r/min Servomotors of 100 to 400 W	
motor	200 V	3,000-r/min Servomotors of 100 to 750 W	
Connector		This is a crimping-type connector. For required tools, contact the manufacturers directly.	
	Angle plug	JN6FS05SJ2 (Japan Aviation Electronics)	
	Socket contact	ST-JN6-S-C1B-2500 (Japan Aviation Electronics)	
	Angle plug and socket contact	R88A-CN111A (OMRON)	
Applicable cable	Applicable wire	AWG 18	
	Insulating cover outer diameter	1.7 to 1.9 mm dia.	
	Outer diameter of sheath	6.4 to 7.2 mm dia.	




Brake Cable Connector

This connector is used for brake cables.

Use it when you prepare a brake cable by yourself.

It	tem	Specifications
Applicable Servo-	100 V	3,000-r/min Servomotors of 50 to 400 W
motor	200 V	3,000-r/min Servomotors of 50 to 750 W
Connector		This is a crimping-type connector. For required tools, contact the manufacturers directly.
	Angle plug	JN6FR02SM1 (Japan Aviation Electronics)
	Socket contact	LY10-C1-A1-10000 (Japan Aviation Electronics)
	Angle plug and socket contact	R88A-CN111B (OMRON)
Applicable cable	Applicable wire	AWG 22 to 26
	Insulating cover outer diameter	0.8 to 1.3 mm dia.
	Outer diameter of sheath	4.5 to 5.5 mm dia.

3-4-6 Cable Wire Specifications

Encoder Cable Wires

These wires are used for encoder cables.

Use them when you prepare an encoder cable by yourself.

Encoder cable model		Wire model	Wire specifications	Shield
R88A-CR1A□□□C	20 m	F-SK-B20276-3176 ^{*1}	AWG22 × 2C + AWG24 × 1P UL20276	Yes
R88A-CR1B□□□N R88A-CR1B□□□V	20 m	F-SK-B20276-3180 ^{*1}	AWG22 × 2C + AWG24 × 1P UL20276	Yes
R88A-CR1A□□□C R88A-CR1B□□□N R88A-CR1B□□□V	50 m	F-SK-B20276-3181*2	AWG18 × 2C + AWG24 × 1P UL20276	Yes
R88A-CR1A□□□CF	20 m	F-F-C15-012*1*3	AWG22 × 2C + AWG24 × 1P UL20276	Yes
R88A-CR1B□□□NF R88A-CR1B□□□VF	20 m	F-F-C15-322*1*3	AWG22 × 2C + AWG24 × 1P UL20276	Yes
R88A-CR1A□□□CF R88A-CR1B□□□NF R88A-CR1B□□□VF	50 m	F-F-C15-013 ^{*2*3}	AWG18 × 2C + AWG24 × 1P UL20276	Yes

^{*1.} The length of one encoder cable should be 3 to 20 m.

Power Cable Wires

These wires are used for power cables.

Use them when you prepare a power cable by yourself.

Power Cables without Brake Wire (Standard Cable)

Power cable model	Wire model*1	Wire specifications	Shield
R88A-CA1A□□□S (Ver.1.1)	F-OQS-C4213K-0029*1	AWG20 × 3C UL2464	Yes
R88A-CA1B□□□S (Ver.1.1)	F-SP02593*1	AWG16 × 4C UL2586	Yes
R88A-CA1C□□□S (Ver.1.1)			
R88A-CA1E□□□S (Ver.1.1)	F-SP02592*1	AWG14 × 4C UL2586	Yes
R88A-CA1F□□□S (Ver.1.0)	F-SK-B2586-747*1	AWG10 × 4C UL2586	Yes

^{*1.} The length of one power cable should be 3 to 50 m.

^{*2.} The length of one encoder cable should be 3 to 50 m. The Servomotor's connector does not conform to AWG18, so use a wire of AWG22 before the connector to relay it.

^{*3.} Refer to 3-4-4 Resistance to Bending of Flexible Cable on page 3-135 for the resistance to bending.

• Power Cables without Brake Wire (Flexible Cable/Non-load side, Flexible Cable)

Power cable model	Wire model*1	Wire specifications	Shield
R88A-CA1A□□□SF (Ver.1.1)	F-OQS-C4401K-0035*1	AWG20 × 3C UL2517	Yes
R88A-CA1A□□□SFR (Ver.1.1)			
R88A-CA1B□□□SF (Ver.1.1)	F-F-C20-487*1	AWG16 × 4C UL2586	Yes
R88A-CA1C□□□SF (Ver.1.1)			
R88A-CA1E□□□SF (Ver.1.1)	F-F-C20-490 ^{*1}	AWG14 × 4C UL21885	Yes
R88A-CA1F□□□SF (Ver.1.0)	F-F-C15-007 ^{*1}	AWG10 × 4C UL2586	Yes

^{*1.} The length of one power cable should be 3 to 50 m. Refer to 3-4-4 Resistance to Bending of Flexible Cable on page 3-135 for the resistance to bending.

Power Cables with Brake Wire (Standard Cable)

Power cable model	Wire model*1	Wire specifications	Shield
R88A-CA1B□□□B (Ver.1.1)	F-SP02590 ^{*1}	AWG16 × 4C UL2586	Yes
R88A-CA1C□□□B (Ver.1.1)		AWG20 × 2C UL2586	
R88A-CA1D□□□B (Ver.1.0)	F-SK-B2586-767*1	AWG16 × 4C UL2586	Yes
		AWG20 × 2C UL2586	
R88A-CA1E□□□B (Ver.1.1)	F-SP02588 ^{*1}	AWG14 × 4C UL2586	Yes
		AWG20 × 2C UL2586	
R88A-CA1F□□□B (Ver.1.0)	F-SK-B2586-748 ^{*1}	AWG10 × 4C UL2586	Yes
		AWG20 × 2C UL2586	

^{*1.} The length of one power cable should be 3 to 50 m.

Power Cables with Brake Wire (Flexible Cable)

Power cable model	Wire model*1	Wire specifications	Shield
R88A-CA1B□□□BF (Ver.1.1)	F-F-C20-488 ^{*1}	AWG16 × 4C UL21885	Yes
R88A-CA1C□□□BF (Ver.1.1)		AWG20 × 2C UL21885	
R88A-CA1D□□□BF (Ver.1.0)	F-F-C15-445 ^{*1}	AWG16 × 4C UL2586	Yes
		AWG20 × 2C UL2586	
R88A-CA1E□□□BF (Ver.1.1)	F-F-C20-490*1	AWG14 × 4C UL21885	Yes
		AWG20 × 2C UL21885	
R88A-CA1F□□□BF (Ver.1.0)	F-F-C15-009 ^{*1}	AWG10 × 4C UL2586	Yes
		AWG20 × 2C UL2586	

^{*1.} The length of one power cable should be 3 to 50 m. Refer to 3-4-4 Resistance to Bending of Flexible Cable on page 3-135 for the resistance to bending.

Brake Cable Wires

These wires are used for brake cables.

Use them when you prepare a brake cable by yourself.

Brake cable model	Wire model	Wire specifications	Shield
R88A-CA1A□□□B	F-SK-B2517-753 ^{*1}	AWG22 × 2C UL2517	No
R88A-CA1A□□□BF	F-F-C15-010 ^{*2}	AWG22 × 2C UL2517	No
R88A-CA1A□□□BFR			

^{*1.} The length of one power cable should be 3 to 50 m.

^{*2.} The length of one power cable should be 3 to 50 m. Refer to 3-4-4 Resistance to Bending of Flexible Cable on page 3-135 for the resistance to bending.

3-4-7 EtherCAT Communications Cable Specifications

For the EtherCAT communications cable, use a twisted-pair cable, which is doubly shielded by the aluminum tape and braid, with Ethernet Category 5 (100BASE-TX) or higher.

Recommended cables are shown below.

Recommended Cable

Size × Number of cable cores (pairs)	Recommended manufac- turer	Model
AWG 24 × 4P	Tonichi kyosan Cable, Ltd.	NETSTAR-C5E SAB 0.5 × 4P
	Kuramo Electric Co.	KETH-SB
AWG 22 × 2P	Kuramo Electric Co.	KETH-PSB-OMR*1

^{*1.} We recommend you to use this cable in combination with the OMRON connector (Model: XS6G-T421-1).

Precautions for Correct Use

The maximum cable length between nodes is 100 m. However, some cables are specified for less than 100 m. Generally speaking, if the conductor is twisted wire rather than solid wire, transmission performance will be lower, and reliable communications may not be possible at 100 m. Confirm details with the cable manufacturer.

Additional Information

If an Ethernet cable of Ethernet Category 5 (100BASE-TX) or higher is used, communications will be possible even if the cable is not shielded. However, we recommend a cable, which is doubly shielded by the aluminum tape and braid, to ensure sufficient noise immunity.

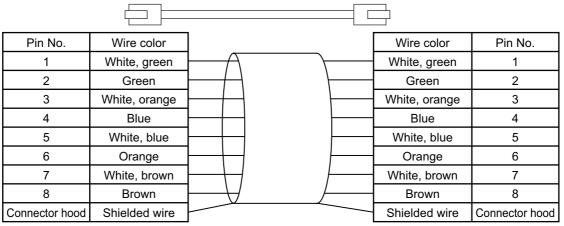
Recommended Connector (Modular Plug)

Use a shielded connector of Ethernet Category 5 (100BASE-TX) or higher.

Recommended connectors are shown below.

Size × Number of cable cores (pairs)	Recommended manufac- turer	Model
AWG 24 × 4P	Panduit Corporation	MPS588
AWG 22 × 2P	OMRON Corporation	XS6G-T421-1*1

^{*1.} We recommend you to use this connector in combination with the Kuramo Electric Co. KETH-PSB-OMR cable.

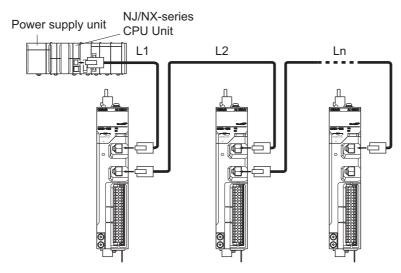


Precautions for Correct Use

When you select a connector, confirm that it is applicable to the cable that will be used. Confirm the following items: Conductor size, conductor type (solid wire or twisted wire), number of twisted pairs (2 or 4), outer diameter, etc.

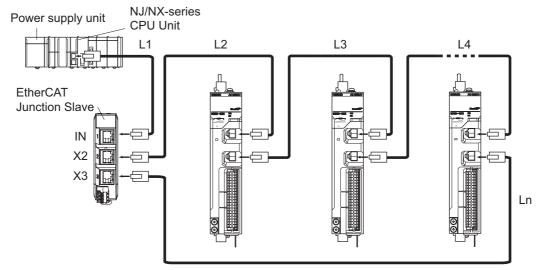
Attaching the Connectors to the Cable

Use straight wiring for the communications cable, as shown below.


Note 1. Connect the cable shield to the connector hood at both ends of the cable.

2. There are two connection methods for Ethernet: T568A and T568B. The T568A connection method is shown above, but you can also use the T568B connection method.

Wiring


Wiring Example of Configuring Daisy Chain Topology

This example shows how to connect an NJ/NX-series CPU Unit to Servo Drives by the use of Ether-CAT Communications Cables. Connect the NJ/NX-series CPU unit to the ECAT IN connector on the first Servo Drive. Connect the ECAT OUT connector on the first Servo Drive to the ECAT IN connector on the next Servo Drive. Do not connect the ECAT OUT connector on the last Servo Drive.

Wiring Example of Configuring Ring Topology

This example shows how to connect an NJ/NX-series CPU Unit to Servo Drives via an OMRON GX-JC03 EtherCAT Junction Slave by the use of EtherCAT Communications Cables. Connect the NJ/NX-series CPU unit to the IN connector on the EtherCAT Junction Slave. Connect the X2 connector (start port of the ring) on the EtherCAT Junction Slave to the ECAT IN connector on the first Servo Drive. Connect the ECAT OUT connector on the first Servo Drive to the ECAT IN connector on the next Servo Drive. Connect the ECAT OUT connector on the last Servo Drive to the X3 connector (end port of the ring) on the EtherCAT Junction Slave.

Precautions for Correct Use

- Always turn OFF the power supply to the NJ/NX-series CPU Unit and Servo Drives before
 you connect or disconnect the EtherCAT Communications Cables.
- The cable between the two nodes (L1, L2 ... Ln) must be 100 m or less.

Specifications of External 3-5 Regeneration Resistors and External **Regeneration Resistance Units**

This section describes the specifications of the External Regeneration Resistor and External Regeneration Resistance Unit.

Refer to 2-4-6 Dimensions of External Regeneration Resistors and External Regeneration Resistance Units on page 2-120 for external dimensions.

General Specifications 3-5-1

Item	Model			
item	R88A-RR120□□/-RR300□□	R88A-RR1K6□□/-RR550□□		
Dielectric strength	Between terminals and case: 2,000 VAC fo	r 1 min (at 50/60 Hz)		
Insulation resistance	Between terminals and case: 20 MΩ min. (at 500 VDC)			
Operating ambient tempera-	0 to 55°C, 90% max.	0 to 55°C, 90% max.		
ture and humidity	(with no condensation)	(with no condensation)		
Storage ambient temperature	-25 to 85°C, 95% max.	-20 to 65°C, 90% max.		
and humidity	(with no condensation)	(with no condensation)		
Operating and storage atmosphere	No corrosive gases			

3-5-2 Characteristics

External Regeneration Resistor

		Extern	al Regenerat	ion Resistor			
Applicable Servo Drive (R88D-1SN□ □□-ECT)	Model	Resis- tance value	Power to be absorbed for 120°C temperature rise	Heat radiation specifica- tion	Heat radiation condition	Weight	Wire size
01L, 02L	R88A-RR12015	15 Ω	24 W	Natural	Aluminum	0.48 kg	AWG 16
01H, 02H	R88A-RR12025	25 Ω		cooling	350 mm ×		(Rated
150H	R88A-RR30002R5	2.5 Ω	60 W		350 mm	1.6 kg	tempera-
75H	R88A-RR30004	4 Ω			Thickness:		ture:
55H	R88A-RR30005R4	5.4 Ω			3.0 mm		200°C)
20H, 30H, 150F	R88A-RR30010	10 Ω					Length: 500 mm
01L, 02L	R88A-RR30015	15 Ω					
55F, 75F	R88A-RR30016	16 Ω					
15H	R88A-RR30017	17 Ω					
04L, 08H, 10H,	R88A-RR30020	20 Ω					
20F ^{*1} , 30F ^{*1}							
01H, 02H, 04H	R88A-RR30025	25 Ω					
06F ^{*1} , 10F ^{*1} , 15F ^{*1}	R88A-RR30033	33 Ω					

^{*1.} Use two series-connected External Regeneration Resistors for this model.

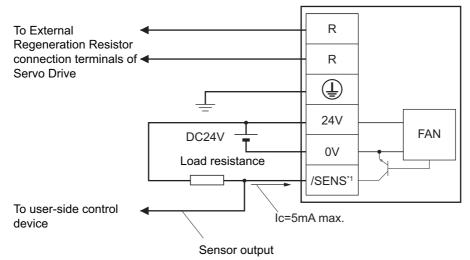
External Regeneration Resistance Unit

Ampliachla	Exter	nal Rege	neration Resis	External Regeneration Resistance Unit					
Applicable Servo Drive (R88D-1SN□ □□-ECT)	Model	Resis- tance value	Power to be absorbed for 120°C tempera- ture rise	Heat radiation specification	Weight	Wire size ^{*2}			
150H	R88A-RR1K602R5	2.5 Ω	640 W	Forced cool-	8.0 kg	AWG 16 to 10,			
75H	R88A-RR1K604	4 Ω		ing by the fan		1.3 to 5.5 mm ²			
55H	R88A-RR1K605R4	5.4 Ω							
20H, 30H,	R88A-RR1K610	10 Ω				AWG 14 to 10,			
150F						2.0 to 5.5 mm ²			
55H, 75H	R88A-RR1K616	16 Ω				AWG 16 to 10,			
						1.3 to 5.5 mm ²			
15H	R88A-RR1K617	17 Ω				AWG 14 to 10,			
						2.0 to 5.5 mm ²			
08H	R88A-RR1K620	20 Ω				AWG 18 to 14,			
						0.75 to 2.0 mm ²			
10H	-					AWG 16 to 14,			
						1.3 to 2.0 mm ²			
20F ^{*1} , 30F ^{*1}						AWG 14 to 10,			
20F, 30F	R88A-RR1K640	40 Ω				2.0 to 5.5 mm ²			
06F, 10F, 15F	R88A-RR1K666	66 Ω				AWG 16 to 10,			
						1.3 to 5.5 mm ²			
150H	R88A-RR55002R5	2.5 Ω	110 W	Natural cool-	3.5 kg	AWG 16 to 4,			
75H	R88A-RR55004	4 Ω		ing		1.3 to 22 mm ²			
55H	R88A-RR55005R4	5.4 Ω							
150F	R88A-RR55010	10 Ω							
55F, 75F	R88A-RR55016	16 Ω							

^{*1.} Use two series-connected External Regeneration Resistance Units for this model.

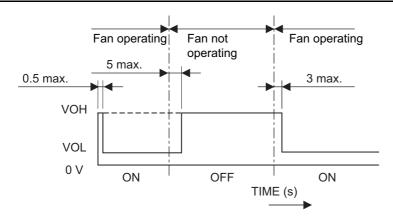
^{*2.} Use wires with the rated voltage of 600 V or higher. An example of using heat-resistant polyvinyl chloride insulated wires (HIV) at the ambient temperature of 50°C.

3-5-3 External Regeneration Resistance Unit Specifications


This section describes terminal block specifications of external regeneration resistance unit with Fan.

Terminal Block Specifications

Pin No.	Symbol	Name	Specifications
1	R	Regeneration Resistor	External regeneration resistor (640 W)
2	R	connection terminals	
3	(Protective earth (PE)	Ground terminal
4	24V	Fan power supply input	Input voltage: 24 VDC (20.4 to 27.6 V)
5	0V		Input current: 0.27 A
6	/SENS	Fan rotation error signal	Open collector output
			Input voltage: 27.6 VDC max., Output current: 5 mA max.
			In the normal state: ON, in the error state (Fan stop): OFF (OPEN)


Terminal block screw: M4, Tightening torque: approx. 1.5 to 1.8 N·m

Terminal Block Wiring Example

*1. Build a system to prevent the Servomotor from operating if a fan error is detected by the /SENS signal.

/SENS Signal Output Waveform

WARNING

Design the configuration to cut off the main circuit power supply when the ERR signal (normally close contact) of the control output function is output (open). Not doing so may cause a fire.

3-6 External Dynamic Brake Resistor

This section describes the specifications of the External Dynamic Brake Resistor.

For the external dimensions, refer to 2-4-7 Dimensions of External Dynamic Brake Resistors on page 2-121.

3-6-1 General Specifications

Item	Model
item	R88A-DBR300□□
Dielectric strength	Between terminals and case: 2,000 VAC for 1 min (at 50/60 Hz)
Insulation resistance	Between terminals and case: 20 M Ω min. (at 500 VDC)
Operating ambient tempera-	0 to 55°C, 90% max. (with no condensation)
ture and humidity	
Storage ambient temperature	-25 to 85°C, 95% max. (with no condensation)
and humidity	
Operating and storage atmo-	No corrosive gases
sphere	
Frequency of use	3 minutes or more per activation
Deceleration patterns	10,000 times at rated rotation speed and applicable load inertia

3-6-2 Characteristics

Applicable	Exte					
Servo Drive (R88D-1SN□ □□-ECT)	Model	Resis- tance value	Heat radiation specifica- tion	Heat radiation condition	Weight	Wire size
55H, 75H	R88A-DBR30001R5	1.5 Ω	Natural cool-	Aluminum	1.6 kg	AWG 16
150H	R88A-DBR30001R2	1.2 Ω	ing	350 mm ×		(Rated tempera-
55F, 75F	R88A-DBR30004	4 Ω		350 mm		ture: 200°C)
150F	R88A-DBR30005	5 Ω		Thickness: t3.0 mm		Length: 500 mm

Reactor Specifications

Connect a Reactor to the Servo Drive for reduction of harmonic current. Select an appropriate Reactor according to the Servo Drive model.

Refer to 2-4-8 Reactor Dimensions on page 2-122 for dimensions.

General Specifications 3-7-1

Itom	Item Model				
iteiii	R88A-PD20□□/200 VAC	R88A-PD40□□/400 VAC			
Insulation class	Class H				
Dielectric strength	Between terminals and case: 4,000 VAC for 1 min (at 50/60 Hz)				
Insulation resistance	Between terminals and case: 100 MΩ min. (at 1,000 VDC)				
Operating ambient temperature and humidity	0 to 55°C, 90% max. (with no condensation	on)			
Storage ambient temperature and humidity	-20 to 65°C, 90% max. (with no condensa	tion)			
Operating and storage atmosphere	No corrosive gases				

3-7-2 **Characteristics**

Applicab	le Servo Drive	DC Reactor				
Voltage	Model	Model	Rated current	Inductance (0% to 20%)	Weight	Wire size*1
100 VAC	R88D-	R88A-	1.6 A	21.4 mH	1.8 kg	AWG 18 to 14,
	1SN01L-ECT	PD2002				0.75 to 2.0 mm ²
	R88D-	R88A-	3.2 A	10.7 mH	1.9 kg	
	1SN02L-ECT	PD2004				
	R88D-	R88A-	6.1 A	6.75 mH	2.0 kg	AWG 14,
	1SN04L-ECT	PD2007				1.5 to 2.0 mm ²
200 VAC	R88D-	R88A-	1.6 A	21.4 mH	1.8 kg	AWG 18 to 14,
	1SN01H-ECT	PD2002				0.75 to 2.0 mm ²
	R88D-					
	1SN02H-ECT					
	R88D-	R88A-	3.2 A	10.7 mH	1.9 kg	AWG 16 to 14,
	1SN04H-ECT	PD2004				1.3 to 2.0 mm ²
	R88D-	R88A-	6.1 A	6.75 mH	2.0 kg	
	1SN08H-ECT	PD2007				
	R88D-	R88A-	9.3 A	3.51 mH	2.0 kg	
	1SN10H-ECT	PD2015				
	R88D-					AWG 12 to 10,
	1SN15H-ECT					3.3 to 5.5 mm ²
	R88D-	R88A-	13.8 A	2.51 mH	2.9 kg	
	1SN20H-ECT	PD2022				
	R88D-	R88A-	22.3 A	1.6 mH	4.4 kg	AWG 10,
	1SN30H-ECT	PD2037				4.0 to 5.5 mm ²

Applicab	le Servo Drive	DC Reactor				
Voltage	Model	Model	Rated current	Inductance (0% to 20%)	Weight	Wire size*1
400 VAC	R88D-	R88A-	3.0 A	27 mH	2.0 kg	AWG 16 to 10,
	1SN06F-ECT	PD4007				1.3 to 5.5 mm ²
	R88D-	R88A-	4.7 A	14 mH	2.0 kg	
	1SN10F-ECT	PD4015				
	R88D-					
	1SN15F-ECT					
	R88D-	R88A-	6.9 A	10.1 mH	2.9 kg	AWG 14 to 10,
	1SN20F-ECT	PD4022				2.0 to 5.5 mm ²
	R88D-	R88A-	11.6 A	6.4 mH	4.5 kg	
	1SN30F-ECT	PD4037				

^{*1.} Use wires with a rated voltage of 600 V or higher.

An example of using heat-resistant polyvinyl chloride insulated wires (HIV) at the ambient temperature of 50°C.

3-7-3 Terminal Block Specifications

Symbol	Name	Remarks
U	DC Reactor	Terminal block screw: M4
X	connection terminals	Tightening torque: 1.4 to 1.8 N⋅m

Noise Filter Specifications

The 1S Servo Drive can be connected to the Footprint-type Noise Filter manufactured by OMRON or the Book-type Noise Filter manufactured by Soshin Electric Co., Ltd. or Cosel Co., Ltd. Select a noise filter in accordance with your system.

Refer to 4-1-5 Noise Filter Installation Conditions on page 4-15 for details.

For the external dimensions, refer to 2-4-9 Noise Filter Dimensions on page 2-131.

Selecting an unsuitable noise filter may result in a poor noise reduction effect. Also, a Servo Drive may produce some noise that travels through the power supply cable and causes unintended operation of other Servo Drives such as regeneration operation and Overvoltage Error.

For 1S-series Servo Drives, the Footprint-type Noise Filters and the Book-type Noise Filters (manufactured by Soshin Electric Co., Ltd.) conform to the EMC Directives. Conformity to the EMC Directives is certified on the conditions that one noise filter is installed for one Servo Drive and a motor power cable connected to one Servo Drive is 20 m or less. For the noise filters, cable lengths, and peripheral equipment that conform to the EMC Directives, refer to 4-3 Wiring Conforming to EMC Directives on page 4-51.

For a 3-phase 200-V input model of Servo Drive, besides the one conforming to the EMC Directives, you can use the Book-type Noise Filter manufactured by Soshin Electric Co., Ltd. or Cosel Co., Ltd. when a motor power cable connected to one Servo Drive is longer than 20 m.

Also, for the Book-type Noise Filter manufactured by Cosel Co., Ltd., more than one 3-phase 200-V input model of Servo Drive at 1.5 kW or less can be connected to one noise filter. Refer to 4-7 Noise Filter Installation Conditions When the Total Wire Length Is Long on page 4-80 for details.

3-8-1 **General Specifications**

Footprint-type Noise Filters (Manufactured by OMRON)

Item	Model					
iteiii	R88A-FI1S1□□	R88A-FI1S2□□	R88A-FI1S3□□			
Rated Voltage	Single-phase 100 to 240 VAC	3-phase 200 to 240 VAC	3-phase 380 to 480 VAC			
Dielectric strength	Between power terminals and PE terminals: 2,000 VDC for 1 min		Between power terminals and PE terminals: 2,830 VDC for 1 min			
Insulation resistance	Between power terminals and PE terminals: 500 MΩ min. (at 500 VDC)					
Operating ambient temperature and humidity	0 to 55°C (Installed on a metal plate.), 90% max.(with no condensation)					
Storage ambient temperature and humidity	-20 to 65°C, 90% max. (with no condensation)					
Operating and storage atmosphere	No corrosive gases					
UL standards	UL 1283					
EU Directives (Low Voltage Directive)	EN 60939-2					

Book-type Noise Filters (Manufactured by Soshin Electric Co., Ltd.)

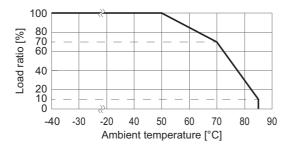
HF2020A-SZC-33DDD/HF3020C-SZC/HF3020C-SZC-33DDD/HF3020C-SZL

HF3040C-SZA-33EDD/HF3040C-SZA-47DDD/HF3050C-SZB-33EDD

HF3080C-SZC-33EDE/HF3080C-SZC-47EDE/HF3100C-SZC-33EDE

	Model					
ltem	HF2020A-SZC-33DDD	HF3□□0C-SZ□-□□□□□ HF3020C-SZ□				
Rated Voltage	250 VAC max.	530 VAC max.				
Dielectric strength	Between power terminals and PE terminals:	Between power terminals and PE terminals:				
	2,250 VDC for 1 min	2,830 VDC for 1 min				
Insulation resistance	Between power terminals and PE terminals: 500 MΩ min. (at 500 VDC)					
Operating ambient temperature and humidity	-20 to 50°C (Installed on a metal plate.), 90% max.(with no condensation)					
Storage ambient temperature and humidity	-20 to 60°C, 60% max. (with no condensation)					
Operating and storage atmosphere	No corrosive gases					
UL standards	UL 1283					
EU Directives (Low Voltage Directive)	EN 60939-2					

Consult Soshin Electric Co., Ltd. for details on the specifications.


Book-type Noise Filter (Manufactured by Cosel Co., Ltd.)

FSB-30-254-HU

ltem	Model
item	FSB-30-254-HU
Rated Voltage	3-phase 250 V (up to 275 V available) 50/60 Hz
Dielectric strength	Between power terminals and PE terminals: 2,800 VDC for 1 min
Insulation resistance	Between power terminals and PE terminals: 100 $M\Omega$ min. (at 500 VDC)
Operating ambient tempera-	-40 to 85°C (refer to Derating Characteristics.),
ture and humidity	20% to 95% max. (with no condensation)
Storage ambient temperature and humidity	-40 to 85°C, 20% to 95% (with no condensation)
Operating and storage atmosphere	No corrosive gases
UL standards	UL 1283
EU Directives (Low Voltage	DIN EN 60939
Directive)	

Consult Cosel Co., Ltd. for details on the specifications.

Derating Characteristics

Note Do not block up an air hole for heat radiation in the cabinet.

Characteristics 3-8-2

Footprint-type Noise Filters (Manufactured by OMRON)

Applicable Servo Drive			Noise filter			Wire on powe side [*]	
Voltage	Model (R88D-)	Model	Rated current	Leakage current	Weight	Wire size*3	Strip length
Single-	1SN01L-ECT	R88A-	3 Arms	6.6 mA	0.95 kg	AWG 20 to 16,	8 to 9 mm
phase		FI1S103		(at 200 VAC		0.5 to 1.5 mm ²	
100 VAC	1SN02L-ECT	R88A-	5 Arms	60Hz)	1.5 kg	AWG 18 to 16,	
		FI1S105				0.75 to 1.5 mm ²	
	1SN04L-ECT	R88A-	9 Arms		1.8 kg	AWG 14 to 12,	9 to 10 mm
		FI1S109				2.0 to 4.0 mm ²	
Single-	1SN01H-ECT	R88A-	3 Arms		0.95 kg	AWG 22 to 16,	8 to 9 mm
phase		FI1S103				0.3 to 1.5 mm ²	
200 VAC	1SN02H-ECT					AWG 20 to 16,	
						0.5 to 1.5 mm ²	
	1SN04H-ECT	R88A-	5 Arms		1.5 kg	AWG 18 to 16,	
		FI1S105				0.75 to 1.5 mm ²	
	1SN08H-ECT	R88A-	9 Arms		1.8 kg	AWG 16 to 12,	9 to 10 mm
		FI1S109				1.25 to 4.0 mm ²	
	1SN15H-ECT	R88A-	16 Arms]	2.9 kg	AWG 12,	
		FI1S116				3.3 to 4.0 mm ²	

Applicab	le Servo Drive	Noise filter			Wire on powe side [*]		
Voltage	Model (R88D-)	Model	Rated current	Leakage current	Weight	Wire size*3	Strip length
3-phase	1SN01H-ECT	R88A-	2 Arms	35 mA	0.95 kg	AWG 22 to 16,	8 to 9 mm
200 VAC		FI1S202*1		(at 200 VAC		0.3 to 1.5 mm ²	
	1SN02H-ECT			60 Hz, with		AWG 20 to 16,	
				delta con-		0.5 to 1.5 mm ²	
				nection and			
				single- phase			
				ground)			
	1SN01H-ECT	R88A-	3 Arms	14 mA	1.7 kg	AWG 22 to 16,	
		FI1S203 ^{*1}		(at 200 VAC		0.3 to 1.5 mm ²	
	1SN02H-ECT			60 Hz, with		AWG 20 to 16,	
				delta con-		0.5 to 1.5 mm ²	
	1SN04H-ECT			nection and		AWG 18 to 16,	
				single- phase		0.75 to 1.5 mm ²	
	1SN08H-ECT	R88A-	8 Arms	ground)	2.0 kg	AWG 16 to 12,	9 to 10 mm
	1SN10H-ECT	FI1S208		g,		1.25 to 4.0 mm ²	
	1SN15H-ECT	R88A-	16 Arms		3.2 kg	AWG 12,	
	1SN20H-ECT	FI1S216				3.3 to 4.0 mm ²	
	1SN30H-ECT						
3-phase	1SN06F-ECT	R88A-	9 Arms	27 mA	2.9 kg	AWG 16 to 14,	8 to 9 mm
400 VAC	1SN10F-ECT	FI1S309		(at 400 VAC		1.25 to 2.5 mm ²	
	1SN15F-ECT			60 Hz, with			
	1SN20F-ECT			Y-connec-		AVVC 4.4	
	1SN30F-ECT			tion and a		AWG 14,	
				phase loss)		2.0 to 2.5 mm ²	

^{*1.} Select a noise filter in accordance with the amount of the leakage current. If there is no problem with the amount of the leakage current, you can select the R88A-FI1S202.

Book-type Noise Filters (Manufactured by Soshin Electric Co., Ltd.)

Applicable Servo Drive		Noise filter			
Voltage	Model (R88D-)	Model	Rated current	Leakage current	Weight
Single-phase 100 VAC	1SN□□□-ECT	HF2020A-SZ C-33DDD	20 Arms	8.5 mA max. (at 250 VAC 60 Hz)	1.3 kg
200 VAC 3-phase	1SN0□H-ECT 1SN1□H-ECT 1SN20H-ECT	HF3020C-SZ C-33DDD	20 Arms	3.5 mA max. (at 400 VAC 50 Hz by UL1283 *1), 4.0 mA max. (at 200 VAC 60 Hz, \triangle	1.3 kg
200 VAC	1SN30H-ECT 1SN15H-ECT 1SN20H-ECT	HF3020C-SZL *2	20 Arms	connection and single-phase ground) 7 mA max. (at 400 VAC 50 Hz by UL1283*1),	1.3 kg
	1SN30H-ECT			7.7 mA max. (at 200 VAC 60 Hz, \triangle connection and single-phase ground)	

^{*2.} Use wires with a rated voltage of 600 V or higher.

^{*3.} An example of using heat-resistant polyvinyl chloride insulated wires (HIV) at the ambient temperature of 50°C.

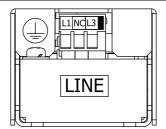
Applicabl	e Servo Drive	Noise filter			
Voltage	Model (R88D-)	Model	Rated current	Leakage current	Weight
3-phase	1SN55H-ECT	HF3040C-SZ	40 Arms	3.5 mA max. (at 400 VAC 50 Hz by	2.5 kg
200 VAC		A-33EDD*2		UL1283 ^{*1}),	
	1SN75H-ECT	HF3050C-SZ	50 Arms	4.0 mA max. (at 200 VAC 60 Hz, △	2.5 kg
		B-33EDD*2		connection and single-phase ground)	
		HF3080C-SZ	80 Arms		6.1 kg
		C-33EDE*2			
	1SN150H-ECT	HF3100C-SZ	100		6.2 kg
		C-33EDE*2	Arms		
3-phase	1SN06F-ECT	HF3020C-SZ	20 Arms	7 mA max. (at 400 VAC 50 Hz by	1.3 kg
400 VAC	1SN1□F-ECT	С		UL1283 ^{*1})	
	1SN20F-ECT				
	1SN30F-ECT				
	1SN55F-ECT	HF3040C-SZ	40 Arms	14 mA max. (at 400 VAC 50 Hz by	2.5 kg
	1SN75F-ECT	A-47DDD*2		UL1283 ^{*1})	
	1SN150F-ECT	HF3080C-SZ	80 Arms	14 mA max. (at 400 VAC 50 Hz by	6.1 kg
		C-47EDE*2		UL1283 ^{*1})	

^{*1.} When you use a neutral grounded 3-phase power supply, the leakage current does not flow normally.

Consult Soshin Electric Co., Ltd. for details on the specifications.

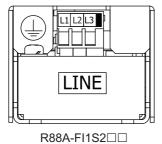
Book-type Noise Filter (Manufactured by Cosel Co., Ltd.)

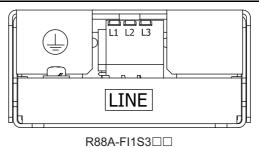
Applicable Servo Drive				Noise filter	
Voltage	Model	Model	Rated	Leakage current	Weight
Voltage	(R88D-)	Wiodei	current	Leakage Current	weight
3-phase	1SN0□H-ECT	FSB-30-254-H	30 Arms	12 mA max. (at 250 VAC 60 Hz, △	1.8 kg
200 VAC	1SN1□H-ECT	U		connection and single-phase ground)	


^{*2.} Use a noise filter in a range of the ambient temperature from 0 to 50°C.

3-8-3 Terminal Block Specifications

Footprint-type Noise Filters (Manufactured by OMRON)


● R88A-FI1S1□□


Symbol	Name	Remarks
L1	Main circuit	
NC	power sup-	
L2	ply input	
	Protective earth (PE)	Screw: M4, Tightening torque: 1.2 N·m Wire size: 3.5 mm ² (AWG 12) min.

● R88A-FI1S2□□/-FI1S3□□

Symbol	Name	Remarks
L1	Main circuit	
L2	power sup-	
L3	ply input	
	Protective earth (PE)	Screw: M4, Tightening torque: 1.2 N·m Wire size: 3.5 mm² (AWG 12) min.
_	, ,	vvire size: 3.5 mm ² (AvvG 12) min.

Book-type Noise Filters (Manufactured by Soshin Electric Co., Ltd.)

HF2020A-SZC-33DDD

Symbol	Name	Remarks
1	Input termi-	Screw: M4, Tightening torque: 1.2 N·m
3	nal	
4	Output ter-	
6	minal	
<u>_</u>	Ground ter-	Screw: M4, Tightening torque: 1.2 N·m
⋾	minal	Wire size: 3.5 mm ² (AWG 12) min.

HF3020C-SZC/HF3020C-SZC-33DDD/HF3020C-SZL

Symbol	Name	Remarks
1	Input termi-	Screw: M4, Tightening torque: 1.2 N·m
2	nal	
3		
4	Output ter-	
5	minal	
6		
\Box	Ground ter-	Screw: M4, Tightening torque: 1.2 N·m
	minal	Wire size: 3.5 mm ² (AWG 12) min.

HF3040C-SZA-33EDD/HF3040C-SZA-47DDD/HF3050C-SZB-33EDD

Symbol	Name	Remarks
1	Input termi-	Screw: M5, Tightening torque: 2 N·m
2	nal	
3]	
4	Output ter-	
5	minal	
6]	
\Box	Ground ter-	Screw: M4, Tightening torque: 1.2 N·m
	minal	Wire size: 3.5 mm ² (AWG 12) min.

• HF3080C-SZC-33EDE/HF3080C-SZC-47EDE/HF3100C-SZC-33EDE

Symbol	Name	Remarks
1	Input termi-	Screw: M6, Tightening torque: 3 N·m
2	nal	
3		
4	Output ter-	
5	minal	
6		
\Box	Ground ter-	Screw: M6, Tightening torque: 3 N·m
	minal	Wire size: 3.5 mm ² (AWG 12) min.

Book-type Noise Filter (Manufactured by Cosel Co., Ltd.)

• FSB-30-254-HU

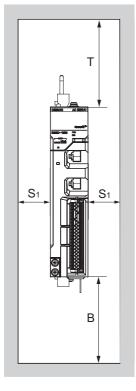
Symbol	Name	Remarks
1	Input termi-	Screw: M4, Tightening torque: 1.6 N·m
2	nal	
3	1	
4	Output ter-	
5	minal	
6	1	
	Protective	Screw: M4, Tightening torque: 1.6 N·m
(earth (PE)	Wire size: 3.5 mm ² (AWG 12) min.

Configuration and Wiring

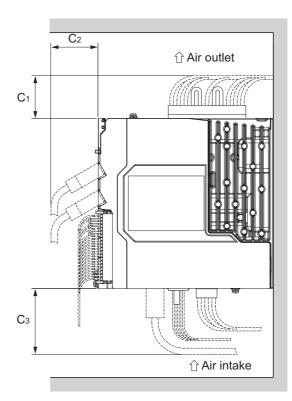
This section explains the conditions for installing Servo Drives, Servomotors, and Decelerators, the wiring methods including wiring conforming to EMC Directives, the regenerative energy calculation methods, as well as the performance of External Regeneration Resistors.

4-1	Installa	tion Conditions	. 4-2
	4-1-1	Servo Drive Installation Conditions	. 4-2
	4-1-2	Servomotor Installation Conditions	. 4-7
	4-1-3	Decelerator Installation Conditions	.4-11
	4-1-4	External Regeneration Resistor and External Regeneration Resistance	
		Unit Installation Conditions	
	4-1-5	Noise Filter Installation Conditions	
	4-1-6	External Dynamic Brake Resistor Installation Condition	
4-2	Wiring		
	4-2-1	Peripheral Equipment Connection Examples	4-20
	4-2-2	Procedure for Wiring Terminal Block and Procedure for Mounting Shield	
		Clamp to Servo Drive	
	4-2-3	Connector Attachment Procedure	. 4-44
	4-2-4	Procedure for Change of Cable Outlet Direction for Connector Type M23 or M40	4-48
	4-2-5	Terminal Block Wiring Procedure for Footprint-type Noise Filter	
4-3	Wiring	Conforming to EMC Directives	
- •	4-3-1	Peripheral Equipment Connection Examples	
	4-3-2	Selecting Connection Component	
4-4	Regene	erative Energy Absorption	
	4-4-1	Calculating the Regenerative Energy	
	4-4-2	Servo Drive Regeneration Absorption Capacity	
	4-4-3	Regenerative Energy Absorption by an External Regeneration Resistance	
		Device	
	4-4-4	Connecting an External Regeneration Resistor	4-77
4-5	Adjustr	ment for Large Load Inertia	4-78
4-6	Machin	e Accuracy for Servomotor	4-79
4-7	Noise F	ilter Installation Conditions When the Total Wire Length Is	
	Long .		4-80
	4-7-1	Noise Filters for Motor Power Cables That Are Longer Than 20 Meters	
	4-7-2	Noise Filter to Connect to More Than One Servo Drive	

Installation Conditions

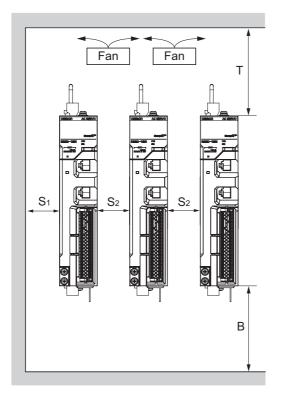

This section explains the conditions for installing Servo Drives, Servomotors, Decelerators, and noise

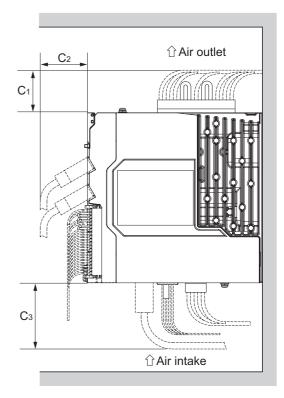
4-1-1 **Servo Drive Installation Conditions**


Install the Servo Drives according to the dimension conditions shown in the following illustration, and ensure proper dispersion of heat from inside the Servo Drive and convection inside the panel. If the Servo Drives are installed side by side, install a fan for air circulation to prevent uneven temperatures inside the panel.

Space Conditions around Servo Drives with its capacity 3 kW or less

Single-unit Installation

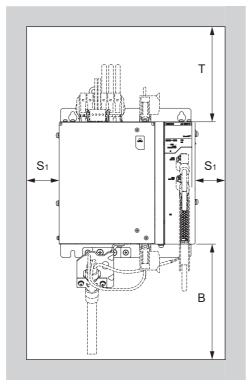


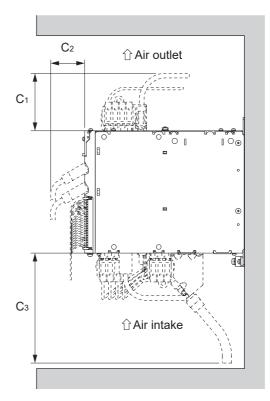


Side view

Side-by-side Installation

Front view Side view


Dimen- sion	Distance
Т	100 mm min.
В	100 mm min.
S ₁	40 mm min.
S ₂	10 mm min.*1
C ₁	R88D-1SN01L-ECT/-1SN02L-ECT/-1SN04L-ECT/-1SN01H-ECT/ -1SN02H-ECT/-1SN04H-ECT/-1SN08H-ECT/-1SN10H-ECT
	R88D-1SN15H-ECT/-1SN20H-ECT/-1SN30H-ECT/-1SN06F-ECT/ -1SN10F-ECT/-1SN15F-ECT/-1SN20F-ECT/-1SN30F-ECT
C ₂	50 mm min.
Сз	70 mm min.


^{*1.} Limit the operating ambient temperature of Servo Drive from 0 to 45°C when the distance is less than 10 mm.

- Install the Servo Drive on the vertical metal surface.
- To provide electrical conduction, remove any paint from the surface on which you install the Servo Drives. Also, it is recommended that you apply conductive plating if you make the mounting bracket by yourself.
- The recommended tightening torque for installing the Servo Drive is 1.5 N·m. Make sure that the threaded portion has the sufficient strength to withstand the recommended torque.

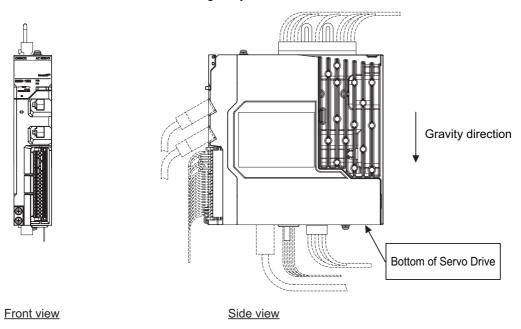
Space Conditions around Servo Drives with its capacity 5.5 kW or more

Single-unit Installation

Front view

Side view

Side-by-side Installation


Dimen- sion	Distance	
Т	R88D-1SN55H-ECT/-1SN75H-ECT/-1SN55F-ECT/-1SN75F-ECT	200 mm min.
	R88D-1SN150H-ECT/-1SN150F-ECT	280 mm min.
В	500 mm min.	
S ₁	40 mm min.	

Dimen- sion	Distance	
S ₂	40 mm min.	
C ₁	R88D-1SN55H-ECT/-1SN75H-ECT/-1SN55F-ECT/-1SN75F-ECT	130 mm min.
	R88D-1SN150H-ECT/-1SN150F-ECT	170 mm min.
C ₂	50 mm min.	
Сз	450 mm min.	

- Install the Servo Drive on the vertical metal surface.
- To provide electrical conduction, remove any paint from the surface on which you install the Servo Drives. Also, it is recommended that you apply conductive plating if you make the mounting bracket by yourself.
- The recommended tightening torques for installing the Servo Drive are the followings. Make sure that
 the threaded portion has the sufficient strength to withstand the recommended torque.
 R88D-1SN55H-ECT/-1SN75H-ECT/-1SN55F-ECT/-1SN75F-ECT: Tightening torque 3 N·m
 R88D-1SN150H-ECT/-1SN150F-ECT: Tightening torque 5.2 N·m
- Set S2 distance over a value shown above table to install a Servo Drives.

Mounting Direction

Turn the bottom of Servo Drive in the gravity direction.

Operating Environment Conditions

The environment in which the Servo Drive is operated must meet the following conditions. The Servo Drive may malfunction if it is operated under any other conditions.

Item	Specifications
Operating ambient temperature	0 to 55°C
Operating ambient humidity	90% max. (with no condensation)
Operating atmosphere	No corrosive gases
Operating altitude	1,000 m max.

Ambient Temperature Control

- · Operation in an environment in which there is minimal temperature rise is recommended to maintain a high level of reliability.
- · When the Servo Drives are installed in a closed space, such as a box, the ambient temperature may rise due to the heat that is generated from each unit. Use a fan or air conditioner to maintain ambient temperature of the Servo Drive under the operating environment conditions.
- The Servo Drive surface may rise in temperature of 30°C above the ambient temperature. Use heat-resistant materials for wiring, and provide a distance from any devices or wiring that are sensitive to heat.
- The use of the Servo Drive in a hot environment shortens its lifetime. When you use the Servo Drive in continuous operation, use a fan or air conditioner to maintain the ambient temperature at or below 40°C.

Keeping Foreign Objects Out of Units

- Take measures during installation and operation to keep foreign objects such as metal particles, oil, machining oil, dust, or water out of the Servo Drive.
- Place a cover over the Servo Drive or take other preventative measures to keep foreign objects, such
 as drill filings, out of the Servo Drive during installation. Be sure to remove the cover after installation
 is complete. If the cover is left on during operation, heat dissipation from the Servo Drive is blocked,
 which may result in malfunction.

4-1-2 Servomotor Installation Conditions

Operating Environment Conditions

The environment in which the Servomotor is operated must meet the following conditions. Operating
the Servomotor outside of the following ranges may result in malfunction of the Servomotor.

Operating temperature: 0 to 40°C (The temperature at a point 50 mm from the Servomotor)

Operating humidity: 20% to 90% (with no condensation)

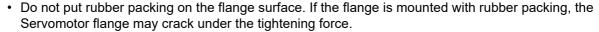
Operating ambient atmosphere: No corrosive gases.

Impact and Load

· Vibration resistance of a Servomotor is shown as below:

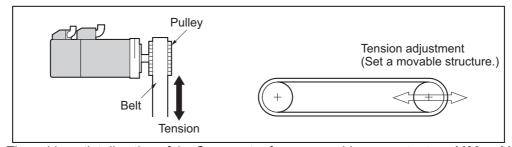
5.5 kW or less: 49 m/s²

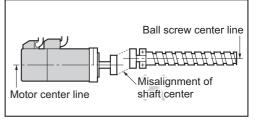
7.5 kW or more: 24.5 m/s²

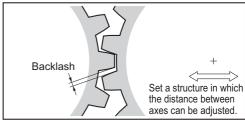

- If the Servomotor is mounted on a thin plate, the rigidity may decrease and severe vibration may occur.
- The Servomotor is resistant to impacts of up to 98 m/s².
 Do not apply heavy impacts or loads during transport, installation, or removal of the Servomotor.

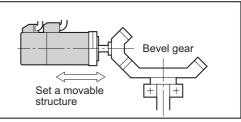
- When transporting the Servomotor hold the motor body itself. And do not hold the encoder, cable, or connector areas. Failure to follow this guideline may result in damaging the Servomotor.
- · Always use a pulley remover to remove pulleys, couplings, or other parts from the shaft.
- Connect cables and connectors carefully so that they are not strained. After assembly, secure cables so that there is no impact or load placed on the cable outlet.

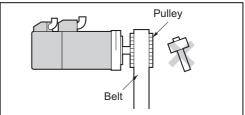
Connecting to Mechanical Systems


- · For the allowable axial loads for Servomotors, refer to 3-2-3 Characteristics on page 3-45. If an axial load greater than that specified is applied to a Servomotor, it may reduce the limit of the motor bearings and may break the motor shaft.
- · When you connect the Servomotor to a load, use couplings that can sufficiently absorb mechanical eccentricity and declination.
- · When you connect or disconnect loads (or couplings) to or from the Servomotor, be careful not to apply an impact on the motor shaft. Do not allow the thrust load and radial load to exceed the values that are specified in the manual or catalog while you connect a load to the Servomotor.
- If an abnormal noise is generated from couplings, adjust the shaft center again to eliminate the noise.
- When you align the shaft center of the couplings, turn both the Servomotor side shaft and equipment side shaft.
- For spur gears, an extremely large radial load may be applied depending on the gear precision. Use spur gears with a high degree of precision (for example, JIS class 2: normal line pitch error of 6 µm max. for a pitch circle diameter of 50 mm).
- If the gear precision is not adequate, allow backlash to ensure that no radial load is placed on the motor shaft.
- · When you use bevel gears, a load is applied in the thrust direction depending on the assembly precision, the gear precision, and temperature changes. Provide
 - appropriate backlash or take other measures to ensure that a thrust load larger than the specified level is not applied.


- · When you connect the Servomotor to a V-belt or timing belt, consult the manufacturer for belt selection and tension.
- · A radial load twice as large as the belt tension will be placed on the motor shaft. Do not allow a load that exceeds the allowable radial load to be placed on the motor shaft. If an excessive radial load is applied, the motor shaft and bearings may be damaged.


Set up a movable pulley in the middle of the motor shaft and the load shaft so that the belt tension can be adjusted.


Install the Servo Drive so that its bottom faces the gravity direction.



• The cable outlet direction of the Servomotor for power cable connector type M23 or M40 can be selected. The below shows the selectable range. The change of the cable outlet direction shall be up

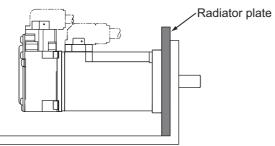
to five times. For a procedure of the change of the cable outlet direction, refer to *4-2-3 Connector Attachment Procedure* on page 4-44.

Water and Drip Resistance

The protective structure rating of the Servomotor is IP67, except for the through-shaft part and connector pins.

It is IP20 if you use a 30-meter or longer encoder cable.

Oil-water Measures


Use the Servomotor with an oil seal if you use it in an environment where oil drops can adhere to the through-shaft part. The operating conditions of the Servomotor with an oil seal are as follows:

- · Keep the oil level below the lip of the oil seal.
- Prepare a good lubricated condition under which only oil droplets splash on the oil seal.
- If you use the Servomotor with the shaft in upward direction, make sure that no oil accumulates on the lip of the oil seal.

Radiator Plate Installation Conditions

When you mount a Servomotor onto a small device, be sure to provide enough radiation space on the mounting area because the heat is radiated from the mounting surface. Otherwise the Servomotor temperature may rise too high. One of the preventive measures is to install a radiator plate between the motor attachment area and the motor flange. (See the following figure)

Failure to follow this guideline may result in damaging the Servomotor due to a temperature rise. Refer to *3-2 Servomotor Specifications* on page 3-43 for the radiator plate specifications.

- The temperature rise depends on the mounting part materials and the installation environment. Check the actual temperature rise by using a real Servomotor.
- Depending on the environment, such as when the Servomotor is installed near a heating element, the Servomotor temperature may rise significantly. In this case, take any of the following measures.
 - a) Lower the load ratio.
 - b) Review the heat radiation conditions of the Servomotor.
 - c) Install a cooling fan and apply forced air cooling to the Servomotor.

Other Precautions

Take measures to protect the motor shaft from corrosion. The motor shaft is coated with anti-corrosion oil when it is shipped, but you should remove anti-corrosion oil when you connect the components that apply load to the shaft.

Wire cables not to contact with Servomotors, which have high temperature.

Do not apply a commercial power supply directly to the motor.

Fire may result.

Do not repair the Servo Drive by disassembling it. Electric shock or injury may result.

4-1-3 Decelerator Installation Conditions

Installing the R88G-HPG□□□ (3 Arcminutes Type)

Follow the instructions bellow for installing this Decelerator and the Servomotor.

- 1 Turn the input joint and align the head of the bolt that secures the shaft with the rubber cap.
- **2** Apply the sealant on the side which the Servomotor is installed. (Recommended sealant: Loctite 515)
- **3** Gently insert the Servomotor into the Decelerator.

Put up the decelerator vertically and slide the Servomotor into the input shaft joint while using the motor shaft as guide not to fall over, as shown in the figures on the next page. When the Decelerator cannot be put up vertically, tighten each bolt evenly little by little to ensure that the Servomotor is not inserted at a tilt.

4 Fix the Servomotor and the flange of the Decelerator with bolts.

Bolt tightening torque (for aluminum)

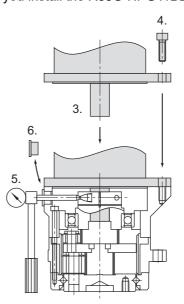
Allen head bolt size	M4	M5	M6	M8	M10	M12
Tightening torque [N·m]	3.2	6.3	10.7	26.1	51.5	89.9

Tighten the bolts of the input joint.

Bolt tightening torque (for duralumin)

Allen head bolt size	М3	M4	M6	M8
Tightening torque [N·m]	2.0	4.5	15.3	37.2


Note Tighten the bolts to the torque indicated on the above table. A problem such as slipping may occur if the specified torque level is not satisfied.


Two screws are used as setscrews for the connecting section to install the R88G-HPG11B□.

Allen head bolt size	M3
Tightening torque [N·m]	0.69

6 Mount the supplied rubber cap to complete the installation.

Mount two gasketed screws when you install the R88G-HPG11B□.

Installing Decelerator into the Machine

When you install the R88G-HPG□□□ into the machine, confirm that the mounting surface is flat and there are no burrs on the tap sections, and fix the mounting flange with bolts.

Bolt tightening torque on the mounting flange (for aluminum)

R88G-HPG	11B	14A	20A	32A	50A	65A
Number of bolts	4	4	4	4	4	4
Size of bolts	М3	M5	M8	M10	M12	M16
Mounting PCD [mm]	46	70	105	135	190	260
Tightening torque [N·m]	1.4	6.3	26.1	51.5	103	255

Installing the R88G-VRXF□□□ (15 Arcminutes Type)

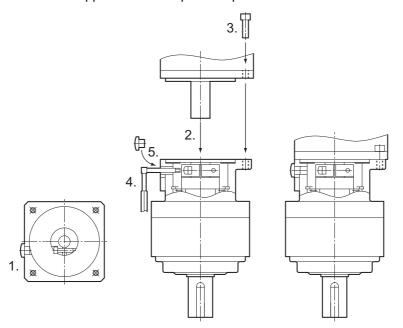
Follow the instructions bellow for installing this Decelerator and the Servomotor.

- Turn the input joint and align the head of the bolt that secures the shaft with the rubber cap. Check that the set bolt is loose.
- **2** Gently insert the Servomotor into the Decelerator.

Put up the decelerator vertically and slide the Servomotor into the input shaft joint while using the motor shaft as guide not to fall over, as shown in the figures on the next page. When the Decelerator cannot be put up vertically, tighten each bolt evenly little by little to ensure that the Servomotor is not inserted at a tilt.

Fix the Servomotor and the flange of the Decelerator with bolts. Bolt tightening torque

Allen head bolt size	M4	M5
Tightening torque [N·m]	2.5	5.1


Tighten the bolts of the input joint.

Bolt tightening torque (for duralumin)

Allen head bolt size	M4	M5	M6
Tightening torque [N·m]	4.3	8.7	15

Note Tighten the bolts to the torque indicated on the above table. A problem such as slipping may occur if the specified torque level is not satisfied.

5 Mount the supplied rubber cap to complete the installation.

Installing Decelerator into the Machine

When you install the R88G-VRXF $\square\square$ into the machine, confirm that the mounting surface is flat and there are no burrs on the tap sections, and fix the mounting flange with bolts.

Bolt tightening torque on the mounting flange (for aluminum)

R88G-VRXF	В	С	D
Number of bolts	4	4	4
Size of bolts	M5	M6	M8
Mounting PCD [mm]	60	90	115
Tightening torque [N·m]	5.8	9.8	19.6

Using a Non-OMRON Decelerator (Reference)

If you use a non-OMRON decelerator together with a 1S-series Servomotor due to system configuration requirement, select the Decelerator so that the loads on the motor shaft i.e., both the radial and thrust loads are within the allowable ranges. For the allowable axial loads for Servomotors, refer to 3-2-3 Characteristics on page 3-45.

Also, select the Decelerator so that the allowable input rotation speed and allowable input torque of the decelerator are not exceeded.

4-1-4 External Regeneration Resistor and External Regeneration **Resistance Unit Installation Conditions**

General Installation Conditions

Obey the following conditions when installing.

- Clearance with peripheral equipment: 50 mm min.
- · Wire length: 3 m max.

External Regeneration Resistance Unit with Fan Installation Conditions

Obey the following conditions along with the general installation conditions when installing.

• Installation Direction: Install the terminal block side of the unit in the gravity direction (downward).

External Regeneration Resistance Unit without Fan Installation Conditions

Obey the following conditions along with the general installation conditions when installing.

- Installation Direction: Install the connector side of the unit in the gravity direction (downward).
- Tightening torque: 3.0 N·m

Specifications for attached connectors are shown below. Follow the specified length of stripped wire. For a wiring procedure, refer to CNE of R88D-1SN150H-ECT of Procedure for Wiring Terminal Block and Procedure for Mounting Shield Clamp to Servo Drive on page 4-38.

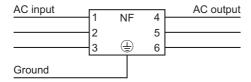
- Connector model: R88A-CN101E (832-1102/037-000 manufactured by WAGO)
- Length of stripped wire: 19±1 mm

4-1-5 Noise Filter Installation Conditions

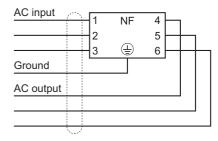
This section describes how to select, wire, and install a noise filter.

Selecting a Noise Filter

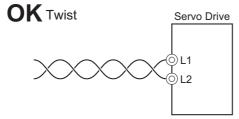
If a noise filter needs conforming to the EMC Directives, use the one whose conformity to the EMC Directives has been confirmed by 1S-series products. For the noise filters that conform to the EMC Directives, refer to 4-3 Wiring Conforming to EMC Directives on page 4-51.


Select it according to the size of your control panel, Servo Drive model, and amount of the leakage current from the noise filter. For wiring conforming to the EMC Directives described in this manual, it is necessary that a motor power cable connected to one Servo Drive be 20 m or less and one Servo Drive be connected to one noise filter.

For a 3-phase 200-V input model of Servo Drive, besides the one conforming to the EMC Directives, you can use the Book-type Noise Filter manufactured by Soshin Electric Co., Ltd. or Cosel Co., Ltd. when a motor power cable connected to one Servo Drive is longer than 20 m. Also, for the Book-type Noise Filter manufactured by Cosel Co., Ltd., more than one 3-phase 200-V input model of Servo Drive at 1.5 kW or less can be connected to one noise filter. In these cases, refer to 4-7 Noise Filter Installation Conditions When the Total Wire Length Is Long on page 4-80.


Wiring a Noise Filter

- Refer to Terminal Block Wire Sizes on page 3-22 for applicable wire sizes.
- When you use a noise filter, be sure to install a surge absorber on the power supply input (LINE) side.
- If the molded case circuit breaker is located in an upper area and the power supply is wired through
 the duct at the bottom, keep a sufficient distance between the input wires and internal wires, or use
 the metal tubing for wiring. If input and output cables are placed in the same duct, the noise immunity
 will be impaired.
- Place the noise filter as close as possible to the opening of the control panel. Use the diagram below to the left for wiring.


OK Separate I/O

NG Noise filter less effective

• The power cables must be twisted or tightly bundled.

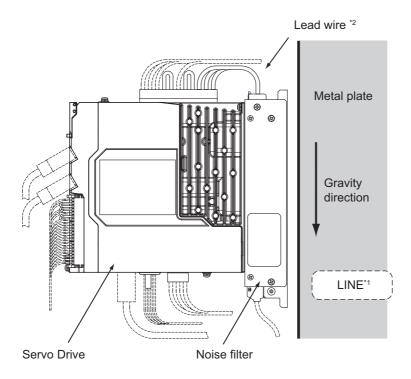
- Tight bundle

 Servo Drive

 L1

 L2

 Bundle
- · Wire the power and signal lines separately.
- Refer to Wiring a Noise Filter to Connect to More Than One Servo Drive on page 4-85 when you connect more than one Servo Drive to one noise filter.


Installing a Noise Filter

Footprint-type Noise Filters

Use the attached exclusive screws when you mount the Servo Drive to the noise filter. The tightening torque for the exclusive screws is 1.2 N·m±10%.

Install the noise filter on the vertical metal surface.

Turn the LINE side of noise filter in the gravity direction (downward) as shown in the following figure.

Side view

- *1. Power supply side
- *2. The specifications of the lead wires are shown below.

Noise filter model	Wire size	Length	Strip length
R88A-FI1S103/-FI1S105/ -FI1S202/-FI1S203	AWG 16	Approx. 300 mm	8.5±0.5 mm
R88A-FI1S109/-FI1S208	AWG 14	Approx. 300 mm	8.5±0.5 mm
R88A-FI1S116/-FI1S216	AWG 10	Approx. 300 mm	13.7±0.5 mm
R88A-FI1S309	AWG 12	Approx. 300 mm	13.7±0.5 mm

Book-type Noise Filters (Manufactured by Soshin Electric Co., Ltd.)

The following table shows the installation conditions of noise filters.

Noise filter model	Screw size	Tighten- ing torque	Remarks
HF2020A-SZC-33DDD/HF3020C-SZC/HF3	M4	1.2 N·m	Do not block up a hole for heat radi-
020C-SZC-33DDD/HF3020C-SZL			ation in the cabinet.
HF3040C-SZA-33EDD/HF3040C-SZA-47D	M5	2 N·m	Do not install it to the ceiling surface
DD/HF3050C-SZB-33EDD			of the control panel.
HF3080C-SZC-33EDE/HF3080C-SZC-47E	M6	3 N·m	Clearance with peripheral equip-
DE/HF3100C-SZC-33EDE			ment: 50 mm min.

● Book-type Noise Filter (Manufactured by Cosel Co., Ltd.)

The following table shows the installation conditions of noise filters.

Noise filter model	Screw size	Tighten- ing torque	Remarks
FSB-30-254-HU	M5	2.4 N·m	 Do not block up a hole for heat radiation in the cabinet. Do not install it to the ceiling surface of the control panel. Clearance with peripheral equipment: 50 mm min.

4-1-6 **External Dynamic Brake Resistor Installation Condition**

Obey the following conditions when installing.

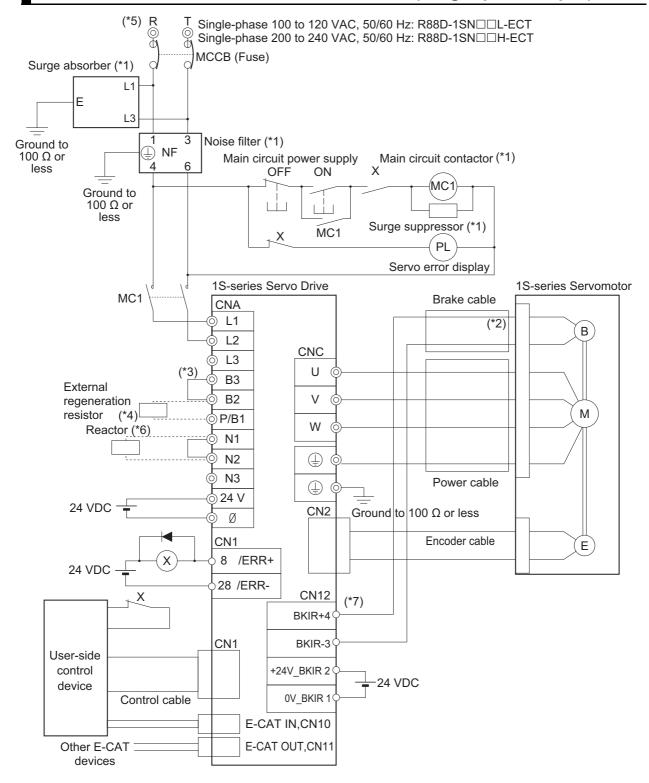
- Clearance with peripheral equipment: 50 mm min.
- · Wire length: 3 m max.

Use attached connectors when extending wirings. Specifications for the connectors are shown below.

- Connector model: WFR-2 (WAGO)
- Wire size: AWG16, 1.3 mm²
- Length of stripped wire: 11±1 mm

An example of using heat-resistant polyvinyl chloride insulated wires (HIV) at the ambient temperature of 50°C. Use wires with the rated voltage of 600 V or higher.

Length of stripped wire of external dynamic brake resistor while shipping is specified 19±1 mm. Set to the specified length before wiring the resistor to the connectors.

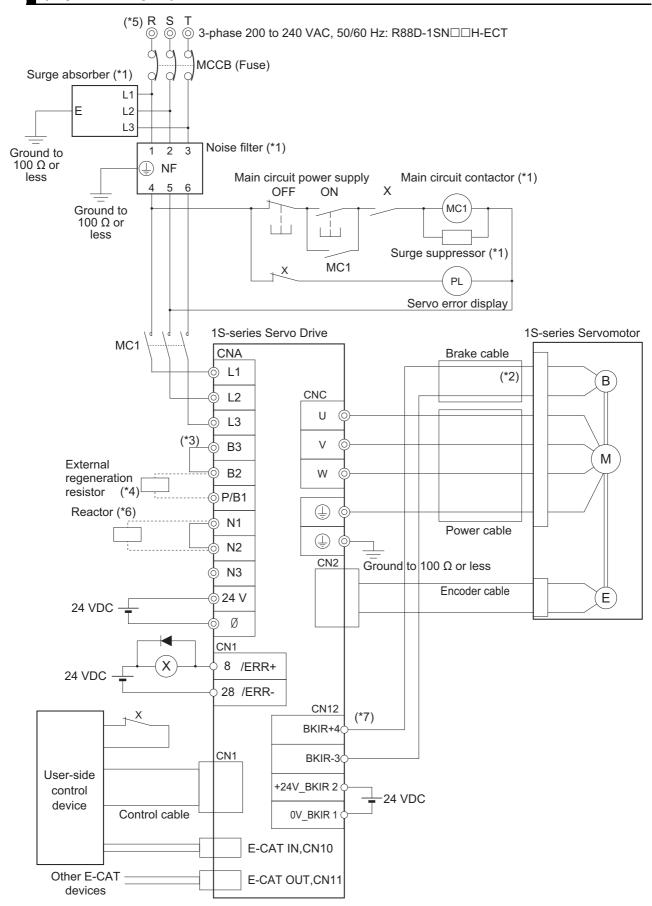

Follow the specified length of stripped wire of Servo Drive side at 19±1 mm.

4-2 Wiring

This section gives the examples of connection with peripheral equipment and wiring such as connection of the main circuit and Servomotor.

Peripheral Equipment Connection Examples 4-2-1

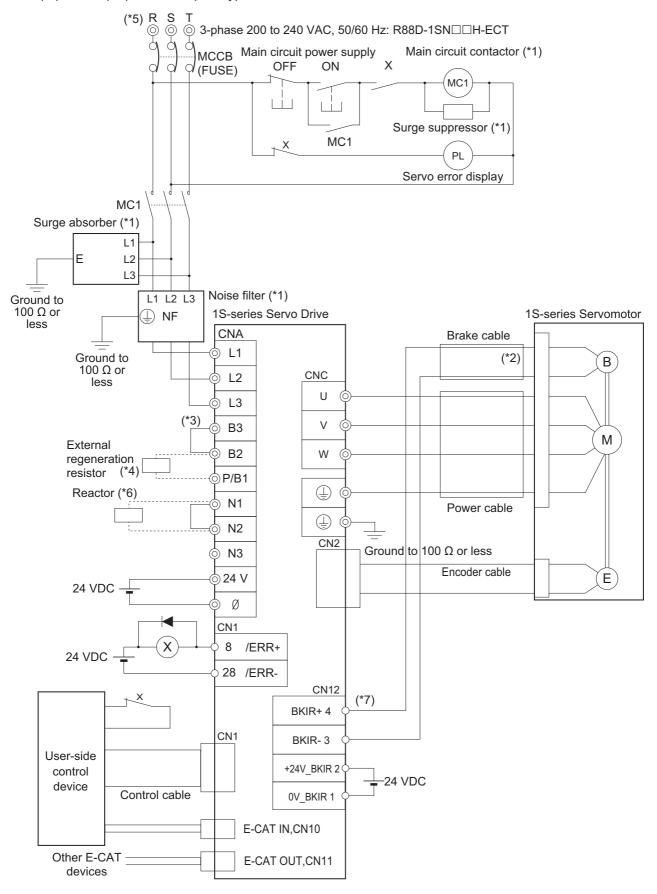
R88D-1SN01L-ECT/-1SN02L-ECT/-1SN04L-ECT/-1SN01H-ECT -1SN02H-ECT/-1SN04H-ECT/-1SN08H-ECT (Single-phase Input)


- *1. Use one noise filter for each Servo Drive. Selecting an unsuitable noise filter may result in a poor noise reduction effect. Also, a Servo Drive may produce some noise that travels through the power supply cable and causes unintended operation of other Servo Drives such as regeneration operation and Overvoltage Error.
 - This connection example is for when the book-type noise filter is used. When you use the footprint-type noise filter, according to *Footprint-type Noise Filter Connection Example* on page 4-24, connect the footprint-type noise filter directly between the Servo Drive and main circuit contactor MC1. When you use a noise filter, install a surge absorber on the LINE side of the noise filter whether the noise filter is the book-type or footprint-type.
 - Recommended noise filters and surge absorbers are listed in 4-3 Wiring Conforming to EMC Directives on page 4-51.
- *2. There is no polarity on the brakes.
- *3. Short-circuit B2 and B3 for models with a built-in regeneration resistor (1SN04L-ECT and 1SN08H-ECT). When the amount of regeneration is large, remove the short-circuit wire between B2 and B3 and connect a regeneration resistor between B1 and B2.
- *4. There is no internal regeneration resistor for 1SN01L-ECT to 1SN02L-ECT and 1SN01H- ECT to 1SN04H-ECT. When the amount of regeneration is large, connect the necessary regeneration resistor between B1 and B2.
- *5. To ensure safety, install a leakage breaker for the main circuit power supply input in the control panel. Refer to 4-3-2 Selecting Connection Component on page 4-62.
- *6. When the DC reactor is not used, short-circuit N1 and N2.

 When the DC reactor is used, remove the short-circuit wire between N1 and N2, and connect the DC reactor between N1 and N2.
- *7. External connection components are not required because a brake relay and a surge absorbing element are built into the Servo Drive.

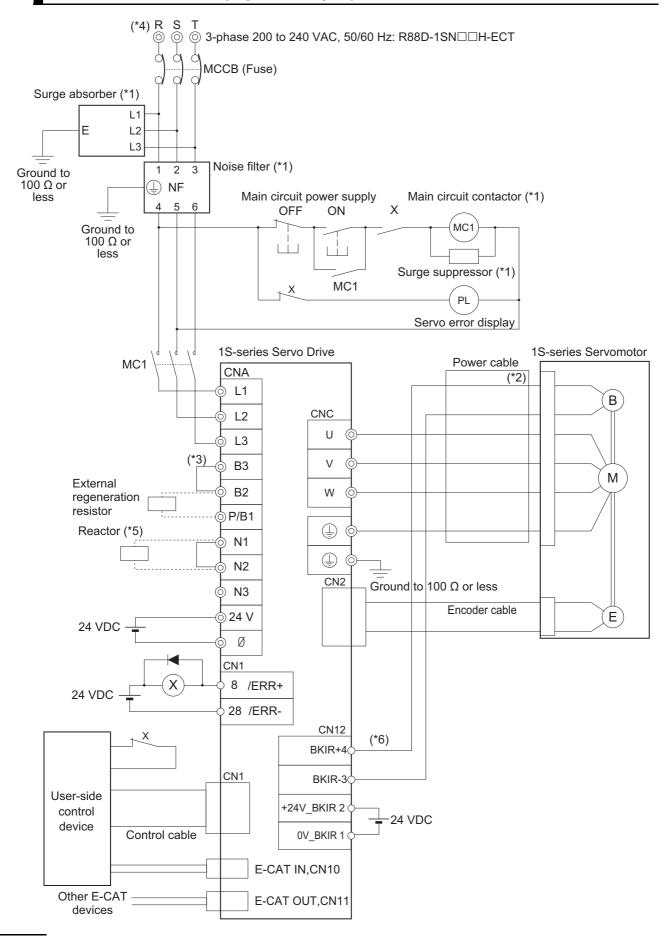
R88D-1SN01H-ECT/-1SN02H-ECT/-1SN04H-ECT/-1SN08H-ECT (3-phase Input)

- *1. You can connect more than one Servo Drive to one noise filter when you use the Servo Drives of 01H to 15H (200 to 240 VAC) with 3-phase input. Refer to 4-7 Noise Filter Installation Conditions When the Total Wire Length Is Long on page 4-80. Selecting an unsuitable noise filter may result in a poor noise reduction effect. Also, a Servo Drive may produce some noise that travels through the power supply cable and causes unintended operation of other Servo Drives such as regeneration operation and Overvoltage Error.
 - This connection example is for when the book-type noise filter is used. When you use the footprint-type noise filter, according to *Footprint-type Noise Filter Connection Example* on page 4-24, connect the footprint-type noise filter directly between the Servo Drive and main circuit contactor MC1. When you use a noise filter, install a surge absorber on the LINE side of the noise filter whether the noise filter is the book-type or footprint-type.
 - Recommended noise filters and surge absorbers are listed in 4-3 Wiring Conforming to EMC Directives on page 4-51.
- *2. There is no polarity on the brakes.
- *3. Short-circuit B2 and B3 for models with a built-in regeneration resistor (1SN08H-ECT). When the amount of regeneration is large, remove the short-circuit wire between B2 and B3 and connect a regeneration resistor between B1 and B2.
- *4. There is no Internal Regeneration Resistor for 1SN01H-ECT to 1SN04H-ECT. When the amount of regeneration is large, connect the necessary Regeneration Resistor between B1 and B2.
- *5. To ensure safety, install a leakage breaker for the main circuit power supply input in the control panel. Refer to *4-3-2 Selecting Connection Component* on page 4-62.
- *6. When the DC reactor is not used, short-circuit N1 and N2.


 When the DC reactor is used, remove the short-circuit wire between N1 and N2, and connect the DC reactor between N1 and N2.
- *7. External connection components are not required because a brake relay and a surge absorbing element are built into the Servo Drive.

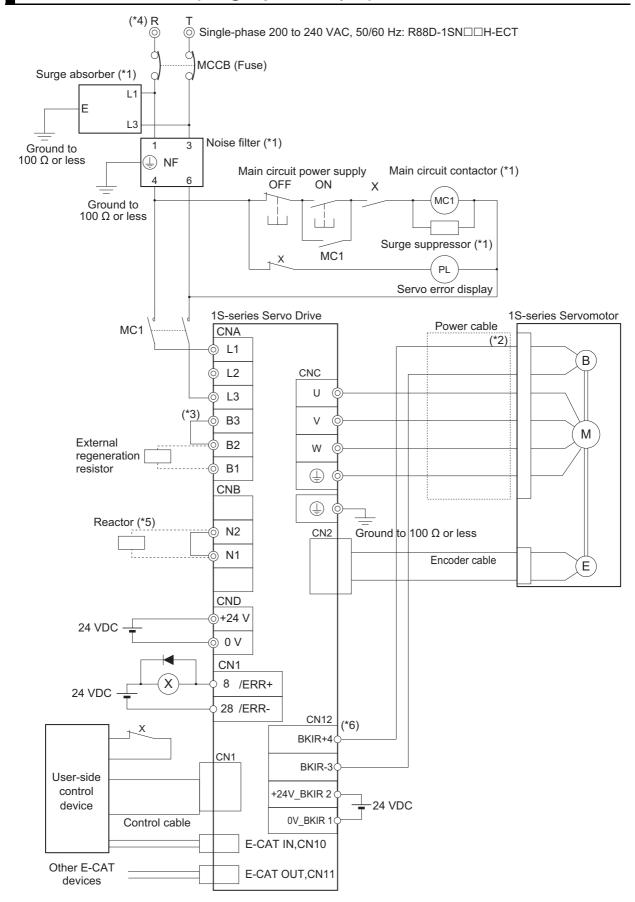
Footprint-type Noise Filter Connection Example

The following is a wiring example of R88D-1SN01H-ECT/-1SN02H-ECT/-1SN04H-ECT/-1SN08H-ECT (3-phase Input) with a footprint-type noise filter installed.



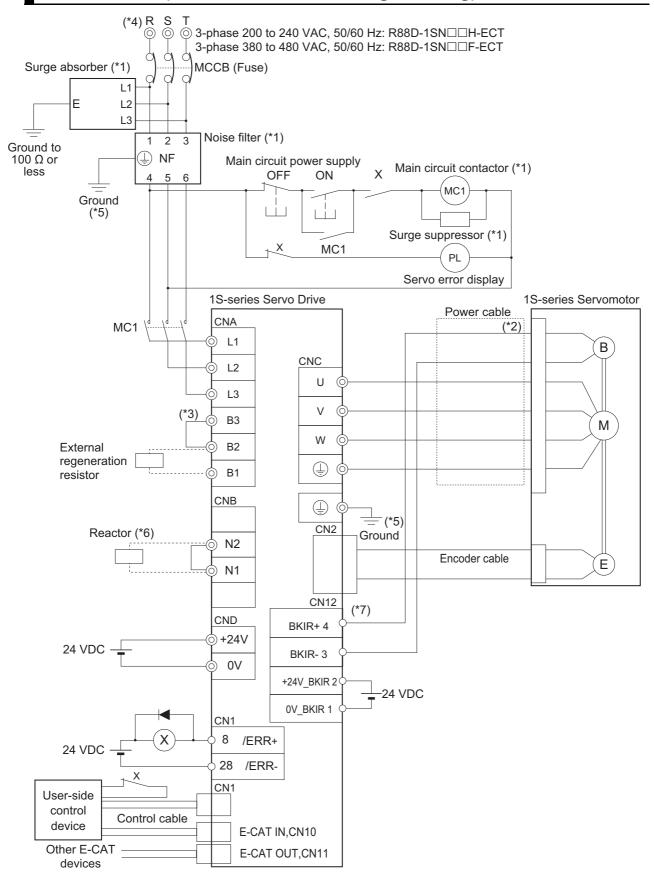
- *1. Use one noise filter for each Servo Drive. Selecting an unsuitable noise filter may result in a poor noise reduction effect. Also, a Servo Drive may produce some noise that travels through the power supply cable and causes unintended operation of other Servo Drives such as regeneration operation and Overvoltage Error.
 - This connection example is for when a footprint-type noise filter is used. When you use a noise filter, install a surge absorber on the LINE side of the noise filter whether the noise filter is the book-type or footprint-type.
 - Recommended noise filters and surge absorbers are listed in 4-3 Wiring Conforming to EMC Directives on page 4-51.
- *2. There is no polarity on the brakes.
- *3. Short-circuit B2 and B3 for models with a built-in regeneration resistor (1SN04L-ECT and 1SN08H-ECT). When the amount of regeneration is large, remove the short-circuit wire between B2 and B3 and connect a regeneration resistor between B1 and B2.
- *4. There is no internal regeneration resistor for 1SN01L-ECT to 1SN02L-ECT and 1SN01H- ECT to 1SN04H-ECT. When the amount of regeneration is large, connect the necessary regeneration resistor between B1 and B2.
- *5. To ensure safety, install a leakage breaker for the main circuit power supply input in the control panel. Refer to 4-3-2 Selecting Connection Component on page 4-62 for selecting a leakage breaker.
- *6. When the DC reactor is not used, short-circuit N1 and N2. When the DC reactor is used, remove the short-circuit wire between N1 and N2, and connect the DC reactor between N1 and N2.
- *7. External connection components are not required because a brake relay and a surge absorbing element are built into the Servo Drive.

R88D-1SN10H-ECT (3-phase Input)


- *1. You can connect more than one Servo Drive to one noise filter when you use the Servo Drives of 01H to 15H (200 to 240 VAC) with 3-phase input. Refer to 4-7 Noise Filter Installation Conditions When the Total Wire Length Is Long on page 4-80. Selecting an unsuitable noise filter may result in a poor noise reduction effect. Also, a Servo Drive may produce some noise that travels through the power supply cable and causes unintended operation of other Servo Drives such as regeneration operation and Overvoltage Error.
 - This connection example is for when the book-type noise filter is used. When you use the footprint-type noise filter, according to *Footprint-type Noise Filter Connection Example* on page 4-24, connect the footprint-type noise filter directly between the Servo Drive and main circuit contactor MC1. When you use a noise filter, install a surge absorber on the LINE side of the noise filter whether the noise filter is the book-type or footprint-type.
 - Recommended noise filters and surge absorbers are listed in 4-3 Wiring Conforming to EMC Directives on page 4-51.
- *2. There is no polarity on the brakes.
- *3. Short-circuit B2 and B3 for models with a built-in regeneration resistor (1SN10H-ECT). When the amount of regeneration is large, remove the short-circuit wire between B2 and B3 and connect a regeneration resistor between B1 and B2.
- *4. To ensure safety, install a leakage breaker for the main circuit power supply input in the control panel. Refer to 4-3-2 Selecting Connection Component on page 4-62.
- *5. When the DC reactor is not used, short-circuit N1 and N2.

 When the DC reactor is used, remove the short-circuit wire between N1 and N2, and connect the DC reactor between N1 and N2.
- *6. External connection components are not required because a brake relay and a surge absorbing element are built into the Servo Drive.

R88D-1SN15H-ECT (Single-phase Input)


- *1. Use one noise filter for each Servo Drive. Selecting an unsuitable noise filter may result in a poor noise reduction effect. Also, a Servo Drive may produce some noise that travels through the power supply cable and causes unintended operation of other Servo Drives such as regeneration operation and Overvoltage Error.
 - This connection example is for when the book-type noise filter is used. When you use the footprint-type noise filter, according to *Footprint-type Noise Filter Connection Example* on page 4-24, connect the footprint-type noise filter directly between the Servo Drive and main circuit contactor MC1. When you use a noise filter, install a surge absorber on the LINE side of the noise filter whether the noise filter is the book-type or footprint-type.
 - Recommended noise filters and surge absorbers are listed in 4-3 Wiring Conforming to EMC Directives on page 4-51.
- *2. There is no polarity on the brakes.
- *3. Short-circuit B2 and B3 for models with a built-in regeneration resistor (1SN15H-ECT). When the amount of regeneration is large, remove the short-circuit wire between B2 and B3 and connect a regeneration resistor between B1 and B2.
- *4. To ensure safety, install a leakage breaker for the main circuit power supply input in the control panel. Refer to 4-3-2 Selecting Connection Component on page 4-62.
- *5. When the DC reactor is not used, short-circuit N1 and N2.

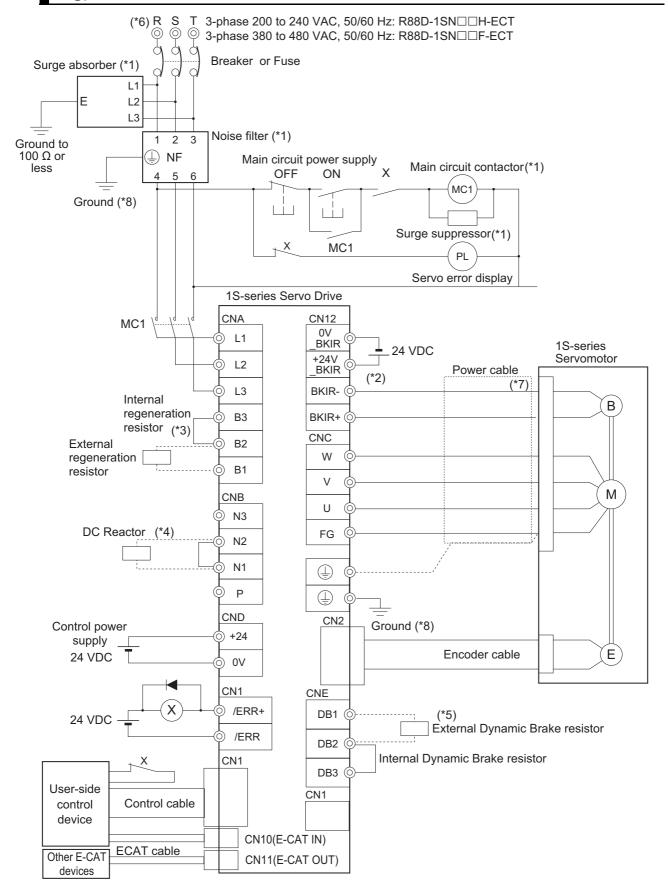
 When the DC reactor is used, remove the short-circuit wire between N1 and N2, and connect the DC reactor between N1 and N2.
- *6. External connection components are not required because a brake relay and a surge absorbing element are built into the Servo Drive.

R88D-1SN15H-ECT/-1SN20H-ECT/-1SN30H-ECT (200 to 240 VAC) R88D-1SN06F-ECT/-1SN10F-ECT/-1SN15F-ECT/-1SN20F-ECT/ -1SN30F-ECT (380 to 480 VAC Neutral grounding)

- *1. Use one noise filter for each Servo Drive. However, you can connect more than one Servo Drive to one noise filter when you use the Servo Drives of 01H to 15H (200 to 240 VAC) with 3-phase input. Refer to 4-7 Noise Filter Installation Conditions When the Total Wire Length Is Long on page 4-80. Selecting an unsuitable noise filter may result in a poor noise reduction effect. Also, a Servo Drive may produce some noise that travels through the power supply cable and causes unintended operation of other Servo Drives such as regeneration operation and Overvoltage Error.

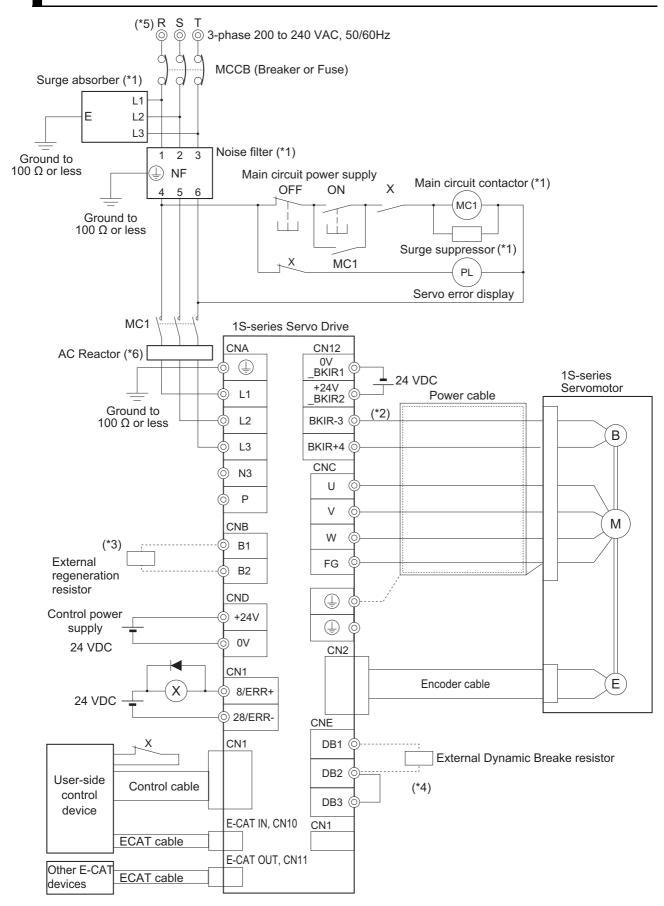
 This connection example is for when the book-type noise filter is used. When you use the footprint-type noise filter, according to Footprint-type Noise Filter Connection Example on page 4-24, connect the footprint-type noise filter directly between the Servo Drive and main circuit contactor MC1. When you use a noise filter, install a surge absorber on the
 - Recommended noise filters and surge absorbers are listed in 4-3 Wiring Conforming to EMC Directives on page 4-51.
- *2. There is no polarity on the brakes.
- *3. Short-circuit B2 and B3 for models with a built-in regeneration resistor (1SN15H-ECT/ -1SN20H-ECT/ -1SN30H-ECT/ -1SN06F-ECT/ -1SN10F-ECT/ -1SN10F-ECT/ -1SN20F-ECT/ -1SN30F-ECT). When the amount of regeneration is large, remove the short-circuit wire between B2 and B3 and connect a regeneration resistor between B1 and B2.
- *4. To ensure safety, install a leakage breaker for the main circuit power supply input in the control panel. Refer to *4-3-2 Selecting Connection Component* on page 4-62.
- *5. Ground the 200-VAC input model Servo Drive to 100 Ω or less, and the 400-VAC input model to 10 Ω or less.

LINE side of the noise filter whether the noise filter is the book-type or footprint-type.


- *6. When the DC reactor is not used, short-circuit N1 and N2.

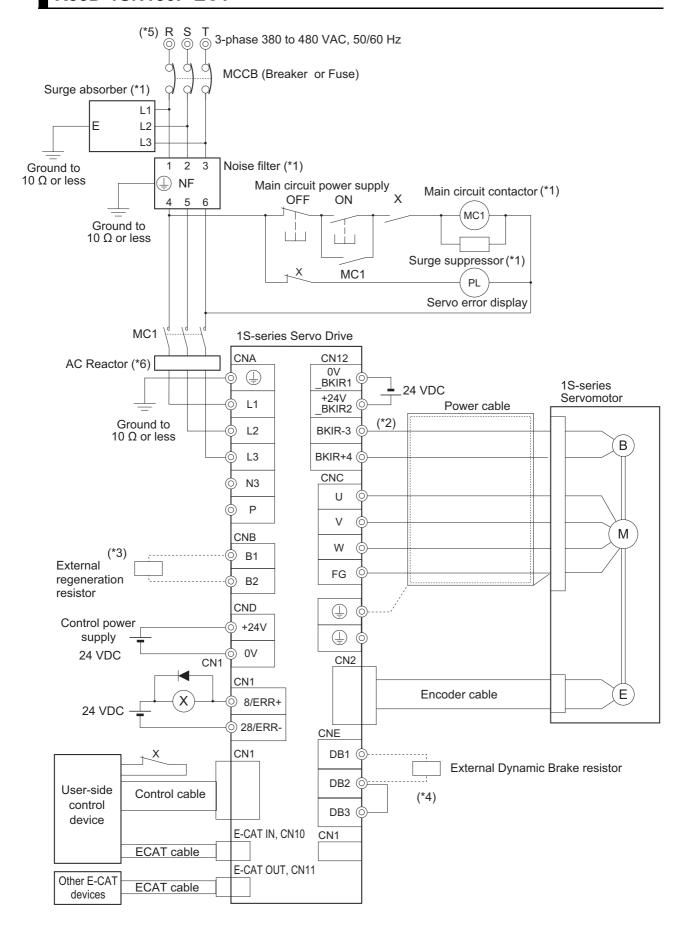
 When the DC reactor is used, remove the short-circuit wire between N1 and N2, and connect the DC reactor between N1 and N2.
- *7. External connection components are not required because a brake relay and a surge absorbing element are built into the Servo Drive.

R88D-1SN55H-ECT/-1SN75H-ECT (200 to 240 VAC)
R88D-1SN55F-ECT/-1SN75F-ECT (380 to 480 VAC Neutral ground-



- *1. Use one noise filter for each Servo Drive. Selecting an unsuitable noise filter may result in a poor noise reduction effect. Also, a Servo Drive may produce some noise that travels through the power supply cable and causes unintended operation of other Servo Drives such as regeneration operation and Overvoltage Error.
 - When you use a noise filter, install a surge absorber on the LINE side of the noise filter.
 - Recommended noise filters and surge absorbers are listed in 4-3 Wiring Conforming to EMC Directives on page 4-51.
- *2. External connection components are not required because a brake relay and a surge absorbing element are built into the Servo Drive.
- *3. Short-circuit B2 and B3 for models with a built-in regeneration resistor. When the amount of regeneration is large, remove the short-circuit wire between B2 and B3 and connect a regeneration resistor between B1 and B2.
- *4. When the DC reactor is not used, short-circuit N1 and N2. When the DC reactor is used, remove the short-circuit wire between N1 and N2, and connect the DC reactor between N1 and N2.
- *5. Short-circuit DB2 and DB3 for models with a built-in dynamic brake resistor. When the amount of braking energy is large, remove the short-circuit wire between DB2 and DB3 and connect a dynamic brake resistor between DB1 and DB2.
- *6. To ensure safety, install a leakage breaker for the main circuit power supply input in the control panel. Refer to 4-3-2 Selecting Connection Component on page 4-62
- *7. There is no polarity on the brakes.
- *8. Ground the 200-VAC input model Servo Drive to 100 Ω or less, and the 400-VAC input model to 10 Ω or less.

R88D-1SN150H-ECT



- *1. Use one noise filter for each Servo Drive. Selecting an unsuitable noise filter may result in a poor noise reduction effect. Also, a Servo Drive may produce some noise that travels through the power supply cable and causes unintended operation of other Servo Drives such as regeneration operation and Overvoltage Error.
 - When you use a noise filter, install a surge absorber on the LINE side of the noise filter.
 - Recommended noise filters and surge absorbers are listed in 4-3 Wiring Conforming to EMC Directives on page 4-51.
- *2. There is no polarity on the brakes.
- *3. There is no built-in regeneration resistor. Connect a required regeneration resistor between B1 and B2.
- *4. Short-circuit DB2 and DB3 for models with a built-in dynamic brake resistor. When the amount of braking energy is large, remove the short-circuit wire between DB2 and DB3 and connect a dynamic brake resistor between DB1 and DB2.
- *5. To ensure safety, install a leakage breaker for the main circuit power supply input in the control panel. Refer to 4-3-2 Selecting Connection Component on page 4-62.
- *6. Recommended products are listed in 4-3 Wiring Conforming to EMC Directives on page 4-51. You cannot use the DC reactor.

R88D-1SN150F-ECT

- *1. Use one noise filter for each Servo Drive. Selecting an unsuitable noise filter may result in a poor noise reduction effect. Also, a Servo Drive may produce some noise that travels through the power supply cable and causes unintended operation of other Servo Drives such as regeneration operation and Overvoltage Error.
 - When you use a noise filter, install a surge absorber on the LINE side of the noise filter.
 - Recommended noise filters and surge absorbers are listed in 4-3 Wiring Conforming to EMC Directives on page 4-51.
- *2. There is no polarity on the brakes.
- *3. There is no built-in regeneration resistor. Connect a required regeneration resistor between B1 and B2.
- *4. Short-circuit DB2 and DB3 for models with a built-in dynamic brake resistor. When the amount of braking energy is large, remove the short-circuit wire between DB2 and DB3 and connect a dynamic brake resistor between DB1 and DB2.
- *5. To ensure safety, install a leakage breaker for the main circuit power supply input in the control panel. Refer to 4-3-2 Selecting Connection Component on page 4-62.
- *6. Recommended products are listed in 4-3 Wiring Conforming to EMC Directives on page 4-51. You cannot use the DC reactor.

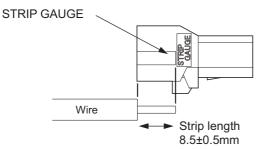
Procedure for Wiring Terminal Block and Procedure for Mounting 4-2-2 **Shield Clamp to Servo Drive**

This section describes each procedure for wiring a terminal block and for mounting power cables or shield clamp to a Servo Drive.

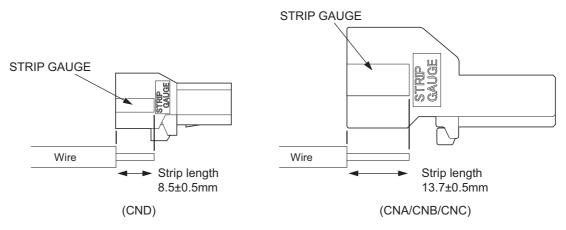
Precautions for Correct Use

- Wear the protective equipment when you perform the task. Do not apply any force to the opener (Servo Drive's accessory) after its protrusion reaches the bottom dead center. As a guide, do not apply the force of 100 N or more.
- Wear a protective equipment to protect eyes from the cables or hands from cables and shield clamp when you perform the task.

R88D-1SN L-ECT/ -1SN1SN0 H-ECT/ -1SN10H-ECT/ -1SN15H-ECT/ -1SN20H-ECT/ -1SN30H-ECT/ -1SN06F-ECT/ -1SN10F-ECT/ -1SN15F-ECT/ -1SN20F-ECT/ -1SN30F-ECT

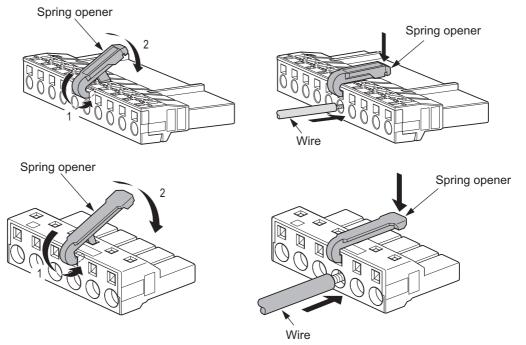

1 Remove the terminal block from the Servo Drive before wiring.

The Servo Drive may be damaged if the wiring is done with the terminal block in place.


Strip off the covering from the wire.

Refer to Terminal Block Wire Sizes on page 3-22 for applicable wire sizes. If the stripped wire is bended, loose or too large in diameter due to twist, retwist it gently and check its strip length by the use of a gauge before you use it. Smoothen the cut surface of wires and the stripped surface of covering. Or, you can use a ferrule.

 R88D-1SN01L-ECT/-1SN02L-ECT/-1SN04L-ECT/-1SN01H-ECT/ -1SN02H-ECT/-1SN04H-ECT/-1SN08H-ECT/-1SN10H-ECT



 R88D-1SN15H-ECT/-1SN20H-ECT/-1SN30H-ECT/-1SN06F-ECT/-1SN10F-ECT/ -1SN15F-ECT/-1SN20F-ECT/-1SN30F-ECT

$oldsymbol{3}$ Connect the wires.

Insert the hook of the spring opener into a square hole located on the same side as the wire holes, and use your thumb to press down the lever of the spring opener until it clicks into place. Insert the wire fully into the back of a wire hole while the lever of the spring opener is held down. Release the lever, and then pull the wire gently to check that it does not come out.

4 Mount the terminal block to the Servo Drive.

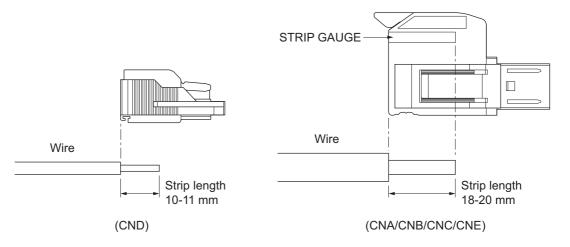
After all of the terminals are wired, return the terminal block to its original position on the Servo Drive.

Note The wire may not be inserted easily depending on the shape of the ferrule connected to it. If this occurs, perform one of the following methods to insert the wire.

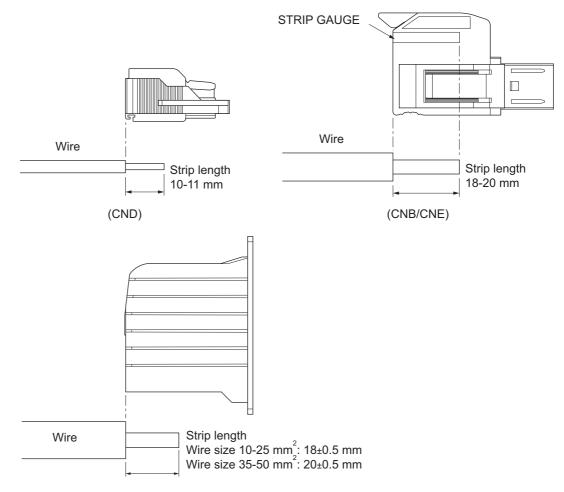
- Change the direction of inserting the ferrule by 90°.
- · Correct the shape of the ferrule with tools such as pliers.

R88D-1SN55H-ECT/ -1SN75H-ECT/ -1SN150H-ECT/ -1SN55F-ECT/ -1SN75F-ECT/ -1SN150F-ECT

1 Remove the terminal block from the Servo Drive before wiring.


The Servo Drive may be damaged if the wiring is done with the terminal block in place.

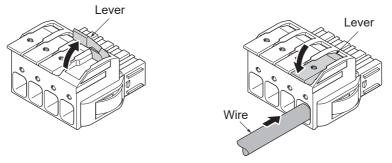
The main circuit connector A (CNA) and the motor connector (CNC) for R88D-1SN150H-ECT are wired directly. These connectors are not needed to be removed.


2 Strip off the covering from the wire.

Refer to Terminal Block Wire Sizes on page 3-22 for applicable wire sizes. If the stripped wire is bended, loose or too large in diameter due to twist, retwist it gently and check its strip length by the use of a gauge before you use it. Smoothen the cut surface of wires and the stripped surface of covering. Or, you can use a ferrule.

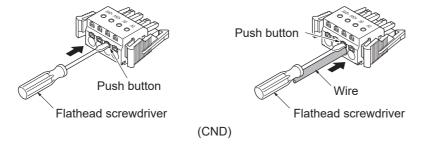
R88D-1SN55H-ECT/ -1SN75H-ECT/ -1SN55F-ECT/ -1SN75F-ECT/ -1SN150F-ECT

• R88D-1SN150H-ECT



Terminal block (CNA/CNC)

Connect the wires.


R88D-1SN55□-ECT/-1SN75□-ECT/-1SN150□-ECT

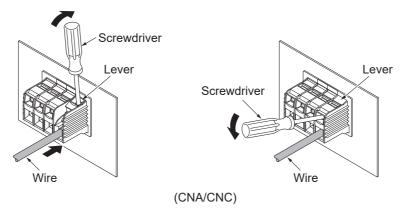
Use fingers to push up the lever until it clicks into place. Insert the wire fully into the back of a wire hole while the lever is pushed up. Use fingers to push up the lever until it clicks into place. Pull the wire gently to make sure that it does not come out.

R88D-1SN55 -ECT/ -1SN75 -ECT/ -1SN150F-ECT (CNA/CNB/CNC/CNE) R88D-1SN150H-ECT (CNB/CNE)

Insert the wire fully into back of a wire hole while a push button is pressed with a flathead screwdriver. Pull the wire gently to make sure that it does not come out. A solid wire or a twisted wire crimped the ferrule terminals can be inserted even if you do not press the push button.

R88D-1SN150H-ECT

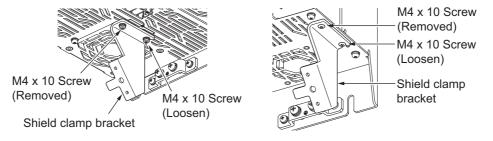
Insert a screwdriver into a hole of a lever and push up the lever.


Insert the wire fully into the back of a wire hole.

Insert the screwdriver into the hole of the lever and push down the lever.

Pull the wire gently to make sure that it is completely caught by a bracket and does not come out.

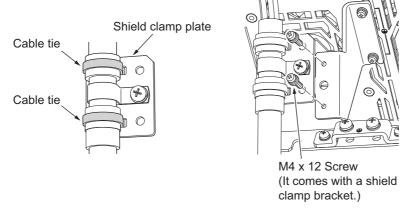
Use a fully tough screwdriver.


Recommended Screwdriver Model: SZK PZ2 VDE (PHOENIX CONTACT)

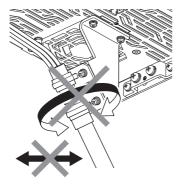
4 Mount the shield clamp bracket.

See below figures. Remove a screw and loosen another. Hook U-shape of the shield clamp bracket onto the loosened screw and tighten another screw. After that, tighten the screw of U-shape.

Tightening torque: 1.5 N·m


R88D-1SN55□-ECT/ -1SN75□-ECT

R88D-1SN150□-ECT


Mount the shield clamp plate to the shield clamp bracket.

Tightening torque: 1.5 N·m

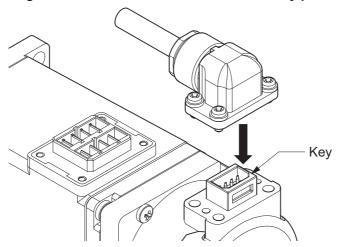
Do not cut a cable tie.

Do not put loads on the cable and the shield clamp such as twisting, pushing and pulling, etc.

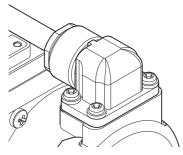
6 Mount the terminal block to the Servo Drive.

After all of the terminals are wired, return the terminal block to its original position on the Servo Drive.

Note The wire may not be inserted easily depending on the shape of the ferrule connected to it. If this occurs, perform one of the following methods to insert the wire.

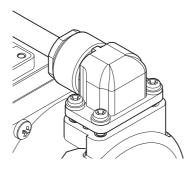

- Change the direction of inserting the ferrule by 90°.
- Correct the shape of the ferrule with tools such as pliers.

4-2-3 **Connector Attachment Procedure**

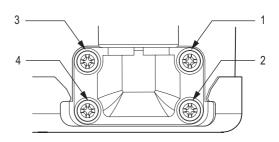

This section describes the procedure for attaching a connector to a Servomotor. Use the following procedure to fit the connectors.

Servomotors with Flange Size of 80×80 or less

1 Align the connector's orientation with the key position, and fit the connector into place.

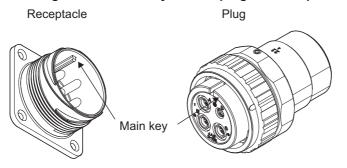

Tighten the screws to fix the connector after it is fitted.

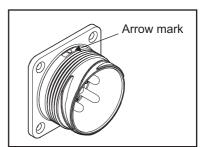
Note Make sure that the connector is securely fitted into place without a gap or tilt.


Do not tighten the screws if the connector is not securely fitted into place. Doing so may result in a damage. Tighten the four screws evenly.

The screw tightening torque is 0.2 N·m.

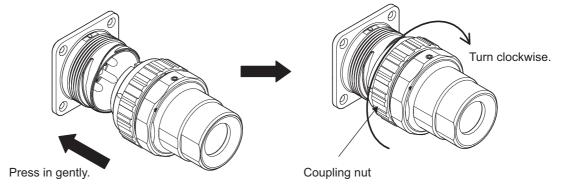
Example of a gap


Example: tighten the screws in the order of 1, 4, 3, and then 2.

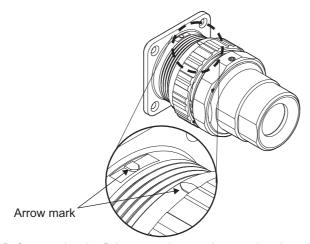

Example of screw tightening order

Servomotors with Flange Size of 100×100 or more (Type JL10 Connector)

1 Align of the main keys of the plug and receptacle.



* The arrow mark on the receptacle shell indicates the position of the main key.

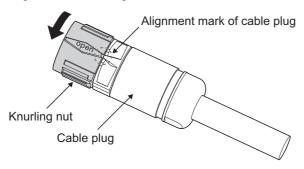


2 Press in the plug gently and turn the coupling nut clockwise.

Fitting is completed when the turned coupling nut clicks into place.

When fitting is completed, the arrow marks of the plug and receptacle are aligned.

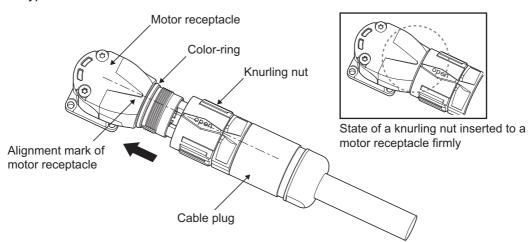
Note Before starting the fitting procedure, make sure that there is no dirt, foreign materials, etc. adhered to the fitting surfaces.

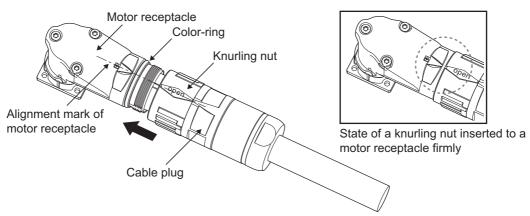

Do not perform the procedure in an environment where water or oil can adhere to these surfaces.

Servomotors with Flange Size of 130×130 or more (Type M23 and M40 Connector)

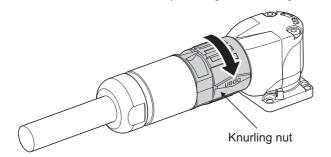
Procedure for Mounting Connectors

Turn the knurling nut of a cable plug to counterclockwise direction.

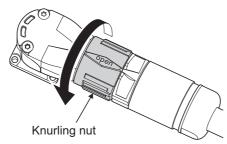

When a printed "open" on the nut is aligned with a mark of the cable plug, the nut stops. If not aligned, the knurling nut cannot be inserted to the motor receptacle firmly.


Type M23 Connector

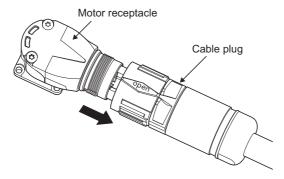
- Align a mark of the motor receptacle with the printed "open" on the knurling nut.
- Insert the knurling nut into the receptacle as far as it goes. At this time, push the nut linearly in a state that a printed "open" on the nut lines up with a mark of the cable plug.


• Type M23 Connector

· Type M40 Connector



4 Turn the knurling nut to clockwise direction until it stops.
The connector is locked by turning the knurling nut until it stops.



Procedure for Detaching Connectors

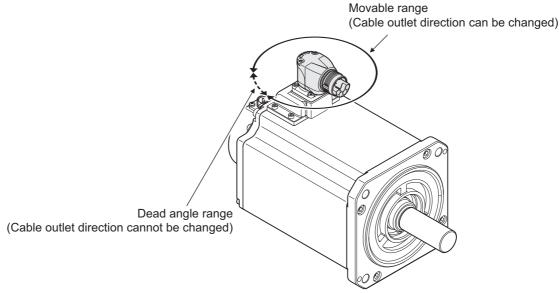
Turn the knurling nut of the cable plug to counterclockwise direction.
When the printed "open" lines up with a mark of the cable plug, the mating is unlocked.

Pull the cable plug out the motor receptacle linearly.At this time, do not move the cable plug up and down or right and left.

Precautions for Correct Use

- Before mating the motor receptacle into the cable plug, check for dirt and foreign substances on the surface of each mating site.
- Do not carry out the mating in locations subject to exposure to water and oil.
- · Insert a cable into a Servomotors securely and fix a knurling nut.
- Unwind a winding cable from packing before mounting the cable to a connector. Not doing so
 results in twisted force to apply to the connector and the cable. That may cause damage of
 the connector and the cable.

Extension Cable

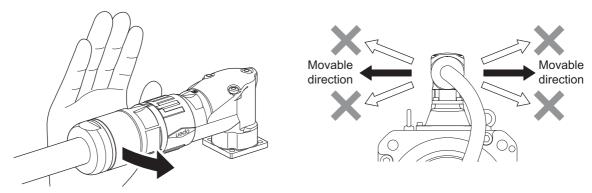

For connector for extension cable, turn it horizontally before its locking.

Procedure for Change of Cable Outlet Direction for Connector 4-2-4 **Type M23 or M40**

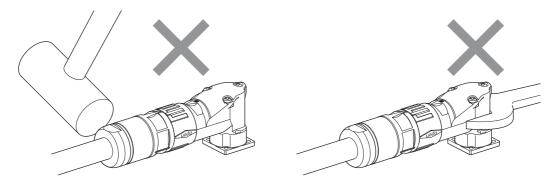
This section describes a procedure for change of cable outlet direction for connector Type M23 or M40. The change of cable outlet directions shall be up to five times. Pre-determine the cable outlet directions such as mounting a Servomotor to devices, etc. before the change.

Determine the cable outlet directions.

Refer to 2-4-3 Cable Outlet Direction on page 2-100 to fix the cable outlet direction. The connector has a dead angle. When you change the cable outlet direction, avoid excessive force applied to the connector. Otherwise, failures of the connector may result.



Mount a cable and lock it firmly.

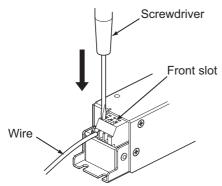

Mount a cable to a connector, referring to 4-2-3 Connector Attachment Procedure on page 4-44. Lock a cable securely to be fixed to a connector. If the lock is loosened, a connector is removed. That may cause injury and failure of a connector.

Place your hand on the end of a connector at a cable side and apply force slowly toward movable direction to change the cable outlet direction.

Apply force horizontally to movable directions. When you apply force to the end of a connector, the force over 100 N is required. Force applied to not-specified direction may result in failure of a connector.

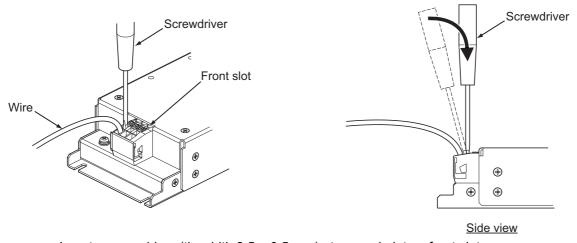
Use your hand, instead of tool, etc. when changing the cable outlet direction. Otherwise, a large amount of force is applied easily even toward not-specified direction and may cause failure of the connector.

Do not pull out a cable during the change of cable outlet direction. Doing so may cause failures of a connector and a cable. Also, the change shall be up to five times. The change over five times may result in failure of the connector.



Precautions for Correct Use

Wire cables not to contact with Servomotors, which have high temperature.


4-2-5 **Terminal Block Wiring Procedure for Footprint-type Noise Filter**

● R88A-FI1S1□□/-FI1S2□□

- Insert a screwdriver (tip width 3.5 × 0.5 mm) into a front slot.
- Insert the wire fully into the back of a wire hole.
- Pull out the screwdriver while you push the wire against the back.
- · Pull the wire gently to check that it does not come out.

● R88A-FI1S3□□

- Insert a screwdriver (tip width 3.5 × 0.5 mm) at an angle into a front slot.
- Insert the screwdriver deep while you hold it vertically as shown in the side view.
- · Insert the wire fully into the back of a wire hole.
- · Pull out the screwdriver while you push the wire against the back.
- · Pull the wire gently to check that it does not come out.

4-3 Wiring Conforming to EMC Directives

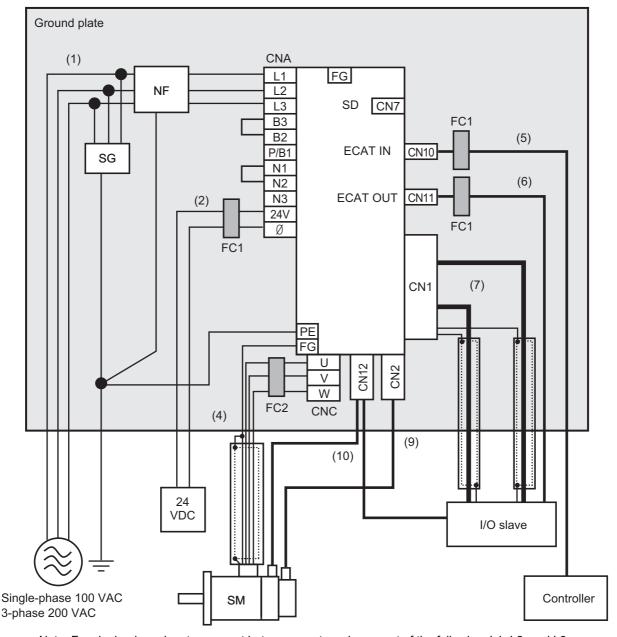
1S-series Servo Drives conform to the EMC Directives (EN 61800-3) under the wiring conditions described in this section.

The following conditions are determined so that 1S-series products can conform to EMC Directives. When the products are installed in the equipment, the customer must perform the check to confirm that the overall machine conforms to EMC Directives.

The following are the conditions required for conformance to the EMC Directives.

- Install the Servo Drive on the ground plate.
- · Install a noise filter and lightening surge absorbing element (surge absorber) on the power line.
- Use a motor power cable of 20 m or less.
- Use braided-shield cables for the I/O signals and encoder. Tinned soft steel wires must be used for the shields.
- · Ground the shield of each cable.

For how to wire and install a noise filter, refer to 4-1-5 Noise Filter Installation Conditions on page 4-15.



Additional Information

- When a motor power cable connected to one 3-phase 200-V input model of Servo Drive, described in 4-7 Noise Filter Installation Conditions When the Total Wire Length Is Long on page 4-80, is longer than 20 m or when you connect more than one 3-phase 200-V input model of Servo Drive at 1.5 kW or less to one noise filter, the noise filter installation conditions of these cases are different from the conditions for conformity to the EMC Directives of 1S-series products.
- Selecting an unsuitable noise filter may result in a poor noise reduction effect.

Peripheral Equipment Connection Examples 4-3-1

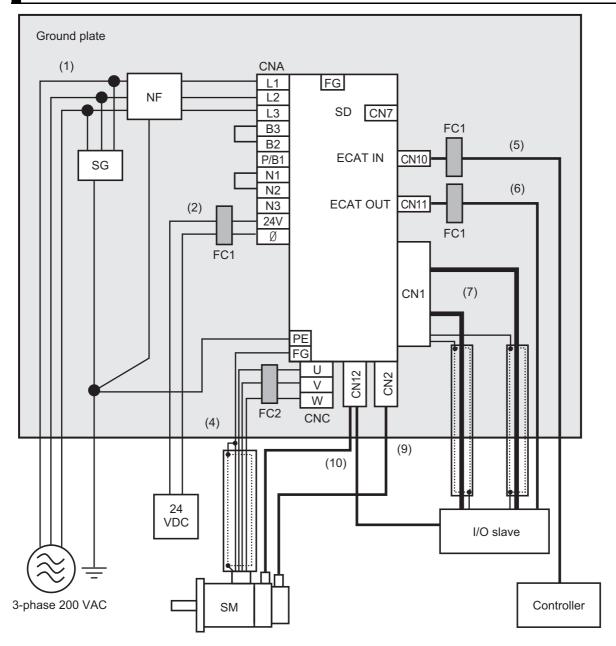
R88D-1SN01L-ECT/-1SN02L-ECT/-1SN04L-ECT/-1SN01H-ECT /-1SN02H-ECT/-1SN04H-ECT/-1SN08H-ECT

Note For single-phase inputs, connect between any two phases out of the following: L1, L2, and L3.

- · Provide single-point grounding of the ground plate for unit frame grounding as shown in the above diagram.
- Use a protective earth wire with a minimum thickness of 2.5 mm² and arrange the wiring so that the protective earth wire is as short as possible.
- · Install a surge absorber and noise filter near the main circuit connector A of Servo Drive. Separate I/O wires from each other for the wiring.

Device Details

Symbol	Name	Manufacturer	Model	Remarks
SG	Surge absorber	Soshin Electric	LT-C12G801WS	1-phase 100 VAC/200 VAC
		Co., Ltd.	LT-C32G801WS	3-phase 200 VAC
NF	Noise filter	Soshin Electric Co., Ltd.	HF2020A-SZC-33DDD*1	1-phase 100 VAC/200 VAC (20 A)
			HF3020C-SZC-33DDD*1	3-phase 200 VAC (20 A)
		OMRON	R88A-FI1S103	1-phase R88D-1SN01L-ECT
				1-phase R88D-1SN01H-ECT
				1-phase R88D-1SN02H-ECT
			R88A-FI1S105	1-phase R88D-1SN02L-ECT
				1-phase R88D-1SN04H-ECT
			R88A-FI1S109	1-phase R88D-1SN04L-ECT
				1-phase R88D-1SN08H-ECT
			R88A-FI1S202	3-phase R88D-1SN01H-ECT
				3-phase R88D-1SN02H-ECT
			R88A-FI1S203	3-phase R88D-1SN04H-ECT
			R88A-FI1S208	3-phase R88D-1SN08H-ECT
SD	Servo Drive	OMRON		*2
SM	Servomotor	OMRON		*2
FC1	Ferrite core	NEC TOKIN	ESD-SR-250	
FC2	Ferrite core	SEIWA ELEC- TRIC MFG	E04SR301334	
	I/O slave			
	Controller			


^{*1.} Consult Soshin Electric Co., Ltd.

Cable Details

No.	Interface	Max. cable	Cable cla	ssification	Ferrite
NO.	interrace	length, shield	EN/IEC 61800-3	EN/IEC 61000-6-7	core
1	Power supply cable	3 m	Power supply port	AC input power sup-	None
	(main circuit)	Non-shielded		ply port	
2	Power supply cable	3 m	Port for process mea-	Signal and control	2 turns
	(control circuit)	Non-shielded	surement and control	line	
4	Motor cable (Servomo-	20 m	Power supply inter-	Signal and control	2 turns
	tor)	Shielded	face	line	
5	EtherCAT communica-	20 m	Signal interface	Signal and control	1 turn
	tions cable (ECAT IN)	Shielded		line	
6	EtherCAT communica-	20 m	Signal interface	Signal and control	1 turn
	tions cable (ECAT OUT)	Shielded		line	
7	Safety/control	20 m	Signal interface	Signal and control	None
	I/O cables	Shielded		line	
		20 m	Signal interface	Signal and control	None
		Shielded		line	
9	Encoder cable	20 m	Signal interface	Signal and control	None
		Shielded		line	
10	Brake interlock cable	20 m	Signal interface	Signal and control	None
		Non-shielded		line	

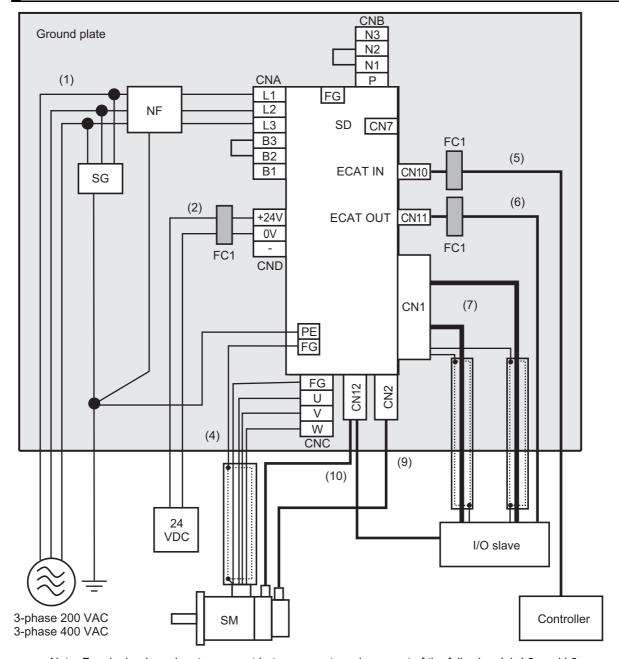
^{*2.} Refer to 2-3-3 Servo Drive and Servomotor Combination Tables on page 2-17 for Servo Drive and Servomotor combinations.

R88D-1SN10H-ECT

- Provide single-point grounding of the ground plate for unit frame grounding as shown in the above diagram.
- Use a protective earth wire with a minimum thickness of 2.5 mm² and arrange the wiring so that the protective earth wire is as short as possible.
- · Install a surge absorber and noise filter near the main circuit connector of Servo Drive. Separate I/O wires from each other for the wiring.

Device Details

Symbol	Name	Manufacturer	Model	Remarks
SG	Surge absorber	Soshin Electric Co.,	LT-C32G801WS	3-phase 200 VAC
		Ltd.		
NF	Noise filter	Soshin Electric Co.,	HF3020C-SZC-33DDD	3-phase 200 VAC (20 A)
		Ltd.	*1	
		OMRON	R88A-FI1S208	3-phase
				R88D-1SN10H-ECT
SD	Servo Drive	OMRON	R88D-1SN10H-ECT	*2
SM	Servomotor	OMRON		*2
FC1	Ferrite core	NEC TOKIN	ESD-SR-250	
FC2	Ferrite core	SEIWA ELECTRIC	E04SR301334	
		MFG		
	I/O slave			
	Controller			


^{*1.} Consult Soshin Electric Co., Ltd.

Cable Details

No.	Interface	Max. cable	Cable clas	ssification	Ferrite
NO.	interrace	length, shield	EN/IEC 61800-3	EN/IEC 61000-6-7	core
1	Power supply cable	3 m	Power supply port	AC input power sup-	None
	(main circuit)	Non-shielded		ply port	
2	Power supply cable	3 m	Port for process mea-	Signal and control	2 turns
	(control circuit)	Non-shielded	surement and control	line	
4	Motor cable (Servomo-	20 m	Power supply inter-	Signal and control	2 turns
	tor)	Shielded	face	line	
5	EtherCAT communica-	20 m	Signal interface	Signal and control	1 turn
	tions cable (ECAT IN)	Shielded		line	
6	EtherCAT communica-	20 m	Signal interface	Signal and control	1 turn
	tions cable (ECAT OUT)	Shielded		line	
7	Safety/control	20 m	Signal interface	Signal and control	None
	I/O cables	Shielded		line	
		20 m	Signal interface	Signal and control	None
		Shielded		line	
9	Encoder cable	20 m	Signal interface	Signal and control	None
		Shielded		line	
10	Brake Interlock cable	20 m	Signal interface	Signal and control	None
		Shielded		line	

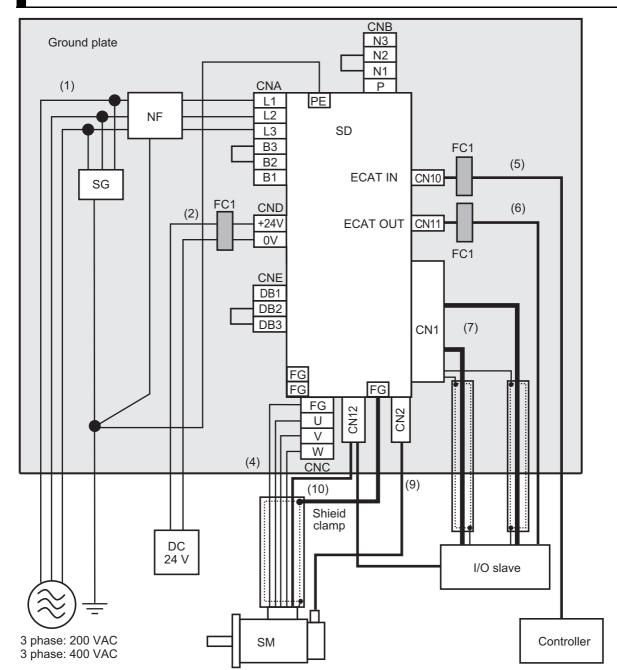
^{*2.} Refer to 2-3-3 Servo Drive and Servomotor Combination Tables on page 2-17 for Servo Drive and Servomotor combinations.

R88D-1SN15H-ECT/ -1SN20H-ECT/ -1SN30H-ECT/ -1SN06F-ECT/ -1SN10F-ECT/ -1SN15F-ECT/ -1SN20F-ECT/ -1SN30F-ECT

Note For single-phase inputs, connect between any two phases out of the following: L1, L2, and L3.

- Provide single-point grounding of the ground plate for unit frame grounding as shown in the above diagram.
- Use a protective earth wire with a minimum thickness of 2.5 mm² and arrange the wiring so that the protective earth wire is as short as possible.
- · Install a surge absorber and noise filter near the main circuit connector A of Servo Drive. Separate I/O wires from each other for the wiring.

Device Details


Symbol	Name	Manufacturer	Model	Remarks
SG	Surge absorber	Soshin Electric Co.,	LT-C12G801WS	1-phase 100 VAC/200 VAC
		Ltd.	LT-C32G801WS	3-phase 200 VAC
			LT-C35G102WS	3-phase 400 VAC
NF	Noise filter	Soshin Electric Co.,	HF2020A-SZC-33DDD	1-phase 200 VAC (20 A)
		Ltd.	*1	
			HF3020C-SZC-33DDD	3-phase 200 VAC (20 A)
			*1	
			HF3020C-SZC*1	3-phase 400 VAC (20 A)
		OMRON	R88A-FI1S116	1-phase R88D-1SN15H-ECT
			R88A-FI1S216	3-phase R88D-1SN15H-ECT
				3-phase R88D-1SN20H-ECT
				3-phase R88D-1SN30H-ECT
			R88A-FI1S309	3-phase R88D-1SN06F-ECT
				3-phase R88D-1SN10F-ECT
				3-phase R88D-1SN15F-ECT
				3-phase R88D-1SN20F-ECT
				3-phase R88D-1SN30F-ECT
SD	Servo Drive	OMRON		*2
SM	Servomotor	OMRON		*2
FC1	Ferrite core	NEC TOKIN	ESD-SR-250	
	I/O slave			
	Controller			

^{*1.} Consult Soshin Electric Co., Ltd.

Cable Details

No.	Interface	Max. cable	Cable clas	ssification	Ferrite
NO.	interrace	length, shield	EN/IEC 61800-3	EN/IEC 61000-6-7	core
1	Power supply cable	3 m	Power supply port	AC input power sup-	None
	(main circuit)	Non-shielded		ply port	
2	Power supply cable	3 m	Port for process mea-	Signal and control	2 turns
	(control circuit)	Non-shielded	surement and control	line	
4	Motor cable (Servomo-	20 m	Power supply inter-	Signal and control	None
	tor)	Shielded	face	line	
5	EtherCAT communica-	20 m	Signal interface	Signal and control	1 turn
	tions cable (ECAT IN)	Shielded		line	
6	EtherCAT communica-	20 m	Signal interface	Signal and control	1 turn
	tions cable (ECAT OUT)	Shielded		line	
7	Safety/control	20 m	Signal interface	Signal and control	None
	I/O cables	Shielded		line	
		20 m	Signal interface	Signal and control	None
		Shielded		line	
9	Encoder cable	20 m	Signal interface	Signal and control	None
		Shielded		line	
10	Brake Interlock cable	20 m	Signal interface	Signal and control	None
		Shielded		line	

^{*2.} Refer to 2-3-3 Servo Drive and Servomotor Combination Tables on page 2-17 for Servo Drive and Servomotor combinations.

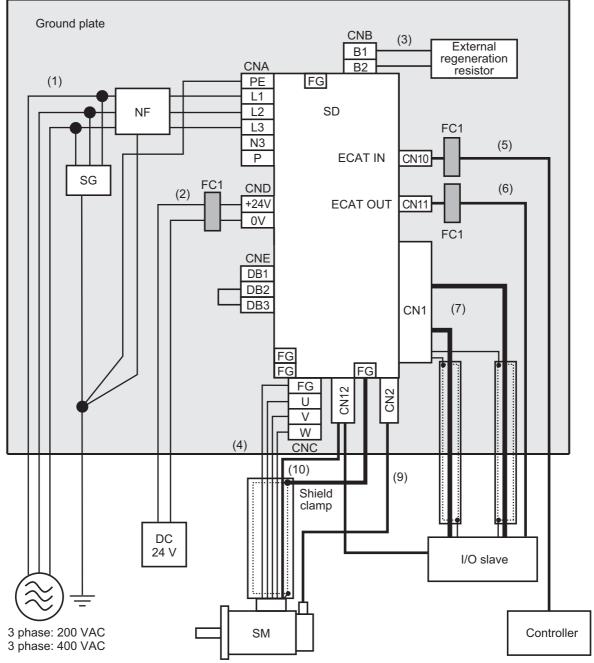
R88D-1SN55H-ECT/ -1SN75H-ECT/ -1SN55F-ECT/ -1SN75F-ECT

Note

- Provide single-point grounding of the ground plate for unit frame grounding as shown in the above diagram. For grounding of the Servo Drive, use any of a PE terminal or FG terminals.
- Use a ground wire with a minimum thickness of 4.0 mm² and arrange the wiring so that the protective earth wire is as short as possible.
- · Install a surge absorber and noise filter near the main circuit connector A of Servo Drive. Separate I/O wires from each other for the wiring.
- · A shield clamp bracket comes with a power cable.

Device Details

Symbol	Name	Manufacturer	Model	Remarks
SG	Surge absorber	Soshin Electric Co.,	LT-C32G801WS	3-phase 200 VAC
		Ltd.	LT-C35G102WS	3-phase 400 VAC
NF	Noise filter	Soshin Electric Co.,	HF3040C-SZA-33EDD*1	3-phase R88D-1SN55H-ECT
		Ltd.	HF3050C-SZB-33EDD*1	3-phase R88D-1SN75H-ECT
			HF3080C-SZC-33EDE*1	
			HF3040C-SZA-47DDD*1	3-phase R88D-1SN55F-ECT
				3-phase R88D-1SN75F-ECT
SD	Servo Drive	OMRON		*2
SM	Servomotor	OMRON		*2
FC	Ferrite core	NEC TOKIN	ESD-SR-250	
	I/O slave			
	Controller			


^{*1.} Consult Soshin Electric Co., Ltd.

Cable Details

No.	Interface	Max. cable	Cable cla	ssification	Ferrite
NO.	interface	length, shield	EN/IEC 61800-3	EN/IEC 61000-6-7	core
1	Power supply cable	3 m	Power supply port	AC input power sup-	None
	(main circuit)	Non-shielded		ply port	
2	Power supply cable	3 m	Port for process mea-	Signal and control	2 turns
	(control circuit)	Non-shielded	surement and control	line	
4	Motor cable (Servomo-	20 m	Power supply inter-	Signal and control	None
	tor)	Shielded	face	line	
5	EtherCAT communica-	20 m	Signal interface	Signal and control	1 turn
	tions cable (ECAT IN)	Shielded		line	
6	EtherCAT communica-	20 m	Signal interface	Signal and control	1 turn
	tions cable (ECAT	Shielded		line	
ī	OUT)				
7	Safety/control	20 m	Signal interface	Signal and control	None
	I/O cables	Shielded		line	
		20 m	Signal interface	Signal and control	None
		Shielded		line	
9	Encoder cable	20 m	Signal interface	Signal and control	None
		Shielded		line	
10	Brake Interlock cable	20 m	Signal interface	Signal and control	None
		Shielded		line	

^{*2.} Refer to 2-3-3 Servo Drive and Servomotor Combination Tables on page 2-17 for Servo Drive and Servomotor combinations.

R88D-1SN150H-ECT/ -1SN150F-ECT

Note

- Provide single-point grounding of the ground plate for unit frame grounding as shown in the above diagram. For grounding of the Servo Drive, use any of a PE terminal or FG terminals.
- Use a ground wire with a minimum thickness of 4.0 mm² and arrange the wiring so that the protective earth wire is as short as possible.
- Install a surge absorber and noise filter near the main circuit connector A of Servo Drive. Separate I/O wires from each other for the wiring.
- · A shield clamp bracket comes with a power cable.

Device Details

Symbol	Name	Manufacturer	Model	Remarks
SG	Surge absorber	Soshin Electric Co.,	LT-C32G801WS	3-phase 200 VAC
		Ltd.	LT-C35G102WS	3-phase 400 VAC
NF	Noise filter	Soshin Electric Co.,	HF3100C-SZC-33EDE*1	3-phase 200 VAC
		Ltd.	HF3080C-SZC-47EDE*1	3-phase 400 VAC
SD	Servo Drive	OMRON		*2
SM	Servomotor	OMRON		*2
FC1	Ferrite core	NEC TOKIN	ESD-SR-250	
	I/O slave			
	Controller			
	External regen-	OMRON	R88A-RR55002R5	3-phase 200 VAC
	eration resistor*3		R88A-RR55010	3-phase 400 VAC

^{*1.} Consult Soshin Electric Co., Ltd.

Cable Details

No.	. Interface Max. cable		Cable classification		Ferrite
NO.	interrace	length, shield	EN/IEC 61800-3	EN/IEC 61000-6-7	core
1	Power supply cable	3 m	Power supply port	AC input power sup-	None
	(main circuit)	Non-shielded		ply port	
2	Power supply cable	3 m	Port for process mea-	Signal and control	2 turns
	(control circuit)	Non-shielded	surement and control	line	
3	External regeneration	0.5 m	Power supply inter-	Signal and control	None
	resistor cable	Shielded	face	line	
4	Motor cable (Servomo-	20 m	Power supply inter-	Signal and control	None
	tor)	Shielded	face	line	
5	EtherCAT communica-	20 m	Signal interface	Signal and control	1 turn
	tions cable (ECAT IN)	Shielded		line	
6	EtherCAT communica-	20 m	Signal interface	Signal and control	1 turn
	tions cable (ECAT OUT)	Shielded		line	
7	Safety/control	20 m	Signal interface	Signal and control	None
	I/O cables	Shielded		line	
		20 m	Signal interface	Signal and control	None
		Shielded		line	
9	Encoder cable	20 m	Signal interface	Signal and control	None
		Shielded		line	
10	Brake Interlock cable	20 m	Signal interface	Signal and control	None
		Shielded		line	

^{*2.} Refer to 2-3-3 Servo Drive and Servomotor Combination Tables on page 2-17 for Servo Drive and Servomotor combinations.

^{*3.} Conformity to the EMC Directives is confirmed with External Regeneration Resistor Unit.

4-3-2 **Selecting Connection Component**

This section describes the criteria for selecting connection components that are required to improve noise immunity.

Thoroughly understand the characteristics such as capacity, performance, and the range of application of the connection components before you select them.

Consult the manufacturer for details of the parts.

Molded Case Circuit Breaker (MCCB)

Select a molded case circuit breaker based on the maximum input current and inrush current.

Maximum input current

- The momentary maximum output of the Servo Drive is approximately three times as much as the rated output, and the maximum output duration is three seconds. Therefore, select a molded case circuit breaker which can operate 10 seconds or more at 300% of the rated current.
- Select a molded case circuit breaker with a rated current larger than the sum of the effective load current (when multiple Servo Drives are used). Refer to Main Circuit and Motor Connections on page 3-14 for the rated current of the power supply input for each motor.
- · When you select a molded case circuit breaker, add the current consumption by other devices such as the Controller.

Inrush Current

- The following table shows the inrush current of the Servo Drives.
- The amount of inrush current that a low-speed type molded case circuit breaker can flow for 0.02 seconds is approximately 10 times higher than the rated current.
- To turn ON the power supply for multiple Servo Drives simultaneously, select a molded case circuit breaker whose allowable current in 20 ms is larger than the sum of the inrush currents shown in the following table.
- The inrush current of the control power supply is limited by the output capacity of the DC power supply in use.

Servo Drive model	Inrush current (Ao-p)
Servo Drive moder	Main circuit power supply
R88D-1SN01L-ECT	8 A
R88D-1SN02L-ECT	8 A
R88D-1SN04L-ECT	8 A*1
R88D-1SN01H-ECT	16 A
R88D-1SN02H-ECT	16 A
R88D-1SN04H-ECT	16 A
R88D-1SN08H-ECT	16 A*1
R88D-1SN10H-ECT	16 A ^{*1}
R88D-1SN15H-ECT	29 A
R88D-1SN20H-ECT	29 A
R88D-1SN30H-ECT	29 A
R88D-1SN55H-ECT	68 A
R88D-1SN75H-ECT	68 A
R88D-1SN150H-ECT	68 A
R88D-1SN06F-ECT	32 A
R88D-1SN10F-ECT	32 A

Servo Drive model	Inrush current (Ao-p)
Servo Drive moder	Main circuit power supply
R88D-1SN15F-ECT	32 A
R88D-1SN20F-ECT	32 A
R88D-1SN30F-ECT	32 A
R88D-1SN55F-ECT	68 A
R88D-1SN75F-ECT	68 A
R88D-1SN150F-ECT	68 A

^{*1.} If an external regeneration resistor is attached, the inrush currents of the main circuit power supplies in the above table will be increased.

(Increase in current = $\sqrt{2}$ × main circuit power supply voltage/external regeneration resistance)

The value of the inrush current varies depending on the input voltage to the Servo Drive. The values shown above are for the following input voltages.

Model	Main circuit power supply voltage
R88D-1SN□L-ECT	120 VAC
R88D-1SN□H-ECT	240 VAC
R88D-1SN□F-ECT	480 VAC

Leakage Breaker

Selection of Leakage Breaker

- Select a leakage breaker which is made for high frequency and surge resistance.
- When you determine the threshold value for leakage current detection, add the total leakage current from all devices that are connected to the same breaker.
- Refer to the catalogs from the manufacturers for details on how to select a leakage breaker and ensure a sufficient margin.
- The amount of leakage current changes depending on the version of the motor power cable.
 Check the version of the motor power cable that you use and consider the corresponding leakage current value when you select.

• Selection of Leakage Breaker for Servo Drive at 3 kW or Less

The following table shows the leakage current during a combined use of Servo Drive, Servomotor, and motor power cable. The amount of leakage current changes depending on the version of the motor power cable.

Servo Drive Model	Servomotor		_	cable)	Increase p	er 10 m of length
(R88D-)	Model	Input power		version		/ersion
, ,	(R88M-)		Ver.1.0	Ver.1.1	Ver.1.0	Ver.1.1
1SN01L-ECT	1M05030S	Single-phase	0.6 mA	0.6 mA	0.3 mA	0.1 mA
	1M10030S	100 V				
1SN02L-ECT	1M20030S	Single-phase 100 V				
1SN04L-ECT	1M40030S	Single-phase 100 V				
1SN01H-ECT	1M05030T	Single-phase 200 V	1.5 mA	1.3 mA	1.3 mA	0.4 mA
		3-phase 200 V				
	1M10030T	Single-phase				
		200 V				
		3-phase 200 V				
1SN02H-ECT	1M20030T	Single-phase 200 V				
		3-phase 200 V				
1SN04H-ECT	1M40030T	Single-phase 200 V				
		3-phase 200 V				
1SN08H-ECT	1M75030T	Single-phase 200 V				
		3-phase 200 V				
1SN10H-ECT	1L1K030T	3-phase 200 V				
	1M1K020T	3-phase 200 V				
	1M90010T	3-phase 200 V				
1SN15H-ECT	1L1K530T	Single-phase 200 V	2.2 mA	1.4 mA	1.9 mA	0.5 mA
		3-phase 200 V				
	1M1K520T	Single-phase 200 V				
		3-phase 200 V				
1SN20H-ECT	1L2K030T	3-phase 200 V	2.2 mA	1.4 mA	1.9 mA	0.5 mA
	1M2K020T	3-phase 200 V				
	1M2K010T	3-phase 200 V				
1SN30H-ECT	1L3K030T	3-phase 200 V				
	1M3K020T	3-phase 200 V				
	1M3K010T*1	3-phase 200 V				
1SN06F-ECT	1M40020C	3-phase 400 V	1.9 mA	1.6 mA	1.7 mA	1.0 mA
	1M60020C	3-phase 400 V				
1SN10F-ECT	1L75030C	3-phase 400 V				
	1L1K030C	3-phase 400 V				
	1M1K020C	3-phase 400 V				
40NAEE EOT	1M90010C	3-phase 400 V				
1SN15F-ECT	1L1K530C	3-phase 400 V				
	1M1K520C	3-phase 400 V				

Servo Drive Model	Servomotor Model	Input power	_	current	-	er 10 m of length	
(R88D-)	(R88M-)	input power	Cable v	Cable version		Cable version	
	(IXOONI-)		Ver.1.0	Ver.1.1	Ver.1.0	Ver.1.1	
1SN20F-ECT	1L2K030C	3-phase 400 V	2.4 mA	1.8 mA	3.0 mA	1.1 mA	
	1M2K020C	3-phase 400 V					
	1M2K010C	3-phase 400 V					
1SN30F-ECT	1L3K030C	3-phase 400 V					
	1M3K020C	3-phase 400 V					
	1M3K010C	3-phase 400 V					

^{*1.} For the motor power cables for R88M-1M3K010T, only cable version 1.0 is available.

Selection of Leakage Breaker for Servo Drives at 5.5 kW or more and Servomotors at 4 kW or more

Leakage current during use of both motor power cable and extension cable is shown. The cable version of these cables is 1.0. Select a leakage breaker that has enough margin.

		Motor	Leakage Current (IIIA)							
Servo Drive Model (R88D)	Servomotor Model (R88M-)	Power/Exten- sion Cable Model (R88A-)*1	3m	5 m	10 m	15 m	20 m	30 m	40 m	50 m
1SN55H-ECT	1L4K030T	CA1H□□□F	3.8	3.8	4.0	4.1	4.3	4.6	4.9	5.2
	1L4K730T									
	1M4K015T		3.5	3.6	3.7	3.8	3.9	4.1	4.4	4.6
	1M5K015T									
1SN75H-ECT	1M7K515T	CA1K□□□F	4.4	4.5	4.9	5.2	5.6	6.3	7.0	7.7
1SN150H-ECT	1M15K015T		4.4	4.5	4.8	5.1	5.4	6.0	6.6	7.3
1SN55F-ECT	1L4K030C	CA1H□□□F	3.6	3.8	4.4	5.0	5.6	6.7	7.9	9.1
	1L5K030C									
	1M4K015C		3.6	3.8	4.3	4.8	5.3	6.3	7.3	8.3
	1M5K515C									
1SN75F-ECT	1M7K515C		4.4	4.6	5.2	5.7	6.3	7.4	8.5	9.6
1SN150F-ECT	1M15K015C	CA1J□□□F	4.9	5.1	5.5	6.0	6.5	7.4	8.3	9.2

^{*1. 3} m to 20 m: Only motor power cable

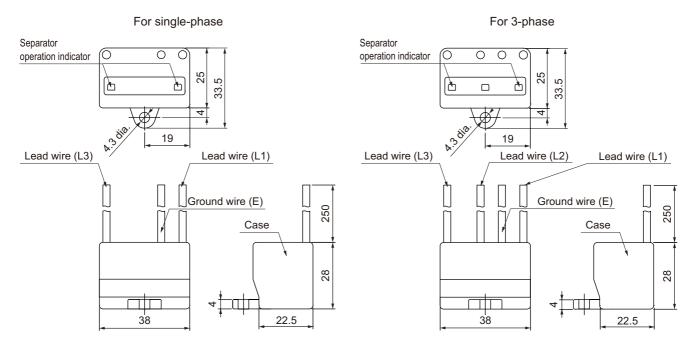
30m: Motor Power Cable(20 m) + Extension Cable(10 m)

40m: Motor Power Cable(20 m) + Extension Cable(20 m)

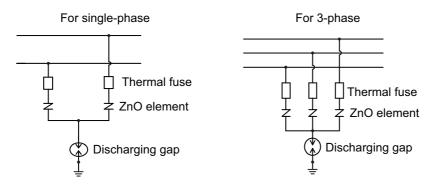
50m: Motor Power Cable(20 m) + Extension Cable(10 m) + Extension Cable(20 m)

Note The value of leakage current significantly varies in installation conditions of motor power cable and extension cable or the measurement conditions. Use the above list for your reference.

^{*2.} Wiring conforming to the EMC Directives is 20 m at maximum.


Surge Absorber

- · Use a surge absorber to absorb the lightning surge voltage and the abnormal voltage from the power
- The following table gives the recommended surge absorber specifications.


Servo Drive voltage	Surge current tolerance	Recommended manufacturer	Recommended model
Single-phase 100 VAC	410 V±20%, 2500 A	Soshin Electric Co., Ltd.	LT-C12G801WS
Single-phase 200 VAC	410 V±20%, 2500 A	Soshin Electric Co., Ltd.	LT-C12G801WS
3-phase 200 VAC	410 V±20%, 2500 A	Soshin Electric Co., Ltd.	LT-C32G801WS
3-phase 400 VAC	800 V±20%, 2500 A	Soshin Electric Co., Ltd.	LT-C35G102WS

- Note 1. Refer to the catalogs from the manufacturer for how to use.
 - 2. The surge current tolerance is the value for the standard impulse current of 8/20 µs. For a greater pulse width, reduce the current or change the surge absorber to the one with a higher capacity.
 - 3. Select a CSA-certified product when you use a surge absorber.

External Dimensions

Equivalent Circuit

Surge Suppressors

- · Install surge suppressors for a load with an induction coil such as a relay, solenoid, and clutch.
- The following table gives the types of surge suppressors and the recommended products.

Туре	Feature	Recommended product
Diode	Diodes are used for relatively small loads such as relays when the reset time is not an issue. The surge voltage at power cutoff is the lowest, but the reset time takes longer. Used for 24/48-VDC systems.	Use a high-speed diode, especially the fast-recovery diode with short reverse recovery time such as RU2 made by Sanken Electronic Co., Ltd.
Varistor	Thyristors and varistors are used for loads when an induction coil is large, as in a solenoid, and when reset time is an issue. The surge voltage at power cutoff is approximately 1.5 times the varistor voltage.	Select the varistor voltage according to the following list. • 24-VDC type: varistor voltage 39 V • 100-VDC type: varistor voltage 200 V • 100-VAC type: varistor voltage 270 V • 200-VAC type: varistor voltage 470 V
Capacitor and resistor	The combination of capacitor and resistor is used to absorb vibration in the surge at power cutoff. You can shorten the reset time by selecting the appropriate capacitance and resistance.	Okaya Electric Industries Co., Ltd. XEB12002 0.2 μF - 120 Ω XEB12003 0.3 μF - 120 Ω

[•] The manufacturer of varistor is shown below. Refer to the catalogs from the manufacturer for details. Varistor: SEMITEC Corporation, Panasonic Corporation

Contactor

Select a contactor based on the inrush current that flows through circuits and the maximum momentary phase current.

For details on the inrush current of the Servo Drives, refer to *Molded Case Circuit Breaker (MCCB)* on page 4-62.

Improving Noise Immunity of Control I/O Signals

The I/O signals may malfunction if control I/O is affected by noise.

- Use the control I/O power supply (especially 24 VDC) which is completely separated from the external power supply used for operation. Especially, be careful not to connect the ground wires of these two power supplies.
- Install a noise filter on the primary side of the control I/O power supply.
- When you use a motor with a brake, do not share the 24 VDC power supply between the brake and the control I/O (24 VDC). Also, do not connect the ground wires. Doing so may cause I/O signals to malfunction.
- If there is a long wiring for the control I/O power supply, you can improve its noise immunity by adding an approximately 1-µF laminated ceramic capacitor between the control I/O power supply and the ground at the Servo Drive's input section or the Controller's output section.

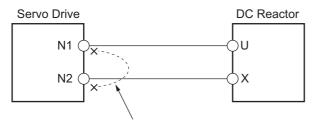
Reactor for Harmonic Current Reduction

Countermeasure against Harmonic Current

- · Use a reactor to suppress the harmonic current. A reactor can suppress a sharp change in cur-
- · Select the reactor according to the model of your Servo Drive.

Applicable Servo Drive			DC Reactor					
Voltage	Model	Model	Rated current	Inductance (0% to 20%)				
100 VAC	R88D-1SN01L-ECT	R88A-PD2002	1.6 A	21.4 mH				
	R88D-1SN02L-ECT	R88A-PD2004	3.2 A	10.7 mH				
	R88D-1SN04L-ECT	R88A-PD2007	6.1 A	6.75 mH				
200 VAC	R88D-1SN01H-ECT	R88A-PD2002	1.6 A	21.4 mH				
	R88D-1SN02H-ECT							
	R88D-1SN04H-ECT	R88A-PD2004	3.2 A	10.7 mH				
	R88D-1SN08H-ECT	R88A-PD2007	6.1 A	6.75 mH				
	R88D-1SN10H-ECT	R88A-PD2015	9.3 A	3.51 mH				
	R88D-1SN15H-ECT							
	R88D-1SN20H-ECT	R88A-PD2022	13.8 A	2.51 mH				
	R88D-1SN30H-ECT	R88A-PD2037	22.3 A	1.6 mH				
400 VAC	R88D-1SN06F-EC	R88A-PD4007	3.0 A	27 mH				
	R88D-1SN10F-ECT	R88A-PD4015	4.7 A	14 mH				
	R88D-1SN15F-ECT							
	R88D-1SN20F-ECT	R88A-PD4022	6.9 A	10.1 mH				
	R88D-1SN30F-ECT	R88A-PD4037	11.6 A	6.4 mH				

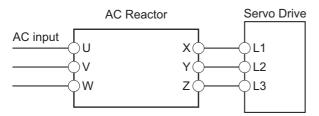
Applicable Servo Drive			DC Reactor*1				
Voltage	Model	Model	Rated current	Induc- tance (0% to 20%)	Wire size*2	Weight	Manufac- turer
200 VAC	R88D-1SN55H-ECT	UZDA-B-OMR1S	43.7 A	0.84 mH	AWG 6 to 4,	5.3 kg	Sao Elec-
	R88D-1SN75H-ECT	5575H (Drawing			14.0 to 22.0		tric Co.,
		No. 43NA08-A)			mm ²		Ltd.
400 VAC	R88D-1SN55F-ECT	UZDA-BOMR1S	21.9 A	3.35 mH	AWG 12 to	5.4 kg	
	R88D-1SN75F-ECT	5575F (Drawing			8, 3.5 to 8.0		
		No. 43NA53-B)			mm ²		


Appli	Applicable Servo Drive			AC Reactor ^{*1}				
Voltage	Model	Model	Rated current	Induc- tance (0% to 20%)	Wire size*2	Weight	Manufac- turer	
200 VAC	R88D-1SN150H-ECT	UZBA-B-OMR1S	70.0 A	0.35 mH	AWG 6 to 4,	12.2 kg	Sao Elec-	
		150H (Drawing			14.0 to 22.0		tric Co.,	
		No. 43NA10-A)			mm ²		Ltd.	
400 VAC	R88D-1SN150F-ECT	UZBA-B-OMR1S	36.0 A	1.30 mH	AWG 10 to	11.9 kg		
		150F (Drawing			8, 5.5 to 8.0			
		No. 43NA12-A)			mm ²			

^{*1.} Please contact SUN-WA TECHNOS Co., Ltd. Please inform of the Model and the Drawing No.

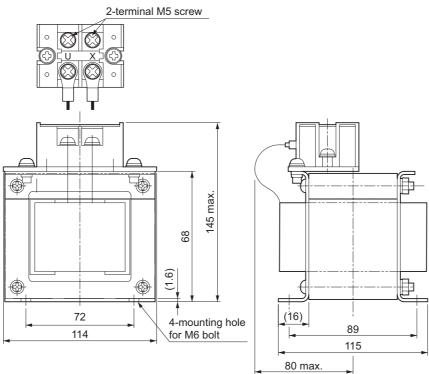
^{*2.} Use wires with the rated voltage of 600 V or higher. An example of using heat-resistant polyvinyl chloride insulated wires (HIV) at the ambient temperature of 50°C.

DC Reactor Connection

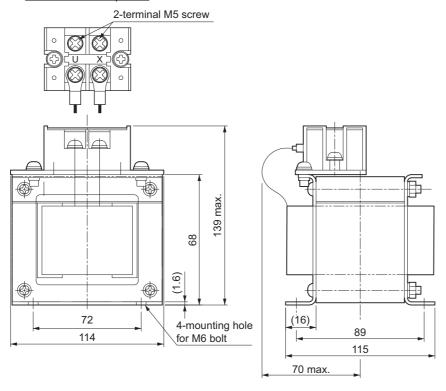

As shown in the following figure, remove the short-circuit wire between N1 and N2, and connect the DC Reactor between N1 and N2.

Remove the short-circuit wire between N1 and N2.

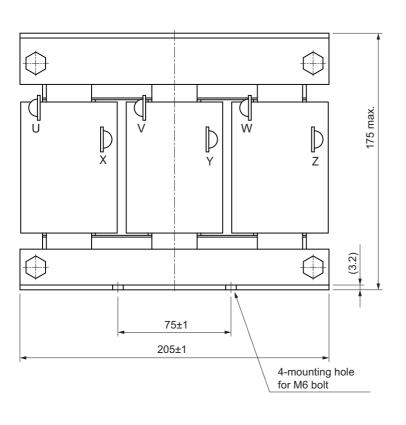
AC Reactor Connection

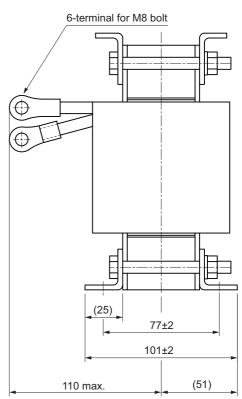

As shown in the following figure, connect the AC Reactor between the AC power supply for the main circuit and Servo Drive.

Recommended Reactor External Dimensions

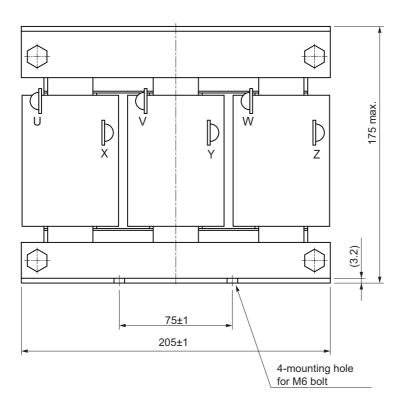

UZDA-B-OMR1S5575H

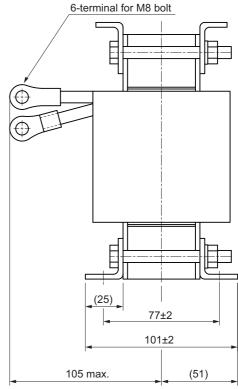
Terminal block top view




UZDA-B-OMR1S5575F

Terminal block top view




UZDA-B-OMR1S150H

UZDA-B-OMR1S150F

Ferrite Core

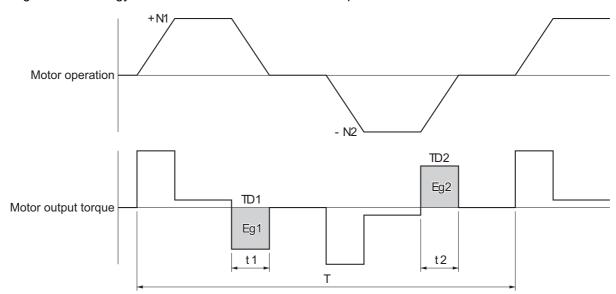
Use a ferrite core to reduce switching noise caused by PWM output of Servo Drive and radiated noise caused by internal oscillator circuit. The recommended product is shown as below.

Product model	Manufacturer	Purpose
E04SR301334	SEIWA ELECTRIC MFG	Install between a Servo Drive and an external regeneration resistor.
		Install it to 30 mm or less from a Servo Drive. Number of windings are 1 turn.

Regenerative Energy Absorption

The Servo Drives have a built-in capacitor, which absorbs the regenerative energy produced during motor deceleration, etc. When the built-in capacitor cannot absorb all regenerative energy, the Internal Regeneration Resistor absorbs the rest of the energy. If the amount of regenerative energy from the Servomotor is too large, regeneration operation stops and an Overvoltage Error occurs in order to prevent the Internal Regeneration Resistor from burning.

If this occurs, reduce the regenerative energy by changing operating patterns, or increase the regeneration process capacity by connecting an External Regeneration Resistor.



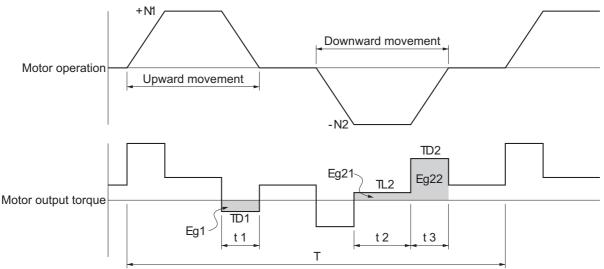
Additional Information

- · Some Servo Drive models do not have the Internal Regeneration Resistor.
- Regenerative energy absorption capacity depends on the Servo Drive model. Refer to Amount of Internal Regeneration Absorption in Servo Drives on page 4-75 for checking the Servo Drive model with Internal Regeneration Resistor and its regenerative energy absorption capacity.

4-4-1 Calculating the Regenerative Energy

Regenerative energy calculation for a horizontal axis is explained.

- In the output torque graph, acceleration in the positive direction is shown as positive (+), and acceleration in the negative direction is shown as negative (-).
- The regenerative energy values in each region can be calculated from the following equations.


$$\begin{split} E_{g1} &= \frac{1}{2} \cdot \frac{2\pi}{60} \cdot N_1 \cdot T_{D1} \cdot \ t_1 \left[J \right] \\ E_{g2} &= \frac{1}{2} \cdot \frac{2\pi}{60} \cdot N_2 \cdot T_{D2} \cdot \ t_2 \left[J \right] \end{split}$$

N1 N2 : Rotation speed at start of deceleration [r/min]

TD1. TD2: Deceleration torque [N·m] : Deceleration time [s] t1, t2

Note Due to the loss from motor winding resistance and inverter, the actual regenerative energy will be approximately 90% of the values calculated from the above equations.

Regenerative energy calculation for a vertical axis is explained.

- In the output torque graph, acceleration in the rising direction is shown as positive (+), and acceleration in the falling direction is shown as negative (-).
- The regenerative energy values in each region can be calculated from the following equations.

$$E_{g1} \!=\! \frac{1}{2} \!\cdot\! \frac{2\,\pi}{60} \!\cdot N_1 \!\cdot\! T_{D1} \!\cdot\! t_1 \quad [J]$$

$$\mathsf{E}_{\mathsf{g21}} = \frac{2\,\pi}{60} \cdot \mathsf{N}_2 \cdot \mathsf{T}_{\mathsf{L2}} \cdot \mathsf{t}_2 \qquad [\mathsf{J}]$$

$$\begin{split} E_{g21} &= \frac{2\,\pi}{60} \cdot N_2 \cdot T_{L2} \cdot t_2 \qquad [J] \\ E_{g22} &= \frac{1}{2} \cdot \frac{2\,\pi}{60} \cdot N_2 \cdot T_{D2} \cdot t_3 \quad [J] \end{split}$$

$$E_{g2} = E_{g21} + E_{g22}$$
 [J]

N1, N2 : Rotation speed at start of deceleration [r/min]

TD1 TD2: Deceleration torque [N·m]

TL2 : Torque during downward movement [N·m]

: Deceleration time [s] t1, t3

: Constant-speed driving time during downward movement [s]

Note Due to the loss from winding resistance, the actual regenerative energy will be approximately 90% of the values calculated from these equations.

Regenerative Energy Absorption by Built-in Capacitor

If both of the previously mentioned values Eq1 and Eg2 [J] are smaller than or equal to the amount of regenerative energy Ec [J] that the Servo Drive's built-in capacitor can absorb, the built-in capacitor can process all regenerative energy.

If either of Eq1 and Eq2 [J] is larger than the amount of regenerative energy Ec [J] that the Servo Drive's built-in capacitor can absorb, use the following equation to calculate the average amount of regenerative power Pr [W].

Eg=(Eg1-Ec)+(Eg2-Ec)[J]

Pr = Eg/T [W]

Pr: Average regenerative power that must be absorbed in one cycle of operation [W]

Eg: Regenerative energy that must be absorbed in one cycle of operation [J]

Ec: Regenerative energy that the drive's built-in capacitor can absorb [J]

T: Operation cycle [s]

Note If the result of (Eq1 - Ec) is zero or less, then assign 0 to the result. The same applies to the case where (Eq2 - Ec) is zero or less.

The above equation calculates the average regenerative power Pr [W] that cannot be absorbed by the built-in capacitor.

If this average regenerative power Pr [W] is smaller than or equal to the average regenerative power which the Servo Drive's Internal Regeneration Resistor can absorb, the Servo Drive can process all regenerative energy.

If the Internal Regeneration Resistor cannot process the average regenerative power Pr [W], take the following measures.

- Connect an External Regeneration Resistor. Regenerative process capacity improves.
- Reduce the operating rotation speed. The amount of regenerative energy is proportional to the square of the rotation speed.
- Lengthen the deceleration time. Regenerative energy per unit time decreases.
- · Lengthen the operation cycle, i.e., the cycle time. Average regenerative power decreases.

4-4-2 Servo Drive Regeneration Absorption Capacity

Amount of Internal Regeneration Absorption in Servo Drives

The following table shows the amount of regenerative energy and regenerative power that each Servo Drive can absorb. If the regenerative energy exceeds these values, take measures as mentioned previously.

Servo Drive specifications			Regenerative energy specifications			
Single- phase/ 3-phase	Main cir- cuit power supply voltage	Rated output	Model	Regenera- tive energy to be absorbed by built-in capacitor [J]	Average regenera- tive energy to be absorbed by Internal Regenera- tion Resis- tor [W]	Allowable minimum regeneration resistance [Ω]
Single-	100 VAC	100 W	R88D-1SN01L-ECT	24		15
phase		200 W	R88D-1SN02L-ECT	36		15
		400 W	R88D-1SN04L-ECT	50	18	20
Single and	200 VAC	100 W	R88D-1SN01H-ECT	19		25
3-phase		200 W	R88D-1SN02H-ECT	19		25
		400 W	R88D-1SN04H-ECT	26		25
		750 W	R88D-1SN08H-ECT	46	18	20
3-phase		1 kW	R88D-1SN10H-ECT	46	18	20
Single and 3-phase		1.5 kW	R88D-1SN15H-ECT	60	32	17
3-phase		2 kW	R88D-1SN20H-ECT	60	32	10
		3 kW	R88D-1SN30H-ECT	72	32	10
		5.5 kW	R88D-1SN55H-ECT	168	60	5.4
		7.5 kW	R88D-1SN75H-ECT	168	60	4.0
		15 kW	R88D-1SN150H-ECT	348		2.5
	400 VAC	600 W	R88D-1SN06F-ECT	24	24	65
		1 kW	R88D-1SN10F-ECT	24	24	65
		1.5 kW	R88D-1SN15F-ECT	49	24	65
		2 kW	R88D-1SN20F-ECT	73	32	40
		3 kW	R88D-1SN30F-ECT	73	32	40
		5.5 kW	R88D-1SN55F-ECT	171	60	16
		7.5 kW	R88D-1SN75F-ECT	171	60	16
		15 kW	R88D-1SN150F-ECT	354		10

The regenerative energy to be absorbed by built-in capacitor varies depending on the input voltage to the main circuit power supply for the Servo Drive. The values shown above are calculated based on the following input voltages.

Model	Main circuit power supply input voltage
R88D-1SN□L-ECT	100 VAC
R88D-1SN□H-ECT	200 VAC
R88D-1SN□F-ECT	400 VAC

Regenerative Energy Absorption by an External Regeneration 4-4-3 **Resistance Device**

If the regenerative power exceeds the average regenerative power that the Internal Regeneration Resistor of the Servo Drive can absorb, connect an External Regeneration Resistance Device.

Connect the External Regeneration Resistance Device between B1 and B2 terminals on the Servo Drive.

Double-check the terminal names when you connect the resistor because the Servo Drive may be damaged if the resistor is connected to the wrong terminals.

The surface of the External Regeneration Resistance Device will heat up to approximately 200°C. Do not place it near equipment and wiring that is easily affected by heat.

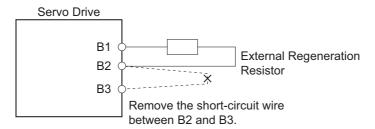
External Regeneration Resistor

Refer to 3-5 Specifications of External Regeneration Resistors and External Regeneration Resistance *Units* on page 3-146 for details on the specifications.

Characteristics

External Regeneration Resistor R88A-RR120□, R88A-RR300□

Model	Resistance value	Power to be absorbed for 120°C tempera- ture rise	Heat radiation specification	Heat radiation condition
R88A-RR12015	15 Ω	24 W	Natural cooling	Aluminum
R88A-RR12025	25 Ω			350 mm × 350 mm
R88A-RR30002R5	2.5 Ω	60 W		Thickness: 3.0 mm
R88A-RR30004	4 Ω			
R88A-RR30005R4	5.4 Ω			
R88A-RR30010	10 Ω			
R88A-RR30015	15 Ω			
R88A-RR30016	16 Ω			
R88A-RR30017	17 Ω			
R88A-RR30020	20 Ω			
R88A-RR30025	25 Ω			
R88A-RR30033	33 Ω			


External Regeneration Resistance Unit R88A-RR1K6□, R88A-RR550□

Model	Resistance value	Power to be absorbed for 120°C tempera- ture rise	Heat radiation specification
R88A-RR1K602R5	2.5 Ω	640 W	Forced cooling by
R88A-RR1K604	4 Ω		the fan
R88A-RR1K605R4	5.4 Ω		
R88A-RR1K610	10 Ω		
R88A-RR1K616	16 Ω		
R88A-RR1K617	17 Ω		
R88A-RR1K620	20 Ω		
R88A-RR1K640	40 Ω		
R88A-RR1K666	66 Ω		
R88A-RR55002R5	2.5 Ω	110 W	Natural cooling
R88A-RR55004	4 Ω		
R88A-RR55005R4	5.4 Ω		
R88A-RR55010	10 Ω		
R88A-RR55016	16 Ω		

4-4-4 Connecting an External Regeneration Resistor

Normally, short-circuit B2 and B3.

When an External Regeneration Resistor is required, remove the short-circuit wire between B2 and B3, and connect an External Regeneration Resistor between B1 and B2 as shown below.

Precautions for Correct Use

In **Regeneration** (4310 hex), set a value which is appropriate for the external regeneration resistor that is connected. If you set a wrong value, the resistor may produce heat abnormally, and fire or burning may result.

Adjustment for Large Load Inertia

The applicable Servomotor load inertia is a value to prevent the Servo Drive circuits from damage during normal operation.

For the use of the Servomotor within the range of applicable load inertia, the precautions for adjustment and dynamic brake are described below.

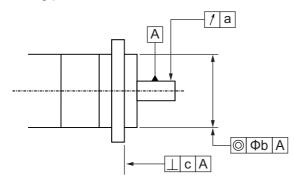
Do not use the dynamic brake frequently for deceleration operation because the dynamic brake is intended for the stop at the time of an error.

Observe the following instructions to prevent wire breakage, smoking and ignition from occurring in the dynamic brake.

- Do not use Servo ON/OFF to start and stop the Servomotor when it is not necessary.
- Do not use an external drive source to drive the Servomotor. Do not turn ON the power supply during motor rotation.
- When the Servomotor is stopped by the dynamic brake, allow it to be in a stop state for three minutes or more before the Servo is turned ON again.

As a guide, the dynamic brake can be used 1,000 times under the following conditions: Stopping is performed when the Servomotor rotates at the rated speed, the maximum applicable load inertia is not exceeded, and the dynamic brake is used once every three minutes.

The load applied to the dynamic brake circuit increases in proportion to the load inertia and rotation speed. An excessive load may cause a failure.


Use the following expression as a guide for determining the operating rotation speed and operating inertia.

Rated rotation speed² Operating inertia ≤ (Maximum applicable inertia + Servomotor inertia) × Operating rotation speed² Servomotor inertia

Refer to 7-13 Dynamic Brake on page 7-46 for how to set the dynamic brake.

4-6 Machine Accuracy for Servomotor

The following table shows the machine accuracy (Total Indicator Reading) for the output shaft and mounting parts of the Servomotor.

● R88M-1L□□□

Item	Accuracy (mm)
Runout of output shaft end (a)	0.02
Eccentricity of flange outer diameter to output shaft (b)	0.06
Squareness of flange surface to output shaft (c)	0.08

● R88M-1M□□□

Item	Ser	vomotor	Accuracy (mm)
Runout of output shaft end (a)	Flange Size	180×180 or less	0.02
		220×220	0.03
Eccentricity of flange outer diameter to	Rated Output	3 kW or less	0.06
output shaft (b)		4 kW or more	0.08
Squareness of flange surface to output	Flange Size	80×80 or less	0.07
shaft (c)		100×100 to	0.08
		180×180	
		220×220	0.10

Noise Filter Installation Conditions 4-7 When the Total Wire Length Is Long

This section describes how to use recommended book-type noise filters when, in a 3-phase 200-V input model of Servo Drive, a motor power cable connected to one Servo Drive is longer than 20 m or when you connect more than one 3-phase 200-V input model of Servo Drive at 1.5 kW or less to one noise filter.

Note that 1S-series products do not conform to EMC Directives when they are installed in accordance with the installation conditions described in this section.

Precautions for Safe Use

Do not use any noise filters other than the recommended products.

Selecting an unsuitable noise filter may result in a poor noise reduction effect. A Servo Drive may produce some noise that travels through the power supply cable and causes unintended operation of other Servo Drives such as regeneration operation and Overvoltage Error.

4-7-1 Noise Filters for Motor Power Cables That Are Longer Than 20 **Meters**

When a motor power cable connected to one Servo Drive is longer than 20 m, you can use the noise filter manufactured by Soshin Electric Co., Ltd. or Cosel Co., Ltd.

For how to wire and install a noise filter, refer to 4-1-5 Noise Filter Installation Conditions on page 4-15.

• 3-Phase 200-VAC Input Models

Арј	olicable Servo Drive		Book-type Noise Filter		
Voltage	Model	Model	Rated current	Leakage current	Manufacturer
3-Phase 200 VAC	R88D-1SN0□H-ECT R88D-1SN10H-ECT R88D-1SN15H-ECT	FSB-30-254-HU*1	30 Arms	12 mA max. (at 250 VAC, 60 Hz, △ connection and single-phase ground)	Cosel Co., Ltd.
	R88D-1SN15H-ECT R88D-1SN20H-ECT R88D-1SN30H-ECT	HF3020C-SZL*2	20 Arms	7.7 mA max. (at 200 VAC, 60 Hz, △ connection and single-phase ground)	Soshin Electric Co., Ltd.
	R88D-1SN55H-ECT	HF3040C-SZA-33 EDD*2	40 Arms	4.0 mA max. (at 200 VAC, 60 Hz,	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	- ·				
			80 Arms	ground)	
	R88D-1SN150H-ECT	HF3100C-SZC-33 EDE ^{*2}	100 Arms		

^{*1.} Consult Cosel Co., Ltd.

^{*2.} Consult Soshin Electric Co., Ltd.

4-7

4-7-2 Noise Filter to Connect to More Than One Servo Drive

For the noise filter manufactured by Cosel Co., Ltd., more than one 3-phase 200-V input model of Servo Drive at 1.5 kW or less can be connected to one noise filter.

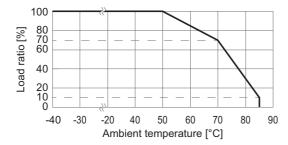
The total wire length of motor power cables that you can connect to one noise filter changes depending on the version of the motor power cables. Check the version of the motor power cables that you use and consider the corresponding total wire length when you select.

Installing a Noise Filter to Connect to More Than One Servo Drive

Depending on the combination of Servo Drives connected to one noise filter, the total wire length of connectable motor power cables varies.

Referring to Installation Conditions of Noise Filter to Connect to More Than One Servo Drive in the following table, perform the following procedure to decide on the Servo Drives connected to one noise filter.

- 1 Check that the total rated input current from the Servo Drives connected to one noise filter is equal to or less than the rated current of the noise filter.
 - Rated current of noise filter ≥ Total rated input current from Servo Drives
- 2 Check that the total wire length of motor power cables of the Servo Drives connected to one noise filter is equal to or less than the maximum total wire length of motor power cables for each noise filter.


Maximum total wire length of motor power cables for each noise filter ≥ Total wire length of motor power cables

Installation Conditions of Noise Filter to Connect to More Than One Servo Drive

A	pplicable \$	Servo Drive group ^{*1}			e Noise Filter		length of r cables for fil	n total wire notor power each noise ter ^{*2}
Group	Voltage	Details on group and applicable model	Model	Rated current	Leakage current	Manu- facturer	Ver.1.0	version Ver.1.1
2	3-phase 200 VAC	Servo Drives at 750 W or less R88D-1SN01H-ECT R88D-1S(A)N02H-ECT R88D-1S(A)N04H-ECT R88D-1S(A)N08H-ECT Servo Drives at 1 kW or less	FSB-30- 254-HU* ³	30 Arms*4	12 mA max. (at 250 VAC, 60 Hz, △ connection and single-phase ground)	Cosel Co., Ltd.	60 m	130 m
3		Models of group 1 and R88D-1S(A)N10H-ECT Servo Drives at 1.5 W or less Models of group 2 and R88D-1S(A)N15H-ECT	-				50 m	90 m

- *1. You can connect more than one Servo Drive to one noise filter even when you use a configuration that consists of 1S-series products and 1S-series products Advance Type (R88D-1SAN□) if you satisfy the conditions.
- *2. Conditions for cable version 1.0 are applied to configurations that consist of version 1.0 and version 1.1 cables. The version of integrated cables of the 1S-series products Advance Type is 1.1.
- *3. Consult Cosel Co., Ltd.
- *4. If the ambient temperature of the noise filter exceeds 50°C, reduce the rated current of the noise filter according to the following derating characteristics.

When the ambient temperature of the noise filter is 70° C, the rated current of the noise filter becomes 30 Arms × 0.7 = 21 Arms.

Do not block up an air hole for heat radiation in the cabinet.

Rated Input Current from Servo Drives

Servo Drive model	Rated input current [A (rms)] (Main circuit power supply voltage: 3-phase 240 VAC)
R88D-1SN01H-ECT	1.0
R88D-1SN02H-ECT	1.5
R88D-1SN04H-ECT	2.7
R88D-1SN08H-ECT	4.0
R88D-1SN10H-ECT	5.8
R88D-1SN15H-ECT	9.0

Example of Installing a Noise Filter to Connect to More Than One Servo Drive

The following gives an example of selecting noise filters when you use the following seven Servo Drives and power cables. This example is for cable version 1.0.

	Serv	Motor power cable		
No.	Model	Rated input current	Applicable Servo Drive group	length
1	R88D-1SN01H-ECT	1.0 Arms	1 (750 W max.)	20 m
2	R88D-1SN01H-ECT	1.0 Arms	1 (750 W max.)	10 m
3	R88D-1S(A)N02H-ECT	1.5 Arms	1 (750 W max.)	20 m
4	R88D-1S(A)N02H-ECT	1.5 Arms	1 (750 W max.)	5 m
5	R88D-1S(A)N08H-ECT	4.0 Arms	1 (750 W max.)	20 m
6	R88D-1S(A)N10H-ECT	5.8 Arms	2 (1 kW max.)	20 m
7	R88D-1S(A)N15H-ECT	9.0 Arms	3 (1.5 kW max.)	30 m
	Total	23.8 Arms		125 m

4-7

1 Check that the total rated input current from the Servo Drives connected to one noise filter is equal to or less than the rated current of the noise filter.

The total rated input current from No.1 to No.7 Servo Drives is calculated as 23.8 Arms. Since the rated current of the noise filter is 30 Arms or less, you can connect all the seven Servo Drives to one noise filter.

Rated current of noise filter: 30 Arms ≥ Total rated input current from seven Servo Drives: 23.8 Arms

2 Check that the total wire length of motor power cables of the Servo Drives connected to one noise filter is equal to or less than the maximum total wire length of motor power cables for each noise filter.

The total wire length of motor power cables connected to No.1 to No.7 Servo Drives is calculated as 125 m. Installation of these Servo Drives to one noise filter applies to the applicable Servo Drive group 3 (1.5 kW max.). Since it exceeds the maximum total wire length of motor power cables for each noise filter in the applicable Servo Drive group 3 (1.5 kW max.): 50 m, you cannot connect all the seven Servo Drives to one noise filter.

Maximum total wire length of motor power cables in applicable Servo Drive group 3 (1.5 kW max.): 50 m ≤ Total wire length of motor power cables connected to seven Servo Drives: 125 m

Therefore, it is necessary to connect the seven Servo Drives separately to multiple noise filters, so that each of the lengths may not exceed the maximum total wire length of motor power cables for each noise filter. Perform the following procedure, starting with a group smaller in rated input current, to calculate the total wire length of motor power cables connected to Servo Drives and decide on the Servo Drives connected to one noise filter.

(1) Selecting Servo Drives Connected to the First Noise Filter

No.1 to No.4 Servo Drives apply to the applicable Servo Drive group 1 (750 W max.). The total wire length of motor power cables connected to these Servo Drives is calculated as 55 m.

Since it is not more than the maximum total wire length of motor power cables for each noise filter in the applicable Servo Drive group 1 (750 W max.): 60 m, you can connect No.1 to No.4 Servo Drives to one noise filter.

Maximum total wire length of motor power cables in applicable Servo Drive group 1 (750 W max.): 60 $m \ge Total$ wire length of motor power cables connected to No.1 to No.4 Servo Drives: 55 m

(2) Selecting Servo Drives Connected to the Second Noise Filter

No.5 to No.6 Servo Drives apply to the applicable Servo Drive group 2 (1 kW max.). The total wire length of motor power cables connected to these Servo Drives is calculated as 40 m

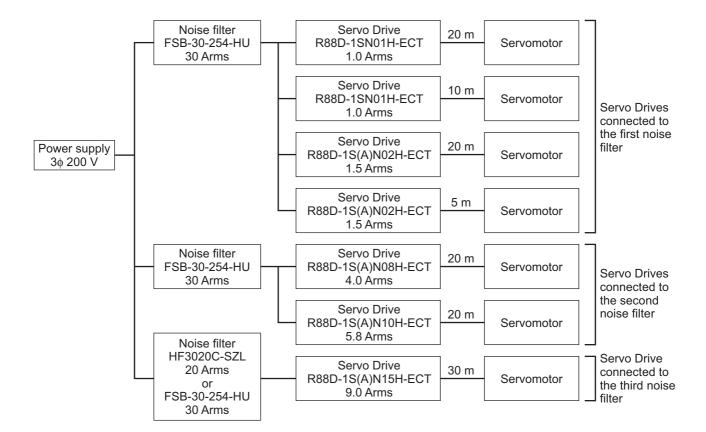
Since it is not more than the maximum total wire length of motor power cables for each noise filter in the applicable Servo Drive group 2 (1 kW max.): 50 m, you can connect No.5 to No.6 Servo Drives to one noise filter.

Maximum total wire length of motor power cables in applicable Servo Drive group 2 (1 kW max.): $50 \text{ m} \ge \text{Total}$ wire length of motor power cables connected to No.5 to No.6 Servo Drives: 40 m

(3) Selecting a Servo Drive Connected to the Third Noise Filter

Select a noise filter for the remaining No.7 Servo Drive. Since the No.7 Servo Drive is 1.5 kW and a motor power cable connected is 30 m, you can use HF3020C-SZL manufactured by Soshin Electric Co., Ltd. or FSB-30-254-HU manufactured by Cosel Co., Ltd.

In this case, you need three noise filters. The following tables show the selection results.

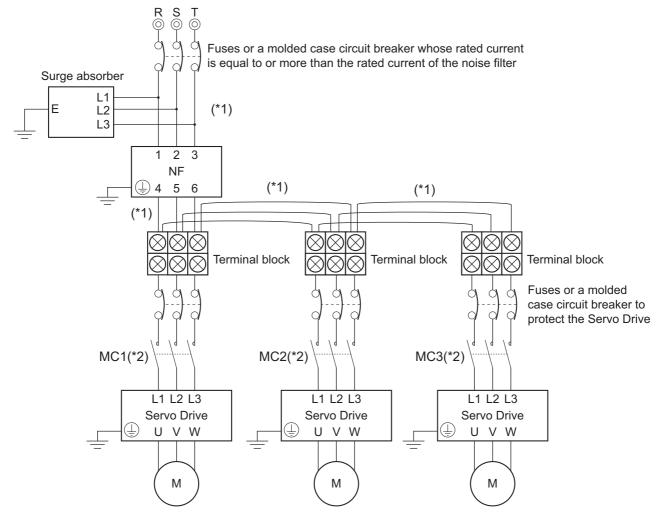

· Noise Filter to Connect to More Than One Servo Drive

Servo Drive	Applicable Servo Drive group	Total wire length of motor power cables	Maximum total wire length of motor power cables for each noise filter*1
No.1 to 4	Group 1	55 m	60 m
Nos.5 and 6	Group 2	40 m	50 m

^{*1.} This is the upper limit when cable version 1.0 is used.

· Noise Filters for Motor Power Cables That Are Longer Than 20 Meters

Servo Drive	Noise filter	Wire length of motor power cables
No.7	HF3020C-SZL	30 m
	FSB-30-254-HU	



4-7

Wiring a Noise Filter to Connect to More Than One Servo Drive

This section describes the wiring procedure when you install more than one Servo Drive to one noise filter. For how to wire and install a noise filter, refer to *4-1-5 Noise Filter Installation Conditions* on page 4-15.

- To relay a noise filter and Servo Drives, use the terminal blocks with a rated voltage of 250 V or more and a rated current of 30 A or more. To tighten two wires together, use such a terminal block as you can do so.
- Ensure that the size of wires used between the power supply and the noise filter and the size of wires used between the noise filter and the relay terminal blocks are thick enough to pass at least the total rated input current from the multiple Servo Drives connected to one noise filter. Wiring between the noise filter and the Servo Drives should be as short as possible.
- Install fuses or molded case circuit breakers between the noise filter and each Servo Drive to protect the Servo Drives.
- To ensure safety, install fuses or a molded case circuit breaker whose rated current is equal to or more than the rated current of the noise filter on the input side of the noise filter.
- Be sure to install a surge absorber on the power supply input (LINE) side of each noise filter.

- *1. Ensure that the size of wires used for the input side of the noise filter and the size of wires used between the noise filter and the relay terminal blocks are thick enough to pass at least the rated current of the noise filter.
- *2. Wire a contactor so that the main circuit power supply will be cut off when the ERR signal (normally close contact) of the control output function is output (open). Refer to 4-2-1 Peripheral Equipment Connection Examples on page 4-20 for details on wiring.

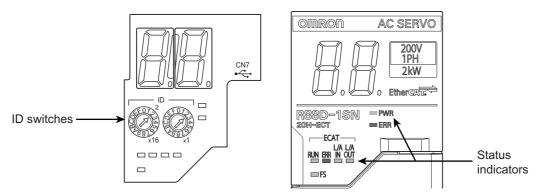
Precautions for Safe Use

- · Check that the total rated input current from the Servo Drives is equal to or less than the rated current of the noise filter. Burning or failure may result.
- · When you connect more than one Servo Drive to one noise filter, be sure to use relay terminal blocks for connecting the noise filter and the Servo Drives, without tightening the terminals together on the noise filter terminal block. Burning or failure may result.
- · Select such relay terminal blocks as you can tighten terminals together. It is up to two terminals that should be tightened together. Burning or failure may result.

WARNING

When you connect more than one Servo Drive to one noise filter, ensure that the size of wires used for the input side of the noise filter and the size of wires used between the noise filter and the relay terminal blocks are thick enough to pass at least the rated current of the noise filter.

Not doing so may cause a fire or electric shock.


EtherCAT Communications

This section explains EtherCAT communications under the assumption that the Servo Drive is connected to a Machine Automation Controller NJ/NX-series CPU Unit or Position Control Unit (Model: CJ1W-NC \square 8 \square).

5-1		Area and Settings	
	5-1-1	Node Address Setting	
	5-1-2	Status Indicators	5-3
5-2	Structu	re of the CAN Application Protocol over EtherCAT	5-5
5-3	EtherC	AT State Machine	5-6
5-4	Proces	s Data Objects (PDOs)	5-7
	5-4-1	PDO Mapping Settings	
	5-4-2	Sync Manager PDO Assignment Settings	
	5-4-3	Fixed PDO Mapping	
	5-4-4	Variable PDO Mapping	5-11
	5-4-5	Sync Manager PDO Mapping Assignment Settings	5-12
5-5	Service	Data Objects (SDOs)	5-13
5-6	Synchr	onization Mode and Communications Cycle	5-14
5-6	Synchr 5-6-1	onization Mode and Communications Cycle	
5-6	-	-	5-14
5-6 5-7	5-6-1 5-6-2	Distributed Clock (DC) Mode	5-14 5-14
	5-6-1 5-6-2 Emerge	Distributed Clock (DC) Mode	5-14 5-14 5-15
5-7	5-6-1 5-6-2 Emerge Sysma	Distributed Clock (DC) Mode Free-Run Mode ency Messages C Device Features	5-14 5-14 5-15 5-16
5-7 5-8	5-6-1 5-6-2 Emerge Sysma	Distributed Clock (DC) Mode Free-Run Mode ency Messages C Device Features Redundancy Function	5-14 5-14 5-15 5-16
5-7 5-8	5-6-1 5-6-2 Emerge Sysma Cable F	Distributed Clock (DC) Mode Free-Run Mode ency Messages Device Features Redundancy Function Objects Requiring Settings	5-14 5-14 5-15 5-16 5-20
5-7 5-8	5-6-1 5-6-2 Emerge Sysma Cable F 5-9-1	Distributed Clock (DC) Mode Free-Run Mode ency Messages C Device Features Redundancy Function Objects Requiring Settings Description of Operation	5-14 5-15 5-16 5-20 5-20
5-7 5-8	5-6-1 5-6-2 Emerge Sysma Cable F 5-9-1 5-9-2	Distributed Clock (DC) Mode Free-Run Mode ency Messages Device Features Redundancy Function Objects Requiring Settings	5-14 5-15 5-16 5-20 5-20
5-7 5-8	5-6-1 5-6-2 Emerge Sysmae Cable F 5-9-1 5-9-2 5-9-3	Distributed Clock (DC) Mode Free-Run Mode Ency Messages C Device Features Redundancy Function Objects Requiring Settings Description of Operation Procedure of Checking Operation	5-14 5-15 5-16 5-20 5-20 5-20 5-21
5-7 5-8	5-6-1 5-6-2 Emerge Sysmae Cable F 5-9-1 5-9-2 5-9-3	Distributed Clock (DC) Mode Free-Run Mode Ency Messages C Device Features Redundancy Function Objects Requiring Settings Description of Operation Procedure of Checking Operation Slave Communications Statuses When Cable Redundancy Function Is	5-14 5-15 5-16 5-20 5-20 5-21 5-23

Display Area and Settings

This section explains the indicators and switches located on the front of the Serve Drive.

Node Address Setting 5-1-1

Use the ID switches located in the display area to set the EtherCAT node address.

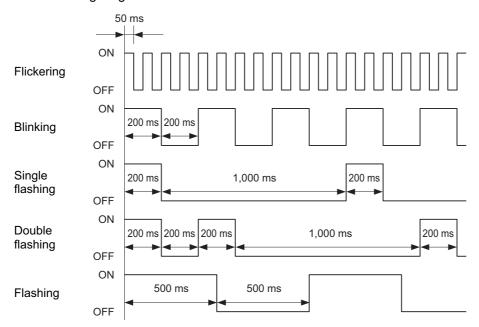
	Description
ID switch setting	Connection to NJ/NX-series CPU Unit or
	Position Control Unit (Model: CJ1W-NC□8□)
00	The controller sets the node address.
01 to FF	The ID switches set the node address.

Precautions for Correct Use

The ID switch setting is read only once when the Unit power supply is turned ON. Although the setting is changed after the Unit power supply is ON, it is not reflected in the control. It is enabled the next time the Unit power supply is turned ON.

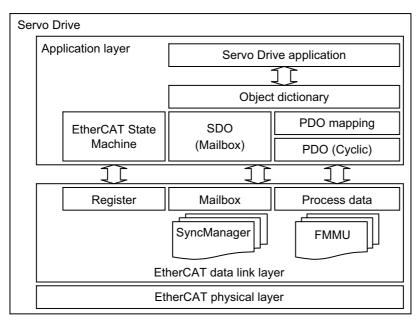
Additional Information

EtherCAT Slave Information File


Information on EtherCAT slave settings is stored in the ESI (EtherCAT Slave Information) file. The master uses the information in this file to configure the network and set communications parameters. This information is in an XML file.

5-1-2 Status Indicators

The following table shows the status indicators and their meaning.

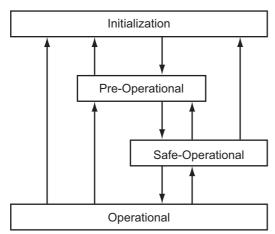

Name	Function	Color	Status	Description
PWR	Displays the sta-	Green	OFF	Control power supply OFF
	tus of control power supply.		ON	Control power supply ON
ERR	Displays Unit error	Red	OFF	No error
	status.		ON	Error detected
			Flashing	A warning occurred
ECAT-RUN	Displays the sta- tus of ESM.	Green	OFF	Init state or power OFF state
	tus of Esivi.		Blinking	Pre-Operational state
			Single flash	Safe-Operational state
			ON	Operational state
ECAT-ERR	Displays Ether-	Red	OFF	No error
	CAT communica- tions error status.		Blinking	Communications setting error
			Single flash	Synchronization error or communications data error
			Double flash	Application WDT timeout (Sync Manager WDT Error)
			ON	A fatal error such as WDT timeout
L/A IN	Displays link sta-	Green	OFF	Link not established in physical layer
	tus in EtherCAT physical layer.		ON	Link established in physical layer
			Flickering	In operation after link was established
L/A OUT	Displays link sta-	Green	OFF	Link not established in physical layer
	tus in EtherCAT physical layer.		ON	Link established in physical layer
	projection rayon		Flickering	In operation after link was established
FS	Displays FSoE	Green	ON	FSoE slave connection established
	communications status.		Flashing	FSoE slave connection establishment in progress
		Red	Flashing	Safety Parameter Error, Safety Communications Timeout, or other errors
			OFF	STO via FSoE is disabled, the power is not supplied, or a fatal error including Self-diagnosis Error

See the following diagram for the status of the indicators.

5-2 Structure of the CAN Application Protocol over EtherCAT

This section explains the structure of the CAN application protocol over EtherCAT (CoE) for a 1S-series Servo Drive with built-in EtherCAT communications.

Normally, EtherCAT can transmit different protocols. 1S-series Servo Drives with Built-in EtherCAT Communications use the IEC 61800-7 (CiA 402) drive profile.

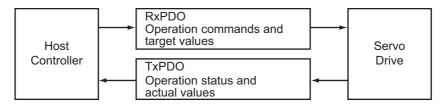

The object dictionary in the application layer contains parameters and application data as well as information on the PDO mapping between the process data servo interface and Servo Drive application.

The process data object (PDO) consists of the object dictionary that can be used for PDO mapping. The contents of the process data are defined by the PDO mapping.

Process data communications cyclically reads and writes the PDO. Mailbox communications (SDO) uses asynchronous message communications where all objects in the object dictionary can be read and written.

EtherCAT State Machine

The EtherCAT State Machine (ESM) of the EtherCAT slave is controlled by the EtherCAT master.



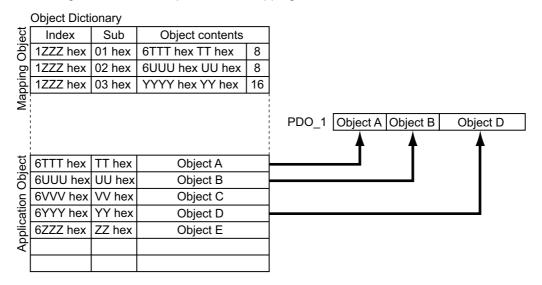
State	SDO communications	PDO reception	PDO transmission	Description
Init	Not possible	Not possible	Not possible	Communication initialization is in progress. Communications are not possible.
Pre-Operational	Possible	Not possible	Not possible	Only SDO communications are possible in this state. This state is entered after initialization is completed. In this state, the network settings are initialized.
Safe-Operational	Possible	Not possible	Possible	In this state, PDO transmissions are possible in addition to SDO communications. PDO transmissions can be used to send information such as status from the Servo Drive.
Operational	Possible	Possible	Possible	This is a normal operating state. PDO communications can be used to control the Servomotor.

Note The Bootstrap mode is not supported.

5-4 Process Data Objects (PDOs)

The process data objects (PDOs) are used for real-time data transfer during cyclic communications. PDOs can be RxPDOs, which receive data from the controller, or TxPDOs, which send status from the Servo Drive to the host controller.

The EtherCAT application layer can hold multiple objects to enable transferring Servo Drive process data. The contents of the process data are described in the PDO mapping objects and the Sync Manager PDO Assignment objects.

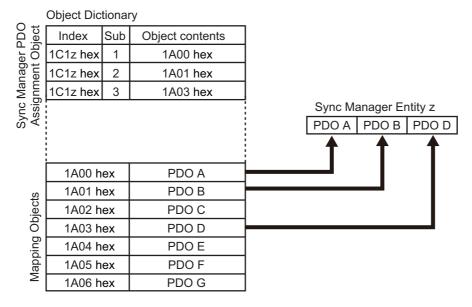

5-4-1 PDO Mapping Settings

The PDO mapping objects provide mapping for the application objects (real-time process data) between the object dictionary and PDOs.

The number of mapped objects is shown in subindex 00 hex in the mapping table. In this mapping table, 1600 to 17FF hex are for RxPDOs and 1A00 to 1BFF hex are for TxPDOs.

1S-series Servo Drives use 1600 hex, 1701 to 1705 hex, and 1710 hex for an RxPDO, and 1A00 hex, 1B01 to 1B04 hex, 1B10 hex, and 1BFF hex for a TxPDO.

The following table is an example of PDO mapping.



Sync Manager PDO Assignment Settings 5-4-2

A Sync Manager channel consists of several PDOs. The Sync Manager PDO Assignment objects describe relationships between these PDOs and the Sync Manager.

The number of PDOs is shown in subindex 00 hex in the Sync Manager PDO Assignment table. 1S-series Servo Drives use 1C12 hex for an RxPDO, and 1C13 hex for a TxPDO.

The following table is an example of Sync Manager PDO mapping.

5-4-3 **Fixed PDO Mapping**

This section describes the contents of fixed PDO mapping for 1S-series Servo Drives. You cannot change these contents.

Use Sync Manager 2 PDO Assignment (1C12 hex) and Sync Manager 3 PDO Assignment (1C13 hex) to specify the PDO mapping you use.

Some typical examples of RxPDO and TxPDO combinations are provided below.

PDO Mapping 1 (Position Control and Touch Probe Function)

This is the mapping for an application that uses only the Cyclic synchronous position mode (csp). The touch probe function is available.

RxPDO:	Controlword (6040 hex), Target position (607A hex), Touch probe function (60B8 hex), and Phys-
[258th	ical outputs (60FE-01 hex)
receive PDO	
Mapping]	
(1701 hex)	
TxPDO:	Error code (603F hex), Statusword (6041 hex), Position actual value (6064 hex), Torque actual
[258th trans-	value (6077 hex), Following error actual value (60F4 hex), Touch probe status (60B9 hex), Touch
mit PDO	probe 1 positive edge (60BA hex), Touch probe 2 positive edge (60BC hex), and Digital inputs
Mapping]	(60FD hex)
(1B01 hex)	

PDO Mapping 2 (Position Control, Velocity Control, Torque Control, and Touch Probe Function)

This is the mapping for an application that uses one of the following modes with switching them: Cyclic synchronous position mode (csp), Cyclic synchronous velocity mode, and Cyclic synchronous torque mode.

The touch probe function is available.

RxPDO:	Controlword (6040 hex), Target position (607A hex), Target velocity (60FF hex), Target torque
[259th	(6071 hex), Modes of operation (6060 hex), Touch probe function (60B8 hex), and Max profile
receive PDO	velocity (607F hex)
Mapping]	
(1702 hex)	
TxPDO:	Error code (603F hex), Statusword (6041 hex), Position actual value (6064 hex), Torque actual
[259th trans-	value (6077 hex), Modes of operation display (6061 hex), Touch probe status (60B9 hex), Touch
mit PDO	probe 1 positive edge (60BA hex), Touch probe 2 positive edge (60BC hex), and Digital inputs
Mapping]	(60FD hex)
(1B02 hex)	

PDO Mapping 3 (Position Control, Velocity Control, Touch Probe Function, and Torque Limit)

This is the mapping for an application that uses one of the following modes with switching them: Cyclic synchronous position mode (csp) and Cyclic synchronous velocity mode.

The touch probe function and torque limit are available.

RxPDO: [260th	Controlword (6040 hex), Target position (607A hex), Target velocity (60FF hex), Modes of operation (6060 hex), Touch probe function (60B8 hex), Positive torque limit value (60E0 hex), and
receive PDO	Negative torque limit value (60E1 hex)
Mapping]	
(1703 hex)	
TxPDO:	Error code (603F hex), Statusword (6041 hex), Position actual value (6064 hex), Torque actual
[260th trans-	value (6077 hex), Following error actual value (60F4 hex), Modes of operation display (6061
mit PDO	hex), Touch probe status (60B9 hex), Touch probe 1 positive edge (60BA hex), Touch probe 2
Mapping]	positive edge (60BC hex), and Digital inputs (60FD hex)
(1B03 hex)	

PDO Mapping 4 (Position Control, Velocity Control, Torque Control, Touch Probe Function, and Torque Limit)

This is the mapping for an application that uses one of the following modes with switching them: Cyclic synchronous position mode (csp), Cyclic synchronous velocity mode, and Cyclic synchronous torque mode.

The touch probe function and torque limit are available.

RxPDO:	Controlword (6040 hex), Target position (607A hex), Target velocity (60FF hex), Target torque
[261th	(6071 hex), Modes of operation (6060 hex), Touch probe function (60B8 hex), Max profile velocity
receive PDO	(607F hex), Positive torque limit value (60E0 hex), and Negative torque limit value (60E1 hex)
Mapping]	
(1704 hex)	
TxPDO:	Error code (603F hex), Statusword (6041 hex), Position actual value (6064 hex), Torque actual
[259th trans-	value (6077 hex), Modes of operation display (6061 hex), Touch probe status (60B9 hex), Touch
mit PDO	probe 1 positive edge (60BA hex), Touch probe 2 positive edge (60BC hex), and Digital inputs
Mapping]	(60FD hex)
(1B02 hex)	

PDO Mapping 5 (Position Control, Velocity Control, Touch Probe **Function, Torque Limit, and Torque Feed-forward)**

This is the mapping for an application that uses one of the following modes with switching them: Cyclic synchronous position mode (csp) and Cyclic synchronous velocity mode.

The touch probe function and torque limit are available.

You can specify the amount of torque feed-forward in the **Torque offset** (60B2 hex).

RxPDO:	Controlword (6040 hex), Target position (607A hex), Target velocity (60FF hex), Modes of opera-
[262th	tion (6060 hex), Touch probe function (60B8 hex), Positive torque limit value (60E0 hex), Nega-
receive PDO	tive torque limit value (60E1 hex), and Torque offset (60B2 hex)
Mapping]	
(1705 hex)	
TxPDO:	Error code (603F hex), Statusword (6041 hex), Position actual value (6064 hex), Torque actual
[261th trans-	value (6077 hex), Modes of operation display (6061 hex), Touch probe status (60B9 hex), Touch
mit PDO	probe 1 positive edge (60BA hex), Touch probe 2 positive edge (60BC hex), Digital inputs (60FD
Mapping]	hex), and Velocity actual value (606C hex)
(1B04 hex)	

PDO Mapping 6 (Safety Function)

This is the mapping for using the safety function through EtherCAT communications.

RxPDO:	FSoE Master CMD (E700-01 hex), STO command (6640 hex), error acknowledge (6632 hex),
[273th	FSoE Master CRC_0 (E700-03 hex), and FSoE Master Conn_ID (E700-02 hex)
receive PDO	
Mapping]	
(1710 hex)	
TxPDO:	FSoE Slave CMD (E600-01 hex), STO command (6640 hex), error acknowledge (6632 hex),
[261th trans-	Safety Connection Status (E601-01 hex), FSoE Slave CRC_0 (E600-03 hex), and FSoE Slave
mit PDO	Conn_ID (E600-02 hex)
Mapping]	
(1B10 hex)	

5-4-4 Variable PDO Mapping

1S-series Servo Drives allow you to change some mapped objects.

The PDO mapping objects for which you can change the setting are the **1st receive PDO Mapping** (1600 hex) and the **1st transmit PDO Mapping** (1A00 hex).

These objects can be changed only when the EtherCAT communications state is Pre-Operational. Since the mapping you changed is not saved in non-volatile memory, set the EtherCAT master so that the settings can be configured each time you turn ON the power supply in order to use the mapping other than the default setting.

Default Setting

RxPDO: [1st	Controlword (6040 hex), Target position (607A hex), and Touch probe function (60B8 hex)
receive PDO	
Mapping]	
(1600 hex)	
TxPDO: [1st	Error code (603F hex), Statusword (6041 hex), Position actual value (6064 hex), Touch probe
transmit	status (60B9 hex), Touch probe 1 positive edge (60BA hex), Touch probe 2 positive edge (60BC
PDO Map-	hex), Digital inputs (60FD hex)
ping]	
(1A00 hex)	

Maximum Number of Objects and Maximum Total Size Allowed in a PDO Mapping

	Max. numbe		
PDO mapping object	Communications cycle: 125 µs	Communications cycle: 250 µs or more	Max. total size of objects
RxPDO: [1st receive PDO Mapping] (1600 hex)	6	10	32 bytes
TxPDO: [1st transmit PDO Mapping] (1A00 hex)	6	10	38 bytes

Precautions for Correct Use

For information on the objects you can map, refer to *A-2-5 PDO Mapping Objects* on page A-20.

5-4-5 Sync Manager PDO Mapping Assignment Settings

1S-series Servo Drives use Sync Manager 2 to 5 PDO Assignment.

You can assign PDO mapping objects to each Sync Manager as shown in the following table.

Sync Manager	Assigned object	Supported PDO	Assigned PDO mapping object	Max. No. of assigned objects
Sync Manager 2	1C12 hex	RxPDO	1600 hex, 1701 to 1705 hex, and 1710 hex	3*1
Sync Manager 3	1C13 hex	TxPDO	1A00 hex, 1B01 to 1B04 hex, 1B10 hex, and 1BFF hex	3*2

^{*1.} The maximum object size assigned to Sync Manager 2 PDO Assignment is 32 bytes.

Objects are mapped in the order of subindex setting 01 hex, 02 hex, and 03 hex.

These objects can be changed only when the EtherCAT communications state is Pre-Operational. Since the mapping you changed is not saved in non-volatile memory, set the EtherCAT master so that the settings can be configured each time you turn ON the power supply in order to use the mapping other than the default setting.

Default Setting

Sync Manager 2 (1C12 hex)	1701 hex
Sync Manager 3 (1C13 hex)	1B01 hex

Precautions for Correct Use

- If mapped objects exceed the maximum total size, the RxPDO Setting Error (Error No.90.05) or TxPDO Setting Error (Error No.90.06) occurs.
- · If the same object is mapped in an RxPDO more than once, the value of the last object is used.
- If the same object is mapped in a TxPDO more than once, the values of the all objects are updated.

^{*2.} The maximum object size assigned to Sync Manager 3 PDO Assignment is 38 bytes.

5-5 Service Data Objects (SDOs)

1S-series Servo Drives support SDO communications. SDO communications are used for setting objects and monitoring the status of Servo Drives. The host controller performs object setting and status monitoring by reading and writing data to entries in the object dictionary.

The following table lists the abort codes for when an SDO communications error occurs.

Code (hex)	Meaning
05030000	Toggle bit not changed
05040000	SDO protocol timeout
05040001	Client/Server command specifier not valid or unknown
05040005	Out of memory
06010000	Unsupported access to an object
06010001	Attempt to read to a write only object
06010002	Attempt to write to a read only object
06010003	Subindex cannot be written, SI0 must be 0 for write access
06020000	The object does not exist in the object directory
06040041	The object can not be mapped into the PDO
06040042	The number and length of the objects to be mapped would exceed the PDO length
06040043	General parameter incompatibility reason
06040047	General internal incompatibility in the device
06060000	Access failed due to a hardware error
06070010	Data type does not match, length of service parameter does not match
06070012	Data type does not match, length of service parameter too high
06070013	Data type does not match, length of service parameter too low
06090011	Subindex does not exist
06090030	Value range of parameter exceeded (only for write access)
06090031	Value of parameter written too high
06090032	Value of parameter written too low
06090036	Maximum value is less than minimum value
08000000	General error
08000020	Data cannot be transferred or stored to the application
08000021	Data cannot be transferred or stored to the application because of local control *1
08000022	Data cannot be transferred or stored to the application because of the present device state
08000023	Object dictionary dynamic generation fails or no object dictionary is present

^{*1.} In this state, the slave operates locally and cannot be controlled from the EtherCAT master.

5-6 **Synchronization Mode and Commu**nications Cycle

1S-series Servo Drives support the following synchronization modes.

- · Distributed Clock (DC) Mode
- · Free-Run Mode

Note SM Event Mode is not supported.

5-6-1 **Distributed Clock (DC) Mode**

A mechanism called distributed clock (DC) is used to synchronize EtherCAT communications.

The DC Mode is used for 1S-series Servo Drives to perform highly accurate control in a multi-axis system.

In DC Mode, the master and slaves are synchronized by sharing the same clock.

Interruptions (Sync0) are generated in the slaves at precise intervals based on this clock.

Servo Drive control is executed at this precise timing.

Communications Cycle (DC Cycle)

The communications cycle is determined by setting the output cycle of Sync0 signal on the master side.

Setting range : 125 μ s/250 μ s/500 μ s/750 μ s/1 to 10 ms (in 0.25 ms increments)

5-6-2 Free-Run Mode

You can use the Free-Run Mode when synchronization such as the DC Mode is not required.

In Free-Run Mode, slaves perform I/O processing, i.e. refresh I/O data asynchronously with the communications cycle of the master.

Communications Cycle

The communications cycle is determined by the cycle time of the master.

Setting range : 125 µs to 100 ms

5-7 Emergency Messages

When an error or warning occurs in a 1S-series Servo Drive, an emergency message is sent to the master through SDO communications. An emergency message is not sent for a communications error.

You can select whether or not to send emergency messages in Diagnosis History (10F3 hex).

When the power supply is turned ON, **Diagnosis History – Flags** (10F3-05 hex) is set to *0* (**not notify**).

To send emergency messages, set the least significant bit of **Diagnosis History – Flags** (10F3-05 hex) to 1 every time the power is turned ON.

An emergency message consists of 8-byte data.

Byte	0	1	2	3	4	5	6	7
Con-	Emergency Error Code*1		Error Register	Manufacturer-specific Error Field*2			2	
tents	Linergency Error Code		(object 1001 hex)	'				

^{*1.} Error codes (FF00 to FFFF hex) in the manufacturer-specific area are used. Byte 0 is fixed to FF hex, and byte 1 shows the main code of an error number or warning number.

Note For details on errors and warnings of the Servo Drive, refer to Section 12 Troubleshooting.

^{*2.} Byte 3 is not used. An error code is shown in bytes 4 to 7. For details on error event codes, refer to *A-4 Sysmac Error Status Codes* on page A-100.

Sysmac Device Features **5-8**

Sysmac Device refers to the control device product designed according to standardized communications and user interface specifications for OMRON control devices. And the features that are available with such a device are called Sysmac Device Features.

This section describes the features that the Servo Drive provides when it is combined with a Machine Automation Controller such as NJ/NX series and automation software.

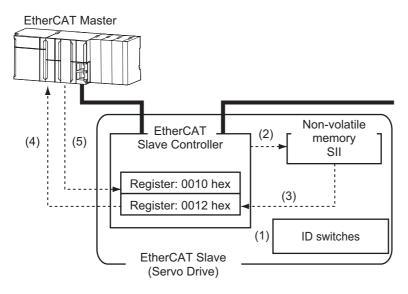
Sysmac Error Status

Because, in Sysmac Devices, errors that may occur in slaves are systematized, you can check the causes and remedies for errors with a common procedure.

The status of an error can be monitored in the **Sysmac Error Status** (2002-01 hex). To display the error detected by the Servo Drive in Sysmac Studio, the Sysmac Error Status (2002-01 hex) must be mapped to the PDO. Sysmac Studio, by default, uses the 512th transmit PDO Mapping (1BFF hex) assignment to map the Sysmac Error Status (2002-01 hex) automatically to the PDO.

Additional Information

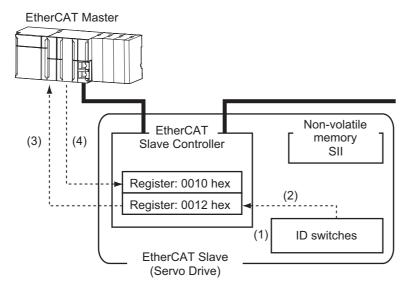
- For the Sysmac Error Status (2002-01 hex), refer to A-2-7 Manufacturer Specific Objects on page A-38.
- For errors displayed in Sysmac Studio, refer to A-4 Sysmac Error Status Codes on page


Saving the Node Address Setting

When the ID switches are set to 00, the value of the node address you set in Sysmac Studio is used. (Software setting)

When Software setting is enabled, in Sysmac Studio, execute Slave Node Address Writing on the EtherCAT tab page to save the slave node address setting in the non-volatile memory of the Servo Drive.

Software Setting


The set value saved as Slave Information Interface (SII) information in the non-volatile memory of the slave is used as the node address.

- (1) Set the ID switches to 00 during power OFF.
- (2) Write a node address value to Slave SII from the master.
- (3) When the slave power is turned ON, the node address value is applied to Register: 0012 hex by the software.
- (4) The EtherCAT master reads the value that is set in Register: 0012 hex.
- (5) The EtherCAT master writes the value of 0012 hex to 0010 hex as the node address.

Switch Setting

The value of the ID switches of the slave is used as the node address.

- (1) Set the ID switches during power OFF.
- (2) When the slave power is turned ON, the value of the ID switches is applied to the register: 0012 hex.
- (3) The EtherCAT master reads the value that is set in Register: 0012 hex.
- (4) The EtherCAT master writes the value of 0012 hex to 0010 hex as the node address.

Serial Number Display

The serial number saved in the non-volatile memory of the Servo Drive is displayed in the Serial Number (1018-04 hex). Controllers that support Sysmac Device Features can use this serial number to check the network configuration.

To enable this check, in Sysmac Studio, set Serial Number Check Method to Setting = Actual **Device** on the EtherCAT tab page.

If the specified condition is not met, a Network Configuration Verification Error will occur.

Additional Information

This network configuration check can detect the replacement of slave devices, which prevents you from forgetting to set parameters on those slaves.

Compliance with ESI Specification (ETG.2000 S (R) V1.0.7)

The ESI Specification is a set of specifications that define the entries required in an EtherCAT Slave Information (ESI) file.

Controllers that support Sysmac Device Features can use the Option function defined in the ESI Specification to identify the backup parameters stored on slaves.

The backup parameters on an identified slave can be backed up and restored from Sysmac Studio.

SII Data Check

The Slave Information Interface (SII) contains EtherCAT slave configuration information that is written to the non-volatile memory of an EtherCAT slave.

Sysmac Device EtherCAT slaves check the SII information from the slave side.

If one of these slaves finds that SII information with which it cannot operate was written, it generates an SII Verification Error (Error No. 88.03) or ESC Initialization Error (Error No. 88.01). If this error is not cleared after the power cycle, contact your OMRON sales representative.

Precautions for Correct Use

Do not use non-OMRON configuration tools to edit the SII information.

Cable Redundancy Function

Configuring a ring topology on the EtherCAT system enables communications to continue even if an EtherCAT physical layer link is disconnected in the ring topology. This function is available for the unit version 1.3 or later.

Possible causes for the ring disconnection status in which an EtherCAT physical layer link is disconnected are as follows:

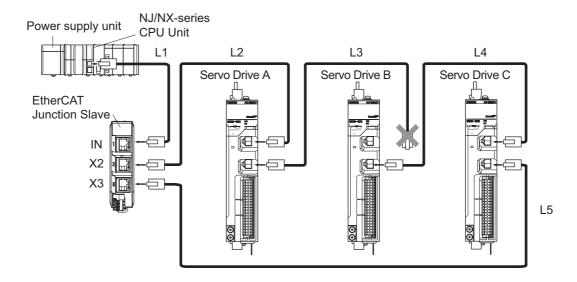
- · An EtherCAT communications cable is disconnected, loose, broken, or short-circuited.
- Failure of the EtherCAT physical layer of a Servo Drive

5-9-1 Objects Requiring Settings

When the cable redundancy function is used on the Machine Automation Controller NJ/NX Series, make the following settings.

Index (hex)	Subin- dex (hex)	Name	Recom- mended setting	Description
2200	00	Communications Error	2 or more	Set the value to 2 or more because one com-
		Setting		munications error occurs when the ring is dis-
				connected or during the restoration. The
				default value is 1.

When you build a safety system using FSoE communications, you also need to set the following item. As for the detail, refer to the NX-series Safety Control Unit User's Manual (Cat. No. Z930).


Item	Recommended setting	Description
Watchdog Time of Safety Pro-	Auto set value + EtherCAT	Make the value at least two communications
cess Data Communications Settings	communications cycle × 2 or more*1	cycles larger than the auto set value because one communications error occurs when the ring is disconnected or during the restoration.

^{*1.} If EtherCAT communications cycle × 2 is less than 3 ms, add 3 ms or more to the auto set value.

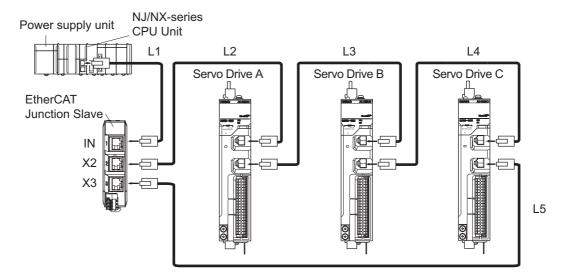
5-9-2 **Description of Operation**

This function enables communications to continue even if a cable is disconnected or broken in a ring topology and the ring disconnection status results. A communications error may occur immediately after the ring disconnection status occurs or during restoration from the ring disconnection status, and cause all Servo Drives to detect EtherCAT Communications Warnings temporarily. When an EtherCAT Communications Warning occurs, the communications error period command correction function corrects the target position. Refer to 7-14 Command Compensation Function for Communications Error on page 7-50 for details.

Even when the cable is disconnected from the ECAT IN connector on the Servo Drive B and the ring disconnection status results as in the figure below, all Servo Drives can continue communications. If an EtherCAT communications cable is disconnected, protect the disconnected connector.

The ring disconnection status may have resulted not because an EtherCAT communications cable is disconnected, but because a communications cable is broken or short-circuited, or because a Servo Drive broke down. If the ring disconnection status occurs, immediately perform inspection and take appropriate measures. Refer to *13-4 Method for Ring Disconnection Maintenance and Inspection* on page 13-5 for details on the inspection method.

After the ring disconnection status occurs because a communications cable is broken or short-circuited, or because a Servo Drive broke down, continuing to use the devices as they are may stop the entire communications system.



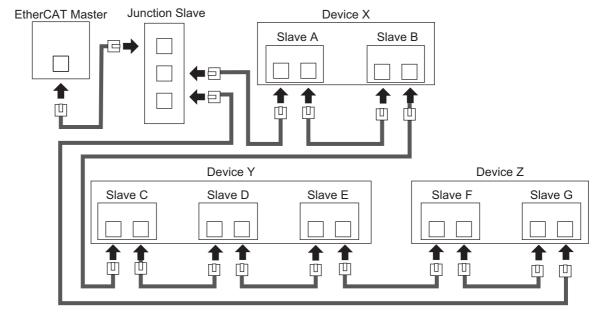
Precautions for Correct Use

If the ring disconnection status occurs, immediately perform inspection and take appropriate measures. Equipment damage may result.

5-9-3 Procedure of Checking Operation

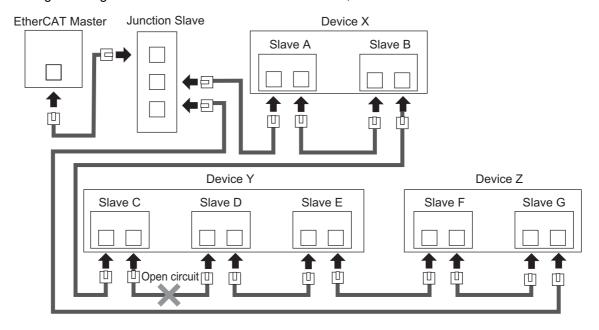
This section takes the following configuration example and describes how to check that the cable redundancy function operates correctly.

- Check that the devices start up in the normal status.
 - Connect the EtherCAT communications cables correctly, and turn ON the power supply to the EtherCAT master and to the slaves.
 - Check that there is no problem with the EtherCAT master and the slaves.
 - Check that the L/A IN indicators and the L/A OUT indicators of all slaves blink.
 - Turn OFF the power supply to the EtherCAT master and to the slaves.
- 2 With a cable disconnected from a connector, check that the communications continue in the ring disconnection status.
 - · Disconnect the cable from the ECAT IN connector on Servo Drive B, and protect the disconnected cable connector.
 - Turn ON the power supply to the EtherCAT master and to the slaves.
 - Check that there is no problem with the EtherCAT master and the slaves.
- Check the location where the ring is disconnected.
 - Check that the L/A OUT indicator of Servo Drive A and the L/A IN indicator of Servo Drive B are OFF.
 - Check that the other the L/A IN indicators and the L/A OUT indicators blink.
 - Stop operation and turn OFF the power supply to the EtherCAT master and to the slaves.
 - Connect the disconnected cable to the ECAT IN connector on Servo Drive B.
- 4 With a cable disconnected from another connector, check that the communications continue in the ring disconnection status.
 - · Disconnect the cable from the ECAT OUT connector on Servo Drive B, and protect the disconnected cable connector.
 - Turn ON the power supply to the EtherCAT master and to the slaves.
 - Check that there is no problem with the EtherCAT master and the slaves.
- **5** Check the location where the ring is disconnected.
 - Check that the L/A OUT indicator of Servo Drive B and the L/A IN indicator of Servo Drive C are OFF.
 - Check that the other the L/A IN indicators and the L/A OUT indicators blink.
 - Stop operation and turn OFF the power supply to the EtherCAT master and to the slaves.
 - Connect the disconnected cable to the ECAT OUT connector on Servo Drive B.


Now you are done with checking operation.

5-9-4 Slave Communications Statuses When Cable Redundancy Function Is Used

This section takes the following example in which the cable redundancy function is used and a ring topology is configured, and describes communications statuses during normal operation and in the ring disconnection status. The configuration example contains three devices in the ring topology.

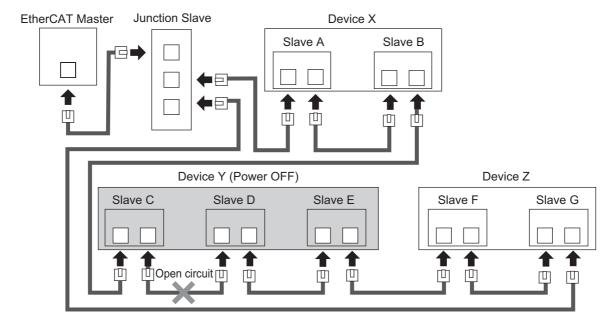

Normal Status

All slaves are in communication.

Ring Disconnection Status

Although the ring is disconnected between Slave C and D, all slaves continue communications.

Stop Device X to Z and then turn OFF the power supply to the EtherCAT master. Fix the ring disconnection status by replacing the cable, and then turn ON the power supply to the EtherCAT master and to the devices, which returns the system to the normal communications status.


Relation between the Network Configuration Information and the 5-9-5 **Actual Configuration**

The following table shows the relation between the network configuration information downloaded in an NJ/NX-series CPU Unit supporting the cable redundancy function and the actual configuration.

No.	Network Con- figuration Information	Actual Configura- tion	EtherCAT Communica- tions Status	Communications Status with a Cable Dis- connected or Broken
1	Daisy chain and branching topology only	Daisy chain and branching topol- ogy only (same as the network config- uration informa- tion)	Normal status	The communications status changes to the minor fault status in which part of the slaves can continue communications.*1
2		Contains the ring topology	Minor fault	All slaves can continue communications. Removing a cable added to the network configuration information and resetting the error returns the communications status to the status of No. 1.
3	Contains the ring topology	Daisy chain and branching topology only	Ring disconnection status	The communications status changes to the minor fault status in which part of the slaves can continue communications. *1
4		Contains the ring topology (same as the network config- uration informa- tion)	Normal status	The communications status changes to the ring disconnection status in which all slaves can continue communications. If a cable is disconnected or broken in this status, the status changes to the minor fault status in which part of the slaves can continue communications. *1

^{*1.} If a minor fault occurs, slaves not separated from the EtherCAT master operate according to Fail-soft Operation Setting of the CPU Unit. Slaves separated from the EtherCAT master cannot continue communications. Refer to the NJ/NX-series CPU Unit Built-in EtherCAT Port User's Manual (Cat. No. W505) for details on Fail-soft Operation Setting.

The following example shows a case of No. 4. In this example, the communications status changes from the normal status to the ring disconnection status, and then the power supply to Device Y is turned OFF, which turns OFF the power supply to Slave C to E and causes a minor fault. Slave A, B, F, and G continue communications even after the minor fault occurs.

Basic Control Functions

This section explains the outline and settings of basic control functions.

6-1	Outline 6-1-1 6-1-2	of Control Functions Basic Control and Control Methods Control Method	. 6-2
6-2	Control 6-2-1 6-2-2 6-2-3	Blocks Block Diagram for Position Control Block Diagram for Velocity Control Block Diagram for Torque Control	. 6-5 . 6-7
6-3	Cyclic	Synchronous Position Mode	6-10
6-4	Cyclic	Synchronous Velocity Mode	6-12
6-5	Cyclic	Synchronous Torque Mode	6-14
6-6	Profile	Position Mode	6-16
6-7	Profile '	Velocity Mode	6-21
6-8	Homing	g Mode	6-24
6-9	Connec	cting with OMRON Controllers	6-25

Outline of Control Functions 6-1

This section explains the implemented control functions.

6-1-1 **Basic Control and Control Methods**

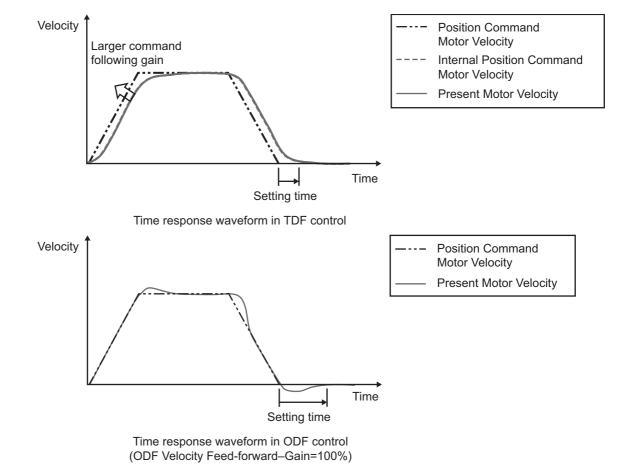
1S-series Servo Drives can use the following controls to control Servomotors.

- · Position control
- · Velocity control
- · Torque control

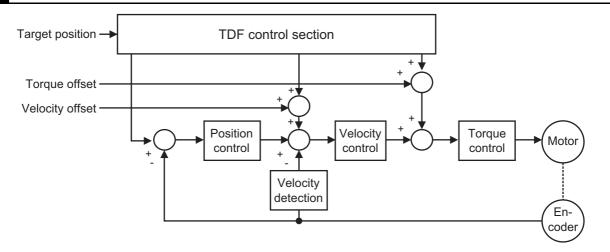
The following control methods are available for position control and velocity control.

- Two-degree-of-freedom (TDF) control
- · One-degree-of-freedom (ODF) control

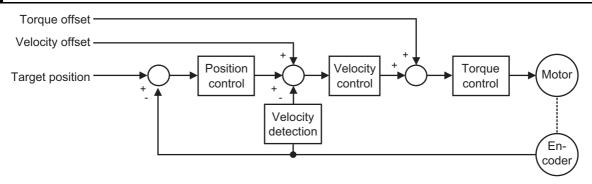
Each control corresponds to the following modes of operation defined by the CiA402 drive profile.


Basic control	Control method	Modes of operation
Position control	TDF	Cyclic synchronous position mode
	ODF	Profile position mode
		Homing mode
Velocity control	TDF	Cyclic synchronous velocity mode
	ODF	Profile velocity mode
Torque control		Cyclic synchronous torque mode

6-1-2 Control Method


For the 1S-series Servo Drives, TDF control and ODF control are available.

TDF control is a control method proper for positioning control. The smooth internal commands are generated so that the control target can be followed, and TDF controls the internal commands. In TDF control, the following ability for the internal commands is improved and the overshooting is reduced making it easier to reduce the positioning stabilization time. Use TDF control to reduce the impact on devices. If the delay of the internal commands itself for a command value seems to be a problem, adjust the command following gain.


ODF control is a control method proper to use when a high-precision path following performance such as synchronization control is necessary. The delay for a command can be minimized by setting the ODF Velocity Feed-forward - Gain to a larger value such as 100%. However, if a command that changes the acceleration rapidly is given, the command cannot be followed, and the overshooting occurs. In this case, correct the command value itself so that the command value change gets smoother.

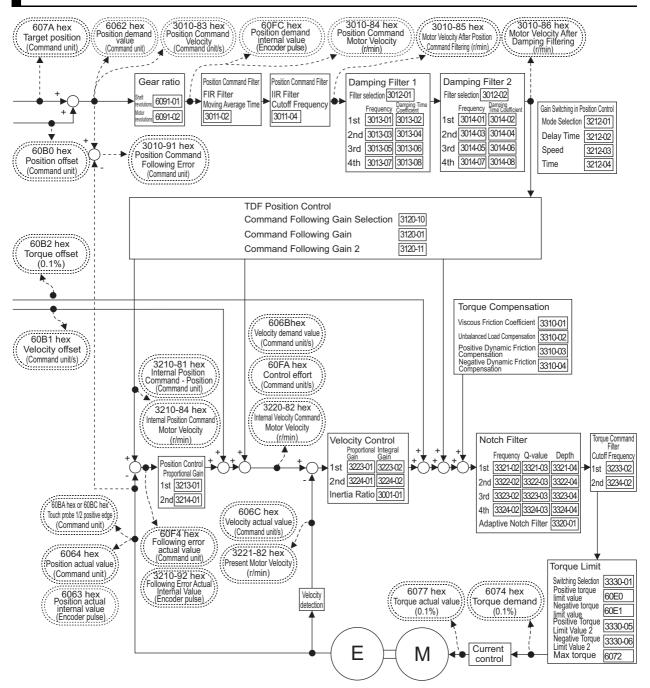
TDF Control Structure Diagram

ODF Control Structure Diagram

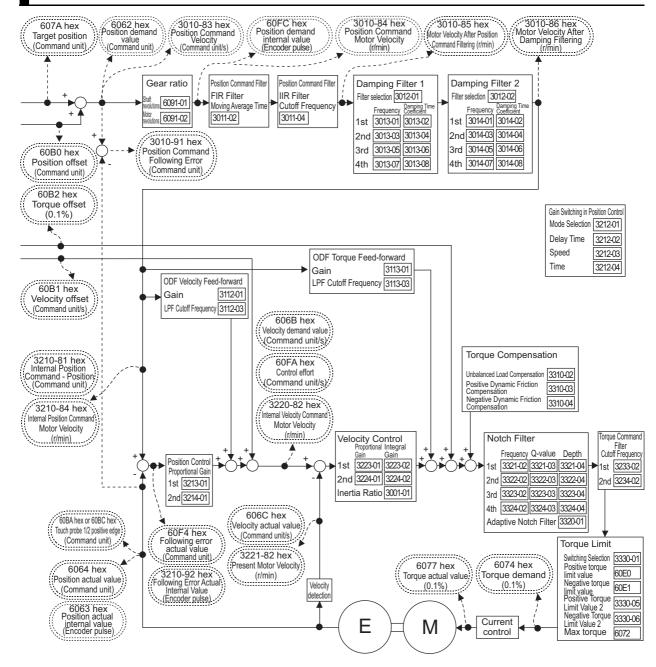
Related Objects

Use Control Method Selection (3000-03 hex) to switch between TDF control and ODF control.

Index (hex)	Subindex (hex)	Name	Description	Refer- ence
3000		Basic Functions	Set the basic functions.	P. 9-6
	03	Control Method Selection	Switches the control method between one-degree-of-freedom control and two-degree-of-freedom control.	P. 9-7
			0: ODF control	
			1: TDF control	

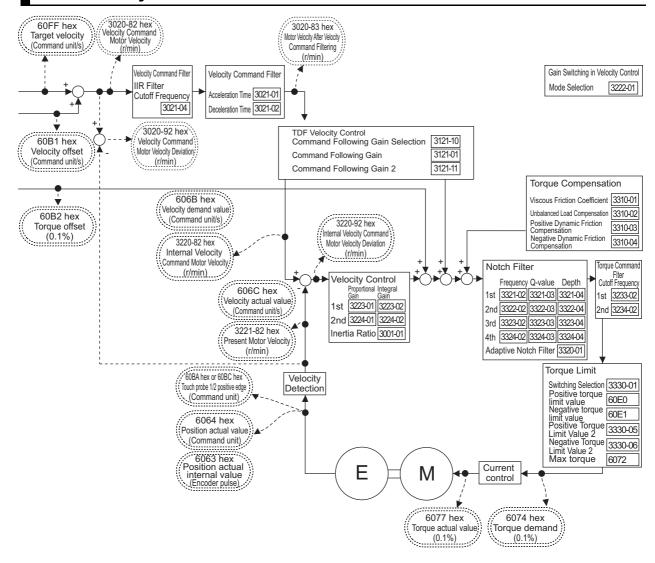

6-2 Control Blocks

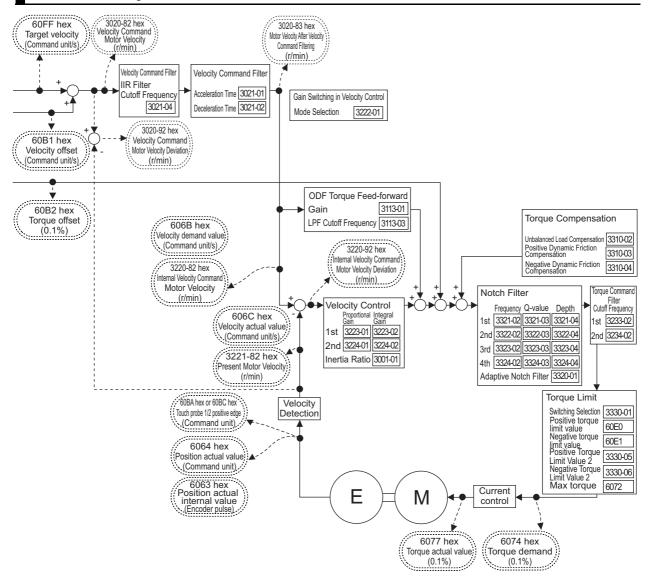
The block diagrams for position control, velocity control and torque control are given.


6-2-1 Block Diagram for Position Control

The block diagrams for TDF position control and ODF position control are given.

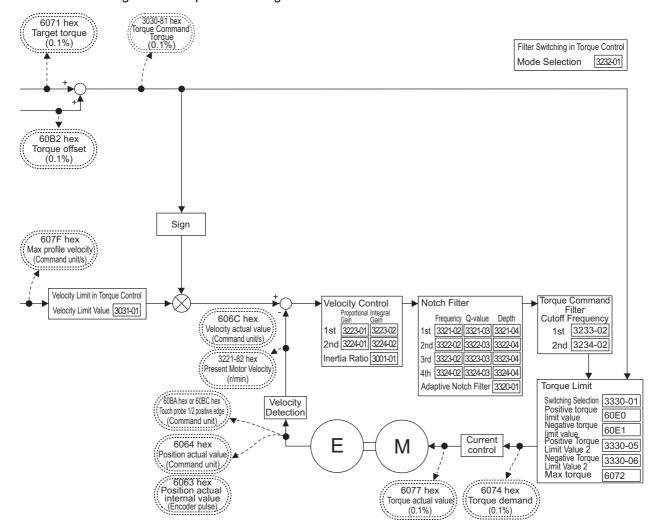
TDF Position Control


ODF Position Control


6-2-2 Block Diagram for Velocity Control

The block diagrams for TDF velocity control and ODF velocity control are given.

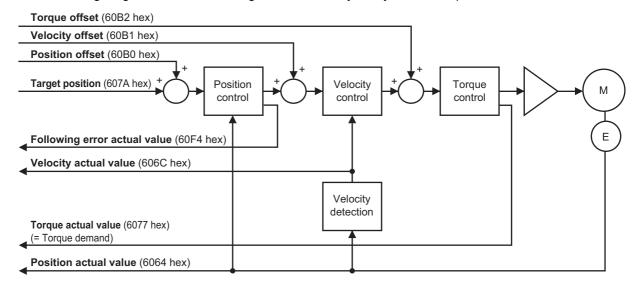
TDF Velocity Control



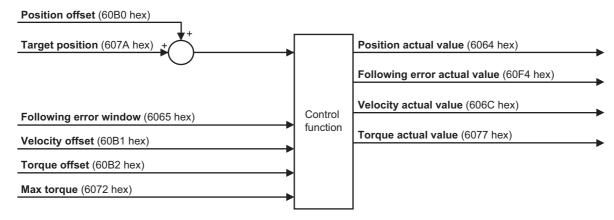
ODF Velocity Control

6-2-3 Block Diagram for Torque Control

The block diagram for torque control is given.


Cyclic Synchronous Position Mode 6-3

In this mode of operation, the controller has a path generation function (an operation profile calculation function) and it gives the target position to the Servo Drive in cyclic synchronization.


Velocity offset (60B1 hex) and Torque offset (60B2 hex) can be used as the velocity feed-forward and torque feed-forward amounts respectively.

Cyclic Synchronous Position Mode Configuration

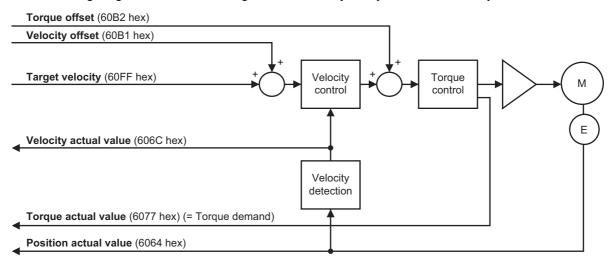
The following diagram shows the configuration of the Cyclic synchronous position mode.

The following diagram shows the configuration of the control function of the Cyclic synchronous position mode.

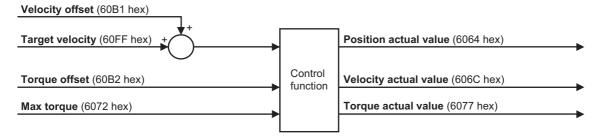
Related Objects

Index	Subindex						Default
(hex)	(hex)	Name	Access	Size	Unit	Setting range	setting
6040	00	Controlword	RW	U16		0 to FFFF hex	0000
							hex
6041	00	Statusword	RO	U16			
6060	00	Modes of operation	RW	INT8		0 to 10	0
6064	00	Position actual value	RO	INT32	Command		
					unit		
6065 ^{*1}	00	Following error win-	RW	U32	Command	0 to	84,000,
		dow			unit	2,147,483,647 or	000
						4,294,967,295	
606C	00	Velocity actual value	RO	INT32	Command		
					unit/s		
6072	00	Max torque	RW	U16	0.1%	0 to 5,000	5,000
6077	00	Torque actual value	RO	INT16	0.1%		
607A	00	Target position	RW	INT32	Command	-2,147,483,648 to	0
					unit	2,147,483,647	
60B0	00	Position offset	RW	INT32	Command	-2,147,483,648 to	0
					unit	2,147,483,647	
60B1	00	Velocity offset	RW	INT32	Command	-2,147,483,648 to	0
					unit/s	2,147,483,647	
60B2	00	Torque offset	RW	INT16	0.1%	-5,000 to 5,000	0
60F4	00	Following error actual	RO	INT32	Command		
		value			unit		

^{*1.} **Following error window** can be set to between 0 and 2,147,483,647, or 4,294,967,295. If the object is set to 4,294,967,295, the detection of Excessive Position Deviation Error will be disabled. If it is set to 0, an Excessive Position Deviation Error will always occur. If the set value is between 2,147,483,647 and 4,294,967,294, it is treated as 2,147,483,647.


Cyclic Synchronous Velocity Mode

In this mode of operation, the controller has a path generation function (an operation profile calculation function) and it gives the target velocity to the Servo Drive in cyclic synchronization.

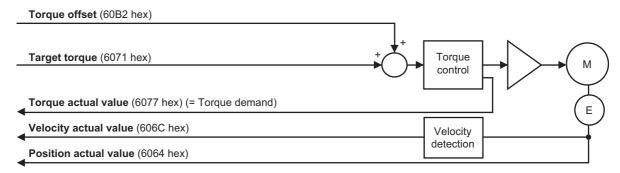

The Torque offset (60B2 hex) can be used as the torque feed-forward amount.

Cyclic Synchronous Velocity Mode Configuration

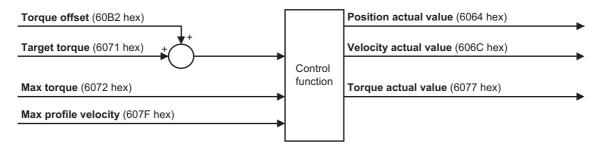
The following diagram shows the configuration of the Cyclic synchronous velocity mode.

The following diagram shows the configuration of the control function of the Cyclic synchronous velocity mode.

Related Objects


Index (hex)	Subindex (hex)	Name	Access	Size	Unit	Setting range	Default setting
6040	00	Controlword	RW	U16		0 to FFFF hex	0000
							hex
6041	00	Statusword	RO	U16			
6060	00	Modes of operation	RW	INT8		0 to 10	0
6064	00	Position actual value	RO	INT32	Command		
					unit		
606C	00	Velocity actual value	RO	INT32	Command		
					unit/s		
6072	00	Max torque	RW	U16	0.1%	0 to 5,000	5,000
6077	00	Torque actual value	RO	INT16	0.1%		
60B1	00	Velocity offset	RW	INT32	Command	-2,147,483,648 to	0
					unit/s	2,147,483,647	
60B2	00	Torque offset	RW	INT16	0.1%	-5,000 to 5,000	0
60FF	00	Target velocity	RW	INT32	Command	-2,147,483,648 to	0
					unit/s	2,147,483,647	

Cyclic Synchronous Torque Mode 6-5


In this mode of operation, the controller has a path generation function (an operation profile calculation function) and it gives the target torque to the Servo Drive in cyclic synchronization.

Cyclic Synchronous Torque Mode Configuration

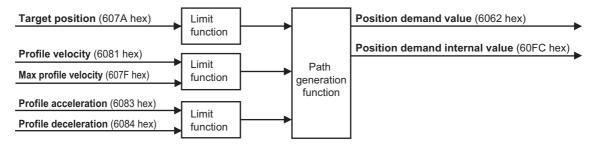
The following diagram shows the configuration of the Cyclic synchronous torque mode.

The following diagram shows the configuration of the control function of the Cyclic synchronous torque mode.

Related Objects

Index (hex)	Subindex (hex)	Name	Access	Size	Unit	Setting range	Default setting
6040	00	Controlword	RW	U16		0 to FFFF hex	0000
							hex
6041	00	Statusword	RO	U16			
6060	00	Modes of operation	RW	INT8		0 to 10	0
6064	00	Position actual value	RO	INT32	Command		
					unit		
606C	00	Velocity actual value	RO	INT32	Command		
					unit/s		
6071	00	Target torque	RW	INT16	0.1%	-5,000 to 5,000	0
6072	00	Max torque	RW	U16	0.1%	0 to 5,000	5,000
6077	00	Torque actual value	RO	INT16	0.1%		
607F	00	Max profile velocity	RW	U32	Command	0 to	0
					unit/s	2,147,483,647	
60B2	00	Torque offset	RW	INT16	0.1%	-5,000 to 5,000	0

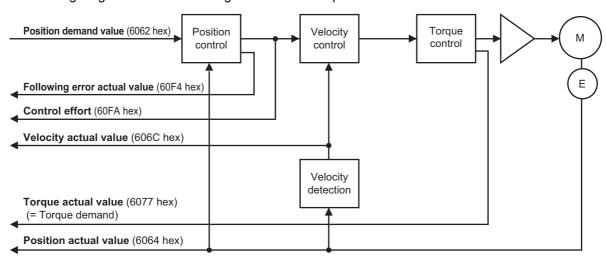
Related Functions

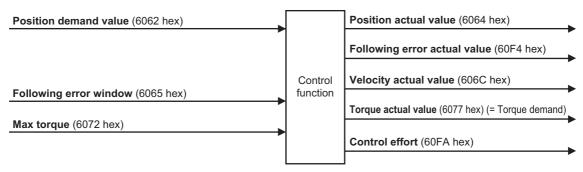

Index (hex)	Subindex (hex)	Name	Description	Refer- ence
3031		Velocity Limit in Torque Control		P. 9-24
	01	Velocity Limit Value	Sets the velocity limit value in the torque control. The torque control is performed so that the value set in the Velocity Limit Value is not exceeded.	P. 9-24

6-6 Profile Position Mode

In this mode of operation, the controller uses the path generation function (an operation profile calculation function) inside the Servo Drive to perform PTP positioning operation. It executes path generation based on the target position, profile velocity, profile acceleration, profile deceleration, and other information

The Profile position mode can be used when the communications period is 250 μ s or more. If the communications period is less than 250 μ s, a Command Error (Error No. 91.01) occurs.


The following diagram shows the configuration of the path generation function.


To use these objects, map them in the variable PDO mapping as appropriate.

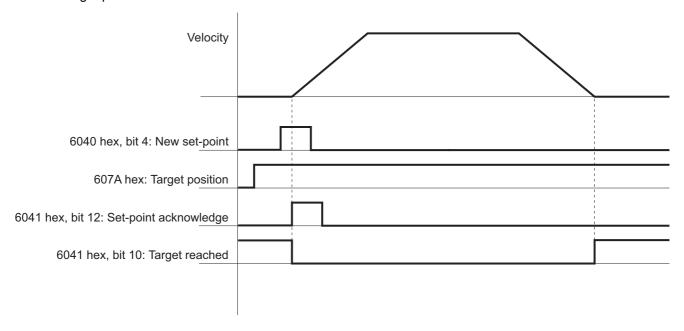
Profile Position Mode Configuration

The following diagram shows the configuration of Profile position mode.

The following diagram shows the control function configuration of Profile position mode.

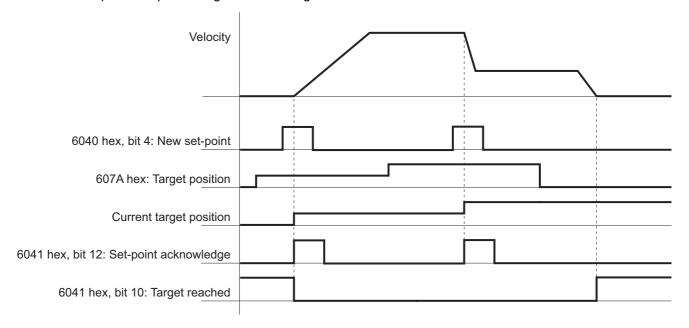
Related Objects

Index (hex)	Subindex (hex)	Name	Access	Size	Unit	Setting range	Default set- ting
6040	00	Controlword	RW	U16		0 to FFFF hex	0000 hex
6041	00	Statusword	RO	U16			
6060	00	Modes of operation	RW	INT8		0 to 10	0
6062	00	Position demand value	RO	INT32	Command unit		
6064	00	Position actual value	RO	INT32	Command unit		
6065 ^{*1}	00	Following error window	RW	U32	Command unit	0 to 2,147,483,647 or 4,294,967,295	100,000
606C	00	Velocity actual value	RO	INT32	Command unit/s		
6072	00	Max torque	RW	U16	0.1%	0 to 5,000	5,000
6077	00	Torque actual value	RO	INT16	0.1%		
607A ^{*2}	00	Target position	RW	INT32	Command unit	-2,147,483,648 to 2,147,483,647	0
607F	00	Max profile velocity	W	U32	Command unit/s	0 to 2,147,483,647	2,147,483,647
6081	00	Profile velocity	RW	U32	Command unit/s	0 to 2,147,483,647	0000 hex
6083	00	Profile acceleration	RW	U32	Command unit/s ²	1 to 2,147,483,647	1,000,000
6084	00	Profile deceleration	RW	U32	Command unit/s ²	1 to 2,147,483,647	1,000,000
60F4	00	Following error actual value	RO	INT32	Command unit		
60FA	00	Control effort	RO	INT32	Command unit/s		
60FC	00	Position demand internal value	RO	INT32	Encoder unit		


^{*1.} **Following error window** can be set to between 0 and 2,147,483,647, or 4,294,967,295. If the object is set to 4,294,967,295, the detection of Excessive Position Deviation Error will be disabled. If it is set to 0, an Excessive Position Deviation Error will always occur. If the set value is between 2,147,483,647 and 4,294,967,294, it is treated as 2,147,483,647.

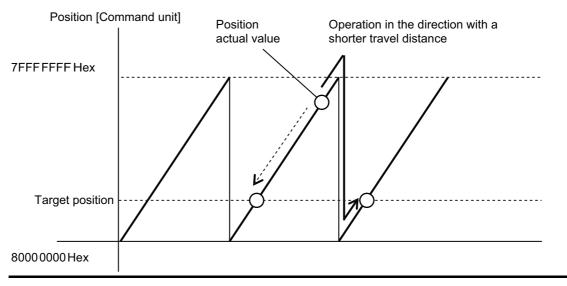
^{*2.} To enable the Servo Drive to accept commands without fail, the object value must always be retained for two communications cycles or more.

Description of Function


Set the Controlword (6040 hex) bit 5 (Change set immediately) to 1.

When you set the Target position (607A hex) and the Profile velocity (6081 hex) and then change the Controlword (6040 hex) bit 4 (New set point) from 0 to 1, the Servo Drive starts positioning to the set target position.

You can change the target value while PTP positioning is in progress.


During PTP positioning, when you change the Target position (607A hex) and Profile velocity (6081 hex) value and then change the **Controlword** (6040 hex) bit 4 (New set point) from 0 to 1, the Servo Drive performs positioning with the changed value.

Precautions for Correct Use

Depending on the positional relationship between the position actual value and target position, operation is performed in the direction with a shorter travel distance.

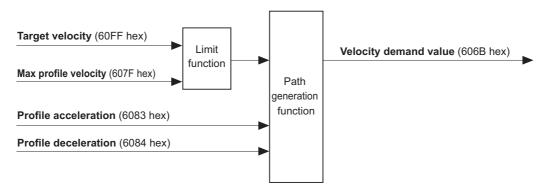
Controlword (6040 hex) in Profile Position Mode

The bits in Controlword used in the Profile position mode are explained below. For the bits that are common to all modes, refer to *A-1 CiA 402 Drive Profile* on page A-2.

Bit	Name	Description
4	New set-point	Starts positioning at the rising edge, from 0 to 1, of the signal.
		In this timing, the values of Target position (607A hex) and Profile velocity (6081 hex) are obtained.
5	Change set immediately	Always set to 1 (Change set immediately).
		If set to 0, positioning does not occur due to a Command Warning.
6	Absolute/relative (abs/rel)	Always set to 0 (abs).
		If set to 1 (rel), positioning does not occur due to a Command Warn-
		ing.
8	Halt	When set to 0, positioning starts or continues.
		When set to 1, positioning stops according to the Halt option code (605D hex) setting.
9	Change on Set-point	Unused for 1S-series Servo Drives.

Statusword (6041 hex) in Profile Position Mode

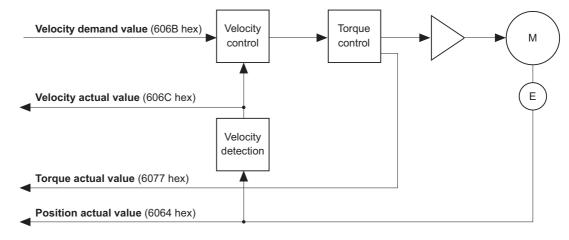
The bits in Statusword used in the Profile position mode are explained below.


Bit	Name	Value	Description
10	Target reached	0	Halt bit is 0: Positioning is not completed.
			Halt bit is 1: The axis is decelerating.
		1	Halt bit is 0: Positioning is completed.
			Halt bit is 1: The axis speed is zero.
12	Set-point acknowledge	0	Waiting for a new Target position.
		1	Ready to accept updates (overwriting) of the
			Target position.
13	Following error	0	No Following error occurred.
		1	A Following error occurred.

6-7 Profile Velocity Mode

In this mode of operation, the controller uses the path generation function (an operation profile calculation function) inside the 1S-series Servo Drive to control the velocity. It executes path generation based on the target velocity, profile acceleration, profile deceleration, and other information.

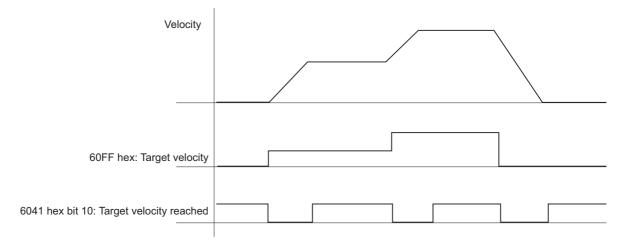
The Profile velocity mode can be used when the communications period is 250 µs or more. If the communications period is less than 250 µs, a Command Error (Error No. 91.01) occurs.


The following diagram shows the configuration of the path generation function.

To use these objects, map them in the variable PDO mapping as appropriate.

Profile Velocity Mode Configuration

The following diagram shows the configuration of the Profile velocity mode.


Related Objects

Index (hex)	Subindex (hex)	Name	Access	Size	Unit	Setting range	Default setting
6040	00	Controlword	W	U16		0000 to FFFF	0000 hex
						hex	
6041	00	Statusword	R	U16			
6064	00	Position actual value	R	INT32	Command unit		
606B	00	Velocity demand	R	INT32	Command		
		value			unit/s		
606C	00	Velocity actual value	R	INT32	Command		
					unit/s		
6077	00	Torque actual value	R	INT16	0.1%		
607F	00	Max profile velocity	W	U32	Command	0 to	0
					unit/s	2,147,483,647	
6083	00	Profile acceleration	W	U32	Command	1 to	1,000,000
					unit/s ²	2,147,483,647	
6084	00	Profile deceleration	W	U32	Command	1 to	1,000,000
					unit/s ²	2,147,483,647	
60FF	00	Target velocity	W	INT32	Command	-2,147,483,648	0
					unit/s	to	
						2,147,483,647	

Description of Function

When you set the Target velocity (60FF hex), the Servo Drive starts acceleration/deceleration operation to the set target velocity.

You can change the target velocity while acceleration/deceleration is in progress.

Controlword (6040 hex) in Profile Velocity Mode

The bits in Controlword used in the Profile position mode are explained below.

For the bits that are common to all modes, refer to A-1 CiA 402 Drive Profile on page A-2.

Bit	Name	Value	Description
4	Not used.		
5	Not used.		
6	Not used.		
8	Halt	0	Velocity control starts or continues.
0	Пан	1	Stop axis according to the Halt option code (605D hex).
9	Not used.		

Statusword (6041 hex) in Profile Velocity Mode

The bits in Statusword used in the Profile position mode are explained below.

Bit	Name	Value	Description			
10	Target reached	0	Target velocity not reached			
10	10 Target reached	1	Target velocity reached			
		0	Zero speed not detected			
12	Speed	1	Zero speed detected			
13	Not used.	0				

Homing Mode 6-8

In this mode of operation, the Servo Drive has a path generation function (an operation profile calculation function) and it executes the homing operation in the Homing method specified from the controller.

When a controller is connected, the following two homing procedures are available depending on the controller specifications.

Procedure 1

Create a homing operation pattern in the controller, and provide the command to the Servo Drive in Cyclic synchronous position mode (csp).

When you use the controller to perform the homing operation in procedure 1, refer to the manual for the controller.

Procedure 2

Use the Homing mode of the Servo Drive. The controller specifies a homing method supported by the Servo Drive and commands the start of the homing operation.

The Homing mode can be used when the communications period is 250 µs or more. If the communications period is less than 250 µs, a Command Error (Error No. 91.01) occurs.

When you use the controller to perform the homing operation in procedure 2, refer to the manual for the controller and A-1-5 Homing Mode Specifications on page A-7.

Additional Information

Procedure 1 is used for the OMRON Machine Automation Controller NJ/NX-series CPU Unit and the Position Control Unit (Model: CJ1W-NC□8□). In this procedure, the Position Control Unit creates a homing operation pattern and provides the command to the Servo Drive in the Cyclic synchronous position mode (csp) to perform the homing operation.

6-9 Connecting with OMRON Controllers

This section describes the settings required to connect the Servo Drive with an OMRON controller.

Machine Automation Controller NJ/NX-series CPU Unit

The following tables show the setting values required to use the control functions of the controller. If you change these settings, read and understand the relevant specifications in advance and set appropriate values.

Common Settings

Index (hex)	Subindex (hex)	Name	Recom- mended setting	Description
3001		Machine		The gear ratio used by the Servo Drive is 1:1,
	05	Motor Revolutions	1	and command units are set by the control-
	06	Shaft Revolutions	1	ler.*1
3330		Torque Limit		If both PCL and NCL are OFF, the torque limit
	01	Switching Selection	2	is controlled with the values of 60E0 hex and 60E1 hex that are mapped to a PDO.
	05	Positive Torque Limit Value 2	5,000	Default setting = 500.0%
	06	Negative Torque Limit Value 2	5,000	Default setting = 500.0%
3A00		Homing		The value of offset used by the Servo Drive is
	06	Home Offset	0	0 .
3B10		Drive Prohibition		Drive prohibition input is disabled for the
	01	Enable	0	Servo Drive, and this function is handled by the controller.
3B11		Software Position Limit		Disabled in both positive and negative direc-
	01	Enable Selection	0	tions.
3B30		Touch Probe 1	-	Touch probe1 source is set to External Latch
	01	Touch Probe 1 Source	1	Input 1, and Touch probe 2 source is set to External Latch Input 2.
3B31		Touch Probe 2		Touch probe1 source is set to External Latch
	01	Touch Probe 2 Source	2	Input 1, and Touch probe 2 source is set to External Latch Input 2.
4020		Warning Customiza- tion		The warning is automatically cleared when the cause of the warning is eliminated.
	04	Warning Hold Selec- tion	0	
4510		Encoder		Used as the absolute encoder and the Abso-
	01	Operation Selection when Using Absolute Encoder	2	lute Encoder Counter Overflow is ignored.
4630		Positive Drive Prohibition Input		The Positive Drive Prohibition Input is allocated to General Input 2 (IN2) with negative
	01	Port Selection	2	logic (NC contact).
	02	Logic Selection	1	

Index (hex)	Subindex (hex)	Name	Recom- mended setting	Description
4631		Negative Drive Prohi-		The Negative Drive Prohibition Input is allo-
		bition Input		cated to General Input 3 (IN3) with negative
	01	Port Selection	3	logic (NC contact).
	02	Logic Selection	1	
4632		External Latch Input 1		The External Latch Input 1 is allocated to
	01	Port Selection	7	General Input 7 (IN7) with positive logic (NO
	02	Logic Selection	0	contact).
4633		External Latch Input 2		The External Latch Input 2 is allocated to
	01	Port Selection	8	General Input 8 (IN8) with positive logic (NO
	02	Logic Selection	0	contact).
4634		Home Proximity Input		The Home Proximity Input is allocated to
	01	Port Selection	4	General Input 4 (IN4) with positive logic (NO
	02	Logic Selection	0	contact).

^{*1.} If the unit version of the NJ/NX-series CPU Units is 1.10 or earlier, some Servomotors cannot be driven at the maximum rotation speed. In such a case, set the electronic gear ratio of the Servo Drive to 2:1 or higher.

Settings for Configuring Ring Topology in EtherCAT Network

Index (hex)	Subindex (hex)	Name	Recom- mended setting	Description
2200	00	Communications Error Setting	2 or more	Set the value to 2 or more because one communications error occurs when the ring is disconnected or during the restoration. The default value is 1.

When you build a safety system using FSoE communications, you also need to set the following item. As for the detail, refer to the NX-series Safety Control Unit User's Manual (Cat. No. Z930).

Item	Recommended setting	Description
Watchdog Time of Safety Pro-	Auto set value + EtherCAT	Make the value at least two communications
cess Data Communications Set-	communications cycle × 2	cycles larger than the auto set value because
tings	or more ^{*1}	one communications error occurs when the ring
		is disconnected or during the restoration.

^{*1.} If EtherCAT communications cycle × 2 is less than 3 ms, add 3 ms or more to the auto set value.

Precautions for Correct Use

- Do not rotate the Servomotor at more than 2,147,483,647 [command unit] if the power supply of NJ/NX-series CPU Unit is OFF when you use the absolute encoder. When the power supply is turned ON, the CPU Unit cannot restore the present position.
- Do not rotate the Servomotor at more than 2,147,483,647 [command unit] if EtherCAT communications are not established with the NJ/NX-series CPU Unit when you use the absolute encoder. When communications are established, the CPU Unit cannot restore the present position.

Position Control Unit (Model: CJ1W-NC□8□)

The following table shows the setting values required to use the control functions of the controller.

If you change these settings, read and understand the relevant specifications in advance and set appropriate values.

			D	1
Index (hex)	Subindex (hex)	Name	Recom- mended setting	Description
3001		Machine		The gear ratio used by the Servo Drive is
	05	Motor Revolutions	8	8:1, and command units are set by the
	06	Shaft Revolutions	1	controller.
3330		Torque Limit		If both PCL and NCL are ON, the torque
	01	Switching Selection	1	limit is controlled with the values of 60E0 hex and 60E1 hex that are mapped to a PDO.
	05	Positive Torque Limit Value	5,000	Default setting = 500.0%
	06	Negative Torque Limit Value	5,000	Default setting = 500.0%
3A00		Homing		The value of offset used by the Servo
	06	Home Offset	0	Drive is 0.
3B10		Drive Prohibition		Drive prohibition input is disabled for the
	01	Enable	0	Servo Drive, and this function is handled by the controller.
3B11		Software Position Limit		Disabled in both positive and negative
	01	Enable Selection	0	directions.
3B30		Touch Probe 1		Touch probe1 source is set to External
	01	Touch Probe 1 Source	1	Latch Input 1, and Touch probe 2 source is set to External Latch Input 2.
3B31		Touch Probe 2		Touch probe1 source is set to External
	01	Touch Probe 2 Source	2	Latch Input 1, and Touch probe 2 source is set to External Latch Input 2.
4020		Warning Customization		The warning is automatically cleared
	04	Warning Hold Selection	0	when the cause of the warning is eliminated.
4510		Encoder		Used as the absolute encoder and the
	01	Operation Selection when Using Absolute Encoder	2	Absolute Encoder Counter Overflow is ignored.
4630		Positive Drive Prohibition Input		The Positive Drive Prohibition Input is allocated to General Input 2 (IN2) with
	01	Port Selection	2	negative logic (NC contact).
	02	Logic Selection	1	
4631		Negative Drive Prohibition Input		The Negative Drive Prohibition Input is allocated to General Input 3 (IN3) with
	01	Port Selection	3	Negative logic (NC contact).
	02	Logic Selection	1	-
4632		External Latch Input 1		The External Latch Input 1 is allocated to
	01	Port Selection	7	General Input 7 (IN7) with positive logic
	02	Logic Selection	0	(NO contact).*1
4633		External Latch Input 2		The External Latch Input 2 is allocated to
	01	Port Selection	8	General Input 8 (IN8) with positive logic
	02	Logic Selection	0	(NO contact).*1
4634		Home Proximity Input		The Home Proximity Input is allocated to
	01	Port Selection	4	General Input 4 (IN4) with positive logic
	02	Logic Selection	0	(NO contact).

^{*1.} CJ1W-NC \square 8 \square uses the latch signals as follows:

External Latch Input 1: Origin Input External Latch Input 2: Interrupt Input

Precautions for Correct Use

To use the interrupt feeding function of the Position Control Unit (CJ1W-NC \square 8 \square), set the Basic Functions - Control Method Selection servo parameter (3000-03 hex) to 0 (ODF control).

Applied Functions

This section provides the outline and settings of the applied functions such as electronic gear and gain switching.

7-1	Genera	ıl-purpose Input Signals	7-3
	7-1-1	Objects Requiring Settings	7-4
	7-1-2	Default Setting	7-6
	7-1-3	Function Input Details	7-7
7-2	Genera	ıl-purpose Output Signals	7-8
	7-2-1	Objects Requiring Settings	7-8
	7-2-2	Default Setting	. 7-10
	7-2-3	Function Output Details	7-11
7-3	Drive P	rohibition Functions	7-15
	7-3-1	Objects Requiring Settings	. 7-15
	7-3-2	Description of Operation	. 7-16
7-4	Softwa	re Position Limit Functions	. 7-17
	7-4-1	Operating Conditions	
	7-4-2	Objects Requiring Settings	
	7-4-3	Description of Operation	. 7-18
7-5	Backlas	sh Compensation	7-20
	7-5-1	Operating Conditions	
	7-5-2	Objects Requiring Settings	. 7-20
	7-5-3	Description of Operation	. 7-21
7-6	Brake I	nterlock	7-22
	7-6-1	Objects Requiring Settings	
	7-6-2	Description of Operation	
	7-6-3	Operation Timing	. 7-25
7-7	Electro	nic Gear Function	7-29
	7-7-1	Objects Requiring Settings	
	7-7-2	Operation Example	
7-8	Torque	Limit Switching	
. 5	7-8-1	Operating Conditions	
	7-8-2	Objects Requiring Settings	
	7-8-3	Torque Limit Switching Method	
	-		

7-9	Soft St	art	7-33
	7-9-1	Objects Requiring Settings	7-33
	7-9-2	Soft Start Acceleration/Deceleration Time	7-33
	7-9-3	Velocity Command First-order Lag Filter	7-34
7-10	Gain S	witching Function	7-35
	7-10-1	Objects Requiring Settings	7-35
	7-10-2	Mode Selection	7-37
	7-10-3	Gain Switching in Position Control	7-38
7-11	Touch	Probe Function (Latch Function)	7-39
	7-11-1	Related Objects	7-39
	7-11-2	Trigger Signal Settings	
	7-11-3	Operation Sequence	
7-12	2 Encode	er Dividing Pulse Output Function	7-43
	7-12-1	Objects Requiring Settings	7-44
	7-12-2	Dividing Ratio	7-44
	7-12-3	Output Reverse Selection	7-45
	7-12-4	Z-phase Output	7-45
7-13	B Dynam	iic Brake	7-46
	7-13-1	Operating Conditions	7-46
	7-13-2	Objects Requiring Settings	7-46
	7-13-3	Description of Operation	7-47
7-14	Comm	and Compensation Function for Communications Error	7-50
	7-14-1	Operating Conditions	7-50
	7-14-2	Operation Example	7-50

7-1 General-purpose Input Signals

The 1S-series Servo Drive provides 8 ports for general-purpose input signals to which you can allocate function inputs in the Control I/O Connector (CN1). You can also set the logic for input signals that can be allocated. Note that you cannot allocate more than one function to the same general-purpose input signal.

Refer to 3-1-5 Control I/O Connector (CN1) Specifications on page 3-27 for I/O signal connection and external signal processing.

General Input 7 (IN7) and 8 (IN8) are high-speed inputs. Use these inputs for functions that require high precision, such as the latch input.

Precautions for Correct Use

The signal status must be held for at least 125 μ s for high-speed inputs and at least 2 ms for other inputs.

Function Inputs That Can Be Allocated

Function input name	Symbol
Positive Drive Prohibition Input	POT
Negative Drive Prohibition Input	NOT
Error Stop Input	ESTP
External Latch Input 1	EXT1
External Latch Input 2	EXT2
Home Proximity Input	DEC
Positive Torque Limit Input	PCL
Negative Torque Limit Input	NCL
Monitor Input 1	MON1
Monitor Input 2	MON2
Monitor Input 3	MON3
Monitor Input 4	MON4
Monitor Input 5	MON5
Monitor Input 6	MON6
Monitor Input 7	MON7
Monitor Input 8	MON8

7-1-1 **Objects Requiring Settings**

Index (hex)	Subindex (hex)	Name	Description	Refer- ence
4630		Positive Drive Prohibition Input	Sets the input signal allocation and logic.	P. 9-117
	01	Port Selection	Selects the port to be allocated.	
			0: No allocation	
			• • • • • • • • • • • • • • • • • • • •	
			1: General Input 1 (IN1)	
			2: General Input 2 (IN2)	
			3: General Input 3 (IN3)	
			4: General Input 4 (IN4)	
			5: General Input 5 (IN5)	
			6: General Input 6 (IN6)	
			7: General Input 7 (IN7)	
			8: General Input 8 (IN8)	
	02	Logic Selection	Sets the positive logic (NO contact) or nega-	
			tive logic (NC contact).	
			0: Positive logic (NO contact)	
			1: Negative logic (NC contact)	
4631		Negative Drive Prohibi-	Sets the input signal allocation and logic.	P. 9-117
		tion Input		
	01	Port Selection	The function is the same as 4630-01 hex.	
	02	Logic Selection	The function is the same as 4630-02 hex.	
4632		External Latch Input 1	Sets the input signal allocation and logic.	P. 9-117
	01	Port Selection	The function is the same as 4630-01 hex.	
	02	Logic Selection	The function is the same as 4630-02 hex.	
4633		External Latch Input 2	Sets the input signal allocation and logic.	P. 9-118
	01	Port Selection	The function is the same as 4630-01 hex.	
	02	Logic Selection	The function is the same as 4630-02 hex.	
4634		Home Proximity Input	Sets the input signal allocation and logic.	P. 9-118
	01	Port Selection	The function is the same as 4630-01 hex.	
4005	02	Logic Selection	The function is the same as 4630-02 hex.	D 0 440
4635		Positive Torque Limit Input	Sets the input signal allocation and logic.	P. 9-118
	01	Port Selection	The function is the same as 4630-01 hex. The function is the same as 4630-02 hex.	
4626	02	Logic Selection		P. 9-119
4636		Negative Torque Limit Input	Sets the input signal allocation and logic.	P. 9-119
	01	Port Selection	The function is the same as 4630-01 hex.	
	02	Logic Selection	The function is the same as 4630-02 hex.	
4637		Error Stop Input	Sets the input signal allocation and logic.	P. 9-119
	01	Port Selection	The function is the same as 4630-01 hex.	
	02	Logic Selection	The function is the same as 4630-02 hex.	
4638		Monitor Input 1	Sets the input signal allocation and logic.	P. 9-119
	01	Port Selection	The function is the same as 4630-01 hex.	
4000	02	Logic Selection	The function is the same as 4630-02 hex.	D 0 400
4639		Monitor Input 2	Sets the input signal allocation and logic.	P. 9-120
	01	Port Selection	The function is the same as 4630-01 hex.	
400 4	02	Logic Selection	The function is the same as 4630-02 hex.	D 0 400
463A		Monitor Input 3	Sets the input signal allocation and logic.	P. 9-120
	01	Port Selection	The function is the same as 4630-01 hex.	
-	02	Logic Selection	The function is the same as 4630-02 hex.	

Index (hex)	Subindex (hex)	Name	Description	Refer- ence
463B		Monitor Input 4	Sets the input signal allocation and logic.	P. 9-120
	01	Port Selection	The function is the same as 4630-01 hex.	1
	02	Logic Selection	The function is the same as 4630-02 hex.	1
463C		Monitor Input 5	Sets the input signal allocation and logic.	P. 9-121
	01	Port Selection	The function is the same as 4630-01 hex.	1
	02	Logic Selection	The function is the same as 4630-02 hex.	1
463D		Monitor Input 6	Sets the input signal allocation and logic.	P. 9-121
	01	Port Selection	The function is the same as 4630-01 hex.	1
	02	Logic Selection	The function is the same as 4630-02 hex.	1
463E		Monitor Input 7	Sets the input signal allocation and logic.	P. 9-121
	01	Port Selection	The function is the same as 4630-01 hex.	1
	02	Logic Selection	The function is the same as 4630-02 hex.	1
463F		Monitor Input 8	Sets the input signal allocation and logic.	P. 9-122
	01	Port Selection	The function is the same as 4630-01 hex.	1
	02	Logic Selection	The function is the same as 4630-02 hex.	1

7-1-2 **Default Setting**

The allocations of the default input signals are as follows.

		Default setting					
Index (hex)	Name		bindex 01 hex		Subindex 02 hex		
maox (mox)	Numo	P	ort Selection	Logic Selection			
		Set value	Status	Set value	Status		
4630	Positive Drive Prohibition Input	2	General Input 2 (IN2)	1	Negative logic (NC contact)		
4631	Negative Drive Prohibition Input	3	General Input 3 (IN3)	1	Negative logic (NC contact)		
4632	External Latch Input 1	7	General Input 7 (IN7)	0	Positive logic (NO contact)		
4633	External Latch Input 2	8	General Input 8 (IN8)	0	Positive logic (NO contact)		
4634	Home Proximity Input	4	General Input 4 (IN4)	0	Positive logic (NO contact)		
4635	Positive Torque Limit Input	0	No allocation	0	Positive logic (NO contact)		
4636	Negative Torque Limit Input	0	No allocation	0	Positive logic (NO contact)		
4637	Error Stop Input	1	General Input 1 (IN1)	1	Negative logic (NC contact)		
4638	Monitor Input 1	5	General Input 5 (IN5)	0	Positive logic (NO contact)		
4639	Monitor Input 2	6	General Input 6 (IN6)	0	Positive logic (NO contact)		
463A	Monitor Input 3	0	No allocation	0	Positive logic (NO contact)		
463B	Monitor Input 4	0	No allocation	0	Positive logic (NO contact)		
463C	Monitor Input 5	0	No allocation	0	Positive logic (NO contact)		
463D	Monitor Input 6	0	No allocation	0	Positive logic (NO contact)		
463E	Monitor Input 7	0	No allocation	0	Positive logic (NO contact)		
463F	Monitor Input 8	0	No allocation	0	Positive logic (NO contact)		

7-1-3 Function Input Details

This section explains the function inputs that can be allocated to the general-purpose inputs.

• Error Stop Input (ESTP)

- This signal is used to forcibly generate an error to stop motor rotation from an external device.
- If the Error Stop Input (ESTP) signal turns ON during motor rotation, the Servomotor stops according to the setting in the **Stop Selection Fault Reaction Option Code** (3B20-04 hex).
- If the Error Stop Input (ESTP) signal turns ON when the Servomotor is energized, the Error Stop Input (Error No. 87.00) will occur.

Positive Drive Prohibition Input (POT) and Negative Drive Prohibition Input (NOT)

- These two input signals prohibit the positive and negative drive (over-travel).
- When these terminals are short-circuited (default setting), the Servo Drive can drive the Servomotor in each rotation direction.
- In the drive prohibition state, the Servo Drive does not enter an error state.
- To use this function, set **Drive Prohibition Enable** (3B10-01 hex) to 1.
- When **Drive Prohibition Enable** (3B10-01 hex) is set to 1, you can select the operation at a drive prohibition input in **Drive Prohibition Stop Selection** (3B10-02 hex).

Home Proximity Input (DEC)

- · This is the deceleration signal for homing.
- If the Home Proximity Input turns ON while the Servomotor is running at the Speed During Search for Switch (3A00-03 hex), it will decelerate to Homing - Speed During Search for Zero (3A00-04 hex).

• External Latch Input (EXT1 and EXT2)

- These are the external input signals to latch the present position.
- The encoder position data is obtained at the rising edge when the External Latch Input is turned ON.

Monitor Inputs (MON1 to MON8)

- These can be used as general-purpose monitor inputs.
- The general-purpose monitor inputs do not affect operation, and they can be monitored from the host controller.

Positive Torque Limit Input (PCL) and Negative Torque Limit Input (NCL)

- The Positive Torque Limit Input (PCL) is used to switch the torque limit between the **Positive** torque limit value (60E0 hex or 3330-03 hex) and **Positive Torque Limit Value 2** (3330-05 hex).
- The Negative Torque Limit Input (NCL) is used to switch the torque limit between the Negative torque limit value (60E1 hex or 3330-04 hex) and Negative Torque Limit Value 2 (3330-06 hex).
- Use the **Torque Limit Switching Selection** (3330-01 hex) to select a method to switch the torque limit.

7-2 **General-purpose Output Signals**

The 1S-series Servo Drive provides 3 ports for general-purpose output signals to which you can allocate function outputs in the Control I/O Connector (CN1). You can also set the logic for output signals that can be allocated. Note that you cannot allocate more than one function to the same general-purpose output signal.

Refer to 3-1-5 Control I/O Connector (CN1) Specifications on page 3-27 for I/O signal connection and external signal processing.

Function Outputs That Can Be Allocated

Function output name	Symbol
Error Output	ERR
Servo Ready Output	READY
Positioning Completion Output 1	INP1
Positioning Completion Output 2	INP2
Velocity Attainment Detection Output	TGON
Torque Limit Output	TLMT
Zero Speed Detection Output	ZSP
Velocity Conformity Output	VCMP
Warning Output 1	WARN1
Warning Output 2	WARN2
Velocity Limiting Output	VLMT
Error Clear Attribute Output	ERR-ATB
Remote Output 1	R-OUT1
Remote Output 2	R-OUT2
Remote Output 3	R-OUT3
Zone Notification Output 1	ZONE1
Zone Notification Output 2	ZONE2
Position Command Status Output	PCMD
Distribution Completed Output	DEN
External Brake Interlock Output*1	EXTBKIR

^{*1.} This function is available for the unit version 1.2 or later.

Objects Requiring Settings 7-2-1

Index (hex)	Subindex (hex)	Name	Description	Refer- ence
4650		Error Output	Sets the output signal allocation and logic.	P. 9-124
	01 Port Selection Selects the port to be allocated.		Selects the port to be allocated.	
	bit 0: General Outp		bit 0: General Output 1 (OUT1)	
	bit 1: Ge		bit 1: General Output 2 (OUT2)	
	bit 2: General Output 3 (OUT3)		bit 2: General Output 3 (OUT3)	
			0: Not allocated	
			1: Allocated	
	02	Logic Selection	1: Negative logic (NC contact)	

Index	Subindex			Refer-
(hex)	(hex)	Name	Description	ence
4651		Servo Ready Output	Sets the output signal allocations and logic.	P. 9-124
	01	Port Selection	Selects the port to be allocated.	
			bit 0: General Output 1 (OUT1)	
			bit 1: General Output 2 (OUT2)	
			bit 2: General Output 3 (OUT3)	
			0: Not allocated	
	02	Logic Coloction	1: Allocated Sets the positive logic (NO contact) or neg-	
	02	Logic Selection	ative logic (NC contact).	
			0: Positive logic (NO contact)	
			1: Negative logic (NC contact)	
4652		Positioning Completion Out-	Sets the output signal allocation and logic.	P. 9-124
		put 1		
	01	Port Selection	The function is the same as 4651-01 hex.	
	02	Logic Selection	The function is the same as 4651-02 hex.	
4653		Positioning Completion Out-	Sets the output signal allocation and logic.	P. 9-125
		put 2		
	01	Port Selection	The function is the same as 4651-01 hex.	
	02	Logic Selection	The function is the same as 4651-02 hex.	
4654		Velocity Attainment Detec-	Sets the output signal allocation and logic.	P. 9-125
	0.4	tion Output	T. 6	
	01	Port Selection	The function is the same as 4651-01 hex.	
4055	02	Logic Selection	The function is the same as 4651-02 hex.	D 0 405
4655		Torque Limit Output	Sets the output signal allocation and logic.	P. 9-125
	01	Port Selection	The function is the same as 4651-01 hex.	
4050	02	Logic Selection	The function is the same as 4651-02 hex.	D 0 400
4656		Zero Speed Detection Output	Sets the output signal allocation and logic.	P. 9-126
	01	Port Selection	The function is the same as 4651-01 hex.	
	02	Logic Selection	The function is the same as 4651-02 hex.	
4657		Velocity Conformity Output	Sets the output signal allocation and logic.	P. 9-126
1001	01	Port Selection	The function is the same as 4651-01 hex.	1.0 120
	02	Logic Selection	The function is the same as 4651-02 hex.	
4658		Warning Output 1	Sets the output signal allocation and logic.	P. 9-126
	01	Port Selection	The function is the same as 4651-01 hex.	
	02	Logic Selection	The function is the same as 4651-02 hex.	
4659		Warning Output 2	Sets the output signal allocation and logic.	P. 9-127
	01	Port Selection	The function is the same as 4651-01 hex.	
	02	Logic Selection	The function is the same as 4651-02 hex.	
465A		Velocity Limiting Output	Sets the output signal allocation and logic.	P. 9-127
	01	Port Selection	The function is the same as 4651-01 hex.	
	02	Logic Selection	The function is the same as 4651-02 hex.	
465B		Error Clear Attribute Output	Sets the output signal allocation and logic.	P. 9-127
	01	Port Selection	The function is the same as 4651-01 hex.	
	02	Logic Selection	The function is the same as 4651-02 hex.	
465C		Remote Output 1	Sets the output signal allocation and logic.	P. 9-128
	01	Port Selection	The function is the same as 4651-01 hex.	
	02	Logic Selection	The function is the same as 4651-02 hex.	
465D		Remote Output 2	Sets the output signal allocation and logic.	P. 9-128
	01	Port Selection	The function is the same as 4651-01 hex.	
	02	Logic Selection	The function is the same as 4651-02 hex.	

Index (hex)	Subindex (hex)	Name	Description	Refer- ence
465E		Remote Output 3	Sets the output signal allocation and logic.	P. 9-128
	01	Port Selection	The function is the same as 4651-01 hex.	
	02	Logic Selection	The function is the same as 4651-02 hex.	
465F		Zone Notification Output 1	Sets the output signal allocation and logic.	P. 9-129
	01	Port Selection	The function is the same as 4651-01 hex.	
	02	Logic Selection	The function is the same as 4651-02 hex.	
4660		Zone Notification Output 2	Sets the output signal allocation and logic.	P. 9-129
	01	Port Selection	The function is the same as 4651-01 hex.	
	02	Logic Selection	The function is the same as 4651-02 hex.	
4661		Position Command Status Output	Sets the output signal allocation and logic.	P. 9-129
	01	Port Selection	The function is the same as 4651-01 hex.	
	02	Logic Selection	The function is the same as 4651-02 hex.	
4662		Distribution Completed Output	Sets the output signal allocation and logic.	P. 9-130
	01	Port Selection	The function is the same as 4651-01 hex.	
	02	Logic Selection	The function is the same as 4651-02 hex.	
4663		External Brake Interlock Output	Sets the output signal allocation and logic.	P. 9-130
	01	Port Selection	Selects the port to be allocated.	
			If this function is not allocated, it is output to the brake output (BKIR).	
			bit 0: General Output1 (OUT1)	
			bit 1: General Output2 (OUT2)	
			bit 2: General Output3 (OUT3)	
			0: Not allocated	
			1: Allocated	
	02	Logic Selection	0: Positive logic (NO contact)	

7-2-2 **Default Setting**

The allocations of the default output signals are as follows.

		Default setting				
Index (hex)	Name	Subindex 01 hex Port Selection		Subindex 02 hex Logic Selection		
		Set value	Status	Set value	Status	
4650	Error Output	0	No allocation	1	Negative logic (NC contact)	
4651	Servo Ready Output	1	General Output 1 (OUT1)	0	Positive logic (NO contact)	
4652	Positioning Completion Output 1	0	No allocation	0	Positive logic (NO contact)	
4653	Positioning Completion Output 2	0	No allocation	0	Positive logic (NO contact)	
4654	Velocity Attainment Detection Output	0	No allocation	0	Positive logic (NO contact)	
4655	Torque Limit Output	0	No allocation	0	Positive logic (NO contact)	
4656	Zero Speed Detection Output	0	No allocation	0	Positive logic (NO contact)	

		Default setting				
Index (hex)	Name	Su	bindex 01 hex	Su	Subindex 02 hex	
maex (nex)	Name	P	ort Selection	Lo	Logic Selection	
		Set value	Status	Set value	Status	
4657	Velocity Conformity Out-	0	No allocation	0	Positive logic (NO	
	put				contact)	
4658	Warning Output 1	0	No allocation	0	Positive logic (NO	
					contact)	
4659	Warning Output 2	0	No allocation	0	Positive logic (NO	
					contact)	
465A	Velocity Limiting Output	0	No allocation	0	Positive logic (NO	
					contact)	
465B	Error Clear Attribute Out-	0	No allocation	0	Positive logic (NO	
	put				contact)	
465C	Remote Output 1	2	General Output 2	0	Positive logic (NO	
			(OUT2)		contact)	
465D	Remote Output 2	4	General Output 3	0	Positive logic (NO	
			(OUT3)		contact)	
465E	Remote Output 3	0	No allocation	0	Positive logic (NO	
					contact)	
465F	Zone Notification Output	0	No allocation	0	Positive logic (NO	
	1				contact)	
4660	Zone Notification Output	0	No allocation	0	Positive logic (NO	
	2				contact)	
4661	Position Command Sta-	0	No allocation	0	Positive logic (NO	
	tus Output				contact)	
4662	Distribution Completed	0	No allocation	0	Positive logic (NO	
	Output				contact)	
4663	External Brake Interlock	0	No allocation	0	Positive logic (NO	
	Output				contact)	

7-2-3 Function Output Details

This section explains the function outputs that can be allocated to the general-purpose outputs.

Error Output (ERR)

- This output is turned OFF when the Servo Drive detects an error.
- This output is OFF when the power supply is turned ON, but the output turns ON when the Servo Drive's initial processing is completed.

Servo Ready Output (READY)

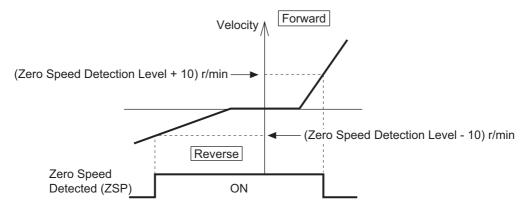
- This output signal indicates the Servo Drive is ready to supply power to the Servomotor.
- It turns ON when no error is detected after the main circuit power supply turns ON.

Position Completion Output (INP1 and INP2)

- INP1 will turn ON when the following error is less than or equal to **Positioning Completion Notification Position Window** (3B51-01 hex).
- INP2 output will turn ON as specified in the **Positioning Completion Notification 2 Notification Condition** (3B52-02 hex).
- This output remains OFF in controls other than position control.

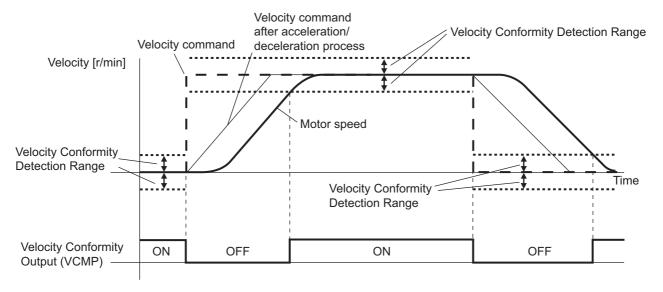
Velocity Attainment Detection Output (TGON)

- · This output turns ON when the motor rotation speed exceeds the value that is set in the Speed **Detection Function - Velocity Attainment Detection Level** (3B60-01 hex).
- The output is effective both in positive and negative directions regardless the actual direction in which the motor rotates.
- The detection level has a hysteresis of 10 r/min.


Torque Limit Output (TLMT)

This output turns ON when the output torque reaches the value set in the followings.

- Max torque (6072 hex or 3330-02 hex)
- Positive torque limit value (60E0 hex or 3330-03 hex)
- Negative torque limit value (60E1 hex or 3330-04 hex)
- Positive Torque Limit Value 2 (3330-05 hex)
- Negative Torque Limit Value 2 (3330-06 hex)


Zero Speed Detection Output (ZSP)

- This output turns ON when the motor rotation speed goes below the value that is set in the Speed **Detection Function - Zero Speed Detection Level** (3B60-02 hex).
- The output is effective both in positive and negative directions regardless the actual direction in which the motor rotates.
- The detection level has a hysteresis of 10 r/min.

Velocity Conformity Output (VCMP)

- · This output turns ON when the motor speed conforms to the command velocity.
- The velocity conformity is determined when the difference between the velocity command inside
 the Servo Drive before acceleration or deceleration process and the motor rotation speed is within
 the range set in the Speed Detection Function Velocity Conformity Detection Range
 (3B60-03 hex).
- The detection range has a hysteresis of 10 r/min.
- This output remains OFF in controls other than velocity control.

Warning Output (WARN1 and WARN2)

- The Warning Output 1 (WARN1) turns ON when the warning that is set in Warning Output 1 Setting (4021 hex) is detected.
- The Warning Output 2 (WARN2) turns ON when the warning that is set in Warning Output 2 Setting (4022 hex) is detected.

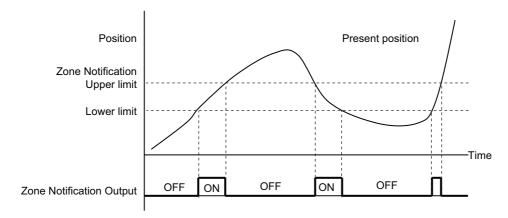
Position Command Status Output (PCMD)

- This output turns ON when a position command is issued in the position control.
- It is recognized that there is a position command when the command position changes from the last one.

Velocity Limiting Output (VLMT)

- This output turns ON when the motor speed reaches the following limit values.
- a) Maximum motor speed
- b) Velocity Limit in Torque Control Velocity Limit Value (3031-01 hex)
- c) Max profile velocity (607F hex)
- This output remains OFF in controls other than torque control.

Error Clear Attribute Output (ERR-ATB)


• This output turns ON when an error that can be reset occurs.

Remote Output (R-OUT1 to R-OUT3)

- Remote Output 1 (R-OUT1) turns ON and OFF according to the value of bit 16 in the Digital outputs (60FE hex).
- Remote Output 2 (R-OUT2) turns ON and OFF according to the value of bit 17 in the Digital outputs (60FE hex).
- Remote Output 3 (R-OUT3) turns ON and OFF according to the value of bit 18 in the Digital outputs (60FE hex).

● Zone Notification Output (ZONE1 and ZONE2)

- · Zone Notification Output 1 turns ON when the present position is within the range between Lower Limit (3B40-01 hex) and Upper Limit (3B40-02 hex) of Zone Notification 1.
- Zone Notification Output 2 turns ON when the present position is within the range between Lower Limit (3B41-01 hex) and Upper Limit (3B41-02 hex) of Zone Notification 2.
- · The Zone Notification Output is performed when home is defined. This output is always OFF when home is undefined.

Distribution Completed Output (DEN)

 This output turns ON when the command position inside the Servo Drive reaches the target position.

External Brake Interlock Output (EXTBKIR)

- · The external brake interlock relay turns ON while the brake is released.
- This function is available for the unit version 1.2 or later.

7-3 Drive Prohibition Functions

If the Positive Drive Prohibition Input (POT) or the Negative Drive Prohibition Input (NOT) is active, the motor will stop rotating.

You can thus prevent the motor from rotation outside of the movement range of the device by using limit inputs from the device connected to the Servo Drive.

7-3-1 Objects Requiring Settings

Index (hex)	Subindex (hex)	Name	Description	Refer- ence
3B10		Drive Prohibition	Sets the drive prohibition function.	P. 9-60
	01	Enable	Selects whether to enable or disable the drive prohibition function.	P. 9-60
			0: Drive prohibition disabled	
			1: Drive prohibition enabled	
	02	Stop Selection	Selects the operation when Positive Drive Prohibition or Negative Drive Prohibition is enabled.	P. 9-60
3B21		Deceleration Stop	Sets the operation during deceleration stop.	P. 9-67
	01	Torque	Sets the torque limit value during deceleration stop.	P. 9-67
			Setting range: 0.1% to 500.0%	
4630		Positive Drive Prohibition Input	Sets the input signal allocation and logic.	P. 9-117
	01	Port Selection	Selects the port to be allocated.	
	02	Logic Selection	Select Positive logic (NO contact) or Negative logic (NC contact).	
4631	4631 Negative Drive Pro- Sets the input signal allocation and logic. hibition Input		Sets the input signal allocation and logic.	P. 9-117
	01	Port Selection	Selects the port to be allocated.	
	02	Logic Selection	Select Positive logic (NO contact) or Negative logic (NC contact).	

7-3-2 **Description of Operation**

If **Drive Prohibition - Enable** (3B10-01 hex) is set to 1 (Drive Prohibition Enabled), when the Servo Drive detects that the Positive Drive Prohibition Input (POT) or Negative Drive Prohibition Input (NOT) is active, it stops the Servomotor according to the method specified in **Stop Selection** (3B10-02 hex).

Stop Selec-	During deceleration	n ^{*1}	After stoppir	ng
tion set value	Deceleration method	Following error	State after stopping	Following error
2	The deceleration stop torque is used.*2	Clear	Lock at the stop position	Cleared at the stop and held after stopping
4 ^{*3}	Stop according to the setting of Fault reaction option code		Stop according to the setting of Fault reaction option code	

^{*1.} During deceleration means the period in which the running motor decelerates and its speed reaches 30 r/min or lower. Once the motor speed reaches 30 r/min or lower and the operation changes to after stopping, the following operation conforms to the description for the state after stopping, regardless of the motor speed.

- *2. When the deceleration stop torque is used to stop the Servomotor, the operation direction may be reversed if the inertia is small and the operation speed is slow.
- *3. If you set Stop Selection to 4, a Drive Prohibition Detected (Error No. 38.01) occurs due to detection of the drive prohibition input.

Precautions for Correct Use

- Because the deceleration stop causes the Servomotor to decelerate quickly, in the position control mode, the following error may become large momentarily. This results in an Excessive Position Deviation Error (Error No. 24.00). If this error occurs, set the Position Detection Function - Following Error Window (3B50-05 hex) to an appropriate value.
- A load on the vertical axis and so forth may fall due to its own weight when the Drive Prohibition Input is ON. To prevent the load from falling, set Drive Prohibition - Stop Selection (3B10-02 hex) to 2 so that the Servomotor decelerates with the deceleration stop torque and stops with the servo lock, or use the host controller to limit the operation instead of this func-
- · A Command Warning (Error No. B1.00) will occur if a command is given in the drive prohibition direction while the Servomotor is stopped (i.e., decreases the speed to approximately 30 r/min or lower) and the Drive Prohibition Input is active.
- By default, drive prohibition disabled (drive prohibition does not operate) is set. Set Drive Prohibition - Enable (3B10-01 hex) to 1 (drive prohibition enabled) for a system that requires the drive prohibition input.

Additional Information

While the Positive Drive Prohibition Input (POT) is active, the Servomotor cannot be driven in the positive direction, but it can be driven in the negative direction. Conversely, while Negative Drive Prohibition Input (NOT) is active, the Servomotor cannot be driven in the negative direction, but it can be driven in the positive direction.

7-4 Software Position Limit Functions

This function notifies you that the present position exceeded the specified movement range and stops the Servomotor rotation.

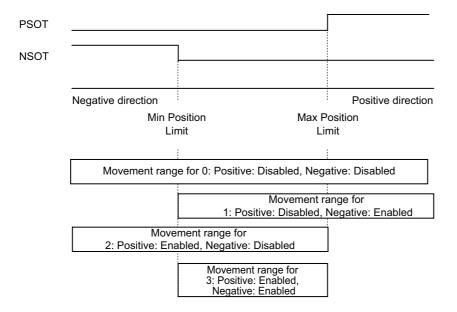
7-4-1 Operating Conditions

The Software Position Limit Function is performed when home is defined.

7-4-2 Objects Requiring Settings

Index (hex)	Subindex (hex)	Name	Description	Refer- ence
3B11		Software Position Limit	Sets the software position limit function.	P. 9-61
	01	Enable Selection	Selects whether to enable or disable the software position limit function.	P. 9-61
			0: Positive: Disabled, Negative: Disabled	
			1: Positive: Disabled, Negative: Enabled	
			2: Positive: Enabled, Negative: Disabled	
			3: Positive: Enabled, Negative: Enabled	
	02	Stop Selection	Selects the operation when the software position limit	P. 9-62
			is enabled.	
	03	Min Position Limit	Sets the negative limit value.	P. 9-62
	04	Max Position Limit	Sets the positive limit value.	P. 9-62
3B21		Deceleration Stop	Sets the operation during deceleration stop.	P. 9-67
	01	Torque	Sets the torque limit value during deceleration stop.	P. 9-67
			Setting range: 0.0% to 500.0%	
3000		Basic Functions	Sets the basic functions of Servo Drives.	P. 9-6
	81	Function Status	Gives the status of the Servo Drive.	P. 9-8
			bit 5: Positive Software Limit (PSOT)	
			bit 6: Negative Software Limit (NSOT)	
			0: Within limit value	
			1: Outside limit value	

7-4-3 **Description of Operation**


When the software position limit function is enabled in Software Position Limit - Enable Selection (3B11-01 hex), if the present position exceeds the specified movement range, the Servo Drive stops the Servomotor according to the method specified in **Stop Selection** (3B11-02 hex).

The value set in Enable Selection (3B11-0	1 hex	determines the	movement range as follows.
--	-------	----------------	----------------------------

Stop Selec-	During deceleration	n ^{*1}	After stopping		
tion set value	Deceleration method	Following error	State after stopping	Following error	
2	The deceleration stop torque is used.*2	Clear	Lock at the stop position	Cleared at the stop and held after stopping	
4 ^{*3}	Stop according to the setting of Fault reaction option code		Stop according to the setting of Fault reaction option code		

^{*1.} During deceleration means the period in which the running motor decelerates and its speed reaches 30 r/min or lower. Once the motor speed reaches 30 r/min or lower and the operation changes to after stopping, the following operation conforms to the description for the state after stopping, regardless of the motor speed.

^{*3.} If you set Stop Selection to 4, a Software Limit Exceeded (Error No. 34.1) occurs when the movement range is exceeded.

Note that the Servomotor does not stop if **Max Position Limit** (3B11-04 hex) is equal to or smaller than Min Position Limit (3B11-03 hex).

If the Servomotor stops outside the allowable operating range, commands only for the direction of the movement range are accepted.

Positive Software Limit (PSOT) and Negative Software Limit (NSOT) of Function Status (3000-81 hex) give the status regardless of the setting in **Enable Selection** (3B11-01 hex).

^{*2.} When the deceleration stop torque is used to stop the Servomotor, the operation direction may be reversed if the inertia is small and the operation speed is slow.

Precautions for Correct Use

- Because the deceleration stop causes the Servomotor to decelerate quickly, in the position control mode, the following error may become large momentarily. This may result in an Excessive Position Deviation Error (Error No. 24.00). If this error occurs, set the **Position Detection Function - Following Error Window** (3B50-05 hex) to an appropriate value.
- A load on the vertical axis and so forth may fall due to its own weight when the software limit value is exceeded. To prevent the load from falling, set **Stop Selection** (3B11-02 hex) to 2 so that the Servomotor decelerates with the deceleration stop torque and stops with the servo lock, or use the host controller to limit the operation instead of this function.
- A Command Warning (Error No. B1.00) will occur if a command is given in the direction outside the setting range while the Servomotor is stopped (i.e., decreases the speed to approximately 30 r/min or lower).

Backlash Compensation 7-5

This function compensates the specified backlash compensation amount, travel distance, and present position.

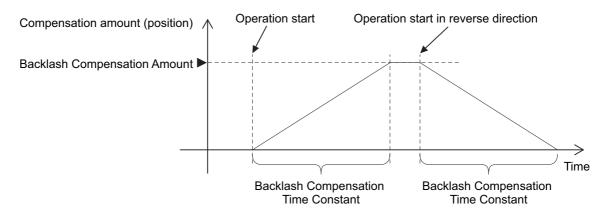
Use this function when there is a meshing error in machine systems.

The Backlash Compensation function can be used when the communications period is 250 µs or more. When the communications period is 125 µs, set **Backlash Compensation Selection** to 0 (disabled).

7-5-1 **Operating Conditions**

The backlash compensation function operates in the position control.

7-5-2 **Objects Requiring Settings**


Index (hex)	Subindex (hex)	Name	Description	Refer- ence
3001		Machine		P. 9-12
	02	Backlash Compensation Selection	Selects whether to enable or disable backlash compensation in the position control, and the operation direction for the compensation.	P. 9-12
			0: Disabled	
			1: Compensate at the first positive operation after Servo ON	
			2: Compensate at the first negative operation after Servo ON	
	03	Backlash Compensation Amount	Sets the backlash compensation amount in the position control.	P. 9-12
	04	Backlash Compensation Time Constant	Sets the backlash compensation time constant in the position control.	P. 9-13

7-5-3 Description of Operation

When the first operation after Servo ON is performed in the direction specified in **Backlash Compensation Selection** (3001-02 hex), position data is compensated by Backlash Compensation Amount. After that, compensation is executed each time the operation direction is reversed.

The compensation is performed for the target position and the present position. The software position limit function and the latch function are performed based on the position data after compensation.

Backlash Compensation is performed as follows:

To determine the actual position of the Servomotor, the Servomotor position data acquired via Ether-CAT communications is offset by the Backlash Compensation Amount.

If the Servo is turned OFF when backlash compensation is performed, the position data is reset to the value that does not contain Backlash Compensation Amount. The backlash compensation is performed as described above when the Servo is turned ON again.

Additional Information

Conditions for Clearing Backlash Compensation

- When the following error is reset:
 - This includes when the Servo is OFF, and when following error is cleared due to the drive prohibition input.
- When the position data is initialized, except for the homing operation in Homing mode (hm): This includes **Absolute Encoder Setup** (4510-F1 hex).

Brake Interlock 7-6

This function lets you set the output timing for the Brake Interlock Output (BKIR) signal that activates the holding brake when the Servo is turned OFF or an error occurs.

It is also possible to use the controller to force the brake control via EtherCAT communications.

In the unit version 1.2 or later, you can select an output port from the brake output (BKIR) and a General Output (OUT 1 to 3). For the details on the connection method for when a General Output (OUT 1 to 3) is selected, refer to the wiring diagram in External Brake Interlock Output (EXTBKIR) on page 3-31.

Set an appropriate value to parameters described in 7-6-1 Objects Requiring Settings on page 7-22.

7-6-1 **Objects Requiring Settings**

Index (hex)	Subindex (hex)	Name	Description	Refer- ence
4610		Brake Interlock Output	Sets the brake interlock operation.	P. 9-113
	01	Enable	Selects whether to enable or disable the brake interlock output.	P. 9-113
			0: Disabled ^{*1}	
			1: Enabled	
	02	Timeout at Servo OFF	Sets the time from when the OFF state of the operation command is detected (the power supply to the motor is OFF) until the Brake Interlock Output (BKIR) is turned OFF (brake is held), when the Servo OFF is performed during motor operation.	P. 9-113
	03	Threshold Speed at Servo OFF*2	Sets the motor speed at which the Brake Interlock Output (BKIR) can be turned OFF (brake is held) after the Servo OFF command is detected, when the Servo OFF is performed during motor operation.	P. 9-113
	04	Hardware Delay Time	Sets the delay time of the mechanical brake operation, etc. Outputs the timing signal of the external brake by the use of this delay time, when the Servo OFF is performed during motor stop.	P. 9-114
4663		External Brake Inter- lock Output*3	Sets the output signal allocation and logic.	P. 9-130
•	01	Port Selection	Selects the port to be allocated.	P. 9-130
			If this function is not allocated, it is output to the brake output (BKIR).	
			bit 0: General Output 1 (OUT1)	
			bit 1: General Output 2 (OUT2)	
			bit 2: General Output 3 (OUT3)	
			0: Not allocated	
			1: Allocated	
	02	Logic Selection	0: Positive logic (NO contact)	P. 9-130

Index (hex)	Subindex (hex)	Name	Description	Refer- ence
60FE		Digital outputs		P. A-61
	01	Physical outputs	Changes the function output status.	P. A-61
			bit 0: NC Contact Brake Interlock Output (BKIR_b)	
			0: Brake released	
			1: Brake held	
			bit 28: NO Contact Brake Interlock Output (BKIR_a)*4	
			0: Brake held	
			1: Brake released	
4602		Function Output	Sets the function output.	P. 9-110
	01	Bit Mask	Selects whether to enable or disable the function output.	P. 9-110
			bit 0: NC Contact Brake Interlock Output (BKIR_b)	
			0: Output disabled ^{*5}	
			1: Output enabled	
			bit 28: NO Contact Brake Interlock Output (BKIR_a)*4	
			0: Output disabled ^{*5}	
			1: Output enabled	

^{*1.} If this object is set to 0 (disabled), the Brake Interlock Output (BKIR) turns ON (brake released).

- *2. With the unit version Ver.1.4 or later, the default setting is changed. Refer to 9-14-6 4610 hex: Brake Interlock Output on page 9-113 for details.
- *3. This object is available for the unit version 1.2 or later.
- *4. This bit is available for the unit version 1.4 or later.
- *5. Even when Bit Mask is 0 (output disabled), the Servo Drive can perform the brake control.

Precautions for Correct Use

- The brake built into a Servomotor with a brake is a non-excitation brake designed only to hold the motor in the stop state when the operation is stopped. Accordingly, set an appropriate time so that the brake is applied after the Servomotor stops.
- If the brake is applied while the Servomotor is rotating, the brake disc will wear abnormally or sustain damage. This results in a bearing or encoder failure in the Servomotor.
- The workpiece may fall when the brake is released for a vertical axis. Carefully consider the timing of releasing the brake.
- For STO or an error applicable to Operation B of a method to stop, in some cases, a Servomotor power supply becomes OFF before a brake is held. As a result, a workpiece may fall. Take a caution of the timing when the brake is held. For a method to stop, refer to Shutdown option code (605B hex), Disable operation option code (605C hex) and Fault reaction option code (605E hex).

7-6-2 **Description of Operation**

To control the brake forcibly via EtherCAT communications, set Digital outputs - Physical outputs (60FE-01 hex) and Function Output - Bit Mask (4602-01 hex). However, to prevent a workpiece from falling for a vertical axis, the brake is constantly applied except when the status of ESM is Operational.

Relationship between Brake Interlock Function and Status of ESM

Status of ESM	Physical outputs (60FE-01 hex)		Bit Mask (4602-01 hex)		Brake state	Digital inputs
	bit 0	bit 28 ^{*1}	bit 0	bit 28 ^{*1}		bit 26
Operational	0		0	0	Held	0
			1		Released	1
	1		0		Held	0
			1		Held	0
		0	0	0	Held	0
				1	Held	0
		1		0	Held	0
				1	Released	1
Other than Opera-	0		0		Held	0
tional			1		Held*2	0*3
	1		0		Held	0
			1		Held	0

^{*1.} This bit is available for the unit version 1.4 or later.

Set External Brake Interlock Output - Port Selection (4663-01 hex) to change the output port of the brake interlock signal.

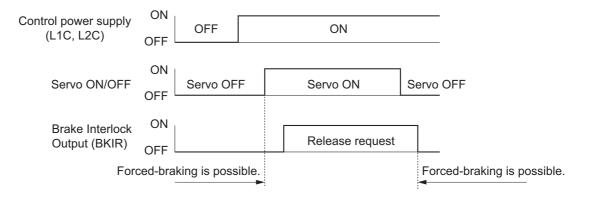
The following table lists output ports corresponding to values of Port Selection.

Value of Port Selection	Output port
0	Brake output (BKIR)
1	General Output 1 (OUT1)
2	General Output 2 (OUT2)
4	General Output 3 (OUT3)

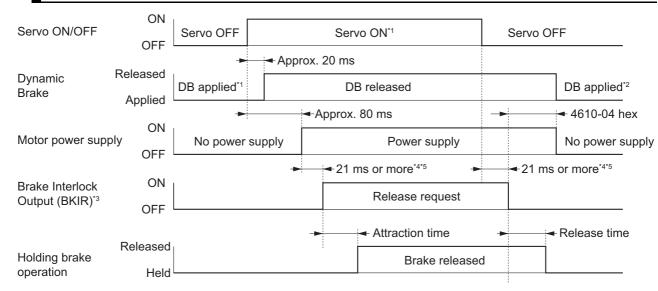
You can monitor the output status of the brake interlock signal by I/O Monitor - Physical I/O (4600-81 hex), Digital inputs (60FD-00 hex) bit 26, and External Brake Interlock Output - Signal Status (4663-81 hex).

The output status is given to data that are indicated with a check mark in the following table.

Output port		Physi	cal I/O		Digital inputs	Signal Status
Output port	bit 17	bit 18	bit 19	bit 30	bit 26	(4663-81 hex)
General Output 1 (OUT1)	V				V	V
General Output 2 (OUT2)		V			V	V
General Output 3 (OUT3)			V		V	V
Brake output (BKIR)				√	V	

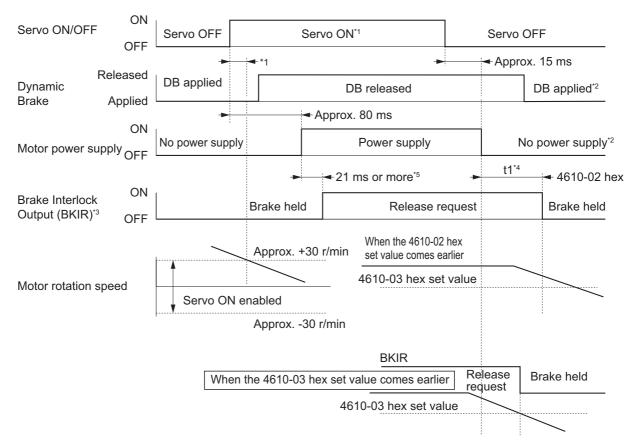

^{*2.} Released if the unit version is 1.1 or earlier.

^{*3. 1} if the unit version is 1.1 or earlier.

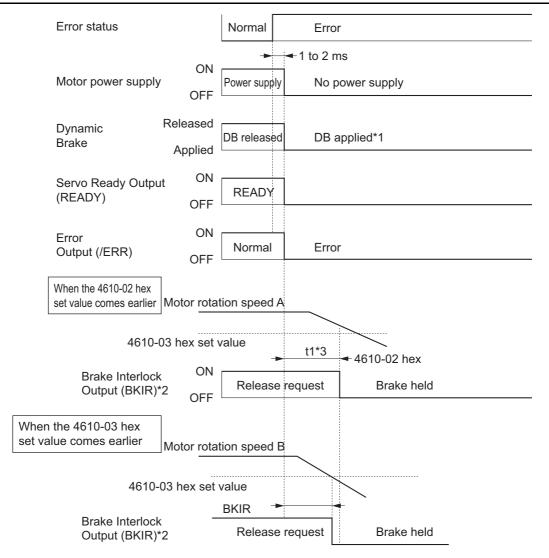

7-6-3 Operation Timing

This section shows the timing of the Brake Interlock Output (BKIR).

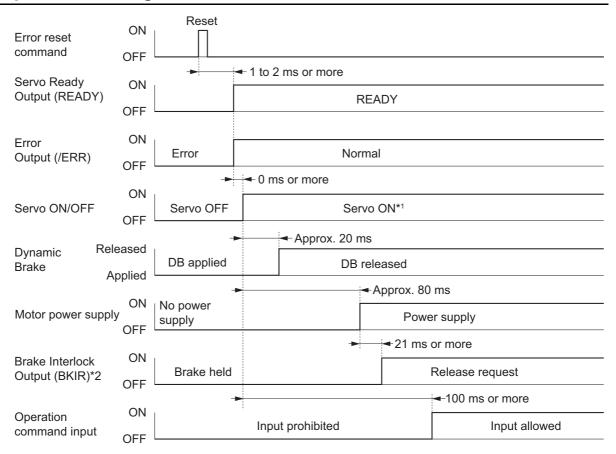
Basic Timing


Servo ON/OFF Operation Timing When Motor Is Stopped

- *1. The Servo does not turn ON until the motor rotation speed drops to approximately 30 r/min or lower.
- *2. The operation of the dynamic brake when the Servo is OFF depends on the set value in **Stop Selection Disable Operation Option Code** (3B20-02 hex).
- *3. The Brake Interlock Output (BKIR) signal is output when a release request command is received from either servo control or EtherCAT communications. The above example shows when there is no brake release request from EtherCAT communications.
- *4. Depends on the set value in **Brake Interlock Output Hardware Delay Time** (4610-04 hex). The brake attraction time and release time vary depending on the Servomotor brake. For details, refer to *3-2 Servomotor Specifications* on page 3-43.
- *5. 2 ms or more when the External Brake Interlock Output is used.


Servo ON/OFF Operation Timing When Motor Is Operating

Based on these operation timings, regenerative energy is produced if the motor rotation stops abnormally. Accordingly, repeated operation cannot be performed. Provide a wait time of at least 10 minutes for the motor to cool down.


- *1. The Servo does not turn ON until the motor rotation speed drops to 30 r/min or lower. If the Servo ON command is input during motor rotation, the Command Warning (Error No. B1.00) will occur. The Servo ON command is ignored.
- *2. The operation of the dynamic brake when the Servo is OFF depends on the set value in Stop Selection -Disable Operation Option Code (3B20-02 hex).
- *3. The Brake Interlock Output (BKIR) signal is output when a release request command is received from either servo control or EtherCAT communications. The above example shows when there is no brake release request from EtherCAT communications.
- *4. "t1" is the period until the value becomes smaller than the set value in the Timeout at Servo OFF (4610-02 hex) or the Threshold Speed at Servo OFF (4610-03 hex), whichever comes earlier.
- *5. Depends on the set value in Brake Interlock Output Hardware Delay Time (4610-04 hex).
- Note 1. Even when the Servo ON input is turned ON again while the motor is decelerating, the system does not enter the Servo ON state until the motor stops.
 - 2. If the Brake Interlock Output (BKIR) is output because of Timeout at Servo OFF (4610-02 hex), a Brake Interlock Error (Error No. 97.00) will occur.

Operation Timing When an Error Occurs (Servo ON)

- *1. The operation of the dynamic brake when there is an error depends on the set value in the **Stop Selection Fault Reaction Option Code** (3B20-04 hex).
- *2. The Brake Interlock Output (BKIR) signal is output when a release request command is received from either servo control or EtherCAT communications. The above example shows when there is no brake release request from EtherCAT communications.
- *3. "t1" is the period until the value becomes smaller than the set value in the **Timeout at Servo OFF** (4610-02 hex) or the **Threshold Speed at Servo OFF** (4610-03 hex), whichever comes earlier.
- Note 1. Even when the Servo ON input is turned ON again while the motor is decelerating, the system does not enter the Servo ON state until the motor stops.
 - 2. If the main circuit power supply turns OFF while the motor is operating, a phase loss error or main circuit undervoltage will occur, in which case this operation timing is applied.
 - 3. If the Brake Interlock Output (BKIR) is output because of **Timeout at Servo OFF** (4610-02 hex), a Brake Interlock Error (Error No. 97.00) will occur.

Operation Timing When an Error is Reset

- *1. The Servo does not turn ON until the motor rotation speed drops to approximately 30 r/min or lower.
- *2. The Brake Interlock Output (BKIR) signal is output when a release request command is received from either servo control or EtherCAT communications. The above example shows when there is no brake release request from EtherCAT communications.
- *3. Depends on the set value in Brake Interlock Output Hardware Delay Time (4610-04 hex).

Note After an error is reset, the system enters the Servo OFF state (motor not energized). To turn ON the Servo, after resetting the error, send the Servo ON command again according to the above timing.

7-7 Electronic Gear Function

The Electronic Gear Function controls the position by using the value that is obtained by multiplication of the position command input from the host controller by the specified gear ratio.

The Electronic Gear Function can be used when the communications period is 250 μ s or more. When the communications period is 125 μ s, set the gear ratio to 1:1.

When the Servo Drive is connected to an OMRON Machine Automation Controller NJ/NX-series CPU Unit, the electronic gear ratio is set on the controller. Set the electronic gear ratio to 1:1 on the Servo Drive.

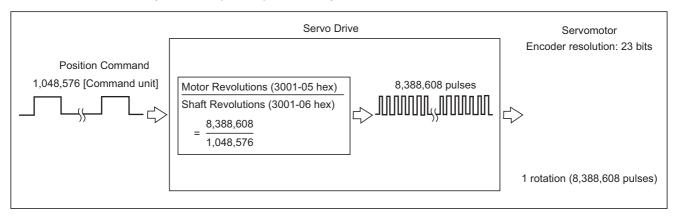
Note If the unit version of the NJ/NX-series CPU Units is 1.10 or earlier, some Servomotors cannot be driven at the maximum rotation speed. In such a case, set the electronic gear ratio of the Servo Drive to 2:1 or higher.

When the Servo Drive is connected to an OMRON Position Control Unit (Model: CJ1W-NC \square 8 \square), set the electronic gear ratio to 8:1 or higher on the Servo Drive.

7-7-1 Objects Requiring Settings

Index (hex)	Subindex (hex)	Name	Description	Refer- ence
3001		Machine	Sets the mechanical system which is connected to the motor.	P. 9-12
	05	Motor Revolutions*1	Set the numerator of the electronic gear ratio.	P. 9-13
	06	Shaft Revolutions*1	Set the denominator of the electronic gear ratio.	P. 9-13

^{*1.} The electronic gear ratio must be between 1/2,000 and 2,000. If it is set outside the range, an Electronic Gear Setting Error (Error No. 93.00) will occur.


Precautions for Correct Use

To make the position command smoother after the electronic gear setting, adjust it by using the **Position Command Filter** (3011 hex).

7-7-2 **Operation Example**

This example uses a motor with a 23-bit encoder (8,388,608 pulses per rotation).

• If you set 3001-05 hex/3001-06 hex to 8,388,608/1,048,576, the operation is the same as the 20-bit Servomotor (1,048,576 pulses per rotation).

7-8 Torque Limit Switching

This function switches the torque limit according to the operation direction, and depending on the Positive Torque Limit (PCL), the Negative Torque Limit (NCL), and the Positive/Negative Torque Limit Input Commands from EtherCAT communications.

This function is used in the following conditions.

- · When push-motion operation, such as pressing, is performed.
- When the torque at startup and during deceleration is suppressed to protect mechanical systems,

The **Torque Limit - Switching Selection** (3330-01 hex) is used to select a method to switch the torque limit.

7-8-1 Operating Conditions

The torque limit switching function is enabled under the following conditions.

- · Position control, velocity control, and torque control
- · The Servo is ON.

7-8-2 Objects Requiring Settings

Index (hex)	Subindex (hex)	Name	Description	Refer- ence
3330		Torque Limit	Sets the torque limit function.	P. 9-54
	01	Switching Selection	Selects the torque limit switching method.	P. 9-54
	02	Max Torque	Sets the maximum torque limit value.	P. 9-54
	03	Positive Torque Limit Value	Sets the positive torque limit value.	P. 9-55
	04	Negative Torque Limit Value	Sets the negative torque limit value.	P. 9-55
	05	Positive Torque Limit Value 2	Sets the positive torque limit value 2.	P. 9-55
	06	Negative Torque Limit Value 2	Sets the negative torque limit value 2.	P. 9-55
60E0		Positive torque limit value	Sets the positive torque limit value.	P. A-58
60E1		Negative torque limit value	Sets the negative torque limit value.	P. A-58

Torque Limit Switching Method 7-8-3

The following table shows the operations that are performed according to the setting of the **Torque** Limit - Switching Selection (3330-01 hex).

Torque limit	Positive to	orque limit	Negative torque limit		
switching selection	iPCL*1OFF	iPCL*1ON	iNCL*2OFF	iNCL*2ON	
0	Positive torque limit va	llue	Negative torque limit v	alue	
	(60E0 hex or 3330-03	hex)	(60E1 hex or 3330-04	hex)	
1	Positive Torque Limit Value 2	Positive torque limit value	Negative Torque Limit Value 2	Negative torque limit value	
	(3330-05 hex)	(60E0 hex or 3330-03 hex)	(3330-06 hex)	(60E1 hex or 3330-04 hex)	
2	Positive torque limit value	Positive Torque Limit Value 2	Negative torque limit value	Negative Torque Limit Value 2	
	(60E0 hex or 3330-03 hex)	(3330-05 hex)	(60E1 hex or 3330-04 hex)	(3330-06 hex)	

^{*1.} iPCL = Logical OR of the general-purpose input signal (PCL) and P_CL (Controlword)

For the Positive torque limit value (60E0 hex or 3330-03 hex) and Negative torque limit value (60E1 hex or 3330-04 hex), the values of 60E0 hex and 60E1 hex are used if 60E0 hex and 60E1 hex are mapped to a PDO. If they are not mapped to a PDO, the values of 3330-03 hex and 3330-04hex are used.

The positive torque limit and negative torque limit are limited by the maximum torque regardless of the settings.

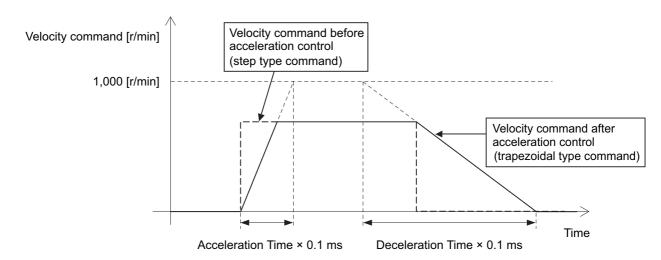
^{*2.} iNCL = Logical OR of the general-purpose input signal (NCL) and N_CL (Controlword)

7-9 Soft Start

This function performs auto acceleration and deceleration inside the Servo Drive when step-type velocity commands are input.

To reduce any impacts made by acceleration changes, you can also use the velocity command first-order lag filter.

7-9-1 Objects Requiring Settings

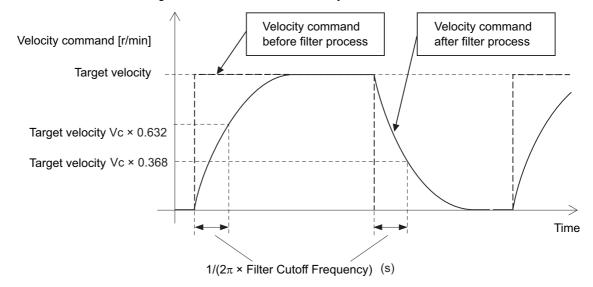

Index (hex)	Subindex (hex)	Name	Description	Refer- ence
3021		Velocity Command Filter		P. 9-23
	01	Acceleration Time	Sets the acceleration time during acceleration.	P. 9-23
	02	Deceleration Time	Sets the deceleration time during deceleration.	P. 9-23
	03	IIR Filter Enable	Selects whether to enable or disable the IIR filter in the velocity command filter. 0: Disabled	P. 9-23
			1: Enabled	
-	04	Filter Cutoff Frequency	Sets the cutoff frequency for the IIR filter.	P. 9-23

7-9-2 Soft Start Acceleration/Deceleration Time

For a step velocity command input, set the time required for the velocity command to reach 1,000 r/min in Acceleration Time.

Similarly, set the time required for the velocity command to decrease the velocity from 1,000 r/min to 0 r/min in Deceleration Time.

Acceleration Time [ms] = $Vc/1,000 \text{ r/min} \times \text{Acceleration Time} \times 0.1 \text{ ms}$ Deceleration Time [ms] = $Vc/1,000 \text{ r/min} \times \text{Deceleration Time} \times 0.1 \text{ ms}$



Precautions for Correct Use

Do not set the Acceleration Time and the Deceleration Time when the position loop structure with a host controller is used.

7-9-3 **Velocity Command First-order Lag Filter**

The command first-order lag filter is an IIR filter for velocity commands.

7-10 Gain Switching Function

This function switches the position control gain, velocity control gain, and torque command filter.

If the load inertia changes or you want to change the responsiveness depending on whether the motor is stopping or operating, you can perform optimal control by using gain switching.

7-10-1 Objects Requiring Settings

Index (hex)	Subindex (hex)	Name	Description	Refer- ence	
3212		Gain Switching in Position	Sets the gain switching method in the position	P. 9-34	
		Control	control.		
	01	Mode Selection	Selects the condition to switch between Gain 1 and Gain 2.	P. 9-35	
			0: Always Gain 1		
			1: Always Gain 2		
			2: Gain switching command input via Ether- CAT communications		
			3: Actual motor velocity with position command		
	02	Delay Time	Sets the delay time when the gain returns from Gain 2 to Gain 1 when the Mode Selection is set to 3.	P. 9-35	
	03	Speed	Sets the speed threshold when Gain 2 switches to Gain 1. This object is enabled when the Mode Selection is set to 3.	P. 9-35	
	04	Time	Sets the time to switch the gain completely when the gain is switched from low to high in stages.	P. 9-35	
3213		1st Position Control Gain	Sets the 1st position control gain.	P. 9-35	
	01	Proportional Gain	Sets the proportional gain.	P. 9-35	
3214		2nd Position Control Gain	Sets the 2nd position control gain.	P. 9-36	
	01	Proportional Gain	Sets the proportional gain.	P. 9-36	
3222		Gain Switching in Velocity Control	Sets the gain switching method in the velocity control.	P. 9-38	
	01	Mode Selection	Selects the condition to switch between Gain 1 and Gain 2.	P. 9-38	
			0: Always Gain 1		
			1: Always Gain 2		
			2: Gain switching command input via Ether- CAT communications		
3223		1st Velocity Control Gain	Sets the 1st velocity control gain.	P. 9-38	
	01	Proportional Gain	Sets the proportional gain.	P. 9-38	
	02	Integral Gain	Sets the velocity integral gain.	P. 9-38	
3224		2nd Velocity Control Gain	Sets the 2nd velocity control gain.	P. 9-39	
	01	Proportional Gain	Sets the proportional gain.	P. 9-39	
	02	Integral Gain	Sets the velocity integral gain.	P. 9-39	

Index (hex)	Subindex (hex)	Name	Description	Refer- ence
3232		Filter Switching in Torque Control	Sets the filter switching method in the torque control.	P. 9-40
	01	Mode Selection	Selects the condition to switch between 1st Filter and 2nd Filter.	P. 9-41
			0: Always 1st Filter	
			1: Always 2nd Filter	
			Gain switching command input via Ether- CAT communications	
3233		1st Torque Command Filter	Sets the 1st torque command filter.	P. 9-41
	01	Enable	Selects whether to enable or disable the 1st torque command filter.	P. 9-41
			0: Disabled	
			1: Enabled	
	02	Cutoff Frequency	Sets the cutoff frequency for the filter.	P. 9-41
3234		2nd Torque Command Filter	Sets the 2nd torque command filter.	P. 9-42
	01	Enable	Selects whether to enable or disable the 2nd torque command filter.	P. 9-42
			0: Disabled	
			1: Enabled	
	02	Cutoff Frequency	Sets the cutoff frequency for the filter.	P. 9-42
4602		Function Output	Sets the function output.	P. 9-110
	01	Bit Mask	Selects whether to enable or disable the function outputs.	P. 9-110
			bit 24: Gain Switching (G-SEL)	
			0: Gain switching disabled	
			1: Gain switching enabled	
60FE		Digital outputs	-	P. A-61
	01	Physical outputs	Changes the function output status of each bit.	P. A-61
			bit 24: Gain Switching (G-SEL)	
			0: Gain 1	
			1: Gain 2	

7-10-2 Mode Selection

The **Mode Selection** is used to set the condition to switch between Gain 1 and Gain 2.

When you select Gain 1, control is performed based on 1st Position Control Gain, 1st Velocity Control Gain, and 1st Torque Command Filter. When you select Gain 2, control is performed based on 2nd Position Control Gain, 2nd Velocity Control Gain, and 2nd Torque Command Filter.

The following is an operation example.

Mode Selection:

Gain Switching in Position Control - Mode Selection (3212-01 hex) = 0: Gain1

Gain Switching in Velocity Control - Switching Selection (3222-01 hex) = 1: Gain 2

Switching when Filter Switching in Torque Control - Mode Selection (3232-01 hex) = 2: Input command (G-SEL)

Operation mode	Position control	Velocity control	Torque control			
G-SEL -			0	_ 1		
Position control gain						
Velocity control gain	Gain 1	Gain 2	Gain 1	Gain 2		
Torque command filter						

When Mode Selection = 0: Always Gain 1 or 1: Always Gain 2

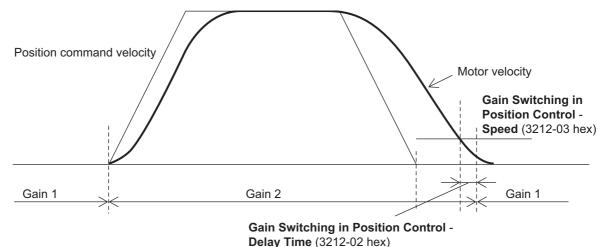
If **Mode Selection** is set to 0, **1st Position Control Gain** (3213 hex), **1st Velocity Control Gain** (3223 hex), and **1st Torque Command Filter** (3233 hex) are used.

If **Mode Selection** is set to 1, **2st Position Control Gain** (3214 hex), **2st Velocity Control Gain** (3224 hex), and **2st Torque Command Filter** (3234 hex) are used.

When Mode Selection = 2: Gain switching command input via Ether-CAT communications

If **Mode Selection** is set to 2, you can switch between Gain 1 and Gain 2 by changing the value of *bit* 24: *G-SEL* of **Digital outputs - Physical outputs** (60FE-01 hex) via EtherCAT communications.

Set Description			
0 Gain 1			
1 Gain 2	_	<u>-</u>	- -
G-SEL		0	0 1
Position control gain			
Velocity control gain		Gain 1	Gain 1 Gain 2
Torque command filter			

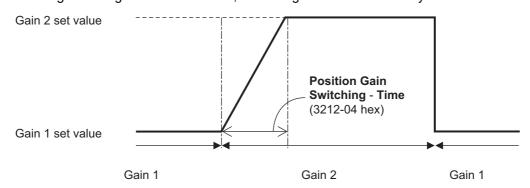

When Mode Selection = 3: Actual motor velocity with position command

If Mode Selection is set to 3, you can switch between Gain 1 and Gain 2 by using the position command and the motor velocity.

Set the Gain Switching in Position Control - Speed (3212-03 hex) to a speed threshold to switch from Gain 2 to Gain 1. You can set the delay time for this switching operation in **Delay Time** (3212-02) hex).

Gain 1 switches to Gain 2 when the position command velocity becomes a value other than 0.

After the operation is performed, the position command velocity becomes 0, and Gain 2 switches to Gain 1 when the motor velocity reaches the set Gain Switching in Position Control - Speed (3212-03 hex) or lower and the Gain Switching in Position Control - Delay Time (3212-02 hex) elapses.



After Gain 2 switched to Gain 1, the Gain 1 is held even if overshooting occurs and the motor velocity exceeds the Gain Switching in Position Control - Speed (3212-03 hex).

7-10-3 Gain Switching in Position Control

In position control, vibration may occur if Gain 1 and Gain 2 are switched and the gain increases rapidly. To switch the gain gradually and suppress the vibration, set Position Gain Switching - Time (3212-04 hex).

When the gain changes from a lower set value to a higher set value, it increases in the specified time. When the gain changes to a lower value, the change occurs immediately.

7-11 Touch Probe Function (Latch Function)

The touch probe function latches the actual position and time stamp at the rising edge of an external latch input signal or the encoder's phase-Z signal. 1S-series Servo Drives have two latch functions.

7-11-1 Related Objects

Index (hex)	Subindex (hex)	Name	Description	Refer- ence
3B30		Touch Probe 1		P. 9-67
	01	Touch Probe 1 Source	1: External Latch Input 1 (EXT1)	P. 9-68
			2: External Latch Input 2 (EXT2)	
			6: Encoder Phase Z	
	83	Positive Edge Time Stamp	Gives the time which is latched by the Latch Function 1 (Touch Probe 1).	P. 9-68
3B31		Touch Probe 2		P. 9-70
	01	Touch Probe 2 Source	1: External Latch Input 1 (EXT1)	P. 9-70
			2: External Latch Input 2 (EXT2)	
			6: Encoder Phase Z	
	83	Positive Edge Time Stamp	Gives the time which is latched by the Latch Function 2 (Touch Probe 2).	P. 9-70
4632		External Latch Input 1		P. 9-117
	01	Port Selection	Selects the port to be allocated.	
			0: No allocation	
			1: General Input 1 (IN1)	
			2: General Input 2 (IN2)	
			3: General Input 3 (IN3)	
			4: General Input 4 (IN4)	
			5: General Input 5 (IN5)	
			6: General Input 6 (IN6)	
			7: General Input 7 (IN7)	
			8: General Input 8 (IN8)	
	02	Logic Selection	Select positive logic (NO contact) or negative logic (NC contact).	
			0: Positive logic (NO contact)	
			1: Negative logic (NC contact)	

Index (hex)	Subindex (hex)	Name	Description	Refer- ence
4633		External Latch Input 2		P. 9-118
	01	Port Selection	Selects the port to be allocated.	
			0: No allocation	
			1: General Input 1 (IN1)	
			2: General Input 2 (IN2)	
			3: General Input 3 (IN3)	
			4: General Input 4 (IN4)	
			5: General Input 5 (IN5)	
			6: General Input 6 (IN6)	
		7: General Input 7 (IN7)		
			8: General Input 8 (IN8)	
	02	Logic Selection	Select positive logic (NO contact) or nega-	
			tive logic (NC contact).	
			0: Positive logic (NO contact)	
			1: Negative logic (NC contact)	
60B8		Touch probe function*1	Sets the latch (touch probe) function.	P. A-55
60B9		Touch probe status*2	Gives the status of the Latch Function	P. A-56
			(Touch Probe) 1 and 2.	
60BA		Touch probe 1 positive	Gives the position which is latched by the	P. A-56
		edge	Latch Function 1 (Touch Probe 1).	
60BC		Touch probe 2 positive	Gives the position which is latched by the	P. A-56
		edge	Latch Function 2 (Touch Probe 2).	

^{*1.} The bits of Touch probe function are specified as follows.

b15	b14	b13	b12	b11	b10	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0
Rsv	Rsv	ENg	EPs	Tri	Sel	Cont	Ena	Rsv	Rsv	ENg	EPs	Tri	Sel	Cont	Ena
		I	_atch Fu	unction 2	2					I	₋atch Fu	unction '	1		

Ena: Latch function disabled (0) or enabled (1)

Cont: Trigger First Event Mode (0)/Continuous Mode (1) in latch operation

TriSel: Latch trigger input switch

Bit 3 (11)	Bit 2 (10)	Selected trigger input
0	0	EXT1 (or 2)
0	1	Phase Z
1	0	Follow the setting in the Touch probe source (60D0 hex).
1	1	Reserved
		The trigger signal input is processed as 0.

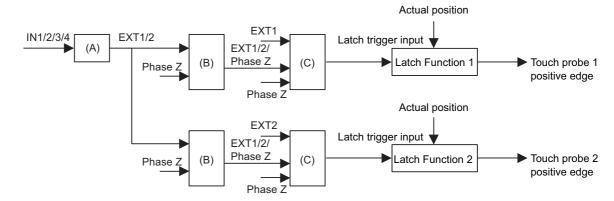
EPs: Latch enabled (1) or disabled (0) on the positive edge

ENg: Unsupported (Fixed to 0) Rsv: Reserved (Fixed to 0)

*2. The bits of Touch probe status are specified as follows.

b15	b14	b13	b12	b11	b10	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0
U	ID	Rsv	Rsv	Rsv	NLc	PLc	Enb	U	ID	Rsv	Rsv	Rsv	NLc	PLc	Enb
	Latch Function 2 Latch Function 1														

Rsv: Reserved (Fixed to 0)


Enb: Latch function disabled (0) or enabled (1) PLc: With (0) or without (1) Latch positive data

NLc: Latch negative data (Fixed to 0)

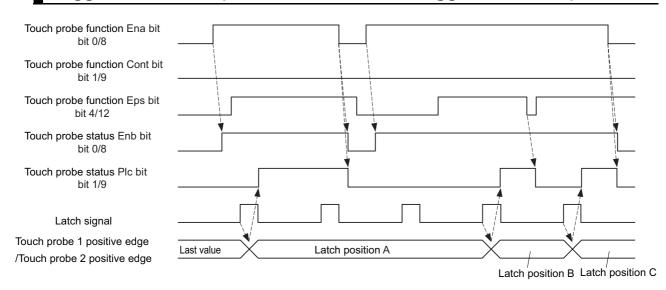
UD: User-defined (Fixed to 0)

7-11-2 Trigger Signal Settings

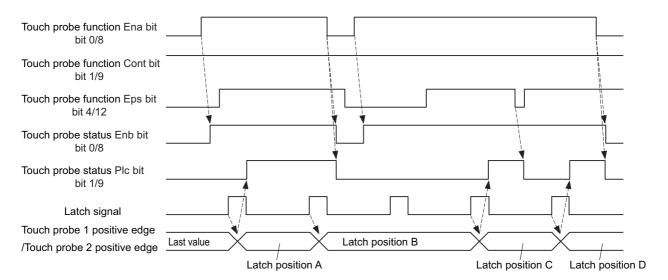
You can select the latch trigger as follows.

	Function	Description
(A)	General-purpose input function	Allocation of general-purpose input signals and logic selection
	selection (including logic selection)	
(B)	Touch probe source	Selecting the latch trigger from EXT1, EXT2, and phase Z
(C)	Latch trigger input switching	Switching a trigger to be used from a signal selected in Touch probe
		source, EXT1, EXT2, and Phase Z

Precautions for Correct Use


When you use the general-purpose inputs as the external latch signals, use the general-purpose input signals 7 and 8. If you use the general-purpose input signals 1 to 6, a delay of approximately 2 ms will occur.

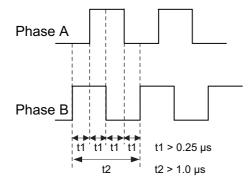
Operation Sequence 7-11-3


The operations when Cont (latch operation) is 0 (Trigger First Event Mode) and 1 (Continuous Mode) are explained below.

When the setting is changed when Ena (touch probe function) is 1 (enabled), the change is applied immediately. The value of the status is valid only when Ena (touch probe function) is 1 (enabled).

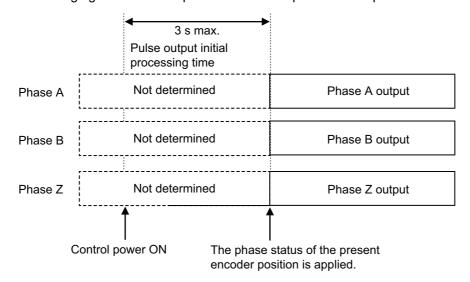
Trigger First Event (60B8 hex Bit 1/9 = 0: Trigger first event)

Continuous (60B8 hex Bit 1/9 = 1: Continuous)


7-12 Encoder Dividing Pulse Output Function

The Encoder Dividing Pulse Output Function outputs the position information obtained from the encoder in the form of two-phase pulses (phase A and B) with a 90° phase difference. This function also supports Z-phase outputs.

Pulse Output Waveform

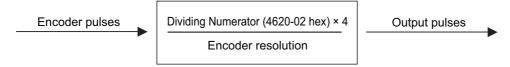

The following figure shows the waveforms of two-phase pulse outputs with 90° phase difference.

The maximum pulse output frequency is 4 Mpps.

Pulse Output at Power ON

The following figure shows the pulses that are output when the power is turned ON.

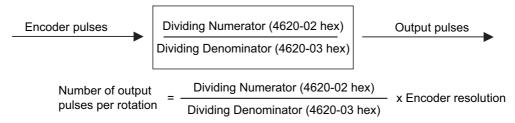
7-12-1 Objects Requiring Settings


Index (hex)	Subindex (hex)	Name	Description	Refer- ence
4620		Encoder Dividing Pulse Output	Sets the encoder dividing pulse output.	P. 9-114
	01	Enable	Selects whether to enable or disable the encoder dividing pulse output function. 0: Disabled	P. 9-114
			1: Enabled	
	02	Sets the number of output pulses per motor rotation.	P. 9-114	
	03	Dividing Denominator	For applications for which the number of output pulses per rotation is not an integer, when this set value is set to a value other than 0, the number of output pulses per motor rotation can be set by the use of the dividing ratio which is calculated from the dividing numerator and dividing denominator.	P. 9-115
	04	Output Reverse Selection	Selects whether to reverse the encoder dividing pulse output or not. 0: Not reverse 1: Reverse	P. 9-115

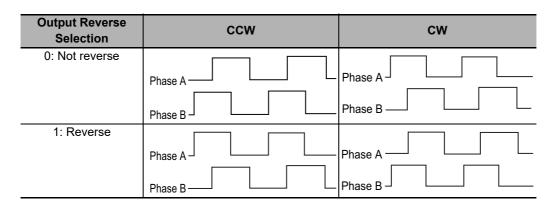
7-12-2 Dividing Ratio

You can change the number of output pulses by setting the dividing ratio.

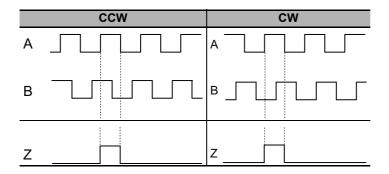
When Dividing Denominator (4620-03 hex) = 0


The number of output pulses is determined as follows when Encoder Dividing Pulse Output - Dividing Denominator (4620-03 hex) is set to 0.

Number of output pulses per rotation = Encoder Dividing Numerator (4620-02 hex) × 4


When Dividing Denominator (4620-03 hex) \neq 0

The number of output pulses is determined as follows when Encoder Dividing Pulse Output - Dividing Denominator (4620-03 hex) is set to a value other than 0.


7-12-3 Output Reverse Selection

You can use **Output Reverse Selection** (4620-04 hex) to reverse the output pulses.

7-12-4 Z-phase Output

Phase Z is output in synchronization with phase A.

Precautions for Correct Use

- The maximum pulse output frequency is 4 Mpps. Use the function so that this frequency is not exceeded. If the maximum output frequency is exceeded, a Pulse Output Overspeed Error (Error No. 28.0) occurs.
- If the Dividing Denominator is not 0, set the values so that Dividing Numerator is equal to or smaller than Dividing Denominator. If the values are not set correctly, a Pulse Output Setting Error (Error No. 28.1) occurs.
- If you use phase Z when the Dividing Denominator is not 0, set the values so that the number of output pulses per rotation is a multiple of 4. If this condition is not met, phase Z is not output.

7-13 Dynamic Brake

The dynamic brake can be used to stop the Servomotor in the events such as drive prohibition input, Servo OFF, and occurrence of an error.

The dynamic brake stops the Servomotor quicker than a free-run stopping.

You can install the external dynamic brake resistor with a Servo Drive at 5.5 kW or more. In its use, wire the resistor to a main circuit connector E (CNE) securely. Refer to the details about 3-6 External Dynamic Brake Resistor on page 3-151.

Precautions for Correct Use

- Do not use the dynamic brake frequently for deceleration operation because the dynamic brake is intended for the stop at the time of an error. Confirm the precautions that are given in 4-5 Adjustment for Large Load Inertia on page 4-78 before use.
- Do not drive the Servomotor by the use of an external drive source when the power supply is OFF and the Dynamic brake is applied.
- The dynamic brake is intended for the stop at the time of an error and therefore it has a short-time rating.

Do not use it for the stop in normal operation.

· The following frequency and number of times are the guideline for using the internal dynamic

Frequency of use: 3 minutes or more per activation

Deceleration patterns: 1,000 times at rated rotation speed and applicable load inertia

7-13-1 Operating Conditions

The dynamic brake can be applied can be applied in the following cases.

- · Drive prohibition
- · Software position limit
- · Servo OFF
- · Main circuit power OFF
- · Occurrence of error
- Control power supply OFF (only for Servo Drives at 3 kW or less)

7-13-2 Objects Requiring Settings

Index (hex)	Subin- dex (hex)	Name	Description	Refer- ence
3B10		Drive Prohibition		P. 9-60
	02	Stop Selection	Selects the operation when Positive Drive Prohibition or Negative Drive Prohibition is enabled.	
3B11		Software Position Limit		P. 9-61
_	02	Stop Selection	Selects the operation when the software position limit is enabled.	

Index (hex)	Subin- dex (hex)	Name	Description	Refer- ence
3B20		Stop Selection		P. 9-63
	01	Shutdown Option Code	Selects the operation for the time when the	
			PDS state machine is Shutdown.	
			Mirror object of 605B hex	
	02	Disable Operation Option	Selects the operation for the time when the	
		Code	PDS state machine is Disable Operation.	
			Mirror object of 605C hex	
	04	Fault Reaction Option Code	Selects the operation for the time when an	
			error occurred in the Servo Drive (PDS	
			state = Fault reaction active).	
			Mirror object of 605E hex	

7-13-3 Description of Operation

This section describes the dynamic brake operation for each function.

Drive Prohibition

For the drive prohibition function, you can select the dynamic brake as a method to stop the Servomotor when Positive Drive Prohibition Input (POT) or Negative Drive Prohibition Input (NOT) is active.

Use the **Drive Prohibition - Stop Selection** (3B10-02 hex) for setting.

Stop Selection	During deceleration Deceleration method	
set value		
2	The deceleration stop torque is used.	
4	Stop according to the setting of Fault reaction option code	

Software Position Limit

You can select the dynamic brake as a method to stop the Servomotor when the present position exceeds the specified movement range.

Use the **Software Position Limit - Stop Selection** (3B11-02 hex) for setting.

Stop Selection	During deceleration Deceleration method	
set value		
2	The deceleration stop torque is used.	
4	Stop according to the setting of Fault reaction option code	

Main Circuit Power OFF

You can select the dynamic brake as a method to stop the Servomotor when the main circuit power is turned OFF (PDS state machine = Shutdown). Also, you can select the dynamic brake for the operation after stopping.

Use the Stop Selection - Shutdown Option Code (3B20-01 hex) for setting.

Set value		Deceleration operation	Operation after stopping
-7	Operation	Deceleration stop (The decelera-	Free
	A*1	tion stop torque is used.)	
	Operation	Free-run	
	B*1		
-6	Operation	Deceleration stop (The decelera-	Free
	A*1	tion stop torque is used.)	
	Operation	Dynamic brake operation	
	B*1		
-5	Operation	Deceleration stop (The decelera-	Dynamic brake operation
	A*1	tion stop torque is used.)	
	Operation	Free-run	
	B*1		
-4	Operation	Deceleration stop (The decelera-	Dynamic brake operation
	A*1	tion stop torque is used.)	
	Operation	Dynamic brake operation	
	B*1		
-3	Dynamic brake operation		Free
-2	Free-run		Dynamic brake operation
-1	Dynamic brake operation		Dynamic brake operation
0	Free-run		Free

^{*1.} The Servomotor stops according to the setting of Operation B while in an STO status or when the P-N Voltage drops to the specified value or lower. In other cases, the Servomotor decelerates to stop according to the setting of Operation A.

Servo OFF

You can select the dynamic brake as a method to stop the Servomotor when the Servo is turned OFF (PDS state machine = Disable operation). Also, you can select the dynamic brake for the operation after stopping.

Use the Stop Selection - Disable Operation Option Code (3B20-02 hex) for setting.

Set value	Deceleration operation	Operation after stopping
-6	Deceleration stop (The deceleration stop	Free
-4	torque is used.)	Dynamic brake operation
-3	Dynamic brake operation	Free
-2	Free-run	Dynamic brake operation
-1	Dynamic brake operation	Dynamic brake operation
0	Free-run	Free

Occurrence of Error

You can select the dynamic brake as a method to stop the Servomotor when an error occurs (PDS state = Fault reaction active). Also, you can select the dynamic brake for the operation after stopping.

Use the Stop Selection - Fault Reaction Option Code (3B20-04 hex) for setting.

Set value		Deceleration operation	Operation after stopping
-7	Operation A ^{*1}	Deceleration stop (The deceleration stop torque is used.)	Free
	Operation B*1	Free-run	
-6	Operation A*1	Deceleration stop (The deceleration stop torque is used.)	Free
	Operation B ^{*1}	Dynamic brake operation	
-5	Operation A*1	Deceleration stop (The deceleration stop torque is used.)	Dynamic brake operation
	Operation B*1	Free-run	
-4	Operation A*1	Deceleration stop (The deceleration stop torque is used.)	Dynamic brake operation
	Operation B*1	Dynamic brake operation	
-3	Dynamic brake operation		Free
-2	Free-run		Dynamic brake operation
-1	Dynamic brake operation		Dynamic brake operation
0	Free-run		Free

^{*1.} Operation A and B indicate whether or not to perform the deceleration stop when an error occurs. If an error that causes the deceleration stop occurs, the deceleration stop is performed according to the setting of Operation A. If an error that does not cause the deceleration stop occurs, the dynamic brake operation or free-run is performed according to the setting of Operation B. For details on errors, refer to 12-3 Errors on page 12-10.

Control Power Supply OFF

When control power supply is off, the dynamic brake is as follows.

- · Capacity 3 kW or less: The dynamic brake is applied.
- Capacity 5.5 kW or more: The dynamic brake is released and free.

When the control power supply is turned ON, the dynamic brake operation or free-run is performed according to the setting of **Stop Selection** – **Shutdown Option Code** (3B20-01 hex).

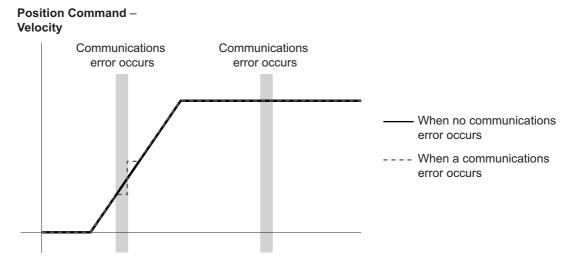
Precautions for Correct Use

• Do not drive the Servomotor by the use of an external drive source when the power supply is OFF and the dynamic brake is applied.

7-14 Command Compensation Function for Communications Error

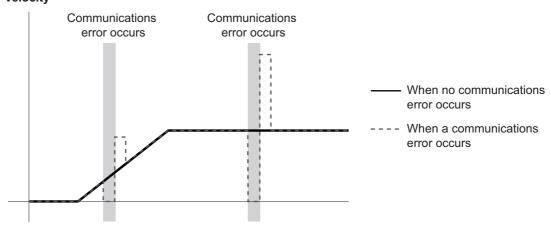
If a target position is lost because of a communications error, this function corrects the next target position on the basis of the previous target position.

7-14-1 **Operating Conditions**


The communications error period command correction function is always enabled under the following conditions.

- The mode of operation is Cyclic synchronous position mode (csp)
- · The synchronous mode is Distributed Clock (DC) Mode

This function corrects a target position so that the **Position Command – Velocity** (3010-83 hex) becomes equal to the previous velocity. When the mode of operation is Cyclic synchronous velocity mode (csv) or Cyclic synchronous torque mode (cst), the previous command is retained.


7-14-2 Operation Example

The following is an operation example. The velocities corrected by this function are closer to the Position Command - Velocity (3010-83 hex), which is expected when no communications error occurs, than the velocities not corrected.

Without this function, the target positions will not be corrected and become as follows.

Safety Function

This function stops the motor based on a signal from a safety controller. This section provides the outline of the function and examples of operation and connection.

8-1	Safe To	rque OFF Function	8-2				
8-2	STO Function via Safety Input Signals						
	8-2-1	I/O Signal Specifications	8-4				
	8-2-2	Operation Example	8-6				
	8-2-3	Connection Example	8-7				
8-3	STO Fu	nction via EtherCAT Communications	3-10				
	8-3-1	Connection and Setting	8-10				
	8-3-2	Operation Example	8-12				
	8-3-3	Connection Example	8-14				

Safe Torque OFF Function

The Safe Torque OFF (STO) function is used to cut off the motor current and stop the motor through the input signals from a safety controller.

When the STO function is activated, the Servo Drive turns OFF the Servo Ready Output (READY) and enters the safe state.

The 1S-series Servo Drives have the following two types of STO functions. Use either of these functions according to your safety device configuration.

- · STO function via safety input signals
- · STO function via EtherCAT communications

The PFH value of the 1S-series Servo Drives is as follows.

STO function	PFH [1/h]
STO function via safety input signals	2.0 x 10 ⁻¹¹
STO function via EtherCAT communications	1.6 x 10 ⁻⁹

Precautions for Correct Use

On setting

- Before you execute downloads and restoration, check that the equipment does not operate.
- When downloads and restoration are completed, conduct the user test before system operation to make sure that all safety devices operate correctly.

On replacement

- A Servo Drive before replacement must have the factory default condition. If you are not sure that the Servo Drive has the factory default condition, initialize the parameters for the Servo Drive after replacement.
- · When you replace a unit, make sure that the unit model is correct, the mounting positions of the unit and terminal blocks are correct, and the unit is properly configured and operates as intended.

On conducting test run

· When you use Sysmac Studio to perform a test run without EtherCAT cable connection, the STO function via EtherCAT communications is disabled temporarily. If you need the STO function during this type of test run, use the STO function via safety input signals.

On use of STO function

- · When you use the STO function, be sure to execute a risk assessment of the equipment to confirm that the system safety requirements are met.
- There are the following risks even when the STO function is operating. Be sure to take safety into account as part of the risk assessment.
 - The motor runs if an external force is present (e.g., force of gravity on a vertical axis). If holding is required, implement appropriate measures, such as providing external brakes. The brakes for a Servomotor with brakes are used for holding only, and cannot be used for control.
 - · Even if there is no external force, when Stop Selection Shutdown Option Code (3B20-01 hex) is set to free-run with the dynamic brake disabled, the motor uses free-run stopping and the stop distance is long.
 - · In case of internal failure of components such as the power transistor, the motor may operate in the range of up to 180 degrees of electrical angle.
 - · The power supply to the motor is cut off by the STO function, but the power supply to the Servo Drive will not be cut off nor electrically isolated. When you conduct Servo Drive maintenance, cut off the power supply to the Servo Drive through another means.

- The EDM output signal is not a safety output. Do not use the EDM output for any purpose other than the failure monitoring function.
- During installation, be sure to perform wiring check. Especially, check the following items.
 - · There is no short circuit nor disconnection
 - The EDM circuit polarity is correct (not reversed)
 - · SF1, SF2, and EDM operate correctly
- · Wrong wiring may prevent the safety function from operating correctly.
- The dynamic brake and the external brake release signal output do not belong to the safety-related parts. During the system design, make sure that there is no danger even if the external brake release function fails in the STO status.
- When you use the STO function, connect equipment that meets the safety standards.
- When you use the STO function with the safety input signals wired, confirm STO operation once every three months.
- When you use the STO function via EtherCAT communications, be sure to turn the power from OFF to ON once every three months to check that no error occurs due to the 1S-series Servo Drive's self diagnosis (at power ON).
- Before you build a system with the safety function, make sure that you thoroughly understand the related safety standards and specifications in the user's manuals so that you can design a system that meets all requirements of those standards and specifications.
- Qualified engineers must develop your safety-related system and install safety products in devices and equipment. Prior to machine commissioning, verify through testing that the safety products work as expected.
- Carefully read the specifications and precautions as well as all items in the Instruction Manual for your safety product to learn appropriate usage procedures. Any deviation from instructions will lead to unexpected device or equipment failure not anticipated by the safety-related system.
- Conduct the user test before system operation to make sure that all safety devices operate correctly. Otherwise, safety functions may be impaired and serious injury may result.
- Design programs for the safety controller so that the STO function is not canceled automatically even when the emergency stop switch is released.
- Design programs for the safety controller so that the STO function is not canceled automatically when a Servo Drive failure is detected through the EDM output.
- When you use the STO function via EtherCAT communications, enable the security function of the EtherCAT master to ensure that the PDO mapping is not changed.
- Use the Operation Authority Verification function in the NJ/NX-series CPU Unit to enable the security function. Set authorities so that synchronization of the transfer operations cannot be operated. Refer to the Sysmac Studio Version 1 Operation Manual (Cat. No. W504) for details.
- When you use STO function for a vertical axis, in some cases, the power supply of a Servomotor becomes OFF before the brake is held. As a result, a workpiece may fall. Take a caution of the timing when the brake is held. Refer to the details about 7-6 Brake Interlock on
 page 7-22.

STO Function via Safety Input Signals

This section explains how to use the STO function via the safety input signals.

8-2-1 I/O Signal Specifications

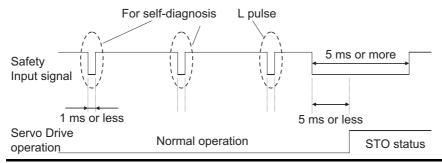
The following I/O signals are available to use the STO function: the safety input signals (SF1 and SF2) and the external device monitoring (EDM) output signal.

Refer to 3-1-5 Control I/O Connector (CN1) Specifications on page 3-27 for I/O signal connection and external signal processing.

Safety Input Signals

Two safety input circuits are installed to operate the STO function.

Signal	Symbol	Pin No.	Description		
Safety input 1	SF1+	CN1-3,23	The upper arm drive signal of the power transistor inside the		
	SF1-	CN1-4,24	Servo Drive is cut off.		
Safety input 2	SF2+	CN1-5,25	The lower arm drive signal of the power transistor inside the		
	SF2-	CN1-6,26	Servo Drive is cut off.		


- When safety input 1 or 2 turns OFF, the STO function will start operating within 5 ms after the input, and the motor output torque will be cut off.
- Connect the equipment so that the safety input circuit turns OFF when the STO function is activated.
- Set the operation when the safety input turns OFF in the Stop Selection Shutdown Option Code (3B20-01 hex).

Precautions for Correct Use

L pulses for self-diagnosis of safety equipment

When you connect a safety device, such as a safety controller or a safety sensor, the safety output signal of the device may include L pulses for self-diagnosis. To avoid malfunction due to the L pulses for self-diagnosis, a filter that removes the L pulses is built into the safety input circuit. If the OFF time of the safety input signal is 1 ms or less, the safety input circuit does not recognize it as OFF. To make sure that OFF is recognized, maintain the OFF status of safety input signal for at least 5 ms.

External Device Monitoring (EDM) Output Signal

This is a monitor output signal that is used to monitor the status of safety input signals from an external device.

Connect the EDM output signal to the external device monitoring terminal on a safety device, such as a safety controller or a safety sensor.

Signal	Symbol	Pin No.	Description
EDM output	EDM+P	CN1-1	A monitor signal is output to detect a safety function failure.
	EDM+	CN1-2	This is not a safety output.
	EDM-	CN1-21	

Relationship between Safety Input Signals and EDM Output Signal

Normally when both safety inputs 1 and 2 are OFF, the EDM output circuit signal is ON. When both safety inputs 1 and 2 are OFF, this means the STO function is active in both 1 and 2 safety input circuits.

You can detect a failure of the safety input circuit and the EDM output circuit by monitoring all of the following 4 signal status from an external device.

These are the two cases of errors:

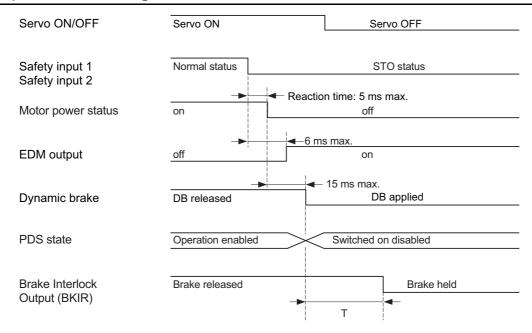
- Both safety inputs 1 and 2 are OFF, but the EDM output circuit signal does not turn ON.
- Either or both safety inputs 1 and 2 are ON, but the EDM output circuit signal is ON.

Signal	Sym- bol	Signal status				
Safety input 1	SF1	ON	ON	OFF	OFF	
Safety input 2	SF2	ON	OFF	ON	OFF	
EDM output	EDM	OFF	OFF	OFF	ON	

The maximum delay time is 6 ms after the safety input signal is input until the EDM output signal is output.

Relationship between EtherCAT and EDM Output Signal

When a 1S-series Servo Drive is not connected to the EtherCAT network, its safe state is held by the STO function. The EDM signal is ON while in this state.


Precautions for Correct Use

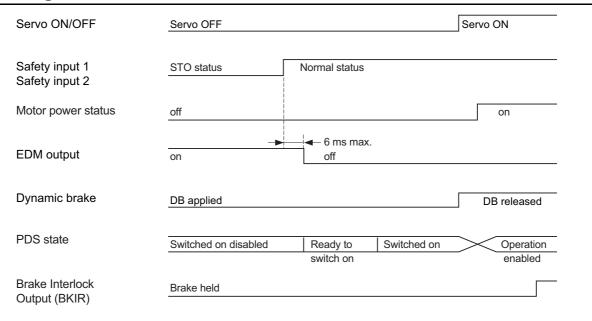
Start the applications of the safety controller after the Servo Drive established EtherCAT communications. If this condition is not met, an EDM error may be detected.

8-2-2 **Operation Example**

This section gives the timing charts to show the operation timing to a safe state as well as the timing of return from safe state.

Operation Timing to a Safe State

T is determined by a set value of the following objects, whichever comes earlier.

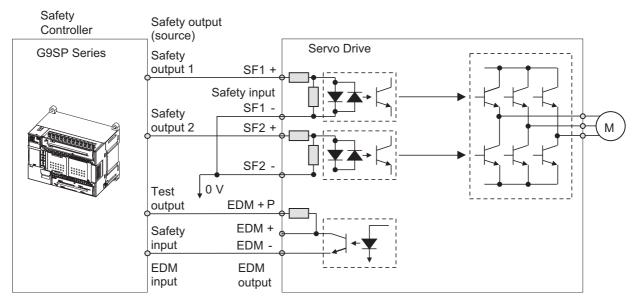

: Brake Interlock Output - Timeout at Servo OFF 4610-02 hex

4610-03 hex : Brake Interlock Output - Threshold Speed at Servo OFF

The Servo Drive goes into the STO status when either safety input 1 or 2 turns OFF.

The dynamic brake operates according to the setting of the Stop Selection – Shutdown Option Code (3B20-01 hex).

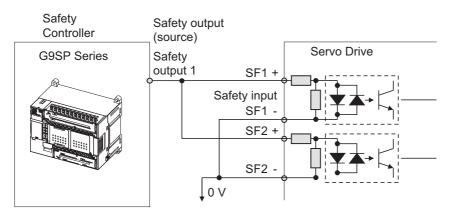
Timing of Return from Safe State


Precautions for Correct Use

- Design programs for the safety controller so that the STO function is not canceled automatically even when the emergency stop switch is released.
- Design programs for the safety controller so that the STO function is not canceled automatically when a Servo Drive failure is detected through the EDM output.

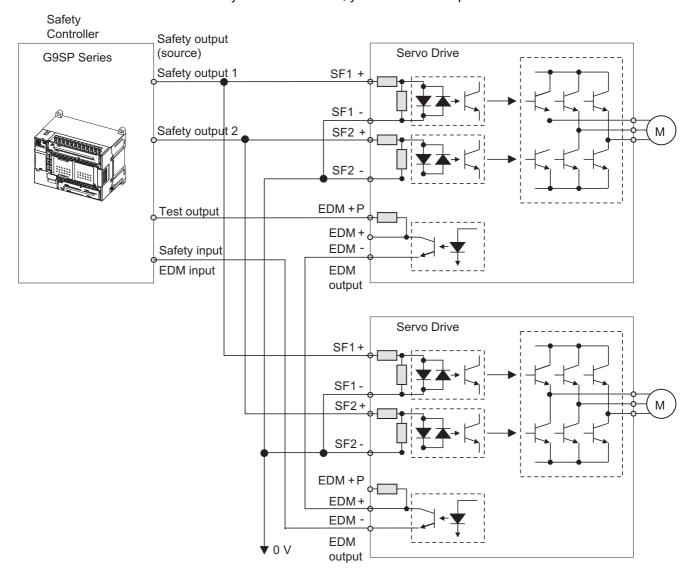
8-2-3 Connection Example

The following connection examples show how to connect the safety inputs and the EDM output to the safety controller.


Connection with a Safety Controller

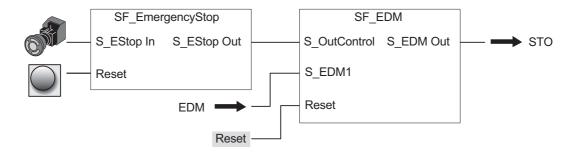
Wire SF1 and SF2 to different safety outputs.

Wiring SF1 and SF2 to the same safety output



Connection with a Safety Controller (Multiple Servo Drives)

This example shows how to connect multiple Servo Drives.


Connect the EDM signal to the terminal EDM + P on the first Unit, and to the terminal EDM + on a Unit from the second as shown in the following diagram when you use multiple Servo Drives.

When a G9SP-series safety controller is used, you can connect up to four 1S-series Servo Drives.

Programming Example

This is a programming example in which the STO function of the 1S-series Servo Drive is operated from the Safety Controller.

Precautions for Correct Use

- Design programs for the safety controller so that the STO function is not canceled automatically even when the emergency stop switch is released.
- Design programs for the safety controller so that the STO function is not canceled automatically when a Servo Drive failure is detected through the EDM output.

STO Function via EtherCAT Communications

This section explains how to use the STO function via EtherCAT communications.

8-3-1 **Connection and Setting**

To use the STO function via EtherCAT communications, you need to connect the network and make settings for the EtherCAT master and the Safety CPU Unit.

Network Connection

Configure the EtherCAT network that includes the EtherCAT master and the Safety CPU Unit.

EtherCAT Master Safety CPU Unit and Safety I/O Unit ШШ لسا Ether CAT. لسا

1S-series Servo Drives

Setting

- **1** Add Safety PDOs to the 1S-series Servo Drive PDOs in the EtherCAT network configuration.
 - RxPDO: 273th receive PDO Mapping (1710 hex)
 - TxPDO: 273th transmit PDO Mapping (1B10 hex)
- **2** Enable the 1S-series Servo Drive in the setting for the Safety CPU Unit.
- **3** Use the following data and create safety programs for the Safety CPU Unit.
- 4 Establish communications between the EtherCAT master and the Safety CPU Unit.

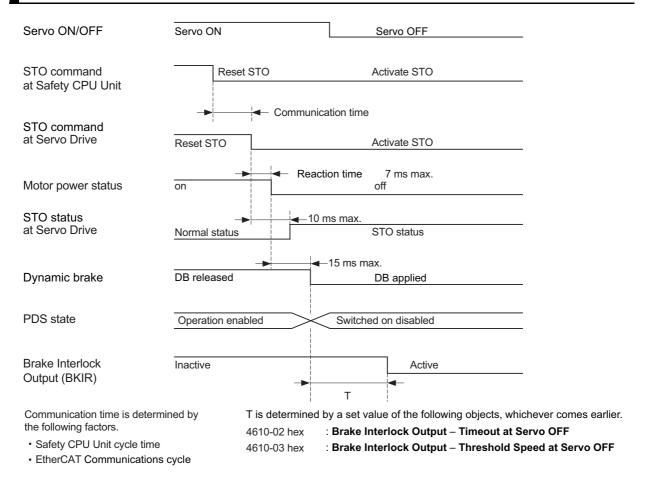
 The STO function is enabled when communications with the Safety CPU Unit are established

If the communications cannot be established after you change the Safety CPU Unit setting, clear the FSoE slave address.

Precautions for Correct Use

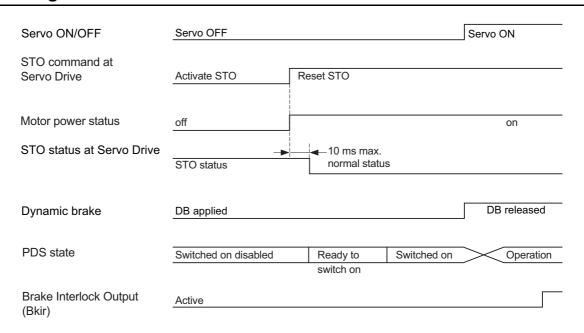
- When you use the STO function via EtherCAT communications, enable the security function of the EtherCAT master so that the PDO mapping is not changed.
- Use the Operation Authority Verification function in the NJ/NX-series CPU Unit to enable the security function. Set authorities so that synchronization of the transfer operations cannot be operated. Refer to the Sysmac Studio Version 1 Operation Manual (Cat. No. W504) for details.
- When communications with the EtherCAT master are established, the STO status is detected and the 7-segment LED display shows "ST". Reset STO after communications with the Safety CPU Unit are established.

RxPDO (1710 hex)


Name	Description
STO command	Performs the STO function.
	0: Activate STO
	1: Reset STO
Error acknowledge reset	Resets an error of the safety function on the rising edge from 0 to 1.

TxPDO (1B10 hex)

Name	Description				
STO status	Gives the status of the STO function.				
	0: Normal status				
	1: STO status				
Error acknowledge	Gives the error status of the safety function.				
	0: No error				
	1: STO internal circuit error detection				
Safety Connection Status	This flag indicates that the safety connection is in progress. The flag is used for inputting to the Activate terminal for the safety program, or it is used in the safety connection/disconnection application.				


Operation Example 8-3-2

Operation Timing to a Safe State

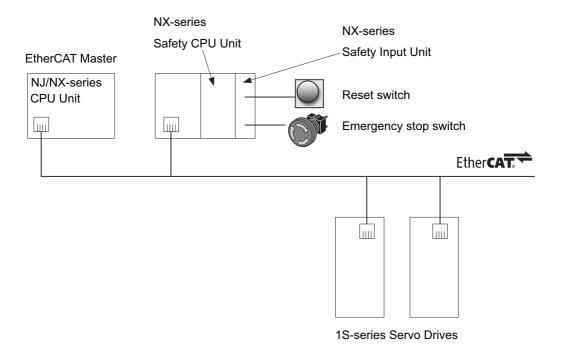
The dynamic brake operates according to the setting of the Stop Selection – Shutdown Option Code (3B20-01 hex).

Timing of Return from Safe State

The STO is also activated if a hardware failure is detected during the self diagnosis. In this case, the STO remains active until the power is turned OFF.

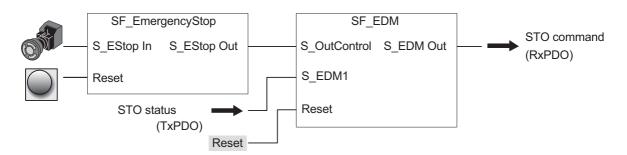
Precautions for Correct Use

Design programs for the safety controller so that the STO function is not canceled automatically even when the emergency stop switch is released.


8-3-3 **Connection Example**

This section explains how to use an NX-series Safety CPU Unit.

Use the Sysmac Studio for setting and programming. Refer to the NX-series Safety Control Unit User's Manual (Cat. No. Z930) for details.


Connection with Safety CPU Unit

Add a Safety CPU Unit and 1S-series Servo Drives to the EtherCAT network configuration.

Programming Example

This is a programming example in which the Safe Torque Off function of the 1S-series Servo Drive is operated from the Safety CPU Unit.

Precautions for Correct Use

Design programs for the safety controller so that the STO function is not canceled automatically even when the emergency stop switch is released.

Slave Control Period

NX-series Safety CPU Units use the Safety Output Unit's processing time and the slave control period to calculate the safety reaction time and the safety task period respectively. Refer to the *NX-series Safety Control Unit User's Manual* (Cat. No. Z930) for details.

For 1S-series Servo Drives, use the following values:

Safety Input Unit's processing time: 4 ms

Slave control period: 3 ms

Details on Servo Parameters

This section explains the details on each servo parameter, including the set values, settings, and the display.

9-1	Object	Description Format 9)-4
9-2	-	on Control Objects 9	
-	9-2-1	3000 hex: Basic Functions	
	9-2-2	3001 hex: Machine	
	9-2-3	3002 hex: Optimized Parameters 9-	
	9-2-4	3010 hex: Position Command	
	9-2-5	3011 hex: Position Command Filter	
	9-2-6	3012 hex: Damping Control 9-	-18
	9-2-7	3013 hex: Damping Filter 1	
	9-2-8	3014 hex: Damping Filter 2 9-	-20
	9-2-9	3020 hex: Velocity Command	-22
	9-2-10	3021 hex: Velocity Command Filter 9-	-23
	9-2-11	3030 hex: Torque Command 9-	-24
	9-2-12	3031 hex: Velocity Limit in Torque Control 9-	-24
	9-2-13	3040 hex: Profile Command	-25
	9-2-14	3041 hex: Command Dividing Function 9-	-26
9-3	Control	Method Objects 9-	28
	9-3-1	3112 hex: ODF Velocity Feed-forward 9-	-28
	9-3-2	3113 hex: ODF Torque Feed-forward 9-	-29
	9-3-3	3120 hex: TDF Position Control	-30
	9-3-4	3121 hex: TDF Velocity Control9-	-31
9-4	Control	Loop Objects 9-	33
	9-4-1	3210 hex: Internal Position Command 9-	-33
	9-4-2	3211 hex: Position Detection	-34
	9-4-3	3212 hex: Gain Switching in Position Control	-34
	9-4-4	3213 hex: 1st Position Control Gain 9-	-35
	9-4-5	3214 hex: 2nd Position Control Gain 9-	-36
	9-4-6	3220 hex: Internal Velocity Command 9-	-36
	9-4-7	3221 hex: Velocity Detection	-37
	9-4-8	3222 hex: Gain Switching in Velocity Control	-38
	9-4-9	3223 hex: 1st Velocity Control Gain 9-	-38
	9-4-10	3224 hex: 2nd Velocity Control Gain	-39

	9-4-11	3230 hex: Internal Torque Command	
	9-4-12	3231 hex: Torque Detection	9-40
	9-4-13	3232 hex: Filter Switching in Torque Control	9-40
	9-4-14	3233 hex: 1st Torque Command Filter	9-41
	9-4-15	3234 hex: 2nd Torque Command Filter	9-42
9-5	Torque	Output Setting Objects	. 9-43
	9-5-1	3310 hex: Torque Compensation	
	9-5-2	3320 hex: Adaptive Notch Filter	
	9-5-3	3321 hex: 1st Notch Filter	
	9-5-4	3322 hex: 2nd Notch Filter	
	9-5-5	3323 hex: 3rd Notch Filter	
	9-5-6	3324 hex: 4th Notch Filter	
	9-5-7	3330 hex: Torque Limit	
0.6		Objects	
	_	•	
9-7	• •	Function Objects	
	9-7-1	3B10 hex: Drive Prohibition	
	9-7-2	3B11 hex: Software Position Limit	
	9-7-3	3B20 hex: Stop Selection	
	9-7-4	3B21 hex: Deceleration Stop	
	9-7-5	3B30 hex: Touch Probe 1	
	9-7-6	3B31 hex: Touch Probe 2	
	9-7-7	3B40 hex: Zone Notification 1	9-71
	9-7-8	3B41 hex: Zone Notification 2	
	9-7-9	3B50 hex: Position Detection Function	9-73
	9-7-10	3B51 hex: Positioning Completion Notification	9-73
	9-7-11	3B52 hex: Positioning Completion Notification 2	9-74
	9-7-12	3B60 hex: Speed Detection Function	
	9-7-13	3B70 hex: Vibration Detection	
	9-7-14	3B71 hex: Runaway Detection	
	9-7-15	3B80 hex: Load Characteristic Estimation	9-78
9-8	Error- a	nd Warning-related Objects	. 9-81
	9-8-1	4000 hex: Error Full Code	9-81
	9-8-2	4020 hex: Warning Customization	9-82
	9-8-3	4021 hex: Warning Output 1 Setting	9-85
	9-8-4	4022 hex: Warning Output 2 Setting	
	9-8-5	4030 hex: Information Customization	9-87
9-9	Monitor	ing-related Objects	9_88
0 0	9-9-1	4110 hex: Monitor Data via PDO	
	9-9-2	4120 hex: EtherCAT Communications Error Count	
	9-9-3	4130 hex: Safety Status Monitor	
	9-9-4	4131 hex: Safety Command Monitor 1	
	9-9-5	4132 hex: Safety Command Monitor 2	
	9-9-6	4140 hex: Lifetime Information	
	9-9-7	4150 hex: Overload	
0.40			
		-related Objects	
9-11	Power [Device-related Objects	
	9-11-1	4310 hex: Regeneration	
	9-11-2	4320 hex: Main Circuit Power Supply	9-99
9-12	Externa	Il Device-related Objects	9-101
	9-12-1	4410 hex: Motor Identity	
	9-12-2	4412 hex: Motor Advanced Setting	
9_12		r-related Objects	
J-13		1-1610164 JUICUS	J-1U4

9-14	I/O-relat	ted Objects	9-107
	9-14-1	4600 hex: I/O Monitor	9-107
	9-14-2	4601 hex: Function Input	9-108
	9-14-3	4602 hex: Function Output	.9-110
	9-14-4	4604 hex: Control Input Change Count	.9-111
	9-14-5	4605 hex: Control Output Change Count	.9-112
	9-14-6	4610 hex: Brake Interlock Output	.9-113
	9-14-7	4620 hex: Encoder Dividing Pulse Output	.9-114
9-15	General	-purpose Input Setting Objects	9-116
	9-15-1	Setting	
	9-15-2	4630 hex: Positive Drive Prohibition Input	
	9-15-3	4631 hex: Negative Drive Prohibition Input	.9-117
	9-15-4	4632 hex: External Latch Input 1	
	9-15-5	4633 hex: External Latch Input 2	
	9-15-6	4634 hex: Home Proximity Input	
	9-15-7	4635 hex: Positive Torque Limit Input	.9-118
	9-15-8	4636 hex: Negative Torque Limit Input	.9-119
	9-15-9	4637 hex: Error Stop Input	.9-119
	9-15-10	4638 hex: Monitor Input 1	.9-119
	9-15-11	4639 hex: Monitor Input 2	9-120
	9-15-12	463A hex: Monitor Input 3	9-120
	9-15-13	463B hex: Monitor Input 4	9-120
	9-15-14	463C hex: Monitor Input 5	9-121
	9-15-15	463D hex: Monitor Input 6	9-121
		TOOD HOW MOTHER INPACT THE TENTON OF THE TEN	
	9-15-16	463E hex: Monitor Input 7	
	9-15-16 9-15-17	•	9-121
9-16	9-15-17	463E hex: Monitor Input 7	9-121 9-122
9-16	9-15-17	463E hex: Monitor Input 7	9-121 9-122 9-123
9-16	9-15-17 General	463E hex: Monitor Input 7 463F hex: Monitor Input 8 -purpose Output Setting Objects	9-121 9-122 9-123 9-123
9-16	9-15-17 General 9-16-1	463E hex: Monitor Input 7 463F hex: Monitor Input 8purpose Output Setting Objects Setting	9-121 9-122 9-123 9-123 9-124
9-16	9-15-17 General 9-16-1 9-16-2	463E hex: Monitor Input 7 463F hex: Monitor Input 8 -purpose Output Setting Objects Setting 4650 hex: Error Output	9-121 9-122 9-123 9-123 9-124 9-124
9-16	9-15-17 General 9-16-1 9-16-2 9-16-3	463E hex: Monitor Input 7 463F hex: Monitor Input 8 -purpose Output Setting Objects Setting 4650 hex: Error Output 4651 hex: Servo Ready Output	9-121 9-122 9-123 9-124 9-124 9-124
9-16	9-15-17 General 9-16-1 9-16-2 9-16-3 9-16-4	463E hex: Monitor Input 7 463F hex: Monitor Input 8 I-purpose Output Setting Objects Setting 4650 hex: Error Output 4651 hex: Servo Ready Output 4652 hex: Positioning Completion Output 1	9-121 9-122 9-123 9-124 9-124 9-124 9-125
9-16	9-15-17 General 9-16-1 9-16-2 9-16-3 9-16-4 9-16-5	463E hex: Monitor Input 7 463F hex: Monitor Input 8 -purpose Output Setting Objects Setting 4650 hex: Error Output 4651 hex: Servo Ready Output 4652 hex: Positioning Completion Output 1 4653 hex: Positioning Completion Output 2	9-121 9-122 9-123 9-124 9-124 9-124 9-125 9-125
9-16	9-15-17 General 9-16-1 9-16-2 9-16-3 9-16-4 9-16-5 9-16-6	463E hex: Monitor Input 7 463F hex: Monitor Input 8 -purpose Output Setting Objects Setting 4650 hex: Error Output 4651 hex: Servo Ready Output 4652 hex: Positioning Completion Output 1 4653 hex: Positioning Completion Output 2 4654 hex: Velocity Attainment Detection Output	9-121 9-123 9-123 9-124 9-124 9-125 9-125 9-125
9-16	9-15-17 General 9-16-1 9-16-2 9-16-3 9-16-4 9-16-5 9-16-6 9-16-7	463E hex: Monitor Input 7 463F hex: Monitor Input 8 I-purpose Output Setting Objects Setting 4650 hex: Error Output 4651 hex: Servo Ready Output 4652 hex: Positioning Completion Output 1 4653 hex: Positioning Completion Output 2 4654 hex: Velocity Attainment Detection Output 4655 hex: Torque Limit Output	9-121 9-123 9-123 9-124 9-124 9-125 9-125 9-125 9-126
9-16	9-15-17 General 9-16-1 9-16-2 9-16-3 9-16-4 9-16-5 9-16-6 9-16-7 9-16-8	463E hex: Monitor Input 7 463F hex: Monitor Input 8 I-purpose Output Setting Objects Setting 4650 hex: Error Output 4651 hex: Servo Ready Output 4652 hex: Positioning Completion Output 1 4653 hex: Positioning Completion Output 2 4654 hex: Velocity Attainment Detection Output 4655 hex: Torque Limit Output 4656 hex: Zero Speed Detection Output	9-121 9-122 9-123 9-124 9-124 9-125 9-125 9-125 9-126 9-126
9-16	9-15-17 General 9-16-1 9-16-2 9-16-3 9-16-4 9-16-5 9-16-6 9-16-7 9-16-8 9-16-9	463E hex: Monitor Input 7 463F hex: Monitor Input 8 I-purpose Output Setting Objects Setting 4650 hex: Error Output 4651 hex: Servo Ready Output 4652 hex: Positioning Completion Output 1 4653 hex: Positioning Completion Output 2 4654 hex: Velocity Attainment Detection Output 4655 hex: Torque Limit Output 4656 hex: Zero Speed Detection Output 4657 hex: Velocity Conformity Output	9-121 9-122 9-123 9-124 9-124 9-125 9-125 9-125 9-126 9-126
9-16	9-15-17 General 9-16-1 9-16-2 9-16-3 9-16-4 9-16-5 9-16-6 9-16-7 9-16-8 9-16-9 9-16-10	463E hex: Monitor Input 7 463F hex: Monitor Input 8 I-purpose Output Setting Objects Setting 4650 hex: Error Output 4651 hex: Servo Ready Output 4652 hex: Positioning Completion Output 1 4653 hex: Positioning Completion Output 2 4654 hex: Velocity Attainment Detection Output 4655 hex: Torque Limit Output 4656 hex: Zero Speed Detection Output 4657 hex: Velocity Conformity Output 4658 hex: Warning Output 1	9-121 9-123 9-123 9-124 9-124 9-125 9-125 9-125 9-126 9-126 9-126 9-127
9-16	9-15-17 General 9-16-1 9-16-2 9-16-3 9-16-4 9-16-5 9-16-6 9-16-7 9-16-8 9-16-9 9-16-10 9-16-11 9-16-12 9-16-13	463E hex: Monitor Input 7 463F hex: Monitor Input 8 I-purpose Output Setting Objects Setting 4650 hex: Error Output 4651 hex: Servo Ready Output 4652 hex: Positioning Completion Output 1 4653 hex: Positioning Completion Output 2 4654 hex: Velocity Attainment Detection Output 4655 hex: Torque Limit Output 4656 hex: Zero Speed Detection Output 4657 hex: Velocity Conformity Output 4658 hex: Warning Output 1 4659 hex: Warning Output 2 465A hex: Velocity Limiting Output 465B hex: Error Clear Attribute Output	9-121 9-123 9-123 9-124 9-124 9-125 9-125 9-126 9-126 9-126 9-127 9-127
9-16	9-15-17 General 9-16-1 9-16-2 9-16-3 9-16-4 9-16-5 9-16-6 9-16-7 9-16-8 9-16-9 9-16-10 9-16-11 9-16-12 9-16-13	463E hex: Monitor Input 7 463F hex: Monitor Input 8 I-purpose Output Setting Objects Setting 4650 hex: Error Output 4651 hex: Servo Ready Output 4652 hex: Positioning Completion Output 1 4653 hex: Positioning Completion Output 2 4654 hex: Velocity Attainment Detection Output 4655 hex: Torque Limit Output 4656 hex: Zero Speed Detection Output 4657 hex: Velocity Conformity Output 4658 hex: Warning Output 1 4659 hex: Warning Output 2 465A hex: Velocity Limiting Output 465B hex: Error Clear Attribute Output 465C hex: Remote Output 1	9-121 9-123 9-123 9-124 9-124 9-125 9-125 9-126 9-126 9-126 9-127 9-127 9-127
9-16	9-15-17 General 9-16-1 9-16-2 9-16-3 9-16-4 9-16-5 9-16-6 9-16-7 9-16-8 9-16-9 9-16-10 9-16-11 9-16-12 9-16-13 9-16-14	463E hex: Monitor Input 7 463F hex: Monitor Input 8 I-purpose Output Setting Objects Setting 4650 hex: Error Output 4651 hex: Servo Ready Output 4652 hex: Positioning Completion Output 1 4653 hex: Positioning Completion Output 2 4654 hex: Velocity Attainment Detection Output 4655 hex: Torque Limit Output 4656 hex: Zero Speed Detection Output 4657 hex: Velocity Conformity Output 4658 hex: Warning Output 1 4659 hex: Warning Output 2 465A hex: Velocity Limiting Output 465B hex: Error Clear Attribute Output 465C hex: Remote Output 2	9-121 9-123 9-123 9-124 9-124 9-125 9-125 9-125 9-126 9-126 9-127 9-127 9-127 9-128 9-128
9-16	9-15-17 General 9-16-1 9-16-2 9-16-3 9-16-4 9-16-5 9-16-6 9-16-7 9-16-8 9-16-10 9-16-11 9-16-12 9-16-13 9-16-14 9-16-15 9-16-16	463E hex: Monitor Input 7 463F hex: Monitor Input 8 -purpose Output Setting Objects Setting 4650 hex: Error Output 4651 hex: Servo Ready Output 4652 hex: Positioning Completion Output 1 4653 hex: Positioning Completion Output 2 4654 hex: Velocity Attainment Detection Output 4655 hex: Torque Limit Output 4656 hex: Zero Speed Detection Output 4657 hex: Velocity Conformity Output 4658 hex: Warning Output 1 4659 hex: Warning Output 2 465A hex: Velocity Limiting Output 465B hex: Error Clear Attribute Output 465C hex: Remote Output 1 465D hex: Remote Output 2 465E hex: Remote Output 3	9-121 9-123 9-123 9-124 9-124 9-125 9-125 9-125 9-126 9-126 9-127 9-127 9-127 9-128 9-128
9-16	9-15-17 General 9-16-1 9-16-2 9-16-3 9-16-4 9-16-5 9-16-6 9-16-7 9-16-8 9-16-10 9-16-11 9-16-12 9-16-13 9-16-14 9-16-15 9-16-16	463E hex: Monitor Input 7 463F hex: Monitor Input 8 I-purpose Output Setting Objects Setting 4650 hex: Error Output 4651 hex: Servo Ready Output 4652 hex: Positioning Completion Output 1 4653 hex: Positioning Completion Output 2 4654 hex: Velocity Attainment Detection Output 4655 hex: Torque Limit Output 4656 hex: Zero Speed Detection Output 4657 hex: Velocity Conformity Output 4658 hex: Warning Output 1 4659 hex: Warning Output 2 465A hex: Velocity Limiting Output 465B hex: Error Clear Attribute Output 465C hex: Remote Output 1 465D hex: Remote Output 2 465E hex: Remote Output 3 465F hex: Zone Notification Output 1	9-121 9-122 9-123 9-124 9-124 9-125 9-125 9-126 9-126 9-127 9-127 9-127 9-127 9-128 9-128 9-128
9-16	9-15-17 General 9-16-1 9-16-2 9-16-3 9-16-4 9-16-5 9-16-6 9-16-7 9-16-8 9-16-10 9-16-11 9-16-12 9-16-13 9-16-14 9-16-15 9-16-15 9-16-17 9-16-18	463E hex: Monitor Input 7 463F hex: Monitor Input 8 I-purpose Output Setting Objects Setting 4650 hex: Error Output 4651 hex: Servo Ready Output 4652 hex: Positioning Completion Output 1 4653 hex: Positioning Completion Output 2 4654 hex: Velocity Attainment Detection Output 4655 hex: Torque Limit Output 4656 hex: Zero Speed Detection Output 4657 hex: Velocity Conformity Output 4658 hex: Warning Output 1 4659 hex: Warning Output 2 465A hex: Velocity Limiting Output 465B hex: Error Clear Attribute Output 465C hex: Remote Output 1 465D hex: Remote Output 2 465E hex: Remote Output 3 465F hex: Zone Notification Output 2	9-121 9-123 9-123 9-124 9-124 9-125 9-125 9-126 9-126 9-126 9-127 9-127 9-127 9-127 9-128 9-128 9-128 9-128
9-16	9-15-17 General 9-16-1 9-16-2 9-16-3 9-16-4 9-16-5 9-16-6 9-16-7 9-16-8 9-16-10 9-16-11 9-16-12 9-16-13 9-16-14 9-16-15 9-16-16 9-16-17 9-16-18 9-16-19	463E hex: Monitor Input 7 463F hex: Monitor Input 8 I-purpose Output Setting Objects Setting 4650 hex: Error Output 4651 hex: Servo Ready Output 4652 hex: Positioning Completion Output 1 4653 hex: Positioning Completion Output 2 4654 hex: Velocity Attainment Detection Output 4655 hex: Torque Limit Output 4656 hex: Zero Speed Detection Output 4657 hex: Velocity Conformity Output 4658 hex: Warning Output 1 4659 hex: Warning Output 2 465A hex: Velocity Limiting Output 465B hex: Error Clear Attribute Output 465C hex: Remote Output 1 465D hex: Remote Output 3 465F hex: Zone Notification Output 2 4660 hex: Zone Notification Output 2 4661 hex: Position Command Status Output	9-121 9-123 9-123 9-124 9-124 9-125 9-125 9-125 9-126 9-126 9-127 9-127 9-127 9-128 9-128 9-128 9-129 9-129
9-16	9-15-17 General 9-16-1 9-16-2 9-16-3 9-16-4 9-16-5 9-16-6 9-16-7 9-16-8 9-16-10 9-16-11 9-16-12 9-16-13 9-16-14 9-16-15 9-16-15 9-16-17 9-16-18	463E hex: Monitor Input 7 463F hex: Monitor Input 8 I-purpose Output Setting Objects Setting 4650 hex: Error Output 4651 hex: Servo Ready Output 4652 hex: Positioning Completion Output 1 4653 hex: Positioning Completion Output 2 4654 hex: Velocity Attainment Detection Output 4655 hex: Torque Limit Output 4656 hex: Zero Speed Detection Output 4657 hex: Velocity Conformity Output 4658 hex: Warning Output 1 4659 hex: Warning Output 2 465A hex: Velocity Limiting Output 465B hex: Error Clear Attribute Output 465C hex: Remote Output 1 465D hex: Remote Output 2 465E hex: Remote Output 3 465F hex: Zone Notification Output 2	9-121 9-122 9-123 9-124 9-124 9-125 9-125 9-125 9-126 9-126 9-127 9-127 9-127 9-128 9-128 9-128 9-129 9-129 9-130

Object Description Format

The 1S-series Servo Drives with built-in EtherCAT communications use the servo parameters that are defined with objects. For information on the objects, refer to 1-1-3 Object Dictionary on page 1-4.

In this manual, objects are described in the following format.

Index (hex)	Subindex (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Complete access	Modes of operation
<index></index>	<subindex></subindex>	<object< td=""><td><range></range></td><td><unit></unit></td><td><default></default></td><td><attri-< td=""><td><size></size></td><td><access></access></td><td><pdo< td=""><td><complete< td=""><td><modes of<="" td=""></modes></td></complete<></td></pdo<></td></attri-<></td></object<>	<range></range>	<unit></unit>	<default></default>	<attri-< td=""><td><size></size></td><td><access></access></td><td><pdo< td=""><td><complete< td=""><td><modes of<="" td=""></modes></td></complete<></td></pdo<></td></attri-<>	<size></size>	<access></access>	<pdo< td=""><td><complete< td=""><td><modes of<="" td=""></modes></td></complete<></td></pdo<>	<complete< td=""><td><modes of<="" td=""></modes></td></complete<>	<modes of<="" td=""></modes>
		name>				bute>			map>	access>	operation>

Data is indicated in pointed brackets <>. Details on data are as follows.

Item	Description
Index	Object index given by a four-digit hexadecimal number.
Subindex	Object subindex given by a two-digit hexadecimal number.
Object name	The object name. For a subindex, the subindex name is given.
Setting range	Indicates the range of data that can be set for a writable object.
Unit	Physical units.
Default setting	Default value set before shipment.
Data attribute	The timing when a change in the contents is updated for a writable object.
	A: Always updated
	D: Possible to change only when the EtherCAT communications state is Pre-Opera-
	tional
	E: Servo ON
	R: Updated after the control power is reset or restarted
	-: Write prohibited
Size	Gives the object size.
Access	Indicates whether the object is to read only, or read and write.
	RO: Read only
	RW: Read and write (Saved in non-volatile memory)
	W: Read and write (Not saved in non-volatile memory)
PDO map	Indicates the PDO mapping attribute.
	RxPDO: Reception PDOs can be mapped
	TxPDO: Transmission PDOs can be mapped
	-: PDOs cannot be mapped
Complete access	Indicates whether Complete access is allowed or not.
Modes of operation	The profile mode in which the object is enabled.
	-: Independent of the Modes of operation
	csp: Cyclic synchronous position mode
	csv: Cyclic synchronous velocity mode
	cst: Cyclic synchronous torque mode
	pp: Profile position mode
	pv: Profile velocity mode
	hm: Homing mode

Mirror Objects

For 1S-series Servo Drives, a special object called "mirror object" is defined.

A mirror object enables access to the same object from different object numbers. Accessing the mirror object and accessing the original object cause the same operation.

More specifically, the mirror objects are used to assign the Servo Drive profile objects (index number 6000s) to the servo parameter objects (index number 3000s to 4000s).

Common Control Objects 9-2

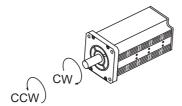
This section explains the common control objects.

3000 hex: Basic Functions 9-2-1

Sets the basic functions of Servo Drives.

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Complete access	Modes of opera-tion
3000		Basic Functions								Possible	
	00	Number of entries			FF hex		1 byte (U8)	RO			
	01	Motor Rotation Direction Selec- tion	0 to 1		1	R	4 bytes (INT32)	RW			csp, csv, cst, pp, pv, hm
	02	Control Mode Selection			0		4 bytes (INT32)	RO			csp, csv, cst, pp, pv, hm
	03	Control Method Selection	0 to 1		1	E*1	4 bytes (INT32)	RW			csp, csv, pp, pv
	04	Function Set- tings			00000001 hex	Α	4 bytes (U32)	RW			
	81	Function Status					4 bytes (INT32)	RO	TxPDO		
	82	Motor Stop Cause					4 bytes (INT32)	RO			
	83	Modes of Operation Display					1 byte (INT8)	RO			csp, csv, cst, pp, pv, hm
	84	Supported Functions			00000001 hex		4 bytes (U32)	RO			
	85	Supported Drive Modes			000003A5 hex	I	4 bytes (U32)	RO			
	F1	Controlword	0000 to FFFF hex		0000 hex	Α	2 bytes (U16)	W			csp, csv, cst, pp, pv, hm
	F2	Modes of Operation	0 to 10		0	A	1 byte (INT8)	W			csp, csv, cst, pp, pv, hm
	FF	Statusword					2 bytes (U16)	RO			csp, csv, cst, pp, pv, hm

^{*1.} The data attribute is "R: Updated after the control power is reset or restarted" for the unit version 1.3 or earlier.


Subindex 01 hex: Motor Rotation Direction Selection

· Selects the motor rotation direction for the command position.

Description of Set Values

Set value	Description
0	A positive direction command sets the motor rotation to clockwise direction.
1	A positive direction command sets the motor rotation to counterclockwise direction.

Regarding the rotation direction of the Servomotor, a clockwise rotation is defined as CW and a counterclockwise rotation is defined as CCW, when viewed from the load-side shaft.

Subindex 02 hex: Control Mode Selection

• Selects the semi-closed control or the fully-closed control. For 1S-series Servo Drives, this object is fixed to 0 (fixed to semi-closed control).

Subindex 03 hex: Control Method Selection

 Switches the control method between TDF (two-degree-of-freedom) control and ODF (one-degree-of-freedom) control.

Description of Set Values

Set value	Description
0	ODF control
1	TDF control

Subindex 04 hex: Function Settings

- Selects whether to enable or disable the extended functions which are supported by the Servo Drive.
- · Mirror object of 60DA hex

Set value	Description
Bit 0	Status Toggle
	0: Disabled
	1: Enabled
Bits 1 to 30	Reserved
	Always set to 0.
Bits 31	Reserved by system
	Always set to 0.

Subindex 81 hex: Function Status

· Gives the status of the Servo Drive.

Set v	value	Description
Bit 0		Origin Position (ZPOINT)
	0	Outside origin range
	1	Within origin range
Bit 1	ı	Distribution Completed (DEN)
	0	Distribution not completed
	1	Distribution completed
Bit 2	ı	Zero Speed Detected (ZSP)
	0	Zero speed not detected
	1	Zero speed detected
Bit 3	ı	Torque Limit Applied (TLMT)
	0	Torque limit not applied
	1	Torque limit applied
Bit 4	ı	Velocity Limit (VLMT)
	0	Velocity limit not applied
	1	Velocity limit applied
Bit 5	ı	Positive Software Limit (PSOT)
	0	Within limit value
	1	Outside limit value
Bit 6		Negative Software Limit (NSOT)
	0	Within limit value
	1	Outside limit value
Bit 7		Velocity Conformity (VCMP)
	0	No velocity conformity
	1	Velocity conformity
Bit 8		Positioning Completion Output 2 (INP2)
	0	The present position is outside the range of Positioning Completion Output 2.
	1	The present position is within the range of Positioning Completion Output 2.
Bit 9	•	Velocity Attainment Detection Output (TGON)
	0	The motor velocity does not reach the velocity attainment detection value.
	1	The motor velocity reached the velocity attainment detection value.
Bit 10	•	Position Command Status Output (PCMD)
	0	Position command not changed
	1	Position command changed
Bit 11		Error Clear Attribute Output (ERR-ATB)*1
	0	An error which must be reset by the restart function (Control power supply OFF/ON, Unit
		Restart) exists.
	1	An error which can be reset exists.
Bit 12		Homing completion state
	0	Homing non-completion state
	1	Homing completion state

^{*1.} The Error Clear Attribute Output (ERR-ATB) gives 0 when there is no error.

Subindex 82 hex: Motor Stop Cause

- Gives the failure cause when the motor does not rotate.
- If the value of a bit is 1, the motor stop cause which corresponds to the bit is present.

Description of Set Values

Bit	Description
0	Main circuit power supply not turned ON
1	Not Servo ON
2	Drive Prohibition state
3	Software Position Limit state
4	Position command variation is 0
5	Velocity command value is 0
6	Max profile velocity is 0
7	Torque command value is 0
8	Torque limit value is 0
9	Velocity Limit in Torque Control is 0
31	STO status

Subindex 83 hex: Modes of Operation Display

- Gives the present mode of operation.
- Mirror object of 6061 hex

Description of Set Values

Set value	Description
0	Not specified.
1	Profile position mode (pp)
3	Profile velocity mode (pv)
6	Homing mode (hm)
8	Cyclic synchronous position mode (csp)
9	Cyclic synchronous velocity mode (csv)
10	Cyclic synchronous torque mode (cst)

Subindex 84 hex: Supported Functions

- Gives the functions which are supported by the Servo Drive.
- Mirror object of 60D9 hex

Set value	Description
Bit 0	Status Toggle
	0: Disabled
	1: Enabled
Bits 1 to 31	Reserved

Subindex 85 hex: Supported Drive Modes

- Gives the supported modes of operation.
- Mirror object of 6502 hex

Description of Set Values

Bit	Supported mode	Definition
0	pp (Profile position mode)	1: Supported
1	vl (Velocity mode)	0: Not supported
2	pv (Profile velocity mode)	1: Supported
3	tq (Profile torque mode)	0: Not supported
4	Reserved	0
5	hm (Homing mode)	1: Supported
6	ip (Interpolated position mode)	0: Not supported
7	csp (Cyclic synchronous position mode)	1: Supported
8	csv (Cyclic synchronous velocity mode)	1: Supported
9	cst (Cyclic synchronous torque mode)	1: Supported
10 to 31	Reserved	0

Subindex F1 hex: Controlword

- Controls the state machine of the Servo Drive (PDS).
- Mirror object of 6040-00 hex

Bit	Description
0	Switch on
1	Enable voltage
2	Quick stop
3	Enable operation
4 to 6	Operation mode specific
7	Fault reset
8	Halt
9	Operation mode specific
10	Reserved
11	P_CL
12	N_CL
13 to 15	Manufacturer specific

Subindex F2 hex: Modes of Operation

- · Selects the Modes of operation.
- Mirror object of 6060 hex

Description of Set Values

Set value	Description
0	Not specified.
1	Profile position mode (pp)
3	Profile velocity mode (pv)
6	Homing mode (hm)
8	Cyclic synchronous position mode (csp)
9	Cyclic synchronous velocity mode (csv)
10	Cyclic synchronous torque mode (cst)

Subindex FF hex: Statusword

- Gives the present status of the Servo Drive (PDS).
- · Mirror object of 6041 hex

Bit	Description
0	Ready to switch on
1	Switched on
2	Operation enabled
3	Fault
4	Voltage enabled
5	Quick Stop
6	Switch on disabled
7	Warning
8	Manufacturer specific
9	Remote
10	Operation mode specific
11	Internal limit active
12	Operation mode specific
13	Operation mode specific
14	Manufacturer specific
15	Manufacturer specific

3001 hex: Machine 9-2-2

Sets the mechanical system which is connected to the motor.

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Complete access	Modes of operation
3001		Machine								Possible	
	00	Number of entries			81 hex		1 byte (U8)	RO			
	01	Inertia Ratio	0 to 30,000 ^{*1}	%	250	A	4 bytes (INT32)	RW	1		csp, csv, cst, pp, pv, hm
	02	Backlash Compensation Selection	0 to 2		0	R	4 bytes (INT32)	RW			csp, pp, hm
	03	Backlash Com- pensation Amount	-262,144 to 262,143	Com- mand unit	0	E	4 bytes (INT32)	RW			csp, pp, hm
	04	Backlash Com- pensation Time Constant	0 to 6,400	0.01 ms	0	E	4 bytes (INT32)	RW			csp, pp, hm
	05	Motor Revolutions	0 to 1,073,741,824		1	R	4 bytes (U32)	RW			csp, csv, cst, pp, pv, hm
	06	Shaft Revolutions	1 to 1,073,741,824		1	R	4 bytes (U32)	RW			csp, csv, cst, pp, pv, hm
	81	Inertia Ratio Display		%			4 bytes (INT32)	RO			csp, csv, cst, pp, pv, hm

^{*1.} The default setting is 30 for the unit version 1.3 or earlier.

Subindex 01 hex: Inertia Ratio

- · Sets the ratio of load inertia to the motor rotor inertia.
- Inertia ratio = (Load inertia ÷ Rotor inertia) × 100%

Subindex 02 hex: Backlash Compensation Selection

· Selects whether to enable or disable backlash compensation in the position control, and the operation direction for the compensation.

Description of Set Values

Set value	Description
0	Disabled
1	Compensate at the first positive operation after servo ON
2	Compensate at the first negative operation after servo ON

Subindex 03 hex: Backlash Compensation Amount

· Sets the backlash compensation amount in the position control.

Subindex 04 hex: Backlash Compensation Time Constant

Sets the backlash compensation time constant in the position control. Refer to 7-5 Backlash Compensation on page 7-20 for details.

Subindex 05 hex: Motor Revolutions

- · Sets the numerator of the electronic gear.
- Mirror object of 6091-01hex

Subindex 06 hex: Shaft Revolutions

- · Sets the denominator of the electronic gear.
- Mirror object of 6091-02hex
- Refer to 7-7 Electronic Gear Function on page 7-29 for details.

Subindex 81 hex: Inertia Ratio Display

- · Gives the inertia ratio that is currently set.
- The value is updated automatically when **Load Characteristic Estimation Inertia Ratio Update Selection** (3B80-01 hex) is set to 1 (update with the estimation result).

9-2-3 3002 hex: Optimized Parameters

This object is used to copy values, which are calculated in the Servo Drive, to the user setting area.

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Complete access	Modes of oper- ation
3002		Optimized Parameters								Possible	
	00	Number of entries			FF hex		1 byte (U8)	RO			
	F1	Apply Parame- ters			000000 00 hex	Α	4 bytes (INT32)	W			
	FF	Execution Sta- tus					4 bytes (INT32)	RO			

Subindex F1 hex: Apply Parameters

- The optimized parameters of Servo Drive are copied to the user setting area by the writing of 7970 6F63 hex. They are used as user set values.
- To save the data in the non-volatile memory, execute the Store Parameters (1010-01 hex).
- The Optimized Parameters refer to the objects listed below. All these objects are copied.

			Copy source		Copy destination
Index (hex)	Name	Sub- index (hex)	Name	Sub- index (hex)	Name
3001	Machine	81	Inertia Ratio Display	01	Inertia Ratio
3310	Torque Compensation	81	Viscous Friction Coefficient Display	01	Viscous Friction Coefficient
		82	Unbalanced Load Compensation Display	02	Unbalanced Load Compensation
		83	Positive Dynamic Friction	03	Positive Dynamic Friction
			Compensation Display		Compensation
		84	Negative Dynamic Friction	04	Negative Dynamic Friction
			Compensation Display		Compensation
3321	1st Notch Filter	81	Enable Display	01	Enable
		82	Frequency Display	02	Frequency
		83	Q-value Display	03	Q-value
		84	Depth Display	04	Depth
3322	2nd Notch Filter	81	Enable Display	01	Enable
		82	Frequency Display	02	Frequency
		83	Q-value Display	03	Q-value
		84	Depth Display	04	Depth
3323	3rd Notch Filter	81	Enable Display	01	Enable
		82	Frequency Display	02	Frequency
		83	Q-value Display	03	Q-value
		84	Depth Display	04	Depth
3324	4th Notch Filter	81	Enable Display	01	Enable
		82	Frequency Display	02	Frequency
		83	Q-value Display	03	Q-value
		84	Depth Display	04	Depth

Subindex FF hex: Execution Status

• Gives the execution status of whether the optimized parameters are applied.

Set value	Description
0	Apply completed
1	Apply in execution

9-2-4 3010 hex: Position Command

Sets the position command and gives the command value.

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Complete access	Modes of oper- ation
3010		Position Com- mand								Possible	
	00	Number of entries			F2 hex		1 byte (U8)	RO			
	81	Position Demand Value		Command unit			4 bytes (INT32)	RO		1	csp, pp, hm
	82	Position Demand Internal Value		Encoder unit			4 bytes (INT32)	RO			csp, pp, hm
	83	Velocity		Command unit/s			4 bytes (INT32)	RO		-	csp, pp, hm
	84	Motor Velocity		r/min			4 bytes (INT32)	RO			csp, pp, hm
	85	Motor Velocity After Position Command Fil- tering		r/min			4 bytes (INT32)	RO		-	csp, pp, hm
	86	Motor Velocity After Damping Filtering		r/min			4 bytes (INT32)	RO			csp, pp, hm
	87	Reference Position for csp		Command unit	0		4 bytes (INT32)	RO	TxPDO		csp, csv, cst, pp, pv, hm
	91	Following Error		Command unit			4 bytes (INT32)	RO			csp, pp, hm
	92	Following Error After Interpola- tion*1		Command unit			4 bytes (INT32)	RO	TxPDO		csp, pp, hm
	F1	Target Position	-2,147,483, 648 to 2,147,483, 647	Command unit	0	A	4 bytes (INT32)	W			csp, pp
	F2	Position Offset	-2,147,483, 648 to 2,147,483, 647	Command unit	0	A	4 bytes (INT32)	W			csp

^{*1.} This object is available for the unit version 1.4 or later.

Subindex 81 hex: Position Demand Value

- Gives the command position which is generated in the Servo Drive, in units of command.
- Mirror object of 6062 hex

Subindex 82 hex: Position Demand Internal Value

- Gives the command position which is generated in the Servo Drive, in units of encoder.
- · Mirror object of 60FC hex

Subindex 83 hex: Velocity

• Gives the command velocity which is generated in the Servo Drive, in units of command/s.

Subindex 84 hex: Motor Velocity

· Gives the command velocity which is generated in the Servo Drive, in units of r/min.

Subindex 85 hex: Motor Velocity After Position Command Filtering

• Gives the command velocity after position command filtering in units of r/min.

Subindex 86 hex: Motor Velocity After Damping Filtering

· Gives the command velocity after damping filtering, in units of r/min.

Subindex 87 hex: Reference Position for csp

• Gives the reference position for when the Cyclic synchronous velocity mode or Cyclic synchronous torque mode is switched to the Cyclic synchronous position mode.

Subindex 91 hex: Following Error

• Gives the following error between the command position and the present position.

Subindex 92 hex: Following Error After Interpolation

• Gives the following error between the command position after interpolation and the present position.

Subindex F1 hex: Target Position

- Sets the command position in the Cyclic synchronous position mode (csp) and Profile position mode (pp).
- Mirror object of 607A hex

Subindex F2 hex: Position Offset

- · Sets the offset for the Target position.
- Mirror object of 60B0 hex

9-2-5 3011 hex: Position Command Filter

Sets the position command filter.

The position command filter can be used when the communications cycle is 250 μ s or more. When the communications cycle is 125 μ s, the position command filter is disabled.

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Complete access	Modes of operation
3011		Position Com- mand Filter								Possible	
	00	Number of entries			04 hex		1 byte (U8)	RO			
	01	FIR Filter Enable	0 to 1		0	Α	4 bytes (INT32)	RW			csp, pp, hm
	02	FIR Filter Moving Average Time	1 to 10,000	0.1 ms	1	А	4 bytes (INT32)	RW			csp, pp, hm
	03	IIR Filter Enable	0 to 1		1	Α	4 bytes (INT32)	RW			csp, pp, hm
	04	IIR Filter Cutoff Frequency	10 to 50,000	0.1 Hz	219/146 *1	Α	4 bytes (INT32)	RW			csp, pp, hm

^{*1.} The first value is for the Servo Drive with its capacity 3kw or less. The second value is for the Servo Drive with its capacity 5kw or more.

Subindex 01 hex: FIR Filter Enable

· Selects whether to enable or disable the FIR filter in the position command filter.

Description of Set Values

Set value	Description
0	Disabled
1	Enabled

Subindex 02 hex: FIR Filter Moving Average Time

· Sets the moving average time for the FIR filter.

Subindex 03 hex: IIR Filter Enable

· Selects whether to enable or disable the IIR filter in the position command filter.

Description of Set Values

Set value	Description
0	Disabled
1	Enabled

Subindex 04 hex: IIR Filter Cutoff Frequency

· Sets the cutoff frequency for the IIR filter.

9-2-6 3012 hex: Damping Control

Selects the method to switch the damping filters.

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Complete access	Modes of opera-tion
3012		Damping Control								Possible	
	00	Number of entries			02 hex		1 byte (U8)	RO			
	01	Damping Filter 1 Selection	0 to 4		0	Α	4 bytes (INT32)	RW			csp, pp, hm
	02	Damping Filter 2 Selection	0 to 4		0	A	4 bytes (INT32)	RW			csp, pp, hm

Subindex 01 hex: Damping Filter 1 Selection

• Selects the setting to use for the damping filter 1.

Description of Set Values

Set value	Description
0	Disabled
1	1st Frequency and 1st Damping Time Coefficient
2	2nd Frequency and 2nd Damping Time Coefficient
3	3rd Frequency and 3rd Damping Time Coefficient
4	4th Frequency and 4th Damping Time Coefficient

Subindex 02 hex: Damping Filter 2 Selection

• Selects the setting to use for the damping filter 2.

Set value	Description
0	Disabled
1	1st Frequency and 1st Damping Time Coefficient
2	2nd Frequency and 2nd Damping Time Coefficient
3	3rd Frequency and 3rd Damping Time Coefficient
4	4th Frequency and 4th Damping Time Coefficient

9-2-7 3013 hex: Damping Filter 1

Sets the damping filter 1.

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Complete access	Modes of operation
3013		Damping Filter 1				-				Possible	
	00	Number of entries			09 hex		1 byte (U8)	RO			
	01	1st Frequency	5 to 3,000	0.1 Hz	3,000	Α	4 bytes (INT32)	RW			csp, pp, hm
	02	1st Damping Time Coefficient	50 to 200	%	100	Α	4 bytes (INT32)	RW			csp, pp, hm
	03	2nd Frequency	5 to 3,000	0.1 Hz	3,000	Α	4 bytes (INT32)	RW			csp, pp, hm
	04	2nd Damping Time Coefficient	50 to 200	%	100	Α	4 bytes (INT32)	RW			csp, pp, hm
	05	3rd Frequency	5 to 3,000	0.1 Hz	3,000	Α	4 bytes (INT32)	RW			csp, pp, hm
	06	3rd Damping Time Coefficient	50 to 200	%	100	Α	4 bytes (INT32)	RW			csp, pp, hm
	07	4th Frequency	5 to 3,000	0.1 Hz	3,000	Α	4 bytes (INT32)	RW			csp, pp, hm
	80	4th Damping Time Coefficient	50 to 200	%	100	А	4 bytes (INT32)	RW			csp, pp, hm

Subindex 01 hex: 1st Frequency

· Sets the damping frequency 1 for the damping filter 1.

Subindex 02 hex: 1st Damping Time Coefficient

 Sets the trade-off with torque required for the vibration suppression time and damping. Setting a small value shortens the time to suppress the vibration, however it is highly possible that torque saturation occurs.

Subindex 03 hex: 2nd Frequency

• Sets the damping frequency 2 for the damping filter 1.

Subindex 04 hex: 2nd Damping Time Coefficient

 Sets the trade-off with torque required for the vibration suppression time and damping. Setting a small value shortens the time to suppress the vibration, however it is highly possible that torque saturation occurs.

Subindex 05 hex: 3rd Frequency

· Sets the damping frequency 3 for the damping filter 1.

Subindex 06 hex: 3rd Damping Time Coefficient

 Sets the trade-off with torque required for the vibration suppression time and damping. Setting a small value shortens the time to suppress the vibration, however it is highly possible that torque saturation occurs.

Subindex 07 hex: 4th Frequency

• Sets the damping frequency 4 for the damping filter 1.

Subindex 08 hex: 4th Damping Time Coefficient

 Sets the trade-off with torque required for the vibration suppression time and damping. Setting a small value shortens the time to suppress the vibration, however it is highly possible that torque saturation occurs.

9-2-8 3014 hex: Damping Filter 2

Sets the damping filter 2.

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Complete access	Modes of operation
3014		Damping Filter 2								Possible	
	00	Number of entries			09 hex		1 byte (U8)	RO			
	01	1st Frequency	5 to 3,000	0.1 Hz	3,000	Α	4 bytes (INT32)	RW			csp, pp, hm
	02	1st Damping Time Coefficient	1 to 200	%	100	Α	4 bytes (INT32)	RW			csp, pp, hm
	03	2nd Frequency	5 to 3,000	0.1 Hz	3,000	Α	4 bytes (INT32)	RW			csp, pp, hm
	04	2nd Damping Time Coefficient	1 to 200	%	100	Α	4 bytes (INT32)	RW			csp, pp, hm
	05	3rd Frequency	5 to 3,000	0.1 Hz	3,000	Α	4 bytes (INT32)	RW			csp, pp, hm
	06	3rd Damping Time Coefficient	1 to 200	%	100	Α	4 bytes (INT32)	RW			csp, pp, hm
	07	4th Frequency	5 to 3,000	0.1 Hz	3,000	Α	4 bytes (INT32)	RW			csp, pp, hm
	80	4th Damping Time Coefficient	1 to 200	%	100	Α	4 bytes (INT32)	RW			csp, pp, hm

Subindex 01 hex: 1st Frequency

· Sets the damping frequency 1 for the damping filter 2.

Subindex 02 hex: 1st Damping Time Coefficient

 Sets the trade-off with torque required for the vibration suppression time and damping. Setting a small value shortens the time to suppress the vibration, however it is highly possible that torque saturation occurs.

Subindex 03 hex: 2nd Frequency

· Sets the damping frequency 2 for the damping filter 2.

Subindex 04 hex: 2nd Damping Time Coefficient

 Sets the trade-off with torque required for the vibration suppression time and damping. Setting a small value shortens the time to suppress the vibration, however it is highly possible that torque saturation occurs.

Subindex 05 hex: 3rd Frequency

· Sets the damping frequency 3 for the damping filter 2.

Subindex 06 hex: 3rd Damping Time Coefficient

 Sets the trade-off with torque required for the vibration suppression time and damping. Setting a small value shortens the time to suppress the vibration, however it is highly possible that torque saturation occurs.

Subindex 07 hex: 4th Frequency

• Sets the damping frequency 4 for the damping filter 2.

Subindex 08 hex: 4th Damping Time Coefficient

 Sets the trade-off with torque required for the vibration suppression time and damping. Setting a small value shortens the time to suppress the vibration, however it is highly possible that torque saturation occurs.

9-2-9 3020 hex: Velocity Command

Sets the velocity command and gives the command value.

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Complete access	Modes of oper- ation
3020		Velocity Com- mand								Possible	
	00	Number of entries			F2 hex		1 byte (U8)	RO			
	82	Motor Velocity		r/min			4 bytes (INT32)	RO			csv, pv
	83	Motor Velocity After Velocity Command Filter- ing		r/min			4 bytes (INT32)	RO			csv, pv
	92	Motor Velocity Deviation		r/min			4 bytes (INT32)	RO			csv, pv
	F1	Target Velocity	-2,147,4 83,648 to 2,147,48 3,647	Command unit/s	0	A	4 bytes (INT32)	W			csv, pv
	F2	Velocity Offset	-2,147,4 83,648 to 2,147,48 3,647	Command unit/s	0	A	4 bytes (INT32)	W			csp, csv, pp, pv

Subindex 82 hex: Motor Velocity

· Gives the velocity command which is generated in the Servo Drive.

Subindex 83 hex: Motor Velocity After Velocity Command Filtering

· Gives the command velocity after velocity command filtering.

Subindex 92 hex: Motor Velocity Deviation

· Gives the deviation between the command velocity and the present velocity.

Subindex F1 hex: Target Velocity

- Sets the command velocity for the Cyclic synchronous velocity mode (csv) and Profile velocity mode (pv).
- · Mirror object of 60FF hex

Subindex F2 hex: Velocity Offset

- · Sets the offset for the Target velocity.
- · Mirror object of 60B1 hex

9-2-10 3021 hex: Velocity Command Filter

Sets the velocity command filter.

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Complete access	Modes of operation
3021		Velocity Com- mand Filter								Possible	
	00	Number of entries			04 hex		1 byte (U8)	RO			
	01	Acceleration Time	0 to 10,000	ms	0	E	4 bytes (INT32)	RW			csv, pv
	02	Deceleration Time	0 to 10,000	ms	0	E	4 bytes (INT32)	RW			csv, pv
	03	IIR Filter Enable	0 to 1		0	Α	4 bytes (INT32)	RW			csv, pv
	04	Filter Cutoff Frequency	10 to 50,000	0.1 Hz	50,000	E	4 bytes (INT32)	RW			csv, pv

Subindex 01 hex: Acceleration Time

- · Sets the acceleration time during acceleration.
- Sets the time to accelerate from 0 to 1,000 r/min.

Subindex 02 hex: Deceleration Time

- · Sets the deceleration time during deceleration.
- Sets the time to decelerate from 1,000 to 0 r/min.

Subindex 03 hex: IIR Filter Enable

· Selects whether to enable or disable the IIR filter in the velocity command filter.

Description of Set Values

Set value	Description
0	Disabled
1	Enabled

Subindex 04 hex: Filter Cutoff Frequency

· Sets the cutoff frequency for the IIR filter.

3030 hex: Torque Command 9-2-11

Sets the torque command and gives the command value.

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Complete access	Modes of operation
3030		Torque Com- mand								Possible	
	00	Number of entries			F2 hex		1 byte (U8)	RO			
	81	Torque		0.1%			4 bytes (INT32)	RO			cst
	F1	Target Torque	-5,000 to 5,000	0.1%	0	Α	2 bytes (INT16)	W			cst
	F2	Torque Offset	-5,000 to 5,000	0.1%	0	Α	2 bytes (INT16)	W			csp, csv, cst, pp, pv

Subindex 81 hex: Torque

• Gives the torque command value which is generated in the Servo Drive.

Subindex F1 hex: Target Torque

- Sets the torque command in the Cyclic synchronous torque mode.
- · Mirror object of 6071 hex

Subindex F2 hex: Torque Offset

- · Sets the offset for the Target torque.
- · Mirror object of 60B2 hex

9-2-12 3031 hex: Velocity Limit in Torque Control

Sets the velocity limit in the torque control.

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Complete access	Modes of operation
3031		Velocity Limit in Torque Control								Possible	
	00	Number of entries			81 hex		1 byte (U8)	RO			
	01	Velocity Limit Value	0 to 20,000	r/min	20,000	Α	4 bytes (INT32)	RW			cst
	81	Status					4 bytes (INT32)	RO			cst

Subindex 01 hex: Velocity Limit Value

• Sets the velocity limit in the torque control.

Subindex 81 hex: Status

· Gives the velocity limit status in the torque control.

Description of Set Values

Set value	Description
0	Velocity limit not applied
1	Velocity limit applied

9-2-13 3040 hex: Profile Command

Sets the profile command.

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default set- ting	Data attri- bute	Size	Access	PDO map	Complete access	Modes of operation
3040		Profile Com- mand				1		-	1	Possible	
	00	Number of entries			F4 hex		1 byte (U8)	RO			
	F1	Max Pro- file Velocity	0 to 2,147,483,647	Command unit/s	2,147,483,647	А	4 bytes (U32)	W			cst, pp, pv
	F2	Profile Velocity	0 to 2,147,483,647	Command unit/s	0	Α	4 bytes (U32)	W			рр
	F3	Profile Acceler- ation	1 to 2,147,483,647	Command unit/s ²	1,000,000	A	4 bytes (U32)	W			pp, pv
	F4	Profile Deceler- ation	1 to 2,147,483,647	Command unit/s ²	1,000,000	A	4 bytes (U32)	W			pp, pv

Subindex F1 hex: Max Profile Velocity

- Sets the velocity limit value in the Cyclic synchronous torque mode (cst), Profile position mode (pp), and Profile velocity mode (pv).
- · Mirror object of 607F hex

Subindex F2 hex: Profile Velocity

- Sets the velocity in the Profile position mode (pp).
- Mirror object of 6081 hex

Subindex F3 hex: Profile Acceleration

- Sets the acceleration rate in the Profile position mode (pp) and Profile velocity mode (pv).
- · Mirror object of 6083 hex

Subindex F4 hex: Profile Deceleration

- Sets the deceleration rate in the Profile position mode (pp) and Profile velocity mode (pv).
- · Mirror object of 6084 hex

9-2-14 3041 hex: Command Dividing Function

Sets the Command Dividing Function which is enabled in the Cyclic synchronous position mode (csp) or Cyclic synchronous velocity mode (csv).

In the free-run mode only, the setting is updated, and in the synchronous mode, the DC cycle time is automatically applied as the interpolation time period.

Interpolation time period = Interpolation Time Period Value ×10 (Interpolation Time Index) seconds.

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Complete access	Modes of operation
3041		Command Divid- ing Function								Possible	
	00	Number of entries			10 hex		1 byte (U8)	RO			
	01	Operation Selection in csv	0 to 1		0	R	4 bytes (INT32)	RW			CSV
	02	Interpolation Time Period Value	0 to 255		1	E	1 byte (U8)	RW			csp, csv
	03	Interpolation Time Index	-128 to 63		-3	E	1 byte (INT8)	RW			csp, csv
	10	Interpolation Method Selection in csp*1	0 to 1		0	A	1 byte (INT32)	RW			csp

^{*1.} This object is available for the unit version 1.2 or later.

Subindex 01 hex: Operation Selection in csv

• Selects whether to enable or disable the Command Dividing Function in the Cyclic synchronous velocity mode (csv).

Description of Set Values

Set value	Description
0	Disabled
1	Enabled

Subindex 02 hex: Interpolation Time Period Value

- · Sets the value of the interpolation time period.
- · Mirror object of 60C2-01 hex

Subindex 03 hex: Interpolation Time Index

- · Sets the index of the interpolation time index period.
- · Mirror object of 60C2-02 hex

Subindex 10 hex: Interpolation Method Selection in csp

- Selects the interpolation method for the command in the Cyclic synchronous position mode (csp).
- This object is available for the unit version 1.2 or later.
- In the unit version 1.1 or earlier, 1st Order Interpolation is always performed.

Description of Set Values

Set value	Description
0	1st Order Interpolation
1	2nd Order Interpolation

Control Method Objects

This section explains the objects that set the operations in the one-degree-of-freedom and two-degree-of-freedom controls.

9-3-1 3112 hex: ODF Velocity Feed-forward

Sets the velocity feed-forward in the one-degree-of-freedom control.

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Complete access	Modes of operation
3112		ODF Velocity Feed-forward								Possible	
	00	Number of entries			E2 hex		1 byte (U8)	RO			
	01	Gain	0 to 1,000	0.1%	300	Α	4 bytes (INT32)	RW			csp, pp, hm
	02	LPF Enable	0 to 1		1	Α	4 bytes (INT32)	RW			csp, pp, hm
	03	LPF Cutoff Frequency	10 to 50,000	0.1 Hz	50,000	Α	4 bytes (INT32)	RW			csp, pp, hm
	E1	Gain Command	0 to 1,000	0.1%	300	Α	4 bytes (INT32)	W	RxPDO		csp, pp, hm
	E2	LPF Cutoff Frequency Command	10 to 50,000	0.1 Hz	50,000	Α	4 bytes (INT32)	W	RxPDO		csp, pp, hm

Subindex 01 hex: Gain

- Sets the one-degree-of-freedom velocity feed-forward gain.
- · The velocity feed-forward can reduce a following error and improve the responsiveness during position control.
- · Although the following ability is improved by the increase in gain, overshooting may occur in some

Subindex 02 hex: LPF Enable

• Selects whether to enable or disable the low-pass filter in the velocity feed-forward.

Description of Set Values

Set value	Description
0	Disabled
1	Enabled

Subindex 03 hex: LPF Cutoff Frequency

• Sets the low-pass filter cutoff frequency in the one-degree-of-freedom velocity feed-forward filter.

Subindex E1 hex: Gain Command

- · Sets the one-degree-of-freedom velocity feed-forward gain.
- The velocity feed-forward can reduce a following error and improve the responsiveness during position control.
- Although the following ability is improved by the increase in gain, overshooting may occur in some cases.
- This object is intended for PDO assignment. Use this object to change the **Gain** (subindex 01 hex) from a PDO.

Subindex E2 hex: LPF Cutoff Frequency Command

- Sets the low-pass filter cutoff frequency in the one-degree-of-freedom velocity feed-forward filter.
- This object is intended for PDO assignment. Use this object to change the LPF Cutoff Frequency (subindex 03 hex) from a PDO.

9-3-2 3113 hex: ODF Torque Feed-forward

Sets the torque feed-forward in the one-degree-of-freedom control.

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Complete	Modes of operation
3113		ODF Torque Feed-forward								Possible	
	00	Number of entries			E2 hex		1 byte (U8)	RO			
	01	Gain	0 to 1,000	0.1%	0	Α	4 bytes (INT32)	RW			csp, pp, hm
	02	LPF Enable	0 to 1		0	Α	4 bytes (INT32)	RW			csp, pp, hm
	03	LPF Cutoff Frequency	10 to 50,000	0.1 Hz	50,000	Α	4 bytes (INT32)	RW			csp, pp, hm
	E1	Gain Command	0 to 1,000	0.1%	0	Α	4 bytes (INT32)	W	RxPDO		csp, pp, hm
	E2	LPF Cutoff Frequency Command	10 to 50,000	0.1 Hz	50,000	Α	4 bytes (INT32)	W	RxPDO		csp, pp, hm

Subindex 01 hex: Gain

- · Sets the one-degree-of-freedom torque feed-forward gain.
- The torque feed-forward can improve the responsiveness of the velocity control system.
- Although the following ability is improved by the increase in gain, overshooting may occur in some cases.

Subindex 02 hex: LPF Enable

• Selects whether to enable or disable the low-pass filter in the torque feed-forward.

Description of Set Values

Set value	Description
0	Disabled
1	Enabled

Subindex 03 hex: LPF Cutoff Frequency

• Sets the low-pass filter cutoff frequency for the one-degree-of-freedom torque feed-forward.

Subindex E1 hex: Gain Command

- Sets the one-degree-of-freedom torque feed-forward gain.
- The torque feed-forward can improve the responsiveness of the velocity control system.
- Although the following ability is improved by the increase in gain, overshooting may occur in some cases.
- This object is intended for PDO assignment. Use this object to change the **Gain** (subindex 01 hex) from a PDO.

Subindex E2 hex: LPF Cutoff Frequency Command

- · Sets the low-pass filter cutoff frequency for the one-degree-of-freedom torque feed-forward.
- This object is intended for PDO assignment. Use this object to change the LPF Cutoff Frequency (subindex 03 hex) from a PDO.

9-3-3 3120 hex: TDF Position Control

Sets the operation in the two-degree-of-freedom position control.

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Complete access	Modes of operation
3120		TDF Position Control								Possible	
	00	Number of entries			02 hex		1 byte (U8)	RO			
	01	Command Following Gain	10 to 5,000	%	50	Α	4 bytes (INT32)	RW			csp, pp, hm
	10	Command Following Gain Selection*1	0 to 1		0	A	4 bytes (INT32)	RW			csp, pp, hm
	11	Command Following Gain 2*1	1 to 50,000	0.1 Hz	219/146 *2	Α	4 bytes (INT32)	RW			csp, pp, hm

^{*1.} These objects are available for the unit version 1.1 or later.

^{*2.} The first value is for the Servo Drive with its capacity 3 kw or less. The second value is for the Servo Drive with its capacity 5.5 kw or more.

Subindex 01 hex: Command Following Gain

- · Sets the following performance for the target position.
- The higher the gain is, the higher the following performance of the internal command is for the target position.
- The set value is valid when **TDF Position Control Command Following Gain Selection** (3120-10 hex) is set to 0 (use the Command Following Gain).

Subindex 10 hex: Command Following Gain Selection

· Selects the command following gain switching method.

Description of Set Values

Set value	Description
0	Use the Command Following Gain.
1	Use the Command Following Gain 2.

Subindex 11 hex: Command Following Gain 2

- · Sets the cutoff frequency to the position command.
- The higher the set value is, the higher the following performance of the internal command is for the target position.
- The set value is valid when **TDF Position Control Command Following Gain Selection** (3120-10 hex) is set to 1 (use the Command Following Gain 2).

9-3-4 3121 hex: TDF Velocity Control

Sets the operation in the two-degree-of-freedom velocity control.

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Complete access	Modes of operation
3121		TDF Velocity Control								Possible	
	00	Number of entries			01 hex		1 byte (U8)	RO			
	01	Command Fol- lowing Gain	10 to 5,000	%	100	Α	4 bytes (INT32)	RW			csv, pv
	10	Command Following Gain Selection*1	0 to 1		0	Α	4 bytes (INT32)	RW			csv, pv
	11	Command Following Gain 2*1	1 to 50,000	0.1 Hz	219/146 *2	А	4 bytes (INT32)	RW			csv, pv

^{*1.} These objects are available for the unit version 1.1 or later.

^{*2.} The first value is for the Servo Drive with its capacity 3kw or less. The second value is for the Servo Drive with its capacity 5kw or more.

Subindex 01 hex: Command Following Gain

- · Sets the following performance for the target velocity.
- The higher the gain is, the higher the following performance of the internal command is for the target velocity.
- The set value is valid when **TDF Velocity Control Command Following Gain Selection** (3120-10 hex) is set to 0 (use the Command Following Gain).

Subindex 10 hex: Command Following Gain Selection

• Selects the command following gain switching method.

Description of Set Values

Set value	Description
0	Use the Command Following Gain.
1	Use the Command Following Gain 2.

Subindex 11 hex: Command Following Gain 2

- · Sets the cutoff frequency to the velocity command.
- The higher the set value is, the higher the following performance of the internal command is for the target velocity.
- The set value is valid when **TDF Velocity Control Command Following Gain Selection** (3120-10 hex) is set to 1 (use the Command Following Gain 2).

9-4 Control Loop Objects

This section explains the objects related to the control loop.

9-4-1 3210 hex: Internal Position Command

Gives the position command value which is calculated in the Servo Drive.

Index (hex)	Sub- index (hex)	Object name	Set- ting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Complete access	Modes of operation
3210		Internal Position Command								Possible	
	00	Number of entries			92 hex		1 byte (U8)	RO			
	81	Position		Command unit			4 bytes (INT32)	RO			csp, pp, hm
	84	Motor Velocity		r/min			4 bytes (INT32)	RO			csp, pp, hm
	91	Following Error Actual Value		Command unit			4 bytes (INT32)	RO			csp, pp, hm
	92	Following Error Actual Internal Value		Encoder unit			4 bytes (INT32)	RO			csp, pp, hm

Subindex 81 hex: Position

• Gives the command position to the feedback control in units of command.

Subindex 84 hex: Motor Velocity

• Gives the command velocity to the feedback control in units of r/min.

Subindex 91 hex: Following Error Actual Value

- Gives the following error between the command position to the feedback control and the present position in units of command.
- · Mirror object of 60F4 hex

Subindex 92 hex: Following Error Actual Internal Value

• Gives the following error between the command position to the feedback control and the present position in units of encoder.

3211 hex: Position Detection 9-4-2

Gives the position detection value.

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Complete access	Modes of operation
3211		Position Detection								Possible	
	00	Number of entries			83 hex		1 byte (U8)	RO			
	81	Position Actual Value		Com- mand unit			4 bytes (INT32)	RO			csp, csv, cst, pp, pv, hm
	82	Position Actual Internal Value		Encoder unit			4 bytes (INT32)	RO			csp, csv, cst, pp, pv, hm
	83	Present Position Time Stamp		ns			8 bytes (U64)	RO	TxPDO		csp, csv, cst, pp, pv, hm

Subindex 81 hex: Position Actual Value

- · Gives the present position in units of command.
- · Mirror object of 6064 hex

Subindex 82 hex: Position Actual Internal Value

- · Gives the present position in units of encoder.
- · Mirror object of 6063 hex

Subindex 83 hex: Present Position Time Stamp

· Gives the time when the present position is obtained.

3212 hex: Gain Switching in Position Control 9-4-3

Sets the gain switching function in the position control.

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Complete access	Modes of operation
3212		Gain Switching in Position Control								Possible	
	00	Number of entries			04 hex		1 byte (U8)	RO			
	01	Mode Selection	0 to 3		0	Е	4 bytes (INT32)	RW			csp, pp, hm
	02	Delay Time	0 to 10,000	0.1 ms	50	Е	4 bytes (INT32)	RW			csp, pp, hm
	03	Speed	0 to 20,000	r/min	50	Е	4 bytes (INT32)	RW			csp, pp, hm
	04	Time	0 to 10,000	0.1 ms	100	E	4 bytes (INT32)	RW			csp, pp, hm

Subindex 01 hex: Mode Selection

· Selects the method to switch the gain in the position control.

Description of Set Values

Set value	Description
0	Always Gain 1
1	Always Gain 2
2	Gain switching command input via EtherCAT communications
3	Actual motor velocity with position command

Subindex 02 hex: Delay Time

• Sets the delay time when the gain returns from Gain 2 to Gain 1 if the Mode Selection is set to 3.

Subindex 03 hex: Speed

• Sets the speed threshold for when Gain 2 switches to Gain 1 if the Mode Selection is set to 3.

Subindex 04 hex: Time

• Sets the time to change the gain from a high value to a low value.

9-4-4 3213 hex: 1st Position Control Gain

Sets the 1st position control gain.

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Complete access	Modes of operation
3213		1st Position Control Gain								Possible	
	00	Number of entries			E1 hex		1 byte (U8)	RO			
	01	Proportional Gain	0 to 5,000	0.1 Hz	44/29 ^{*1}	Α	4 bytes (INT32)	RW			csp, pp, hm
	E1	Proportional Gain Command	0 to 5,000	0.1 Hz	44/29 ^{*1}	Α	4 bytes (INT32)	W	RxPDO		csp, pp, hm

^{*1.} The first value is for the Servo Drive with its capacity 3kw or less. The second value is for the Servo Drive with its capacity 5kw or more.

Subindex 01 hex: Proportional Gain

· Sets the 1st position proportional gain.

Subindex E1 hex: Proportional Gain Command

- · Sets the 1st position proportional gain.
- This object is intended for PDO assignment. Use this object to change the Proportional Gain (subindex 01 hex) from a PDO.

9-4-5 3214 hex: 2nd Position Control Gain

Sets the 2nd position control gain.

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Complete access	Modes of operation
3214		2nd Position Control Gain								Possible	
_	00	Number of entries			01 hex		1 byte (U8)	RO			
	01	Proportional Gain	0 to 5,000	0.1 Hz	44/29 ^{*1}	Α	4 bytes (INT32)	RW			csp, pp, hm
	E1	Proportional Gain Command	0 to 5,000	0.1 Hz	44/29 ^{*1}	Α	4 bytes (INT32)	W	RxPDO		csp, pp, hm

^{*1.} The first value is for the Servo Drive with its capacity 3kw or less. The second value is for the Servo Drive with its capacity 5kw or more.

Subindex 01 hex: Proportional Gain

· Sets the 2nd position proportional gain.

Subindex E1 hex: Proportional Gain Command

- · Sets the 2nd position proportional gain.
- This object is intended for PDO assignment. Use this object to change the Proportional Gain (subindex 01 hex) from a PDO.

9-4-6 3220 hex: Internal Velocity Command

Gives the velocity command value in the Servo Drive.

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Complete access	Modes of oper- ation
3220		Internal Velocity Command								Possible	
	00	Number of entries			92 hex		1 byte (U8)	RO			
	81	Velocity Demand Value		Command unit/s			4 bytes (INT32)	RO			csp, pp, hm
	82	Motor Velocity		r/min			4 bytes (INT32)	RO			csp, csv, hm, pp, pv
	83	Control Effort		Command unit/s			4 bytes (INT32)	RO			csp, pp, hm
	92	Motor Velocity Deviation		r/min			4 bytes (INT32)	RO			csp, csv, hm, pp, pv

Subindex 81 hex: Velocity Demand Value

- · Gives the command velocity which is generated in the Servo Drive, in units of command/s.
- The displayed value may have an error due to the unit conversion from [r/min] to [command unit/s].
- · Mirror object of 606B hex

Subindex 82 hex: Motor Velocity

• Gives the command velocity which is generated in the Servo Drive, in units of r/min.

Subindex 83 hex: Control Effort

- Gives the velocity command value which is generated in the position control of the Servo Drive.
- The displayed value may have an error due to the unit conversion from [r/min] to [command unit/s].
- · Mirror object of 60FA hex

Subindex 92 hex: Motor Velocity Deviation

· Gives the deviation between the command velocity to the feedback control and the present velocity.

9-4-7 3221 hex: Velocity Detection

Gives the velocity detection value.

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Complete access	Modes of oper- ation
3221		Velocity Detection								Possible	
	00	Number of entries			83 hex		1 byte (U8)	RO			
	81	Velocity Actual Value		Command unit/s			4 bytes (INT32)	RO			csp, csv, cst, pp, pv, hm
	82	Present Motor Velocity		r/min			4 bytes (INT32)	RO	TxPDO		csp, csv, cst, pp, pv, hm
	83	Acceleration		rad/s ²			4 bytes (INT32)	RO			csp, csv, cst, pp, pv, hm

Subindex 81 hex: Velocity Actual Value

- · Gives the present velocity in units of command/s.
- · Mirror object of 606C hex

Subindex 82 hex: Present Motor Velocity

• Gives the present motor velocity in units of r/min.

Subindex 83 hex: Acceleration

· Gives the motor acceleration.

3222 hex: Gain Switching in Velocity Control 9-4-8

Sets the gain switching function in the velocity control.

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Complete access	Modes of operation
3222		Gain Switching in Velocity Control								Possible	
	00	Number of entries			01 hex		1 byte (U8)	RO			
	01	Mode Selection	0 to 2		0	E	4 bytes (INT32)	RW			csv, pv

Subindex 01 hex: Mode Selection

· Selects the gain switching function in the velocity control.

Description of Set Values

Set value	Description
0	Always Gain 1
1	Always Gain 2
2	Gain switching command input via EtherCAT communications

9-4-9 3223 hex: 1st Velocity Control Gain

Sets the 1st velocity control gain.

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Complete access	Modes of operation
3223		1st Velocity Con- trol Gain								Possible	
	00	Number of entries			E2 hex		1 byte (U8)	RO			
	01	Proportional Gain	0 to 30,000	0.1 Hz	219/146 ^{*1}	Α	4 bytes (INT32)	RW			csv, pv
	02	Integral Gain	0 to 16,000	0.1 Hz	55/37 ^{*1}	Α	4 bytes (INT32)	RW			csv, pv
	E1	Proportional Gain Command	0 to 30,000	0.1 Hz	219/146 ^{*1}	Α	4 bytes (INT32)	W	RxPDO		csv, pv
	E2	Integral Gain Command	0 to 16,000	0.1 Hz	55/37 ^{*1}	Α	4 bytes (INT32)	W	RxPDO		csv, pv

^{*1.} The first value is for the Servo Drive with its capacity 3kw or less. The second value is for the Servo Drive with its capacity 5kw or more.

Subindex 01 hex: Proportional Gain

· Sets the 1st velocity proportional gain.

Subindex 02 hex: Integral Gain

• Sets the 1st velocity integral gain.

Subindex E1 hex: Proportional Gain Command

- · Sets the 1st velocity proportional gain.
- This object is intended for PDO assignment. Use this object to change the propotional gain from a PDO.

Subindex E2 hex: Integral Gain Command

- · Sets the 1st velocity integral gain.
- This object is intended for PDO assignment. Use this object to change the integral gain from a PDO.

9-4-10 3224 hex: 2nd Velocity Control Gain

Sets the 2nd velocity control gain.

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Complete access	Modes of operation
3224		2nd Velocity Control Gain								Possible	
	00	Number of entries			02 hex		1 byte (U8)	RO			
	01	Proportional Gain	0 to 30,000	0.1 Hz	219	Α	4 bytes (INT32)	RW			csv, pv
	02	Integral Gain	0 to 16,000	0.1 Hz	55	Α	4 bytes (INT32)	RW			csv, pv
	E1	Proportional Gain Command	0 to 30,000	0.1 Hz	219	Α	4 bytes (INT32)	W	RxPDO		csv, pv
	E2	Integral Gain Command	0 to 16,000	0.1 Hz	55	Α	4 bytes (INT32)	W	RxPDO		csv, pv

Subindex 01 hex: Proportional Gain

• Sets the 2nd velocity proportional gain.

Subindex 02 hex: Integral Gain

· Sets the 2nd velocity integral gain.

Subindex E1 hex: Proportional Gain Command

- · Sets the 2nd velocity proportional gain.
- This object is intended for PDO assignment. Use this object to change the propotional gain from a PDO.

Subindex E2 hex: Integral Gain Command

- Sets the 2nd velocity integral gain.
- This object is intended for PDO assignment. Use this object to change the integral gain from a PDO.

9-4-11 3230 hex: Internal Torque Command

Gives the internal torque command value.

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Complete access	Modes of operation
3230		Internal Torque Command								Possible	
	00	Number of entries			81 hex		1 byte (U8)	RO			
	81	Torque Demand		0.1%			2 bytes (INT16)	R			csp, csv, cst, pp, pv, hm

Subindex 81 hex: Torque Demand

- Gives the torque command value which is generated in the Servo Drive.
- · Mirror object of 6074 hex

9-4-12 3231 hex: Torque Detection

Gives the torque detection value.

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Complete access	Modes of operation
3231		Torque Detection								Possible	
	00	Number of entries			81 hex		1 byte (U8)	RO			
	81	Torque Actual Value		0.1%			2 bytes (INT16)	R			csp, csv, cst, pp, pv, hm

Subindex 81 hex: Torque Actual Value

- · Gives the present torque value.
- · Mirror object of 6077 hex

9-4-13 3232 hex: Filter Switching in Torque Control

Sets the filter switching function in the torque control.

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Complete access	Modes of opera-tion
3232		Filter Switching in Torque Control								Possible	
	00	Number of entries			01 hex		1 byte (U8)	RO			
	01	Mode Selection	0 to 2		0	E	4 bytes (INT32)	RW			cst

Subindex 01 hex: Mode Selection

· Selects the condition to switch between 1st torque filter and 2nd torque filter.

Description of Set Values

Set value	Description
0	Always 1st Filter
1	Always 2nd Filter
2	Gain switching command input via EtherCAT communications

9-4-14 3233 hex: 1st Torque Command Filter

Sets the 1st torque command filter.

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Complete access	Modes of operation
3233		1st Torque Com- mand Filter								Possible	
	00	Number of entries			E1 hex		1 byte (U8)	RO			
	01	Enable	0 to 1		1	Α	4 bytes (INT32)	RW			csp, csv, cst, pp, pv, hm
	02	Cutoff Frequency	10 to 50,000	0.1 Hz	1,536/ 1,024 ^{*1}	A	4 bytes (INT32)	RW			csp, csv, cst, pp, pv, hm
	E1	Cutoff Fre- quency Com- mand	10 to 50,000	0.1 Hz	1,536/ 1,024 ^{*1}	A	4 bytes (INT32)	W	RxPDO		csp, csv, cst, pp, pv, hm

^{*1.} The first value is for the Servo Drive with its capacity 3kw or less. The second value is for the Servo Drive with its capacity 5kw or more.

Subindex 01 hex: Enable

• Selects whether to enable or disable the 1st torque command filter.

Description of Set Values

	Set value	Description
•	0	Disabled
Ī	1	Enable

Subindex 02 hex: Cutoff Frequency

• Sets the cutoff frequency for the 1st torque command filter.

Subindex E1 hex: Cutoff Frequency Command

- Sets the cutoff frequency for the 1st torque command filter.
- This object is intended for PDO assignment. Use this object to change the Cutoff Frequency from a PDO.

9-4-15 3234 hex: 2nd Torque Command Filter

Sets the 2nd torque command filter.

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Complete access	Modes of operation
3234		2nd Torque Command Filter								Possible	
	00	Number of entries			E1 hex		1 byte (U8)	RO			
	01	Enable	0 to 1		1	Α	4 bytes (INT32)	RW			csp, csv, cst, pp, pv, hm
	02	Cutoff Fre- quency	10 to 50,000	0.1 Hz	1,536/ 1,024 ^{*1}	Α	4 bytes (INT32)	RW			csp, csv, cst, pp, pv, hm
	E1	Cutoff Fre- quency Com- mand	10 to 50,000	0.1 Hz	1,536/ 1,024 ^{*1}	Α	4 bytes (INT32)	W	RxPDO		csp, csv, cst, pp, pv, hm

^{*1.} The first value is for the Servo Drive with its capacity 3kw or less. The second value is for the Servo Drive with its capacity 5kw or more.

Subindex 01 hex: Enable

· Selects whether to enable or disable the 2nd torque command filter.

Description of Set Values

Set value	Description
0	Disabled
1	Enabled

Subindex 02 hex: Cutoff Frequency

· Sets the cutoff frequency for the 2nd torque command filter.

Subindex E1 hex: Cutoff Frequency Command

- · Sets the cutoff frequency for the 2nd torque command filter.
- · This object is intended for PDO assignment. Use this object to change the Cutoff Frequency from a PDO.

9-5 Torque Output Setting Objects

These objects are used for the torque output setting.

9-5-1 3310 hex: Torque Compensation

Sets the torque compensation.

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Complete access	Modes of operation
3310		Torque Compensation								Possible	
	00	Number of entries			84 hex		1 byte (U8)	RO			
	01	Viscous Friction Coefficient	0 to 10,000	0.1%	0	A	4 bytes (INT32)	RW			csp, csv, cst, pp, pv, hm
	02	Unbalanced Load Compensa- tion	-1,000 to 1,000	0.1%	0	A	4 bytes (INT32)	RW			csp, csv, cst, pp, pv, hm
	03	Positive Dynamic Friction Compen- sation	0 to 1,000	0.1%	0	A	4 bytes (INT32)	RW			csp, csv, cst, pp, pv, hm
	04	Negative Dynamic Friction Compensation	0 to 1,000	0.1%	0	A	4 bytes (INT32)	RW			csp, csv, cst, pp, pv, hm
	81	Viscous Friction Coefficient Dis- play		0.1%			4 bytes (INT32)	RO			csp, csv, cst, pp, pv, hm
	82	Unbalanced Load Compensa- tion Display		0.1%			4 bytes (INT32)	RO			csp, csv, cst, pp, pv, hm
	83	Positive Dynamic Friction Compen- sation Display		0.1%			4 bytes (INT32)	RO			csp, csv, cst, pp, pv, hm
	84	Negative Dynamic Friction Compensation Display		0.1%			4 bytes (INT32)	RO			csp, csv, cst, pp, pv, hm

Subindex 01 hex: Viscous Friction Coefficient

- · Adjusts the amount of viscous friction compensation torque.
- Sets the amount of torque at 10,000 r/min.

Subindex 02 hex: Unbalanced Load Compensation

• Sets the amount of unbalanced load torque compensation.

Subindex 03 hex: Positive Dynamic Friction Compensation

• Sets the amount of dynamic friction compensation in the positive direction.

Subindex 04 hex: Negative Dynamic Friction Compensation

· Sets the amount of dynamic friction compensation in the negative direction.

Subindex 81 hex: Viscous Friction Coefficient Display

- · Gives the amount of viscous friction compensation torque that is currently set.
- The value is updated automatically when Load Characteristic Estimation Viscous Friction Compensation Update Selection (3B80-02 hex) is set to 1 (update with the estimation result).

Subindex 82 hex: Unbalanced Load Compensation Display

- · Gives the amount of unbalanced load torque compensation that is currently set.
- The value is updated automatically when **Load Characteristic Estimation Unbalanced Load Compensation Update Selection** (3B80-03 hex) is set to 1 (update with the estimation result).

Subindex 83 hex: Positive Dynamic Friction Compensation Display

- · Gives the amount of dynamic friction compensation in the positive direction that is currently set.
- The value is updated automatically when **Load Characteristic Estimation Dynamic Friction Compensation Update Selection** (3B80-04 hex) is set to 1 (update with the estimation result).

Subindex 84 hex: Negative Dynamic Friction Compensation Display

- Gives the amount of dynamic friction compensation in the negative direction that is currently set.
- The value is updated automatically when Load Characteristic Estimation Dynamic Friction Compensation Update Selection (3B80-04 hex) is set to 1 (update with the estimation result).

9-5-2 3320 hex: Adaptive Notch Filter

Sets the adaptive notch filter.

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Complete access	Modes of operation
3320		Adaptive Notch Filter								Possible	
	00	Number of entries			04 hex		1 byte (U8)	RO			
	01	Adaptive Notch Selection	0 to 4		0	A	4 bytes (INT32)	RW			csp, csv, cst, pp, pv, hm
	03	Resonance Detection Threshold	0 to 500	%	4	Α	4 bytes (INT32)	RW			csp, csv, cst, pp, pv, hm

Subindex 01 hex: Adaptive Notch Selection

• Selects the notch filter to adapt the estimation result. This object is disabled when 0 is set.

Description of Set Values

Set value	Description
0	Disabled
1	1st Notch Filter
2	2nd Notch Filter
3	3rd Notch Filter
4	4th Notch Filter

Subindex 03 hex: Resonance Detection Threshold

• Sets the torque output to detect the resonance, as a percentage of the rated torque.

9-5-3 3321 hex: 1st Notch Filter

Sets the 1st resonance suppression notch filter.

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Complete access	Modes of operation
3321		1st Notch Filter								Possible	
	00	Number of entries			84 hex		1 byte (U8)	RO			
	01	Enable	0 to 1		0	Α	4 bytes (INT32)	RW			csp, csv, cst, pp, pv, hm
	02	Frequency	500 to 50,000	0.1 Hz	50,000	Α	4 bytes (INT32)	RW			csp, csv, cst, pp, pv, hm
	03	Q-value	50 to 1,000	0.01	140	Α	4 bytes (INT32)	RW			csp, csv, cst, pp, pv, hm
	04	Depth	0 to 60	dB	60	Α	4 bytes (INT32)	RW			csp, csv, cst, pp, pv, hm
	81	Enable Display					4 bytes (INT32)	RO			csp, csv, cst, pp, pv, hm
	82	Frequency Dis- play		0.1 Hz			4 bytes (INT32)	RO			csp, csv, cst, pp, pv, hm
	83	Q-value Display		0.01			4 bytes (INT32)	RO			csp, csv, cst, pp, pv, hm
	84	Depth Display		dB			4 bytes (INT32)	RO			csp, csv, cst, pp, pv, hm

Subindex 01 hex: Enable

• Selects whether to enable or disable the 1st notch filter function.

Description of Set Values

Set value	Description
0	Disabled
1	Enabled

Subindex 02 hex: Frequency

• Sets the notch frequency of the 1st resonance suppression notch filter.

Subindex 03 hex: Q-value

- Sets the Q-value of the 1st resonance suppression notch filter.
- Decreasing the setting value widens the notch width.

Subindex 04 hex: Depth

- · Sets the notch depth of the 1st resonance suppression notch filter.
- · Increasing the setting value lengthens the notch depth and the phase lag.

Subindex 81 hex: Enable Display

· Gives whether the 1st notch filter function is enabled or disabled.

Description of Set Values

Set value	Description
0	Disabled
1	Enabled

Subindex 82 hex: Frequency Display

- · Gives the notch frequency that is currently set in the 1st notch filter.
- The value is updated automatically when the notch filter is specified in Adaptive Notch Filter Adaptive Notch Selection (3320-01 hex).

Subindex 83 hex: Q-value Display

- · Gives the Q-value that is currently set in the 1st notch filter.
- The value is updated automatically when the notch filter is specified in Adaptive Notch Filter –
 Adaptive Notch Selection (3320-01 hex).

Subindex 84 hex: Depth Display

- · Gives the depth that is currently set in the 1st notch filter.
- The value is updated automatically when the notch filter is specified in **Adaptive Notch Filter Adaptive Notch Selection** (3320-01 hex).

9-5-4 3322 hex: 2nd Notch Filter

Sets the 2nd resonance suppression notch filter.

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Complete access	Modes of operation
3322		2nd Notch Filter								Possible	
	00	Number of entries			84 hex		1 byte (U8)	RO			
	01	Enable	0 to 1		0	Α	4 bytes (INT32)	RW			csp, csv, cst, pp, pv, hm
	02	Frequency	500 to 50,000	0.1 Hz	50,000	Α	4 bytes (INT32)	RW			csp, csv, cst, pp, pv, hm
	03	Q-value	50 to 1,000	0.01	140	Α	4 bytes (INT32)	RW			csp, csv, cst, pp, pv, hm
	04	Depth	0 to 60	dB	60	Α	4 bytes (INT32)	RW			csp, csv, cst, pp, pv, hm
	81	Enable Display					4 bytes (INT32)	RO			csp, csv, cst, pp, pv, hm
	82	Frequency Dis- play		0.1 Hz			4 bytes (INT32)	RO			csp, csv, cst, pp, pv, hm
	83	Q-value Display		0.01			4 bytes (INT32)	RO			csp, csv, cst, pp, pv, hm
	84	Depth Display		dB			4 bytes (INT32)	RO			csp, csv, cst, pp, pv, hm

Subindex 01 hex: Enable

• Selects whether to enable or disable the 2nd notch filter function.

Description of Set Values

Set value	Description
0	Disabled
1	Enabled

Subindex 02 hex: Frequency

· Sets the notch frequency of the 2nd resonance suppression notch filter.

Subindex 03 hex: Q-value

- Sets the Q-value of the 2nd resonance suppression notch filter.
- Decreasing the setting value widens the notch width.

Subindex 04 hex: Depth

- · Sets the notch depth of the 2nd resonance suppression notch filter.
- · Increasing the setting value lengthens the notch depth and the phase lag.

Subindex 81 hex: Enable Display

· Gives whether the 2nd notch filter function is enabled or disabled.

Description of Set Values

Set value	Description
0	Disabled
1	Enabled

Subindex 82 hex: Frequency Display

- · Gives the notch frequency that is currently set in the 2nd notch filter.
- The value is updated automatically when the notch filter is specified in Adaptive Notch Filter Adaptive Notch Selection (3320-01 hex).

Subindex 83 hex: Q-value Display

- · Gives the Q-value that is currently set in the 2nd notch filter.
- The value is updated automatically when the notch filter is specified in Adaptive Notch Filter Adaptive Notch Selection (3320-01 hex).

Subindex 84 hex: Depth Display

- · Gives the depth that is currently set in the 2nd notch filter.
- The value is updated automatically when the notch filter is specified in Adaptive Notch Filter Adaptive Notch Selection (3320-01 hex).

9-5-5 3323 hex: 3rd Notch Filter

Sets the 3rd resonance suppression notch filter.

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Complete access	Modes of operation
3323		3rd Notch Filter								Possible	
	00	Number of entries			84 hex		1 byte (U8)	RO			
	01	Enable	0 to 1		0	Α	4 bytes (INT32)	RW			csp, csv, cst, pp, pv, hm
	02	Frequency	500 to 50,000	0.1 Hz	50,000	Α	4 bytes (INT32)	RW	-		csp, csv, cst, pp, pv, hm
	03	Q-value	50 to 1,000	0.01	140	Α	4 bytes (INT32)	RW			csp, csv, cst, pp, pv, hm
	04	Depth	0 to 60	dB	60	Α	4 bytes (INT32)	RW			csp, csv, cst, pp, pv, hm
	81	Enable Display					4 bytes (INT32)	RO			csp, csv, cst, pp, pv, hm
	82	Frequency Dis- play		0.1 Hz			4 bytes (INT32)	RO			csp, csv, cst, pp, pv, hm
	83	Q-value Display		0.01			4 bytes (INT32)	RO	ı		csp, csv, cst, pp, pv, hm
	84	Depth Display		dB			4 bytes (INT32)	RO	I		csp, csv, cst, pp, pv, hm

Subindex 01 hex: Enable

• Selects whether to enable or disable the 3rd notch filter function.

Description of Set Values

Set value	Description
0	Disabled
1	Enabled

Subindex 02 hex: Frequency

• Sets the notch frequency of the 3rd resonance suppression notch filter.

Subindex 03 hex: Q-value

- · Sets the Q-value of the 3rd resonance suppression notch filter.
- Decreasing the setting value widens the notch width.

Subindex 04 hex: Depth

- · Sets the notch depth of the 3rd resonance suppression notch filter.
- · Increasing the setting value lengthens the notch depth and the phase lag.

Subindex 81 hex: Enable Display

· Gives whether the 3rd notch filter function is enabled or disabled.

Description of Set Values

Set value	Description
0	Disabled
1	Enabled

Subindex 82 hex: Frequency Display

- · Gives the notch frequency that is currently set in the 3rd notch filter.
- The value is updated automatically when the notch filter is specified in Adaptive Notch Filter Adaptive Notch Selection (3320-01 hex).

Subindex 83 hex: Q-value Display

- · Gives the Q-value that is currently set in the 3rd notch filter.
- The value is updated automatically when the notch filter is specified in Adaptive Notch Filter –
 Adaptive Notch Selection (3320-01 hex).

Subindex 84 hex: Depth Display

- · Gives the depth that is currently set in the 3rd notch filter.
- The value is updated automatically when the notch filter is specified in Adaptive Notch Filter Adaptive Notch Selection (3320-01 hex).

9-5-6 3324 hex: 4th Notch Filter

Sets the 4th resonance suppression notch filter.

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Complete access	Modes of operation
3324		4th Notch Filter								Possible	
	00	Number of entries			84 hex		1 byte (U8)	RO			
	01	Enable	0 to 1		0	Α	4 bytes (INT32)	RW			csp, csv, cst, pp, pv, hm
	02	Frequency	500 to 50,000	0.1 Hz	50,000	Α	4 bytes (INT32)	RW			csp, csv, cst, pp, pv, hm
	03	Q-value	50 to 1,000	0.01	140	Α	4 bytes (INT32)	RW			csp, csv, cst, pp, pv, hm
	04	Depth	0 to 60	dB	60	Α	4 bytes (INT32)	RW			csp, csv, cst, pp, pv, hm
	81	Enable Display					4 bytes (INT32)	RO			csp, csv, cst, pp, pv, hm
	82	Frequency Dis- play		0.1 Hz			4 bytes (INT32)	RO			csp, csv, cst, pp, pv, hm
	83	Q-value Display		0.01			4 bytes (INT32)	RO			csp, csv, cst, pp, pv, hm
	84	Depth Display		dB			4 bytes (INT32)	RO			csp, csv, cst, pp, pv, hm

Subindex 01 hex: Enable

• Selects whether to enable or disable the 4th notch filter function.

Description of Set Values

Set value	Description
0	Disabled
1	Enabled

Subindex 02 hex: Frequency

• Sets the notch frequency of the 4th resonance suppression notch filter.

Subindex 03 hex: Q-value

- Sets the Q-value of the 4th resonance suppression notch filter.
- Decreasing the setting value widens the notch width.

Subindex 04 hex: Depth

- · Sets the notch depth of the 4th resonance suppression notch filter.
- · Increasing the setting value lengthens the notch depth and the phase lag.

Subindex 81 hex: Enable Display

· Gives whether the 4th notch filter function is enabled or disabled.

Description of Set Values

Set value	Description
0	Disabled
1	Enabled

Subindex 82 hex: Frequency Display

- · Gives the notch frequency that is currently set in the 4th notch filter.
- The value is updated automatically when the notch filter is specified in Adaptive Notch Filter Adaptive Notch Selection (3320-01 hex).

Subindex 83 hex: Q-value Display

- · Gives the Q-value that is currently set in the 4th notch filter.
- The value is updated automatically when the notch filter is specified in Adaptive Notch Filter Adaptive Notch Selection (3320-01 hex).

Subindex 84 hex: Depth Display

- Gives the depth that is currently set in the 4th notch filter.
- The value is updated automatically when the notch filter is specified in Adaptive Notch Filter Adaptive Notch Selection (3320-01 hex).

9-5-7 3330 hex: Torque Limit

Sets the torque limit function.

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Complete access	Modes of operation
3330		Torque Limit								Possible	
	00	Number of entries			81 hex		1 byte (U8)	RO			
	01	Switching Selection	0 to 2		0	Α	4 bytes (INT32)	RW			cst
	02	Max Torque	0 to 5,000	0.1%	5,000	A	2 bytes (U16)	RW	-	-	csp, csv, cst, pp, pv, hm
	03	Positive Torque Limit Value	0 to 5,000	0.1%	5,000	A	2 bytes (U16)	RW			csp, csv, cst, pp, pv, hm
	04	Negative Torque Limit Value	0 to 5,000	0.1%	5,000	Α	2 bytes (U16)	RW			csp, csv, cst, pp, pv, hm
	05	Positive Torque Limit Value 2	0 to 5,000	0.1%	5,000	Α	2 bytes (U16)	RW			csp, csv, cst, pp, pv, hm
	06	Negative torque limit value 2	0 to 5,000	0.1%	5,000	A	2 bytes (U16)	RW	-	-	csp, csv, cst, pp, pv, hm
	81	Status					4 bytes (INT32)	RO			csp, csv, cst, pp, pv, hm

Subindex 01 hex: Switching Selection

- · Selects the torque limit switching method.
- · When 1 or 2 is set, positive and negative torque limit values vary with state of the torque limit input (PCL/NCL) and Controlword (P_CL/N_CL).
- · When the maximum torque value is smaller than the other torque limit values, it is used as the limit value.

Description of Set Values

Set value	Description
0	Switching by PCL/NCL signal is not allowed. Use the Positive torque limit value and Negative torque limit value.
1	Use the Positive Torque Limit Value 2 when both of the torque limit input (PCL) and Controlword (P_CL) are OFF, and the Positive Torque Limit Value for the other combinations.
	If both the torque limit input (NCL) and Controlword (N_CL) are OFF, the Negative torque limit value 2 is used. In other cases, the Negative torque limit value is used.
2	Use the Positive Torque Limit Value when both of the torque limit input (PCL) and Controlword (P_CL) are OFF, and the Positive Torque Limit Value 2 for the other combinations.
	If both the torque limit input (NCL) and Controlword (N_CL) are OFF, the Negative torque limit value is used. In other cases, the Negative torque limit value 2 is used.

Subindex 02 hex: Max Torque

• Sets the maximum torque limit value. The function of this object is the same as the Max torque (6072 hex). Set this object when you use a limit value without mapping 6072 hex to a PDO.

Subindex 03 hex: Positive Torque Limit Value

- · Sets the positive torque limit value.
- The function of this object is the same as the **Positive torque limit value** (60E0 hex). Set this object when you use the limit value without mapping 60E0 hex to a PDO.

Subindex 04 hex: Negative Torque Limit Value

- · Sets the negative torque limit value.
- The function of this object is the same as the **Negative torque limit value** (60E1 hex). Set this object when you use the limit value without mapping 60E1 hex to a PDO.

Subindex 05 hex: Positive Torque Limit Value 2

· Sets the positive torque limit value 2.

Subindex 06 hex: Negative Torque Limit Value 2

· Sets the negative torque limit value 2.

Subindex 81 hex: Status

· Gives the torque limit status.

Description of Set Values

Set v	alue	Description			
Bit 0		Positive Torque Limit Applied			
	0	Torque limit not applied			
	1	Torque limit applied			
Bit 1		Negative Torque Limit Applied			
	0	Torque limit not applied			
	1	Torque limit applied			

Homing Objects 9-6

These objects are used for the homing setting.

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Complete access	Modes of operation
3A00		Homing								Possible	
	00	Number of entries			89 hex	-	1 byte (U8)	RO			
	01	Zero Position Range	0 to 2,147,483,647	Command unit	8,000	A	4 bytes (INT32)	RW			csp, csv, cst, pp, pv, hm
	02	Homing Method	0 to 37		0	E	1 byte (INT8)	RW			hm
	03	Speed During Search for Switch	1 to 2,147,483,647	Command unit/s	5,000	A	4 bytes (U32)	RW			hm
	04	Speed During Search for Zero	1 to 2,147,483,647	Command unit/s	5,000	Α	4 bytes (U32)	RW			hm
	05	Homing Acceleration	1 to 2,147,483,647	Command unit/s ²	1,000,000	Α	4 bytes (U32)	RW			hm
	06	Home Offset	-2,147,483,648 to 2,147,483,647	Command unit	0	R	4 bytes (INT32)	RW			csp, csv, cst, pp, pv, hm
	81	Homing Sta- tus				1	4 bytes (INT32)	RO			hm
	82	Homing Method Mon- itor					4 bytes (INT32)	RO			hm
	83	1st Sup- ported Hom- ing Method			8		2 bytes (INT16)	RO			hm
	84	2nd Sup- ported Hom- ing Method			12		2 bytes (INT16)	RO			hm
	85	3rd Sup- ported Hom- ing Method			19		2 bytes (INT16)	RO			hm
,	86	4th Sup- ported Hom- ing Method			20		2 bytes (INT16)	RO			hm
	87	5th Sup- ported Hom- ing Method			33		2 bytes (INT16)	RO			hm
	88	6th Sup- ported Hom- ing Method			34		2 bytes (INT16)	RO			hm
	89	7th Sup- ported Hom- ing Method			37		2 bytes (INT16)	RO			hm

Subindex 01 hex: Zero Position Range

- Sets the range (absolute value) to be recognized as the home position.
- Any position within the specified range is recognized as the home position.

Subindex 02 hex: Homing Method

- · Selects the homing method in the Homing mode (hm).
- · Mirror object of 6098 hex

Description of Set Values

Set value	Description						
0	Not specified						
8	Homing by Home Proximity Input and home signal (positive operation start)						
12	Homing by Home Proximity Input and home signal (negative operation start)						
19	Homing without home signal (positive operation start)						
20	Homing without home signal (negative operation start)						
33	Homing with home signal (negative operation start)						
34	Homing with home signal (positive operation start)						
37	Present home preset						

Subindex 03 hex: Speed During Search for Switch

- Sets the operation speed to be used until the Home Proximity Input signal is detected.
- · Mirror object of 6099-01 hex

Subindex 04 hex: Speed During Search for Zero

- Sets the operation speed to be used until the home signal is detected.
- · Mirror object of 6099-02 hex

Subindex 05 hex: Homing Acceleration

- · Sets the acceleration and deceleration speed to be used during homing.
- · Mirror object of 609A hex

Subindex 06 hex: Home Offset

- Sets the offset value from the home of the absolute encoder to the zero position of the Position actual value.
- · Mirror object of 607C hex

Subindex 81 hex: Homing Status

· Gives the homing status.

Description of Set Values

Set v	/alue	Description
Bit 0		During Homing
	0	Interrupted or not started
	1	During Homing
Bit 1		Homing Completion
	0	Not completed
	1	Completed
Bit 2		Target Position Reached
	0	Not reached
	1	Reached
Bit 3		Homing Error
	0	No error
	1	Occurred

Subindex 82 hex: Homing Method Monitor

· Gives the status of the present homing method.

Description of Set Values

Set value	Description						
0	Not specified						
8	Homing by Home Proximity Input and home signal (positive operation start)						
12	Homing by Home Proximity Input and home signal (negative operation start)						
19	Homing without home signal (positive operation start)						
20	Homing without home signal (negative operation start)						
33	Homing with home signal (negative operation start)						
34	Homing with home signal (positive operation start)						
37	Present home preset						

Subindex 83 hex: 1st Supported Homing Method

- Gives the number of the supported homing method.
- Mirror object of 60E3-01 hex

Subindex 84 hex: 2nd Supported Homing Method

- · Gives the number of the supported homing method.
- · Mirror object of 60E3-02 hex

Subindex 85 hex: 3rd Supported Homing Method

- · Gives the number of the supported homing method.
- · Mirror object of 60E3-03 hex

Subindex 86 hex: 4th Supported Homing Method

- · Gives the number of the supported homing method.
- Mirror object of 60E3-04 hex

Subindex 87 hex: 5th Supported Homing Method

- · Gives the number of the supported homing method.
- Mirror object of 60E3-05 hex

Subindex 88 hex: 6th Supported Homing Method

- Gives the number of the supported homing method.
- Mirror object of 60E3-06 hex

Subindex 89 hex: 7th Supported Homing Method

- · Gives the number of the supported homing method.
- Mirror object of 60E3-07 hex

Applied Function Objects

This section explains the objects related to the applied functions.

3B10 hex: Drive Prohibition 9-7-1

Sets the drive prohibition function. Refer to 7-3 Drive Prohibition Functions on page 7-15 for details.

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Complete access	Modes of operation
3B10		Drive Prohibition								Possible	
	00	Number of entries			02 hex		1 byte (U8)	RO			
	01	Enable	0 to 1		0	E	4 bytes (INT32)	RW			
	02	Stop Selection	2 or 4		2	Е	4 bytes (INT32)	RW			

Subindex 01 hex: Enable

· Selects whether to enable or disable the drive prohibition function.

Description of Set Values

Set value	Description
0	Drive prohibition disabled
1	Drive prohibition enabled

Subindex 02 hex: Stop Selection

- Selects the operation when Positive Drive Prohibition or Negative Drive Prohibition is enabled.
- Stop means the state in which the motor speed is 30 r/min or lower.

Set value	Description
2	Deceleration method: Deceleration stop (The deceleration stop torque is used.)
	State after stopping: Lock at the stop position
	PDS state: Operation enabled
	Following error state: Clear at the start of deceleration and at the stop. Hold after stopping.
4*1	Deceleration method: Stop according to the setting of Fault reaction option code
	State after stopping: Stop according to the setting of Fault reaction option code
	PDS state: Fault
	Following error state: Stop according to the setting of Fault reaction option code

^{*1.} A Drive Prohibition Detected (Error No. 38.01) is generated.

9-7-2 3B11 hex: Software Position Limit

Sets the software position limit function.

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Complete access	Modes of operation
3B11		Software Position Limit								Possible	
	00	Number of entries			81 hex		1 byte (U8)	RO			
	01	Enable Selection	0 to 3		0	E	4 bytes (INT32)	RW			
	02	Stop Selection	2 or 4		2	Е	4 bytes (INT32)	RW			
	03	Min Position Limit	-2,147,483,648 to 2,147,483,647	Com- mand unit	-50,000	E	4 bytes (INT32)	RW			csp, csv, cst, pp, pv, hm
	04	Max Position Limit	-2,147,483,648 to 2,147,483,647	Com- mand unit	50,000	E	4 bytes (INT32)	RW			csp, csv, cst, pp, pv, hm
	81	Status					4 bytes (INT32)	RO			

Subindex 01 hex: Enable Selection

- Selects whether to enable or disable the software position limit function.
- You can select whether to enable or disable the software position limit function in the positive and negative direction respectively.

Set value	Description
0	Positive: Disabled, Negative: Disabled
1	Positive: Disabled, Negative: Enabled
2	Positive: Enabled, Negative: Disabled
3	Positive: Enabled, Negative: Enabled

Subindex 02 hex: Stop Selection

• Selects the operation when the software position limit is enabled.

Description of Set Values

Set value	Description							
2	Deceleration method: Deceleration stop (The deceleration stop torque is used.)							
	State after stopping: Lock at the stop position							
	PDS state: Operation enabled							
	Following error state: Clear at the start of deceleration and at the stop. Hold after stopping.							
4*1	Deceleration method: Stop according to the setting of Fault reaction option code							
	State after stopping: Stop according to the setting of Fault reaction option code							
	PDS state: Fault							
	Following error state: Stop according to the setting of Fault reaction option code							

^{*1.} A Software Limit Exceeded (Error No. 34.00) is generated.

Subindex 03 hex: Min Position Limit

- Sets the negative limit value for the Position actual value (6064 hex).
- Mirror object of 607D-01 hex

Subindex 04 hex: Max Position Limit

- Sets the positive limit value for the Position actual value (6064 hex).
- · Mirror object of 607D-02 hex

Subindex 81 hex: Status

• Gives the status of the software position limit function and the position.

Set v	/alue	Description
Bit 0		Software Position Limit in the positive direction
	0	Disabled
	1	Enabled
Bit 1	•	Software Position Limit in the negative direction
	0	Disabled
	1	Enabled
Bit 2		Positive Software Limit (PSOT)
	0	Within limit value
	1	Outside limit value
Bit 3		Negative Software Limit (NSOT)
	0	Within limit value
	1	Outside limit value

9-7-3 3B20 hex: Stop Selection

Sets the operation during stop.

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Complete access	Modes of operation
3B20		Stop Selection								Possible	
	00	Number of entries			04 hex		1 byte (U8)	RO			
	01	Shutdown Option Code	-7 to 0		-5	С	2 bytes (INT16)	RW			
	02	Disable Opera- tion Option Code	-6 to 0		-4	С	2 bytes (INT16)	RW			
	03	Halt Option Code	1 to 3		1	С	2 bytes (INT16)	RW			pp, pv, hm
	04	Fault Reaction Option Code	-7 to 0		-4	С	2 bytes (INT16)	RW	-		

Subindex 01 hex: Shutdown Option Code

- Selects the operation for the time when the PDS state machine is Shutdown.
- When the running motor decelerates and its speed reaches 30 r/min or lower, the operation changes from the deceleration operation to the operation after stopping.
- The following error is cleared for all set values.
- · Mirror object of 605B hex

Set value	D	eceleration operation	Operation after stopping
-7	Operation A ^{*1}	Deceleration stop (The deceleration stop torque is used.)	Free
	Operation B ^{*1}	Free-run	
-6	Operation A ^{*1}	Deceleration stop (The deceleration stop torque is used.)	Free
	Operation B*1	Dynamic brake operation	
-5	Operation A*1	Deceleration stop (The deceleration stop torque is used.)	Dynamic brake operation
	Operation B*1	Free-run	
-4	Operation A*1	Deceleration stop (The deceleration stop torque is used.)	Dynamic brake operation
	Operation B*1	Dynamic brake operation	
-3	Dynamic bra	ke operation	Free
-2	Free-run		Dynamic brake operation
-1	Dynamic bra	ke operation	Dynamic brake operation
0	Free-run		Free

^{*1.} The Servomotor stops according to the setting of Operation B while in an STO status or when the P-N Voltage drops to the specified value or lower. In other cases, the Servomotor decelerates to stop according to the setting of Operation A.

Precautions for Correct Use

When the error is cleared, a process which makes the command position follow the present position comes into effect. To operate in Cyclic synchronous position mode (csp) after the Servo turns ON, reset the command coordinates in the host controller and then execute the operation. The Servomotor may move suddenly.

Subindex 02 hex: Disable Operation Option Code

- Selects the operation for the time when the PDS state machine is Disable operation.
- When the running motor decelerates and its speed reaches 30 r/min or lower, the operation changes from the deceleration operation to the operation after stopping.
- · The following error is cleared for all set values.
- · Mirror object of 605C hex

Description of Set Values

Set value	Deceleration operation	Operation after stopping
-6	Deceleration stop (The deceleration stop	Free
-4	torque is used.)	Dynamic brake operation
-3	Dynamic brake operation	Free
-2	Free-run	Dynamic brake operation
-1	Dynamic brake operation	Dynamic brake operation
0	Free-run	Free

Precautions for Correct Use

When the error is cleared, a process which makes the internal command position follow the actual position comes into effect. To execute commands that perform feeding for interpolation after the Servo turns ON, reset the command coordinates in the host controller and then execute the operation. The Servomotor may move suddenly.

Subindex 03 hex: Halt Option Code

- Selects the stop method when bit 8 (Halt) in Controlword is set to 1, under the condition that the Modes of operation is set to the Profile position mode (pp), Profile velocity mode (pv), or Homing mode (hm).
- When the running motor decelerates and its speed reaches 30 r/min or lower, the operation changes from the deceleration operation to the operation after stopping.
- The following error is cleared for all set values after the Servomotor stops.
- Mirror object of 605D hex

Set value	Deceleration operation	Operation after stopping the deceleration operation
1	Deceleration stop at a speed which is used in the selected operation mode	pp, hm: Internal position command is zero
	pp, pv: Profile deceleration	pv: Internal velocity command
	hm: Homing acceleration	is zero
2	Not supported	
3	Deceleration stop (The deceleration stop torque is used.)	pp, hm: Internal position command is zero
		pv: Internal velocity command is zero

Subindex 04 hex: Fault Reaction Option Code

- Selects the operation for the time when an error occurred in the Servo Drive (PDS state = Fault reaction active).
- When the running motor decelerates and its speed reaches 30 r/min or lower, the operation changes from the deceleration operation to the operation after stopping.
- · The following error is cleared for all set values.
- Mirror object of 605E hex

Description of Set Values

Set value		Deceleration operation	Operation after stopping		
-7	Operation A ^{*1}	Deceleration stop (The deceleration stop torque is used.)	Free		
	Operation B ^{*1}	Free-run			
-6	Operation A ^{*1}	Deceleration stop (The deceleration stop torque is used.)	Free		
	Operation B*1	Dynamic brake operation			
-5	Operation A*1	Deceleration stop (The deceleration stop torque is used.)	Dynamic brake operation		
	Operation B*1	Free-run			
-4	Operation A*1	Deceleration stop (The deceleration stop torque is used.)	Dynamic brake operation		
	Operation B*1	Dynamic brake operation			
-3	Dynamic bral	ke operation	Free		
-2	Free-run		Dynamic brake operation		
-1	Dynamic bral	ke operation	Dynamic brake operation		
0	Free-run		Free		

^{*1.} Operation A and B indicate whether or not to perform the deceleration stop when an error occurs. If an error that causes the deceleration stop occurs, the deceleration stop is performed according to the setting of Operation A. If an error that does not cause the deceleration stop occurs, the dynamic brake operation or free-run is performed according to the setting of Operation B. For details on errors, refer to 12-3 Errors on page 12-10.

Precautions for Correct Use

When the error is cleared, a process which makes the command position follow the present position comes into effect. To operate in Cyclic synchronous position mode (csp) after the Servo turns ON, reset the command coordinates in the host controller and then execute the operation. The Servomotor may move suddenly.

9-7-4 3B21 hex: Deceleration Stop

Sets the operation during deceleration stop.

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Complete access	Modes of operation
3B21		Deceleration Stop							-	Possible	
	00	Number of entries			01 hex		1 byte (U8)	RO			
	01	Torque	1 to 5,000	0.1%	5,000	E	4 bytes (INT32)	RW			

Subindex 01 hex: Torque

- · Sets the torque for deceleration stop.
- Sets the value in units of 0.1% of the rated voltage (100%).
- The set value is used for the following deceleration stop methods.
 - a) When the drive prohibition is enabled and deceleration is performed with **Drive Prohibition Stop Selection** (3B10-02 hex) set to 2
 - b) When deceleration is performed with **Disable Operation Option Code** (3B20-02 hex) set to -6 or -4
 - c) When deceleration is performed with **Shutdown Option Code** (3B20-01 hex) set to -7 to -4
 - d) When deceleration is performed with Halt Option Code (3B20-03 hex) set to 3
 - e) When deceleration is performed with Fault Reaction Option Code (3B20-04 hex) set to -7 to -4
 - f) When deceleration is performed with **Software Position Limit Stop Selection** (3B11-02 hex) set to 2

9-7-5 3B30 hex: Touch Probe 1

Sets the Latch Function 1 (Touch Probe 1). Refer to 7-11 Touch Probe Function (Latch Function) on page 7-39 for details.

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Complete access	Modes of operation
3B30		Touch Probe 1								Possible	
	00	Number of entries			84 hex		1 byte (U8)	RO			
	01	Touch Probe 1 Source	1 to 6		1	Α	2 bytes (INT16)	RW			
	81	Status					4 bytes (INT32)	RO			
	83	Positive Edge Time Stamp		ns			8 bytes (U64)	RO	TxPDO		
	84	Touch Probe 1 Positive Edge		Com- mand unit			4 bytes (INT32)	RO			
	F1	Setting	00000000 to FFFFFFF hex		0	A	4 bytes (INT32)	W			

Subindex 01 hex: Touch Probe 1 Source

- Selects the trigger to be used for the Latch Function 1.
- Mirror object of 60D0-01 hex

Description of Set Values

Set value	Description
1	External Latch Input 1 (EXT1)
2	External Latch Input 2 (EXT2)
6	Encoder Phase Z

Subindex 81 hex: Status

• Gives the status of the Latch Function 1.

Description of Set Values

Set v	/alue	Description				
Bit 0		Enable or disable Latch Function 1				
	0	0 Disabled				
	1	Enabled				
Bit 1	Bit 1 With or without Latch 1 positive data					
	0	Without latch data				
	1	With latch data				

Subindex 83 hex: Positive Edge Time Stamp

• Gives the time which is latched by the Latch Function 1 (Touch Probe 1).

Subindex 84 hex: Touch Probe 1 Positive Edge

- Gives the position which is latched on the positive edge by the Latch Function 1 (Touch Probe 1).
- · Mirror object of 60BA hex

Subindex F1 hex: Setting

• Sets the Latch Function 1.

Set v	/alue	Description			
Bit 0		Enable or disable Latch Function 1			
	0	Disabled			
	1	Enabled			
Bit 1		Latch 1 operation			
	0	Latch on the first trigger only.			
	1	Latch continuously on every trigger input			
Bit 2 an	d 3	Latch 1 trigger input signal switch			
	00	EXT1			
	01	Phase Z			
	10	Follow the setting in the Touch probe source.			
	11	Reserved			
Bit 4		Latch 1 trigger operation on the positive edge			
	0	Latch is disabled			
	1	Latch is enabled			

9-7-6 3B31 hex: Touch Probe 2

Sets the Latch Function 2 (Touch Probe 2). Refer to 7-11 Touch Probe Function (Latch Function) on page 7-39 for details.

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Complete access	Modes of operation
3B31		Touch Probe 2								Possible	
	00	Number of entries			F1 hex		1 byte (U8)	RO			
	01	Touch Probe 2 Source	1 to 6		2	А	2 bytes (INT16)	RW			
	81	Status					4 bytes (INT32)	RO			
	83	Positive Edge Time Stamp		ns			8 bytes (U64)	RO	TxPDO		
	84	Touch Probe 2 Positive Edge		Com- mand unit			4 bytes (INT32)	RO			
	F1	Setting	0000 0000 to FFFFFFF hex		0	A	4 bytes (INT32)	W			

Subindex 01 hex: Touch Probe 2 Source

- Selects the trigger to be used for the Latch Function 2.
- · Mirror object of 60D0-02 hex

Description of Set Values

Set value	Description
1	External Latch Input 1 (EXT1)
2	External Latch Input 2 (EXT2)
6	Encoder Phase Z

Subindex 81 hex: Status

· Gives the status of the Latch Function 2.

Description of Set Values

Set v	/alue	Description
Bit 8		Enable or disable Latch Function 2
	0	Disabled
	1	Enabled
Bit 9 With or without Latch 2 positive data		With or without Latch 2 positive data
	0	Without latch data
	1	With latch data

Subindex 83 hex: Positive Edge Time Stamp

• Gives the time which is latched by the Latch Function 2 (Touch Probe 2).

Subindex 84 hex: Touch Probe 2 Positive Edge

- Gives the position which is latched on the positive edge by the Latch Function 2 (Touch Probe 2).
- · Mirror object of 60BC hex

Subindex F1 hex: Setting

· Sets the Latch Function 2.

Description of Set Values

Set	value	Description				
Bit 8		Enable or disable Latch Function 2				
	0	Disabled				
	1	Enabled				
Bit 9	•	Latch 2 operation				
	0	Latch on the first trigger only.				
	1 Latch continuously on every trigger input					
Bit 10 ar	nd 11	Latch 2 trigger input signal switch				
	00	EXT2				
	01	Phase Z				
	10	Follow the setting in the Touch probe source.				
11 Reserved						
Bit 12 Latch 2 trigger operation on the positive edge		Latch 2 trigger operation on the positive edge				
	0	Latch is disabled				
	1 Latch is enabled					

9-7-7 3B40 hex: Zone Notification 1

Sets the Zone Notification 1.

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Complete access	Modes of opera- tion
3B40		Zone Notification 1								Possible	
	00	Number of entries			81 hex		1 byte (U8)	RO			
	01	Lower Limit	-2,147,483,648 to 2,147,483,647	Com- mand unit	0	A	4 bytes (INT32)	RW			
	02	Upper Limit	-2,147,483,648 to 2,147,483,647	Com- mand unit	0	A	4 bytes (INT32)	RW			
	81	Status					4 bytes (INT32)	RO			

Subindex 01 hex: Lower Limit

• Sets the lower limit range of Zone Notification.

Subindex 02 hex: Upper Limit

• Sets the upper limit range of Zone Notification.

Subindex 81 hex: Status

· Gives the status of Zone Notification 1.

Description of Set Values

Set v	/alue	Description
Bit 0		Range of Zone Notification 1
	0	Outside the range
	1	Within the range
Bit 1		Enable or disable the function
	0	Disabled (upper limit less than or equal to lower limit)
	1	Enabled (upper limit greater than lower limit)

3B41 hex: Zone Notification 2 9-7-8

Sets the Zone Notification 2.

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Complete access	Modes of oper- ation
3B41		Zone Notification 2								Possible	
	00	Number of entries			81 hex		1 byte (U8)	RO			
	01	Lower Limit	-2,147,483,648 to 2,147,483,647	Com- mand unit	0	Α	4 bytes (INT32)	RW			
	02	Upper Limit	-2,147,483,648 to 2,147,483,647	Com- mand unit	0	A	4 bytes (INT32)	RW			
	81	Status					4 bytes (INT32)	RO			

Subindex 01 hex: Lower Limit

· Sets the lower limit range of Zone Notification.

Subindex 02 hex: Upper Limit

• Sets the upper limit range of Zone Notification.

Subindex 81 hex: Status

· Gives the status of Zone Notification 2.

Set v	/alue	Description
Bit 0		Range of Zone Notification 2
	0	Outside the range
	1	Within the range
Bit 1		Enable or disable the function
	0	Disabled (upper limit less than or equal to lower limit)
	1	Enabled (upper limit greater than lower limit)

9-7-9 3B50 hex: Position Detection Function

Sets the Position Detection Function.

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Complete access	Modes of oper- ation
3B50		Position Detection Function								Possible	
	00	Number of entries			05 hex		1 byte (U8)	RO			
	05	Following Error Window	0 to 4,294,967,295	Com- mand unit	84,000,000	A	4 bytes (U32)	RW			csp, pp, hm

Subindex 05 hex: Following Error Window

- · Sets the threshold for a following error.
- When the following error is more than or equal to this set value, an Excessive Position Deviation Error (Error No. 24.00) is detected.
- · Mirror object of 6065 hex

Description of Set Values

Set value	Description
0 to 2,147,483,647	Enabled at the value set in the Following error window
2,147,483,648 to	Enabled at 2,147,483,647 hex as the value set in the Following error window
4,294,967,294	
4,294,967,295	Excessive position deviation detection disabled

9-7-10 3B51 hex: Positioning Completion Notification

Sets the condition of the Positioning Completion Output (INP1).

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Complete	Modes of oper- ation
3B51		Positioning Completion Notification								Possible	
	00	Number of entries			81 hex		1 byte (U8)	RO			
	01	Position Win- dow	1 to 2,147,483,647	Com- mand unit	8,000	A	4 bytes (U32)	RW			csp, pp, hm
	81	Status					4 bytes (INT32)	RO	1		csp, pp, hm

Subindex 01 hex: Position Window

- When the following error is less than or equal to the set value of this object, the Positioning Completion Output 1 (INP1) turns ON.
- This setting is also used as the threshold for detecting Target reached flag in the EtherCAT communications status.
- Mirror object of 6067 hex

Subindex 81 hex: Status

• Gives the status of Positioning Completion 1.

Description of Set Values

Set value	Description
0	Not completed
1	Completed

9-7-11 3B52 hex: Positioning Completion Notification 2

Sets the condition of the Positioning Completion Output 2 (INP2).

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Complete access	Modes of oper- ation
3B52		Positioning Completion Notification 2								Possible	
	00	Number of entries			81 hex		1 byte (U8)	RO			
	01	Position Window	1 to 2,147,483,647	Com- mand unit	8,000	A	4 bytes (INT32)	RW			csp, pp, hm
	02	Notification Con- dition	0 to 1		1	Α	4 bytes (INT32)	RW			csp, pp, hm
	81	Status				-	4 bytes (INT32)	RO	-		csp, pp, hm

Subindex 01 hex: Position Window

• Sets the range (following error) to determine that positioning is completed.

Subindex 02 hex: Notification Condition

• Sets the judgment condition to output the Positioning Completion Output 2 (INP2).

Set value	Description
0	When the following error is less than or equal to the value set in the Position Window, Positioning
	Completion Output is turned ON.
1	When there is no position command and the following error is less than or equal to the Position Win-
	dow, Positioning Completion Output is turned ON.

Subindex 81 hex: Status

· Gives the status of Positioning Completion 2.

Description of Set Values

Set value	Description
0	Not completed
1	Completed

9-7-12 3B60 hex: Speed Detection Function

Sets the Speed Detection Function.

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Complete access	Modes of opera- tion
3B60		Speed Detection Function								Possible	
	00	Number of entries			81 hex		1 byte (U8)	RO			
	01	Velocity Attain- ment Detection Level	10 to 20,000	r/min	1,000	A	4 bytes (INT32)	RW			csp, csv, cst, pp, pv, hm
	02	Zero Speed Detection Level	10 to 20,000	r/min	50	A	4 bytes (INT32)	RW			csp, csv, cst, pp, pv, hm
	03	Velocity Confor- mity Detection Range	10 to 20,000	r/min	50	A	4 bytes (INT32)	RW			csp, csv, cst, pp, pv, hm
	04	Excessive Speed Detection Level	-2,147,483,648 to 2,147,483,647	r/min	0	A	4 bytes (INT32)	RW			csp, csv, cst, pp, pv, hm
	05	Excessive Velocity Deviation Detection Level	0 to 20,000	r/min	0	A	4 bytes (INT32)	RW			csp, pp, hm
	81	Status					4 bytes (INT32)	RO			csp, csv, cst, pp, pv, hm

Subindex 01 hex: Velocity Attainment Detection Level

• Sets the velocity to be detected by the velocity attainment detection function which detects that the motor velocity reaches any velocity.

Subindex 02 hex: Zero Speed Detection Level

• Sets the rotation speed [r/min] at which the motor speed can be regarded as 0 (stop).

Subindex 03 hex: Velocity Conformity Detection Range

• Sets the range (deviation) in which the motor velocity can be regarded as conformed to the command velocity.

Subindex 04 hex: Excessive Speed Detection Level

- · Sets the excessive speed detection level. When 0 is set, the excessive speed is detected at 1.2 times as high as the maximum speed of the motor.
- When the excessive speed is detected, an Excessive Speed Error (Error No. 26.00) occurs.

Subindex 05 hex: Excessive Velocity Deviation Detection Level

- · Sets the threshold to detect the excessive velocity deviation.
- · When the velocity deviation reaches the set value or more, an Excessive Speed Deviation Error (Error No. 24.01) occurs.

Description of Set Values

Set value	Description
0	Disabled
Others	Threshold for Excessive Velocity Deviation Detection Level

Subindex 81 hex: Status

- · Gives the status of each detection function.
- The bit value 1 represents detected, and 0 represents not detected.

Bit Descriptions

Bit	Description
0	Velocity Attainment Detection
1	Zero Speed Detection
2	Velocity Conformity Detection
3	Excessive Speed Detection
4	Excessive Velocity Deviation Detection

9-7-13 3B70 hex: Vibration Detection

Sets the vibration detection function.

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Complete access	Modes of operation
3B70		Vibration Detection								Possible	
	00	Number of entries			01 hex		1 byte (U8)	RO			
	01	Detection Level	0 to 500	%	500	Α	4 bytes (INT32)	RW			

Subindex 01 hex: Detection Level

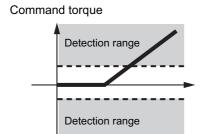
- Sets the vibration detection level.
- · If torque vibration more than or equal to this set value is detected, the Motor Vibration Warning (Error No. A6.00) is output.

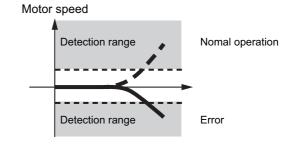
9-7-14 3B71 hex: Runaway Detection

Sets the runaway detection function.

This object is available for the unit version 1.1 or later.

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Complete access	Modes of operation
3B71		Runaway Detection								Possible	
	00	Number of entries			01 hex		1 byte (U8)	RO			
	01	Enable	0 to 1		1	R	4 bytes (INT32)	RW			


Subindex 01 hex: Enable


· Selects whether to enable or disable the runaway detection function.

Description of Set Values

Set value	Description
0	Disabled
1	Enabled

- The default value is 1 (enabled).
- When the runaway detection function detects that the Servomotor rotates in the opposite direction due to incorrect wiring of the motor cable, etc., a Runaway Detected (Error No. 20.00) occurs.
- When the command torque and the motor speed exceed a certain value after Servo ON, this function detects whether it is normal operation or an error. When the acceleration direction of the Servomotor does not conform to the direction of the command torque for a certain period of time, this function determines that the Servomotor rotates in the opposite direction, a Runaway Detected occurs.

Precautions for Correct Use

- If the gain is lower than the default setting, the runaway detection function may not work.
- If 1st Torque Command Filter Cutoff Frequency (3233-02 hex) or 2nd Torque Command Filter - Cutoff Frequency (3234-02 hex) is set to 10 [Hz] or lower, this function may not work.
- When the Servomotor has a near-no load such that the inertia ratio is 50% or lower, if 1st
 Velocity Control Gain Proportional Gain (3323-01 hex) or 2nd Velocity Control Gain Proportional Gain (3324-01 hex) is set to a value higher than 400 [Hz], this function may not
 work
- If the Servomotor rotates in the opposite direction by an external force over the momentary maximum torque of the Servomotor.

9-7-15 3B80 hex: Load Characteristic Estimation

Sets the operation of the load characteristic estimation. Refer to 11-8 Load Characteristic Estimation on page 11-18 for details.

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Complete access	Modes of operation
3B80		Load Character- istic Estimation								Possible	
	00	Number of entries			FF hex		1 byte (U8)	RO			
	01	Inertia Ratio Update Selection	0 to 1		1	А	4 bytes (INT32)	RW			csp, csv, cst, pp, pv, hm
	02	Viscous Friction Compensation Update Selection	0 to 1		0	Α	4 bytes (INT32)	RW			csp, csv, cst, pp, pv, hm
	03	Unbalanced Load Compensa- tion Update Selection	0 to 1		0	Α	4 bytes (INT32)	RW			csp, csv, cst, pp, pv, hm
	04	Dynamic Friction Compensation Update Selection	0 to 1		0	Α	4 bytes (INT32)	RW			csp, csv, cst, pp, pv, hm
	05	Viscous Friction Tuning Coefficient	0 to 200	%	100	Α	4 bytes (INT32)	RW			csp, csv, cst, pp, pv, hm
	06	Estimation Sensitivity Selection	0 to 2		1	Α	4 bytes (INT32)	RW			csp, csv, cst, pp, pv, hm
	FF	Estimation Status					4 bytes (INT32)	RO			

Subindex 01 hex: Inertia Ratio Update Selection

• Selects whether to estimate load characteristics and update a value of the inertia ratio.

Description of Set Values

Set value	Description
0	Use the present set value.
1	Update with the estimation result.

Subindex 02 hex: Viscous Friction Compensation Update Selection

· Selects whether to estimate load characteristics and update a value of the viscous friction coefficient.

Set value	Description
0	Use the present set value.
1	Update with the estimation result.

Subindex 03 hex: Unbalanced Load Compensation Update Selection

Selects whether to estimate load characteristics and update a value of the unbalanced load compensation.

Description of Set Values

Set value	Description
0	Use the present set value.
1	Update with the estimation result.

Subindex 04 hex: Dynamic Friction Compensation Update Selection

Selects whether to estimate load characteristics and update a value of the dynamic friction compensation.

Description of Set Values

Set value	Description
0	Use the present set value.
1	Update with the estimation result.

Subindex 05 hex: Viscous Friction Tuning Coefficient

- Sets the value to adjust the amount of torque compensation which is calculated from the estimated viscous friction value. When the viscous friction coefficient update is enabled, the viscous friction coefficient is updated with a value which is calculated by multiplying the estimated viscous friction by this tuning coefficient.
- Viscous friction coefficient used in torque compensation = Estimated viscous friction coefficient × Tuning coefficient ÷ 100

Subindex 06 hex: Estimation Sensitivity Selection

- Selects the sensitivity to estimate load characteristics from load changes during the load characteristic estimation.
- The higher the set value is, the earlier the load characteristic change is followed, but the estimated variation against the disturbance becomes greater.

Set value	Description
0	Estimate by minutes from load characteristic changes. This setting is used when there is a little change in load characteristics.
1	Estimate by seconds from load characteristic changes. This setting is used when there is a gradual change in load characteristics.
2	Estimate immediately from load characteristic changes. This setting is used when there is a sharp change in load characteristics.

Subindex FF hex: Estimation Status

• Gives the execution status of the load characteristic estimation.

Set value	Description
0	Never Executed
1	Obtaining data
2	During estimation
3	Estimation completed

9-8 Error- and Warning-related Objects

These objects are used for the error and warning setting.

9-8-1 4000 hex: Error Full Code

Gives the error code.

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Complete access	Modes of opera- tion
4000		Error Full Code								Possible	
	00	Number of entries	-	-	82 hex		1 byte (U8)	RO	1	-	
	81	Error Full Code					4 bytes (INT32)	RO	TxPDO		
	82	Error Code					2 bytes (U16)	RO			

Subindex 81 hex: Error Full Code

- · Gives the error number of an error or warning which occurs in the Servo Drive.
- For example, in the case of Overload Warning (Error No. A0.00), a value of 0x0000A000 hex is given.

Subindex 82 hex: Error Code

- Gives the code of the latest existing error or warning which exists in the Servo Drive. When more than one error or warning occurs at the same time, the highest-priority one is given.
- The given error is from the manufacturer specific area FF00 to FFFF hex.
- The lower word of FF00 to FFFF hex gives the main code of the error.
- Mirror object of 603F hex

4020 hex: Warning Customization 9-8-2

Sets the warning detection function.

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Complete access	Modes of oper- ation
4020		Warning Custom- ization								Possible	
	00	Number of entries			07 hex		1 byte (U8)	RO			
	01	Warning Mask 1 Selection	0 to FFFFFFF hex		0 hex	R	4 bytes (INT32)	RW			
	03	Warning Mask 3 Selection	0 to FFFFFFF hex		0 hex	R	4 bytes (INT32)	RW			
	04	Warning Hold Selection	0 to 7 hex		0 hex	R	4 bytes (INT32)	RW			
	05	Warning Level Change 1 Selec- tion	0 to FFFFFFF hex		0 hex	R	4 bytes (INT32)	RW			
	07	Warning Level Change 3 Selec- tion	0 to FFFFFFF hex		0 hex	R	4 bytes (INT32)	RW			

Subindex 01 hex: Warning Mask 1 Selection

- · Sets the mask for the warning.
- When a bit is set to 1, the detection of the corresponding warning is disabled.

Bit	Description							
0	Overload Warning							
1	Regeneration Overload Warning							
2	Encoder Communications Warning							
3	Motor Vibration Warning							
4	Capacitor Lifetime Warning							
5	Inrush Current Prevention Relay Lifetime Warning							
7	Brake Interlock Output Relay Lifetime Warning							
9	Lifetime Information Corruption Warning							
10	Encoder Lifetime Warning							
11	Fan Rotation Warning							
12	Absolute Encoder Counter Overflow Warning							

Subindex 03 hex: Warning Mask 3 Selection

- · Sets the mask for the warning.
- When a bit is set to 1, the detection of the corresponding warning is disabled.

Description of Set Values

Bit	Description						
0	Data Setting Warning						
1	Command Warning						
2	EtherCAT Communications Warning						

Subindex 04 hex: Warning Hold Selection

· Selects whether to hold or not the warning state.

Description of Set Values

Set	value	Description							
Bit 0		Warning mask 1 hold selection							
	0	Not hold the warning enabled in Warning Mask 1 Selection. The warning is automatically cleared when the cause of the warning is eliminated. However, the warning is held for at least 1 second.							
	1	Hold the warning enabled in Warning Mask 1 Selection. After the cause of the warning is eliminated, the error reset command must be sent.							
Bit 2		Warning mask 3 hold selection							
	0	Not hold the warning enabled in Warning Mask 3 Selection. The warning is automatically cleared when the cause of the warning is eliminated. However, the warning is held for at least 1 second.							
	1	Hold the warning enabled in Warning Mask 3 Selection. After the cause of the warning is eliminated, the error reset command must be sent.							

Subindex 05 hex: Warning Level Change 1 Selection

- Changes the warning level.
- When a bit is set to 1, the level of the corresponding warning is set as the error.

Bit	Description							
0	Overload Warning							
1	Regeneration Overload Warning							
2	Encoder Communications Warning							
3	Motor Vibration Warning							
4	Capacitor Lifetime Warning							
5	Inrush Current Prevention Relay Lifetime Warning							
7	Brake Interlock Output Relay Lifetime Warning							
9	Lifetime Information Corruption Warning							
10	Encoder Lifetime Warning							
11	Fan Rotation Warning							
12	Absolute Encoder Counter Overflow Warning							

Subindex 07 hex: Warning Level Change 3 Selection

- Changes the warning level.
- When a bit is set to 1, the level of the corresponding warning is set as the error.

Bit	Description						
0	Data Setting Warning						
1	Command Warning						
2	EtherCAT Communications Warning						

9-8-3 4021 hex: Warning Output 1 Setting

Sets the warning to be output by Warning Output 1 (WARN1).

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Complete access	Modes of opera- tion
4021		Warning Output 1 Setting								Possible	
	00	Number of entries			03 hex		1 byte (U8)	RO			
	01	Selection 1	0 to FFFFFFFF hex		0 hex	Α	4 bytes (INT32)	RW			
	03	Selection 3	0 to FFFFFFF hex		0 hex	Α	4 bytes (INT32)	RW			

Subindex 01 hex: Selection 1

- Selects the warning type to be output by Warning Output 1 (WARN1).
- When a bit is set to 1, the output turns ON at the occurrence of the corresponding warning.

Description of Set Values

Bit	Description						
0	Overload Warning						
1	Regeneration Overload Warning						
2	Encoder Communications Warning						
3	Motor Vibration Warning						
4	Capacitor Lifetime Warning						
5	Inrush Current Prevention Relay Lifetime Warning						
7	Brake Interlock Output Relay Lifetime Warning						
9	Lifetime Information Corruption Warning						
10	Encoder Lifetime Warning						
11	Fan Rotation Warning						
12	Absolute Encoder Counter Overflow Warning						

Subindex 03 hex: Selection 3

• Selects the warning type to be output by Warning Output 1 (WARN1).

Bit	Description						
0	Data Setting Warning						
1	Command Warning						
2	EtherCAT Communications Warning						

4022 hex: Warning Output 2 Setting 9-8-4

Sets the warning to be output by Warning Output 2 (WARN2).

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Complete access	Modes of oper- ation
4022		Warning Output 2 Setting								Possible	
	00	Number of entries			03 hex		1 byte (U8)	RO			
	01	Selection 1	0 to FFFFFFFF hex		0 hex	Α	4 bytes (INT32)	RW			
	03	Selection 3	0 to FFFFFFFF hex		0 hex	Α	4 bytes (INT32)	RW			

Subindex 01 hex: Selection 1

- Selects the warning type to be output by Warning Output 2 (WARN2).
- When a bit is set to 1, the output turns ON at the occurrence of the corresponding warning.

Description of Set Values

Bit	Description						
0	Overload Warning						
1	Regeneration Overload Warning						
2	Encoder Communications Warning						
3	Motor Vibration Warning						
4	Capacitor Lifetime Warning						
5	Inrush Current Prevention Relay Lifetime Warning						
7	Brake Interlock Output Relay Lifetime Warning						
9	Lifetime Information Corruption Warning						
10	Encoder Lifetime Warning						
11	Fan Rotation Warning						
12	Absolute Encoder Counter Overflow Warning						

Subindex 03 hex: Selection 3

- Selects the warning type to be output by Warning Output 2 (WARN2).
- When a bit is set to 1, the output turns ON at the occurrence of the corresponding warning.

Bit	Description
0	Data Setting Warning
1	Command Warning
2	EtherCAT Communications Warning

9-8-5 4030 hex: Information Customization

Sets the function for information detection.

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Complete access	Modes of oper- ation
4030		Information Cus- tomization								Possible	
	00	Number of entries			01 hex		1 byte (U8)	RO			
	01	Information Level Change Selec- tion	0 to FFFFFFFF hex		0 hex	R	4 bytes (INT32)	RW			

Subindex 01 hex: Information Level Change Selection

- Sets the level change of information.
- When a bit is set to 1, the level of the corresponding information is set as the error.

Bit	Description
0	STO Detected

9-9 Monitoring-related Objects

These objects are used for the monitoring setting.

9-9-1 4110 hex: Monitor Data via PDO

Sets the object for monitoring. You can monitor any object by mapping the monitor data to a TxPDO.

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Complete access	Modes of opera-tion
4110		Monitor Data via PDO								Possible	
	00	Number of entries			84 hex		1 byte (U8)	RO			
	01 to 04	Target Object 1 to 4	00000000 to FFFFFFF hex		00000000 hex	A	4 bytes (U32)	RW			
	81 to 84	Monitor Data 1 to 4					4 bytes (INT32)	RO	TxPDO		

Subindex 01 to 04 hex: Target Object 1 to 4

- · Sets the object for monitoring.
- Set the index in upper two bytes and the subindex in lower two bytes.

Description of Set Values

Set value	Description
Upper 2 bytes	Index of the target object
Lower 2 bytes	Subindex of the target object

Subindex 81 to 84 hex: Monitor Data 1 to 4

- · Gives the object value set in Target Object.
- The given value is always four bytes. If the size of the set object is less than four bytes, the data size will be extended to four bytes by the sign extension. If the size of the set object is four bytes or more, lower four bytes of the object will be given.

Precautions for Correct Use

Objects whose data type is BOOL, U, or INT can be set in Target Object. Do not set objects whose data type is VS or OS.

9-9-2 4120 hex: EtherCAT Communications Error Count

Counts the number of EtherCAT communication errors and clears the error count value.

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Complete access	Modes of operation
4120		EtherCAT Com- munications Error Count		-					-	Possible	
	00	Number of entries			F1 hex		1 byte (U8)	RO			
	81	Error Count					4 bytes (U32)	RO			
	F1	Error Count Clear	0 to 1		0	Α	4 bytes (INT32)	W			

Subindex 81 hex: Error Count

• Counts the number of EtherCAT communication errors. This object does not count from 7FFFFFF hex.

Subindex F1 hex: Error Count Clear

• Clears the error count value by the writing of 1.

9-9-3 4130 hex: Safety Status Monitor

Monitors the safety function.

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Complete access	Modes of operation
4130		Safety Status Monitor								Possible	
	00	Number of entries			B1 hex		1 byte (U8)	RO			
	81	Safety Status					4 bytes (U32)	RO	TxPDO		
	91	Safety Control- word 1st Byte					1 byte (U8)	RO			
	92	Safety Control- word 2nd Byte					1 byte (U8)	RO			
	A1	Safety Statusword 1st Byte					1 byte (U8)	RO			
	A2	Safety Statusword 2nd Byte					1 byte (U8)	RO			
	B1	FSoE Address					2 bytes (U16)	RO			

Subindex 81 hex: Safety Status

· Gives the status of the safety function.

Description of Set Values

Set v	/alue	Description
Bit 0		STO status
	0	STO is not active
	1	STO is active

Subindex 91 hex: Safety Controlword 1st Byte

- · Gives the command status of the safety function.
- · Mirror object of 6620-01 hex

Description of Set Values

Set v	/alue	Description			
Bit 0		Gives the status of STO command.			
	0 STO activate command issued				
	1 STO activate command not issued				
Bit 7		Gives the status of error reset command.			
	0 Error reset command issued				
	1	Error reset command not issued			

Subindex 92 hex: Safety Controlword 2nd Byte

- · Gives the command status of the safety function.
- Mirror object of 6620-02 hex

Subindex A1 hex: Safety Statusword 1st Byte

- · Gives the status of the safety function.
- · Mirror object of 6621-01 hex

Set v	/alue	Description
Bit 0		Gives the STO status.
	0	Normal status
	1	STO status
Bit 7		Gives the error status of the safety function.
	0	No error
	1	Error detected

Subindex A2 hex: Safety Statusword 2nd Byte

- · Gives the status of the safety function.
- · Mirror object of 6621-02 hex

Description of Set Values

Set v	/alue	Description
Bit 7		Gives the safety connection status
	0	Without safety connection
	1	With safety connection

Subindex B1 hex: FSoE Address

- · Gives the FSoE slave address.
- · Mirror object of F980-01 hex

9-9-4 4131 hex: Safety Command Monitor 1

Monitors the safety command.

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Complete access	Modes of operation
4131		Safety Com- mand Monitor 1								Possible	
	00	Number of entries			93 hex		1 byte (U8)	RO			
	81	FSoE Slave CMD					1 byte (U8)	RO			
	82	FSoE Slave Con- n_ID					2 bytes (U16)	RO			
	83	FSoE Slave CRC_0					2 bytes (U16)	RO			
	91	FSoE Master CMD					1 byte (U8)	RO			
	92	FSoE Master Conn_ID					2 bytes (U16)	RO			
	93	FSoE Master CRC_0					2 bytes (U16)	RO			

Subindex 81 hex: FSoE Slave CMD

- · Gives the command which is sent from the slave.
- Mirror object of E600-01 hex

Subindex 82 hex: FSoE Slave Conn_ID

- Gives the connection ID which is sent from the slave.
- Mirror object of E600-02 hex

Subindex 83 hex: FSoE Slave CRC_0

- · Gives the cyclic redundancy code which is sent from the slave.
- · Mirror object of E600-03 hex

Subindex 91 hex: FSoE Master CMD

- · Gives the command which is sent from the master.
- · Mirror object of E700-01 hex

Subindex 92 hex: FSoE Master Conn_ID

- · Gives the connection ID which is sent from the master.
- Mirror object of E700-02 hex

Subindex 93 hex: FSoE Master CRC_0

- · Gives the cyclic redundancy code which is sent from the master.
- · Mirror object of E700-03 hex

9-9-5 4132 hex: Safety Command Monitor 2

Monitors the safety command.

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Complete access	Modes of operation
4132		Safety Com- mand Monitor 2								Possible	
	00	Number of entries			A0 hex		1 byte (U8)	RO			
	81	Safety Connection Status					1 bit (BOOL)	RO			
	92	Error Acknowl- edge					1 bit (BOOL)	RO			
	A0	STO Command					1 bit (BOOL)	RO			

Subindex 81 hex: Safety Connection Status

- This flag indicates that the safety connection is executed. When the value is 1, the safety connection is in execution.
- It is used for the input to the Activate terminal of Safety FB or connection/disconnection applications of the safety equipment.
- · Mirror object of E601-01 hex

Subindex 92 hex: Error Acknowledge

- · Gives an error of the safety function.
- Mirror object of 6632-00 hex

Description of Set Values

Set value	Description
0	No error
1	Error detected (STO internal circuit error detection)

Subindex A0 hex: STO Command

- · Gives the STO status.
- Mirror object of 6640-00 hex

Description of Set Values

Set value	Description
0	Normal status
1	STO status

9-9-6 4140 hex: Lifetime Information

Gives the lifetime information of the Servo Drive. When the set value of each lifetime information is FFFFFFF hex, it means that data is corrupted.

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Complete access	Modes of operation
4140		Lifetime Infor- mation								Possible	
	00	Number of entries			FF hex	1	1 byte (U8)	RO			
	81	Total Power ON Time		min	0	-	4 bytes (INT32)	RO			
	82	Total Capacitor Operating Time		min	0		4 bytes (INT32)	RO			
	83	Capacitor Operating Time Ratio		0.1%	0		4 bytes (INT32)	RO			
	84	Inrush Current Prevention Relay ON Count		Time	0		4 bytes (INT32)	RO			
	85	Dynamic Brake Relay ON Count		Time	0		4 bytes (INT32)	RO			
	86	Motor Operat- ing Time		min	0		4 bytes (INT32)	RO			
	87	Brake Interlock Output Relay ON Count		Time	0		4 bytes (INT32)	RO			
	F1	Motor Operat- ing Time Clear	0000 0000 to FFFFFFF hex		0	A	4 bytes (INT32)	W			
	F2	Clear	0000 0000 to FFFFFFF hex		0	A	4 bytes (INT32)	W			
	FF	Clear Status			0		4 bytes (INT32)	RO			

Subindex 81 hex: Total Power ON Time

- Gives the total power ON time of the Servo Drive (control power supply).
- · The data is saved in the non-volatile memory approximately every hour.

Subindex 82 hex: Total Capacitor Operating Time

Gives the total operating time of the capacitor.

Subindex 83 hex: Capacitor Operating Time Ratio

- · Gives the ratio of the present operating time to the lifetime of the capacitor.
- When the ratio is 100%, the lifetime reaches the end.

Subindex 84 hex: Inrush Current Prevention Relay ON Count

- · Gives the number of times when the inrush current prevention relay is changed to ON.
- · The data is saved in the non-volatile memory approximately every hour.

Subindex 85 hex: Dynamic Brake Relay ON Count

- Gives the number of times the command was sent to change the dynamic brake relay contact to ON. This is not the number of deceleration operations performed with the dynamic brake.
- The data is saved in the non-volatile memory approximately every hour.

Subindex 86 hex: Motor Operating Time

- Gives the total time when the motor is not in a stop state.
- · The data is saved in the non-volatile memory approximately every hour.

Subindex 87 hex: Brake Interlock Output Relay ON Count

- Gives the number of times when the brake interlock output relay is changed to ON.
- · The data is saved in the non-volatile memory approximately every hour.

Subindex F1 hex: Motor Operating Time Clear

Clears the motor operating time counter. Clear is executed by the writing of 6A646165 hex to this
object.

Subindex F2 hex: Clear

 Clears the lifetime information by the writing of 6A64 6165 hex. Clear is executed only when the Lifetime Information Corruption Warning exists.

Subindex FF hex: Clear Status

· Gives the status of the Motor Operating Time Clear and Lifetime Information Clear.

Description of Set Values

Set v	/alue	Description
Bit 0		Status of Motor Operating Time Clear
	0	Clear is not executed or completed
	1	Clear in execution
Bit 1		Status of Lifetime Information Clear
	0	Clear is not executed or completed
	1	Clear in execution

9-9-7 4150 hex: Overload

Sets the overload detection and gives the load ratio.

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Complete access	Modes of operation
4150		Overload								Possible	
	00	Number of entries			83 hex		1 byte (U8)	RO	-		
	01	Warning Notifica- tion Level	0 to 100	%	85	Α	4 bytes (INT32)	RW			
	81	Load Ratio		%			4 bytes (INT32)	R	TxPDO		
	82	Servo Drive Load Ratio		%			4 bytes (INT32)	R			
	83	Motor Load Ratio		%			4 bytes (INT32)	R			

Subindex 01 hex: Warning Notification Level

 Sets the level to notify the Overload Warning. When the level reaches 100%, an Overload Error occurs.

Subindex 81 hex: Load Ratio

- · Gives the load ratio of Servo Drive or motor, whichever is higher.
- The value of load ratio is the average of the last five seconds.

Subindex 82 hex: Servo Drive Load Ratio

- · Gives the load ratio of the Servo Drive.
- The value of load ratio is the average of the last five seconds.
- · The value of load ratio is the ratio of the current to the rated current

Servo Drive load ratio (%) =
$$\frac{\text{Servo Drive current}}{\text{Servo Drive rated current}} \times 100$$

Subindex 83 hex: Motor Load Ratio

- · Gives the load ratio of the motor.
- The value of load ratio is the average of the last five seconds.
- The value of load ratio is the ratio of the current to the rated current.

Servomotor load ratio (%) =
$$\frac{\text{Servomotor current}}{\text{Servomotor rated current}} \times 100$$

9-10 Display-related Objects

These objects are used for the display setting.

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Complete access	Modes of operation
4210		Display								Possible	
	00	Number of entries			01 hex		1 byte (U8)	RO			
	01	LED Display Selection	0 to 1		0	Α	4 bytes (INT32)	RW			

Subindex 81 hex: LED Display Selection

• Selects data to be displayed on the 7-segment display on the front panel.

Set value	Description
0	PDS state (simple)
1	EtherCAT node address

9-11 Power Device-related Objects

These objects are used for the power device setting.

9-11-1 4310 hex: Regeneration

Sets the regeneration resistor.

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Complete access	Modes of oper- ation
4310		Regeneration								Possible	
	00	Number of entries			81 hex		1 byte (U8)	RO			
	01	External Regeneration Resistor Selection	0 to 1		0	R	4 bytes (INT32)	RW			
	02	External Regeneration Resistance	1 to 2,147,483,647	0.1 Ω	1	R	4 bytes (INT32)	RW			
	03	External Regeneration Allowable Power	1 to 2,147,483,647	W	1	R	4 bytes (INT32)	RW			
	04	External Regeneration Overload Ratio	0 to 100	%	85	R	4 bytes (INT32)	RW			
	81	Regeneration Load Ratio		%		-	4 bytes (INT32)	RO	TxPDO		

Subindex 01 hex: External Regeneration Resistor Selection

· Selects whether to use or not the external regeneration resistor.

Description of Set Values

Set value	Description						
0	Not use the external regeneration resistor						
1	Use the external regeneration resistor						

Subindex 02 hex: External Regeneration Resistance

· Sets the resistance value of the external regeneration resistor in use. It is used for regeneration overload detection.

Subindex 03 hex: External Regeneration Allowable Power

• Sets the power that can be consumed by the external regeneration resistor. It is necessary to set the allowable power. The rated power must not be set.

Subindex 04 hex: External Regeneration Overload Ratio

 Sets the regenerative load ratio to notify an error when regeneration is processed by the external regeneration resistor.

Subindex 81 hex: Regeneration Load Ratio

· Gives the regenerative load ratio.

9-11-2 4320 hex: Main Circuit Power Supply

Sets the main circuit power supply.

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Complete access	Modes of operation
4320		Main Circuit Power Supply								Possible	
	00	Number of entries			82 hex		1 byte (U8)	RO			
	01	Momentary Hold Time	1 to 2,000	ms	15	R	4 bytes (INT32)	RW			
	02	Phase Loss Detection Enable	0 to 1		1	R	4 bytes (INT32)	RW			
	03	Capacitor Dis- charge Enable	0 to 1		1	R	4 bytes (INT32)	RW			
	81	P-N Voltage		V			4 bytes (INT32)	RO			
	82	Servo Drive Tem- perature		°C			4 bytes (INT32)	RO			

Subindex 01 hex: Momentary Hold Time

When the main circuit power supply is cut off for the time or more set in the Momentary Hold Time, it
is recognized as the cutoff of the main circuit power supply and the PDS state transitions to Switch on
disabled.

Precautions for Correct Use

When a single-phase power supply is used, the duration of undervoltage for the main circuit power supply may be several milliseconds longer than the actual interruption time, depending on the timing or phase at which a momentary power interruption occurs. To avoid false detection, set a value which is approximately five milliseconds longer than the interruption time.

Subindex 02 hex: Phase Loss Detection Enable

- Selects whether to enable or disable the phase loss detection function for the 3-phase power supply.
- The model for both single- and/3-phase power supply operates according to the setting.
- This function does not work for the model for the single-phase power supply.

Set value	Description
0	Disabled
1	Enabled

Subindex 03 hex: Capacitor Discharge Enable

- Selects whether to enable or disable the capacitor discharge enable function.
- · When the function is enabled, the electric charge in the capacitor is discharged through the internal or external regeneration resistor by turning the main circuit power supply OFF while the control power supply is ON.

Description of Set Values

Set value	Description
0	Disabled
1	Enabled

Subindex 81 hex: P-N Voltage

· Gives the P-N voltage.

Subindex 82 hex: Servo Drive Temperature

· Gives the internal temperature of the Servo Drive.

9-12 External Device-related Objects

These objects are used for the external device-related setting.

9-12-1 4410 hex: Motor Identity

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Complete access	Modes of oper- ation
4410		Motor Identity								Possible	
	00	Number of entries	-	-	FF hex		1 byte (U8)	RO			
	81	Motor Model					20 bytes (VS)	RO			
	82	Serial Number					16 bytes (VS)	RO			
	83	Last Connected Motor Model					20 bytes (VS)	RO			
	84	Last Connected Serial Number					16 bytes (VS)	RO			
	90	Motor Type					2 bytes (U16)	RO			
	92	Motor Manufacturer					20 bytes (VS)	RO			
	F1	Motor Setup			0	Α	4 bytes (INT32)	W			
	FF	Setup Status					4 bytes (INT32)	RO			

Subindex 81 hex: Motor Model

• Gives the model of the motor which is connected to the Servo Drive.

Subindex 82 hex: Serial Number

• Gives the serial number of the motor which is connected to the Servo Drive.

Subindex 83 hex: Last Connected Motor Model

• Gives the model of the motor which was connected the last time.

Subindex 84 hex: Last Connected Serial Number

• Gives the serial number of the motor which was connected the last time.

Subindex 90 hex: Motor Type

- · Gives the type of connected motor.
- · Mirror object of 6402 hex

Subindex 92 hex: Motor Manufacturer

- · Gives the motor manufacturer name.
- · Mirror object of 6404 hex

Subindex F1 hex: Motor Setup

• The Motor ID Setup is executed by the writing of 7465 736D hex.

Subindex FF hex: Setup Status

· Gives the execution status of Motor Setup.

Description of Set Values

Set value	Description
0	Setup is not executed or completed
1	Setup in execution

9-12-2 4412 hex: Motor Advanced Setting

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Com- plete access	Modes of oper- ation
4412		Motor Advanced Setting								Possible	
	00	Number of entries			81 hex		1 byte (U8)	RO			
	02	Without Motor Operation Selec- tion	0 to 1		1	R	4 bytes (INT32)	RW			
	81	Without Motor Operation Status					4 bytes (INT32)	RO	TxPDO		

Subindex 02 hex: Without Motor Operation Selection

· Selects the mode of without motor operation.

Set value	Description
0	Normal operation
1	Without motor operation

- When a value is set to "1: Without motor operation", the Servo Drive operates as the Servomotor is virtually connected to it. Therefore, the Servo Drive displays present position and present velocity without Encoder Communications Error etc, even if the Servomotor is not actually connected.
- The following table shows the operation in Without motor operation.

Item	Description
Encoder - Operation Selection when Using	Operates as 1 (Use as the incremental encoder).
Absolute Encoder (4510-01 hex)	
Load Inertia	Regards that the load inertia of the value displayed in Iner-
	tia Ratio Display (3001-81 hex) is connected.

Item	Description
Position Detection - Position Actual Value	They are 0 when the power supply is turned ON and follow
(3211-81 hex), Position Detection - Position	command after Servo ON.
Actual Internal Value (3211-82 hex)	
Velocity Detection - Velocity Actual Value	They interlocks with the change of the present position.
(3221-81 hex), Velocity Detection - Present	
Motor Velocity (3221-82 hex)	
Torque Detection - Torque Actual Value	It follows Position/Velocity/Torque command.
(3231-81 hex)	
Encoder Dividing Pulse Output Function	Does not output.
Brake Interlock	Always held.
Dynamic Brake	Always activated.
Main circuit power supply	Always applied.
Encoder - Encoder Temperature (4510-89	It displays -274.
hex)	

Subindex 81 hex: Without Motor Operation Status

• Gives the status of the without motor operation.

Set value	Description
0	Normal operation
1	Without motor operation

9-13 Encoder-related Objects

These objects are used for the encoder setting.

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Complete access	Modes of operation
4510		Encoder								Possible	
	00	Number of entries			FF hex		1 byte (U8)	RO			
	01	Operation Selection when Using Absolute Encoder	0 to 2		2	R	4 bytes (INT32)	RW			
	02	Absolute Encoder Counter Overflow Warn- ing Level	0 to 32,767	rotation	32,000	A	4 bytes (INT32)	RW			
	81	Serial Number					16 bytes (VS)	RO	-		
	82	Resolution per Rotation					4 bytes (INT32)	RO			
	84	One-rotation Data		Encoder unit	1	1	4 bytes (U32)	RO	-		
	85	Multi-rotation Data		rotation		1	4 bytes (INT32)	RO			
	86	Encoder Com- munications Error Count			-		4 bytes (INT32)	RO			
	87	Electric Angle		٥			4 bytes (INT32)	RO			
	88	Mechanical Angle		0	1	1	4 bytes (U32)	RO	I		
	89	Encoder Tem- perature		°C	1	1	4 bytes (INT32)	RO	-		
	F1	Absolute Encoder Setup	0000 0000 to FFFFFFF hex		0	A	4 bytes (U32)	W			
	F2	Encoder Com- munications Error Count Clear	0000 0000 to FFFFFFF hex		0	A	4 bytes (U32)	W			
	FF	Clear Status					4 bytes (U32)	RO			

Subindex 01 hex: Operation Selection when Using Absolute **Encoder**

· Selects the operating method for the absolute encoder.

Set value	Description
0	Use as the absolute encoder
1	Use as the incremental encoder
2	Used as the absolute encoder and ignore the absolute encoder counter overflow.

Subindex 02 hex: Absolute Encoder Counter Overflow Warning Level

- · Sets the level to notify the warning.
- When the Operation Selection when Using Absolute Encoder is set to 0 (use as the absolute encoder), if the absolute value of encoder multi-rotation number exceeds the set value, the Absolute Encoder Counter Overflow Warning is output.

Subindex 81 hex: Serial Number

· Gives the encoder serial number.

Subindex 82 hex: Resolution per Rotation

· Gives the resolution per rotation.

Subindex 84 hex: One-rotation Data

• Gives the one-rotation position of the encoder. When the phase-Z position is 0, if the motor rotates counterclockwise as viewed from the motor load side, the encoder value increases.

Subindex 85 hex: Multi-rotation Data

 Gives the number of encoder rotations. The encoder value increases each time the motor rotates counterclockwise as viewed from the motor load side.

Subindex 86 hex: Encoder Communications Error Count

· Obtains the total number of encoder errors via serial communications.

Subindex 87 hex: Electric Angle

- · Gives the electric angle.
- In the counterclockwise rotation, 0° indicates the position which is the zero cross point (rising) of the phase-U inductive voltage.
- The encoder value increases when the motor rotates counterclockwise, and the display range is from 0 to 359°.

Subindex 88 hex: Mechanical Angle

- · Gives the one-rotation data of the encoder as the mechanical angle.
- The encoder value increases when the motor rotates counterclockwise, and the display range is from 0 to 359°.

Subindex 89 hex: Encoder Temperature

• Gives the internal temperature of the encoder which is mounted on the motor, or the internal temperature of the motor.

Subindex F1 hex: Absolute Encoder Setup

- · Clears the multi-rotation counter of the absolute encoder. Clear is executed by the writing of 6A646165 hex to this object.
- Set the value to this object while the motor stops and it is in Servo OFF state.

Subindex F2 hex: Encoder Communications Error Count Clear

• Clears the Encoder Communications Error Count. Clear is executed by the writing of 1 to this object.

Subindex FF hex: Clear Status

• Gives the status of the multi-rotation counter of the absolute encoder and Encoder Communications Error Count Clear.

Set value		Description					
Bit 0		Status of Absolute Encoder Setup					
0 Clea		Clear is not executed or completed					
	1	Clear in execution					
Bit 1		Status of Encoder Communications Error Count Clear					
	0	Clear is not executed or completed					
	1	Clear in execution					

9-14 I/O-related Objects

These objects are used for input/output.

9-14-1 4600 hex: I/O Monitor

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Complete access	Modes of operation
4600		I/O Monitor								Possible	
	00	Number of entries			81 hex		1 byte (U8)	RO			
	81	Physical I/O					4 bytes (INT32)	RO	TxPDO		

Subindex 81 hex: Physical I/O

- Gives each I/O terminal status of the Servo Drive.
- 0: Low, 1: High

Bit	Signal name	Symbol
0	General Input 1	IN1
1	General Input 2	IN2
2	General Input 3	IN3
3	General Input 4	IN4
4	General Input 5	IN5
5	General Input 6	IN6
6	General Input 7	IN7
7	General Input 8	IN8
14	Safety Input 1	STO1
15	Safety Input 2	STO2
16	Error Output	ERR
17	General Output 1	OUT1
18	General Output 2	OUT2
19	General Output 3	OUT3
30	Brake Interlock Output	BKIR
31	EDM Output	EDM

9-14-2 4601 hex: Function Input

Gives each function input status of the Servo Drive.

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Complete access	Modes of operation
4601		Function Input		I		I			I	Possible	
	00	Number of entries			82 hex		1 byte (U8)	RO			
	81	Monitor Input					4 bytes (INT32)	RO	TxPDO		
	82	Digital inputs					4 bytes (U32)	RO			

Subindex 81 hex: Monitor Input

· Gives the monitor input status.

Description of Set Values

Bit	Signal name	Symbol
0	Monitor Input 1	MON1
1	Monitor Input 2	MON2
2	Monitor Input 3	MON3
3	Monitor Input 4	MON4
4	Monitor Input 5	MON5
5	Monitor Input 6	MON6
6	Monitor Input 7	MON7
7	Monitor Input 8	MON8

Subindex 82 hex: Digital Inputs

- Gives each function I/O status of the Servo Drive.
- · Mirror object of 60FD hex

Bit Descriptions

Bit	Signal name	Symbol	Value	Description
0	Negative Drive Prohibition Input	NOT	0	OFF
			1	ON
1	Positive Drive Prohibition Input	POT	0	OFF
			1	ON
2	Home Proximity Input	DEC	0	OFF
			1	ON
16	Encoder Phase Z Detection	PC	0	Phase-Z signal not detected during communication cycle
			1	Phase-Z signal detected during communication cycle
17	External Latch Input 1	EXT1	0	OFF
			1	ON
18	External Latch Input 2	EXT2	0	OFF
			1	ON

Bit	Signal name	Symbol	Value	Description
20	Monitor Input 1	MON1	0	OFF
			1	ON
21	Monitor Input 2	MON2	0	OFF
			1	ON
22	Monitor Input 3	MON3	0	OFF
			1	ON
23	Positive Torque Limit Input	PCL	0	OFF
			1	ON
24	Negative Torque Limit Input	NCL	0	OFF
			1	ON
25	Error Stop Input	ESTP	0	OFF
			1	ON
26	Brake Interlock Output	BKIR	0	Brake held
			1	Brake released
27	Safety input 1	SF	0	OFF
			1	ON
28	Safety input 2	SF	0	OFF
			1	ON
29	EDM Output	EDM	0	OFF
			1	ON
30	Monitor Input 4	MON4	0	OFF
			1	ON
31	Monitor Input 5	MON5	0	OFF
			1	ON

9-14-3 4602 hex: Function Output

Changes the function output status.

Index (hex)	Subindex (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Com- plete access	Modes of oper- ation
4602		Function Output								Possible	
	00	Number of entries			F1 hex		1 byte (U8)	RO			
	01	Bit Mask	0000 0000 to FFFFFFF hex		0000 0000 hex	A	4 bytes (U32)	RW			
	F1	Physical Out- puts	0000 0000 to FFFFFFF hex		0000 0001 hex ^{*1}	A	4 bytes (U32)	W			

^{*1.} If the unit version is 1.1 or earlier, the default setting is 0000 0000 hex.

Subindex 01 hex: Bit Mask

- · Selects whether to enable or disable the function output.
- Mirror object of 60FE-02 hex

Description of Set Values

Bit	Signal	Symbol	Value	Description
0	NC Contact Brake Interlock Output*1	BKIR_b	0	Output disabled
	·		1	Output enabled
16	Remote Output 1	R-OUT1	0	Output disabled
			1	Output enabled
17	Remote Output 2	R-OUT2	0	Output disabled
			1	Output enabled
18	Remote Output 3	R-OUT3	0	Output disabled
			1	Output enabled
24	Gain Switching	G-SEL	0	Setting disabled
			1	Setting enabled
28	NO Contact Brake Interlock Output*1*2	BKIR_a	0	Output disabled
	·		1	Output enabled

^{*1.} Even when Bit Mask for Brake Interlock Output is 0 (output disabled), the Servo Drive can perform the brake control.

Subindex F1 hex: Physical Outputs

- Changes the function output status by the writing of a value to the corresponding bit.
- · Mirror object of 60FE-01 hex

Bit	Signal	Symbol	Value	Description
0	NC Contact Brake Interlock Output	BKIR_b	0	Brake released
			1	Brake held

^{*2.} This bit is available for the unit version 1.4 or later.

Bit	Signal	Symbol	Value	Description
16	Remote Output 1	R-OUT1	0	OFF
			1	ON
17	Remote Output 2	R-OUT2	0	OFF
			1	ON
18	Remote Output 3	R-OUT3	0	OFF
			1	ON
24	Gain Switching	G-SEL	0	Gain 1
			1	Gain 2
28	NO Contact Brake Interlock Output*1	BKIR_a	0	Brake held
	·		1	Brake released

^{*1.} This bit is available for the unit version 1.4 or later.

9-14-4 4604 hex: Control Input Change Count

Counts the number of changes in control inputs.

Index (hex)	Subindex (hex)	Object name	Setting range	Unit	Default setting	Data attribute	Size	Access	PDO map	Complete access	Modes of oper- ation
4604		Control Input Change Count								Possible	
	00	Number of entries			FF hex		1 byte (U8)	RO			
	81 to 88	General Input 1 to 8					4 bytes (U32)	RO			
	F1	Count Clear	0 to 1			Α	4 bytes (INT32)	W			
	FF	Count Clear Execution Status					4 bytes (INT32)	RO			

Subindex 81 to 88 hex: General Input 1 to 8

• Counts the number of changes in General Input 1 to 8.

Subindex F1 hex: Count Clear

• Clears the Control Input Change Count. Clear is executed by the writing of 1 to this object.

Subindex FF hex: Count Clear Execution Status

• Gives the status of the Control Input Change Count Clear.

Set value	Description
0	Clear completed
1	Clear in execution

9-14-5 4605 hex: Control Output Change Count

Counts the number of changes in control outputs.

Index (hex)	Subindex (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Complete access	Modes of oper- ation
4605		Control Output Change Count								Possible	
	00	Number of entries			FF hex		1 byte (U8)	RO			
	81	Error Output			0		4 bytes (U32)	R			
	82 to 84	General Output 1 to 3			0		4 bytes (U32)	RO			
	F1	Count Clear	0 to 1		0	Α	4 bytes (INT32)	W			
	FF	Count Clear Execution Sta- tus					4 bytes (INT32)	RO			

Subindex 81 hex: Error Output

· Counts the number of changes in error output.

Subindex 82 to 84 hex: General Output 1 to 3

• Counts the number of changes in General Output 1 to 3.

Subindex F1 hex: Count Clear

• Clears the Control Output Change Count. Clear is executed by the writing of 1 to this object.

Subindex FF hex: Count Clear Execution Status

• Gives the status of the Control Output Change Count Clear.

Set value	Description
0	Clear completed
1	Clear in execution

9-14-6 4610 hex: Brake Interlock Output

Sets the brake interlock operation. Refer to 7-6 Brake Interlock on page 7-22 for details.

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Complete access	Modes of operation
4610		Brake Interlock Output								Possible	
	00	Number of entries			04 hex		1 byte (U8)	RO			
	01	Enable	0 to 1		1	R	4 bytes (INT32)	RW			
	02	Timeout at Servo OFF	0 to 10,000	ms	500	E	4 bytes (INT32)	RW			
	03	Threshold Speed at Servo OFF	30 to 3,000	r/min	80 ^{*1}	E	4 bytes (INT32)	RW			
	04	Hardware Delay Time	0 to 10,000	ms	0	E	4 bytes (INT32)	RW			

^{*1.} The default setting is 30 for the unit version 1.3 or earlier.

Subindex 01 hex: Enable

- · Set whether to enable or disable the brake interlock output.
- If this object is set to 0 (disabled), the Brake Interlock Output (BKIR) is turned ON (brake is released).
- If this object is set to 1 (enabled), the Brake Interlock Output (BKIR) is turned ON (brake is released) and OFF (brake is held) according to the Servo ON or Servo OFF state.

Description of Set Values

Set value	Description
0	Disabled
1	Enabled

Subindex 02 hex: Timeout at Servo OFF

- Sets the time from when the OFF state of the operation command is detected (the power supply to the motor is OFF) until the Brake Interlock Output (BKIR) is turned OFF (brake is held), when the Servo OFF is performed during motor operation.
- When the Servo OFF is applied during motor operation, the motor decelerates to reduce rotation speed. The Brake Interlock Output (BKIR) is turned OFF (brake is held) after the set time elapses.
- During operation, the set value of Threshold Speed at Servo OFF may be detected earlier, and this
 may cause the Brake Interlock Output (BKIR) to turn OFF (brake is held).
- If the Brake Interlock Output (BKIR) is turned OFF (brake is held) because the set value of **Timeout** at **Servo OFF** is detected, a Brake Interlock Error (Error No. 97.00) will occur.

Subindex 03 hex: Threshold Speed at Servo OFF

- Sets the motor speed at which the Brake Interlock Output (BKIR) can be turned OFF (brake is held)
 after the Servo OFF command is detected, when the Servo OFF is performed during motor operation.
- During operation, the set value of **Timeout at Servo OFF** may be detected earlier, and this may cause the Brake Interlock Output (BKIR) to turn OFF (brake is held).

Subindex 04 hex: Hardware Delay Time

- · Sets the delay time of the mechanical brake operation, etc.
- · Outputs the timing signal of the external brake by the use of this delay time, when the Servo OFF is performed during motor stop.
- This object is used for the time from when the Servo turns ON until the Brake Interlock Output (BKIR) is turned ON (brake is released) and for the time from when the Brake Interlock Output (BKIR) is turned OFF (brake is held) until the Servo turns OFF. For this purpose, set the brake attraction time or release time, whichever is longer.

9-14-7 4620 hex: Encoder Dividing Pulse Output

Sets the encoder dividing pulse output.

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Complete access	Modes of operation
4620		Encoder Dividing Pulse Output								Possible	
	00	Number of entries			04 hex		1 byte (U8)	RO			
	01	Enable	0 to 1		0	R	4 bytes (INT32)	RW			
	02	Dividing Numera- tor	0 to 2,097,152		2,500	R	4 bytes (INT32)	RW			
	03	Dividing Denomi- nator	0 to 2,097,152		0	R	4 bytes (INT32)	RW			
	04	Output Reverse Selection	0 to 1		0	R	4 bytes (INT32)	RW			

Subindex 01 hex: Enable

• Selects whether to enable or disable the encoder dividing pulse output function.

Description of Set Values

Set value	Description
0	Disabled
1	Enabled

Subindex 02 hex: Dividing Numerator

• Sets the number of output pulses per motor rotation.

Subindex 03 hex: Dividing Denominator

• For applications for which the number of output pulses per rotation is not an integer, set this object to a value other than 0. By setting a value other than 0, the number of output pulses per motor rotation can be set with the dividing ratio which is calculated from the dividing numerator and dividing denominator.

Description of Set Values

Set value	Description
0	Number of output pulses per rotation = Encoder Dividing Numerator × 4
Others	Number of output pulses per rotation = Encoder Dividing Numerator ÷ Encoder Dividing Denominator × Encoder Resolution

Subindex 04 hex: Output Reverse Selection

• Selects whether to reverse the encoder dividing pulse output or not.

Set value	Description
0	Not reverse
1	Reverse

9-15 General-purpose Input Setting Objects

These objects are used for the general-purpose input setting. Refer to 7-1 General-purpose Input Signals on page 7-3 for details.

9-15-1 Setting

This section explains the contents of the general-purpose input setting. These setting items are common to all general-purpose inputs.

Subindex 01 hex: Port Selection

• Selects the port to be allocated.

Description of Set Values

Set value	Description
0	No allocation
1	General Input 1 (IN1)
2	General Input 2 (IN2)
3	General Input 3 (IN3)
4	General Input 4 (IN4)
5	General Input 5 (IN5)
6	General Input 6 (IN6)
7	General Input 7 (IN7)
8	General Input 8 (IN8)

Subindex 02 hex: Logic Selection

• Sets 0 (positive logic (NO contact)) or 1 (negative logic (NC contact)).

Description of Set Values

Set value	Description
0	Positive logic (NO contact)
1	Negative logic (NC contact)

Subindex 81 hex: Signal Status

· Gives the signal status.

Set value	Description
0	Inactive
1	Active

9-15-2 4630 hex: Positive Drive Prohibition Input

Sets the Positive Drive Prohibition Input (POT).

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Complete access	Modes of operation
4630		Positive Drive Prohibition Input								Possible	
	00	Number of entries			81 hex		1 byte (U8)	RO			
	01	Port Selection	0 to 8		2	R	4 bytes (INT32)	RW			
	02	Logic Selection	0 to 1		1	R	4 bytes (INT32)	RW			
	81	Signal Status					4 bytes (INT32)	RO			

9-15-3 4631 hex: Negative Drive Prohibition Input

Sets the Negative Drive Prohibition Input (NOT).

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Complete access	Modes of operation
4631		Negative Drive Prohibition Input								Possible	
	00	Number of entries			81 hex		1 byte (U8)	RO			
	01	Port Selection	0 to 8		3	R	4 bytes (INT32)	RW			
	02	Logic Selection	0 to 1		1	R	4 bytes (INT32)	RW			
	81	Signal Status					4 bytes (INT32)	RO			

9-15-4 4632 hex: External Latch Input 1

Sets the External Latch Input 1 (EXT1).

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Complete access	Modes of operation
4632		External Latch Input 1								Possible	
	00	Number of entries			81 hex		1 byte (U8)	RO			
	01	Port Selection	0 to 8		7	R	4 bytes (INT32)	RW			
	02	Logic Selection	0 to 1		0	R	4 bytes (INT32)	RW			
	81	Signal Status					4 bytes (INT32)	RO			

9 - 117

9-15-5 4633 hex: External Latch Input 2

Sets the External Latch Input 2 (EXT2).

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Complete access	Modes of operation
4633		External Latch Input 2								Possible	
	00	Number of entries			81 hex		1 byte (U8)	RO			
	01	Port Selection	0 to 8		8	R	4 bytes (INT32)	RW			
	02	Logic Selection	0 to 1		0	R	4 bytes (INT32)	RW			
	81	Signal Status					4 bytes (INT32)	RO			

9-15-6 4634 hex: Home Proximity Input

Sets the Home Proximity Input (DEC).

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Complete access	Modes of operation
4634		Home Proximity Input								Possible	
	00	Number of entries			81 hex		1 byte (U8)	RO			
	01	Port Selection	0 to 8		4	R	4 bytes (INT32)	RW			
	02	Logic Selection	0 to 1		0	R	4 bytes (INT32)	RW			
	81	Signal Status					4 bytes (INT32)	RO			

9-15-7 4635 hex: Positive Torque Limit Input

Sets the Positive Torque Limit Input (PCL).

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Complete access	Modes of operation
4635		Positive Torque Limit Input								Possible	
- - -	00	Number of entries			81 hex		1 byte (U8)	RO			
	01	Port Selection	0 to 8		0	R	4 bytes (INT32)	RW			
	02	Logic Selection	0 to 1		0	R	4 bytes (INT32)	RW			
	81	Signal Status					4 bytes (INT32)	RO			

9-15-8 4636 hex: Negative Torque Limit Input

Sets the Negative Torque Limit Input (NCL).

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Complete access	Modes of operation
4636		Negative Torque Limit Input								Possible	
	00	Number of entries			81 hex		1 byte (U8)	RO			
	01	Port Selection	0 to 8		0	R	4 bytes (INT32)	RW			
	02	Logic Selection	0 to 1		0	R	4 bytes (INT32)	RW			
	81	Signal Status					4 bytes (INT32)	RO			

9-15-9 4637 hex: Error Stop Input

Sets the Error Stop Input (ESTP).

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Complete access	Modes of operation
4637		Error Stop Input								Possible	
	00	Number of entries			81 hex		1 byte (U8)	RO			
	01	Port Selection	0 to 8		1	R	4 bytes (INT32)	RW			
	02	Logic Selection	0 to 1		1	R	4 bytes (INT32)	RW			
	81	Signal Status					4 bytes (INT32)	RO			

9-15-10 4638 hex: Monitor Input 1

Sets the Monitor Input 1 (MON1).

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Complete access	Modes of operation
4638		Monitor Input 1								Possible	
	00	Number of entries			81 hex		1 byte (U8)	RO			
	01	Port Selection	0 to 8		5	R	4 bytes (INT32)	RW			
	02	Logic Selection	0 to 1		0	R	4 bytes (INT32)	RW			
	81	Signal Status					4 bytes (INT32)	RO			

9-15-11 4639 hex: Monitor Input 2

Sets the Monitor Input 2 (MON2).

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Complete access	Modes of operation
4639		Monitor Input 2								Possible	
	00	Number of entries			81 hex		1 byte (U8)	RO			
	01	Port Selection	0 to 8		6	R	4 bytes (INT32)	RW			
	02	Logic Selection	0 to 1		0	R	4 bytes (INT32)	RW			
	81	Signal Status					4 bytes (INT32)	RO			

9-15-12 463A hex: Monitor Input 3

Sets the Monitor Input 3 (MON3).

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Complete access	Modes of operation
463A		Monitor Input 3								Possible	
	00	Number of entries			81 hex		1 byte (U8)	RO			
	01	Port Selection	0 to 8		0	R	4 bytes (INT32)	RW			
	02	Logic Selection	0 to 1		0	R	4 bytes (INT32)	RW			
	81	Signal Status					4 bytes (INT32)	RO			

9-15-13 463B hex: Monitor Input 4

Sets the Monitor Input 4 (MON4).

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Complete access	Modes of operation
463B		Monitor Input 4								Possible	
	00	Number of entries			81 hex		1 byte (U8)	RO			
	01	Port Selection	0 to 8		0	R	4 bytes (INT32)	RW			
	02	Logic Selection	0 to 1		0	R	4 bytes (INT32)	RW			
	81	Signal Status					4 bytes (INT32)	RO			

9-15-14 463C hex: Monitor Input 5

Sets the Monitor Input 5 (MON5).

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Complete access	Modes of operation
463C		Monitor Input 5		-	-	I				Possible	
	00	Number of entries			81 hex		1 byte (U8)	RO			
	01	Port Selection	0 to 8		0	R	4 bytes (INT32)	RW			
	02	Logic Selection	0 to 1		0	R	4 bytes (INT32)	RW			
	81	Signal Status					4 bytes (INT32)	RO			

9-15-15 463D hex: Monitor Input 6

Sets the Monitor Input 6 (MON6).

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Complete access	Modes of operation
463D		Monitor Input 6								Possible	
	00	Number of entries			81 hex		1 byte (U8)	RO			
	01	Port Selection	0 to 8		0	R	4 bytes (INT32)	RW			
	02	Logic Selection	0 to 1		0	R	4 bytes (INT32)	RW			
	81	Signal Status					4 bytes (INT32)	RO			

9-15-16 463E hex: Monitor Input 7

Sets the Monitor Input 7 (MON7).

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Complete access	Modes of operation
463E		Monitor Input 7								Possible	
	00	Number of entries			81 hex		1 byte (U8)	RO			
	01	Port Selection	0 to 8		0	R	4 bytes (INT32)	RW			
	02	Logic Selection	0 to 1		0	R	4 bytes (INT32)	RW			
	81	Signal Status					4 bytes (INT32)	RO			

9-15-17 463F hex: Monitor Input 8

Sets the Monitor Input 8 (MON8).

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Complete access	Modes of operation
463F		Monitor Input 8								Possible	
	00	Number of entries			81 hex		1 byte (U8)	RO			
	01	Port Selection	0 to 8		0	R	4 bytes (INT32)	RW			
	02	Logic Selection	0 to 1		0	R	4 bytes (INT32)	RW			
	81	Signal Status					4 bytes (INT32)	RO			

9-16 General-purpose Output Setting Objects

These objects are used for the general-purpose output setting. Refer to 7-2 General-purpose Output Signals on page 7-8 for details.

9-16-1 **Setting**

This section explains the contents of the general-purpose output setting. These setting items are common to all general-purpose outputs.

Subindex 01 hex: Port Selection

· Selects the port to be allocated.

Description of Set Values

Set v	/alue	Description
Bit 0		General Output 1 (OUT1)
	0	Not allocated
	1	Allocated
Bit 1		General Output 2 (OUT2)
	0	Not allocated
	1	Allocated
Bit 2		General Output 3 (OUT3)
	0	Not allocated
	1	Allocated

Subindex 02 hex: Logic Selection

• Sets 0 (positive logic (NO contact)) or 1 (negative logic (NC contact)).

Description of Set Values

Set value	Description
0	Positive logic (NO contact)
1	Negative logic (NC contact)

Subindex 81 hex: Signal Status

· Gives the signal status.

Set value	Description
0	Inactive
1	Active

9-16-2 4650 hex: Error Output

Sets the Error Output (ERR).

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Complete access	Modes of operation
4650		Error output								Possible	
	00	Number of entries			81 hex		1 byte (U8)	RO			
	01	Port Selection	0 to 7		0	R	4 bytes (INT32)	RW			
	02	Logic Selection			1	R	4 bytes (INT32)	RW			
	81	Signal Status					4 bytes (INT32)	RO			

Note The Logic Selection is fixed to 1 (negative logic (NC contact)).

9-16-3 4651 hex: Servo Ready Output

Sets the Servo Ready Output (READY).

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Complete access	Modes of operation
4651		Servo Ready Output								Possible	
	00	Number of entries			81 hex		1 byte (U8)	RO			
	01	Port Selection	0 to 7		1	R	4 bytes (INT32)	RW			
	02	Logic Selection	0 to 1		0	R	4 bytes (INT32)	RW			
	81	Signal Status					4 bytes (INT32)	RO			

9-16-4 4652 hex: Positioning Completion Output 1

Sets the Positioning Completion Output 1 (INP1).

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Complete access	Modes of operation
4652		Positioning Completion Output 1								Possible	
	00	Number of entries			81 hex		1 byte (U8)	RO			
	01	Port Selection	0 to 7		0	R	4 bytes (INT32)	RW			
	02	Logic Selection	0 to 1		0	R	4 bytes (INT32)	RW			
	81	Signal Status					4 bytes (INT32)	RO			

9-16-5 4653 hex: Positioning Completion Output 2

Sets the Positioning Completion Output 2 (INP2).

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Complete access	Modes of operation
4653		Positioning Completion Output 2								Possible	
	00	Number of entries			81 hex		1 byte (U8)	RO			
	01	Port Selection	0 to 7		0	R	4 bytes (INT32)	RW			
	02	Logic Selection	0 to 1		0	R	4 bytes (INT32)	RW			
	81	Signal Status					4 bytes (INT32)	RO			

9-16-6 4654 hex: Velocity Attainment Detection Output

Sets the Velocity Attainment Detection Output (TGON).

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Complete access	Modes of operation
4654		Velocity Attain- ment Detection Output								Possible	
	00	Number of entries			81 hex		1 byte (U8)	RO			
	01	Port Selection	0 to 7		0	R	4 bytes (INT32)	RW			
	02	Logic Selection	0 to 1		0	R	4 bytes (INT32)	RW			
	81	Signal Status					4 bytes (INT32)	RO			

9-16-7 4655 hex: Torque Limit Output

Sets the Torque Limit Output (TLIMIT).

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Complete access	Modes of operation
4655		Torque Limit Output								Possible	
	00	Number of entries			81 hex		1 byte (U8)	RO			
	01	Port Selection	0 to 7		0	R	4 bytes (INT32)	RW			
	02	Logic Selection	0 to 1		0	R	4 bytes (INT32)	RW			
	81	Signal Status					4 bytes (INT32)	RO			

9-16-8 4656 hex: Zero Speed Detection Output

Sets the Zero Speed Detection Output (ZSP).

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Complete access	Modes of operation
4656		Zero Speed Detection Output								Possible	
	00	Number of entries			81 hex		1 byte (U8)	RO			
	01	Port Selection	0 to 7		0	R	4 bytes (INT32)	RW			
	02	Logic Selection	0 to 1		0	R	4 bytes (INT32)	RW			
	81	Signal Status					4 bytes (INT32)	RO			

9-16-9 4657 hex: Velocity Conformity Output

Sets the Velocity Conformity Output (VCMP).

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Complete access	Modes of operation
4657		Velocity Confor- mity Output								Possible	
	00	Number of entries			81 hex		1 byte (U8)	RO			
	01	Port Selection	0 to 7		0	R	4 bytes (INT32)	RW			
	02	Logic Selection	0 to 1		0	R	4 bytes (INT32)	RW			
	81	Signal Status					4 bytes (INT32)	RO			

9-16-10 4658 hex: Warning Output 1

Sets the Warning Output 1 (WARN1).

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Complete access	Modes of operation
4658		Warning Output 1								Possible	
	00	Number of entries			81 hex		1 byte (U8)	RO			
	01	Port Selection	0 to 7		0	R	4 bytes (INT32)	RW			
	02	Logic Selection	0 to 1		0	R	4 bytes (INT32)	RW			
	81	Signal Status					4 bytes (INT32)	RO			

9-16-11 4659 hex: Warning Output 2

Sets the Warning Output 2 (WARN2).

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Complete access	Modes of operation
4659		Warning Output 2								Possible	
	00	Number of entries			81 hex		1 byte (U8)	RO			
	01	Port Selection	0 to 7		0	R	4 bytes (INT32)	RW			
	02	Logic Selection	0 to 1		0	R	4 bytes (INT32)	RW			
	81	Signal Status					4 bytes (INT32)	RO			

9-16-12 465A hex: Velocity Limiting Output

Sets the Velocity Limiting Output (VLIMIT).

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Complete access	Modes of operation
465A		Velocity Limiting Output								Possible	
	00	Number of entries			81 hex		1 byte (U8)	RO			
	01	Port Selection	0 to 7		0	R	4 bytes (INT32)	RW			
	02	Logic Selection	0 to 1		0	R	4 bytes (INT32)	RW			
	81	Signal Status					4 bytes (INT32)	RO			

9-16-13 465B hex: Error Clear Attribute Output

Sets the Error Clear Attribute Output (ERR-ATB).

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Complete access	Modes of operation
465B		Error Clear Attri- bute Output								Possible	
	00	Number of entries			81 hex		1 byte (U8)	RO			
	01	Port Selection	0 to 7		0	R	4 bytes (INT32)	RW			
	02	Logic Selection	0 to 1		0	R	4 bytes (INT32)	RW			
	81	Signal Status					4 bytes (INT32)	RO			

9-16-14 465C hex: Remote Output 1

Sets the Remote Output 1 (R-OUT1).

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Complete access	Modes of operation
465C		Remote Output 1								Possible	
	00	Number of entries			81 hex		1 byte (U8)	RO			
	01	Port Selection	0 to 7		2	R	4 bytes (INT32)	RW			
	02	Logic Selection	0 to 1		0	R	4 bytes (INT32)	RW			
	81	Signal Status					4 bytes (INT32)	RO			

9-16-15 465D hex: Remote Output 2

Sets the Remote Output 2 (R-OUT2).

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Complete access	Modes of operation
465D		Remote Output 2								Possible	
	00	Number of entries			81 hex		1 byte (U8)	RO			
	01	Port Selection	0 to 7		4	R	4 bytes (INT32)	RW			
	02	Logic Selection	0 to 1		0	R	4 bytes (INT32)	RW			
	81	Signal Status					4 bytes (INT32)	RO			

9-16-16 465E hex: Remote Output 3

Sets the Remote Output 3 (R-OUT3).

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Complete access	Modes of operation
465E		Remote Output 3								Possible	
	00	Number of entries			81 hex		1 byte (U8)	RO			
	01	Port Selection	0 to 7		0	R	4 bytes (INT32)	RW			
	02	Logic Selection	0 to 1		0	R	4 bytes (INT32)	RW			
	81	Signal Status					4 bytes (INT32)	RO			

9-16-17 465F hex: Zone Notification Output 1

Sets the Zone Notification Output 1 (ZONE1).

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Complete access	Modes of operation
465F		Zone Notification Output 1								Possible	
	00	Number of entries			81 hex		1 byte (U8)	RO			
	01	Port Selection	0 to 7		0	R	4 bytes (INT32)	RW			
	02	Logic Selection	0 to 1		0	R	4 bytes (INT32)	RW			
	81	Signal Status					4 bytes (INT32)	RO			

9-16-18 4660 hex: Zone Notification Output 2

Sets the Zone Notification Output 2 (ZONE2).

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Complete access	Modes of operation
4660		Zone Notification Output 2								Possible	
	00	Number of entries			81 hex		1 byte (U8)	RO			
	01	Port Selection	0 to 7		0	R	4 bytes (INT32)	RW			
	02	Logic Selection	0 to 1		0	R	4 bytes (INT32)	RW			
	81	Signal Status					4 bytes (INT32)	RO			

9-16-19 4661 hex: Position Command Status Output

Sets the Position Command Status Output (PCMD).

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Complete access	Modes of operation
4661		Position Com- mand Status Out- put								Possible	
	00	Number of entries			81 hex		1 byte (U8)	RO			
	01	Port Selection	0 to 7		0	R	4 bytes (INT32)	RW			
	02	Logic Selection	0 to 1		0	R	4 bytes (INT32)	RW			
	81	Signal Status					4 bytes (INT32)	RO			

9-16-20 4662 hex: Distribution Completed Output

Sets the Distribution Completed Output (DEN).

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Complete access	Modes of operation
4662		Distribution Completed Output								Possible	
	00	Number of entries			81 hex		1 byte (U8)	RO			
	01	Port Selection	0 to 7		0	R	4 bytes (INT32)	RW			
	02	Logic Selection	0 to 1		0	R	4 bytes (INT32)	RW			
	81	Signal Status					4 bytes (INT32)	RO			

9-16-21 4663 hex: External Brake Interlock Output

Sets the External Brake Interlock Output (EXTBKIR).

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Complete access	Modes of operation
4663		External Brake Interlock Output								Possible	
	00	Number of entries			81 hex		1 byte (U8)	RO			
	01	Port Selection	0 to 7		0	R	4 bytes (INT32)	RW			
	02	Logic Selection	0		0	R	4 bytes (INT32)	RW			
	81	Signal Status					4 bytes (INT32)	RO			

Operation

This section provides the operational procedure and explains how to operate in each mode.

10-1 Ope	rational Procedure10-2
10-2 Prep	paring for Operation
10-2-	1 Items to Check Before Turning ON the Power Supply
10-2-	2 Turning ON the Power Supply
10-2-	3 Checking the Displays
10-2-	4 Absolute Encoder Setup
10-2-	5 Setting Up an Absolute Encoder from the Sysmac Studio
10-3 Test	Run 10-8
10-3-	1 Preparations for Test Run
10-3-	2 Test Run via USB Communications from the Sysmac Studio 10-9

Operational Procedure

Perform installation and wiring correctly, and turn ON the power supply to check the operation of the individual Servomotor and Servo Drive.

Then make the function settings as required according to the use of the Servomotor and Servo Drive.

If the objects are set incorrectly, there is a risk of unexpected motor operation, which can be dangerous. Set the objects accurately according to the setting methods in this manual.

Item	Description	Reference	
Installation and mounting	Install the Servomotor and Servo Drive according to the installation conditions. Do not connect the Servomotor to mechanical systems before checking the operation without any load.	Section 4, 4-1	
↓			
Wiring and con-	Connect the Servomotor and Servo Drive to the power supply and peripheral equipment.	Section 4, 4-2	
nections	Satisfy specified installation and wiring conditions, particularly for models that conforms to the EU Directives.		
			
Preparing for	Check the necessary items and then turn ON the commercial power supply.	Section 10, 10-2	
operation	Check on the display to see whether there are any internal errors in the Servo Drive.	Section 10, 10-2	
\downarrow			
Function set- tings	Set the objects related to the functions required for application conditions.	Section 9	
\downarrow			
	First, check motor operation without any load. Then turn the power supply OFF and connect the Servomotor to mechanical systems.		
	When you use a Servomotor with an absolute encoder, set up the absolute encoder.		
Test run	Execute the Unit Restart or cycle the power supply, and check to see whether protective functions, such as the immediate stop and operational limits, operate properly.	Section 10, 10-3	
	Check operation at both low speed and high speed using the system without a workpiece, or with dummy workpieces.		
			
Adjustment	Manually adjust the set values of objects such as gain if necessary.	Section 11	
 			
Operation	Operation can now be started.	Section 12	
	If any problems should occur, refer to Section 12 Troubleshooting.		

10-2 Preparing for Operation

This section explains the procedure that you perform to prepare the system for operation after installation and wiring of the Servomotor and Servo Drive are completed. It explains items to check both before and after turning ON the power supply.

It also explains the setup procedure required if you use a Servomotor with an absolute encoder.

10-2-1 Items to Check Before Turning ON the Power Supply

Checking Power Supply Voltage

Check to be sure that the power supply voltage is within the ranges shown below.

Model	Main circuit power supply	Control circuit power supply
R88D-1SN01L-ECT/ -1SN02L-ECT/ -1SN04L-ECT	Single-phase 100 to	24 VDC (21.6
(Single-phase 100-VAC input)	120 VAC (85 to 132 V)	to 26.4 V)
	50/60 Hz	
R88D-1SN01H-ECT/ -1SN02H-ECT/ -1SN04H-ECT/	Single-phase/	24 VDC (21.6
-1SN08H-ECT/ -1SN15H-ECT	3-phase 200 to 240	to 26.4 V)
(Single-phase/3-phase 200-VAC input)	VAC (170 to 252 V)	
	50/60 Hz	
R88D-1SN10H-ECT/ -1SN20H-ECT/ -1SN30H-ECT/	3-phase 200 to 240	24 VDC (21.6
-1SN55H-ECT/ -1SN75H-ECT/ -1SN150H-ECT	VAC (170 to 252 V)	to 26.4 V)
(3-phase 200-VAC input)	50/60 Hz	
R88D-1SN06F-ECT/ -1SN10F-ECT/ -1SN15F-ECT/	3-phase 380 to 480	24 VDC (21.6
-1SN20F-ECT/ -1SN30F-ECT/ -1SN55F-ECT/	VAC (323 to 504 V)	to 26.4 V)
-1SN75F-ECT/ -1SN150F-ECT	50/60 Hz	
(3-phase 400-VAC input)		

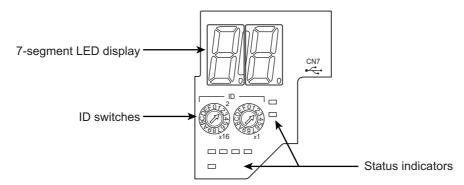
Checking Terminal Block Wiring

- The main circuit power supply inputs (L1/L2/L3) must be properly connected to the terminal block.
- The control circuit power supply inputs (24V, Ø or +24 V, 0V) must be properly connected to the terminal block.
- The motor's red (U), write (V), and blue (W) power lines and the green (⊕) must be properly connected to the terminal block.

Checking the Servomotor

- · There should be no load on the Servomotor. Do not connect mechanical systems.
- The Servomotor side power lines and the power cables must be securely connected.

Checking the Encoder Wiring


- The encoder cable must be securely connected to the encoder connector (CN2) at the Servo Drive.
- The encoder cable must be securely connected to the encoder connector of the Servomotor.

Checking the EtherCAT Communications Connectors

Do not connect the EtherCAT Communications Cables to the EtherCAT Communications Connectors (ECAT IN and ECAT OUT).

Checking the Node Address Setting

Make sure that the node address is correctly set on the ID switches.

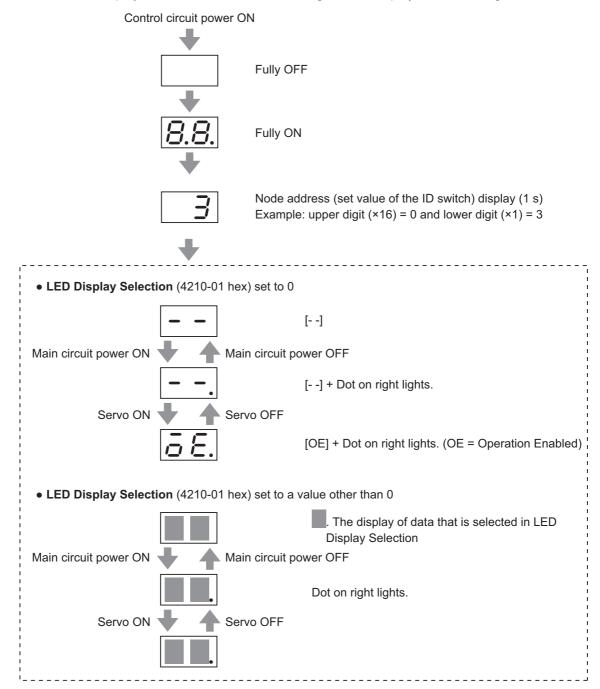
	Description
ID switch setting	Connection to NJ/NX-series CPU Unit or
	Position Control Unit (Model: CJ1W-NC□8□)
00	The controller sets the node address.
01 to FF	The ID switches set the node address.

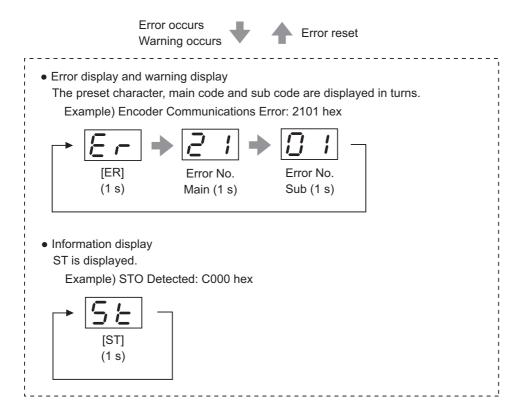
Precautions for Correct Use

The ID switch setting is read only once when the Unit power supply is turned ON. Although the setting is changed after the Unit power supply is ON, it is not reflected in the control. It is enabled the next time the Unit power supply is turned ON.

10-2-2 Turning ON the Power Supply

Turn ON the control circuit power after you finish the checks which you must conduct before turning ON the power supply. You can turn ON the main circuit power, but it is not a required.

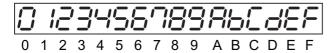

10-2-3 Checking the Displays


7-segment LED Display

The following figure shows the 7-segment LED display located on the front panel.

When the power is turned ON, it shows the node address that is set by the ID switches. Then the display changes according to the setting of the **LED Display Selection** (4210-01 hex).

An error code is displayed if an error occurs. A warning code is displayed if a warning occurs.



The node address is displayed as follows.

Node address	Expression	Display example
0 to 255	Expressed as 2-digit hexadecimal numbers from "0" to "FF".	1 255 (FF hex)
256 to 511	The dot of the indicator is lit. The address is expressed as numbers from ".0" to "F.F".	256 (100 hex) 511 (1FF hex)
512 or more	Expressed as "0.0".	512 or more

Numbers from 0 to F hex are displayed as follows.

EtherCAT Status Indicators

Check the status of the status indicators.

If the RUN indicator does not turn ON or the ERR indicator does not turn OFF, refer to *5-1-2 Status Indicators* on page 5-3 and check the status.

10-2-4 Absolute Encoder Setup ABS

You must set up the absolute encoder if you use a motor with an absolute encoder. The setup is required when you turn ON the power supply for the first time.

When you use an absolute encoder, set the **Encoder – Operation Selection when Using Absolute Encoder** (4510-01 hex). Set this object to 0 or 2 (default setting) when you use the encoder as the absolute encoder.

Additional Information

Set this object to 1 when you use the encoder as the incremental encoder.

Set up the absolute encoder while the Servo is OFF.

Be sure to execute the Unit Restart or cycle the power supply after you finish the setup.

For information on setup using the Sysmac Studio, refer to the Sysmac Studio Drive Functions Operation Manual (Cat. No. 1589) and Setting Up an Absolute Encoder from the Sysmac Studio described below.

10-2-5 Setting Up an Absolute Encoder from the Sysmac Studio

- 1 Start the Sysmac Studio and go online with the Servo Drive via EtherCAT or USB communications.
- 2 In the Sysmac Studio, right-click the target Servo Drive under Configurations and Setup, and select Motor and Encoder.
- 3 Click the Clear system button in the Encoder Properties pane.

 An Absolute Value Cleared (Error No. 27.01) error will occur after execution is completed.
- **4** Execute the Unit Restart or turn the control power supply to the Servo Drive OFF and then ON again.

10-3 Test Run

When you finished installation, wiring, and switch settings, and confirmed that the status was normal after turning ON the power supply, perform test run. The main purpose of test run is to confirm that the servo system operation is electrically correct.

If an error occurs during test run, refer to Section 12 Troubleshooting and eliminate the cause. Then check for safety, and retry test run.

10-3-1 Preparations for Test Run

Inspections Before Test Run

Check the following items.

Wiring

- Make sure that there are no wiring errors (especially for the power supply input and motor output).
- Make sure that there are no short circuits. (Check the ground for short circuits as well.)
- · Make sure that there are no loose connections.
- · Make sure that the EtherCAT cable is pulled out.

Power Supply and Voltage

- Make sure that the power voltage is within the specified range.
- · Make sure that there is no voltage fluctuation.

Servomotor Installation

· Make sure that the Servomotor is securely installed.

Disconnection from Mechanical Systems

• If necessary, make sure that the load is disconnected from mechanical systems.

Brake Released

· Make sure that the brake is released.

Connection to Mechanical Systems

- Make sure that the load and Servomotor shaft are properly aligned.
- · Make sure that the load on the Servomotor shaft is within specifications.

10-3-2 Test Run via USB Communications from the Sysmac Studio

- 1 Connect a sensor or other device to the control I/O connector (CN1).
- **2** Turn ON the Servo Drive power supply.
- **3** Connect a USB cable to the USB connector (CN7).
- **4** Start the Sysmac Studio and go online with the Servo Drive via USB communications.
- **5** In the Sysmac Studio, right-click the target Servo Drive under **Configurations and Setup**, and select **Test Run**.
- **6** Click the **Servo ON** button to apply the servo lock to the Servomotor.
- 7 Click the or button to start the Servomotor.

For how to use the Sysmac Studio, refer to the *Sysmac Studio Drive Functions Operation Manual* (Cat. No. I589).

Precautions for Correct Use

- A test run can be performed in the Profile position mode (pp) or Profile velocity mode (pv). If the torque compensation is set, the axes move because the compensation command is output when the Servo is turned ON.
- When you perform a test run via USB communications, pull out the EtherCAT cable before you turn ON the power supply to the Servo Drive.
- When you perform a test run from the Sysmac Studio without EtherCAT connection, you cannot use the STO function via EtherCAT communications. If you need the STO function, use the STO function via safety input signals. In this case, display the test run pane so that you can reset STO status via safety input signals.
- If you need EtherCAT connection while you perform a test run from the Sysmac Studio without EtherCAT connection, first terminate the test run function and then perform EtherCAT connection.

Additional Information

When you use an NJ/NX-series CPU Unit, you can perform a test run from the Sysmac Studio via EtherCAT. In this case, you can use the STO function via EtherCAT communications.

Adjustment Functions

This section explains the functions, setting methods, and items to note regarding adjustments.

11-1 Outli	ine of Adjustment Functions	11-3
11-1-	1 Adjustment Methods	
11-1-	2 Adjustment Procedure	
11-2 Easy	Tuning	11-6
11-2-		
11-2-	2 Executing Easy Tuning	
11-3 Adva	anced Tuning	11-9
11-3-		
11-3-	Executing Advanced Tuning	
11-4 Man	ual Tuning	
11-4-		
11-4-2	•	
11-5 Data	Trace	11-12
11-6 FFT		11-13
11-7 Dam	ping Control	11-14
11-7-	Description Objects Requiring Settings	
11-7-	2 Operating Procedure	
11-7-	3 Setting Frequency with Sysmac Studio	
11-8 Load	I Characteristic Estimation	11-18
11-8-	1 Objects Requiring Settings	
11-8-	2 Setting Load Characteristic Estimation Function	
11-9 Ada	otive Notch Filter	11-21
11-9-	1 Objects Requiring Settings	
11-9-	2 Operating Procedure	
11-10 Not	ch Filters	11-23
11-10		
11-10		

11-12-1Feed-forward Control in TDF Control11-2911-12-2Feed-forward Control in ODF Control11-31

11-1 Outline of Adjustment Functions

The Servo Drive must operate the Servomotor in response to commands without time delay and with reliability to maximize the performance of the machine. The Servo Drive is adjusted according to the characteristics of the machine.

Precautions for Safe Use

- Motor operation is required during adjustment. Take sufficient measures to ensure safety.
- Especially, if unusual noise or vibration occurs, immediately turn OFF the power supply or turn OFF the Servo.

11-1-1 Adjustment Methods

The adjustment function of the Sysmac Studio Automation Software and the automatic adjustment function of the Servo Drive facilitate adjustment according to your purpose.

Adjustment Function of Sysmac Studio

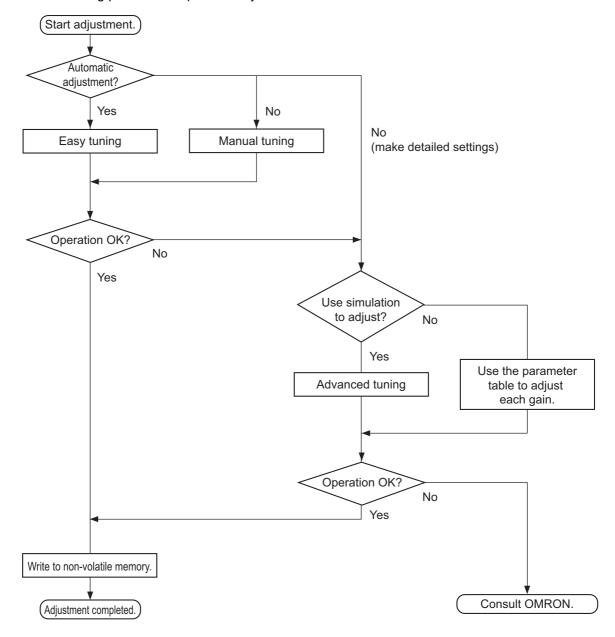
Use the Sysmac Studio to execute the following adjustment functions and monitor data for adjustment. For how to operate the Sysmac Studio, refer to the *Sysmac Studio Drive Functions Operation Manual* (Cat. No. I589).

Function	Description	Reference
Easy Tuning	Adjusts the gain automatically while motor operation is repeated.	P. 11-6
	Use this function to perform adjustment easily.	
Advanced Tuning	Uses simulation to perform adjustment with minimum motor operation. Fine setting adjustment is possible for each parameter including the gain and filter.	P. 11-9
Manual Tuning	Adjusts multiple gains at a time according to the one set parameter.	P. 11-11
Data Trace	Measures commands to the motor and motor operation (velocity, command torque and following error) and displays them with waveforms.	P. 11-12
FFT	Measures the frequency characteristics of velocity closed loop.	P. 11-13
Damping Control	Automatically detects the vibration frequency. This function makes it easy to set damping control.	P. 11-14

Automatic Adjustment Function of Servo Drive

The Servo Drive has the following automatic adjustment functions.

Function	Description	Reference
Load Characteristic Estima-	a- Estimates the load characteristics of the machine in realtime and	
tion	sets the values of the inertia ratio and friction torque compensation automatically according to the result of estimation.	
Adaptive Notch Filter	Reduces vibration by estimating the resonance frequency and auto-	P. 11-21
ridapare recent me	matically setting the frequency of the notch filter.	


Manual Adjustment Function of Servo Drive

The Servo Drive has the following manual adjustment functions.

Function	Description	Reference
Notch Filter	Reduces vibration according to the specified resonance frequency.	P. 11-23
Friction Torque Compensation	Reduces the influence of mechanical frictions.	P. 11-26
Feed-forward	Uses the velocity and torque feed-forward to increase responsiveness.	P. 11-29
Damping Control	Reduces vibration of tips that occurs in low-rigidity machines.	P. 11-14

11-1-2 Adjustment Procedure

Use the following procedure to perform adjustment.

Gain Adjustment and Machine Rigidity

The natural vibration (resonance) of mechanical systems has a large impact on the gain adjustment of the Servo. The servo system responsiveness cannot be set high for machines with a low resonance frequency (low machine rigidity).

To improve machine rigidity:

- · Install the machine on a secure base so that it does not have any play.
- Use couplings that have a high rigidity, and that are designed for servo systems.
- When you use a timing belt, select a wide one. Use a tension within the range of allowable axial load for the Servomotor or decelerator output.
- When you use gears, select ones with small backlash.

11-2 Easy Tuning

This function adjusts the gain automatically while the Servomotor is actually operated based on commands from the Controller or operation conditions that are set on the Sysmac Studio.

It is possible to select the single drive or multiple drives tuning method.

In the system with the synchronized axes, you can adjust the gain at the same time in a short time by the use of the easy tuning for multiple drives.

Version Information

Servo Drives with unit version 1.1 or later and Sysmac Studio version 1.18 or higher are required to adjust multiple drives.

11-2-1 Objects That Are Set

This section gives the objects that are set when the easy tuning is executed.

Objects That Are Adjusted Automatically

The values of the following objects are adjusted automatically when the easy tuning is executed.

Index (hex)	Subindex (hex)	Name	Reference
3011		Position Command Filter	P. 9-17
	04	IIR Filter Cutoff Frequency	P. 9-17
3120		TDF Position Control	P. 9-30
-	11	Command Following Gain 2*1	P. 9-31
3213		1st Position Control Gain	P. 9-35
	01	Proportional Gain	P. 9-35
3214		2nd Position Control Gain	P. 9-36
	01	Proportional Gain	P. 9-36
3223		1st Velocity Control Gain	P. 9-38
	01	Proportional Gain	P. 9-38
	02	Integral Gain	P. 9-38
3224		2nd Velocity Control Gain	P. 9-39
	01	Proportional Gain	P. 9-39
	02	Integral Gain	P. 9-39
3233		1st Torque Command Filter	P. 9-41
	02	Cutoff Frequency	P. 9-41
3234		2nd Torque Command Filter	P. 9-42
	02	Cutoff Frequency	P. 9-42

^{*1.} This object is automatically adjusted only when the multiple drives tuning method is selected.

Objects That Are Changed According to Easy Tuning Settings

The values of the following objects are changed according to the settings that are configured when the easy tuning is executed.

Index (hex)	Subindex (hex)	Name	Reference
3001		Machine	P. 9-12
	01	Inertia Ratio	P. 9-12
3120		TDF Position Control	P. 9-30
	01	Command Following Gain ^{*1}	P. 9-31
	10	Command Following Gain Selection*1	P. 9-31
3310		Torque Compensation	P. 9-43
	01	Viscous Friction Coefficient	P. 9-43
	02	Unbalanced Load Compensation	P. 9-43
	03	Positive Dynamic Friction Compensation	P. 9-43
	04	Negative Dynamic Friction Compensation	P. 9-44
3320		Adaptive Notch Filter	P. 9-45
	01	Adaptive Notch Selection	P. 9-45
3321		1st Notch Filter	P. 9-46
	01	Enable	P. 9-46
	02	Frequency	P. 9-46
	03	Q-value	P. 9-46
	04	Depth	P. 9-47
3322		2nd Notch Filter	P. 9-48
	01	Enable	P. 9-48
	02	Frequency	P. 9-48
	03	Q-value	P. 9-48
	04	Depth	P. 9-49
3323		3rd Notch Filter	P. 9-50
	01	Enable	P. 9-50
	02	Frequency	P. 9-50
	03	Q-value	P. 9-50
	04	Depth	P. 9-51
3324		4th Notch Filter	P. 9-52
	01	Enable	P. 9-52
	02	Frequency	P. 9-52
	03	Q-value	P. 9-52
	04	Depth	P. 9-53
3B51		Positioning Completion Notification	P. 9-73
	01	Position Window	P. 9-73
3B80		Load Characteristic Estimation	P. 9-78
	01	Inertia Ratio Update Selection	P. 9-78
	02	Viscous Friction Compensation Update Selection	P. 9-78
	03	Unbalanced Load Compensation Update Selection	P. 9-79
	04	Dynamic Friction Compensation Update Selection	P. 9-79

^{*1.} This object is changed only in two-degree-of-freedom (TDF) control.

Objects That Are Set to Fixed Values

The following objects are set to the fixed values when the easy tuning is executed.

Index (hex)	Subindex (hex)	Name	Unit	Set value	Reference
3011		Position Command Filter			P. 9-17
	03	IIR Filter Enable		1	P. 9-17
3112		ODF Velocity Feed-forward			P. 9-28
	01	Gain	0.1%	300	P. 9-28
	02	LPF Enable		0	P. 9-28
	03	LPF Cutoff Frequency	0.1 Hz	50,000	P. 9-28
3113		ODF Torque Feed-forward			P. 9-29
	01	Gain	0.1%	0	P. 9-29
	02	LPF Enable		0	P. 9-30
	03	LPF Cutoff Frequency	0.1 Hz	50,000	P. 9-30
3233		1st Torque Command Filter			P. 9-41
	01	Enable		1	P. 9-41
3234		2nd Torque Command Filter			P. 9-42
	01	Enable		1	P. 9-42
3B80		Load Characteristic Estimation			P. 9-78
	05	Viscous Friction Tuning Coefficient	%	100	P. 9-79

11-2-2 Executing Easy Tuning

Use the Sysmac Studio to execute the easy tuning.

For how to use, refer to the Sysmac Studio Drive Functions Operation Manual (Cat. No. 1589).

Precautions for Correct Use

Easy tuning is performed by the use of the automatic adjustment function of the Servo Drive (Load Characteristic Estimation and Adaptive Notch Filter).

If each function does not operate properly, the automatic adjustment by the easy tuning also may not operate properly.

Refer to 11-8 Load Characteristic Estimation on page 11-18 and 11-9 Adaptive Notch Filter on page 11-21 for details.

11-3 Advanced Tuning

This function uses simulation to adjust the gain and filter settings. Repeating actual Servomotor operation is not necessary, and a fine adjustment is possible in a short period of time.

11-3-1 Objects That Are Set

This section gives the objects that are set when the advanced tuning is executed.

Objects That Are Adjusted with Advanced Tuning

The advanced tuning adjusts the values of the following objects.

Index (hex)	Subindex (hex)	Name	Reference
3011		Position Command Filter	P. 9-17
	03	IIR Filter Enable	P. 9-17
	04	IIR Filter Cutoff Frequency	P. 9-17
3112		ODF Velocity Feed-forward	P. 9-28
	01	Gain	P. 9-28
	02	LPF Enable	P. 9-28
	03	LPF Cutoff Frequency	P. 9-28
3113		ODF Torque Feed-forward	P. 9-29
	01	Gain	P. 9-29
	02	LPF Enable	P. 9-30
	03	LPF Cutoff Frequency	P. 9-30
3120		TDF Position Control	P. 9-30
	01	Command Following Gain	P. 9-30
3121		TDF Velocity Control	P. 9-31
	01	Command Following Gain	P. 9-31
3213		1st Position Control Gain	P. 9-35
	01	Proportional Gain	P. 9-35
3223		1st Velocity Control Gain	P. 9-38
	01	Proportional Gain	P. 9-38
	02	Integral Gain	P. 9-38
3233		1st Torque Command Filter	P. 9-41
	01	Enable	P. 9-41
	02	Cutoff Frequency	P. 9-41
3321		1st Notch Filter	P. 9-46
	01	Enable	P. 9-46
	02	Frequency	P. 9-46
	03	Q-value	P. 9-46
	04	Depth	P. 9-47
3322		2nd Notch Filter	P. 9-48
	01	Enable	P. 9-48
	02	Frequency	P. 9-48
	03	Q-value	P. 9-48
	04	Depth	P. 9-49

Index (hex)	Subindex (hex)	Name	Reference
3323		3rd Notch Filter	P. 9-50
	01	Enable	P. 9-50
	02	Frequency	P. 9-50
	03	Q-value	P. 9-50
	04	Depth	P. 9-51
3324		4th Notch Filter	P. 9-52
	01	Enable	P. 9-52
	02	Frequency	P. 9-52
	03	Q-value	P. 9-52
	04	Depth	P. 9-53

11-3-2 Executing Advanced Tuning

Use the Sysmac Studio to execute the advanced tuning.

11-4 Manual Tuning

This function adjusts the values of multiple gain parameters at a time according to set values for machine rigidity that are manually adjusted.

11-4-1 Objects That Are Set

This section gives the objects that are set when the manual tuning is executed.

Objects That Are Changed According to Set Values for Machine Rigidity

The values of the following objects are changed according to the set values for machine rigidity.

Index (hex)	Subindex (hex)	Name	Reference
3011		Position Command Filter	P. 9-17
	04	IIR Filter Cutoff Frequency	P. 9-17
3213		1st Position Control Gain	P. 9-35
	01	Proportional Gain	P. 9-35
3214		2nd Position Control Gain	P. 9-36
	01	Proportional Gain	P. 9-36
3223		1st Velocity Control Gain	P. 9-38
	01	Proportional Gain	P. 9-38
	02	Integral Gain	P. 9-38
3224		2nd Velocity Control Gain	P. 9-39
	01	Proportional Gain	P. 9-39
	02	Integral Gain	P. 9-39
3233		1st Torque Command Filter	P. 9-41
	02	Cutoff Frequency	P. 9-41
3234		2nd Torque Command Filter	P. 9-42
	02	Cutoff Frequency	P. 9-42

Objects That Are Set to Fixed Values

The following objects are set to the fixed values when the manual tuning is executed.

Index (hex)	Subindex (hex)	Name	Unit	Set value	Reference
3011		Position Command Filter	Position Command Filter P.		P. 9-17
	03	IR Filter Enable 1 P.		P. 9-17	
3233		1st Torque Command Filter	1st Torque Command Filter P		P. 9-41
	01	Enable		1	P. 9-41
3234		2nd Torque Command Filter P. 9-		P. 9-42	
	01	Enable		1	P. 9-42

11-4-2 Executing Manual Tuning

Use the Sysmac Studio to execute the manual tuning.

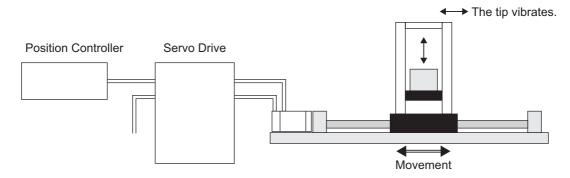
11-5 Data Trace

This function takes samples of commands to the Servomotor and motor operation (position, velocity, and torque) at regular intervals, and displays the tracing results by the use of the Sysmac Studio.

For 1S-series Servo Drives, the data trace on single Servo Drive and the synchronized data trace on multiple Servo Drives are provided.

The data trace on multiple Servo Drives can perform synchronized sampling on up to four Servo Drives. The results are displayed on the same window.

11-6 FFT


When you use the Sysmac Studio, you can measure the frequency characteristics of velocity closed loop.

11-7 Damping Control

If the tip of the mechanical unit vibrates, you can use the damping control function to reduce vibration.

This is effective on vibration generated by a low-rigidity machine. The applicable frequencies are from 0.5 to 300 Hz.

Two damping filters, the Damping Filter 1 and 2, are provided to control two vibration frequencies simultaneously. Up to four damping frequencies can be set for each damping filter. This enables you to switch the damping frequency from one to another when it varies depending on the position.

Precautions for Correct Use

If you change the operation mode while damping control is used, stop the Servomotor before you change the mode. Changing the operation mode during motor operation may result in unexpected operation.

11-7-1 Objects Requiring Settings

Index (hex)	Subindex (hex)	Name	Description	
3012		Damping Control	Selects the damping filters.	P. 9-18
	01	Damping Filter 1 Selec-	Selects the setting to use for the damping filter 1.	P. 9-18
		tion	0: Disabled	
			1: 1st Frequency and 1st Damping Time Coefficient	
			2: 2nd Frequency and 2nd Damping Time Coefficient	
			3: 3rd Frequency and 3rd Damping Time Coefficient	
			4: 4th Frequency and 4th Damping Time Coefficient	
	02	Damping Filter 2 Selec-	Selects the setting to use for the damping filter 2.	P. 9-18
		tion	The function is the same as 01 hex.	

Index	Subindex	Nama	Description	Refer-
(hex)	(hex)	Name	Description	ence
3013		Damping Filter 1	Sets the damping filter 1.	P. 9-19
	01	1st Frequency	Sets the damping frequency for the damping filter.	P. 9-19
	02	1st Damping Time	Sets the trade-off with torque required for the vibration sup-	P. 9-19
		Coefficient	pression time and damping.	
			Setting a small value shortens the time to suppress the vibra-	
			tion, however it is highly possible that torque saturation	
			occurs.	
	03	2nd Frequency	The function is the same as 01 hex.	P. 9-19
	04	2nd Damping Time	The function is the same as 02 hex.	P. 9-19
	05	Coefficient	71.6.0.1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.	D 0 40
	05	3rd Frequency	The function is the same as 01 hex.	P. 9-19
	06	3rd Damping Time Coefficient	The function is the same as 02 hex.	P. 9-20
	07	4th Frequency	The function is the same as 01 hex.	P. 9-20
	08	4th Damping Time		P. 9-20
	00	Coefficient	The function is the same as 02 hex.	P. 9-20
3014	_	Damping Filter 2	Sets the damping filter 2.	P. 9-20
	01	1st Frequency	Sets the damping frequency for the damping filter.	P. 9-20
	02	1st Damping Time	Sets the trade-off with torque required for the vibration sup-	P. 9-20
		Coefficient	pression time and damping.	
			Setting a small value shortens the time to suppress the vibra-	
			tion, however it is highly possible that torque saturation	
			occurs.	
	03	2nd Frequency	The function is the same as 01 hex.	P. 9-21
	04	2nd Damping Time	The function is the same as 02 hex.	P. 9-21
		Coefficient		
	05 3rd Frequency The function is the same as 01 hex.		P. 9-21	
	06	3rd Damping Time	The function is the same as 02 hex.	P. 9-21
	07	Coefficient		D 0 0 '
	07	4th Frequency	The function is the same as 01 hex.	P. 9-21
	08	4th Damping Time	The function is the same as 02 hex.	P. 9-21
		Coefficient		

Precautions for Correct Use

- Stop operation before changing the object settings.
- Damping control may not function properly or have no effect under the following conditions.

Item	Conditions that interfere with the effect of damping control
Load condition	If forces other than position commands, such as external forces, cause vibration
	If the damping frequency is outside the range of 0.5 to 300 Hz
	If the ratio of the resonance frequency to anti-resonance frequency is large

11-7-2 Operating Procedure

1 Adjust the position loop gain and the velocity loop gain.

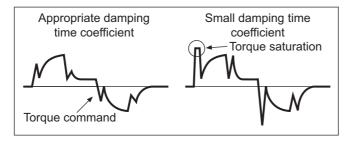
In the easy tuning, manual tuning, advanced tuning, etc., Adjust 1st Position Control Gain or 2nd Position Control Gain (1st: 3213 hex, 2nd: 3214 hex), 1st Velocity Control Gain or 2nd Velocity Control Gain (1st: 3223 hex, 2nd: 3224 hex), and 1st Torque Command Filter or 2nd Torque Command Filter (1st: 3233 hex, 2nd: 3234 hex).

Measure the vibration frequency at the tip of the mechanical unit.

Measure the vibration frequency by using a device such as a laser displacement meter, servo accelerometer, and acceleration pick-up.

Set the measured vibration frequency in one of 1st to 4th Frequency (01 hex, 03 hex, 05 hex, 07 hex) of Damping Filter 1 or 2 (1: 3013 hex, 2: 3014 hex). Also set Damping Filter 1 Selection (01 hex) or Damping Filter 2 Selection (02 hex) of Damping Control (3012 hex) so that the frequency set in the above step is enabled.

If the frequency is set in 1st Frequency (01 hex) of Damping Filter 1 (3013 hex), set Damping Filter 1 Selection (01 hex) of Damping Control (3012 hex) to 1.


If vibration persists after you set the frequency, increase or decrease the damping frequency to find a proper frequency at which vibration decreases.

Make the damping filter settings.

Set the corresponding damping time coefficient of Damping Filter 1 or Damping Filter 2 (1: 3013 hex, 2: 3014 hex).

First, set it to 100% and check the torque waveform during operation. Setting a value smaller than 100% for the damping time can shorten the vibration suppression time, but it increases the maximum operation speed and torque command. Set the damping time within a range in which the maximum motor velocity is not exceeded and torque saturation does not occur. The effects of vibration suppression will be lost if the maximum motor velocity is exceeded or torque saturation occurs.

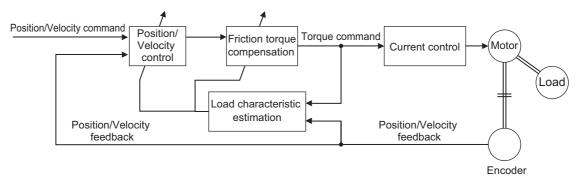
Also, setting a large value for the damping time can reduce the torque command while the setting time gets long.

Set Damping Control (3012 hex).

You can switch Damping filter 1 and 2 according to the conditions of the machine vibration.

Set value (hex)	Description
01	Damping Filter 1 Selection
02	Damping Filter 2 Selection

11-7-3 Setting Frequency with Sysmac Studio


When you use a function of the Sysmac Studio, you can set the damping control easily based on the vibration frequency that is detected automatically.

11-8 Load Characteristic Estimation

The Load Characteristic Estimation function estimates the load characteristics of the machine in realtime, and sets values of the inertia ratio, viscous friction coefficient, unbalanced load compensation, and dynamic friction compensation automatically according to the result of estimation.

You can check the values that are set automatically with Machine - Inertia Ratio Display (3001-81 hex), Torque Compensation - Viscous Friction Coefficient Display (3310-81 hex), Unbalanced Load Compensation Display (3310-82 hex), and Dynamic Friction Compensation Display (3310-83 hex and 3310-84 hex).

This Load Characteristic Estimation function is enabled in the position control, velocity control, and torque control.

Precautions for Correct Use

The Load Characteristic Estimation function may not operate properly under the following conditions. In such cases, set the related objects manually.

	Conditions that interfere with the Load Characteristic Estimation function				
Load inertia	If the load inertia is small, i.e. less than 3 times the rotor inertia or large, i.e. the				
	applicable load inertia or more				
	If the load inertia changes easily				
Load	If the machine rigidity is extremely low				
	If there is a non-linear element (play), such as a backlash				
Operation	If the speed continues at lower than 100 r/min				
	If the acceleration/deceleration is 2,000 r/min/s or lower				
	If the acceleration/deceleration torque is small compared with the unbalanced load and the friction torque				
	If the speed or torque oscillates due to the high gain or small effect of each filter.				

11-8-1 Objects Requiring Settings

Index (hex)	Subindex (hex)	Name	Description	Refer- ence
3B80		Load Characteristic Estimation	Sets the operation of the load characteristic estimation.	P. 9-78
	01	Inertia Ratio Update Selection	Selects whether to estimate load characteristics and update a value of the inertia ratio.	P. 9-78
			0: Use the present set value.	
			1: Update with the estimation result.	
	02	Viscous Friction Com- pensation Update Selection	Selects whether to estimate load characteristics and update a	P. 9-78
			value of the viscous friction coefficient.	
			0: Use the present set value.	
	03	Unbalanced Load	Update with the estimation result. Selects whether to estimate load characteristics and update a	P. 9-79
		Compensation Update	value of the unbalanced load compensation.	1.5-75
		Selection	0: Use the present set value.	
			1: Update with the estimation result.	
	04	Dynamic Friction Com-	Selects whether to estimate load characteristics and update a	P. 9-79
		pensation Update	value of the dynamic friction compensation.	
		Selection	0: Use the present set value.	
			1: Update with the estimation result.	
	05	Viscous Friction Tun- ing Coefficient	Sets the value to adjust the amount of torque compensation which is calculated from the estimated viscous friction value. When the viscous friction coefficient update is enabled, the viscous friction coefficient is updated with a value which is calculated by multiplying the estimated viscous friction by the amount of viscous friction compensation.	P. 9-79
	06	Estimation Sensitivity Selection	Selects the sensitivity to estimate load characteristics from load changes during the load characteristic estimation. 0: Estimate by minutes from load characteristic changes. This setting is used when there is a little change in load characteristics.	P. 9-79
			Estimate by seconds from load characteristic changes. This setting is used when there is a gradual change in load characteristics.	
			Estimate immediately from load characteristic changes. This setting is used when there is a sharp change in load characteristics.	
	FF	Estimation Status	Gives the execution status of the load characteristic estimation.	P. 9-80
			0: Never executed	
			1: Obtaining data	
			2: During estimation	
			3: Estimation completed	

11-8-2 Setting Load Characteristic Estimation Function

1 Turn OFF the Servo before you set the load characteristic estimation function.

Set **Update Selections** (3B80-01 to 3B80-04 hex) depending on the load.

If compensation for friction and unbalanced loads is not required, set only Inertia Ratio Update Selection (01 hex) to 1.

If you use this function for a vertical axis, set Unbalanced Load Compensation Update Selection (03 hex) to 1.

If you use this function for a device with high friction, set Viscous Friction Compensation Update Selection (02 hex) and Dynamic Friction Compensation Update Selection (04 hex) to 1.

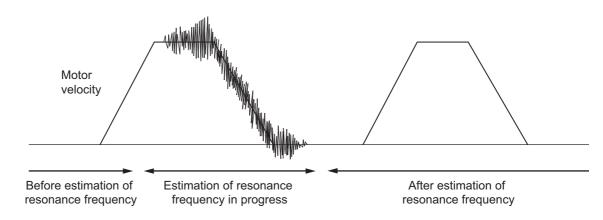
Turn ON the Servo to operate the Servomotor.

The values of the objects for which update is enabled are set automatically in realtime with the estimation results.

If you want to hold the value of an object that is set automatically, set the corresponding update selection object to 0. Then, execute Optimized Parameters – Apply Parameters (3002-F1 hex) and Store Parameters (1010-01 hex).

Precautions for Correct Use

- If the value that is set in the Inertia Ratio (3001-01 hex) is extremely different from the load inertia, operation may be unstable. In such a case, during this function operation, noise, vibration, velocity over the command, or overshooting may occur until the load inertia estimation is completed.
- If the unusual noise or vibration continues, take the following measures in the possible order.
 - Write the objects that you used during normal operation to the non-volatile memory.
 - · Lower the gain.
 - · Manually set the notch filter.
- If unusual noise or vibration occurs, the setting of the inertia ratio or friction torque compensation may be changed to an extreme value. In such a case, check the values of Machine - Inertia Ratio Display (3001-81 hex), Torque Compensation - Viscous Friction Coefficient Display (3310-81 hex), Torque Compensation - Unbalanced Load Compensation Display (3310-82 hex), and Torque Compensation – Positive/Negative Dynamic Friction Compensation Display (3310-83 hex and 3310-84 hex) and take the above measures.


11-9 Adaptive Notch Filter

The Adaptive Notch Filter reduces resonance frequency vibration by estimating the resonance frequency from the vibration component that appears in the motor speed during actual operation and automatically setting the frequency of the notch filter, which removes the resonance component from the internal torque command.

You can check the values that are set automatically with 1st Notch Filter (3321 hex)/2nd Notch Filter (3322 hex)/3rd Notch Filter (3323 hex)/4th Notch Filter (3324 hex) – Frequency Display (Subindex 82 hex), Q-value Display (Subindex 83 hex), and Depth Display (Subindex 84 hex).

Refer to 11-10 Notch Filters on page 11-23 for information on notch filter.

Operation Example

11-9-1 Objects Requiring Settings

Index (hex)	Subindex (hex)	Name	Description	Refer- ence
3320		Adaptive Notch Filter	Sets the adaptive notch filter.	P. 9-45
	01	Adaptive Notch	Selects the notch filter to adapt the estimation result. This	P. 9-45
		Selection	object is disabled when 0 is set.	
			0: Disabled	
			1: 1st Notch Filter	
			2: 2nd Notch Filter	
			3: 3rd Notch Filter	
			4: 4th Notch Filter	
	03	Resonance Detec-	Sets the torque output to detect the resonance, as a percent-	P. 9-45
		tion Threshold	age of the rated torque.	

Precautions for Correct Use

· The adaptive notch filter may not operate properly under the following conditions.

Item	Conditions that interfere with the adaptive filter
Resonance	If the resonance frequency is 300 Hz or lower
frequency	If the resonance peak or control gain is too low to affect the motor speed
	If more than one resonance frequency occurs
Load	If the motor speed with high-frequency components changes due to backlash or other non-linear elements
Command pattern	If the acceleration/deceleration is 3,000 r/min/s or higher

• If the adaptive notch filter does not operate properly, disable it and manually set the notch filter. Refer to 11-10 Notch Filters on page 11-23 for information on notch filter.

11-9-2 Operating Procedure

1 Set Adaptive Notch Filter (3320 hex).

Select adaptive notch filter from 1 to 4 in **Adaptive Notch Filter - Adaptive Notch Selection** (3320-01 hex).

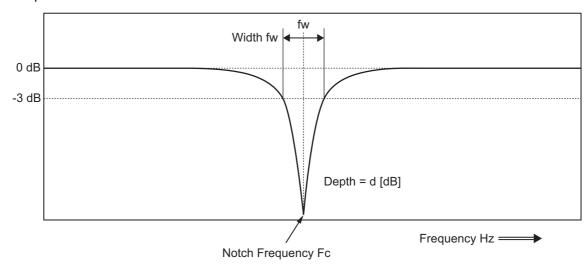
2 Start actual operation.

Enter an operation command and start the actual operation.

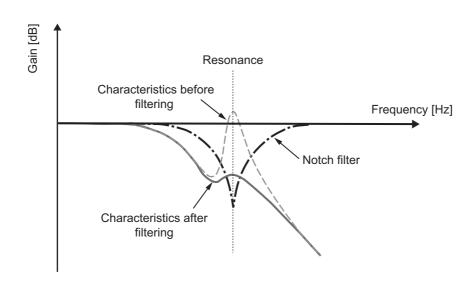
3 The notch filter is automatically set.

When the influence of resonance frequency appears in the motor speed, the selected notch filter is set automatically.

Precautions for Correct Use


- After startup, immediately after the first servo ON, unusual noise or vibration may occur until
 the adaptive notch filter stabilizes. This is not an error if it disappears right away. If the
 vibration or unusual noise, however, continues for three or more reciprocating operations,
 take the following measures in the possible order.
 - Write the value that are used during normal operation to the notch filter, and save the value in the non-volatile memory.
 - Disable the adaptive notch filter by setting Adaptive Notch Selection (3320-01 hex) to 0.
 - · Manually set the notch filter.
- If unusual noise or vibration occurs, the setting of the notch filter selected in Adaptive Notch Selection may be changed to an extreme value. In this case, disable Adaptive Notch Filter and then disable the selected Notch Filter. Next, enable Adaptive Notch Filter again.

11-10 Notch Filters


A notch filter reduces a specified frequency component.

When the machine rigidity is low, factors such as axis torsion may produce resonance which results in vibration and noise. Thus you may not be able to set a high gain. The notch filter suppresses the resonance peak to reduce vibration and noise, and allows you to set a high gain.

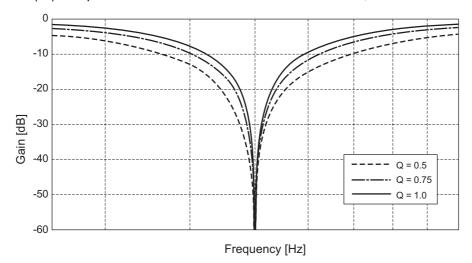
The 1S-series Servo Drives provide four notch filters for which you can adjust each frequency, width and depth.

If mechanical resonance occurs, use this notch filter to eliminate resonance.

11-10-1 Objects Requiring Settings

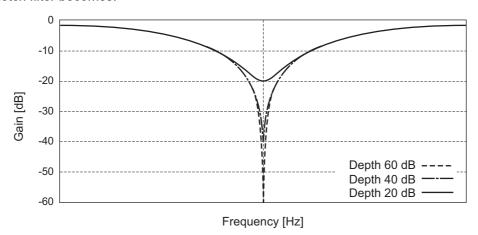
Index (hex)	Subindex (hex)	Name	Description	Refer- ence
3321		1st Notch Filter	Sets the 1st resonance suppression notch filter.	P. 9-46
01	01	Enable	Selects whether to enable or disable the 1st notch filter function.	P. 9-46
			0: Disabled	
			1: Enabled	
	02	Frequency	Sets the notch frequency of the 1st resonance suppression notch filter.	P. 9-46
	03	Q-value	Sets the Q-value of the 1st resonance suppression notch filter.	P. 9-46
	04	Depth	Sets the notch depth of the 1st resonance suppression notch filter.	P. 9-47
3322		2nd Notch Filter	Sets the 2nd resonance suppression notch filter.	P. 9-48
	01	Enable	Selects whether to enable or disable the 2nd notch filter function. The function is the same as 3321 hex.	P. 9-48
			0: Disabled	
		_	1: Enabled	D 0 40
	02	Frequency	Sets the notch frequency of the 2nd resonance suppression	P. 9-48
	03	Ovelve	notch filter. The function is the same as 3321 hex.	P. 9-48
	03	Q-value	Sets the Q-value of the 2nd resonance suppression notch filter. The function is the same as 3321 hex.	P. 9 -4 0
	04	Depth	Sets the notch depth of the 2nd resonance suppression notch	P. 9-49
	04	Берш	filter. The function is the same as 3321 hex.	Г. Э -4 9
3323		3rd Notch Filter	Sets the 3rd resonance suppression notch filter.	P. 9-50
3023	01	Enable	Selects whether to enable or disable the 3rd notch filter func-	P. 9-50
			tion. The function is the same as 3321 hex.	
			0: Disabled	
			1: Enabled	
	02	Frequency	Sets the notch frequency of the 3rd resonance suppression	P. 9-50
		' '	notch filter. The function is the same as 3321 hex.	
	03	Q-value	Sets the Q-value of the 3rd resonance suppression notch fil-	P. 9-50
			ter. The function is the same as 3321 hex.	
	04	Depth	Sets the notch depth of the 3rd resonance suppression notch	P. 9-51
			filter. The function is the same as 3321 hex.	
3324		4th Notch Filter	Sets the 4th resonance suppression notch filter.	P. 9-52
	01	Enable	Selects whether to enable or disable the 4th notch filter func-	P. 9-52
			tion. The function is the same as 3321 hex.	
			0: Disabled	
			1: Enabled	
	02	Frequency	Sets the notch frequency of the 4th resonance suppression	P. 9-52
			notch filter. The function is the same as 3321 hex.	
	03	Q-value	Sets the Q-value of the 4th resonance suppression notch fil-	P. 9-52
			ter. The function is the same as 3321 hex.	
	04	Depth	Sets the notch depth of the 4th resonance suppression notch	P. 9-53
			filter. The function is the same as 3321 hex.	

Precautions for Correct Use


- Identify the resonance frequency from the FFT function or other functions of the Sysmac Studio, and set the identified frequency in Frequency of the notch filter.
- If the adaptive notch filter is set, the objects for the specified notch filter are automatically set. If you want to set the objects for the notch filter manually, disable Adaptive Notch Filter.

11-10-2 Notch Filter Width and Depth

This section explains how to set width and depth of the notch filter.


Width Setting

Use Q-value to set the notch filter width. The relationship between Q-value, Cutoff Frequency (Fc), and Width (fw) is expressed as Q = Fc/fw. The lower the Q-value is, the wider the notch filter becomes.

Depth Setting

Set the notch filter depth in damping ratio [dB]. The larger the value of damping ratio is, the deeper the notch filter becomes.

11-11 Friction Torque Compensation **Function**

You can set the following three types of friction torque compensations to reduce the influence of mechanical frictions.

- Unbalanced load compensation: Offsets the constantly applied unbalance torque
- · Dynamic friction compensation: Compensates friction that changes its direction in accordance with the operating direction.
- Viscous friction compensation: Compensates friction that varies in accordance with velocity.

11-11-1 Operating Conditions

The friction torque compensation function is enabled under the following conditions.

- · Position control or velocity control
- · The Servo is ON.

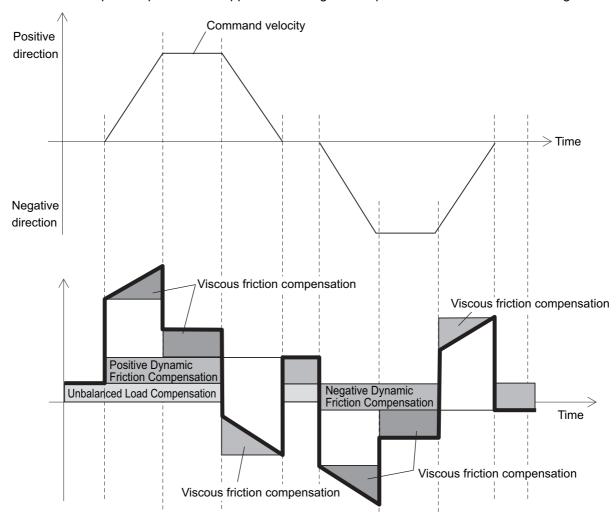
The following table shows the relationship between the control method and enabled compensation functions.

Control method	Viscous friction	Unbalanced load	Dynamic friction
Control metriod	compensation	compensation	compensation
TDF control	Enabled	Enabled	Enabled
ODF control	Disabled	Enabled	Enabled

11-11-2 Objects Requiring Settings

The friction torque compensation function needs the combined settings of the following four objects.

Index (hex)	Subindex (hex)	Name	Description	Refer- ence
3310		Torque Compensa- tion	Sets the torque compensation.	P. 9-43
	01	Viscous Friction Coefficient	Adjusts the amount of viscous friction compensation torque. This object is enabled only in two-degree-of-freedom (TDF) control.	P. 9-43
	02	Unbalanced Load Compensation	Sets the amount of unbalanced load torque compensation.	P. 9-43
	03	Positive Dynamic Friction Compen- sation	Sets the amount of dynamic friction compensation in the positive direction.	P. 9-43
	04	Negative Dynamic Friction Compen- sation	Sets the amount of dynamic friction compensation in the negative direction.	P. 9-44



Precautions for Correct Use

If the update selection of the Load Characteristic Estimation is set to 1, the friction torque compensation is set automatically. If you want to set the torque compensation manually, set the update selection of Load Characteristic Estimation to 0.

11-11-3 Operation Example

The friction torque compensation is applied according to the operation as shown in the drawing below.

Note The dynamic friction compensation holds the compensation value until the command direction changes, in order to sustain the position during stabilization.

By setting the torque command value in **Unbalanced Load Compensation** (3310-02 hex), you can reduce the variations of positioning operations that occur depending on the movement directions. This object is useful when a constant amount of unbalanced load torque is always applied to the Servomotor at axes such as a vertical axis.

By setting the friction torque for each rotation direction in **Positive Dynamic Friction Compensation** (3310-03 hex) and **Negative Dynamic Friction Compensation** (3310-04 hex), you can reduce deterioration of and inconsistencies in the positioning stabilization time due to dynamic friction. These objects are useful for loads that require a larger amount of dynamic friction torque for a radial load, such as the belt-driven shaft.

Precautions for Correct Use

You can use Unbalanced Load Compensation and Dynamic Friction Compensation together or separately. Take note that the following use limit is applied depending on the operation mode switching or servo ON condition.

During torque control

The friction torque compensation is set to 0 regardless of the object setting.

When servo is ON in position control

The values of Unbalanced Load Compensation and Dynamic Friction Compensation are held until the position command is input.

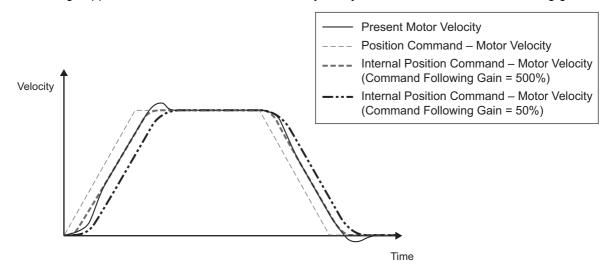
11-12 Feed-forward Function

The feed-forward function is used to improve the following performance for the target position and velocity.

11-12-1 Feed-forward Control in TDF Control

In the normal TDF control, do not add **Velocity offset** (60B1 hex) and **Torque offset** (60B2 hex), because the optimized feed-forward amount is input from the TDF control section.

TDF Control-related Objects


The following are the feed-forward setting objects used in the TDF control.

Index (hex)	Subindex (hex)	Name	Description	Refer- ence
3120		TDF Position Control	Sets the operation in the two-degree-of-freedom position	P. 9-30
			control.	
	01	Command Following	Sets the following performance for the target position.	P. 9-31
	Gain The higher the gain is, the higher the following performa of the internal command is for the target position.			
	of the internal command is for the target position.		of the internal command is for the target position.	
	10 Command Following Selects the command following gain switching method.		P. 9-31	
	Gain Selection ^{*1} 0: Use the Command Following Gain.			
		1: Use the Command Following Gain 2.		
	11	Command Following	ing Sets the cutoff frequency to the position command.	
		Gain 2 *1	The higher the set value is, the higher the following perfor-	
			mance of the internal command is for the target position.	
3121		TDF Velocity Control	Sets the operation in the two-degree-of-freedom velocity control.	P. 9-31
	01	Command Following	Sets the following performance for the target velocity.	P. 9-32
		Gain	The higher the gain is, the higher the following performance	
			of the internal command is for the target velocity.	
	10	Command Following	Selects the command following gain switching method.	P. 9-32
		Gain Selection*1	0: Use the Command Following Gain.	
			1: Use the Command Following Gain 2.	
	11	Command Following	Sets the cutoff frequency to the velocity command.	P. 9-32
		Gain 2 ^{*1}	The higher the set value is, the higher the following performance of the internal command is for the target velocity.	

^{*1.} These objects are available for the unit version 1.1 or later.

Adjustment of TDF Command Following Gain

In the TDF control, the smooth internal commands are generated in the TDF control section so that rapid changes in target position or velocity do not cause overshooting. However, the smoother the internal commands are, the longer the delay of the internal commands gets. This trade-off between the overshooting suppression and internal command delay is adjusted with the command following gain.

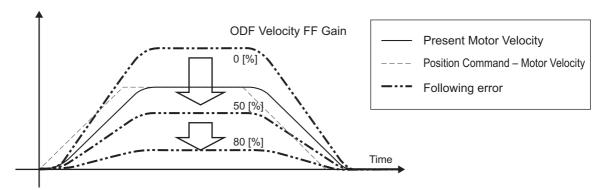
The smaller the set value of Command Following Gain is, the more the overshooting can be

Normally, set Command Following Gain to 50%. Set a value of approximately 30% when you want to suppress overshooting.

11-12-2 Feed-forward Control in ODF Control

The feed-forward function that can be used in the ODF control comes in 2 types: velocity feed-forward and torque feed-forward. In the ODF control, the responsiveness can be increased by changing these feed-forward amounts.

ODF Control-related Objects


The following are the feed-forward setting objects used in the ODF control.

Index (hex)	Subindex (hex)	Name	Description	Refer- ence
3112		ODF Velocity Feed-forward	Sets the velocity feed-forward in the one-degree-of-freedom control	P. 9-28
7.554.15.114.1		Sets the velocity feed-forward gain. Normally, use the	P. 9-28	
	· · · · · · · · · · · · · · · · ·		Selects whether to enable or disable the low-pass filter in the velocity feed-forward.	P. 9-28
			0: Disabled	
			1: Enabled	
	03	LPF Cutoff Frequency	Sets the cutoff frequency for the feed-forward low-pass filter.	P. 9-28
3113		ODF Torque Feed-forward	Sets the torque feed-forward in the one-degree-of-freedom control.	P. 9-29
	01	Gain	Sets the torque feed-forward gain. Normally, use the default setting.	P. 9-29
	02	LPF Enable	Selects whether to enable or disable the low-pass filter in the torque feed-forward.	P. 9-30
			0: Disabled	
			1: Enabled	
	03	LPF Cutoff Frequency	Sets the cutoff frequency for the feed-forward low-pass filter.	P. 9-30

Operating Method of ODF Velocity Feed-forward

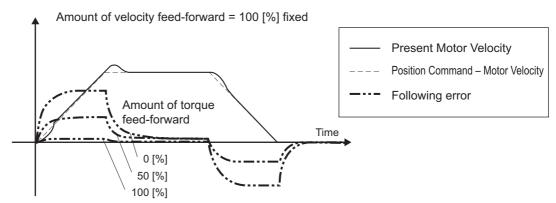
Increase the value of **ODF Velocity Feed-forward** – **Gain** (3112-01 hex) little by little to adjust the gain so that overshooting does not occur during acceleration/deceleration.

If you set **ODF Velocity Feed-forward - Gain** to 1,000 (100%), the calculated following error will be 0. However, large overshooting may occur during acceleration/deceleration.

The following error in a constant velocity range gets smaller as you increase the velocity feed-forward gain.

Operating Method of ODF Torque Feed-forward

Set Inertia Ratio (3001-01 hex).


Set the inertia ratio as accurate as possible.

- If the inertia ratio is calculated when the Servomotor is selected, input the calculated value.
- If the inertia ratio is unknown, use the load characteristic estimation or easy tuning function to set the inertia ratio.
- Adjust **ODF Torque Feed-forward Gain** (3113-01 hex).

Increase value of ODF Torque Feed-forward - Gain (3113-01 hex) little by little.

Since the following error during constant acceleration/deceleration can be close to 0, it can be controlled almost to 0 throughout the entire operation range in a trapezoidal velocity pattern under ideal condition where no disturbance torque is applied.

In reality, disturbance torque is always applied and, therefore, the following error cannot be completely 0.

You can reduce the following error in a constant acceleration range by using the torque feed-forward.

Troubleshooting

This section explains the items to check when problems occur, and troubleshooting by the use of error displays or operation state.

12-1 Actions	s for Problems	12-2
12-1-1	Preliminary Checks When a Problem Occurs	12-2
12-1-2	Precautions When a Problem Occurs	12-3
12-1-3	Replacing the Servomotor or Servo Drive	12-4
12-2 Warnin	ngs	12-6
12-2-1	Related Objects	12-6
12-2-2	Warning List	12-8
12-3 Errors		12-10
12-3-1	Error List	12-10
12-3-2	Deceleration Stop Operation at Errors	12-13
12-4 Informa	ation	12-14
12-4-1	Related Objects	12-14
12-4-2	Information List	12-14
12-5 Trouble	eshooting	12-15
12-5-1	Troubleshooting Using Error Displays	
12-5-2	Troubleshooting Using AL Status Codes	12-38
12-5-3	Troubleshooting Using the Operation State	12-42

12-1 Actions for Problems

If any problems should occur, take the following actions.

Preliminary Checks When a Problem Occurs

This section explains the preliminary checks required to determine the cause of a problem if one occurs.

Checking the Power Supply Voltage

Check the voltage at the power supply input terminals.

Input terminal	Model	Voltage
Main circuit power	R88D-1SN□L-ECT	Single-phase 100 to 120 VAC (85 to 132 V)*1 50/60 Hz
supply input (L1, L2, L3)	R88D-1SN□H-ECT	Single-phase/3-phase 200 to 240 VAC (170 to 252 V)*1 50/60 Hz
	R88D-1SN□F-ECT	3-phase 380 to 480 VAC (323 to 504 V)*1 50/60 Hz
Control Circuit Power Supply Input Termi- nals (24 V, Ø or +24 V, 0V)		24 VDC (21.6 to 26.4V)

^{*1.} The values outside parentheses indicate the rated value, and the values inside parentheses indicate the range of acceptable variation. If the voltage is out of this range, operation failure may result. Be sure that the power supply is within the specified range.

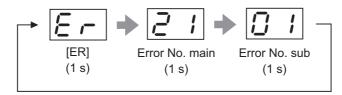
Make sure that the power supply voltage for control input signals is within the range of 12 VDC-5% to 24 VDC+5%, and the power supply voltage for safety input signals is within the range of 24 VDC±5%. If the voltage is out of this range, operation failure may result. Be sure that the power supply is within the specified range.

Checking the Error Occurrence

Check whether an error exists by the use of the 7-segment LED display on the front of the Servo Drive or from the Sysmac Studio.

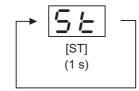
When an Error Exists

Check the error display ($\square\square$) and make an analysis based on the error that is indicated. Refer to 12-5-1 Troubleshooting Using Error Displays on page 12-16.

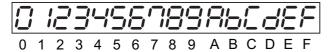

When an Error Does Not Exist

Make an analysis according to the error conditions.

Refer to 12-5-3 Troubleshooting Using the Operation State on page 12-42.


The following figure shows the 7-segment display when an error exists.

Error display and warning display
 The preset character, main code and sub code are displayed in turns.
 Example) Encoder Communications Error: 2101 hex



 Information display ST is displayed.

Example) STO Detected: C000 hex

Numbers from 0 to F hex are displayed as follows.

12-1-2 Precautions When a Problem Occurs

When you check and verify I/O after a problem occurred, the Servo Drive may suddenly start to operate or suddenly stop, so always take the following precautions.

You should assume that anything not described in this manual is not possible with this product.

Precautions

- Disconnect the wiring before checking for cable breakage. If you test conduction with the cable connected, test results may not be accurate due to conduction via bypassing circuit.
- If the encoder signal is lost, the Servomotor may run away, or an error may occur. Be sure to disconnect the Servomotor from mechanical systems before you check the encoder signal.
- When you perform tests, first check that there are no persons in the vicinity of the equipment, and
 that the equipment will not be damaged even if the Servomotor runs away.
 Before you perform the tests, verify that you can immediately stop the machine by the use of functions such as the immediate stop in case the machine runs out of control.

12-1-3 Replacing the Servomotor or Servo Drive

Use the following procedure to replace the Servomotor or Servo Drive.

Replacing the Servomotor

- 1 Replace the Servomotor.
- Perform the Motor Setup.
 - Turn ON the power supply to the Servo Drive. The Motor Replacement Detected (Error No. 95.05) occurs. Use the Sysmac Studio to clear the Motor Replacement Detected.
 - When you use an absolute encoder, perform the Absolute Encoder Setup. Refer to 10-2-4 Absolute Encoder Setup on page 10-7 for details.
- 3 In the position control, perform origin adjustment.
 - · When you replace the motor, the motor's origin position (phase Z) may deviate, so you must perform origin adjustment.
 - Refer to the position controller's manual for details on performing origin adjustment.

Additional Information

With the Sysmac Studio, you can clear the Motor Operating Time retained by the Servo Drive.

Replacing the Servo Drive

1 Take a record of all object settings.

> Use the Sysmac Studio to read all of the servo parameters in the Parameters tab page and save them in a file.

- Replace the Servo Drive.
- Set the objects.

Use the Sysmac Studio to write all of the servo parameters in the Parameters tab page.

- Perform the Motor Setup.
 - When the Motor Replacement Detected (Error No. 95.05) occurs on the Servo Drive, use the Sysmac Studio to clear the Motor Replacement Detected.

Precautions for Correct Use

- Confirm that the charge lamp is not lit before you perform replacement of the Servo Drive.
- · Usually, it takes at least 10 minutes to discharge electricity.
- · The models with a regeneration resistor can discharge electricity in a short period of time when there is no error in its circuits and the main circuit power supply is cut off while the control power supply is ON.

Clearing Motor Replacement Detected

- 1 Start the Sysmac Studio and go online with the Servo Drive via EtherCAT or USB communications.
- In the Sysmac Studio, right-click the target Servo Drive under Configurations and Setup, and select Motor and Encoder.
- **3** Click the **Reset Motor Replacement Detection error** button in the Encoder Properties pane.
- **4** Execute the Unit Restart or turn the control power supply to the Servo Drive OFF and then ON again.

12-2 Warnings

This function outputs a warning signal to enable you to check a state such as an overload before an error occurs.

With Warning Customization (4020 hex), you can select whether or not to detect warnings and whether or not to hold the warning state. Also, you can set this object to be notified of warnings as errors.

If Warning Customization - Warning Hold Selection (4020-04 hex) is set to a not hold, a warning is cleared automatically when the cause of warning is eliminated. If it is set to a hold, perform the normal procedure to clear errors after you remove the cause of the error.

12-2-1 Related Objects

Index (hex)	Subindex (hex)	Name	Description	Refer- ence
4020		Warning Customi-	Sets the warning detection function.	P. 9-82
		zation		
	01	Warning Mask 1	When a bit is set to 1, the detection of the corresponding	P. 9-82
		Selection	warning is disabled.	
			bit 0: Overload Warning	
			bit 1: Regeneration Overload Warning	
			bit 2: Encoder Communications Warning	
			bit 3: Motor Vibration Warning	
			bit 4: Capacitor Lifetime Warning	
			bit 5: Inrush Current Prevention Relay Lifetime Warning	
			bit 7: Brake Interlock Output Relay Lifetime Warning	
			bit 9: Lifetime Information Corruption Warning	
			bit 10: Encoder Lifetime Warning	
			bit 11: Fan Rotation Warning	
			bit 12: Absolute Encoder Counter Overflow Warning	
	03	Warning Mask 3	When a bit is set to 1, the detection of the corresponding	P. 9-83
		Selection	warning is disabled.	
			bit 0: Data Setting Warning	
			bit 1: Command Warning	
			bit 2: EtherCAT Communications Warning	

Index (hex)	Subindex (hex)	Name	Description	Refer- ence
4020	04	Warning Hold	Selects whether to hold or not the warning state.	P. 9-83
		Selection		
			Bit 0:	
			0: Not hold the warning enabled in Warning Mask 1 Selection.	
			The warning is automatically cleared when the cause of the warning is eliminated. However, the warning is held for at least 1 second.	
			1: Hold the warning enabled in Warning Mask 1 Selection.	
			After the cause of the warning is eliminated, the error reset command must be sent.	
			Bit 2:	
			0: Not hold the warning enabled in Warning Mask 3 Selection.	
			The warning is automatically cleared when the cause of the warning is eliminated. However, the warning is held for at least 1 second.	
			1: Hold the warning enabled in Warning Mask 3 Selection.	
			After the cause of the warning is eliminated, the error reset command must be sent.	
	05	Warning Level Change 1 Selec-	When a bit is set to 1, the level of the corresponding warning is set as the error.	P. 9-83
		tion	bit 0: Overload Warning	
			bit 1: Regeneration Overload Warning	
			bit 2: Encoder Communications Warning	
			bit 3: Motor Vibration Warning	
			bit 4: Capacitor Lifetime Warning	
			bit 5: Inrush Current Prevention Relay Lifetime Warning	
			bit 7: Brake Interlock Output Relay Lifetime Warning	
			bit 9: Lifetime Information Corruption Warning bit 10: Encoder Lifetime Warning	
			bit 11: Fan Rotation Warning	
			bit 12: Absolute Encoder Counter Overflow Warning	
•	07	Warning Level Change 3 Selec-	When a bit is set to 1, the level of the corresponding warning is set as the error.	P. 9-84
		tion	bit 0: Data Setting Warning	
			bit 1: Command Warning	
			bit 2: EtherCAT Communications Warning	

12-2-2 Warning List

General Warnings

Erro	r No.			Warning Mask 1
Main (hex)	Sub (hex)			Selection*1 (4020-01 hex) Warning Level Change 1 Selection (4020-05 hex) corresponding bit
A0	00	Overload Warning	The load ratio of Servo Drive or motor (4150-81 hex) exceeded the level set in Overload - Warning Notification Level (4150-01 hex).	Bit 0
A1	00	Regeneration Overload Warning	The Regeneration Load Ratio (4310-81 hex) exceeded 85% of the regeneration overload ratio.	Bit 1
A3	00	Fan Rotation Warning	The rotation speed of the fan is 80% or less of the rating and the cooling performance decreases.	Bit 11
A4	00	Encoder Communications Warning	Encoder communications errors occurred in series more frequently than the specified value.	Bit 2
A6	00	Motor Vibration Warning	The motor vibration, which was higher than or equal to the level set in the Vibration Detection - Detection Level (3B70-01 hex), was detected.	Bit 3
A7	01	Capacitor Lifetime Warning	The capacitor built into the Servo Drive reached the service life of the manufacturer's guarantee.	Bit 4
	02	Inrush Current Prevention Relay Lifetime Warning	The inrush current prevention relay built into the Servo Drive reached the service life of the manufacturer's guarantee.	Bit 5
	04	Brake Interlock Output Relay Lifetime Warning	The brake interlock output (BKIR) relay built into the Servo Drive reached the service life of the manufacturer's guarantee.	Bit 7
	05	Lifetime Information Corruption Warning	An error was detected in the saved life-time information.	Bit 9
	06	Encoder Lifetime Warning	The encoder lifetime is close to the end. The encoder broke down.	Bit 10
AB	00	Absolute Encoder Counter Overflow Warning	The multi-rotation counter of the encoder exceeded the value set in Encoder - Absolute Encoder Counter Overflow Warning Level (4510-02 hex).	Bit 12

^{*1.} For Warning Mask 1 Selection, when a bit is set to 1, the detection of the corresponding warning is disabled.

Precautions for Correct Use

You can clear these warnings by executing the error rest command. The command does clear the warning even if the cause of the warning is not removed, but the same warning will occur again.

EtherCAT Communications Warning

	Erro Main (hex)	Sub (hex)	Warning name	Warning condition	Warning Mask 3 Selection*1 (4020-03 hex), Warning Level Change 3 Selection (4020-07 hex) corresponding bit
	B0	00	Data Setting Warning	The object set value is out of the	Bit 0
_				range.	
	B1	00	Command Warning	A command could not be exe-	Bit 1
				cuted.	
-	B2	00	EtherCAT Communications	An EtherCAT communications	Bit 2
			Warning ^{*2}	error occurred more than one	
				time.	

^{*1.} For Warning Mask 3 Selection, when a bit is set to 1, the detection of the corresponding warning is disabled.

^{*2.} This warning also occurs when the power supply to the master unit is turned OFF after EtherCAT communication establishment. For this reason, a warning may be recorded in the error history if the power supply to the 1S-series Servo Drive is turned OFF immediately after the power supply to the master unit is turned OFF.

12-3 Errors

If the Servo Drive detects an abnormality, it outputs an error (/ERR), turns OFF the power drive circuit, and displays the error number (main and sub) on the front panel.

Precautions for Correct Use

- Refer to 12-5-1 Troubleshooting Using Error Displays on page 12-16 for information on troubleshooting.
- You can reset the error by turning OFF the power supply and then ON again, or executing the error reset command via EtherCAT communications or on the Sysmac Studio. Be sure to remove the cause of the error first.
- · Some errors are reset only by turning the power supply OFF then ON again. For details, refer to 12-3-1 Error List on page 12-10.
- If nothing is displayed on the 7-segment display even when the control power supply is ON, it indicates that the internal MPU is malfunctioning. If you find this symptom, cut off the power supply immediately.

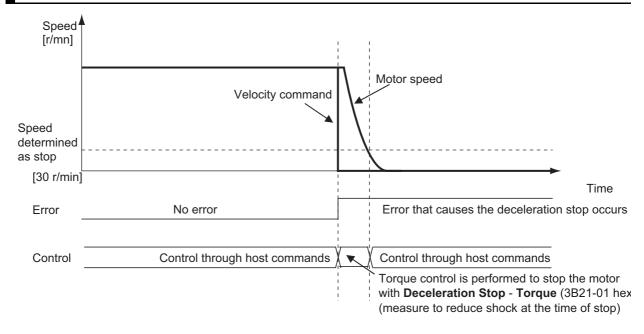
12-3-1 Error List

Error No.			Attr	ribute
Main	Sub	Error name	Can be	Deceleration
(hex)	(hex)		reset*1	operation*2
12	00	Overvoltage Error		В
13	00	Main Power Supply Undervoltage (insufficient voltage	Yes	В
		between P and N)		
	01	Main Circuit Power Supply Phase Loss Error	Yes	В
14	00	Overcurrent Error		В
	01	Power Module Error		В
	02	Regeneration Circuit Error Detected during Power ON*3		В
	03	Inrush Current Prevention Circuit Error*4		В
15	00	Servo Drive Overheat	Yes	В
•	01	Motor Overheat Error	Yes	В
16	00	Overload Error	Yes	В
18	00	Regeneration Overload Error		В
•	01	Regeneration Circuit Error*4		В
•	02	Regeneration Processing Error		В
20	00	Runaway Detected*5		В
21	00	Encoder Communications Disconnection Error		В
•	01	Encoder Communications Error		В
24	00	Excessive Position Deviation Error	Yes	А
•	01	Excessive Speed Deviation Error	Yes	А
26	00	Excessive Speed Error	Yes	А
27	01	Absolute Value Cleared		В
28	00	Pulse Output Overspeed Error	Yes	А
	01	Pulse Output Setting Error		А
29	03	Following Error Counter Overflow		В
33	00	General Input Allocation Duplicate Error		А
	09	General Output Allocation Duplicate Error		А
34	01	Software Limit Exceeded	Yes	Α

Erro	r No.			ribute
Main	Sub	Error name	Can be	Deceleration
(hex)	(hex)		reset*1	operation*2
35	00	FPGA WDT Error		В
	01	System Error		В
	02	Self-diagnosis Error		В
36	00	Non-volatile Memory Data Error		Α
37	00	Non-volatile Memory Hardware Error		А
38	00	Drive Prohibition Input Error	Yes	Α
	01	Drive Prohibition Detected	Yes	Α
41	00	Absolute Encoder Counter Overflow Error		Α
43	01	Encoder Memory Error		В
44	00	1-rotation Counter Error		В
45	00	Absolute Encoder Multi-rotation Counter Error		В
	01	Absolute Position Detection Error		В
47	00	Overspeed Error		В
58	00	Main Circuit Temperature Monitoring Circuit Failure		В
59	00	Fan Error	Yes	А
62	00	Control Right Release Error	Yes	Α
70	00	Safety Parameter Error	Yes	Α
	01	Safety Communications Setting Error	Yes	Α
	02	FSoE Slave Address Error	Yes	Α
	03	Safety Frame Error	Yes	Α
	04	Safety Communications Timeout	Yes	Α
83	01	EtherCAT State Change Error	Yes	Α
	02	EtherCAT Illegal State Change Error	Yes	Α
	03	Communications Synchronization Error	Yes	Α
	04	Synchronization Error	Yes*6	Α
	05	Sync Manager WDT Error	Yes	Α
	06	Bootstrap State Transition Request Error	Yes	Α
87	00	Error Stop Input	Yes	А
88	01	ESC Initialization Error		Α
	02	Synchronization Interruption Error		Α
	03	SII Verification Error		А
	04	ESC Error		Α
90	00	Mailbox Setting Error	Yes	А
	01	PDO WDT Setting Error	Yes	А
	02	SM Event Mode Setting Error	Yes	А
	03	DC Setting Error	Yes	А
	04	Synchronization Cycle Setting Error	Yes	Α
	05	RxPDO Setting Error	Yes	Α
	06	TxPDO Setting Error	Yes	А
	07	RxPDO Mapping Error	Yes	А
	08	TxPDO Mapping Error	Yes	А
	09	Node Address Updated		A
91	01	Command Error	Yes	A
93	00	Electronic Gear Setting Error		A
94	00	Function Setting Error	Yes	A
95	01	Motor Non-conformity		A
50	05	Motor Replacement Detected		A
97	00	Brake Interlock Error	Yes	A

^{*1. &}quot;Yes" means that you can clear the error by executing the error reset command. The mark "---" means that you need to cycle the power supply or execute **Unit Restart** (2400 hex) to clear the error.

- *2. The deceleration operation shows the operation (Operation A or Operation B) that is used when Fault reaction option code (605E hex) is set to -4 to -7.
- *3. This error can occur in the unit version 1.2 only.
- *4. This error can occur in the unit version 1.3 or later.
- *5. This error can occur in the unit version 1.1 or later.
- *6. "---" is specified for the unit version 1.0.


12-3-2 Deceleration Stop Operation at Errors

The deceleration stop function controls the motor and decelerates it to stop if an error that causes the deceleration stop occurs.

Related Objects

Index (hex)	Subindex (hex)	Name	Description	Refer- ence
605E	00	Fault reaction option code	Sets the state during deceleration and after stopping for when an error occurs.	P. A-46
3B21		Deceleration Stop	Sets the torque for deceleration stop.	P. 9-67
	01	Torque	Sets the torque limit value during deceleration stop.	P. 9-67

Deceleration Stop Operation

12-4 Information

Information is an event other than errors of which you are notified.

You can change information to errors by changing its level.

12-4-1 Related Objects

Index (hex)	Subindex (hex)	Name	Description	Refer- ence
4030		Information Customi- zation	Sets the information.	P. 9-87
	01	Information Level Change Selection	Sets the level change of information. When a bit is set to 1, the level of the corresponding information is set as the error. Bit 0: STO	P. 9-87

12-4-2 Information List

Error No.				Information Level Change
Main (hex)	Sub (hex)	Information name	Warning condition	Selection ^{*1} (4030-01 hex)
C0 ^{*2}	00	STO Detected	STO status	Bit 0

^{*1.} For Information Level Change Selection, when a bit is set to 1, the level of the corresponding information is set as the

^{*2.} When a level corresponds to the information, ST is displayed on the 7-segment LED. If you change the level of the corresponding information to an error, Er C0 00 will be displayed.

12-5 Troubleshooting

If an error occurs in the Servo Drive or operation, identify the cause of the error and take appropriate measures as shown below.

- For the error occurrence, check its frequency, timing, and the environment in which the error occurred.
- You can reduce errors that occur temporarily by taking noise countermeasures such as wiring a thick ground wire as short as possible.
- For details on noise countermeasures, refer to 4-3 Wiring Conforming to EMC Directives on page 4-51.

12-5-1 Troubleshooting Using Error Displays

When an error or warning occurs, the error number is displayed on the 7-segment LED display the front of the Servo Drive.

Error List

Erro	r No.				
Main	Sub	Name	Ca	use	Measures
(hex)	(hex)			I =	
12	00	Overvoltage Error	The main circuit power supply voltage (P-N voltage) exceeded the operation guarantee	The P-N voltage exceeded the specified value. The input voltage	Keep the applied main circuit power supply voltage within the specified range. Use appropriately external devices
			range.	increased. The Regeneration Resistor wiring is broken. The External Regeneration Resistor is set or selected inappropriately.	such as UPS. If a resistance value of the external resistor is infinite between the terminal B1 and B2 of the Servo Drive, the wiring is broken. Replace the external resistor. Confirm the necessary regeneration processing capacity, and connect an appropriate External Regeneration Resistor. Also, set the parameters of the External Regeneration Resistor to the resistance value of
					the External Regeneration Resistor in use.
				P-N voltage increased because a noise of a Servo Drive during Servo ON interrupted to a Servo Drive during Servo OFF.	When several Servo Drives are used, DO NOT bundle motor power cables. Wire so that inductance of the power supply cable is smaller. You can find effect of improvement once a noise filter is set to the power line. Use one noise filter for each Servo Drive. Refer to 4-7 Noise Filter Installation Conditions When the Total Wire Length Is Long on page 4-80 when you connect more than one Servo Drive to one noise filter. When doing so, make sure to connect all Servo Drives to the power supply through the noise filter. You can find effect of improvement once an External Regeneration
				Servo Drive failure	Resistor is set to a Servo Drive with non built-in a Regeneration Resistor. If this event occurs again after you
					performed all corrections shown above, replace the Servo Drive.

Frro	r No.				
Main	Sub	Name	Cause		Measures
(hex)	(hex)				
13	00	Main Power Supply Undervolt- age (insuffi-	The main circuit power supply voltage fell below the operation guarantee range during Servo	Incorrect wiring of the main circuit power supply	If the power supply cables are not wired to the main circuit power supply terminals (L1, L2, L3), connect them.
		cient voltage between P and N)	ON.	The low power supply voltage is applied to the Servo Drive.	Increase the power supply capacity if it is small. Measure the applied power supply voltage, and apply the voltage according to the specification.
				The long time was set in Momentary Hold Time and the voltage was decreased momentarily.	Remove the cause that momentarily decreased the voltage. Set a short time in the Momentary Hold Time so as not to detect this error due to a momentary decrease in voltage.
				Servo Drive failure	If this event occurs again after you performed all corrections shown above, replace the Servo Drive. When there is a failure in inrush
					current prevention circuit, in some cases, this error occurs.
	01	Main Circuit Power Sup- ply Phase Loss Error	The phase loss of the main circuit power supply was detected.	Incorrect wiring, for example the single-phase power supply is input to a 3-phase input type Servo Drive.	Confirm the Servo Drive specifications, and perform the correct wiring.
				In the case where the single-phase power supply is input to a single- and 3-phase input type Servo Drive, the phase loss detection is enabled.	Set Main Circuit Power Supply - Phase Loss Detection Enable (4320-02 hex) to 0 (disabled).
				The power supply voltage is low or insufficient.	Improve power supply conditions by increasing the power supply capacity or the like.
				Broken wiring of the main circuit power supply input	Replace the main circuit power supply input cable.
				Servo Drive failure	If this event occurs again after you performed all corrections shown above, replace the Servo Drive.

Erro	r No.				
Main	Sub	Name	Ca	use	Measures
(hex)	(hex)				
14	00	Overcurrent Error	The current flowing to the motor exceeded the protection level.	There is a short circuit, ground fault, or contact failure on the U, V, or W motor cable.	Correct the connection of the U, V, or W motor cable.
				There is a short circuit on the wiring of External Regeneration Resistor.	Correct the wiring of External Regeneration Resistor.
				The insulation resistance failed between the U, V, or W motor cable and the motor ground wire.	Replace the motor.
				False detection due to the noise	Take noise countermeasures.
				Servo Drive failure	If this event occurs again after you performed all corrections shown above, replace the Servo Drive.
	01	Power Mod- ule Error	An error was detected in the power module.	There is a short circuit, ground fault, contact failure, disconnection, or break on the U, V, or W motor cable.	Correct the connection of the U, V, or W motor cable. If the cable is broken, replace it.
				There is a short circuit on the wiring of External Regeneration Resistor, or the value of resistance became too small.	If there is a short-circuit on the wiring of External Regeneration Resistor, correct the wiring.
				The insulation resistance failed between the U, V, or W motor cable and the motor ground wire.	Replace the motor.
				Servo Drive failure	If this event occurs again after you performed all corrections shown above, replace the Servo Drive.

Error No.						
Main	Sub	Name	Ca	use	Measures	
(hex)	(hex)					
14	02	Regeneration Circuit Error Detected during Power ON*1	An error of the Regeneration Circuit was detected at power ON.	Power supply voltage is insufficient at power ON, or rising slowly. Power supply voltage fluctuated at power ON. L1, L2, and L3 terminals are not connected or disconnected. N1 and N2 terminals are opened. Servo Drive failure	Cut off the main circuit power supply immediately and check whether charge lamp is turned ON/OFF. If the charge lamp is turned OFF, remove the wiring and make the following check. • Check whether there is an abnormality in the appearance of the Servo Drive, and that the wiring is properly done. • Check that the resistance value and the power of the External Regeneration Resistor is correct. • Wait until the voltage between P and N1 goes to less than 1 V to check the resistance value between P and N1. (If it is less than 10 kΩ, replace the Servo Drive.) • Wait until the voltage get stable to check the resistance value between B2 and N1. (If it is less than 100 kΩ, replace the Servo Drive.) • Check whether fluctuation in the power supply voltage or power supply occurs or not. (Make sure that an instantaneous power drop does not occur, and that the power rise time is 500 ms or shorter.) If the charge lamp is turned ON, check whether fluctuation in the power supply voltage or power supply occurs or not. (Make sure that an instantaneous power drop does not occur, and that the power rise time is 500 ms or shorter.) If the charge lamp is turned ON, check whether fluctuation in the power supply voltage or power supply occurs or not. (Make sure that an instantaneous power drop does not occur, and that the power rise time is 500 ms or shorter.) If this event occurs again after you performed all corrections shown above, replace the Servo Drive. If this event occurs again, replace	
		rent Preven- tion Circuit	rent prevention circuit was detected.		the Servo Drive.	
		Error*2				

Erro	Error No.				
Main	Sub	Name	Ca	use	Measures
(hex)	(hex)				
15	00	Servo Drive Overheat	The internal temperature of Servo Drive exceeded the circuit protection level.	The ambient temperature of the Servo Drive exceeded the specified value. Overload	Improve the ambient temperature and the cooling conditions of the Servo Drive. Increase the setting of the acceleration/deceleration time or stopping time to lighten the load. Or, increase the capacities of the Servo Drive and the motor.
	01	Motor Over- heat Error	The encoder detected the temperature that exceeded the protection level of motor.	The temperature is high around the motor. The motor is over-	Adjust the temperature around the motor to be within the range of the operating temperature. Adjust the motor load ratio to be
				loaded.	within the specified range.
				Encoder failure	Replace the motor if this event occurs repeatedly.
16	00	Overload Error	The load ratio of Servo Drive or motor (4105-81 hex) exceeded 100%.	Operation was continued for a long time with high load. There is incorrect wir-	Take the following actions according to conditions. Increase the set value of the acceleration/deceleration time or the stop time. Lighten the load. Adjust the gain or inertia ratio. If torque waveforms oscillate excessively, adjust the system by the tuning so that the oscillation does not occur. Set the appropriate brake timing. Increase the capacities of the Servo Drive and the motor.
				ing of the motor cable or a broken cable. Increase in friction	shown in the wiring diagram. If the cable is broken, replace it. Or, connect the motor cable and encoder cable that are used together to the same motor. • Measure the voltage at the brake terminal. If the brake is applied, release it. Check machine conditions and
				orodoo iii iiiodoii	remove the cause of the friction.

Erro	r No.				
Main	Sub	Name	Ca	use	Measures
(hex)	(hex)	- Hamo	ou.	u00	modearce
18	00	Regenera- tion Over- load Error	The Regeneration Load Ratio (4310-81 hex) exceeded the regeneration overload ratio.	The regeneration processing is set inappropriately. The Regeneration Resistor is selected inappropriately.	Check the regeneration processing setting, and set the same value as the resistance value of the Regeneration Resistor in use. Check the operation pattern by the velocity monitor. Check the load ratio of Regeneration Resistor, and perform the following corrections accordingly. Increase the deceleration time
					 and stopping time. Decrease the command velocity to the motor. Use an External Regeneration Resistor. Increase the capacities of the Servo Drive and the motor.
				The Regeneration Resistor is used for continuous regenerative braking.	The Regeneration Resistor cannot be used for continuous regenerative braking.
				The applied power supply voltage is higher than the specified value.	Apply the specified power supply voltage.
				Regeneration Resistor failure	Check whether the Regeneration Resistor is faulty, and use one without failures.
	01	Regenera- tion Circuit Error*2	An regeneration circuit error was detected.	There is a short circuit between B2 and N2/N3.	Perform the correct wiring, referring the cases of the connection with peripheral devices.
				Regeneration circuit failure	Replace the Servo Drive.
				Noise into wiring of the external regeneration registor.	Take noise countermeasures by shortening wiring or the like.
	02	Regenera- tion Process- ing Error	The regeneration processing was stopped to protect the Regeneration Resistor. This error occurs when	The regeneration processing is set inappropriately.	Check the regeneration processing setting, and set the same value as the resistance value of the Regeneration Resistor in use.
			the regeneration pro- cessing continues for 500 ms or more.		

Erro	r No.				
Main	Sub	Name	Ca	use	Measures
(hex)	(hex)			T=: =	
18	02	Regenera- tion Process- ing Error	The regeneration processing was stopped to protect the Regeneration Resistor. This error occurs when	The Regeneration Resistor is selected inappropriately.	Check the operation pattern by the velocity monitor. Check the load ratio of Regeneration Resistor, and perform the following corrections accordingly.
			the regeneration processing continues for		Increase the deceleration time and stopping time.
			500 ms or more.		Decrease the command velocity to the motor.
					Use an External Regeneration Resistor.
					Increase the capacities of the Servo Drive and the motor.
				The Regeneration Resistor is used for continuous regenerative braking.	The Regeneration Resistor cannot be used for continuous regenerative braking.
				The applied power supply voltage is higher than the specified value.	Apply the specified power supply voltage.
				Regeneration Resistor failure	Check whether the Regeneration Resistor is faulty, and use one without failures.
20	00	Runaway Detected ^{*3}	The motor rotated in the direction opposite to the command.	There is incorrect wiring of the motor cable or a broken cable.	Connect the motor cable as shown in the wiring diagram. If the cable is broken, replace it.
					Or, connect the motor cable and encoder cable that are used together to the same motor.
				The motor rotated in the direction opposite to the command by external	Take countermeasures so that the motor is not subjected to external forces.
				forces.	Set Runaway Detection - Enable (3B71-01 hex) to 0 (disabled) when the motor runs as intended.
21	00	Encoder Communica- tions Discon-	The communications disconnection was detected between the	Noise into the encoder cable	Separate the motor cable and the encoder cable if they are bundled together.
		nection Error	encoder and the Servo		Connect the shield to FG.
			Drive. This error is detected if		Confirm that the motor ground wire is connected to FG.
			the encoder communi- cations timeout occurs	Contact failure of the	Replace the encoder cable if it is
			four times in a row.	signal line, and discon- nection of the encoder	broken. Firmly connect the encoder connector to the Servo Drive.
				Power supply undervolt-	Use the recommended encoder
				age to the encoder	cable.
				Encoder failure	If this event occurs after you per-
					formed all corrections shown
					above, replace the motor.

Error No.						
Main	Sub	Name	Cause		Measures	
(hex)	(hex)					
21	01	Encoder Communica- tions Error	Illegal data was received from the encoder the specified number of times. This error is detected if the data error occurs four times in a row during communications with the encoder.	Noise into the encoder cable Contact failure of the signal line, and disconnection of the encoder Power supply undervoltage to the encoder	 Separate the motor cable and the encoder cable if they are bundled together. Connect the shield to FG. Check that the motor ground wire is connected to FG. Replace the encoder cable if it is broken. Firmly connect the encoder connector to the Servo Drive. Use the recommended encoder cable. 	
24	00	Excessive Position Deviation Error	The position deviation is greater than or equal to the value set in the Following error window.	The motor operation does not follow the command. The value of Following	Identify and remove a cause that limits the motor operation. During the acceleration/deceleration, the command may not be followed depending on operation patterns. In that case, adjust the gain, increase the acceleration/deceleration time or the like. Increase the setting of the Follow-	
				error window is small.	ing error window to an acceptable range.	
	01	Excessive Speed Devia- tion Error	The speed deviation is greater than or equal to the value set in the Excessive Velocity Deviation Detection Level.	The motor operation does not follow the command because a parameter value is inappropriate. The output axis of motor is limited on the opera-	Adjust the gain to improve the following ability. Or, increase the acceleration/deceleration time for the internal position command velocity. Take countermeasures so that the output axis is not limited on the	
				tion by external forces. The value of the Excessive Velocity Deviation Detection Level is inappropriate.	operation by external forces. Increase the setting of the Excessive Velocity Deviation Detection Level to an acceptable range. Disable the Excessive Velocity Deviation Detection if it is unnecessary to monitor the velocity deviation.	
26	00	Excessive Speed Error	The feedback motor speed is greater than or equal to the value set in the Excessive Speed	The velocity command value is too large. Overshooting occurred.	Do not give the excessive velocity command. Check whether the electronic gear ratio is set correctly. If overshooting occurred due to	
			Detection Level.	The motor is rotated by external forces.	faulty gain adjustment, adjust the gain. Check whether the motor is rotated by external forces.	
27	01	Absolute Value Cleared	The multi-rotation counte was cleared.		This operation is performed for safety and is not an error.	

Erro	r No.				
Main (hex)	Sub (hex)	Name	Cause		Measures
28	00	Pulse Output Overspeed Error	The speed, which exceeded the frequency that could be output by the Encoder Dividing Pulse Output function, was detected.	The dividing ratio setting is inappropriate for the actual usage condition.	Correct the setting of Encoder Dividing Pulse Output - Dividing Denominator and Dividing Numerator.
	01	Pulse Output Setting Error	The dividing numerator e denominator when the Er Output - Dividing Denomi other than 0.	ncoder Dividing Pulse	Correct the setting of Encoder Dividing Pulse Output - Dividing Denominator and Dividing Numerator.
29	03	Following Error Counter Overflow	The following error value exceeded the range from -2,147,483,648 to 2,147,483,647.	The motor operation does not follow the command.	Identify and remove a cause that limits the motor operation. During the acceleration/deceleration, the command may not be followed depending on operation patterns. In that case, change the operation pattern by increasing the acceleration/deceleration time or the like.
				The motor is rotated or limited on the operation by external forces.	Take countermeasures so that the motor is not subjected to external forces.
33	00	General Input Allocation Duplicate Error	More than one function ir general input.	put is allocated to one	Correct the duplicate general input allocation.
	09	General Out- put Alloca- tion Duplicate Error	More than one function o general output.	utput is allocated to one	Correct the duplicate general output allocation.
34	01	Software Limit Exceeded	The Position actual value detected the position that exceeded the value set in the Software Position Limit, and stopped the operation according to the user setting.	Incorrect setting of Software Position Limit When the Software Position Limit - Stop Selection was set to a Stop according to the setting of Fault reaction option code, the position exceeded the value set in the Software Position Limit.	Correct the setting of Software Position Limit. Set the command value to be within the range of Software Position Limit.

Error No.					
Main Sub		Name	Cause		Measures
(hex)	(hex)				
35	00	FPGA WDT Error	An FPGA error was detected.	False detection due to a data read error that was caused by excessive noise Hardware failure	If this event does not occur after you cycled the power supply, use the product continuously. It is supposed that a temporary error occurred due to a read error. If this event occurs again, the hardware is faulty. Replace the Servo Drive.
	01	System Error	A hardware error due to the self-diagnosis and a fatal software error were detected.	False detection due to a data read error that was caused by excessive noise A fatal software error was detected. Hardware failure	If this event does not occur after you cycled the power supply, use the product continuously. It is supposed that a temporary error occurred due to a read error. If this event occurs again, a fatal error exists. Replace the Servo Drive.
	02	Self-diagno- sis Error	An error was detected by the self-diagnosis of the safety function.	False detection due to a data read error that was caused by excessive noise Hardware failure	If this event does not occur after you cycled the power supply, use the product continuously. It is supposed that a temporary error occurred due to a read error. If this event occurs again, replace the Servo Drive.
36	00	Non-volatile Memory Data Error	An error of data saved in the non-volatile memory was detected.	Power interruption or noise occurred while parameters other than the safety were saved Power interruption or noise occurred while the motor identity informa- tion was saved	Save data after setting the parameter again, and cycle the power supply. Execute Motor Setup, and cycle the power supply.
				Power interruption or noise occurred while safety parameters were saved	Clear the FSoE slave address, execute FSoE Enable Reset, and cycle the power supply.
37	00	Non-volatile Memory Hardware Error	An error occurred on the non-volatile memory.	False detection due to a data read error that was caused by excessive noise Non-volatile memory failure	After you cycled the power supply, if this error occurs continuously although the error is reset, the non-volatile memory is faulty. Replace the Servo Drive.

Error No.					
Main	Sub	Name	Cause		Measures
(hex)	(hex)				
38	00	Drive Prohibition Input Error	Both the Positive Drive Prohibition (POT) and the Negative Drive Pro- hibition Input (NOT) turned ON.	An error occurred on the switch, wire, power supply, and wiring that was connected to the Positive Drive Prohibition Input (POT) or Negative Drive Prohibition Input (NOT).	Check and correct an error on the switch, wire, power supply, and wiring that is connected to the Positive Drive Prohibition Input or Negative Drive Prohibition Input.
				False detection occurred because the control signal power supply was turned ON slowly.	Check whether the control signal power supply (12 to 24 VDC) is turned ON slowly, and adjust the timing if it is slow.
	01	Drive Prohibition Detected	The operation was stopped according to the user setting because the motor ran in the prohibited direc-	Incorrect or broken wir- ing of Positive Drive Prohibition Input (POT) or Negative Drive Prohi- bition Input (NOT)	Correct the wiring if the Positive Drive Prohibition Input (POT) or Negative Drive Prohibition Input (NOT) is wired incorrectly. If the cable is broken, replace it.
			tion when the Drive Pro- hibition was enabled.	Incorrect setting of the Drive Prohibition Input	Review the setting of the drive prohibition input port and set it correctly.
41	00	Absolute Encoder Counter Overflow Error	The multi-rotation counter of the encoder exceeded the maximum number of rotations.	An inappropriate value was set in the Encoder - Operation Selection when Using Absolute Encoder (4510-01 hex).	Set the appropriate value in the Encoder - Operation Selection when Using Absolute Encoder (4510-01 hex).
				The multi-rotation number of the encoder exceeded the maximum number of rotations.	Set the travel distance so that the multi-rotation number does not exceed the maximum number of rotations.
43	01	Encoder Memory Error	The encoder detected a non-volatile memory error.	False detection due to a data read error that was caused by excessive noise Non-volatile memory failure	If this event occurs after you cycled the power supply, the encoder is faulty. Replace the motor.
44	00	1-rotation Counter Error	The encoder detected a one-rotation counter error.	There is excessive noise. Failure due to vibration, impact, condensation or foreign matter, etc.	Take noise countermeasures. If this event occurs after you performed noise countermeasures, the motor is faulty. Replace the motor.

Error No.					
Main	Sub	Name	Cause		Measures
(hex)	(hex)				
45	00	Absolute Encoder Multi-rotation Counter Error	The encoder detected a multi-rotation counter error.	A temporary error occurred in the encoder multi-rotation detection function due to vibration, impact, or condensation. Encoder failure	Use the product continuously if this event does not occur after improving the operating environment. Replace the motor if this event occurs again.
	01	Absolute Position Detection Error	The encoder detected a multi-rotation counter error.	A detection error was detected in the multi-rotation detection section of the encoder. There is excessive noise.	Perform the Absolute Encoder Setup after cycling the power supply, and update the multi-rotation number.*4 Take noise countermeasures. Replace the motor if this event occurs repeatedly.
47	00	Overspeed Error	The encoder detected the overspeed.	The motor is rotated by external forces. Encoder failure and false detection	Take countermeasures so that the motor is not subjected to external forces if the motor is rotated by external forces. If this event occurs repeatedly, the encoder is faulty. Replace the
					motor.
58	00	Main Circuit Temperature Monitoring Circuit Failure	A temperature monitoring circuit failure was detected on the main circuit.		If this event occurs repeatedly after you cycled the power supply, Replace the Servo Drive.
59	00	Fan Error	The rotation speed of the fan is 40% or less of the rating and the cool- ing performance decreases.	There is a foreign matter in the cooling fan and it blocks the rotation. Cooling fan failure	Check whether there is a foreign matter in the fan. If you find a foreign matter, remove it. If there is no improvement after you performed the correction above, replace the Servo Drive.
62	00	Control Right Release Error	Communications between the Sysmac Studio and Servo Drive were interrupted while a specific function was used from the Sysmac Studio. This error is detected when the FFT, test run, or control output check function is used.	The USB cable or EtherCAT cable was disconnected during the connection with the Sysmac Studio. There is excessive noise. A command sent from the Sysmac Studio was not sent to the Servo Drive because the computer was in a busy state or the like.	Connect the USB cable or Ether-CAT cable between the Servo Drive and the computer that controls the Servo Drive if it is disconnected. Take noise countermeasures for the USB cable or EtherCAT cable. Finish other applications to reduce the processing load of the computer.

Error No.					
Main Sub		Name	Cause		Measures
(hex)	(hex)				
70	00	Safety Parameter Error	Safety process data communications were a established with the Safety CPU Unit because incorrect parameter was received.		Check whether the connected safety slave model matches the safety slave model that is set from the Sysmac Studio, and correct it.
	01	Safety Com- munications Setting Error	Safety process data communications were not established with the Safety CPU Unit because of an incorrect communications setting.	The watchdog time was set incorrectly.	If the watchdog time of the safety process data communications setting was set to a value inappropriate for the communications cycle or the configuration, correct it, and transfer the setting to the Safety CPU Unit.
				The processing was not completed within the watchdog time because communications were not established due to the noise.	If there is no improvement after you performed noise countermeasures, set the longer watchdog time, and transfer the setting to the Safety CPU Unit.
	02			ty CPU Unit because of	Perform the FSoE Slave Address Clear for the Servo Drive.
	03	Safety Frame Error	Safety process data communications were not established with the Safety CPU Unit because an incorrect	An incorrect frame was received in safety process data communications.	The Servo Drive model does not match the safety slave model that is sent from the safety master. Check the connection configuration and configure it correctly.
			frame was received.	There is excessive noise.	Take noise countermeasures.
	04	Safety Com- munications Timeout	A communications time- out occurred in safety process data communi- cations with the Safety CPU Unit.	A setting is not correct. The setting of the safety task period of the Safety CPU Unit is too short. There is excessive	Increase the safety task period of the Safety CPU Unit and then transfer the settings to the Safety CPU Unit. Take noise countermeasures.
				noise. The Safety CPU Unit or safety slave entered a status where it could not continue safety process data communications.	Check the status of the Safety CPU Unit or safety slave.
83	01	EtherCAT State Change Error	A communications state change command was received for which the current communications state could not be changed.		Check the command specifications for communications state transitions in the host controller and correct host controller processing.
	02	EtherCAT Illegal State Change Error	An undefined communications state change command was received.		Check the command specifications for communications state transitions in the host controller and correct host controller processing.

Erro	r No				
Main	Sub	Name	Cause		Measures
(hex)	(hex)				
83	03	Communications Synchronization Error	Communications were not established consecutively because the synchronization with the EtherCAT Master could not be achieved.	The power supply to the host controller was interrupted during PDO communications.	Reset the error in the host control- ler. This event reports an error that was detected when the power sup- ply to the host controller was inter- rupted. It does not indicate that an error currently exists.
				An EtherCAT communications cable is disconnected, broken, short-circuited, or has a contact failure in a daisy chain configuration.	Connect the EtherCAT communications cable securely. If the cable is broken, replace it.
				An EtherCAT communications cable is broken, short-circuited, or has a contact failure in a ring topology configuration.	Set Communications Error Setting (2200 hex) to 2 or more. Connect the EtherCAT communications cable securely. If the cable is broken, replace it.
				Noise	Take noise countermeasures if excessive noise affects the Ether-CAT communications cable.
				Failure of the EtherCAT physical layer of a Servo Drive	If this event occurs again after you performed all corrections shown above, replace the Servo Drive.
	04	Synchroniza- tion Error	A signal for synchro- nous communications could not be detected.	Noise	Take noise countermeasures if excessive noise affects the Ether-CAT communications cable.
				Error of the EtherCAT slave communications controller	If this event occurs again after you cycled the power supply, replace the Servo Drive.
	05	Sync Man- ager WDT Error	PDO communications were interrupted for the allowable period or longer.	An EtherCAT communications cable is disconnected, loose, broken, or has a contact failure.	Connect the EtherCAT communications cable securely. If the cable is broken, replace it.
				Host controller error	Check the operation of the host controller. Take appropriate countermeasures if there is a problem.
	06	Bootstrap State Transi- tion Request Error	The state transition to unrequested.		Check the EtherCAT master setting so that the EtherCAT master does not request the transition to Bootstrap.
87	00	Error Stop Input	The Error Stop Input (ESTP) is active.	The Error Stop Input (ESTP) was input. The Error Stop Input	Remove the cause of Error Stop Input (ESTP). Correct the wiring if the Error Stop
				(ESTP) is incorrectly wired.	Input (ESTP) is incorrectly wired.

Frro	r No.				
Main	Sub	Name	Ca	use	Measures
(hex)	(hex)				
88	01	ESC Initial- ization Error	The initialization of EtherCAT slave communications controller failed.	Data was incorrectly written in the non-vola- tile memory of the Eth- erCAT slave communications con- troller. Failure of the EtherCAT slave communications controller	If this event does not occur after you cycled the power supply, use the product continuously. It is supposed that a temporary error occurred due to a read error. If this event occurs again, replace the Servo Drive.
	02	Synchronization Interruption Error	Synchronization interruption did not occur within the specified period.	Incorrect EtherCAT synchronization setting of the host controller. Failure of the EtherCAT slave communications controller or false detection	Set the synchronization setting of the host controller according to the synchronization specifications for the EtherCAT slave. If this event does not occur after you cycled the power supply, use the product continuously. It is supposed that a temporary error occurred due to a read error. If this event occurs again, the Servo Drive is faulty. Replace the Servo Drive.
	03	SII Verifica- tion Error	An error occurred in SII data of the EtherCAT slave communications controller.	Data was incorrectly overwritten in the non-volatile memory of the EtherCAT slave communications controller. Failure of the EtherCAT slave communications controller or false detection	If this event does not occur after you cycled the power supply, use the product continuously. It is supposed that a temporary error occurred due to a read error. If this event occurs again, replace the Servo Drive.
	04	ESC Error	An error occurred in the EtherCAT slave communications controller.	When AL Status Code is 0051 hex, errors or false detection are found in EtherCAT Slave Controller. When AL Status Code is 0050 hex, abnormal access by the third party's EtherCAT master	If this event occurs repeatedly after you cycled the power supply, the EtherCAT slave communications controller is faulty. Replace the Servo Drive.

Erro	r No.				
Main	Sub	Name	Car	use	Measures
(hex)	(hex)				
90	00	Mailbox Set- ting Error	An incorrect mailbox setti detected.	ng of Sync Manager was	Check the mailbox setting, and then download it to the EtherCAT master again.
	01	PDO WDT Setting Error	An incorrect PDO WDT s	etting was detected.	Check the PDO WDT setting, and then download it to the EtherCAT master again.
	02	SM Event Mode Set- ting Error	The unsupported SM Eve	ent Mode was set.	Check the synchronization setting, and then download it to the Ether-CAT master again.
	03	DC Setting Error	A mistake was made in the setting.	e DC Mode operation	Check the DC Mode setting, and then download it to the EtherCAT master again.
	04	Synchroniza- tion Cycle Setting Error	When the DC mode was established, the cycle time was set to the inoperable value. In the variable PDO mapping, the maximum	The variable PDO map- ping is used, and the number of objects is more than the maximum number of mapped objects for the cycle time.	Set the number of objects to a value smaller than the maximum number of mapped objects for the cycle time.
			number of objects you can map is specified as follows: 6 for both RxPDO and TxPDO for the communication period of 125 µs, 10 for both RxPDO and TxPDO for other communication periods. An error occurs if you map a larger number of objects than that specified above. This error is also detected in the following case: the cycle time is an integral multiple of 125 µs and is not 10 ms or lower.	The cycle time setting is incorrect.	Correct the cycle time setting.
	05	RxPDO Setting Error	An RxPDO setting error was detected.	The RxPDO setting of EtherCAT master is incorrect. Servo Drive failure	Correct the RxPDO setting according to the definition of ESI of Servo Drive, and then download it to the EtherCAT master again. If this event occurs repeatedly after the download to the EtherCAT master, the Servo Drive is faulty. Replace the Servo Drive.
	06	TxPDO Set- ting Error	A TxPDO setting error was detected.	The TxPDO setting of EtherCAT master is incorrect. Servo Drive failure	Correct the TxPDO setting according to the definition of ESI of Servo Drive, and then download it to the EtherCAT master again. If this event occurs repeatedly after the download to the EtherCAT master, the Servo Drive is faulty. Replace the Servo Drive.

Erro	r No.			
Main	Sub	Name	Cause	Measures
(hex)	(hex)			
90	07	RxPDO Map- ping Error	An incorrect RxPDO was set, such as out of the allowable range of Index, Subindex, or size. This error is detected when the following settings are made.	Correct the RxPDO setting, and then download it to the EtherCAT master again.
			 If an object which cannot be mapped as a PDO is mapped If the total size of objects mapped as the safety process data exceeds the specified size If the total size of objects mapped to Sync Manager 2 PDO Assignment is one byte If the total size of objects mapped as the variable PDOs exceeds the maximum size If 1B10 hex is not mapped while 1710 hex is mapped (in 1B10 hex/1710 hex mapping) If there were too many or too little data in 1710 hex If the process data components were included in 	
	08	TxPDO Mapping Error	PDOs other than 1710 hex An incorrect TxPDO was set, such as out of the allowable range of Index, Subindex, or size. This error is detected when the following settings are made. • If an object which cannot be mapped as a PDO is mapped • If the total size of objects mapped as the safety process data exceeds the specified size • If the total size of objects mapped to Sync Manager 3 PDO Assignment is one byte • If the total size of objects mapped as the variable PDOs exceeds the maximum size • If 1710 hex is not mapped while 1B10 hex is mapped (in 1710 hex/1B10 hex mapping) • If there were too many or too little data in 1B10 hex • If the process data components were included in PDOs other than 1B10 hex	Correct the TxPDO setting, and then download it to the EtherCAT master again.
	09	Node Address Updated	The node address is changed from a set value in Sysmac Studio to a value of the ID switches.	Check the node address value. Set a correct value if it is wrong.

Erro	r No.				
Main	Sub	Name	Ca	use	Measures
(hex)	(hex)				
91	01	Command Error	A mistake was made in using a command.	When bit 9 (Remote) of the Statusword was set to 1 (remote), and the Servo Drive was in Operation enabled state (Servo ON), the Servo Drive received a command to change the communications state from Operational to another state (Init, Pre-Operational, or Safe-Operational). A mode of operation other than the hm mode was set during the homing operation. Modes of operation was set to pp, pv or hm mode when the communications period was set to shorter than 250 us	Check the Servo Drive specifications and use the command correctly.
93	00	Electronic Gear Setting Error	to shorter than 250 µs. The electronic gear ratio exceeded the allowable range. You can set the electronic gear ratio to the range from 1/2,000 to 2,000 times.		Correct the electronic gear ratio to the range from 1/2,000 to 2,000 times.
94	00	Function Setting Error	The function that was set does not support the communications period.	The electronic gear ratio was not 1:1 when the communications period was set to 125 µs. The Backlash Compensation was enabled when the communications period was set to 125 µs.	Correct the electronic gear ratio to 1:1, or set the communications period to longer than 125 µs. Disable the Backlash Compensation, or set the communications period to longer than 125 µs.
95	01	Motor Non-confor- mity	The Servo Drive and mot rect.	or combination is not cor-	Replace the motor with one that matches the Servo Drive.
	05	Motor Replace- ment Detected	The connected motor is different from the motor that was connected the last time.	The motor was replaced. The Servo Drive was replaced.	Perform the Motor Setup and Absolute Encoder Setup. Perform the Motor Setup.
97	00	Brake Inter- lock Error	The Brake Interlock Output (BKIR) was out- put by the Timeout at Servo OFF.	The Brake Interlock Output (BKIR) was output because the motor rotation speed did not decrease to or less than the speed set in the Threshold Speed at Servo OFF within the time set in the Timeout at Servo OFF when Servo OFF was performed during the motor operation.	Increase the set value of the Timeout at Servo OFF according to actual operation conditions.

Erro	r No.				
Main (hex)	Sub (hex)	Name	Ca	use	Measures
A0	00	Overload Warning	The load ratio of Servo Drive or motor (4150-81 hex) exceeded the level set in the Overload - Warning Notification Level.	Operation was continued for a long time with high load. There is incorrect wir-	Perform the following corrections accordingly. Increase the set value of the acceleration/deceleration time or the stop time. Lighten the load. Adjust the gain and inertia ratio. If torque waveforms oscillate excessively, adjust the system by the tuning so that the oscillation does not occur. Set the appropriate brake timing. Increase the capacities of the Servo Drive and the motor.
				ing of the motor cable or a broken cable. Increase in friction	shown in the wiring diagram. If the cable is broken, replace it. Or, connect the motor cable and encoder cable that are used together to the same motor. • Measure the voltage at the brake terminal. If the brake is applied, release it. Check machine conditions and
A1	00	Regenera- tion Over-	The Regeneration Load Ratio (4310-81 hex)	The regeneration processing is set inappro-	remove the cause of the friction. Check the regeneration processing setting, and set the same value as
		load Warning	exceeded 85% of the regeneration overload ratio.	The Regeneration Resistor is selected inappropriately. This Regeneration	the resistance value of the Regeneration Resistor in use. Check the operation pattern by the velocity monitor. Check the load ratio of Regeneration Resistor, and perform the following corrections accordingly. Increase the deceleration time and stopping time. Decrease the command velocity to the motor. Use an External Regeneration Resistor. Increase the capacities of the Servo Drive and the motor.
				Resistor is used for continuous regenerative braking. The applied power supply voltage is higher than the specified value. Regeneration Resistor failure	be used for continuous regenerative braking. Apply the specified power supply voltage. Check whether the Regeneration Resistor is faulty, and use one without failures.

Frro	r No.				
Main	Sub	Name	Cause		Measures
(hex)	(hex)				
A3	00	Fan Rotation Warning	The rotation speed of the fan is 80% or less of the rating and the cool- ing performance decreases.	There is a foreign matter in the cooling fan and it blocks the rotation. Cooling fan failure	Check whether there is a foreign matter in the fan. If you find a foreign matter, remove it. If there is no improvement after you performed the correction above,
A4	00	Encoder Communica- tions Warning	Encoder communications errors occurred in series more frequently than the specified value. This warning is detected if encoder communication fails twice in a row due to events such as a timeout or data error.	Noise into the encoder cable Contact failure of the encoder cable	 replace the Servo Drive. Separate the motor cable and the encoder cable if they are bundled together. Connect the shield to FG. Check that the motor ground wire is connected to FG. Check whether the connector is disconnected. Connect the connector firmly if it is disconnected or loose. Check that the encoder cable is not broken. Replace the encoder cable if it is broken.
				Power supply undervoltage to the encoder	Use the recommended encoder cable.
A6	00	Motor Vibra- tion Warning	The motor vibration, which was higher than or equal to the level set in the Vibration Detec- tion - Detection Level	The control parameter is set inappropriately.	Set the control parameters such as inertia ratio, gain, and filter to appropriate values by gain tuning or manually.
			(3B70-01 hex), was detected.	The rigidity decreased due to mechanical looseness or wear.	Check whether the mechanical system is not loose and secure it firmly. If the rigidity of mechanical system is changed, adjust the control parameter again.

Erro	r No.				
Main			Measures		
(hex)	(hex)				
A7	01	Capacitor Lifetime Warning	The capacitor built into the Servo Drive reached the service life.	The operating time of the capacitor in the Servo Drive exceeded the service life.	Send the Servo Drive for repair or replace the Servo Drive with a new one. It is necessary to replace the component that reached the service
	02	Inrush Cur- rent Preven- tion Relay Lifetime Warning	The inrush current prevention relay built into the Servo Drive reached the service life.	The number of operating times of the inrush current prevention relay in the Servo Drive exceeded the service life.*5	life.
	04	Brake Inter- lock Output Relay Life- time Warning	The brake interlock output (BKIR) relay built into the Servo Drive reached the service life.	The number of operating times of the brake interlock output in the Servo Drive exceeded the service life.*5	
	05	Lifetime Information Corruption Warning	An error was detected in the saved lifetime information.	The lifetime information corruption was detected when the power supply was turned ON.	Perform the Lifetime Information Clear. Note that the lifetime may not be detected correctly after the clear operation because the value of life- time information is cleared.
					If this event occurs repeatedly, the area to save lifetime information is faulty. Replace the Servo Drive.
	06	Encoder Life- time Warning	The encoder lifetime is close to the end.	Temporary noise The end of the encoder life Encoder breakdown	If this event occurs repeatedly, the lifetime is close to the end. Replace the motor.
AB	00	Absolute Encoder Counter Overflow Warning	The multi-rotation counter of the encoder exceeded the value set in Encoder - Absolute Encoder Counter	An inappropriate value was set in the Encoder - Operation Selection when Using Absolute Encoder (4510-01 hex).	Set an appropriate value in the Encoder - Operation Selection when Using Absolute Encoder (4510-01 hex).
			Overflow Warning Level (4510-02 hex).	The multi-rotation number of the encoder exceeded the warning level.	Set the travel distance so that the multi-rotation number does not exceed the value set in the Encoder - Absolute Encoder Counter Overflow Warning Level (4510-02 hex).
В0	00	Data Setting Warning	The object set value is ou	it of the range.	Correct the object setting to be within the specified range.

Erro	r No.				
Main	Sub	Name	Ca	use	Measures
(hex)	(hex)				
B1	00	Command Warning	A command could not be executed.	The Switch on command was received. The Enable operation command was received.	Send the <i>Switch on</i> command with the main circuit power supply ON. Send the <i>Enable operation</i> command under the following condi-
				An operation command in the prohibition direction was received after the immediate stop by the Drive Prohibition Input or Software Position Limit. Homing started.	tions. In supported operation mode The motor rotation speed is 30 r/min or less. In the free-run mode, the interpolation time period is the integral multiple of the communications cycle. Check status of the Drive Prohibition Input and Software Position Limit by the Digital inputs, Statusword, and Software Position Limit. Then, do not issue the command in the drive prohibition direction. Set a supported number of the Homing method for homing. Start homing at the timing of when homing is not performed.
				The positioning start command was received in the Profile position mode.	Set a supported value for bit 5 and 6 in the Controlword.
B2	00	EtherCAT Communica- tions Warning	An EtherCAT communications error occurred more than one time.	An EtherCAT communications cable is disconnected, broken, short-circuited, or has a contact failure in a daisy chain configuration.	Connect the EtherCAT communications cable securely. If the cable is broken, replace it.
				 In a ring topology configuration, the ring disconnection status occurred. In a ring topology configuration, the ring disconnection status was fixed. 	Refer to 13-4 Method for Ring Disconnection Maintenance and Inspection on page 13-5 and perform inspection.
				Failure of the EtherCAT physical layer of a Servo Drive	Take noise countermeasures so that the noise does not affect the EtherCAT communications cable. If this event occurs again after you performed all corrections shown above, replace the Servo Drive.
C0 (ST)	00	STO Detected	The safety input OFF state was detected via the safety input signal or EtherCAT communications.	The cable is disconnected or broken. The STO input was turned OFF via Ether-CAT communications.	Reconnect the input wiring for safety inputs 1 and 2. If the cable is broken, replace it. Remove the cause that turned OFF the safety input signal of the Safety Input Unit.

- *1. This error can occur in the unit version 1.2 only.
- *2. This error can occur in the unit version 1.3 or later.
- *3. This error can occur in the unit version 1.1 or later.
- *4. Refer to 10-2-4 Absolute Encoder Setup on page 10-7 for the absolute encoder setup.
- *5. Refer to 13-2 Servo Drive Lifetime on page 13-3 for the lifetime of components.

12-5-2 Troubleshooting Using AL Status Codes

The AL status codes notify users of errors related to EtherCAT communications.

This section gives errors that 1S-series Servo Drives notify to the host controllers with AL status codes, as well as their causes and remedies.

AL Status Code List

Name	Ca	use	Measures
EtherCAT State Change Error		~	Check the command specifications for communications state transitions in the host controller and correct host controller processing.
EtherCAT Illegal State Change Error	An undefined communication was received.	ons state change command	Check the command specifications for communications state transitions in the host controller and correct host controller processing.
Bootstrap State Transi- tion Request Error	The state transition to unsupported Bootstrap was requested by the EtherCAT master.		Check the EtherCAT master setting so that the EtherCAT master does not request the transition to Bootstrap.
SII Verifica- tion Error	An error occurred in SII data of the EtherCAT slave communications controller.	Data was incorrectly over- written in the non-volatile memory of the EtherCAT slave communications controller. Failure of the EtherCAT slave communications controller or false detec- tion	If this event does not occur after you cycled the power supply, use the product continuously. It is supposed that a temporary error occurred due to a read error. If this event occurs again, replace the Servo Drive.
Mailbox Set- ting Error	An incorrect mailbox setting detected.	g of Sync Manager was	Check the mailbox setting, and then download it to the EtherCAT master again.
Sync Man- ager WDT Error	PDO communications were interrupted for the allowable period or longer.	An EtherCAT communications cable is disconnected, loose, or broken	Connect the EtherCAT communications cable securely.
		Host controller error	Check the operation of the host controller. Take appropriate countermeasures if there is a problem.
RxPDO Set- ting Error	An RxPDO setting error was detected.	The RxPDO setting of EtherCAT master is incorrect. Servo Drive failure	Correct the RxPDO setting according to the definition of ESI of Servo Drive, and then download it to the EtherCAT master again. If this event occurs repeatedly after the download to the EtherCAT master, the Servo Drive is faulty.
	EtherCAT State Change Error EtherCAT Illegal State Change Error Bootstrap State Transition Request Error SII Verification Error Mailbox Setting Error Sync Manager WDT Error	EtherCAT State Change Error EtherCAT Illegal State Change Error Bootstrap State Transition Request Error SII Verification Error Mailbox Setting Error Mailbox Setting Error Mailbox Setting Error Mailbox Setting Error An incorrect mailbox setting detected. Sync Manager WDT Error RxPDO Set- An error occurred in SII data of the EtherCAT slave communications controller.	EtherCAT State Change Error A communications state change command was received for which the current communications state could not be changed. EtherCAT Illegal State Change Error An undefined communications state change command was received. The state transition to unsupported Bootstrap was requested by the EtherCAT master. The state transition to unsupported Bootstrap was requested by the EtherCAT master. An error occurred in SII data of the EtherCAT slave communications controller. An error occurred in SII data of the EtherCAT slave communications controller. Failure of the EtherCAT slave communications controller or false detection Mailbox Setting Error An incorrect mailbox setting of Sync Manager was detected. PDO communications were interrupted for the allowable period or longer. An EtherCAT communications ecable is disconnected, loose, or broken Host controller error The RxPDO setting error was detected. The RxPDO setting of EtherCAT master is incorrect.

AL status	Nama	000		Magazza
code (hex)	Name		use	Measures
001E	TxPDO Set- ting Error	A TxPDO setting error was detected.	The TxPDO setting of EtherCAT master is incorrect. Servo Drive failure	Correct the TxPDO setting according to the definition of ESI of Servo Drive, and then download it to the EtherCAT master again.
				If this event occurs repeatedly after the download to the EtherCAT master, the Servo Drive is faulty. Replace the Servo Drive.
001F	PDO WDT Setting Error	An incorrect PDO WDT set	ting was detected.	Check the PDO WDT setting, and then download it to the EtherCAT master again.
0024	TxPDO Map- ping Error	An incorrect TxPDO was seable range of Index, Subino	·	Correct the TxPDO setting, and then download it to the EtherCAT
		This error is detected when made.	the following settings are	master again.
		If an object which cannot mapped	be mapped as a PDO is	
		If the total size of objects cess data exceeds the sp		
		If the total size of objects PDO Assignment is or		
		If the total size of objects PDOs exceeds the maxin		
		• If 1710 hex is not mapped (in 1710 hex/1B10 hex m		
		If there were too many orIf the process data compo		
		PDOs other than 1B10 he	ex	
0025	RxPDO Map- ping Error	An incorrect RxPDO was sea able range of Index, Subino		Correct the RxPDO setting, and then download it to the EtherCAT
		This error is detected when the following settings are made.		master again.
		If an object which cannot mapped	be mapped as a PDO is	
		If the total size of objects cess data exceeds the sp	• • • • • • • • • • • • • • • • • • • •	
		If the total size of objects PDO Assignment is or		
		If the total size of objects PDOs exceeds the maxin		
		If 1B10 hex is not mapped (in 1B10 hex/1710 hex m	apping)	
		If there were too many or		
		 If the process data composition PDOs other than 1710 he 		
0028	SM Event Mode Setting Error	The unsupported SM Event		Check the synchronization setting, and then download it to the Ether-CAT master again.

AL status	Name	Ca	use	Measures
code (hex)	Synchroniza- tion Error	A signal for synchronous communications could not be detected.	Noise	Take noise countermeasures if excessive noise affects the Ether-CAT communications cable.
			Error of the EtherCAT slave communications controller	If this event occurs again after you cycled the power supply, replace the Servo Drive.
002D	Synchroniza- tion Interrup- tion Error	Synchronization interruption did not occur within the specified period.	Incorrect EtherCAT syn- chronization setting of the host controller.	Set the synchronization setting of the host controller according to the synchronization specifications for the EtherCAT slave.
			Failure of the EtherCAT slave communications controller or false detection	If this event does not occur after you cycled the power supply, use the product continuously. It is supposed that a temporary error occurred due to a read error. If this event occurs again, the Servo Drive is faulty. Replace the Servo Drive.
0030	DC Setting Error	A mistake was made in the	DC Mode operation setting.	Check the DC Mode setting, and then download it to the EtherCAT master again.
0034	Communications Synchronization Error	Communications were not established consecutively because the synchronization with the EtherCAT Master could not be achieved.	The power supply to the host controller was interrupted during PDO communications.	Reset the error in the host control- ler. This event reports an error that was detected when the power sup- ply to the host controller was inter- rupted. It does not indicate that an error currently exists.
			An EtherCAT communications cable is disconnected, broken, short-circuited, or has a contact failure in a daisy chain configuration.	Connect the EtherCAT communications cable securely. If the cable is broken, replace it.
			An EtherCAT communications cable is broken, short-circuited, or has a contact failure in a ring topology configuration.	 Set Communications Error Setting (2200 hex) to 2 or more. Connect the EtherCAT communications cable securely. If the cable is broken, replace it.
			Noise	Take noise countermeasures if excessive noise affects the Ether-CAT communications cable.
			Failure of the EtherCAT physical layer of a Servo Drive	If this event occurs again after you performed all corrections shown above, replace the Servo Drive.

AL status code (hex)	Name	Cau	use	Measures
0035	Synchronization Cycle Setting Error	When the DC mode was established, the cycle time was set to the inoperable value. In the variable PDO mapping, the maximum number of objects you can map is specified as follows: 6 for both RxPDO and TxPDO for the communication period of 125 µs, 10 for both RxPDO and TxPDO for other communication periods. An error occurs if you map a larger number of objects than that specified above. This error is also detected	The variable PDO mapping is used, and the number of objects is more than the maximum number of mapped objects for the cycle time. The cycle time setting is incorrect.	Set the number of objects to a value smaller than the maximum number of mapped objects for the cycle time. Correct the cycle time setting.
		in the following case: the cycle time is an integral multiple of 125 µs and is not 10 ms or lower.		
0050	ESC Error	An error occurred in the EtherCAT slave communications controller.	Error access from the non-OMRON EtherCAT master	Please contact the manufacturer of EtherCAT master.
0051			Error of the EtherCAT slave communications controller or false detection	If this event occurs repeatedly after you cycled the power supply, the EtherCAT slave communications controller is faulty. Replace the Servo Drive.
0061	Node Address Updated	The node address is change switches. The node address is change mac Studio to a value of the	ed from a set value in Sys-	Check the node address value. Set a correct value if it is wrong.
8000	Unit Restarted	Restart was performed.		

12-5-3 Troubleshooting Using the Operation State

Symptom	Probable cause	Check items	Measures
The 7-segment display does not light.	The control power is not supplied.	Check to see if the power sup- ply input is within the allowed power supply voltage range.	Supply the correct power supply voltage.
		Check to see if the power supply input is wired correctly.	Wire correctly.
The ECAT ERR indicator flashes or lights.	A communications-related error occurred.	Refer to EtherCAT Communicati	
The L/A IN and L/A OUT indicators are OFF.	A link in the EtherCAT physical communications layer is not established.	Check to see if the communications cable is connected correctly.	Connect the communications cable correctly.
		Check to see if the host controller started.	Start the host controller.
The L/A IN or L/A OUT indicator is OFF.	In a ring topology configuration, the ring disconnection status occurred.	Refer to 13-4 Method for Ring D Inspection on page 13-5 and per Drive is faulty, replace it.	
An error occurred.	Read the error number and the error log.	plays on page 12-16.	Troubleshooting Using Error Dis-
The Servo does not lock.	The power cable is not connected correctly.	Check to see if the motor power cable is connected properly.	Wire the motor power cable correctly.
	The Servomotor power supply is not ON.	Check the main circuit wiring and power voltage.	Input the correct power and voltage for the main circuit.
	Positive Drive Prohibition Input (POT) or Negative Drive Prohibition Input (NOT) is OFF.	Check to see if the input for POT or NOT is OFF. Check the input of +24 VIN to CN1.	Turn ON POT and NOT. Input +24 VIN correctly.
	The torque limit is set to 0.	Check to see if the torque limits in the Positive torque limit value (60E0 hex) and the Negative torque limit value (60E1 hex) are set to 0.	Set the maximum torque that you use for each of these objects.
	The Servo Drive is in a safe state (STO).	Check the wiring of the safety input.	Wire correctly.
	Communications with the Safety CPU Unit are not established.	When you use the STO function via EtherCAT communications, confirm that communications with the Safety CPU Unit are performed.	Make the settings for the Safety CPU Unit.
	The Servo Drive is broken down.		Replace the Servo Drive.

Symptom	Probable cause	Check items	Measures
The Servo locks but the Servomotor does	The host controller does not give a command.	For a position command, check to see if the speed and position	Enter position and speed data. Start the Servomotor.
not rotate.		are set to 0.	
	The Servo Drive received a	Check to see if the Servo Drive	Set the Servo Drive so that it
	command but it is not	retains the object value for two	retains the object value for two
	accepted.	communications cycles or more	communications cycles or
		in Profile position mode (pp).	more.
	It is hard to determine if the	Check to see if the velocity	Check the velocity command
	Servomotor is rotating.	command given by the host controller is too small.	from the host controller.
	The holding brake is operating.	Check the Brake Interlock Out-	Check to see if the holding
		put (BKIR) signal and the +24	brake on a Servomotor with brake is released when the
		VDC power supply.	Servo is locked.
	The torque limits set in the	Check to see if the torque limits	Set the maximum torque that
	Positive torque limit value	in objects 60E0 hex and 60E1	you use for each of these
	(60E0 hex) and the Negative torque limit value (60E1 hex)	hex are set to a value close to 0.	objects.
	are too small.	0.	
	Positive Drive Prohibition Input	Check the ON/OFF state of the	Turn ON the POT and NOT
	(POT) or Negative Drive Prohi-	POT and NOT signals from the	signals.
	bition Input (NOT) is OFF.	Sysmac Studio.	Disable them in the settings
			when the POT and NOT signals are not used.
	The motor power cable is wired	Check the wiring.	Wire correctly.
	incorrectly.		
	The encoder cable is wired incorrectly.		
	Power is not supplied.	Check the power supply and the 7-segment display.	Turn ON the power.
		Check the voltage between the	Wire the power-ON circuit cor-
		power terminals.	rectly.
	The Servo Drive is broken down.		Replace the Servo Drive.
The Servomotor oper-	The position commands given	Check the position data and the	Set the correct data.
ates momentarily, but then it does not oper-	are too little.	electronic gear ratio at the host controller.	
ate after that.	The motor power cable is wired	Check the wiring of the motor	Wire correctly.
	incorrectly.	power cable's phases U, V, and W.	
	The encoder cable is wired	Check the encoder cable's wir-	Wire correctly.
	incorrectly.	ing.	
The Servomotor	There are inputs of small val-	Check if there is an input in	Set the velocity command to 0.
rotates without a command.	ues in velocity control mode.	velocity control mode.	Alternatively, change the mode to position control mode.
	The motor power cable is wired incorrectly.	Check the wiring.	Wire correctly.
When the runaway	The Servomotor power cable is	Check the wiring.	Wire correctly.
detection function is	wired incorrectly, and condi-		
enabled, the	tions under which the runaway		
Servomotor rotates without a command.	detection function cannot work		
at a communa.	are satisfied.		

Symptom	Probable cause	Check items	Measures
The Servomotor rotates in the reverse direction from the command.	The value set in Motor Rotation Direction Selection (3000-01 hex) is incorrect.	Check the value of Motor Rotation Direction Selection.	Change the value of Motor Rotation Direction Selection.
	The command given by the host controller is incorrect.	 The size of the absolute command is set incorrect. The polarity of an incremental command is set incorrect. 	 Check the actual and target values. Check the rotation direction.
	The Servomotor power cable is wired incorrectly.	Check the wiring.	Wire correctly.
When the runaway detection function is enabled, the	The value set in Motor Rotation Direction Selection (3000-01 hex) is incorrect.	Check the value of Motor Rotation Direction Selection.	Change the value of Motor Rotation Direction Selection.
Servomotor rotates in the reverse direction from the command.	The command given by the host controller is incorrect.	 The size of the absolute command is set incorrect. The polarity of an incremental command is set incorrect. 	 Check the actual and target values. Check the rotation direction.
	The Servomotor power cable is wired incorrectly. The Servomotor power cable is wired incorrectly, and conditions under which the runaway detection function cannot work are satisfied.	Check the wiring.	Wire correctly.
The holding brake does not work.	Power is supplied to the holding brake.	Check to see if power is supplied to the holding brake.	 Check the Brake Interlock Output (BKIR) signal and the relay circuit. Check to see if the holding brake is worn down.
The applied timing for the holding brake is early.	The set value of Brake Inter- lock Output (4610 hex) does not match the machine.	Review the setting of Brake Interlock Output (4610 hex).	Adjust Brake Interlock Output (4610 hex).
		Check the unit version of the Servo Drive. The default setting of Brake Interlock Output - Threshold Speed at Servo OFF (4610-03 hex) is large for the unit version Ver.1.4 or later.	
Motor rotation is unstable.	The motor power cable or encoder cable is wired incorrectly.	Check the wiring of the motor power cable's phases U, V, W and check the encoder cable's wiring.	Wire correctly.
	Low rigidity is causing vibration.	Measure the vibration frequency of the load.	Enable the damping control. Set the damping filter frequency.
	The load's moment of inertia exceeds the Servo Drive's allowable value.	Calculate the load inertia.	 Check if manual tuning can achieve proper adjustment. Increase the Servomotor capacity.
	Loose joint and/or large clear- ance with the machine.	Check the joint with the machine.	Remove the joint looseness with the machine.
	The load and gain do not match.	Check the response waveforms for speed and torque.	Perform the tuning again to stabilize the rotation.

Symptom	Probable cause	Check items	Measures
The Servomotor is overheating.	The ambient temperature is too high.	Check to see if the ambient temperature around the Servomotor is over 40°C.	Lower the ambient temperature around the Servomotor to 40°C or less. (Use a fan or air conditioner.) Lower the load ratio.
	The heat radiation condition for the Servomotor is inappropriate.	 Check to see if the specified radiation conditions are observed. For a Servomotor with a brake, check the load ratio. 	Improve the radiation conditions.Reduce the load.Improve ventilation.
	The Servomotor is overloaded. The Servomotor vibrates during rotation.	Check the torque with the Sysmac Studio.	 Decrease the acceleration and deceleration rates. Lower the speed and check the load.
The machine position is misaligned.	The coupling of the motor shaft and the machine is abnormal.	Check to see if the coupling of the Servomotor and the machine is misaligned.	 Tighten the coupling again. Replace the coupling with a coupling that has no looseness.
	The host controller gave a deceleration stop command.	Check the control ladder program in the host controller.	Review the control in the host controller.
	The gain is wrong.		Check if manual tuning can achieve proper adjustment.
	The load inertia is too large.	Check the load inertia. Check the Servomotor rotation speed.	Review the load inertia. Replace the Servomotor and Servo Drive with proper ones.
	The power supply was turned ON while the encoder multi-rotation exceeded the limit value.	Check Encoder - Multi- rotation Data.	Perform the operation within the multi-rotation range.
	The command value from the host controller is not correct.	Check the control ladder program and settings in the host controller.	Review the control and settings in the host controller.
	The home position was shifted.	Check the home position of the absolute encoder. Check whether homing is performed normally.	 Adjust the mechanical home and home position of the absolute encoder. Change the setting or input signals so that the correct home position can be defined
	The set values of the Servo Drive do not match the machine.	Check the settings of gear ratio, gain, maximum torque, etc.	during homing. Adjust the set values so that they match the machine.
The Servomotor does not stop or is hard to stop even if the Servo is turned OFF while	The load inertia is too large.	 Check the load inertia. Check the Servomotor rotation speed. 	 Review the load inertia. Replace the Servomotor and Servo Drive with proper ones.
the Servomotor is rotating.	The dynamic brake is disabled.	Check if the dynamic brake is disabled or broken.	 Enable the dynamic brake, if it is disabled. Replace the dynamic brake if it is broken.

Symptom	Probable cause	Check items	Measures
The Servomotor or the load generates abnormal noise or	Vibration occurs due to improper mechanical installation.	Check to see if the Servomotor's mounting screws are loose.	Retighten the mounting screws.
vibration.		Check the load for eccentricity.	Eliminate the eccentricity. It results in torque fluctuation and noise.
		Check to see if the coupling with the load is unbalanced.	Balance the rotation.
		Check to see if the decelerator is generating any abnormal noise.	Check the decelerator specifications. Check the decelerator for malfunctions.
	Vibration occurs due to low mechanical rigidity.	Check to see if the vibration frequency is 100 Hz or lower.	If the frequency is 100 Hz or lower, set the correct damping frequency for the damping filter to eliminate the vibration.
	Vibration occurs due to machine resonance.	Check to see if the resonance frequency is high or low.	If the resonance frequency is high, set the adaptive filter to eliminate the resonance. Alternatively, measure the resonance frequency and set 1st Notch Filter and 2nd Notch Filter.
	There is a problem with the bearings.	Check for noise or vibration around the bearings.	Check to see if the bearings are mounted properly, and adjust them if necessary.
	The gain is too high.		Use the Sysmac Studio to measure the response and adjust the gain.
	Velocity Command Filter (3021 hex) is wrong.	Check the set value of Velocity Command Filter.	Return the setting to the default value of 0. Alternatively, set a large value and operate the Servomotor.

Symptom	Probable cause	Check items	Measures
The Servomotor or	1st Torque Command Filter	Review the set value of the	Set a small value for the torque
the load generates	(3233 hex) or 2nd Torque	torque command filter.	command filter to eliminate the
abnormal noise or	Command Filter (3234 hex)		vibration.
vibration.	does not match the load.		
	1st Position Control Gain	Review the setting of the posi-	Use the Sysmac Studio to mea-
	(3213 hex) or 2nd Position	tion control gain.	sure the response and adjust
	Control Gain (3214 hex) is too		the gain.
	large.		
	Proportional Gain and Inte-	Review the set values of the	
	gral Gain in 1st Velocity Con-	velocity control gain.	
	trol Gain (3223 hex) and 2nd		
	Velocity Control Gain (3224		
	hex) are balanced incorrectly.		Charten the control I/O signal
	Noise is entering into the con-	Check the length of the control	Shorten the control I/O signal
	trol I/O signal cable because the cable is longer than the	I/O signal cable.	cable to 3 m or less.
	specified length.		
	Noise is entering into the cable	Check to see if it is a shielded	Use an encoder cable that
	because the encoder cable	twisted-pair cable with core	meets specifications.
	does not meet specifications.	wires that are at least 0.12	mode opcomoducite.
		mm ² .	
	Noise is entering into the	Check the length of the	Shorten the encoder cable to
	Noise is entering into the encoder cable because the	encoder cable.	less than 50 m.
	cable is longer than the speci-	encoder cable.	less than 50 m.
	fied length.		
	Noise is entering into the signal	Check the encoder cable for	Correct the encoder cable's
	lines because the encoder	damage.	pathway.
	cable is stuck or the sheath is		paay.
	damaged.		
	Excessive noise on encoder	Check to see if the encoder	Install the encoder cable where
	cable.	cable is bound together with or	it won't be subjected to surges.
		too close to high-current lines.	, , ,
	The FG's potential is fluctuating	Check for ground problems	Ground the equipment prop-
	due to devices near the Servo-	(loss of ground or incomplete	erly and prevent current from
	motor, such as welding	ground) at equipment such as	flowing to the encoder FG.
	machines.	welding machines near the Ser-	
		vomotor.	
	Errors are caused by excessive	There are problems with	Reduce the mechanical vibra-
	vibration or shock on the	mechanical vibration or Servo-	tion or correct the Servomotor's
	encoder.	motor installation (such as the	installation.
		precision of the mounting sur-	
		face, attachment, or axial off-	
Occurate the t	And Donalding Construction	set).	Lie de Co
Overshooting at	1st Position Control Gain	Review the setting of the posi-	Use the Sysmac Studio to mea-
startup or when stop-	(3213 hex) or 2nd Position	tion control gain.	sure the response and adjust
ping	Control Gain (3214 hex) is too		the gain.
	large.	Review the set values of the	-
	Proportional Gain and Integral Gain in 1st Velocity Con-	velocity control gain.	
	trol Gain (3223 hex) and 2nd	Volocity control gain.	
	Velocity Control Gain (3224		
	hex) are balanced incorrectly.		
	The set inertia ratio differs from	Review the set value of the	Adjust the set value of the Iner-
	the load.	Inertia Ratio (3001-01 hex).	tia Ratio.
		(0001 01 110%).	

Symptom	Probable cause	Check items	Measures
Vibration is occurring	Inductive noise is occurring.	Check to see if the drive control	Shorten the control signal lines.
at the same fre-		signal lines are too long.	
quency as the power		Check to see if the control sig-	Separate control signal lines
supply.		nal lines and power supply	from power supply lines.
		lines are bound together.	Use a low-impedance power
			supply for control signals.
The command	The input command value	Check to see if the Internal limit	Input the command value that
velocity or torque is	exceeds the velocity limit value	active bit of Statusword is	does not exceed the velocity
not reached.	or the torque limit value.	active.	limit value or the torque limit
			value from the host controller.

Maintenance and Inspection

This section explains maintenance and inspection of the Servomotors and Servo Drives.

13-1 Periodic Maintenance	13-2
13-2 Servo Drive Lifetime	13-3
13-3 Servomotor Lifetime	13-4
13-4 Method for Ring Disconnection Maintenance and Inspection	13-5

13-1 Periodic Maintenance

Caution

After replacing the Servo Drive, transfer to the new Servo Drive all data needed to resume operation, before restarting operation. Equipment damage may result.

Do not repair the Servo Drive by disassembling it. Electric shock or injury may result.

Servomotors and Servo Drives contain many components and will operate properly only when each of the individual components is operating properly.

Some of the electrical and mechanical components require maintenance depending on application conditions. Periodic inspection and replacement are necessary to ensure proper long-term operation of Servomotors and Servo Drives. (Quoted from The Recommendation for Periodic Maintenance of a General-purpose Inverter published by JEMA.)

The periodic maintenance cycle depends on the installation environment and application conditions of the Servomotors and Servo Drives.

Recommended maintenance times are given below for Servomotors and Servo Drives. Use these for reference in periodic maintenance.

Note AC-type fuses are built in a Servo Drive at 5.5 kW or more. Even when one of the fuses blows due to a failure of a rectifier diode in the Servo Drive, in some cases, Main Circuit Power Supply Phase Loss Error (Error No.13.01) does not occur and the Servo Drive operates. That causes shortening of parts life of the Servo Drive. Therefore, measure the conductivity of the terminals between L1-P and L3-P with a tester (diode mode), referring to 1-4 System Block Diagram on page 1-21, and Check that the fuse does not blow. If the fuse has a failure, replace the Servo Drive.

Check Procedure

- Cut off a power supply of a Servo Drive, and start the check after the following time pass. 10 minutes: R88D-1SN55F-ECT, R88D-1SN75F-ECT, R88D-1SN150F-ECT 20 minutes: R88D-1SN55H-ECT, R88D-1SN75H-ECT, R88D-1SN150H-ECT
- Disconnect wiring from a main circuit connector of the Servo Drive or a main circuit terminal block (CNA).
- Set a tester to diode mode. Check conductivity between terminals, following the below table.

Tester terminal (+)	Tester terminal (-)	Display on the tester in normal	Display on the tester in normal Display on the tester when fuse blows
L1	Р	1 V max.	Non-conductivity (O.L.)
L3	Р	1 V max.	Non-conductivity (O.L.)

Display depends on a tester.

13-2 Servo Drive Lifetime

- The lifetime of Servo Drive depends on application conditions. When the ambient temperature is 40°C and the average output is 70% of the rated output, the design life expectancy is ten years.
- The use of the Servo Drive in a hot environment shortens its lifetime. We recommend that the ambient temperature and the power supply ON time be reduced as much as possible to lengthen the lifetime of the Servo Drive.
- The lifetimes for the different parts of Servo Drive are given below.

Name	Lifetime	
Inrush current prevention relay	Approx. 36,500 operations (lifetime depends on application conditions.)	
Brake interlock output relay	Approx. 36,500 operations (lifetime depends on application conditions.)	

13-3 Servomotor Lifetime

The lifetimes for the different motor parts are listed below.

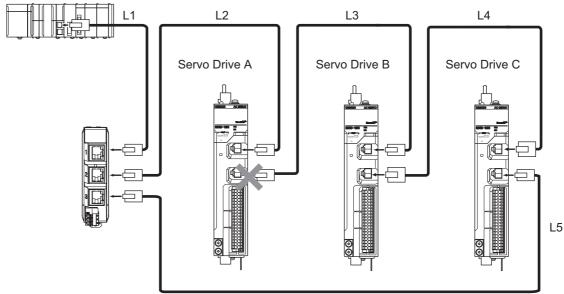
Name	Lifetime
Bearing	20,000 hours
Decelerator	20,000 hours
Oil seal	5,000 hours (models with oil seal)
Encoder	30,000 hours
All 3 kW or more models and 2 kW 1,000-r/min (200/400 V) models	
Brake	ON/OFF 1,000,000 times

The operating conditions are determined as follows.

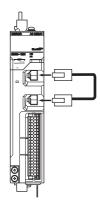
- Operating ambient temperature: 40°C
- · Within the range of allowable axial load
- Rated operation (rated torque and rated rotation speed)
- · Installation as specified in this manual
- Operation is not repeated with the motor shaft rotation at an angle of 45° or less, which causes the fretting.

Oil seal can be replaced for repair.

When the Servomotor is used for a belt hook such as timing pulley, the radial load during motor operation is generally two or more times the static load. Consult with the belt and pulley manufacturers to adjust designs and system settings so that the motor allowable axial load is not exceeded even during operation. If the Servomotor is used under a shaft load that exceeds the allowable limit, the motor shaft can be broken and the bearings can be damaged.


Additional Information

If the Encoder Lifetime Warning occurs, we recommend you to replace the encoder within a few weeks.


This warning also occurs when the encoder breaks due to impact on the axis.

13-4 Method for Ring Disconnection Maintenance and Inspection

This section takes the following example of a configuration in which the ring is disconnected between Servo Drive A and B, and describes how to perform inspection and how to replace the Servo Drive.

- 1 Identify where the ring is disconnected.
 - With a tool such as support software, find the node address of the Servo Drive breaking the
 ring. For the NJ/NX-series Controller, check the _EC_RingBreakNodeAdr system-defined
 variable that will provide you with the node address of Servo Drive A. Check that the L/A OUT
 indicator of Servo Drive A and the L/A IN indicator of Servo Drive B are OFF.
- **2** Reconnect the EtherCAT communications cable between Servo Drive A and B.
 - Stop operation and turn OFF the power supply to the EtherCAT master and to the slaves.
 - After the charge lamps of Servo Drive A and B turn OFF, reconnect the EtherCAT communications cable, and then turn ON the control power supply to Servo Drive A and B.
 - If the L/A OUT indicator of Servo Drive A and the L/A IN indicator of Servo Drive B are ON, the ring disconnection status has been fixed.
 - If the L/A IN and L/A OUT indicators are OFF, the ring disconnection status has not been fixed yet. Move on to the next step.
- **3** Replace the relevant cable with a new EtherCAT communications cable.
 - Replace the EtherCAT communications cable between Servo Drive A and B with a new cable.
 To avoid incorrect wiring, do not remove any other cable.
 - If the L/A OUT indicator of Servo Drive A and the L/A IN indicator of Servo Drive B are ON or blink, the ring disconnection status has been fixed.
 - If the L/A IN and L/A OUT indicators are OFF, Servo Drive A or B is faulty. Move on to the next step.
- 4 Identify the faulty Servo Drive.
 - As in the following figure, connect one EtherCAT communications cable to the ECAT IN and ECAT OUT connectors on Servo Drive A. If the L/A IN and L/A OUT indicators remain OFF, Servo Drive A is faulty.
 - In the same way, connect one EtherCAT communications cable to the ECAT IN and ECAT OUT connectors on Servo Drive B. If the L/A IN and L/A OUT indicators remain OFF, Servo Drive B is faulty.

- Replace the identified faulty Servo Drive.
 - Back up the parameters of the Servo Drive.
 - · Turn OFF the control power supply, and replace the Servo Drive. Then, turn ON the control power supply, write the backup of the parameters, and turn OFF the control power supply.
- Turn ON the power supply to the devices, and then establish EtherCAT communications.
 - · Connect the EtherCAT communications cables correctly, and turn ON the power supply to the EtherCAT master and to the slaves.

Precautions for Correct Use

When the ring disconnection status occurs and then you reconnect an EtherCAT communications cable, turn OFF the power supply to the EtherCAT master and to the slaves. Connecting a faulty EtherCAT communications cable while the devices are in operation may stop the entire EtherCAT communications system.

Appendices

The appendices provide explanation for the profile that is used to control the Servo Drive, lists of objects, and Sysmac error status codes.

A-1	CiA 402	Prive Profile	A-2
	A-1-1	Controlling the State Machine of the Servo Drive	A-2
	A-1-2	Modes of Operation	
	A-1-3	Modes of Operation and Applied/Adjustment Functions	
	A-1-4	Changing the Mode of Operation	
	A-1-5	Homing Mode Specifications	
A-2	CoE Ob	ojects	. A-12
	A-2-1	Object Dictionary Area	
	A-2-2	Data Type	
	A-2-3	Object Description Format	
	A-2-4	Communication Objects	
	A-2-5	PDO Mapping Objects	
	A-2-6	Sync Manager Communication Objects	
	A-2-7	Manufacturer Specific Objects	
	A-2-8	Servo Drive Profile Object	A-41
	A-2-9	Safety Function Objects	A-64
A-3	Object	List	. A-68
A-4	Sysmac	Error Status Codes	A-100
	A-4-1	Error List	
	A-4-2	Error Descriptions	
A-5	Respon	nse Time in EtherCAT Process Data Communications	A-178
	A-5-1	Input Response Time	. A-178
	A-5-2	Output Response Time	. A-178
A-6	Version	Information	A-179
	A-6-1	Relationship between Unit Versions and Sysmac Studio Versions	. A-179
	A-6-2	Functions That Were Added or Changed for Each Unit Version	
A-7	Connec	etion Examples	A-184
	A-7-1	Example of Connecting to NX-series Digital I/O Unit	

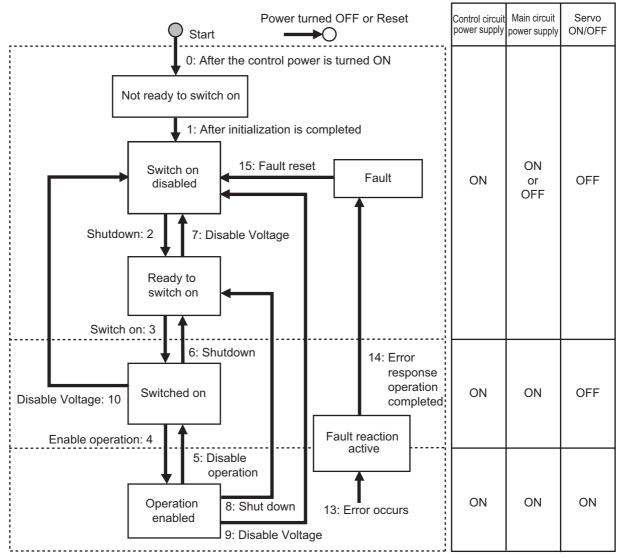
A-1 CiA 402 Drive Profile

This section describes the profile that is used to control the Servo Drive.

A-1-1 Controlling the State Machine of the Servo Drive

The state of 1S-series Servo Drives with built-in EtherCAT communications is called "PDS state."

The PDS state is controlled by Controlword (6040 hex).


Each PDS state is shown in Statusword (6041 hex).

State Machine

The state of an 1S-series Servo Drive changes as shown below.

Each ☐ box indicates a state, while numbers 2 to 10 and 15 indicate the state control commands.

Refer to *State Descriptions* on page A-3 for details on the states, and *State Control Commands* on page A-3 for details on the state control.

Note Quick stop active state is not supported. Even if a Quick stop command is received, it will be ignored.

State Descriptions

Status	Description
Status	Description
Not ready to switch on	The control circuit power supply is turned ON and initialization is in
	progress.
Switch on disabled	Initialization is completed.
	Servo Drive parameters can be set.
Ready to switch on	The main circuit power supply can be turned ON.
	Servo Drive parameters can be set.
Switched on	The main circuit power supply is ON. (Servo ready)
	Servo Drive parameters can be set.
Operation enabled	The Servo is ON.
	Servo Drive parameters can be set.
Fault reaction active	There was an error in the Servo Drive and the cause determination
	is in progress.
	Servo Drive parameters can be set.
Fault	There is an error in the Servo Drive.
	Servo Drive parameters can be set.

State Control Commands

State is controlled by combining the bits in **Controlword** (6040 hex) as shown in the following table. fr = fault reset, eo = enable operation, qs = quick stop, ev = enable voltage, so = switch on

			Controlword bit				
Command	Bit 7	Bit 3	Bit 2	Bit 1	Bit 0	Move to	
	fr	eo	qs	ev	so		
Shutdown	Disabled	Disabled	1	1	0	2, 6, 8	
Switch on	Disabled	0	1	1	1	3	
Switch on +	Disabled	1	1	1	1	3 + 4 ^{*1}	
enable opera-							
tion							
Disable volt-	Disabled	Disabled	Disabled	0	Disabled	7, 9, 10	
age							
Quick stop	Disabled	Disabled	0	1	Disabled	Disabled*2	
Disable oper-	Disabled	0	1	1	1	5	
ation							
Enable opera-	Disabled	1	1	1	1	4	
tion							
Fault reset	$0 \rightarrow 1^{*3}$	Disabled	Disabled	Disabled	Disabled	15	

^{*1.} The state automatically moves to Operation enabled state after Switched On state.

Fault state : Errors are reset and the Servo Drive returns to the Switch On Disabled state.

: If Warning (6041 hex: Statusword bit 7) is ON, it is reset.

State other than Fault State: If Warning (6041 hex: Statusword bit 7) is ON, it is reset.

: The state will change according to command bits 0 to 3.

^{*2.} Quick stop commands are not supported. Even if this command is received, it will be ignored.

^{*3.} Bit 7: Operation when the Fault Reset bit turns ON

State Coding

State is indicated by the combination of bits in Statusword (6041 hex), as shown in the following table.

Status	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Status	sod*1	qs ^{*2}	ve ^{*3}	f*4	oe ^{*5}	so ^{*6}	rtso ^{*7}
Not ready to switch on	0	0	Dis-	0	0	0	0
			abled				
Switch on disabled	1	1	Dis-	0	0	0	0
			abled				
Ready to switch on	0	1	Dis-	0	0	0	1
			abled				
Switched on	0	1	Dis-	0	0	1	1
			abled				
Operation enabled	0	1	Dis-	0	1	1	1
			abled				
Fault reaction active	0	1	Dis-	1	1	1	1
			abled				
Fault	0	1	Dis-	1	0	0	0
			abled				

^{*1.} sod = switch on disabled

A-1-2 Modes of Operation

1S-series Servo Drives with built-in EtherCAT communications support the following modes of operation.

Modes of operation	Description			
csp	Cyclic synchronous position mode			
CSV	Cyclic synchronous velocity mode			
cst	Cyclic synchronous torque mode			
pp	Profile position mode			
pv	Profile velocity mode			
hm	Homing mode			

The operation mode is set in **Modes of operation** (6060 hex). It is also given in **Modes of operation display** (6061 hex).

You can check the operation modes supported by the Servo Drive with Supported drive modes (6502 hex).

If an unsupported operation mode is specified, a Command Warning will occur.

^{*2.} qs = quick stop

^{*3.} ve = voltage enabled

^{*4.} f = fault

^{*5.} oe = operation enabled

^{*6.} so = switched on

^{*7.} rtso = ready to switch on

A-1-3 Modes of Operation and Applied/Adjustment Functions

The relationships between the modes of operation of 1S-series Servo Drives with built-in EtherCAT communications and the applied/adjustment functions are shown below.

	N	lodes of operatio	n
Function	csp pp hm	csv pv	cst
Notch filter	Supported	Supported	Supported
Damping filter	Supported	Not supported	Not supported
Velocity feed-forward function	Supported	Not supported	Not supported
Torque feed-forward function	Supported	Supported	Not supported
Position Command Filter	Supported	Not supported	Not supported
Velocity Command Filter	Not supported	Supported	Not supported
Torque command filter	Supported	Supported	Supported
Load characteristic estimation function	Supported	Supported	Supported
Friction torque compensation function	Supported	Supported	Not supported
Gain switching function	Supported	Supported	Supported

A-1-4 Changing the Mode of Operation

The operation mode of the 1S-series Servo Drives with built-in EtherCAT communications is changed as described below.

Changing the Mode of Operation

The operation mode of the Servo Drive is changed by setting the operation mode from the controller, and the Servo Drive can operate the Servomotor.

To change the operation mode, change the set value of **Modes of operation** (6060 hex).

The operation mode is changed within two communication cycles after the set value is changed. When the Homing mode (hm) is changed to another operation mode, the operation mode is changed within 2 ms after the set value is changed.

When you change the operation mode, also change the command value of the object mapped to the RxPDO.

For example, in Cyclic synchronous position mode (csp), which is a position control mode, **Target Position** (607A hex) is enabled as the command value, whereas in Cyclic synchronous velocity mode (csv), which is a velocity control mode, **Target velocity** (60FF hex) is enabled as the command value.

Therefore, when the operation mode changes from the position control mode to the velocity control mode, a valid command value must be set in **Target velocity** (60FF hex) at the same time.

You can check the actual operation mode of the Servo Drive from the **Modes of operation display** (6061 hex).

Changing to an Unsupported Control Mode

If **Modes of operation** (6060 hex) is set to a value other than 0 (nma), 1 (pp), 3 (pv), 6 (hm), 8 (csp), 9 (csv), or 10 (cst), a warning will occur. If a warning occurs, the operation mode is not changed and the current operation mode is retained.

Setting	Operation	Warning
0 (nma)	The current operation	None
	mode is retained.	
1 (pp), 3 (pv), 6 (hm), 8 (csp), 9 (csv), or 10 (cst)	Changed to the specified	None
	mode.	
2, 4, 5, or 7	The current operation	Command Warning
	mode is retained.	
Others	The current operation	Data Setting Warning
	mode is retained.	

Changing to Homing Mode or Profile Position Mode When the Motor Is Running

- If the operation mode is changed to Homing mode during the motor operation, the motor performs the stop operation according to the setting of **Halt option code** (605D hex).
- If a motion command of Homing mode or Profile position mode is input during a deceleration stop operation, the motor starts the Homing operation or Profile position operation.

Precautions in Homing Mode

If you change the operation mode to another mode while the motor is performing the homing operation, a command error will occur.

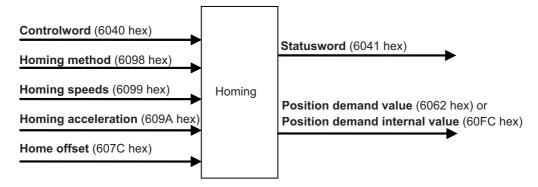
Modes of Operation Display

You can check the actual operation mode from the Modes of operation display (6061 hex).

Bit Displays According to Modes of Operation Display (6061 hex)

Some of the bits in the **Statusword** (6041 hex) are dependent on the operation mode. Their relationship with **Modes of operation display** (6061 hex) is shown in the following table:

		Modes of operation display (6061 hex)								
Object Bit			Position	control		Velocity control		Torque control		
(hex)		csp	рр	hm	Not specified	csv	pv	cst		
6041	10	Status	Target	Target	0	Status	Target	Status		
		toggle	reached	reached		toggle	reached	toggle		
	12	Target	Acknowl-	Home	0	Target	Speed	Target		
		position	edge	attained		velocity		torque		
		ignored*1				ignored*1		ignored*1		
	13	Following	Following	Homing	0	0	0	0		
		error	error	error						


^{*1.} If commands in **Controlword** (6040 hex) are not followed when the Servo is ON, this bit will be 0 (ignored). For details, see the following *Example of Servo OFF during Operation in csp*, csv, or cst.

A-1-5 Homing Mode Specifications

This section describes the specifications of the Homing mode of the 1S-series Servo Drives with built-in EtherCAT communications.

Homing Mode Configuration

The configuration of the Homing mode is as follows:

Supported Homing Methods

The following homing methods are supported by 1S-series Servo Drives with built-in EtherCAT communications:

Homing method	Description				
0	Not specified	_			
8	Homing by Home Proximity Input and home signal (positive operation start)	P. A-9			
12	Homing by Home Proximity Input and home signal (negative operation start)	P. A-9			
19	Homing without home signal (positive operation start)	P. A-10			
20	Homing without home signal (negative operation start)	P. A-10			
33	Homing with home signal (negative operation start)	P. A-11			
34	Homing with home signal (positive operation start)	P. A-11			
37	Present home preset	P. A-11			

You can check the homing method supported by the Servo Drive in **Supported homing methods** (60E3 hex).

Related Objects

Index (hex)	Subindex (hex)	Name	Access	Size	Unit	Setting range	Default setting
6040	00	Controlword	W	U16		0 to FFFF hex	0000 hex
6060	00	Modes of opera- tion	W	INT8		0 to 10	0
6098	00	Homing method	RW	INT8		1 to 37	0
6099	01	Speed during search for switch	RW	U32	Command unit/s	0 to 2,147,483,647	5,000
	02	Speed during search for zero	RW	U32	Command unit/s	1 to 2,147,483,647	5,000
6041	00	Statusword	RO	U16			

Index (hex)	Subindex (hex)	Name	Access	Size	Unit	Setting range	Default setting
609A	00	Homing accelera- tion	RW	U32	Command unit/s ²	1 to 2,147,483,647	1,000,000
607C	00	Home offset	RW	INT32	Command unit	-2,147,483,648 to 2,147,483,647	0
60FC	00	Position demand internal value	RO	INT32	Encoder unit		
6062	00	Position demand value	RO	INT32	Command unit		

Controlword (6040 hex) in Homing Mode

Bit	Name	Value	Description
4	Homing operation start	0	Do not start homing procedure.
		1	Start or continue homing procedure.*1
8	Halt	0	Enable bit 4.
		1	Stop axis according to the Halt option code (605D hex).

^{*1.} A Command Warning (Error No. B1.00) will occur if the Homing operation start command is given while the homing procedure is performed.

Bit 6 is not used. For details on other bits, refer to Controlword (6040 hex).

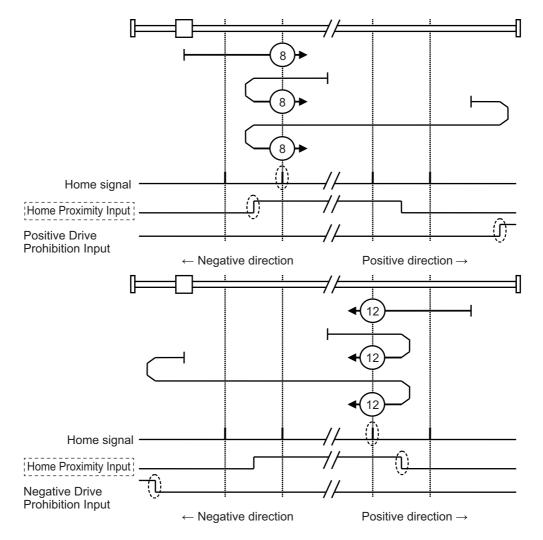
Statusword (6041 hex) in Homing Mode

Bit	Name	Description
10	Target reached	The status of the homing operation is indicated by the combination
12	Homing attained	of these bits.
13	Homing error	The status based on the combination of the bits are shown in the
		following table.

Bit 13	Bit 12	Bit 10	Description
0	0	0	Homing procedure is in progress.
0	0	1	Homing procedure is interrupted or not started.
0	1	0	Homing is attained, but target is not reached.
0	1	1	Homing procedure is completed successfully.
1	0	0	Homing error occurred, velocity is not 0.
1	0	1	Homing error occurred, velocity is 0.
1	1	0	Reserved
1	1	1	Reserved

Homing Operation

This section describes the operation of the supported homing methods.


Homing Methods 8 and 12: Homing by Home Proximity Input and Home Signal

These Homing methods use the Home Proximity Input that is enabled only in some parts of the drive range, and stop the motor when the home signal is detected.

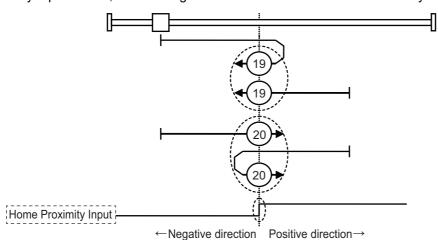
The home signal is detected in the positive direction for Homing method 8 and in the negative direction for Homing method 12.

The operation start direction of the homing operation is as follows: When the Home Proximity Input is OFF, it is the same as the direction in which the home signal is detected. When the Home Proximity Input is ON, it is opposite to the direction in which the home signal is detected.

The operation direction reverses by the positive drive prohibition input.

A homing error occurs in the following cases. (Home error = 1)

- If the drive prohibition inputs in both directions are ON at the same time.
- If the drive prohibition input in one direction is ON, and the drive prohibition input in the opposite direction is turned ON although the rising edge of the Home Proximity Input is not detected.
- If the rising edge of the Home Proximity Input is detected in the home detection direction and then the drive prohibition input turns ON before the home signal is detected


Precautions for Correct Use

- If the home signal exists near the point where the Home Proximity Input turns ON or OFF, the
 first home signal after the Home Proximity Input is turned ON or OFF may not be detected.
 Set the Home Proximity Input so that the home signal occurs away from the point where the
 home Proximity Input turns ON /OFF.
- During the homing operation, the stop function for **Drive Prohibition Stop Selection** is disabled.

Homing Methods 19 and 20: Homing without Home Signal

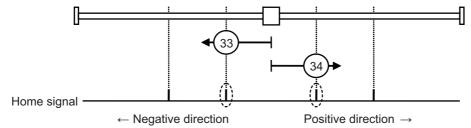
In these homing methods, only the Home Proximity Input is used. The Homing method 19 stops the homing operation when the Home Proximity Input turns OFF, and the Homing method 20 stops the homing operation when the Home Proximity Input turns ON.

The operation start direction of the homing operation is the positive direction when the Home Proximity Input is OFF, and the negative direction when the Home Proximity Input is ON.

3.....

A homing error occurs in the following cases. (Home error = 1)

- If the drive prohibition inputs in both directions are ON at the same time.
- If turning ON or OFF of the Home Proximity Input is not detected before the drive prohibition input in the drive direction turns ON.


Precautions for Correct Use

During the homing operation, the stop function for **Drive Prohibition** - **Stop Selection** is disabled.

Homing Method 33 and 34: Homing with Home Signal

In these homing methods, only the Home signal is used.

The operation start direction of the homing operation is the negative direction when the homing method is 33, and the positive direction when the homing method is 34.

A homing error occurs in the following cases. (Home error = 1)

- If the drive prohibition inputs in both directions are ON at the same time.
- If the home signal is not detected before the drive prohibition input in the drive direction turns ON.

Precautions for Correct Use

During the homing operation, the stop function for **Drive Prohibition** - **Stop Selection** is disabled.

Homing Method 37: Present Home Preset

In this Homing method, the value of **Home offset** is considered as the present position.

You can use this method even when you are using an absolute encoder, but the position is not saved in **Home offset** (607C hex). When the control power is turned OFF or when Unit Restart is executed, the home set by this Homing method is disabled.

You can execute this Homing method only when the Modes of operation is set to Homing mode (hm) and in the Servo ON state.

A-2 CoE Objects

This section explains the CoE objects implemented in 1S-series Servo Drives.

A-2-1 Object Dictionary Area

CAN application protocol over EtherCAT (CoE) uses the object dictionary as its base. All objects are assigned four-digit hexadecimal indexes in the areas shown in the following table.

Index (hex)	Area	Description
0000 to 0FFF	Data Type Area	Definitions of data types.
1000 to 1FFF	CoE Communications Area	Definitions of objects that can be used by all servers for designated communications.
2000 to 2FFF	Manufacturer Specific Area 1	Objects with common definitions for all OMRON products.
3000 to 5FFF	Manufacturer Specific Area 2	Objects with common definitions for all 1S-series Servo Drives (servo parameters).
6000 to DFFF	Device Profile Area	Objects defined in the Servo Drive's CiA402 drive profile.
E000 to EFFF	Device Profile Area 2	Objects defined in the Servo Drive's FSoE CiA402 slave connection.
F000 to FFFF	Device Area	Objects defined in a device.

A-2-2 Data Type

Data types shown in the following table are used in this profile.

Data type	Code	Size	Range
Boolean	BOOL	1 bit	0 to 1
Unsigned 8	U8	1 byte	0 to 255
Unsigned 16	U16	2 bytes	0 to 65,535
Unsigned 32	U32	4 bytes	0 to 4,294,967,295
Unsigned 64	U64	8 bytes	0 to 18,446,744,073,709,551,615
Integer 8	INT8	1 byte	-128 to 127
Integer 16	INT16	2 bytes	-32,768 to 32,767
Integer 32	INT32	4 bytes	-2,147,483,648 to 2,147,483,647
Visible string	VS		
Octet string	OS		

A-2-3 Object Description Format

In this manual, objects are described in the following format.

Index (hex)	Subindex (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Complete access	Modes of operation
<index></index>	<subindex></subindex>	<object< td=""><td><range></range></td><td><unit></unit></td><td><default></default></td><td><attri-< td=""><td><size></size></td><td><access></access></td><td><pdo< td=""><td><complete< td=""><td><modes of<="" td=""></modes></td></complete<></td></pdo<></td></attri-<></td></object<>	<range></range>	<unit></unit>	<default></default>	<attri-< td=""><td><size></size></td><td><access></access></td><td><pdo< td=""><td><complete< td=""><td><modes of<="" td=""></modes></td></complete<></td></pdo<></td></attri-<>	<size></size>	<access></access>	<pdo< td=""><td><complete< td=""><td><modes of<="" td=""></modes></td></complete<></td></pdo<>	<complete< td=""><td><modes of<="" td=""></modes></td></complete<>	<modes of<="" td=""></modes>
		name>				bute>			map>	access>	operation>

Data is indicated in pointed brackets <>. Details on data are as follows.

Item	Description							
Index	Object index given by a four-digit hexadecimal number.							
Subindex	Object subindex given by a two-digit hexadecimal number.							
Object name	The object name. For a subindex, the subindex name is given.							
Setting range	Indicates the range of data that can be set for a writable object.							
Unit	Physical units.							
Default setting	Default value set before shipment.							
Data attribute	The timing when a change in the contents is updated for a writable object.							
	A: Always updated							
	D: Possible to change only when the EtherCAT communications state is Pre-Opera-							
	tional							
	E: Servo ON							
	R: Updated after the control power is reset or restarted							
	-: Write prohibited							
Size	Gives the object size.							
Access	Indicates whether the object is to read only, or read and write.							
	RO: Read only							
	RW: Read and write (Saved in non-volatile memory)							
	W: Read and write (Not saved in non-volatile memory)							
PDO map	Indicates the PDO mapping attribute.							
	RxPDO: Reception PDOs can be mapped							
	TxPDO: Transmission PDOs can be mapped							
	-: PDOs cannot be mapped							
Complete access	Indicates whether Complete access is allowed or not.							
Modes of operation	The profile mode in which the object is enabled.							
	-: Independent of the Modes of operation							
	csp: Cyclic synchronous position mode							
	csv: Cyclic synchronous velocity mode							
	cst: Cyclic synchronous torque mode							
	pp: Profile position mode							
	pv: Profile velocity mode							
	hm: Homing mode							

A-2-4 Communication Objects

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Com- plete access	Modes of operation
1000		Device Type			000A0192 hex		4 bytes (U32)	RO		Not possible	

[•] Gives the CoE device profile number.

Description of Set Values

Bit	Name	Description
0 to 15	Device profile number	402 (192 hex): Drive Profile
16 to 23	Туре	0A: Servo Drive (with safety function)
24 to 31	Mode	0: Manufacturer specific

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Com- plete access	Modes of operation
1001		Error Register			0		1 byte	RO		Not	
							(U8)			possible	

[•] Gives the error type that has occurred in the Servo Drive.

• Description of Set Values

Bit	Description	Bit	Description
0	Generic error	4	Communication error (unsupported)
1	Current error (unsupported)	5	Device profile specific error (unsupported)
2	Voltage error (unsupported)	6	Reserved
3	Temperature error (unsupported)	7	Manufacturer specific error (unsupported)

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Com- plete access	Modes of operation
1008		Manufacturer Device Name			*1		20 bytes (VS)	RO		Not possible	

^{*1.} The following table shows the default settings.

Specification	s	Model
Single-phase 100	100 W	R88D-1SN01L-ECT
VAC	200 W	R88D-1SN02L-ECT
	400 W	R88D-1SN04L-ECT
Single-phase/	100 W	R88D-1SN01H-ECT
3-phase 200 VAC	200 W	R88D-1SN02H-ECT
	400 W	R88D-1SN04H-ECT
	750 W	R88D-1SN08H-ECT
	1.5 kW	R88D-1SN15H-ECT
3-phase 200 VAC	1 kW	R88D-1SN10H-ECT
	2 kW	R88D-1SN20H-ECT
	3 kW	R88D-1SN30H-ECT
	5.5 kW	R88D-1SN55H-ECT
	7.5 kW	R88D-1SN75H-ECT
	15 kW	R88D-1SN150H-ECT
3-phase 400 VAC	600 W	R88D-1SN06F-ECT
	1 kW	R88D-1SN10F-ECT
	1.5 kW	R88D-1SN15F-ECT
	2 kW	R88D-1SN20F-ECT
	3 kW	R88D-1SN30F-ECT
	5.5 kW	R88D-1SN55F-ECT
	7.5 kW	R88D-1SN75F-ECT
	15 kW	R88D-1SN150F-ECT

Gives the Servo Drive model number.

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Com- plete access	Modes of operation
1009		Manufacturer					20 bytes	RO		Not	
		Hardware Ver- sion					(VS)			possible	

• Gives the version of the Servo Drive hardware.

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Com- plete access	Modes of operation
100A		Manufacturer Software Ver- sion					20 bytes (VS)	RO		Not possible	

• Gives the version of the Servo Drive software.

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Com- plete access	Modes of operation
1010		Store Parameters								Possible	
	00	Number of entries			01 hex		1 byte (U8)	RO			
	01	Store Parameters	00000000 to FFFFFFF hex		00000001 hex	A	4 bytes (U32)	W			

- All storable servo parameters are stored in the Servo Drive non-volatile memory.
- Storing is executed only when a specific value is written to subindex 01 hex. This prevents servo parameter values from being stored accidentally.
- · The specific value means "save".

MSB			LSB
е	٧	а	s
65 hex	76 hex	61 hex	73 hex

- A value of 0000 0001 hex (command valid) is given when reading.
- If a value other than 65766173 hex is written, an ABORT code is returned.
- Writing to the non-volatile memory may take up to 10 seconds when all objects are changed.
- There is a limit to the number of times to write to the non-volatile memory.

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Com- plete access	Modes of operation
1011		Restore Default Parameters								Possible	
	00	Number of entries			03 hex		1 byte (U8)	RO			
	01	Restore Default Parameters	00000000 to FFFFFFF hex		0000 0001 hex	Α	4 bytes (U32)	W			
	03	Restore Default Application Parameters			0000 0001 hex	А	4 bytes (U32)	W			

- Subindex 01 hex Restore Default Parameters can restore the servo parameters and safety settings to their default values by the writing of 64616F6C hex (load). The restored servo parameters are stored in the non-volatile memory.
- Subindex 03 hex Restore Default Application Parameters can restore the servo parameters to their default values by the writing of 64616F6C hex (load). The restored servo parameters are stored in the non-volatile memory.
- A value of 00000001 hex (command valid) is given when reading.
- · Reset the control power supply to enable the objects.
- If any of the following operation is attempted, an ABORT code is returned.
 - a) Writing other than the specific value.
 - b) Writing in the Operation enabled state.
- Writing to the non-volatile memory may take up to 10 seconds. This is when all objects are changed.
- There is a limit to the number of times to write to the non-volatile memory.

Precautions for Correct Use

- When you use the STO function via EtherCAT communications, confirm that the security function of EtherCAT master is enabled, and then execute Restore Default Parameters (subindex 01 hex) so that the PDO mapping is not changed.
- Use the Operation Authority Verification function in the NJ/NX-series CPU Unit to enable the security function. Set authorities so that synchronization of the transfer operations cannot be operated. Refer to the Sysmac Studio Version 1 Operation Manual (Cat. No. W504) for details.

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Com- plete access	Modes of operation
1018		Identity Object								Possible	
	00	Number of entries			04 hex		1 byte (U8)	RO			
	01	Vendor ID			0000 0083 hex		4 bytes (U32)	RO			
	02	Product Code			Refer to the table.		4 bytes (U32)	RO			
	03	Revision Number			Refer to the table.		4 bytes (U32)	RO			
	04	Serial Number			Refer to the descrip- tion.		4 bytes (U32)	RO			

- This object gives the device information.
- Subindex 01 hex **Vendor ID** gives the manufacturer identifier.
- Subindex 02 hex **Product Code** gives the code specific to each model.

Specificatio	ns	Model	Product Code
Single-phase 100	100 W	R88D-1SN01L-ECT	000000AB hex
VAC	200 W	R88D-1SN02L-ECT	000000AC hex
	400 W	R88D-1SN04L-ECT	000000AD hex
Single-phase/	100 W	R88D-1SN01H-ECT	000000AE hex
3-phase 200 VAC	200 W	R88D-1SN02H-ECT	000000AF hex
	400 W	R88D-1SN04H-ECT	000000B0 hex
	750 W	R88D-1SN08H-ECT	000000B1 hex
	1.5 kW	R88D-1SN15H-ECT	000000B3 hex
3-phase 200 VAC	1 kW	R88D-1SN10H-ECT	000000B2 hex
	2 kW	R88D-1SN20H-ECT	000000B4 hex
	3 kW	R88D-1SN30H-ECT	000000B5 hex
	5.5 kW	R88D-1SN55H-ECT	000000E7 hex
	7.5 kW	R88D-1SN75H-ECT	000000E8 hex
	15 kW	R88D-1SN150H-ECT	000000E9 hex
3-phase 400 VAC	600 W	R88D-1SN06F-ECT	000000BE hex
	1 kW	R88D-1SN10F-ECT	000000B6 hex
	1.5 kW	R88D-1SN15F-ECT	000000B7 hex
	2 kW	R88D-1SN20F-ECT	000000B8 hex
	3 kW	R88D-1SN30F-ECT	000000B9 hex
	5.5 kW	R88D-1SN55F-ECT	000000EA hex
	7.5 kW	R88D-1SN75F-ECT	000000EB hex
	15 kW	R88D-1SN150F-ECT	000000EC hex

• Subindex 03 hex **Revision Number** gives the device revision number.

Bit	Description
0 to 15	Minor revision number
16 to 31	Major revision number

• Subindex 04 hex **Serial Number** gives the product serial number.

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default set- ting	Data attri- bute	Size	Access	PDO map	Com- plete access	Modes of operation
10E0		Node Address Reload								Possible	
	00	Number of entries			03 hex		1 byte (U8)	RO			
	01	Configured Station Alias value	0000 to FFFF hex		0	А	2 bytes (U16)	W			
	03	ID-Selector validation	0000 to FFFF hex		0	Α	2 bytes (U16)	W			

- · This object sets the node address reload function.
- Subindex 01 hex **Configured Station Alias value** is used when the node address is set and updated from the master.
- Subindex 03 hex **ID-Selector validation** is used when the node address is set and updated from the rotary switch.

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default set- ting	Data attri- bute	Size	Access	PDO map	Com- plete access	Modes of operation
10F3		Diagnosis His- tory								Possible	
	00	Number of entries			19 hex		1 byte (U8)	RO			
	01	Maximum Messages					1 byte (U8)	RO			
	02	Newest Mes- sage					1 byte (U8)	RO			
	03	Newest Acknowledged Message	00 to FF hex		00 hex	A	1 byte (U8)	W			
	04	New Mes- sages Avail- able					1 bit (BOOL)	RO	TxPDO		
	05	Flags	0000 to 003F hex	1	0000 hex	A	2 bytes (U16)	W		1	
	06 to 19	Diagnosis Message 1 to 20		1		-	30 bytes (OS)	RO		-	

- This object gives up to 20 Diagnosis Messages. It also enables or disables emergency messages.
- Subindex 01 hex **Maximum Messages** gives the number of Diagnosis Messages.
- Subindex 02 hex **Newest Message** gives the subindex where the latest Diagnosis Message is saved.
- · Subindex 03 hex Newest Acknowledged Message is used to execute the message clear.

Value	Description
0	The slave will clear all messages.
1 to 5	An abort code is returned.
06 to 2D hex	The written value can be read.
2E to FF hex	An abort code is returned.

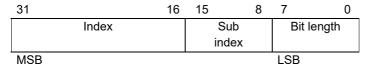
• Subindex 04 hex New Messages Available gives whether there are new messages to be read.

Value	Description
0	No new message to be read.
1	New messages to be read are available.

- Subindex 05 hex Flags sets whether or not to notify the Diagnosis History as an emergency message. It is set to 0000 hex (not notify) when power is turned ON. Write 0001 hex to send emergency messages.
- Subindexes 06 to 19 hex **Diagnosis Message 1** to **Diagnosis Message 20** give the Diagnosis History. Diagnosis History is saved in Diagnosis Message 1 to 20 in ascending order. When 20 messages are saved, the 21st message is saved in Diagnosis Message 1 and the sequence starts again.
- The format of the Diagnosis History is shown below.

Item	Data type		Details					
Diag Code	UINT32	Bit 16 to 31: Emerge	ncy Error Code					
		Bit 0 to 15: E800 hex	(
Flags	UINT16	Bit 8 to 15: 01 hex (r	Bit 8 to 15: 01 hex (number of parameters)					
		Bit 4 to 7: 02 hex (tin	ne stamp is based on time distribution)					
		Bit 0 to 3: Type	0: Info message					
			1: Warning message					
		2: Error message						
Text ID	UINT16	0000 hex: No text ID						
Time Stamp	UINT64	0: No time stamp						
		Not 0: Time stamp						
Flags Parameter 1	UINT16	Bit 12 to 15: 1 hex						
		Bit 0 to 11: 00C hex	Bit 0 to 11: 00C hex (size of parameter 1)					
Parameter 1	ARRAY (0.4) OF BYTE	Contents of Sysmac (2003 hex)	Minor Fault (2004 hex) and Sysmac Observation					

• The time stamp is recorded based on the time information that is obtained from the NJ/NX-series CPU Unit. If the time information cannot be obtained from the NJ/NX-series CPU Unit, the time stamp on the Sysmac Studio will be displayed as "1970/1/1 0:00:00". The time stamp of a Diagnosis Message that is saved before the time information is obtained from the NJ/NX-series CPU Unit will also be displayed as "1970/1/1 0:00:00".


Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default set- ting	Data attri- bute	Size	Access	PDO map	Com- plete access	Modes of operation
10F9		Present Time for Event Log								Possible	
	00	Number of entries			01 hex		1 byte (U8)	RO			
	01	Present Time for Event Log	0 to 18,446, 744,073, 709,551, 615		0	A	8 bytes (U64)	W			

• Subindex 01 hex **Present Time for Event Log** stores the time information that is distributed by the EtherCAT master, and uses it for time stamp of the event log, i.e., Diagnosis Message.

A-2-5 PDO Mapping Objects

Indexes 1600 to 17FF hex are used for receive PDO mapping and indexes 1A00 to 1BFF hex are used for transmit PDO mapping.

Subindexes after subindex 01 hex provide information about the mapped application object.

Bits 16 to 31 : Index of the mapped object
Bits 8 to 15 : Subindex of the mapped object
Bits 0 to 7 : Bit length of the mapped object

For example, for 32 bits, 20 hex is given.

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Com- plete access	Modes of operation
1600		1st receive PDO Mapping								Possible	
	00	Number of objects in this PDO	00 to 0A hex		03 hex	D	1 byte (U8)	W			
	01	1st Output Object to be mapped			6040 0010 hex	D	4 bytes (U32)	W			
	02	2nd Output Object to be mapped			607A 0020 hex	D	4 bytes (U32)	W			
	03	3rd Output Object to be mapped			60B80010 hex	D	4 bytes (U32)	W			
	04	4th Output Object to be mapped			0000 0000 hex	D	4 bytes (U32)	W			
	05	5th Output Object to be mapped			0000 0000 hex	D	4 bytes (U32)	W			
	06	6th Output Object to be mapped			0000 0000 hex	D	4 bytes (U32)	W			
	07	7th Output Object to be mapped			0000 0000 hex	D	4 bytes (U32)	W			
	08	8th Output Object to be mapped			0000 0000 hex	D	4 bytes (U32)	W			
	09	9th Output Object to be mapped			0000 0000 hex	D	4 bytes (U32)	W			
	0A	10th Output Object to be mapped			0000 0000 hex	D	4 bytes (U32)	W			

- · You can change these objects only when the EtherCAT communications state is Pre-Operational.
- The mapping you changed is not saved in the non-volatile memory. To use the mapping other than the default setting, specify objects each time you turn ON the power supply.
- You can map up to 10 objects in a PDO mapping. If you attempt to map 11 or more objects, an RxPDO Setting Error (Error. No. 90.5) will occur.
- The communications cycle you can set varies depending on the total size of mapped objects. For details, refer to *A-1-3 Modes of Operation and Applied/Adjustment Functions* on page A-5.
- If the same object is mapped more than once, the value of the last object is used.
- If any of the following operation is attempted, an ABORT code is returned.
 - a) Writing when the EtherCAT communications state is Safe-Operational or Operational
 - b) Writing with non-existent objects specified
 - c) Writing with incorrect object size specified
 - d) Writing with objects that cannot be mapped in the PDO mapping specified

• You can map the following objects to the receive PDO mapping.

	Subindex	Bit length	
Index (hex)	(hex)	(hex)	Object name
3112	E1	20	ODF Velocity Feed-forward - Gain
	E2	20	ODF Velocity Feed-forward - LPF Cutoff Frequency
3113	E1	20	ODF Torque Feed-forward - Gain
	E2	20	ODF Torque Feed-forward - LPF Cutoff Frequency
3213	E1	20	1st Position Control Gain - Proportional Gain
3214	E1	20	2nd Position Control Gain - Proportional Gain
3223	E1	20	1st Velocity Control Gain - Proportional Gain
	E2	20	1st Velocity Control Gain - Integral Gain
3224	E1	20	2nd Velocity Control Gain - Proportional Gain
	E2	20	2nd Velocity Control Gain - Integral Gain
3233	E1	20	1st Torque Command Filter - Cutoff Frequency
3234	E1	20	2nd Torque Command Filter - Cutoff Frequency
6040	00	10	Controlword
6060	00	08	Modes of operation
6071	00	10	Target torque
6072	00	10	Max torque
607A	00	20	Target position
607F	00	20	Max profile velocity
6081	00	20	Profile velocity
6083	00	20	Profile acceleration
6084	00	20	Profile deceleration
60B0	00	20	Position offset
60B1	00	20	Velocity offset
60B2	00	10	Torque offset
60B8	00	10	Touch probe function
60E0	00	10	Positive torque limit value
60E1	00	10	Negative torque limit value
60FE	01	20	Physical outputs
60FF	00	20	Target velocity

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Com- plete access	Modes of operation
1701		258th receive PDO Mapping								Possible	
	00	Number of objects in this PDO			04 hex		1 byte (U8)	RO			
	01	1st Output Object to be mapped			60400010 hex		4 bytes (U32)	RO			
	02	2nd Output Object to be mapped			607A0020 hex		4 bytes (U32)	RO			
	03	3rd Output Object to be mapped			60B80010 hex		4 bytes (U32)	RO			
	04	4th Output Object to be mapped			60FE0120 hex		4 bytes (U32)	RO			

- This object gives the mapping for an application that uses only the Cyclic synchronous position control (csp).
- The touch probe function is available.
- · The following objects are mapped.

Controlword (6040 hex), Target position (607A hex), Touch probe function (60B8 hex), and Physical outputs (60FE hex)

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Com- plete access	Modes of operation
1702		259th receive PDO Mapping								Possible	
	00	Number of objects in this PDO			07 hex		1 byte (U8)	RO			
	01	1st Output Object to be mapped			60400010 hex		4 bytes (U32)	RO			
	02	2nd Output Object to be mapped			607A 0020 hex		4 bytes (U32)	RO			
	03	3rd Output Object to be mapped			60FF 0020 hex		4 bytes (U32)	RO			
	04	4th Output Object to be mapped			60710010 hex		4 bytes (U32)	RO			
	05	5th Output Object to be mapped			6060 0008 hex		4 bytes (U32)	RO			
	06	6th Output Object to be mapped			60B80010 hex		4 bytes (U32)	RO			
	07	7th Output Object to be mapped			607F0020 hex		4 bytes (U32)	RO			

- This is the mapping for an application that uses one of the following modes with switching them: Cyclic synchronous position mode (csp), Cyclic synchronous velocity mode (csv), and Cyclic synchronous torque mode (cst).
- The touch probe function is available.
- · The following objects are mapped.

Controlword (6040 hex), Target position (607A hex), Target velocity (60FF hex), Target torque (6071 hex), Modes of operation (6060 hex), Touch probe function (60B8 hex), and Max profile velocity (607F hex)

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Com- plete access	Modes of operation
1703		260th receive PDO Mapping								Possible	
	00	Number of objects in this PDO			07 hex		1 byte (U8)	RO			
	01	1st Output Object to be mapped			60400010 hex		4 bytes (U32)	RO			
	02	2nd Output Object to be mapped			607A 0020 hex		4 bytes (U32)	RO			
	03	3rd Output Object to be mapped			60FF 0020 hex		4 bytes (U32)	RO			
	04	4th Output Object to be mapped			6060 0008 hex		4 bytes (U32)	RO			
	05	5th Output Object to be mapped			60B80010 hex		4 bytes (U32)	RO			
	06	6th Output Object to be mapped			60E00010 hex		4 bytes (U32)	RO			
	07	7th Output Object to be mapped			60E10010 hex		4 bytes (U32)	RO			

- This is the mapping for an application that uses one of the following modes with switching them: Cyclic synchronous position mode (csp) and Cyclic synchronous velocity mode (csv).
- The touch probe function and torque limit are available.
- · The following objects are mapped.

Controlword (6040 hex), Target position (607A hex), Target velocity (60FF hex), Modes of operation (6060 hex), Touch probe function (60B8 hex), Positive torque limit value (60E0 hex), and Negative torque limit value (60E1 hex)

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Com- plete access	Modes of operation
1704		261th receive PDO Mapping								Possible	
	00	Number of objects in this PDO			09 hex		1 byte (U8)	RO			
	01	1st Output Object to be mapped			6040 0010 hex		4 bytes (U32)	RO			
	02	2nd Output Object to be mapped			607A0020 hex		4 bytes (U32)	RO			
	03	3rd Output Object to be mapped			60FF 0020 hex		4 bytes (U32)	RO			
	04	4th Output Object to be mapped			60710010 hex		4 bytes (U32)	RO			
	05	5th Output Object to be mapped			6060 0008 hex		4 bytes (U32)	RO			
	06	6th Output Object to be mapped			60B80010 hex		4 bytes (U32)	RO			
	07	7th Output Object to be mapped			607F 0020 hex		4 bytes (U32)	RO			
	08	8th Output Object to be mapped			60E00010 hex		4 bytes (U32)	RO			
	09	9th Output Object to be mapped			60E10010 hex	1	4 bytes (U32)	RO	-		

- This is the mapping for an application that uses one of the following modes with switching them: Cyclic synchronous position mode (csp), Cyclic synchronous velocity mode (csv), and Cyclic synchronous torque mode (cst).
- The touch probe function and torque limit are available.
- · The following objects are mapped.

Controlword (6040 hex), Target position (607A hex), Target velocity (60FF hex), Target torque (6071 hex), Modes of operation (6060 hex), Touch probe function (60B8 hex), Max profile velocity (607F hex), Positive torque limit value (60E0 hex), and Negative torque limit value (60E1 hex)

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Com- plete access	Modes of operation
1705		262th receive PDO Mapping								Possible	
	00	Number of objects in this PDO			08 hex		1 byte (U8)	RO			
	01	1st Output Object to be mapped			60400010 hex		4 bytes (U32)	RO			
	02	2nd Output Object to be mapped			607A 0020 hex		4 bytes (U32)	RO			
	03	3rd Output Object to be mapped			60FF 0020 hex		4 bytes (U32)	RO			
	04	4th Output Object to be mapped			6060 0008 hex		4 bytes (U32)	RO			
	05	5th Output Object to be mapped			60B80010 hex		4 bytes (U32)	RO			
	06	6th Output Object to be mapped			60E00010 hex		4 bytes (U32)	RO			
	07	7th Output Object to be mapped			60E10010 hex		4 bytes (U32)	RO			
	08	8th Output Object to be mapped			60B20010 hex		4 bytes (U32)	RO			

- This is the mapping for an application that uses one of the following modes with switching them: Cyclic synchronous position mode (csp) and Cyclic synchronous velocity mode (csv).
- The touch probe function and torque limit are available.
- You can specify the amount of torque feed-forward in Torque offset (60B2 hex).
- · The following objects are mapped.

Controlword (6040 hex), Target position (607A hex), Target velocity (60FF hex), Modes of operation (6060 hex), Touch probe function (60B8 hex), Positive torque limit value (60E0 hex), and Negative torque limit value (60E1 hex), and Torque offset (60B2 hex)

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Com- plete access	Modes of operation
1710		273th receive PDO Mapping								Possible	
	00	Number of objects in this PDO			13 hex		1 byte (U8)	RO			
	01	1st Output Object to be mapped			E7000108 hex		4 bytes (U32)	RO			
	02	2nd Output Object to be mapped			6640 0001 hex		4 bytes (U32)	RO			
	03 to 08	3rd-8th Output Object to be mapped			0000 0001 hex		4 bytes (U32)	RO			
	09	9th Output Object to be mapped			66320001 hex		4 bytes (U32)	RO			
	0A to 11	10th-17th Out- put Object to be mapped			0000 0001 hex		4 bytes (U32)	RO			
	12	18th Output Object to be mapped			E7000310 hex		4 bytes (U32)	RO			
	13	19th Output Object to be mapped			E7000210 hex		4 bytes (U32)	RO			

[•] This PDO Mapping is required when the STO Function via EtherCAT Communications is used.

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default set- ting	Data attri- bute	Size	Access	PDO map	Com- plete access	Modes of operation
1A00		1st transmit PDO Mapping								Possible	
	00	Number of objects in this PDO	00 to 0A hex		07 hex	D	1 byte (U8)	W			
	01	1st Output Object to be mapped			60410010 hex	D	4 bytes (U32)	W			
	02	2nd Output Object to be mapped			6064 0020 hex	D	4 bytes (U32)	W			
	03	3rd Input Object to be mapped			60B90010 hex	D	4 bytes (U32)	W			
	04	4th Input Object to be mapped			60BA 0020 hex	D	4 bytes (U32)	W			
	05	5th Input Object to be mapped			60BC0020 hex	D	4 bytes (U32)	W			
	06	6th Input Object to be mapped			603F0010 hex	D	4 bytes (U32)	W			
	07	7th Input Object to be mapped			60FD 0020 hex	D	4 bytes (U32)	W			
	08	8th Output Object to be mapped			0000 0000 hex	D	4 bytes (U32)	W			
	09	9th Input Object to be mapped			0000 0000 hex	D	4 bytes (U32)	W			
	0A	10th Input Object to be mapped			0000 0000 hex	D	4 bytes (U32)	W			

- · You can change these objects only when the EtherCAT communications state is Pre-Operational.
- The mapping you changed is not saved in the non-volatile memory. To use the mapping other than the default setting, specify objects each time you turn ON the power supply.
- You can map up to 10 objects in a PDO mapping. If you attempt to map 11 or more objects, an TxPDO Setting Error (Error. No. 90.6) will occur.
- The communications cycle you can set varies depending on the total size of mapped objects. For details, refer to *A-1-3 Modes of Operation and Applied/Adjustment Functions* on page A-5.
- If the same object is mapped more than once, the value of the last object is used.
- If any of the following operation is attempted, an ABORT code is returned.
 - a) Writing when the EtherCAT communications state is Safe-Operational or Operational
 - b) Writing with non-existent objects specified
 - c) Writing with incorrect object size specified
 - d) Writing with objects that cannot be mapped in the PDO mapping specified

• You can map the following objects to the transmit PDO mapping.

Index (hex)	Subindex (hex)	Bit length (hex)	Object name
10F3	04	01	Diagnosis History - New Messages Available
2002	01	08	Sysmac Error Status
3000	81	20	Basic Functions - Function Status
3010	87	20	Position Command - Reference Position for csp
	92	20	Position Command - Following Error After Interpolation
3211	83	40	Position Detection - Present Position Time Stamp
3221	82	20	Velocity Detection - Present Motor Velocity
3B30	83	40	Touch Probe 1 - Positive Edge Time Stamp
3B31	83	40	Touch Probe 2 - Positive Edge Time Stamp
4000	81	20	Error Full Code
4110	81	20	Monitor Data via PDO - Monitor Data 1
	82	20	Monitor Data via PDO - Monitor Data 2
	83	20	Monitor Data via PDO - Monitor Data 3
	84	20	Monitor Data via PDO - Monitor Data 4
4130	81	20	Safety Status Monitor - Safety Status
4150	81	20	Overload - Load Ratio
4310	81	20	Regeneration - Regeneration Load Ratio
4412	81	20	Motor Advanced Setting - Without Motor Operation Status
4600	81	20	I/O Monitor - Physical I/O
4601	81	20	Function Input - Monitor Input
603F	00	10	Error code
6041	00	10	Statusword
6061	00	08	Modes of operation display
6062	00	20	Position demand value
6063	00	20	Position actual internal value
6064	00	20	Position actual value
606B	00	20	Velocity demand value
606C	00	20	Velocity actual value
6074	00	10	Torque demand
6077	00	10	Torque actual value
60B9	00	10	Touch probe status
60BA	00	20	Touch probe 1 positive edge
60BC	00	20	Touch probe 2 positive edge
60F4	00	20	Following error actual value
60FA	00	20	Control effort
60FC	00	20	Position demand internal value
60FD	00	20	Digital inputs

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Com- plete access	Modes of operation
1B01		258th transmit PDO Mapping								Possible	
	00	Number of objects in this PDO			09 hex		1 byte (U8)	RO			
	01	1st Output Object to be mapped			603F0010 hex		4 bytes (U32)	RO			
	02	2nd Output Object to be mapped			60410010 hex		4 bytes (U32)	RO			
	03	3rd Input Object to be mapped			6064 0020 hex		4 bytes (U32)	RO			
	04	4th Input Object to be mapped			6077 0010 hex		4 bytes (U32)	RO			
	05	5th Input Object to be mapped			60F40020 hex		4 bytes (U32)	RO			
	06	6th Input Object to be mapped			60B90010 hex		4 bytes (U32)	RO			
	07	7th Input Object to be mapped			60BA 0020 hex		4 bytes (U32)	RO			
	08	8th Output Object to be mapped			60BC0020 hex		4 bytes (U32)	RO			
	09	9th Input Object to be mapped			60FD 0020 hex		4 bytes (U32)	RO			

- This object gives the mapping for an application that uses only the Cyclic synchronous position control (csp).
- The touch probe function is available.
- The following objects are mapped.

Error code $(603F\ hex)$, Statusword $(6041\ hex)$, Position actual value $(6064\ hex)$, Torque actual value $(6077\ hex)$, Following error actual value $(60F4\ hex)$, Touch probe status $(60B9\ hex)$, Touch probe 1 positive edge $(60BA\ hex)$, Touch probe 2 positive edge $(60BC\ hex)$, and Digital inputs $(60FD\ hex)$

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default set- ting	Data attri- bute	Size	Access	PDO map	Com- plete access	Modes of operation
1B02		259th transmit PDO Mapping								Possible	
	00	Number of objects in this PDO			09 hex		1 byte (U8)	RO			
	01	1st Output Object to be mapped			603F0010 hex		4 bytes (U32)	RO			
	02	2nd Output Object to be mapped			60410010 hex		4 bytes (U32)	RO			
	03	3rd Input Object to be mapped			6064 0020 hex		4 bytes (U32)	RO			
	04	4th Input Object to be mapped			6077 0010 hex		4 bytes (U32)	RO			
	05	5th Input Object to be mapped			60610008 hex		4 bytes (U32)	RO			
_	06	6th Input Object to be mapped			60B90010 hex		4 bytes (U32)	RO			
	07	7th Input Object to be mapped			60BA 0020 hex		4 bytes (U32)	RO			
	08	8th Output Object to be mapped			60BC0020 hex		4 bytes (U32)	RO			
	09	9th Input Object to be mapped	1		60FD 0020 hex	-	4 bytes (U32)	RO			

- This is the mapping for an application that switches the mode of operation.
- The touch probe function is available.
- The following objects are mapped.

Error code (603F hex), Statusword (6041 hex), Position actual value (6064 hex), Torque actual value (6077 hex), Modes of operation display (6061 hex), Touch probe status (60B9 hex), Touch probe 1 positive edge (60BA hex), Touch probe 2 positive edge (60BC hex), and Digital inputs (60FD hex)

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Com- plete access	Modes of operation
1B03		260th transmit PDO Mapping	-							Possible	
	00	Number of objects in this PDO			0A hex		1 byte (U8)	RO			
	01	1st Output Object to be mapped	1		603F0010 hex	1	4 bytes (U32)	RO	-		
	02	2nd Output Object to be mapped			60410010 hex		4 bytes (U32)	RO			
	03	3rd Input Object to be mapped			60640020 hex		4 bytes (U32)	RO			
	04	4th Input Object to be mapped			6077 0010 hex		4 bytes (U32)	RO			
	05	5th Input Object to be mapped			60F40020 hex		4 bytes (U32)	RO			
	06	6th Input Object to be mapped			60610008 hex		4 bytes (U32)	RO			
	07	7th Input Object to be mapped			60B90010 hex		4 bytes (U32)	RO			
	08	8th Output Object to be mapped			60BA 0020 hex		4 bytes (U32)	RO			
	09	9th Input Object to be mapped			60BC0020 hex		4 bytes (U32)	RO			
	0A	10th Input Object to be mapped			60FD 0020 hex		4 bytes (U32)	RO			

- This is the mapping for an application that switches the mode of operation.
- The touch probe function is available.
- The following objects are mapped.

Error code $(603F\ hex)$, Statusword $(6041\ hex)$, Position actual value $(6064\ hex)$, Torque actual value $(6077\ hex)$, Following error actual value $(60F4\ hex)$, Modes of operation display $(6061\ hex)$, Touch probe status $(60B9\ hex)$, Touch probe 1 positive edge $(60BA\ hex)$, Touch probe 2 positive edge $(60BC\ hex)$, and Digital inputs $(60FD\ hex)$

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Com- plete access	Modes of operation
1B04		261th transmit PDO Mapping								Possible	
	00	Number of objects in this PDO			0A hex		1 byte (U8)	RO			
	01	1st Output Object to be mapped			603F0010 hex		4 bytes (U32)	RO			
	02	2nd Output Object to be mapped			60410010 hex		4 bytes (U32)	RO			
	03	3rd Input Object to be mapped			6064 0020 hex		4 bytes (U32)	RO			
	04	4th Input Object to be mapped			6077 0010 hex		4 bytes (U32)	RO			
	05	5th Input Object to be mapped			60610008 hex		4 bytes (U32)	RO			
	06	6th Input Object to be mapped			60B90010 hex		4 bytes (U32)	RO			
	07	7th Input Object to be mapped			60BA 0020 hex		4 bytes (U32)	RO			
	08	8th Output Object to be mapped			60BC 0020 hex		4 bytes (U32)	RO			
	09	9th Input Object to be mapped			60FD0020 hex		4 bytes (U32)	RO			
	0A	10th Input Object to be mapped			606C 0020 hex		4 bytes (U32)	RO			

- This is the mapping for an application that switches the mode of operation.
- The touch probe function is available. Only one latch position value is available.
- The following objects are mapped.

Error code (603F hex), Statusword (6041 hex), Position actual value (6064 hex), Torque actual value (6077 hex), Modes of operation display (6061 hex), Touch probe status (60B9 hex), Touch probe 1 positive edge (60BA hex), Touch probe 2 positive edge (60BC hex), Digital inputs (60FD hex), and Velocity actual value (606C hex)

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Com- plete access	Modes of operation
1B10		273th transmit PDO Mapping								Possible	
	00	Number of objects in this PDO			13 hex		1 byte (U8)	RO			
	01	1st Output Object to be mapped			E6000108 hex		4 bytes (U32)	RO			
	02	2nd Output Object to be mapped			66400001 hex		4 bytes (U32)	RO			
	03 to 08	3rd-8th Input Object to be mapped			00000001 hex		4 bytes (U32)	RO			
	09	9th Input Object to be mapped			66320001 hex		4 bytes (U32)	RO			
	0A to 10	10th-16th Input Object to be mapped			0000 0001 hex		4 bytes (U32)	RO			
	11	17th Input Object to be mapped			E6010101 hex		4 bytes (U32)	RO			
	12	18th Input Object to be mapped			E6000310 hex		4 bytes (U32)	RO			
	13	19th Input Object to be mapped			E6000210 hex		4 bytes (U32)	RO			

• This PDO Mapping is required when the STO Function via EtherCAT Communications is used.

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Com- plete access	Modes of operation
1BFF		512th transmit PDO Mapping								Possible	
	00	Number of objects in this PDO			01 hex		1 byte (U8)	RO			
	01	1st Output Object to be mapped			20020108 hex		4 bytes (U32)	RO			

- This transmit mapping notifies the host controller that the Servo Drive detected an error.
- Sysmac Error Status (2002-01 hex) is mapped.
- If you connect the Servo Drive with a Machine Automation Controller NJ/NX-series CPU Unit, map this object to Sync Manager 3 PDO Assignment (1C13 hex). Sysmac Studio, by default, automatically maps this object.

A-2-6 Sync Manager Communication Objects

Objects 1C00 to 1C33 hex set how to use the EtherCAT communications memory.

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Com- plete access	Modes of operation
1C00		Sync Manager Communication Type								Possible	
	00	Number of used Sync Manager channels			04 hex		1 byte (U8)	RO			
	01	Communication Type Sync Man- ager 0			01 hex		1 byte (U8)	RO			
	02	Communication Type Sync Man- ager 1			02 hex		1 byte (U8)	RO			
	03	Communication Type Sync Man- ager 2			03 hex		1 byte (U8)	RO			
	04	Communication Type Sync Man- ager 3			04 hex		1 byte (U8)	RO			

The Sync Manager has the following settings.

SM0 : Mailbox receive (Master to Slave)

SM1 : Mailbox send (Slave to Master)

SM2 : Process data output (Master to Slave)

SM3 : Process data input (Slave to Master)

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Com- plete access	Modes of operation
1C12		Sync Manager 2 PDO Assign- ment								Possible	
	00	Number of assigned PDOs	00 to 03 hex		01 hex	D	1 byte (U8)	W			
	01	1st PDO Map- ping Object Index of assigned PDO	0000 to 17FF hex		1701 hex	D	2 bytes (U16)	W			
	02	2nd PDO Map- ping Object Index of assigned PDO	0000 to 17FF hex		0000 hex	D	2 bytes (U16)	W			
	03	3rd PDO Map- ping Object Index of assigned PDO	0000 to 17FF hex		0000 hex	D	2 bytes (U16)	W			

- · This object gives the reception PDOs used by this Sync Manager.
- You can change these objects only when the EtherCAT communications state is Pre-Operational.
- The mapping you changed is not saved in the non-volatile memory. To use the mapping other than the default setting, specify objects each time you turn ON the power supply.
- If any of the following operation is attempted, an ABORT code for SDO communications will be returned.
 - a) Writing when the communications state is other than Pre-Operational
 - b) Writing a value other than 1600 hex, 1701 to 1705 hex, and 1710 hex

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Com- plete access	Modes of operation
1C13		Sync Manager 3 PDO Assign- ment								Possible	
	00	Number of assigned PDOs	00 to 03 hex		01 hex	D	1 byte (U8)	W			
	01	1st PDO Map- ping Object Index of assigned PDO	0000 to 1BFF hex		1B01 hex	D	2 bytes (U16)	W			
	02	2nd PDO Map- ping Object Index of assigned PDO	0000 to 1BFF hex		0000 hex	D	2 bytes (U16)	W			
	03	3rd PDO Map- ping Object Index of assigned PDO	0000 to 1BFF hex		0000 hex	D	2 bytes (U16)	W			

- This object gives the transmission PDOs used by this Sync Manager.
- You can change these objects only when the EtherCAT communications state is Pre-Operational.
- The mapping you changed is not saved in the non-volatile memory. To use the mapping other than the default setting, specify objects each time you turn ON the power supply.
- If any of the following operation is attempted, an ABORT code for SDO communications will be returned.
 - a) Writing when the communications state is other than Pre-Operational
 - b) Writing a value other than 1A00 hex, 1B01 to 1B04 hex, 1B10 hex, or 1BFF hex

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Com- plete access	Modes of operation
1C32		Sync Manager 2 Synchroniza- tion								Possible	
	00	Number of Synchroniza- tion Parame- ters			0C hex		1 byte (U8)	RO			
	01	Synchroniza- tion Type	0000 to 0003 hex		0000 hex	Α	2 bytes (U16)	W			
	02	Cycle Time		ns	0000 0000 hex		4 bytes (U32)	RO			
	03	Shift Time	0 to FFFFFFF hex	ns	0	Α	4 bytes (U32)	W			
	04	Synchroniza- tion Types sup- ported			0006 hex		2 bytes (U16)	RO			
	05	Minimum Cycle Time		ns	125,000		4 bytes (U32)	RO			
	06	Calc and Copy Time		ns	125,000		4 bytes (U32)	RO			
	09	Delay Time		ns	31,250		4 bytes (U32)	RO			
	0B	Cycle Time Too Small					4 bytes (U32)	RO			

- This object gives the parameters for synchronization of Sync Manager 2.
- Subindex 01 hex Synchronization Type gives the synchronization mode of Sync Manager 2.

Value	Description
0000 hex	Free Run
0001 hex	Synchronous
0002 hex	DC Sync0
0003 hex	DC Sync1

- Subindex 02 hex **Cycle Time** gives the cycle in nanoseconds.
- Subindex 03 hex **Shift Time** sets the delay time from Sync0 to signal output. It is unsupported by the 1S-series Servo Drive.
- Subindex 04 hex **Synchronization Types supported** gives the types of synchronization supported by this Servo Drive.

Bit	Description
1	Synchronous Supported
2 to 4	DC Type Supported DC (1: Sync0)

- Subindex 05 hex **Minimum Cycle Time** gives the time required for this Servo Drive to process the reception or transmission PDO.
- Subindex 06 hex Calc and Copy Time gives the internal processing time from data reception to signal output.
- Subindex 09 hex **Delay Time** gives the hardware-related delay time from signal output to actual output via the terminal.
- Subindex 0B hex **Cycle Time Too Small** gives the number of times which input data could not be updated because the internal processing was not completed before the next SM event.

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Com- plete access	Modes of operation
1C33		Sync Manager 3 Synchroniza- tion				1				Possible	
	00	Number of Synchroniza- tion Parame- ters			0C hex		1 byte (U8)	RO			
	01	Synchroniza- tion Type	0000 to 0003 hex		0000 hex	Α	2 bytes (U16)	W	1		
	02	Cycle Time		ns	0000 0000 hex	1	4 bytes (U32)	RO			
	03	Shift Time	0 to FFFFFFF hex	ns	0	A	4 bytes (U32)	W			
	04	Synchroniza- tion Types sup- ported			0026 hex		2 bytes (U16)	RO			
	05	Minimum Cycle Time		ns	125,000		4 bytes (U32)	RO			
	06	Calc and Copy Time		ns	125,000	1	4 bytes (U32)	RO	-		
	09	Delay Time		ns	31,250		4 bytes (U32)	RO			
	0B	Cycle Time Too Small					4 bytes (U32)	RO			

- This object gives the parameters for synchronization of Sync Manager 3.
- Subindex 01 hex Synchronization Type gives the synchronization mode of Sync Manager 3.

Value	Description
0000 hex	Free Run
0001 hex	Synchronous
0002 hex	DC Sync0
0003 hex	DC Sync1

- Subindex 02 hex Cycle Time gives the sync0 event cycle in nanoseconds.
- Subindex 03 hex Shift Time sets the timing of input signal recognition from Sync0.
- Subindex 04 hex Synchronization Types supported gives the types of synchronization supported by this Servo Drive.

Bit	Description
1	Synchronous Supported
2 to 4	DC Type Supported DC (1: Sync0)
5 to 6	Shift Settings (1: Input Shift with local timer)

- Subindex 05 hex **Minimum Cycle Time** gives the time required for this Servo Drive to process the reception or transmission PDO.
- Subindex 06 hex Calc and Copy Time gives the internal processing time from input signal recognition to transmission PDO setting.
- Subindex 0B hex **Cycle Time Too Small** gives the number of times which input data could not be updated because the internal processing was not completed before the next SM event.

A-2-7 Manufacturer Specific Objects

For details on servo parameters, refer to Section 9 Details on Servo Parameters.

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Com- plete access	Modes of operation
2002		Sysmac Error								Possible	
	00	Number of entries			02 hex		1 byte (U8)	RO			
	01	Sysmac Error Status					1 byte (U8)	RO	TxPDO		
	02	Sysmac Error Status Clear	00 to 01 hex		00 hex	Α	1 byte (U8)	W			

- This object is used to notify and clear the data of the Sysmac Error Status.
- Subindex 01 hex Sysmac Error Status notifies that the Servo Drive detected an error.
 If you connect the Servo Drive with a Machine Automation Controller NJ/NX-series CPU Unit, map this object to the PDO.
- Subindex 02 hex Sysmac Error Status Clear enables a Machine Automation Controller NJ/NX-series CPU Unit to reset the error that occurred in the Servo Drive.

Additional Information

Sysmac Studio, by default, uses the **512th transmit PDO Mapping** (1BFF hex) assignment to map the **Sysmac Error Status** (subindex 01 hex) automatically to the PDO.

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Com- plete access	Modes of operation
2003		Sysmac Observation								Possible	
	00	Number of entries			05 hex		1 byte (U8)	RO			
	01	Observation 1					12 bytes (OS)	RO			
	02	Observation 2					12 bytes (OS)	RO			
	03	Observation 3					12 bytes (OS)	RO			
	04	Observation 4					12 bytes (OS)	RO			
	05	Observation 5					12 bytes (OS)	RO			

- This object gives data of the existing observation.
- Subindexes 01 to 05 hex **Observation 1** to **5** give the code of the existing observation-level event.
- · The format of the observation is shown below.

Item	Data type	Details
Error code	UINT32	The event code is stored in little-endian format.
Error detail type	UINT32	Byte 2 to 3: Type of the detailed data
		Byte 1: Size of the detailed data
		Byte 0: 00 hex (no detailed data), 01 hex (detailed data)
Error detail	UINT32	Detailed data

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Com- plete access	Modes of operation
2004		Sysmac Minor Fault								Possible	
	00	Number of entries			05 hex		1 byte (U8)	RO			
	01	Minor Fault 1					12 bytes (OS)	RO			
	02	Minor Fault 2					12 bytes (OS)	RO			
	03	Minor Fault 3					12 bytes (OS)	RO			
	04	Minor Fault 4					12 bytes (OS)	RO			
	05	Minor Fault 5					12 bytes (OS)	RO			

- This object gives data of the existing minor fault.
- Subindexes 01 to 05 hex Minor Fault 1 to 5 give the code of the existing minor-fault-level event.
- The format of the minor fault is shown below.

Item	Data type	Details
Error code	UINT32	The event code is stored in little-endian format.
Error detail type	UINT32	Byte 2 to 3: Type of the detailed data
		Byte 1: Size of the detailed data
		Byte 0: 00 hex (no detailed data), 01 hex (detailed data)
Error detail	UINT32	Detailed data

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Com- plete access	Modes of operation
2100		Error History Clear	00000000 to		00000000 hex	Α	4 bytes (U32)	W		Not pos- sible	
			FFFFFFFF hex								

- This object clears the data of Diagnosis History (10F3 hex).
- The data is cleared by the writing of 6c636c65 hex.
- If a value other than 6c636c65 hex is written, an ABORT code is returned.

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Com- plete access	Modes of operation
2200		Communica- tions Error Set- ting	0 to 15	Times	1	R	1 byte (U8)	RW	1	Not possi- ble	

- This object sets the number of consecutive times to detect a Communications Synchronization Error (Error. No. 83.03).
- The range of the set value is from 0 to 15. The error is detected when the number of detection times reaches "the set value +1".
- If the set value is 0, a Communications Synchronization Error (Error No. 83.03) is detected when one communications error occurs.
- If you configure a ring topology with a Machine Automation Controller NJ/NX-series CPU Unit, set this object to 2 or more. If the set value is less than 2, a Communications Synchronization Error (Error No. 83.03) may be detected when the ring disconnection status occurs.

Additional Information

When the set value is 1 (default setting), a Communications Synchronization Error (Error No. 83.03) is detected if a communications error occurs twice in a row.

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Com- plete access	Modes of operation
2201		Sync Not Received Tim- eout Setting	0 to 600	S	0	R	2 bytes (U16)	RO		Not possi- ble	

- This object sets a value to detect a Synchronization Interruption Error (Error No. 88.02).
- If the set value is 0, the detection time will be 120 seconds.

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Com- plete access	Modes of operation
2400		Unit Restart		1			1	1	1	Not pos- sible	
	00	Number of entries			01 hex		1 byte (U8)	RO			
	01	Unit Restart	0000 0000 0000 to FFFF FFFF FFFF hex		0	Α	6 bytes (VS)	W			

- · This object is used to execute the Unit Restart function.
- This function is executed by the writing of 746573657261 hex.
 If a value other than 746573657261 hex is written, an ABORT code is returned.

A-2-8 Servo Drive Profile Object

This section explains the CiA402 drive profile supported by 1S-series Servo Drives.

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Com- plete access	Modes of operation
603F		Error code					2 bytes	RO	TxPDO	Not possi-	
							(U16)			ble	

- This object gives the code of the latest existing event or warning which exists in the Servo Drive.
- When more than one error or warning occurs at the same time, the highest-priority one is given.
- The given error is from the manufacturer specific area FF00 to FFFF hex.
- The lower word of FF00 to FFFF hex gives the main error number.

Index (hex)	Name	Data type		Specifications
603F	Error code	U16	0000 hex	: No error
			FF01 hex	: Main error number 1
			FF02 hex	: Main error number 2
			:	:
			FF99 hex	: Main error number 99
			FFA0 hex	: Warning A0 hex
			:	:
			FFC0 hex	: Information C0 hex
			Others	: Reserved

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Com- plete access	Modes of operation
6040		Controlword	0000 to FFFF hex		0000 hex	A	2 bytes (U16)	W	RxPDO	Not pos- sible	csp, csv, cst, pp, pv, hm

• This object is used to control the state machine of the Servo Drive (PDS).

Description of Set Values

Bit	Name	Description
0	Switch on	The state is controlled by these bits.
1	Enable voltage	Quick stop is not supported. The Quick stop bit is ignored even if it is set
2	Quick stop	to 0.
3	Enable operation	For details, refer to State Control Commands on page A-3.
4 to 6	Operation mode specific	These bits are specific to the operation mode.
7	Fault reset	Errors and warnings are reset when this bit turns ON.
8	Operation mode specific	This bit is specific to the operation mode.
9	Operation mode specific	This bit is specific to the operation mode.
10	Reserved	
11	P_CL	These bits switch the torque limit function. They are normally set to 0.
12	N_CL	Refer to Torque Limit Switching on page 7-31 for details.
13 to 15	Manufacturer specific	These are manufacturer specific bits. Always keep them at 0.

• Description of bits specific to operation mode

Modes of operation			Controlword		
wodes of operation	Bit 9	Bit 8	Bit 6	Bit 5	Bit 4
Profile position mode	Change on	Halt	Abs/rel	Change set	New set-point
(pp)	Set-point			immediately	
Profile velocity mode		Halt			
(pv)					
Homing mode (hm)		Halt			Homing opera-
					tion start
Cyclic synchronous					
position mode (csp)					
Cyclic synchronous					
velocity mode (csv)					
Cyclic synchronous					
torque mode (cst)					

[•] For details on how to use, refer to 6-6 Profile Position Mode on page 6-16 for the Profile position mode, 6-7 Profile Velocity Mode on page 6-21 for the Profile velocity mode, and Homing Mode Specifications on page A-7 for the Homing mode.

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Com- plete access	Modes of operation
6041		Statusword	0000 to FFFF hex		0000 hex		2 bytes (U16)	RO	TxPDO	Not pos- sible	csp, csv, cst, pp, pv, hm

• This object gives the present status of the Servo Drive (PDS).

Bit Descriptions

Bit	Name	Description
0	Ready to switch on	These bits give the status.
1	Switched on	For details, refer to State Coding on page A-4.
2	Operation enabled	
3	Fault	
4	Voltage enabled*1	
5	Quick stop	
6	Switch on disabled	
7	Warning	This bit indicates that warning status exists. Operation continues without changing the status.
8	Manufacturer specific	This is a manufacturer specific bit. This bit is not used by 1S-series Servo Drives.
9	Remote	This bit indicates that the Servo Drive is currently controlled with Controlword.
		After initialization is completed, this bit changes to <i>1</i> (remote).
		When 0 (local) is given, it indicates that the support software has the control right to the Servo Drive.
10	Operation mode specific	This bit is specific to the operation mode.
11	Internal limit active	This bit indicates that the limit function is in effect.
		This bit changes to 1 when the limit function in the Servo Drive is activated.
		The limit function has four types of limits: the torque limit, velocity limit, drive prohibition input, and software position limit.

Bit	Name	Description
12 to 13	Operation mode specific	These bits are specific to the operation mode.
14 to 15	Manufacturer specific	These are manufacturer specific bits. These bits are not
		used by 1S-series Servo Drives.

^{*1.} The Voltage enabled bit indicates that the main circuit power supply voltage is applied when it is 1.

Description of bits specific to operation mode

Modes of eneration		Controlword	
Modes of operation	Bit 13	Bit 12	Bit 10
Profile position mode (pp)	Following error	Set-point acknowledge	Target reached
Profile velocity mode (pv)		Speed	Target reached
Homing mode (hm)	Homing error	Homing attained	Target reached
Cyclic synchronous position mode (csp)	Following error	Target position ignored	Status Toggle
Cyclic synchronous velocity mode (csv)		Target velocity ignored	Status Toggle
Cyclic synchronous torque mode (cst)		Target torque ignored	Status Toggle

• Target position ignored, Target velocity ignored, and Target torque ignored show whether the operation can follow the command. These bits change to 0 when operation cannot follow the command due to Drive Prohibition, Software Position Limit, etc.

Set value	Description
0	Ignore command
1	Follow command

- Status Toggle switches between 0 and 1 each time an RxPDO is received. The function of this bit is enabled or disabled with **Function Settings** (60DA hex).
- For how to use other bits, refer to *Profile Position Mode* on page 6-16 for the Profile position mode, *Profile Velocity Mode* on page 6-21 for the Profile velocity mode, and *Homing Mode Specifications* on page A-7 for the Homing mode.

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Com- plete access	Modes of operation
605B		Shutdown option code	-7 to 0	-	-5	Ш	2 bytes (INT16)	RW		Not possi- ble	

- This object sets the operation of the Servo Drive during Shutdown (transition from the Operation enabled state to the Ready to switch on state). "During Shutdown" refers to the duration in which the Servo Drive decelerates and then stops after main circuit power OFF (Shutdown).
- When the running motor decelerates and the speed reaches 30 r/min or lower, the operation changes from the Deceleration Operation to the Operation after Stopping.
- The following error is cleared regardless of the set value.

Description of Set Values

Set value	ı	Deceleration method	Operation after stopping
-7	Operation A*1	Deceleration stop (The deceleration stop torque is used.)	Free
	Operation B*1	Free-run	
-6	Operation A*1	Deceleration stop (The deceleration stop torque is used.)	Free
	Operation B*1	Dynamic brake operation	
-5	Operation A ^{*1}	Deceleration stop (The deceleration stop torque is used.)	Dynamic brake operation
	Operation B*1	Free-run	
-4	Operation A ^{*1}	Deceleration stop (The deceleration stop torque is used.)	Dynamic brake operation
	Operation B*1	Dynamic brake operation	
-3	Dynamic brake op	eration	Free
-2	Free-run		Dynamic brake operation
-1	Dynamic brake op	eration	Dynamic brake operation
0	Free-run		Free

^{*1.} The Servomotor stops according to the setting of Operation B while in an STO status that or when the P-N Voltage drops to the specified value or lower. In other cases, the Servomotor decelerates to stop according to the setting of Operation A.

Precautions for Correct Use

- When the error is cleared, a process which makes the command position follow the present position comes into effect. To operate in Cyclic synchronous position mode (csp) after the Servo turns ON, reset the command coordinates in the host controller and then execute the operation. The Servomotor may move suddenly.
- If an error occurs while the main power supply is OFF, operation will follow **Fault reaction option code** (605E hex).

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Com- plete access	Modes of operation
605C		Disable opera- tion option code	-6 to 0		-4	E	2 bytes (INT16)	RW		Not possi- ble	

- This object sets the operation of the Servo Drive during Disable operation (transition from the Operation enabled state to the Switched on state). "During Disable operation" refers to the duration in which the Servo Drive decelerates and then stops after Servo OFF (Disable operation).
- When the running motor decelerates and the speed reaches 30 r/min or lower, the operation changes from the Deceleration Operation to the Operation after Stopping.
- The following error is cleared regardless of the set value.

Description of Set Values

Set value	Deceleration operation	Operation after stopping
-6	Deceleration stop (The deceleration stop torque is used.)	Free
-4		Dynamic brake operation
-3	Dynamic brake operation	Free
-2	Free-run	Dynamic brake operation
-1	Dynamic brake operation	Dynamic brake operation
0	Free-run	Free

Precautions for Correct Use

- When the error is cleared, a process which makes the internal command position follow the
 actual position comes into effect. To execute commands that perform feeding for interpolation after the Servo turns ON, reset the command coordinates in the host controller and then
 execute the operation. The Servomotor may move suddenly.
- If an error occurs while the Servo is OFF, operation will follow Fault reaction option code (605E hex).
- If the main power supply turns OFF while the Servo is OFF, operation will follow Shutdown option code (605B hex).

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Com- plete access	Modes of operation
605D		Halt option code	1 to 3		1	Е	2 bytes (INT16)	RW		Not possi- ble	pp, pv, hm

- This object sets the stop method when bit 8 (Halt) of **Controlword** (6040 hex) is set to 1 during Homing mode (hm), pp mode, or pv mode.
- When the running motor decelerates and its speed reaches 30 r/min or lower, the operation changes from the deceleration operation to the operation after stopping.
- The following error is cleared regardless of the set value after the Servomotor stops.

Description of Set Values

Set value	Deceleration method	Operation after stopping			
1	Stopping with the following deceleration.	pp, hm: Internal position command is			
	pp, pv: Profile deceleration	zero			
	hm: Homing acceleration	pv: Internal velocity command is zero			
2	Not supported				
3	Deceleration stop (The deceleration stop torque is used.)	pp, hm: Internal position command is			
		zero			
		pv: Internal velocity command is zero			

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Com- plete access	Modes of operation
605E		Fault reaction option code	-7 to 0		-4	E	2 bytes (INT16)	RW		Not possi- ble	

- This object sets the operation for the time when an error occurs.
- When the running motor decelerates and its speed reaches 30 r/min or lower, the operation changes from the Deceleration Operation to the Operation after Stopping.
- The following error is cleared regardless of the set value.

Description of Set Values

Set value		Deceleration operation	Operation after stopping
-7	Operation A ^{*1}	Deceleration stop (The deceleration stop torque is used.)	Free
	Operation B*1	Free-run	
-6	Operation A ^{*1}	Deceleration stop (The deceleration stop torque is used.)	Free
	Operation B ^{*1}	Dynamic brake operation	
-5	Operation A ^{*1}	Deceleration stop (The deceleration stop torque is used.)	Dynamic brake operation
	Operation B*1	Free-run	
-4	Operation A ^{*1}	Deceleration stop (The deceleration stop torque is used.)	Dynamic brake operation
	Operation B*1	Dynamic brake operation	
-3	Dynamic brake op	peration	Free
-2	Free-run		Dynamic brake operation
-1	Dynamic brake op	peration	Dynamic brake operation
0	Free-run		Free

^{*1.} Operation A and B indicate whether or not to perform the deceleration stop when an error occurs. If an error that causes the deceleration stop occurs, the deceleration stop is performed according to the setting of Operation A. If an error that does not cause the deceleration stop occurs, the dynamic brake operation or free-run is performed according to the setting of Operation B. For details on errors, refer to 12-3 Errors on page 12-10.

Precautions for Correct Use

When the error is cleared, a process which makes the command position follow the present position comes into effect. To operate in Cyclic synchronous position mode (csp) after the Servo turns ON, reset the command coordinates in the host controller and then execute the operation. The Servomotor may move suddenly.

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Com- plete access	Modes of operation
6060		Modes of operation	0 to 10		0	A	1 byte (INT8)	W	RxPDO	Not possi- ble	csp, csv, cst, pp, pv, hm

- · This object sets the mode of operation.
- The default value is 0 (not specified). Set the mode of operation from the master after the power supply is turned ON.
- A Command Warning (Error No. B1.00) occurs if the Servo is turned ON (Operation enabled = 1) with the default setting of 0 (not specified).
- Even when the default value 0 (not specified) is set again after changing the mode of operation, the mode of operation does not return to a **not specified**. The last mode of operation is retained.
- Similarly, when an unsupported mode of operation is set, the last mode is retained.
- When an unsupported mode of operation is set via SDO communications, an ABORT code is returned.

Description of Set Values

Set value	Description
0	Not specified
1	Profile position mode (pp)
3	Profile velocity mode (pv)
6	Homing mode (hm)
8	Cyclic synchronous position mode (csp)
9	Cyclic synchronous velocity mode (csv)
10	Cyclic synchronous torque mode (cst)

• For details about changing the modes of operation, refer to *A-1-4 Changing the Mode of Operation* on page A-5.

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Com- plete access	Modes of operation
6061		Modes of operation display					1 byte (INT8)	RO	TxPDO	Not possi- ble	csp, csv, cst, pp, pv, hm

- This object gives the present mode of operation.
- The value definitions are the same as those for **Modes of operation** (6060 hex).

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Com- plete access	Modes of operation
6062		Position demand value		Com- mand unit			4 bytes (INT32)	RO	TxPDO	Not possi- ble	csp, pp, hm

• This object gives the command position which is generated in the Servo Drive.

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Com- plete access	Modes of operation
6063		Position actual internal value		Encod er unit			4 bytes (INT32)	RO	TxPDO	Not pos- sible	csp, csv, cst, pp, pv, hm

• This object gives the present position in units of encoder.

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Com- plete access	Modes of operation
6064		Position actual value		Com- mand unit			4 bytes (INT32)	RO	TxPDO	Not pos- sible	csp, csv, cst, pp, pv, hm

• This object gives the present position in units of command.

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Com- plete access	Modes of operation
6065		Following error window	0 to 4,294,967,295	Com- mand unit	84,000,000	А	4 bytes (U32)	RW		Not pos- sible	csp, pp, hm

- · This object sets the threshold for a following error.
- When the following error is more than or equal to this set value, an Excessive Position Deviation Error (Error No. 24.00) is detected.

Description of Set Values

Set value	Description
0 to 2,147,483,647	Enabled at the value set in the Following error window
2,147,483,648 to 4,294,967,294	Enabled at 2,147,483,647 hex as the value set in the Following error window
4,294,967,295	Excessive position deviation detection disabled

- If it is set to 4,294,967,295 (FFFF FFFF hex), detection of following errors is disabled.
- If it is set to 0, there will always be a following error.
- When it is set to between 2,147,483,648 and 4,294,967,294, the set value becomes 2,147,483,648.

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Com- plete access	Modes of operation
6067		Position win-	1 to	Com-	8000	Α	4 bytes	RW		Not pos-	csp, pp,
		dow	2,147,483,647	mand			(U32)			sible	hm
				unit							

- When the following error is less than or equal to the set value of this object, the Positioning Completion Output 1 (INP1) turns ON.
- This setting is also used as the threshold for detecting Target reached flag in the EtherCAT communications status.

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Com- plete access	Modes of operation
606B		Velocity demand value		Command unit/s			4 bytes (INT32)	RO	TxPDO	Not pos- sible	csp, pp, hm

- This object gives the command velocity which is generated in the Servo Drive.
- The displayed value may have an error due to the unit conversion from [r/min] to [command unit/s].

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Com- plete access	Modes of operation
606C		Velocity actual value		Command unit/s			4 bytes (INT32)	RO	TxPDO	Not pos- sible	csp, csv, cst, pp, pv, hm

- · This object gives the present velocity.
- The displayed value may have an error due to the unit conversion from [r/min] to [command unit/s].

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Com- plete access	Modes of operation
6071		Target torque	-5,000 to 5,000	0.1%	0	Α	2 bytes (INT16)	W	RxPDO	Not pos- sible	cst

- This object sets the torque command in Cyclic synchronous torque mode (cst).
- Set the value in units of 0.1% of the rated torque (100%).

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Com- plete access	Modes of operation
6072		Max torque	0 to 5,000	0.1%	5,000	A	2 bytes (U16)	RW	RxPDO	Not pos- sible	csp, csv, cst, pp, pv, hm

- This object sets the maximum torque limit value.
- Set the value in units of 0.1% of the rated torque (100%).
- This object is intended for PDO assignment. Use this object to set the maximum torque from a PDO.
- To use the limit value without mapping it to a PDO, set the value in **Torque Limit Max Torque** (3330-02 hex).

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Com- plete access	Modes of operation
6074		Torque demand		0.1%			2 bytes (INT16)	RO	TxPDO	Not pos- sible	csp, csv, cst, pp, pv, hm

- This object gives the torque command value which is generated in the Servo Drive.
- The value is given in units of 0.1% of the rated torque (100%).

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Com- plete access	Modes of operation
6077		Torque actual value		0.1%			2 bytes (INT16)	RO	TxPDO	Not pos- sible	csp, csv, cst, pp, pv, hm
0011				0.170			,	110		- XII DO	

- This object gives the present torque value.
- The value is given in units of 0.1% of the rated torque (100%).

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Com- plete access	Modes of operation
607 A		Target position	-2,147,483,648	Com-	0	Α	4 bytes	W	RxPDO	Not pos- sible	csp, pp
			to 2,147,483,647	mand unit			(INT32)			sible	

• This object sets the command position in Cyclic synchronous position mode (csp) and Profile position mode (pp).

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Com- plete access	Modes of operation
607C		Home offset	-2,147,483,648 to 2,147,483,647	Com- mand unit	0	R	4 bytes (INT32)	RW		Not pos- sible	csp, csv, cst, pp, pv, hm

• This object sets the offset value from the home of the absolute encoder to the zero position of **Position actual value** (6064 hex).

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Com- plete access	Modes of operation
607D		Software posi- tion limit								Possible	
	00	Number of entries			02 hex		1 byte (U8)	RO			
	01	Min position limit	-2,147,483,648 to 2,147,483,647	Com- mand unit	-500,000	E	4 bytes (INT32)	RW			csp, csv, cst, pp, pv, hm
	02	Max position limit	-2,147,483,648 to 2,147,483,647	Com- mand unit	500,000	E	4 bytes (INT32)	RW			csp, csv, cst, pp, pv, hm

- This object sets the software position limit function.
- Subindex 01 hex **Min position limit** sets the negative limit value for **Position actual value** (6064 hex).
- Subindex 02 hex Max position limit sets the positive limit value for Position actual value (6064 hex).
- The software position limit is always relative to the home.
- Setting **Software Position Limit** (3B11 hex) is necessary to use the software position limit function.
- Refer to 7-4 Software Position Limit Functions on page 7-17 for details.

Precautions for Correct Use

- Make sure that the value of Max position limit is larger than the value of Min position limit. The software position limit function is disabled when this condition is not met.
- The software position limit function is disabled when home is not defined.

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default set- ting	Data attri- bute	Size	Access	PDO map	Com- plete access	Modes of operation
607F		Max profile velocity	0 to 2,147,483,647	Com- mand unit/s	2,147,483,647	Α	4 bytes (U32)	W	RxPDO	Not pos- sible	cst, pp, pv

• This object sets the velocity limit value in Cyclic synchronous torque mode (cst), Profile position mode (pp), and Profile velocity mode (pv).

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Com- plete access	Modes of operation
6081		Profile velocity	0 to 2,147,483,647	Com- mand unit/s	0	Α	4 bytes (U32)	W	RxPDO	Not pos- sible	pp

• This object sets the velocity used in Profile position mode (pp).

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Com- plete access	Modes of operation
6083		Profile acceler- ation	1 to 2,147,483,647	Command unit/s ²	1,000,000	Α	4 bytes (U32)	W	RxPDO	Not pos- sible	pp, pv

• This object sets the acceleration rate in the Profile position mode (pp) and Profile velocity mode (pv).

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Com- plete access	Modes of operation
6084		Profile deceleration	1 to 2,147,483,647	Command unit/s ²	1,000,000	А	4 bytes (U32)	W	RxPDO	Not pos- sible	pp, pv

• This object sets the deceleration rate in the Profile position mode (pp) and Profile velocity mode (pv).

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Com- plete access	Modes of operation
6091		Gear ratio								Possible	
	00	Number of entries			02 hex		1 byte (U8)	RO			
	01	Motor revolutions	0 to 1,073,741,824		1	R	4 bytes (U32)	RW			csp, csv, cst, pp, pv, hm
	02	Shaft revolutions	1 to 1,073,741,824		1	R	4 bytes (U32)	RW			csp, csv, cst, pp, pv, hm

- This object sets the electronic gear ratio.
- Subindex 01 hex **Motor Revolutions** sets the numerator of the electronic gear. If the set value is 0, the encoder resolution is set in the numerator.
- Subindex 02 hex **Shaft Revolutions** sets the denominator of the electronic gear.
- The electronic gear ratio must be between 1/2,000 to 2,000. If it is set outside the range, an Electronic Gear Setting Error (Error No. 93.00) will occur.
- For details on the electronic gear setting, refer to 7-7 Electronic Gear Function on page 7-29.

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Com- plete access	Modes of operation
6098		Homing method	0 to 37		0	E	1 byte (INT8)	RW		Not possi- ble	hm

• This object selects the homing method in the Homing mode (hm).

Description of Set Values

Set value	Description
0	Not specified
8	Homing by Home Proximity Input and home signal (positive operation start)
12	Homing by Home Proximity Input and home signal (negative operation start)
19	Homing without home signal (positive operation start)
20	Homing without home signal (negative operation start)
33	Homing with home signal (negative operation start)
34	Homing with home signal (positive operation start)
37	Present home preset

- If the homing operation is started by setting a value other than 8, 12, 19, 20, 33, 34, or 37, a Command Error (Error No. 91.01) will occur.
- For details on homing, refer to A-1-5 Homing Mode Specifications on page A-7.

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Defaul t set- ting	Data attri- bute	Size	Access	PDO map	Com- plete access	Modes of operation
6099		Homing speeds								Possible	
	00	Number of entries			02 hex		1 byte (U8)	RO			
	01	Speed during search for switch	1 to 2,147,483,647	Command unit/s	5,000	Α	4 bytes (U32)	RW			hm
	02	Speed during search for zero	1 to 2,147,483,647	Command unit/s	5,000	Α	4 bytes (U32)	RW			hm

- · This object sets the homing speed.
- Subindex 01 hex **Speed during search for switch** sets the operation speed to be used until the Home Proximity Input signal is detected.
- Subindex 02 hex **Speed during search for zero** sets the operation speed to be used until the home signal is detected.

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Com- plete access	Modes of operation
609 A		Homing acceleration	1 to 2,147,483,647	Command unit/s ²	1,000,000	Α	4 bytes (U32)	RW		Not pos- sible	hm

• This object sets the acceleration and deceleration rate to be used during homing.

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Com- plete access	Modes of operation
60B0		Position off- set	-2,147,483,648 to 2,147,483,647	Com- mand unit	0	A	4 bytes (INT32)	W	RxPDO	Not pos- sible	csp

- This object sets the offset for Target position (607A hex).
- In Cyclic synchronous position mode (csp), the offset value is added to Target position (607A hex) for use as the target position for the control.

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Defaul t set- ting	Data attri- bute	Size	Access	PDO map	Com- plete access	Modes of operation
60B1		Velocity off- set	-2,147,483,648 to 2,147,483,647	Command unit/s	0	Α	4 bytes (INT32)	W	RxPDO	Not pos- sible	csp, csv

• This object sets the offset for Target velocity (60FF hex).

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Com- plete access	Modes of operation
60B2		Torque off- set	-5,000 to 5,000	0.1%	0	Α	2 bytes (INT16)	W	RxPDO	Not possi- ble	csp, csv, cst

• This object sets the offset for Target torque (6071 hex).

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Com- plete access	Modes of operation
60B8		Touch probe	0 to		0	Α	2 bytes	W	RxPDO	Not possi-	
		function	65,535				(U16)			ble	

- This object sets the latch (touch probe) function.
- There are two channels, Latch Function 1 (bits 0 to 7) and Latch Function 2 (bits 8 to 15).
- Bits 0 and 8 execute latching when changed from 0 to 1.
- To change the settings, set bit 0 or 8 to 0 and then to 1 again.
- For details, refer to 7-11 Touch Probe Function (Latch Function) on page 7-39.

Bit Descriptions

Set	value	Description
Bit 0		Enable or disable Latch Function 1
	0	Latch Function 1 is disabled
	1	Latch Function 1 is enabled
Bit 1		Latch 1 operation
	0	Latch on the first trigger only.
	1	Latch continuously on every trigger input
Bit 2 to	3	Latch 1 trigger input signal switch
	00	Latch on the EXT1 signal.
	01	Latch on the phase-Z signal.
	10	Follow the setting in the Touch probe
		source.
	11	Reserved
Bit 4		Latch 1 trigger operation on the positive edge
	0	Not obtain data
	1	Obtain data
Bit 8		Enable or disable Latch Function 2
	0	Latch Function 2 is disabled
	1	Latch Function 2 is enabled
Bit 9		Latch 2 operation
	0	Latch on the first trigger only.
	1	Latch continuously on every trigger input
Bit 10 to	11	Latch 2 trigger input signal switch
	00	EXT2
	01	Latch on the phase-Z signal.
	10	Follow the setting in the Touch probe
		source.
	11	Reserved
Bit 12		Latch 2 trigger operation on the positive edge
	0	Not obtain data
	1	Obtain data

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Com- plete access	Modes of operation
60B9		Touch probe status					2 bytes (U16)	RO	TxPDO	Not possi- ble	

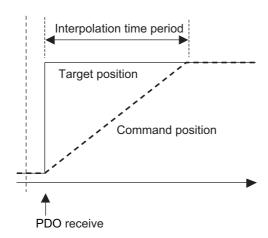
• This object gives the status of the latch function.

Bit Descriptions

Set v	/alue	Description
Bit 0		Enable or disable Latch Function 1
	0	Disabled
	1	Enabled
Bit 1		With or without Latch 1 positive data
	0	Without latch data
	1	With latch data
Bit 8		Enable or disable Latch Function 2
	0	Disabled
	1	Enabled
Bit 9		With or without Latch 2 positive data
	0	Without latch data
	1	With latch data

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Com- plete access	Modes of operation
60BA		Touch probe 1 positive edge		Com- mand unit			4 bytes (INT32)	RO	TxPDO	Not possi- ble	

• This object gives the position which is latched on the positive edge by the Latch Function 1 (Touch probe 1).


Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Com- plete access	Modes of operation
60BC		Touch probe 2 positive edge		Com- mand unit			4 bytes (INT32)	RO	TxPDO	Not possi- ble	

• This object gives the position which is latched on the positive edge by the Latch Function 2 (Touch probe 2).

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Com- plete access	Modes of operation
60C2		Interpolation time period								Possible	
	00	Number of entries			02 hex		1 byte (U8)	RO			
	01	Interpolation time period value	0 to 255		1	E	1 byte (U8)	RW			csp, csv
	02	Interpolation time index	-128 to 63		-3	E	1 byte (INT8)	RW			csp, csv

• Sets the Command Dividing Function which is enabled in the Cyclic synchronous position mode (csp) or Cyclic synchronous velocity mode (csv).

- In the free-run mode only, the setting is updated, and in the synchronous mode, the EtherCAT communications are automatically set as the interpolation time period.
- Interpolation time period = Interpolation time period value × 10 ^(Interpolation time index) seconds.
- The set interpolation time period is used to perform linear interpolation for the target position and calculate the command position.
- If the set value exceeds 100 ms, then 100 ms is used to calculate the command position.

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Com- plete access	Modes of operation
60D0		Touch probe source								Possible	
	00	Number of entries			02 hex		1 byte (U8)	RO			
	01	Touch probe 1 source	1 to 6		1	Α	2 bytes (INT16)	RW			
	02	Touch probe 2 source	1 to 6		2	Α	2 bytes (INT16)	RW			

• This object selects the trigger to be used for the latch function.

Description of Set Values

Value	Description
1	External Latch Input 1
	(EXT1)
2	External Latch Input 2
2	(EXT2)
6	Encoder Phase Z

	ndex hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Com- plete access	Modes of operation
- (60D9		Supported			00000001		4 bytes	RO		Not pos-	
			functions			hex		(U32)			sible	

• This object gives the extended functions which are supported by the Servo Drive.

Set value	Description
Bit 0	Status Toggle
	0: Not supported
	1: Supported
Bits 1 to 31	Reserved

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Com- plete access	Modes of operation
60DA		Function Set- tings	00000000 to FFFFFFF hex		00000001 hex	A	4 bytes (U32)	RW		Not pos- sible	

• This object selects whether to enable or disable the extended functions which are supported by the Servo Drive.

Set value	Description
Bit 0	Status Toggle
	0: Disabled
	1: Enabled
Bits 1 to 31	Reserved
	Always set to 0.

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Com- plete access	Modes of operation
60E0		Positive torque limit value	0 to 5,000	0.1%	5,000	A	2 bytes (U16)	W	RxPDO	Not possi- ble	csp, csv, cst, pp, pv, hm

- · This object sets the positive torque limit value.
- The value is limited by the maximum torque of the connected motor.
- For details, refer to 7-8 Torque Limit Switching on page 7-31.
- Set the value in units of 0.1% of the rated torque (100%).
- This object is intended for PDO assignment. Use this object to set the positive torque limit value from a PDO.
- To use the limit value without mapping it to a PDO, set the value in **Torque Limit Positive Torque Limit Value** (3330-03 hex).

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Com- plete access	Modes of operation
60E1		Negative torque limit value	0 to 5,000	0.1%	5,000	A	2 bytes (U16)	W	RxPDO	Not possi- ble	csp, csv, cst, pp, pv, hm

- · This object sets the negative torque limit value.
- The value is limited by the maximum torque of the connected motor.
- For details, refer to 7-8 Torque Limit Switching on page 7-31.
- Set the value in units of 0.1% of the rated torque (100%).
- This object is intended for PDO assignment. Use this object to set the negative torque limit value from a PDO.
- To use the limit value without mapping it to a PDO, set the value in **Torque Limit Negative Torque Limit Value** (3330-04 hex).

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Com- plete access	Modes of operation
60E3		Supported hom- ing methods								Possible	
	00	Number of entries			07 hex		1 byte (U8)	RO			
	01	1st supported homing method			8		2 bytes (INT16)	RO			hm
	02	2nd supported homing method			12		2 bytes (INT16)	RO			hm
	03	3rd supported homing method			19		2 bytes (INT16)	RO			hm
	04	4th supported homing method			20		2 bytes (INT16)	RO			hm
	05	5th supported homing method			33		2 bytes (INT16)	RO			hm
	06	6th supported homing method			34		2 bytes (INT16)	RO			hm
	07	7th supported homing method			37		2 bytes (INT16)	RO			hm

• This object gives the supported homing methods.

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Com- plete access	Modes of operation
60F4		Following error actual value		Com- mand unit			4 bytes (INT16)	RO	TxPDO	Not possi- ble	csp, pp, hm

• This object gives the amount of following error.

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Com- plete access	Modes of operation
60FA		Control effort		Com- mand			4 bytes (INT32)	RO	TxPDO	Not possi- ble	csp, pp, hm
				unit/s			(114132)			ble	11111

- This object gives the velocity command value which is generated in the position control of the Servo Drive
- The displayed value may have an error due to the unit conversion from [r/min] to [command unit/s].

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Com- plete access	Modes of operation
60FC		Position demand internal value		Encoder unit			4 bytes (INT32)	RO	TxPDO	Not possi- ble	csp, pp, hm

• This object gives the command position which is generated in the Servo Drive.

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Com- plete access	Modes of operation
60FD		Digital inputs	1			1	4 bytes (U32)	RO	TxPDO	Not possi- ble	

• This object gives each function I/O status of the Servo Drive.

Bit Descriptions

Bit	Signal name	Symbol	Value	Description
0	Negative Drive Prohibition	NOT	0	OFF
	Input		1	ON
1	Positive Drive Prohibition Input	POT	0	OFF
			1	ON
2	Home Proximity Input	DEC	0	OFF
			1	ON
16	Encoder Phase Z Detection	PC	0	Phase-Z signal not
				detected during commu-
				nication cycle
			1	Phase-Z signal detected
				during communication
				cycle
17	External Latch Input 1	EXT1	0	OFF
			1	ON
18	External Latch Input 2	EXT2	0	OFF
			1	ON
20	Monitor Input 1	MON1	0	OFF
			1	ON
21	Monitor Input 2	MON2	0	OFF
			1	ON
22	Monitor Input 3	MON3	0	OFF
			1	ON
23	Positive Torque Limit Input	PCL	0	OFF
			1	ON
24	Negative Torque Limit Input	NCL	0	OFF
			1	ON
25	Error Stop Input	ESTP	0	OFF
			1	ON
26	Brake Interlock	BKIR	0	Brake released
			1	Brake locked
27	Safety input 1	SF1	0	OFF
			1	ON
28	Safety input 2	SF2	0	OFF
			1	ON
29	EDM Output	EDM	0	OFF
			1	ON
30	Monitor Input 4	MON4	0	OFF
			1	ON
31	Monitor Input 5	MON5	0	OFF
			1	ON

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Com- plete access	Modes of operation
60FE		Digital out- puts								Possible	
	00	Number of entries			02 hex		1 byte (U8)	RO			
	01	Physical out- puts	00000000 to FFFFFFF hex		0000 0001 hex ^{*1}	A	4 bytes (U32)	W	RxPDO		
	02	Bit mask	00000000 to FFFFFFF hex		00000000 hex	A	4 bytes (U32)	RW			

^{*1.} If the unit version is 1.1 or earlier, the default setting is 0000 0000 hex.

- This object sets and controls the function output.
- Subindex 01 hex Physical outputs changes the function output status by the writing of a value to the corresponding bit.
- Subindex 02 hex **Bit mask** selects whether to enable or disable the function outputs.

Bit Description of Subindex 01 hex

Set 0 for the bits that are not listed in the table.

Bit	Signal	Symbol	Value	Description
0	NC Contact Brake Interlock Output	BKIR_b	0	Brake released
			1	Brake held
16	Remote Output 1	R-OUT1	0	OFF
			1	ON
17	Remote Output 2	R-OUT2	0	OFF
			1	ON
18	Remote Output 3	R-OUT3	0	OFF
			1	ON
24	Gain Switching	G-SEL	0	Gain 1
			1	Gain 2
28	NO Contact Brake Interlock Output*1	BKIR_a	0	Brake held
	·		1	Brake released

^{*1.} This bit is available for the unit version 1.4 or later.

• Bit Description of Subindex 02 hex

Bit	Signal name	Symbol	Value	Description
0	NC Contact Brake Interlock Output*1	BKIR_b	0	Output disabled
	·		1	Output enabled
16	Remote Output 1	R-OUT1	0	Output disabled
			1	Output enabled
17	Remote Output 2	R-OUT2	0	Output disabled
			1	Output enabled
18	Remote Output 3	R-OUT3	0	Output disabled
			1	Output enabled
24	Gain Switching	G-SEL	0	Setting disabled
			1	Setting enabled
28	NO Contact Brake Interlock Output*1*2	BKIR_a	0	Output disabled
	·		1	Output enabled

^{*1.} Even when Bit mask for Brake Interlock Output is 0 (output disabled), the Servo Drive can perform the brake control.

^{*2.} This bit is available for the unit version 1.4 or later.

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Com- plete access	Modes of operation
60FF		Target velocity	-2,147,483,648 to 2,147,483,647	Com- mand unit/s	0	A	4 bytes (INT32)	W	RxPDO	Not pos- sible	csv, pv

• This object sets the command velocity in Cyclic synchronous velocity mode (csp) and Profile velocity mode (pp).

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Com- plete access	Modes of operation
6402		Motor type			3		2 bytes (U16)	RO		Not possi- ble	

- This object gives the type of connected motor.
- It is always 3 (PM synchronous motor) for 1S-series Servo Drives.

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Com- plete access	Modes of operation
6404		Motor manu- facturer			OMRON		20 bytes (VS)	RO	1	Not possi- ble	

• This object gives the motor manufacturer name.

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Com- plete access	Modes of operation
6502		Supported drive modes			000003A5 hex		4 bytes (U32)	RO		Not pos- sible	

• This object gives the supported modes of operation.

Bit Descriptions

Bit	Supported mode	Value
0	pp (Profile position mode)	1: Supported
1	vl (Velocity mode)	0: Not sup-
		ported
2	pv (Profile velocity mode)	1: Supported
3	tq (Profile torque mode)	0: Not sup-
		ported
4	Reserved	0
5	hm (Homing mode)	1: Supported
6	ip (Interpolated position mode)	0: Not sup-
		ported
7	csp (Cyclic synchronous position mode)	1: Supported
8	csv (Cyclic synchronous velocity mode)	1: Supported
9	cst (Cyclic synchronous torque mode)	1: Supported
10 to 31	Reserved	0

A-2-9 Safety Function Objects

This section explains objects defined in the FSoE CiA402 slave connection.

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Com- plete access	Modes of operation
6620		safety controlword								Possible	
	00	Number of entries			02 hex		1 byte (U8)	RO			
	01	safety controlword 1st Byte					1 byte (U8)	RO			
	02	safety controlword 2nd Byte					1 byte (U8)	RO			

• This object gives the command status of the safety function.

• Bit Description of Subindex 01 hex

Bit	Description
1	Gives the status of STO com-
	mand.
	0: STO activate command issued
	1: STO activate command not
	issued
7	Gives the status of error reset
	command.
	0: Error reset command issued
	1: Error reset command not
	issued

• No bit of subindex 02 hex is used.

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Com- plete access	Modes of operation
6621		safety statusword	-				-		-	Possible	
	00	Number of entries			02 hex		1 byte (U8)	RO			
	01	safety statusword 1st Byte					1 byte (U8)	RO			
	02	safety statusword 2nd Byte					1 byte (U8)	RO			

• This object gives the status of safety function.

Bit Description of Subindex 01 hex

Bit	Description
1	Gives the STO status.
	0: Normal status
	1: STO status
7	Gives the error status of the safety
	function.
	0: No error
	1: Error detected

Bit Description of Subindex 02 hex

Bit	Description
7	Gives the safety connection status.
	0: Without safety connection
	1: With safety connection

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Com- plete access	Modes of operation
6632		error acknowl- edge	0 to 1		0		1 bit (BOOL)	W	RxPDO, TxPDO	Not possi- ble	

- This object gives and resets an error of the safety function.
- You can use this function by mapping this object to the safety process data.
- If you map this object to the SDO communications or normal PDOs, the written value will be ignored.

Description of Reading and Writing

Access	Description
Read	Gives an error of the safety function.
	0: No error
	Error detected (STO internal circuit error detection)
Write	Resets an error of the safety function.
	From 0 to 1: Error reset

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Com- plete access	Modes of operation
6640		STO command	0 to 1		0		1 bit	W	RxPDO,	Not possi-	
							(BOOL)		TxPDO	ble	

- This object gives the STO status and issues the STO command.
- You can use this function by mapping this object to the safety process data.
- If you map this object to the SDO communications or normal PDOs, the written value will be ignored.

Description of Reading and Writing

Access	Description
Read	Gives the STO status.
	0: Normal status
	1: STO status
Write	Issues the STO command.
	0: Activate STO
	1: Reset STO

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Com- plete access	Modes of operation
E600		FSoE Slave Frame Elements Axis Ch1								Possible	
	00	Number of entries			03 hex		1 byte (U8)	RO			
	01	FSoE Slave CMD					1 byte (U8)	RO	TxPDO		
	02	FSoE Slave Con- n_ID					2 bytes (U16)	RO	TxPDO		
	03	FSoE Slave CRC_0					2 bytes (U16)	RO	TxPDO		

- This object is used to send safety process data.
- Subindex 01 hex **FSoE Slave CMD** gives the command which is sent from the slave.
- Subindex 02 hex **FSoE Slave Conn_ID** gives the connection ID which is sent from the slave.
- Subindex 03 hex FSoE Slave CRC_0 gives the cyclic redundancy code which is sent from the slave.

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Com- plete access	Modes of operation
E601		Safety input 1								Possible	
	00	Number of entries			01 hex		1 byte (U8)	RO			
	01	Safety Connection Status				1	1 bit (BOOL)	RO	TxPDO		

- This object indicates that the safety connection is in execution.
- When the value is 1, the safety connection is in execution.

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Com- plete access	Modes of operation
E700		FSoE Master Frame Ele- ments Axis Ch1								Possible	
	00	Number of entries			03 hex		1 byte (U8)	RO			
	01	FSoE Master CMD	00 to FF hex		00 hex		1 byte (U8)	W	RxPDO		
	02	FSoE Master Conn_ID	0000 to FFFF hex		0000 hex		2 bytes (U16)	W	RxPDO		
	03	FSoE Master CRC_0	0000 to FFFF hex		0000 hex		2 bytes (U16)	W	RxPDO		

- This object is used to send safety process data.
- Subindex 01 hex **FSoE Master CMD** gives the command which is sent from the master.
- Subindex 02 hex **FSoE Master Conn_ID** gives the connection ID which is sent from the master.
- Subindex 03 hex FSoE Master CRC_0 gives the cyclic redundancy code which is sent from the master.

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	Access	PDO map	Com- plete access	Modes of operation
F980		Device Safety Address								Possible	
	00	Number of entries			03 hex		1 byte (U8)	RO			
	01	FSoE Address					2 bytes (U16)	RO			
	02	Restore Default FSoE Address			0	Α	5 bytes (VS)	W			
	03	FSoE Enable Reset			0	Α	7 bytes (VS)	W			

- This object gives and clears the FSoE slave address.
- Subindex 01 hex FSoE Address gives the FSoE slave address.
- Subindex 02 hex **Restore Default FSoE Address** restores FSoE slave addresses to their default values by the writing of reset.
- Subindex 03 hex **FSoE Enable Reset** resets the FSoE enabled state by the writing of disable.

A-3 Object List

- This section describes the profile that is used to control the Servo Drive.
- Some objects are updated by cycling the power supply. After you change these objects, turn OFF the power supply, and then turn ON it again. After you turn OFF the power supply, confirm that the power supply indicator is not lit.
- · See below for the data attributes.

A : Always updated

D : Possible to change only when the EtherCAT communications state is Pre-Operational

E : Servo ON

R : Updated when the control power is reset or restarted.

: Write prohibited

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	PDO map
1000	00	Device Type			000A0192 hex		4 bytes (U32)	
1001	00	Error Register			00 hex		1 byte (U8)	
1008	00	Manufacturer Device Name			R88D-1SN□□□- ECT		20 bytes (VS)	
1009	00	Manufacturer Hardware Version				1	20 bytes (VS)	
100A	00	Manufacturer Software Version				1	20 bytes (VS)	
1010	01	Store Parameters	0000 0000 to FFFFFFF hex		00000001 hex	A	4 bytes (U32)	
1011		Restore Default Parameters						
	01	Restore Default Parameters	00000000 to FFFFFFF hex		00000001 hex	Α	4 bytes (U32)	
	03	Restore Default Application Parameters	00000000 to FFFFFFF hex		00000001 hex	Α	4 bytes (U32)	
1018		Identity Object						
	01	Vendor ID			00000083 hex	-	4 bytes (U32)	-
	02	Product Code				1	4 bytes (U32)	
	03	Revision Number					4 bytes (U32)	
	04	Serial Number					4 bytes (U32)	
10F3		Diagnosis History						
	01	Maximum Messages					1 byte (U8)	
	02	Newest Message					1 byte (U8)	
	03	Newest Acknowledged Message	00 to FF hex		00 hex	Α	1 byte (U8)	
	04	New Messages Avail- able					1 bit (BOOL)	TxPDO
	05	Flags	0000 to 003F hex		0000 hex	Α	2 bytes (U16)	
	06	Diagnosis Message 1					30 bytes (OS)	
	07	Diagnosis Message 2					30 bytes (OS)	

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	PDO map
10F3	08	Diagnosis Message 3					30 bytes (OS)	
	09	Diagnosis Message 4					30 bytes (OS)	
	0A	Diagnosis Message 5					30 bytes (OS)	
	0B	Diagnosis Message 6					30 bytes (OS)	
	0C	Diagnosis Message 7					30 bytes (OS)	
	0D	Diagnosis Message 8					30 bytes (OS)	
	0E	Diagnosis Message 9					30 bytes (OS)	
	0F	Diagnosis Message 10					30 bytes (OS)	
	10	Diagnosis Message 11					30 bytes (OS)	
	11	Diagnosis Message12					30 bytes (OS)	
	12	Diagnosis Message 13					30 bytes (OS)	
	13	Diagnosis Message 14					30 bytes (OS)	
	14	Diagnosis Message 15					30 bytes (OS)	
	15	Diagnosis Message 16					30 bytes (OS)	
	16	Diagnosis Message 17					30 bytes (OS)	
	17	Diagnosis Message 18					30 bytes (OS)	
	18	Diagnosis Message 19					30 bytes (OS)	
	19	Diagnosis Message 20					30 bytes (OS)	
10F9	01	Present Time for Event Log	0 to 18,446,744,073, 709,551,615		0	Α	8 bytes (U64)	
1600		1st receive PDO Map- ping						
	00	Number of objects in this PDO	00 to 0A hex		03 hex	D	1 byte (U8)	
	01	1st Output Object to be mapped	0000 0000 to FFFFFFF hex		60400010 hex	D	4 bytes (U32)	
	02	2nd Output Object to be mapped	0000 0000 to FFFFFFF hex		607A0020 hex	D	4 bytes (U32)	
	03	3rd Output Object to be mapped	0000 0000 to FFFFFFF hex		60B80010 hex	D	4 bytes (U32)	
	04	4th Output Object to be mapped	00000000 to FFFFFFF hex		00000000 hex	D	4 bytes (U32)	
	05	5th Output Object to be mapped	00000000 to FFFFFFF hex		00000000 hex	D	4 bytes (U32)	
	06	6th Output Object to be mapped	00000000 to FFFFFFF hex		00000000 hex	D	4 bytes (U32)	
	07	7th Output Object to be mapped	00000000 to FFFFFFF hex		00000000 hex	D	4 bytes (U32)	
	08	8th Output Object to be mapped	0000 0000 to FFFFFFF hex		0000 0000 hex	D	4 bytes (U32)	
	09	9th Output Object to be mapped	0000 0000 to FFFFFFF hex		0000 0000 hex	D	4 bytes (U32)	

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	PDO map
1600	0A	10th Output Object to be mapped	0000 0000 to		00000000 hex	D	4 bytes (U32)	
1701		258th receive PDO Map- ping						
	00	Number of objects in this PDO			04 hex		1 byte (U8)	
	01	1st Output Object to be mapped			60400010 hex		4 bytes (U32)	
	02	2nd Output Object to be mapped			607A0020 hex		4 bytes (U32)	
	03	3rd Output Object to be mapped			60B80010 hex		4 bytes (U32)	
	04	4th Output Object to be mapped			60FE0120 hex		4 bytes (U32)	
1702		259th receive PDO Map- ping						
	00	Number of objects in this PDO			07 hex		1 byte (U8)	
	01	1st Output Object to be mapped			60400010 hex		4 bytes (U32)	
	02	2nd Output Object to be mapped			607A0020 hex		4 bytes (U32)	
	03	3rd Output Object to be mapped			60FF 0020 hex		4 bytes (U32)	
	04	4th Output Object to be mapped			60710010 hex		4 bytes (U32)	
	05	5th Output Object to be mapped			6060 0008 hex		4 bytes (U32)	
	06	6th Output Object to be mapped			60B80010 hex		4 bytes (U32)	
	07	7th Output Object to be mapped			607F0020 hex		4 bytes (U32)	
1703		260th receive PDO Mapping						
	00	Number of objects in this PDO			07 hex		1 byte (U8)	
	01	1st Output Object to be mapped			60400010 hex		4 bytes (U32)	
	02	2nd Output Object to be mapped			607A0020 hex		4 bytes (U32)	
	03	3rd Output Object to be mapped			60FF0020 hex		4 bytes (U32)	
	04	4th Output Object to be mapped			6060 0008 hex		4 bytes (U32)	
	05	5th Output Object to be mapped			60B80010 hex		4 bytes (U32)	
	06	6th Output Object to be mapped			60E00010 hex	-	4 bytes (U32)	
	07	7th Output Object to be mapped			60E10010 hex		4 bytes (U32)	
1704		261th receive PDO Map- ping						
	00	Number of objects in this PDO			09 hex		1 byte (U8)	
	01	1st Output Object to be mapped			60400010 hex		4 bytes (U32)	
	02	2nd Output Object to be mapped			607A0020 hex		4 bytes (U32)	
	03	3rd Output Object to be mapped			60FF0020 hex		4 bytes (U32)	
	04	4th Output Object to be mapped			60710010 hex		4 bytes (U32)	

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	PDO map
1704	05	5th Output Object to be mapped			60600008 hex		4 bytes (U32)	
	06	6th Output Object to be mapped			60B80010 hex		4 bytes (U32)	
	07	7th Output Object to be mapped			607F0020 hex		4 bytes (U32)	
	08	8th Output Object to be mapped			60E00010 hex		4 bytes (U32)	
	09	9th Output Object to be mapped			60E10010 hex		4 bytes (U32)	
1705		262th receive PDO Mapping						
	00	Number of objects in this PDO			08 hex		1 byte (U8)	
	01	1st Output Object to be mapped			60400010 hex		4 bytes (U32)	
	02	2nd Output Object to be mapped			607A0020 hex		4 bytes (U32)	
	03	3rd Output Object to be mapped			60FF0020 hex		4 bytes (U32)	
	04	4th Output Object to be mapped			60600008 hex		4 bytes (U32)	
	05	5th Output Object to be mapped			60B80010 hex		4 bytes (U32)	
	06	6th Output Object to be mapped			60E00010 hex		4 bytes (U32)	
	07	7th Output Object to be mapped			60E10010 hex		4 bytes (U32)	
	08	8th Output Object to be mapped			60B20010 hex		4 bytes (U32)	
1710		273th receive PDO Map- ping						
	00	Number of objects in this PDO			13 hex		1 byte (U8)	
	01	1st Output Object to be mapped			E7000108 hex		4 bytes (U32)	
	02	2nd Output Object to be mapped			66400001 hex		4 bytes (U32)	
	03 to 08	3rd8th Output Object to be mapped			00000001 hex		4 bytes (U32)	
	09	9th Output Object to be mapped			66320001 hex		4 bytes (U32)	
	0A to 11	10th17th Output Object to be mapped			00000001 hex		4 bytes (U32)	
	12	18th Output Object to be mapped			E7000310 hex		4 bytes (U32)	
	13	19th Output Object to be mapped			E7000210 hex		4 bytes (U32)	
1A00		1st transmit PDO Map- ping						
	00	Number of objects in this PDO	00 to 0A hex		07 hex	D	1 byte (U8)	
	01	1st Input Object to be mapped	0000 0000 to FFFFFFF hex		60410010 hex	D	4 bytes (U32)	
	02	2nd Input Object to be mapped	0000 0000 to FFFFFFF hex		60640020 hex	D	4 bytes (U32)	
	03	3rd Input Object to be mapped	0000 0000 to FFFFFFF hex		60B90010 hex	D	4 bytes (U32)	
	04	4th Input Object to be mapped	00000000 to FFFFFFF hex		60BA 0020 hex	D	4 bytes (U32)	
	05	5th Input Object to be mapped	00000000 to FFFFFFF hex		60BC 0020 hex	D	4 bytes (U32)	

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	PDO map
1A00	06	6th Input Object to be mapped	00000000 to FFFFFFF hex		603F0010 hex	D	4 bytes (U32)	
	07	7th Input Object to be mapped	00000000 to FFFFFFF hex		60FD0020 hex	D	4 bytes (U32)	
	08	8th Input Object to be mapped	00000000 to FFFFFFF hex		00000000 hex	D	4 bytes (U32)	
	09	9th Input Object to be mapped	00000000 to FFFFFFF hex		00000000 hex	D	4 bytes (U32)	
	0A	10th Input Object to be mapped	00000000 to FFFFFFF hex		00000000 hex	D	4 bytes (U32)	
1B01		258th transmit PDO Mapping						
	00	Number of objects in this PDO			09 hex		1 byte (U8)	
	01	1st Input Object to be mapped			603F0010 hex		4 bytes (U32)	
	02	2nd Input Object to be mapped			60410010 hex		4 bytes (U32)	
	03	3rd Input Object to be mapped			6064 0020 hex		4 bytes (U32)	
	04	4th Input Object to be mapped			6077 0010 hex		4 bytes (U32)	
	05	5th Input Object to be mapped			60F40020 hex		4 bytes (U32)	
	06	6th Input Object to be mapped			60B90010 hex		4 bytes (U32)	
	07	7th Input Object to be mapped			60BA0020 hex		4 bytes (U32)	
	08	8th Input Object to be mapped			60BC 0020 hex		4 bytes (U32)	
	09	9th Input Object to be mapped			60FD0020 hex		4 bytes (U32)	
1B02		259th transmit PDO Mapping						
	00	Number of objects in this PDO			09 hex		1 byte (U8)	
	01	1st Input Object to be mapped			603F0010 hex		4 bytes (U32)	
	02	2nd Input Object to be mapped			60410010 hex		4 bytes (U32)	
	03	3rd Input Object to be mapped			60640020 hex		4 bytes (U32)	
	04	4th Input Object to be mapped			60770010 hex		4 bytes (U32)	
	05	5th Input Object to be mapped			60610008 hex		4 bytes (U32)	
	06	6th Input Object to be mapped			60B90010 hex		4 bytes (U32)	
	07	7th Input Object to be mapped			60BA 0020 hex		4 bytes (U32)	
	80	8th Input Object to be mapped			60BC 0020 hex		4 bytes (U32)	
	09	9th Input Object to be mapped			60FD0020 hex		4 bytes (U32)	
1B03		260th transmit PDO Mapping						
	00	Number of objects in this PDO			0A hex		1 byte (U8)	
	01	1st Input Object to be mapped			603F0010 hex		4 bytes (U32)	
	02	2nd Input Object to be mapped			60410010 hex		4 bytes (U32)	

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	PDO map
1B03	03	3rd Input Object to be mapped			60640020 hex		4 bytes (U32)	
	04	4th Input Object to be mapped			60770010 hex		4 bytes (U32)	
	05	5th Input Object to be mapped			60F40020 hex		4 bytes (U32)	
	06	6th Input Object to be mapped			60610008 hex		4 bytes (U32)	
	07	7th Input Object to be mapped			60B90010 hex		4 bytes (U32)	
	08	8th Input Object to be mapped			60BA 0020 hex		4 bytes (U32)	
	09	9th Input Object to be mapped			60BC0020 hex		4 bytes (U32)	
	0A	10th Input Object to be mapped			60FD 0020 hex		4 bytes (U32)	
1B04		261th transmit PDO Mapping						
	00	Number of objects in this PDO			0A hex		1 byte (U8)	
	01	1st Input Object to be mapped			603F0010 hex		4 bytes (U32)	
	02	2nd Input Object to be mapped			60410010 hex		4 bytes (U32)	
	03	3rd Input Object to be mapped			60640020 hex		4 bytes (U32)	
	04	4th Input Object to be mapped			60770010 hex		4 bytes (U32)	
	05	5th Input Object to be mapped			60610008 hex		4 bytes (U32)	
	06	6th Input Object to be mapped			60B90010 hex		4 bytes (U32)	
	07	7th Input Object to be mapped			60BA 0020 hex		4 bytes (U32)	
	08	8th Input Object to be mapped			60BC0020 hex		4 bytes (U32)	
	09	9th Input Object to be mapped			60FD 0020 hex		4 bytes (U32)	
	0A	10th Input Object to be mapped			606C0020 hex		4 bytes (U32)	
1B10		273th transmit PDO Mapping						
	00	Number of objects in this PDO			13 hex		1 byte (U8)	
	01	1st Input Object to be mapped			E6000108 hex		4 bytes (U32)	
	02	2nd Input Object to be mapped			66400001 hex		4 bytes (U32)	
	03 to 08	3rd-8th Input Object to be mapped			00000001 hex		4 bytes (U32)	
	09	9th Input Object to be mapped			66320001 hex		4 bytes (U32)	
	0A to 10	10th-16th Input Object to be mapped			00000001 hex		4 bytes (U32)	
	11	17th Input Object to be mapped			E6010101 hex		4 bytes (U32)	
	12	18th Input Object to be mapped			E6000310 hex		4 bytes (U32)	
	13	19th Input Object to be mapped			E6000210 hex		4 bytes (U32)	
1BFF		512th transmit PDO Mapping						

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	PDO map
1BFF	00	Number of objects in this PDO			01 hex		1 byte (U8)	
	01	1st Input Object to be mapped			20020108 hex		4 bytes (U32)	
1C00		Sync Manager Communication Type						
	00	Number of used Sync Manager channels			04 hex		1 byte (U8)	
	01	Communication Type Sync Manager 0			01 hex		1 byte (U8)	
	02	Communication Type Sync Manager 1			02 hex		1 byte (U8)	
	03	Communication Type Sync Manager 2			03 hex		1 byte (U8)	
	04	Communication Type Sync Manager 3			04 hex		1 byte (U8)	
1C12		Sync Manager 2 PDO Assignment						
	00	Number of assigned PDOs	00 to 03 hex		01 hex	D	1 byte (U8)	
	01	1st PDO Mapping Object Index of assigned PDO	0000 to 17FF hex		1701 hex	D	2 bytes (U16)	
	02	2nd PDO Mapping Object Index of assigned PDO	0000 to 17FF hex		0000 hex	D	2 bytes (U16)	
	03	3rd PDO Mapping Object Index of assigned PDO	0000 to 17FF hex		0000 hex	D	2 bytes (U16)	
1C13		Sync Manager 3 PDO Assignment						
	00	Number of assigned PDOs	00 to 03 hex		01 hex	D	1 byte (U8)	
	01	1st PDO Mapping Object Index of assigned PDO	0000 to 1BFF hex		1B01 hex	D	2 bytes (U16)	
	02	2nd PDO Mapping Object Index of assigned PDO	0000 to 1BFF hex		0000 hex	D	2 bytes (U16)	
	03	3rd PDO Mapping Object Index of assigned PDO	0000 to 1BFF hex		0000 hex	D	2 bytes (U16)	
1C32		Sync Manager 2 Synchronization						
	00	Number of Synchronization Parameters			0C hex		1 byte (U8)	
	01	Synchronization Type	0000 to 0003 hex		0000 hex	Α	2 bytes (U16)	
	02	Cycle Time		ns			4 bytes (U32)	
	03	Shift Time	00000000 to FFFFFFF hex	ns	0	Α	4 bytes (U32)	
	04	Synchronization Types supported			0006 hex		2 bytes (U16)	
	05	Minimum Cycle Time		ns	125,000		4 bytes (U32)	
	06	Calc and Copy Time		ns	125,000		4 bytes (U32)	
	09	Delay Time		ns	31,250		4 bytes (U32)	
	0B	Cycle Time Too Small					4 bytes (U32)	
1C33		Sync Manager 3 Syn- chronization						
	00	Number of Synchronization Parameters			0C hex		1 byte (U8)	

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	PDO map
1C33	01	Synchronization Type	0000 to 0003 hex		0000 hex	Α	2 bytes (U16)	
	02	Cycle Time		ns			4 bytes (U32)	
	03	Shift Time	0000 0000 to FFFFFFF hex	ns	0	Α	4 bytes (U32)	
	04	Synchronization Types supported			0026 hex		2 bytes (U16)	
	05	Minimum Cycle Time		ns	125,000		4 bytes (U32)	
	06	Calc and Copy Time		ns	125,000		4 bytes (U32)	
	09	Delay Time		ns	31,250		4 bytes (U32)	
	0B	Cycle Time Too Small					4 bytes (U32)	
2002		Sysmac Error						
	01	Sysmac Error Status					1 byte (U8)	TxPDO
	02	Sysmac Error Status Clear	00 to 01 hex		00 hex	Α	1 byte (U8)	
2003		Sysmac Observation						
	01	Observation 1					12 bytes (OS)	
	02	Observation 2					12 bytes (OS)	
	03	Observation 3					12 bytes (OS)	
	04	Observation 4					12 bytes (OS)	
	05	Observation 5					12 bytes (OS)	
2004		Sysmac Minor Fault						
	01	Minor Fault 1					12 bytes (OS)	
	02	Minor Fault 2					12 bytes (OS)	
	03	Minor Fault 3					12 bytes (OS)	
	04	Minor Fault 4					12 bytes (OS)	
	05	Minor Fault 5					12 bytes (OS)	
2100	00	Error History Clear	00000000 to FFFFFFF hex		00000000 hex	Α	4 bytes (U32)	
2200	00	Communications Error Setting	00 to 0F hex	Times	1	R	1 byte (U8)	
2201	00	Sync Not Received Timeout Setting	0 to 600	S	0	R	2 bytes (U16)	
2400		Unit Restart						
	01	Unit Restart	00000000 to FFFFFFF hex		0	Α	6 bytes (VS)	
3000		Basic Functions						
	01	Motor Rotation Direction Selection	0 to 1		1	R	4 bytes (U32)	
	02	Control Mode Selection			0		4 bytes (U32)	
	03	Control Method Selection	0 to 1		1	E*1	4 bytes (U32)	
	04	Function Settings (Mirror object of 60DA hex)	0 to 4,294,967,295		00000001 hex	Α	4 bytes (U32)	

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	PDO map
3000	81	Function Status					4 bytes (INT32)	TxPDO
	82	Motor Stop Cause					4 bytes (INT32)	
	83	Modes of Operation Dis- play (Mirror object of 6061 hex)					1 byte (INT8)	
	84	Supported Functions (Mirror object of 60D9 hex)			00000001 hex		4 bytes (U32)	
	85	Supported Drive Modes (Mirror object of 6502 hex)			000003A5 hex		4 bytes (U32)	
	F1	Controlword (Mirror object of 6040 hex)	0000 to FFFF hex		0000 hex	Α	2 bytes (U16)	
	F2	Modes of Operation (Mirror object of 6060 hex)	0 to 10		0	А	1 byte (INT8)	
	FF	Statusword (Mirror object of 6041 hex)					2 bytes (U16)	
3001		Machine						
	01	Inertia Ratio	0 to 30,000 ^{*2}	%	250	Α	4 bytes (INT32)	
	02	Backlash Compensation Selection	0 to 2		0	R	4 bytes (INT32)	
	03	Backlash Compensation Amount	-262,144 to 262,143	Command unit	0	E	4 bytes (INT32)	
	04	Backlash Compensation Time Constant	0 to 6,400	0.01 ms	0	E	4 bytes (INT32)	
	05	Motor Revolutions (Mirror object of 6091-01 hex)	0 to 1,073,741,824		1	R	4 bytes (U32)	
	06	Shaft Revolutions (Mirror object of 6091-02 hex)	1 to 1,073,741,824		1	R	4 bytes (U32)	
	81	Inertia Ratio Display		%			4 bytes (INT32)	
3002		Optimized Parameters						
	F1	Apply Parameters			00000000 hex	Α	4 bytes (INT32)	
	F2	Execution Status					4 bytes (INT32)	
3010		Position Command						
	81	Position Demand Value (Mirror object of 6062 hex)		Command unit			4 bytes (INT32)	
	82	Position Demand Inter- nal Value (Mirror object of 60FC hex)		Encoder unit			4 bytes (INT32)	
	83	Velocity		Command unit/s			4 bytes (INT32)	
	84	Motor Velocity		r/min			4 bytes (INT32)	
	85	Motor Velocity After Position Command Fil- tering		r/min			4 bytes (INT32)	
	86	Motor Velocity After Damping Filtering		r/min			4 bytes (U32)	
	87	Reference Position for csp		Command unit	0		4 bytes (U32)	TxPDO
	91	Following Error		Command unit			4 bytes (U32)	
	92	Following Error After Interpolation*3		Command unit			4 bytes (U32)	TxPDO

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	PDO map
3010	F1	Target Position (Mirror object of 607A hex)	-2,147,483,648 to 2,147,483,647	Command unit	0	A	4 bytes (INT32)	
	F2	Position Offset (Mirror object of 60B0 hex)	-2,147,483,648 to 2,147,483,647	Command unit	0	A	4 bytes (INT32)	
3011		Position Command Filter						
	01	FIR Filter Enable	0 to 1		0	Α	4 bytes (INT32)	
	02	FIR Filter Moving Average Time	1 to 10,000	0.1 ms	1	Α	4 bytes (INT32)	
	03	IIR Filter Enable	0 to 1		1	Α	4 bytes (INT32)	
	04	IIR Filter Cutoff Frequency	10 to 50,000	0.1 Hz	219/146 ^{*4}	Α	4 bytes (INT32)	
3012		Damping Control						
	01	Damping Filter 1 Selection	0 to 4		0	Α	4 bytes (INT32)	
	02	Damping Filter 2 Selection	0 to 4		0	Α	4 bytes (INT32)	
3013		Damping Filter 1						
	01	1st Frequency	5 to 3,000	0.1 Hz	3,000	Α	4 bytes (INT32)	
	02	1st Damping Time Coef- ficient	50 to 200	1%	100	Α	4 bytes (INT32)	
	03	2nd Frequency	5 to 3,000	0.1 Hz	3,000	Α	4 bytes (INT32)	
	04	2nd Damping Time Coefficient	50 to 200	1%	100	Α	4 bytes (INT32)	
	05	3rd Frequency	5 to 3,000	0.1 Hz	3,000	Α	4 bytes (INT32)	
	06	3rd Damping Time Coefficient	50 to 200	1%	100	Α	4 bytes (INT32)	
	07	4th Frequency	5 to 3,000	0.1 Hz	3,000	Α	4 bytes (INT32)	
	08	4th Damping Time Coefficient	50 to 200	1%	100	Α	4 bytes (INT32)	
3014		Damping Filter 2						
	01	1st Frequency	5 to 3,000	0.1 Hz	3,000	Α	4 bytes (INT32)	
	02	1st Damping Time Coef- ficient	50 to 200	1%	100	Α	4 bytes (INT32)	
	03	2nd Frequency	5 to 3,000	0.1 Hz	3,000	Α	4 bytes (INT32)	
	04	2nd Damping Time Coef- ficient	50 to 200	1%	100	Α	4 bytes (INT32)	
	05	3rd Frequency	5 to 3,000	0.1 Hz	3,000	Α	4 bytes (INT32)	
	06	3rd Damping Time Coef- ficient	50 to 200	1%	100	Α	4 bytes (INT32)	
	07	4th Frequency	5 to 3,000	0.1 Hz	3,000	Α	4 bytes (INT32)	
	08	4th Damping Time Coefficient	50 to 200	1%	100	Α	4 bytes (INT32)	
3020		Velocity Command						
	82	Motor Velocity		r/min			4 bytes (INT32)	
	83	Motor Velocity After Velocity Command Fil- tering		r/min			4 bytes (INT32)	

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	PDO map
3020	92	Motor Velocity Deviation		r/min			4 bytes (INT32)	
	F1	Target Velocity (Mirror object of 60FF hex)	-2,147,483,648 to 2,147,483,647	Command unit/s	0	A	4 bytes (INT32)	
	F2	Velocity Offset (Mirror object of 60B1 hex)	-2,147,483,648 to 2,147,483,647	Command unit/s	0	Α	4 bytes (INT32)	
3021		Velocity Command Filter						
	01	Acceleration Time	0 to 10,000	ms	0	Е	4 bytes (INT32)	
	02	Deceleration Time	0 to 10,000	ms	0	E	4 bytes (INT32)	
	03	IIR Filter Enable	0 to 1		0	Α	4 bytes (INT32)	
	04	Filter Cutoff Frequency	10 to 50,000	0.1 Hz	50,000	E	4 bytes (INT32)	
3030		Torque Command						
	81	Torque		0.1%			4 bytes (INT32)	
	F1	Target Torque (Mirror object of 6071 hex)	-5,000 to 5,000	0.1%	0	Α	2 bytes (INT16)	
	F2	Torque Offset (Mirror object of 60B2 hex)	-5,000 to 5,000	0.1%	0	A	2 bytes (INT16)	
3031		Velocity Limit in Torque Control						
	01	Velocity Limit Value	0 to 20,000	r/min	20,000	Α	4 bytes (INT32)	
	82	Status			0		4 bytes (INT32)	
3040		Profile Command						
	F1	Max Profile Velocity (Mirror object of 607F hex)	0 to 2,147,483,647	Command unit/s	2,147,483,647	Α	4 bytes (U32)	
	F2	Profile Velocity (Mirror object of 6081 hex)	0 to 2,147,483,647	Command unit/s	0	А	4 bytes (U32)	
	F3	Profile Acceleration (Mirror object of 6083 hex)	1 to 2,147,483,647	Command unit/s ²	1,000,000	Α	4 bytes (U32)	
	F4	Profile Deceleration (Mirror object of 6084 hex)	1 to 2,147,483,647	Command unit/s ²	1,000,000	Α	4 bytes (U32)	
3041		Command Dividing Function						
	01	Operation Selection in csv	0 to 1		0	R	4 bytes (INT32)	
	02	Interpolation Time Period Value (Mirror object of 60C2-01 hex)	0 to 255		1	E	1 byte (U8)	
	03	Interpolation Time Index (Mirror object of 60C2-02 hex)	-128 to 63		-3	E	1 byte (INT8)	
	10	Interpolation Method Selection in csp*5	0 to 1		0	Α	1 bytes (INT32)	

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	PDO map
3112		ODF Velocity Feed-forward						
	01	Gain	0 to 1,000	0.1%	300	Α	4 bytes (INT32)	
	02	LPF Enable	0 to 1		0	Α	4 bytes (INT32)	
	03	LPF Cutoff Frequency	10 to 50,000	0.1 Hz	50,000	Α	4 bytes (INT32)	
	E1	Gain Command	0 to 1,000	0.1%	300	Α	4 bytes (INT32)	RxPDO
	E2	LPF Cutoff Frequency Command	10 to 50,000	0.1 Hz	50,000	А	4 bytes (INT32)	RxPDO
3113		ODF Torque Feed-forward						
	01	Gain	0 to 1,000	0.1%	0	Α	4 bytes (INT32)	
	02	LPF Enable	0 to 1		0	Α	4 bytes (INT32)	
	03	LPF Cutoff Frequency	10 to 50,000	0.1 Hz	50,000	Α	4 bytes (INT32)	
	E1	Gain Command	0 to 1,000	0.1%	0	Α	4 bytes (INT32)	RxPDO
	E2	LPF Cutoff Frequency Command	10 to 50,000	0.1 Hz	50,000	Α	4 bytes (INT32)	RxPDO
3120		TDF Position Control						
	01	Command Following Gain	10 to 5000	%	50	Α	4 bytes (INT32)	
	10	Command Following Gain Selection*6	0 to 1		0	Α	4 bytes (INT32)	
	11	Command Following Gain 2 ^{*6}	1 to 50,000	0.1 Hz	219/146 ^{*4}	Α	4 bytes (INT32)	
3121		TDF Velocity Control						
	01	Command Following Gain	10 to 5000	%	100	Α	4 bytes (INT32)	
	10	Command Following Gain Selection*6	0 to 1		0	Α	4 bytes (INT32)	
	11	Command Following Gain 2*6	1 to 50,000	0.1 Hz	219/146 ^{*4}	Α	4 bytes (INT32)	
3210		Internal Position Com- mand						
	81	Position		Command unit			4 bytes (INT32)	
	84	Motor Velocity		r/min			4 bytes (INT32)	
	91	Following Error Actual Value (Mirror object of 60F4 hex)		Command unit			4 bytes (INT32)	
	92	Following Error Actual Internal Value		Encoder unit			4 bytes (INT32)	
3211		Position Detection						
	81	Position Actual Value (Mirror object of 6064 hex)		Command unit			4 bytes (INT32)	
	82	Position Actual Internal Value (Mirror object of 6063 hex)		Encoder unit			4 bytes (INT32)	
	83	Present Position Time Stamp		ns			8 bytes (U64)	TxPDO

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	PDO map
3212		Gain Switching in Position Control						
	01	Mode Selection	0 to 3		0	E	4 bytes (INT32)	
	02	Delay Time	0 to 10,000	0.1 ms	50	E	4 bytes (INT32)	
	03	Speed	0 to 20,000	r/min	50	E	4 bytes (INT32)	
	04	Time	0 to 10,000	0.1 ms	100	E	4 bytes (INT32)	
3213		1st Position Control Gain						
	01	Proportional Gain	0 to 5,000	0.1 Hz	44/29 ^{*4}	Α	4 bytes (INT32)	
	E1	Proportional Gain Command	0 to 5,000	0.1 Hz	44/29 ^{*4}	Α	4 bytes (INT32)	RxPDO
3214		2nd Position Control Gain						
	01	Proportional Gain	0 to 5,000	0.1 Hz	44/29 ^{*4}	Α	4 bytes (INT32)	
	E1	Proportional Gain Command	0 to 5,000	0.1 Hz	44/29 ^{*4}	Α	4 bytes (INT32)	RxPDO
3220		Internal Velocity Com- mand						
	81	Velocity Demand Value (Mirror object of 606B hex)	1	Command unit/s			4 bytes (INT32)	
	82	Motor Velocity		r/min			4 bytes (INT32)	
	83	Control Effort (Mirror object of 60FA hex)		Command unit/s			4 bytes (INT32)	
	92	Motor Velocity Deviation		r/min			4 bytes (INT32)	
3221		Velocity Detection						
	81	Velocity Actual Value (Mirror object of 606C hex)		Command unit/s			4 bytes (INT32)	
	82	Present Motor Velocity		r/min			4 bytes (INT32)	TxPDO
	83	Acceleration		rad/s ²			4 bytes (INT32)	
3222		Gain Switching in Velocity Control						
	01	Mode Selection	0 to 2		0	E	4 bytes (INT32)	
3223		1st Velocity Control Gain						
	01	Proportional Gain	0 to 30,000	0.1 Hz	219/146 ^{*4}	Α	4 bytes (INT32)	
	02	Integral Gain	0 to 16,000	0.1 Hz	55/37 ^{*4}	Α	4 bytes (INT32)	
	E1	Proportional Gain Command	0 to 30,000	0.1 Hz	219/146 ^{*4}	Α	4 bytes (INT32)	RxPDO
	E2	Integral Gain Command	0 to 16,000	0.1 Hz	55/37 ^{*4}	Α	4 bytes (INT32)	RxPDO

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	PDO map
3224		2nd Velocity Control Gain						
	01	Proportional Gain	0 to 30,000	0.1 Hz	219/146 ^{*4}	Α	4 bytes (INT32)	
	02	Integral Gain	0 to 16,000	0.1 Hz	55/37 ^{*4}	Α	4 bytes (INT32)	
	E1	Proportional Gain Command	0 to 30,000	0.1 Hz	219/146 ^{*4}	Α	4 bytes (INT32)	RxPDO
	E2	Integral Gain Command	0 to 16,000	0.1 Hz	55/37 ^{*4}	А	4 bytes (INT32)	RxPDO
3230		Internal Torque Com- mand						
	81	Torque Demand (Mirror object of 6074 hex)		0.1%			2 bytes (INT16)	
3231		Torque Detection						
	81	Torque Actual Value (Mirror object of 6077 hex)		0.1%			2 bytes (INT16)	
3232		Filter Switching in Torque Control						
	01	Mode Selection	0 to 2		0	E	4 bytes (INT32)	
3233		1st Torque Command Filter						
	01	Enable	0 to 1		1	Α	4 bytes (INT32)	
	02	Cutoff Frequency	10 to 50,000	0.1 Hz	1,536/1,024 ^{*4}	Α	4 bytes (INT32)	
	E1	Cutoff Frequency Com- mand	10 to 50,000	0.1 Hz	1,536/1,024 ^{*4}	Α	4 bytes (INT32)	RxPDO
3234		2nd Torque Command Filter						
	01	Enable	0 to 1		0	Α	4 bytes (INT32)	
	02	Cutoff Frequency	10 to 50,000	0.1 Hz	1,536/1,024 ^{*4}	Α	4 bytes (INT32)	
	E1	Cutoff Frequency Com- mand	10 to 50,000	0.1 Hz	1,536/1,024 ^{*4}	Α	4 bytes (INT32)	RxPDO
3310		Torque Compensation						
	01	Viscous Friction Coeffi- cient	0 to 1,000	0.1%	0	Α	4 bytes (INT32)	
	02	Unbalanced Load Compensation	-1,000 to 1,000	0.1%	0	Α	4 bytes (INT32)	
	03	Positive Dynamic Friction Compensation	0 to 1,000	0.1%	0	Α	4 bytes (INT32)	
	04	Negative Dynamic Friction Compensation	0 to 1,000	0.1%	0	Α	4 bytes (INT32)	
	81	Viscous Friction Coefficient Display		0.1%			4 bytes (INT32)	
	82	Unbalanced Load Compensation Display		0.1%			4 bytes (INT32)	
	83	Positive Dynamic Friction Compensation Display		0.1%			4 bytes (INT32)	
	84	Negative Dynamic Friction Compensation Display		0.1%			4 bytes (INT32)	
3320		Adaptive Notch Filter						
	01	Adaptive Notch Selection	0 to 4		0	Α	4 bytes (INT32)	
	03	Resonance Detection Threshold	0 to 500	%	4	А	4 bytes (INT32)	

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	PDO map
3321		1st Notch Filter						
	01	Enable	0 to 1		0	Α	4 bytes (INT32)	
	02	Frequency	500 to 50,000	0.1 Hz	50,000	Α	4 bytes (INT32)	
	03	Q-value	50 to 1,000	0.01	140	Α	4 bytes (INT32)	
	04	Depth	0 to 60	dB	60	А	4 bytes (INT32)	
	81	Enable Display					4 bytes (INT32)	
	82	Frequency Display		0.1 Hz			4 bytes (INT32)	
	83	Q-value Display		0.01			4 bytes (INT32)	
	84	Depth Display		dB			4 bytes (INT32)	
3322		2nd Notch Filter						
	01	Enable	0 to 1		0	Α	4 bytes (INT32)	
	02	Frequency	500 to 50,000	0.1Hz	50,000	Α	4 bytes (INT32)	
	03	Q-value	50 to 1,000	0.01	140	Α	4 bytes (INT32)	
	04	Depth	0 to 60	dB	60	Α	4 bytes (INT32)	
	81	Enable Display					4 bytes (INT32)	
	82	Frequency Display		0.1 Hz			4 bytes (INT32)	
	83	Q-value Display		0.01			4 bytes (INT32)	
	84	Depth Display		dB			4 bytes (INT32)	
3323		3rd Notch Filter						
	01	Enable	0 to 1		0	Α	4 bytes (INT32)	
	02	Frequency	500 to 50,000	0.1Hz	50,000	Α	4 bytes (INT32)	
	03	Q-value	50 to 1,000	0.01	140	Α	4 bytes (INT32)	
	04	Depth	0 to 60	dB	60	Α	4 bytes (INT32)	
	81	Enable Display					4 bytes (INT32)	
	82	Frequency Display		0.1 Hz			4 bytes (INT32)	
	83	Q-value Display		0.01			4 bytes (INT32)	
	84	Depth Display		dB			4 bytes (INT32)	

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	PDO map
3324		4th Notch Filter						
	01	Enable	0 to 1		0	А	4 bytes (INT32)	
	02	Frequency	500 to 50,000	0.1Hz	50,000	Α	4 bytes (INT32)	
	03	Q-value	50 to 1,000	0.01	140	Α	4 bytes (INT32)	
	04	Depth	0	dB	60	Α	4 bytes (INT32)	
	81	Enable Display					4 bytes (INT32)	
	82	Frequency Display		0.1 Hz			4 bytes (INT32)	
	83	Q-value Display		0.01			4 bytes (INT32)	
	84	Depth Display		dB			4 bytes (INT32)	
3330		Torque Limit						
	01	Switching Selection	0 to 2		0	Α	4 bytes (INT32)	
	02	Max Torque	0 to 5,000	0.1%	5,000	Α	2 bytes (U16)	
	03	Positive Torque Limit Value	0 to 5,000	0.1%	5,000	Α	2 bytes (U16)	
	04	Negative Torque Limit Value	0 to 5,000	0.1%	5,000	Α	2 bytes (U16)	
	05	Positive Torque Limit Value 2	0 to 5,000	0.1%	5,000	Α	2 bytes (U16)	
	06	Negative Torque Limit Value 2	0 to 5,000	0.1%	5,000	Α	2 bytes (U16)	
	81	Status					4 bytes (INT32)	
3A00		Homing						
	01	Zero Position Range	0 to 2,147,483,647	Command unit	8,000	A	4 bytes (INT32)	
	02	Homing Method (Mirror object of 6098 hex)	0 to 37		0	E	1 byte (INT8)	
	03	Speed During Search for Switch (Mirror object of 6099-01 hex)	1 to 2,147,483,647	Command unit/s	5,000	A	4 bytes (U32)	
	04	Speed During Search for Zero (Mirror object of 6099-02 hex)	1 to 2,147,483,647	Command unit/s	5,000	A	4 bytes (U32)	
	05	Homing Acceleration (Mirror object of 609A hex)	1 to 2,147,483,647	Command unit/s ²	1,000,000	A	4 bytes (U32)	
	06	Home Offset (Mirror object of 607C hex)	-2,147,483,648 to 2,147,483,647	Command unit	0	R	4 bytes (INT32)	
	81	Homing Status					4 bytes (INT32)	
	82	Homing Method Monitor					4 bytes (INT32)	
	83	1st Supported Homing Method (Mirror object of 60E3-01 hex)			8		2 bytes (INT16)	
	84	2nd Supported Homing Method (Mirror object of 60E3-02 hex)			12		2 bytes (INT16)	
	85	3rd Supported Homing Method (Mirror object of 60E3-03 hex)			19		2 bytes (INT16)	

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	PDO map
3A00	86	4th Supported Homing Method (Mirror object of 60E3-04 hex)			20		2 bytes (INT16)	
	87	5th Supported Homing Method (Mirror object of 60E3-05 hex)			33		2 bytes (INT16)	
	88	6th Supported Homing Method (Mirror object of 60E3-06 hex)	I	1	34		2 bytes (INT16)	
	89	7th Supported Homing Method (Mirror object of 60E3-07 hex)			37		2 bytes (INT16)	
3B10		Drive Prohibition						
	01	Enable	0 to 1		0	E	4 bytes (INT32)	
3P11	02	Stop Selection	2 or 4		2	Е	4 bytes (INT32)	
3B11		Software Position Limit						
	01	Enable Selection	0 to 3		0	E	4 bytes (INT32)	
	02	Stop Selection	2 or 4		2	E	4 bytes (INT32)	
	03	Min Position Limit (Mirror object of 607D-01 hex)	-2,147,483,648 to 2,147,483,647	Command unit	-50,000	E	4 bytes (INT32)	
	04	Max Position Limit (Mirror object of 607D-02 hex)	-2,147,483,648 to 2,147,483,647	Command unit	500,000	E	4 bytes (INT32)	
	81	Status					4 bytes (INT32)	
3B20		Stop Selection						
	01	Shutdown Option Code (Mirror object of 605B hex)	-7 to 0		-5	E	2 bytes (INT16)	
	02	Disable Operation Option Code (Mirror object of 605C hex)	-6 to 0		-4	E	2 bytes (INT16)	
	03	Halt Option Code (Mirror object of 605D hex)	1 to 3		1	E	2 bytes (INT16)	
	04	Fault Reaction Option Code (Mirror object of 605E hex)	-7 to 0		-4	E	2 bytes (INT16)	
3B21		Deceleration Stop						
	01	Torque	1 to 5,000	0.1%	5,000	E	4 bytes (INT32)	
3B30		Touch Probe 1						
	01	Touch Probe 1 Source (Mirror object of 60D0-01 hex)	1 to 6		1	A	2 bytes (INT16)	
	81	Status					4 bytes (INT32)	
	83	Positive Edge Time Stamp		ns			8 bytes (U64)	TxPDO
	84	Touch Probe 1 Positive Edge (Mirror object of 60BA hex)		Command unit			4 bytes (INT32)	
	F1	Setting	00000000 to FFFFFFF hex		0	Α	4 bytes (INT32)	

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	PDO map
3B31		Touch Probe 2						
	01	Touch Probe 2 Source (Mirror object of 60D0-02 hex)	1 to 6		2	A	2 bytes (INT16)	
	81	Status					4 bytes (INT32)	
	83	Positive Edge Time Stamp		ns			8 bytes (U64)	TxPDO
	84	Touch Probe 2 Positive Edge (Mirror object of 60BC hex)		Command unit			4 bytes (INT32)	
	F1	Setting	00000000 to			Α	4 bytes (INT32)	
3B40		Zone Notification 1						
	01	Lower Limit	-2,147,483,648 to 2,147,483,647	Command unit	0	А	4 bytes (INT32)	
	02	Upper Limit	-2,147,483,648 to 2,147,483,647	Command unit	0	Α	4 bytes (INT32)	
	81	Status					4 bytes (INT32)	
3B41		Zone Notification 2						
	01	Lower Limit	-2,147,483,648 to 2,147,483,647	Command unit	0	А	4 bytes (INT32)	
	02	Upper Limit	-2,147,483,648 to 2,147,483,647	Command unit	0	А	4 bytes (INT32)	
	81	Status					4 bytes (INT32)	
3B50		Position Detection Function						
	05	Following Error Window (Mirror object of 6065 hex)	0 to 4,294,967,295	Command unit	84,000,000	А	4 bytes (U32)	
3B51		Positioning Completion Notification						
	01	Position Window (Mirror object of 6067 hex)	1 to 2,147,483,647	Command unit	8,000	Α	4 bytes (U32)	
	81	Status					4 bytes (INT32)	
3B52		Positioning Completion Notification 2						
	01	Position Window	1 to 2,147,483,647	Command unit	8,000	Α	4 bytes (INT32)	
	02	Notification Condition	0 to 1		1	А	4 bytes (INT32)	
	81	Status			0		4 bytes (INT32)	

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	PDO map
3B60		Speed Detection Function					-	
	01	Velocity Attainment Detection Level	10 to 20,000	r/min	1,000	Α	4 bytes (INT32)	
	02	Zero Speed Detection Level	10 to 20,000	r/min	50	Α	4 bytes (INT32)	
	03	Velocity Conformity Detection Range	10 to 20,000	r/min	50	Α	4 bytes (INT32)	
	04	Excessive Speed Detection Level	0 to 20,000	r/min	0	Α	4 bytes (INT32)	
	05	Excessive Velocity Deviation Detection Level	0 to 20,000	r/min	0	Α	4 bytes (INT32)	
	81	Status					4 bytes (INT32)	
3B70		Vibration Detection						
	01	Detection Level	0 to 500	%	500	Α	4 bytes (INT32)	
3B71		Runaway Detection						
	01	Enable ^{*6}	0 to 1		1	R	4 bytes (INT32)	
3B80		Load Characteristic Esti- mation						
	01	Inertia Ratio Update Selection	0 to 1		1	Α	4 bytes (INT32)	
	02	Viscous Friction Com- pensation Update Selec- tion	0 to 1		0	A	4 bytes (INT32)	
	03	Unbalanced Load Compensation Update Selection	0 to 1		0	A	4 bytes (INT32)	
	04	Dynamic Friction Compensation Update Selection	0 to 1		0	A	4 bytes (INT32)	
	05	Viscous Friction Tuning Coefficient	0 to 200		100	А	4 bytes (INT32)	
	06	Estimation Sensitivity Selection	0 to 2		1	Α	4 bytes (INT32)	
	FF	Estimation Status					4 bytes (INT32)	I
4000		Error Full Code						
	81	Error Full Code					4 bytes (INT32)	TxPDO
	82	Error Code (Mirror object of 603F hex)					2 bytes (U16)	
4020		Warning Customization						
	01	Warning Mask 1 Selec- tion	00000000 to FFFFFFF hex		0 hex	R	4 bytes (INT32)	
	03	Warning Mask 3 Selection	00000000 to FFFFFFF hex		0 hex	R	4 bytes (INT32)	
	04	Warning Hold Selection	0 to 7 hex		0 hex	R	4 bytes (INT32)	
	05	Warning Level Change 1 Selection	00000000 to FFFFFFF hex		0 hex	R	4 bytes (INT32)	
	07	Warning Level Change 3 Selection	0000 0000 to FFFFFFF hex		0 hex	R	4 bytes (INT32)	
4021		Warning Output 1 Set- ting						
	01	Selection 1	00000000 to FFFFFFF hex		0 hex	Α	4 bytes (INT32)	
	03	Selection 3	00000000 to FFFFFFF hex		0 hex	Α	4 bytes (INT32)	

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	PDO map
4022		Warning Output 2 Set- ting						
	01	Selection 1	0000 0000 to FFFFFFF hex		0 hex	Α	4 bytes (INT32)	
	03	Selection 3	0000 0000 to FFFFFFF hex		0 hex	Α	4 bytes (INT32)	
4030		Information Customization						
	01	Information Level Change Selection	00000000 to FFFFFFF hex		0	R	4 bytes (INT32)	
4110		Monitor Data via PDO						
	01	Target Object 1	00000000 to FFFFFFF hex		00000000 hex	Α	4 bytes (U32)	
	02	Target Object 2	00000000 to FFFFFFF hex		00000000 hex	Α	4 bytes (U32)	
	03	Target Object 3	00000000 to FFFFFFF hex		00000000 hex	Α	4 bytes (U32)	
	04	Target Object 4	00000000 to FFFFFFF hex		00000000 hex	Α	4 bytes (U32)	
	81	Monitor Data 1					4 bytes (INT32)	TxPDO
	82	Monitor Data 2					4 bytes (INT32)	TxPDO
	83	Monitor Data 3					4 bytes (INT32)	TxPDO
	84	Monitor Data 4					4 bytes (INT32)	TxPDO
4120		EtherCAT Communications Error Count						
	81	Error Count					4 bytes (INT32)	
	F1	Error Count Clear	0 to 1		0	А	4 bytes (INT32)	
4130		Safety Status Monitor						
	81	Safety Status					4 bytes (INT32)	TxPDO
	91	Safety Controlword 1st Byte (Mirror object of 6620-01 hex)					1 byte (U8)	
	92	Safety Controlword 2nd Byte (Mirror object of 6620-02 hex)					1 byte (U8)	
	A1	Safety Statusword 1st Byte (Mirror object of 6621-01 hex)					1 byte (U8)	
	A2	Safety Statusword 2nd Byte (Mirror object of 6621-02 hex)					1 byte (U8)	
	B1	FSoE Address (Mirror object of F980-01 hex)					2 bytes (U16)	
4131		Safety Command Monitor 1						
	81	FSoE Slave CMD (Mirror object of E600-01 hex)					1 byte (U8)	
	82	FSoE Slave Conn_ID (Mirror object of E600-02 hex)					2 bytes (U16)	
	83	FSoE Slave CRC_0 (Mirror object of E600-03 hex)					2 bytes (U16)	

Index	Sub-					Data		
(hex)	index (hex)	Object name	Setting range	Unit	Default setting	attri- bute	Size	PDO map
4131	91	FSoE Master CMD (Mirror object of E700-01 hex)					1 byte (U8)	
	92	FSoE Master Conn_ID (Mirror object of E700-02 hex)					2 bytes (U16)	
	93	FSoE Master CRC_0 (Mirror object of E700-03 hex)					2 bytes (U16)	
4132		Safety Command Monitor 2						
	81	Safety Connection Status (Mirror object of E601-01 hex)					1 bit (BOOL)	
	92	Error Acknowledge (Mirror object of 6632 hex)					1 bit (BOOL)	
	A0	STO Command (Mirror object of 6640 hex)					1 bit (BOOL)	
4140		Lifetime Information						
	81	Total Power ON Time		min	0		4 bytes (INT32)	
	82	Total Capacitor Operat- ing Time		min	0		4 bytes (INT32)	
	83	Capacitor Operating Time Ratio		0.1%	0		4 bytes (INT32)	
	84	Inrush Current Prevention Relay ON Count		Time	0		4 bytes (INT32)	
	85	Dynamic Brake Relay ON Count		Time	0		4 bytes (INT32)	
	86	Motor Operating Time		min	0		4 bytes (INT32)	
	87	Brake Interlock Output Relay ON Count		Time	0		4 bytes (INT32)	
	F1	Motor Operating Time Clear	00000000 to FFFFFFF hex		0	Α	4 bytes (INT32)	
	F2	Clear	0000 0000 to FFFFFFF hex		0	Α	4 bytes (INT32)	
	FF	Clear Status					4 bytes (INT32)	
4150		Overload						
	01	Warning Notification Level	0 to 100	%	85	Α	4 bytes (INT32)	
	81	Load Ratio		%			4 bytes (INT32)	TxPDO
	82	Servo Drive Load Ratio		%			4 bytes (INT32)	
	83	Motor Load Ratio		%			4 bytes (INT32)	
4210		Display						
	01	LED Display Selection	0 to 1		0	Α	4 bytes (INT32)	
4310		Regeneration						
	01	External Regeneration Resistor Selection	0 to 1		0	R	4 bytes (INT32)	
	02	External Regeneration Resistance	1 to 2,147,483,647	0.1 Ω	1	R	4 bytes (INT32)	
	03	External Regeneration Resistor Capacity	1 to 2,147,483,647	W	1	R	4 bytes (INT32)	
	04	External Regeneration Overload Ratio	0 to 100	%	85	R	4 bytes (INT32)	
	81	Regeneration Load Ratio		%			4 bytes (INT32)	TxPDO

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	PDO map
4320		Main Circuit Power Supply						
	01	Momentary Hold Time	1 to 2,000	ms	15	R	4 bytes (INT32)	
	02	Phase Loss Detection Enable	0 to 1		1	R	4 bytes (INT32)	
	03	Capacitor Discharge Enable	0 to 1		1	R	4 bytes (INT32)	
	81	P-N Voltage		V			4 bytes (INT32)	
	82	Servo Drive Tempera- ture		°C			4 bytes (INT32)	
4410		Motor Identity						
	81	Motor Model					20 bytes (VS)	
	82	Serial Number					16 bytes (VS)	
	83	Last Connected Motor Model					20 bytes (VS)	
	84	Last Connected Serial Number					16 bytes (VS)	
	90	Motor Type (Mirror object of 6402 hex)					2 bytes (U16)	
	92	Motor Manufacturer (Mirror object of 6404 hex)					20 bytes (VS)	
	F1	Motor Setup			0	Α	4 bytes (INT32)	
	FF	Setup Status					4 bytes (INT32)	
4412		Motor Advanced Set- ting*2						
	02	Without Motor Operation Selection	0 to 1			R	4 bytes (INT32)	
	81	Without Motor Operation Status					4 bytes (INT32)	TxPDO
4510		Encoder						
	01	Operation Selection when Using Absolute Encoder	0 to 2		2	R	4 bytes (INT32)	
	02	Absolute Encoder Counter Overflow Warn- ing Level	0 to 32,767	rotation	32,000	Α	4 bytes (INT32)	
	81	Serial Number					16 bytes (VS)	
	82	Resolution per Rotation					4 bytes (INT32)	
	84	One-rotation Data		Encoder unit			4 bytes (U32)	
	85	Multi-rotation Data		rotation			4 bytes (INT32)	
	86	Encoder Communications Error Count					4 bytes (INT32)	
	87	Electric Angle		٥			4 bytes (INT32)	
	88	Mechanical Angle		۰			4 bytes (U32)	
	89	Encoder Temperature		°C			4 bytes (INT32)	
	F1	Absolute Encoder Setup	00000000 to FFFFFFF hex		0	Α	4 bytes (U32)	

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	PDO map
4510	F2	Encoder Communications Error Count Clear	0000 0000 to		0	А	4 bytes (U32)	
	FF	Clear Status					4 bytes (U32)	
4600		I/O Monitor						
	81	Physical I/O					4 bytes (U32)	TxPDO
4601		Function Input						
	81	Monitor Input					4 bytes (INT32)	
	82	Digital Inputs (Mirror object of 60FD hex)					4 bytes (U32)	TxPDO
4602		Function Output						
	01	Bit Mask	00000000 to FFFFFFF hex		0000 0000 hex	Α	4 bytes (U32)	
	F1	Physical Outputs	00000000 to FFFFFFF hex		00000001 hex*7	Α	4 bytes (U32)	
4604		Control Input Change Count						
	81	General Input 1			0		4 bytes (INT32)	
	82	General Input 2			0		4 bytes (INT32)	
	83	General Input 3			0		4 bytes (INT32)	
	84	General Input 4			0		4 bytes (INT32)	
	85	General Input 5			0		4 bytes (INT32)	
	86	General Input 6			0		4 bytes (INT32)	
	87	General Input 7			0		4 bytes (INT32)	
	88	General Input 8			0		4 bytes (INT32)	
	F1	Count Clear	0 to 1		0	Α	4 bytes (INT32)	
	FF	Count Clear Execution Status					4 bytes (INT32)	
4605		Control Output Change Count						
	81	Error Output					4 bytes (U32)	
	82	General Output 1			0		4 bytes (INT32)	
	83	General Output 2			0		4 bytes (INT32)	
	84	General Output 3			0		4 bytes (INT32)	
	F1	Count Clear	0 to 1		0	Α	4 bytes (INT32)	
	FF	Count Clear Execution Status					4 bytes (INT32)	

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	PDO map
4610		Brake Interlock Output						
	01	Enable	0 to 1		1	R	4 bytes (INT32)	
	02	Timeout at Servo OFF	0 to 10,000	ms	500	E	4 bytes (INT32)	
	03	Threshold Speed at Servo OFF	30 to 3,000	r/min	80 ^{*8}	E	4 bytes (INT32)	
	04	Hardware Delay Time	0 to 10,000	ms	0	E	4 bytes (INT32)	
4620		Encoder Dividing Pulse Output						
	01	Enable	0 to 1		0	R	4 bytes (INT32)	
	02	Dividing Numerator	0 to 2,097,152		2,500	R	4 bytes (INT32)	
	03	Dividing Denominator	0 to 2,097,152		0	R	4 bytes (INT32)	
	04	Output Reverse Selection	0 to 1		0	R	4 bytes (INT32)	
4630		Positive Drive Prohibition Input						
	01	Port Selection	0 to 8		2	R	4 bytes (INT32)	
	02	Logic Selection	0 to 1		1	R	4 bytes (INT32)	
	81	Signal Status					4 bytes (INT32)	
4631		Negative Drive Prohibition Input						
	01	Port Selection	0 to 8		3	R	4 bytes (INT32)	
	02	Logic Selection	0 to 1		1	R	4 bytes (INT32)	
	81	Signal Status					4 bytes (INT32)	
4632		External Latch Input 1						
	01	Port Selection	0 to 8		7	R	4 bytes (INT32)	
	02	Logic Selection	0 to 1		0	R	4 bytes (INT32)	
	81	Signal Status					4 bytes (INT32)	
4633		External Latch Input 2						
	01	Port Selection	0 to 8		8	R	4 bytes (INT32)	
	02	Logic Selection	0 to 1		0	R	4 bytes (INT32)	
	81	Signal Status					4 bytes (INT32)	
4634		Home Proximity Input						
	01	Port Selection	0 to 8		4	R	4 bytes (INT32)	
	02	Logic Selection	0 to 1		0	R	4 bytes (INT32)	
	81	Signal Status					4 bytes (INT32)	

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	PDO map
4635		Positive Torque Limit Input						
	01	Port Selection	0 to 8		0	R	4 bytes (INT32)	
	02	Logic Selection	0 to 1		0	R	4 bytes (INT32)	
	81	Signal Status					4 bytes (INT32)	
4636		Negative Torque Limit Input						
	01	Port Selection	0 to 8		0	R	4 bytes (INT32)	
	02	Logic Selection	0 to 1		0	R	4 bytes (INT32)	
	81	Signal Status					4 bytes (INT32)	
4637		Error Stop Input						
	01	Port Selection	0 to 8		1	R	4 bytes (INT32)	
	02	Logic Selection	0 to 1		1	R	4 bytes (INT32)	
	81	Signal Status					4 bytes (INT32)	
4638		Monitor Input 1						
	01	Port Selection	0 to 8		5	R	4 bytes (INT32)	
	02	Logic Selection	0 to 1		0	R	4 bytes (INT32)	
	81	Signal Status					4 bytes (INT32)	
4639		Monitor Input 2						
	01	Port Selection	0 to 8		6	R	4 bytes (INT32)	
	02	Logic Selection	0 to 1		0	R	4 bytes (INT32)	
	81	Signal Status					4 bytes (INT32)	
463A		Monitor Input 3						
	01	Port Selection	0 to 8		0	R	4 bytes (INT32)	
	02	Logic Selection	0 to 1		0	R	4 bytes (INT32)	
	81	Signal Status					4 bytes (INT32)	
463B		Monitor Input 4						
	01	Port Selection	0 to 8		0	R	4 bytes (INT32)	
	02	Logic Selection	0 to 1		0	R	4 bytes (INT32)	
	81	Signal Status					4 bytes (INT32)	
463C		Monitor Input 5						
-	01	Port Selection	0 to 8		0	R	4 bytes (INT32)	
	02	Logic Selection	0 to 1		0	R	4 bytes (INT32)	
	81	Signal Status					4 bytes (INT32)	

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	PDO map
463D		Monitor Input 6						
	01	Port Selection	0 to 8		0	R	4 bytes (INT32)	
	02	Logic Selection	0 to 1		0	R	4 bytes (INT32)	
	81	Signal Status					4 bytes (INT32)	
463E		Monitor Input 7						
	01	Port Selection	0 to 8		0	R	4 bytes (INT32)	
	02	Logic Selection	0 to 1		0	R	4 bytes (INT32)	
	81	Signal Status					4 bytes (INT32)	
463F		Monitor Input 8						
	01	Port Selection	0 to 8		0	R	4 bytes (INT32)	
	02	Logic Selection	0 to 1		0	R	4 bytes (INT32)	
	81	Signal Status					4 bytes (INT32)	
4650		Error Output						
	01	Port Selection	0 to 7 hex		0 hex	R	4 bytes (INT32)	
	02	Logic Selection	1		1	R	4 bytes (INT32)	
	81	Signal Status					4 bytes (INT32)	
4651		Servo Ready Output						
	01	Port Selection	0 to 7 hex		1 hex	R	4 bytes (INT32)	
	02	Logic Selection	0 to 1		0	R	4 bytes (INT32)	
	81	Signal Status					4 bytes (INT32)	
4652		Positioning Completion Output 1						
	01	Port Selection	0 to 7 hex		0 hex	R	4 bytes (INT32)	
	02	Logic Selection	0 to 1		0	R	4 bytes (INT32)	
	81	Signal Status					4 bytes (INT32)	
4653		Positioning Completion Output 2						
	01	Port Selection	0 to 7 hex		0 hex	R	4 bytes (INT32)	
	02	Logic Selection	0 to 1		0	R	4 bytes (INT32)	
	81	Signal Status					4 bytes (INT32)	
4654		Velocity Attainment Detection Output						
	01	Port Selection	0 to 7 hex		0 hex	R	4 bytes (INT32)	
	02	Logic Selection	0 to 1		0	R	4 bytes (INT32)	
	81	Signal Status					4 bytes (INT32)	

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	PDO map
4655		Torque Limit Output						
	01	Port Selection	0 to 7 hex		0 hex	R	4 bytes (INT32)	
	02	Logic Selection	0 to 1		0	R	4 bytes (INT32)	
	81	Signal Status					4 bytes (INT32)	
4656		Zero Speed Detection Output						
	01	Port Selection	0 to 7 hex		0 hex	R	4 bytes (INT32)	
	02	Logic Selection	0 to 1		0	R	4 bytes (INT32)	
	81	Signal Status					4 bytes (INT32)	
4657		Velocity Conformity Output						
	01	Port Selection	0 to 7 hex		0 hex	R	4 bytes (INT32)	
	02	Logic Selection	0 to 1		0	R	4 bytes (INT32)	
	81	Signal Status					4 bytes (INT32)	
4658		Warning Output 1						
	01	Port Selection	0 to 7 hex		0 hex	R	4 bytes (INT32)	
	02	Logic Selection	0 to 1		0	R	4 bytes (INT32)	
	81	Signal Status					4 bytes (INT32)	
4659		Warning Output 2						
	01	Port Selection	0 to 7 hex		0 hex	R	4 bytes (INT32)	
	02	Logic Selection	0 to 1		0	R	4 bytes (INT32)	
	81	Signal Status					4 bytes (INT32)	
465A		Velocity Limiting Output						
	01	Port Selection	0 to 7 hex		0 hex	R	4 bytes (INT32)	
	02	Logic Selection	0 to 1		0	R	4 bytes (INT32)	
	81	Signal Status					4 bytes (INT32)	
465B		Error Clear Attribute Output						
	01	Port Selection	0 to 7 hex		0 hex	R	4 bytes (INT32)	
	02	Logic Selection	0 to 1		0	R	4 bytes (INT32)	
	81	Signal Status					4 bytes (INT32)	
465C		Remote Output 1						
	01	Port Selection	0 to 7 hex		2 hex	R	4 bytes (INT32)	
	02	Logic Selection	0 to 1		0	R	4 bytes (INT32)	
	81	Signal Status					4 bytes (INT32)	

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	PDO map
465D		Remote Output 2						
	01	Port Selection	0 to 7 hex		4 hex	R	4 bytes (INT32)	
	02	Logic Selection	0 to 1		0	R	4 bytes (INT32)	
	81	Signal Status					4 bytes (INT32)	
465E		Remote Output 3						
	01	Port Selection	0 to 7 hex		0 hex	R	4 bytes (INT32)	
	02	Logic Selection	0 to 1		0	R	4 bytes (INT32)	
	81	Signal Status					4 bytes (INT32)	
465F		Zone Notification Output 1						
	01	Port Selection	0 to 7 hex		0 hex	R	4 bytes (INT32)	
	02	Logic Selection	0 to 1		0	R	4 bytes (INT32)	
	81	Signal Status					4 bytes (INT32)	
4660		Zone Notification Output 2						
	01	Port Selection	0 to 7 hex		0 hex	R	4 bytes (INT32)	
	02	Logic Selection	0 to 1		0	R	4 bytes (INT32)	
4004	81	Signal Status					4 bytes (INT32)	
4661		Position Command Status Output						
	01	Port Selection	0 to 7 hex		0 hex	R	4 bytes (INT32)	
	02	Logic Selection	0 to 1		0	R	4 bytes (INT32)	
	81	Signal Status					4 bytes (INT32)	
4662		Distribution Completed Output						
	01	Port Selection	0 to 7 hex		0 hex	R	4 bytes (INT32)	
	02	Logic Selection	0 to 1		0	R	4 bytes (INT32)	
	81	Signal Status					4 bytes (INT32)	
4663		External Brake Interlock Output ^{*5}						
	01	Port Selection	0 to 7 hex		0 hex	R	4 bytes (INT32)	
	02	Logic Selection	0		0	R	4 bytes (INT32)	
	81	Signal Status					4 bytes (INT32)	
603F	00	Error code			0000 hex		2 bytes (U16)	TxPDO
6040	00	Controlword	0000 to FFFF hex		0000 hex	Α	2 bytes (U16)	RxPDO
6041	00	Statusword			0000 hex		2 bytes (U16)	TxPDO

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	PDO map
605B	00	Shutdown option code	-7 to 0		-5	E	2 bytes (INT16)	
605C	00	Disable operation option code	-6 to 0		-4	E	2 bytes (INT16)	
605D	00	Halt option code	1 to 3		1	E	2 bytes (INT16)	
605E	00	Fault reaction option code	-7 to 0		-4	E	2 bytes (INT16)	
6060	00	Modes of operation	0 to 10		0	Α	1 byte (INT8)	RxPDO
6061	00	Modes of operation display					1 byte (INT8)	TxPDO
6062	00	Position demand value		Command unit			4 bytes (INT32)	TxPDO
6063	00	Position actual internal value		Encoder unit			4 bytes (INT32)	TxPDO
6064	00	Position actual value		Command unit			4 bytes (INT32)	TxPDO
6065	00	Following error window	0 to 4,294,967,295	Command unit	84,000,000	Α	4 bytes (INT32)	
6067	00	Position window	1 to 2,147,483,647	Command unit	8,000	Α	4 bytes (U32)	
606B	00	Velocity demand value		Command unit/s			4 bytes (INT32)	TxPDO
606C	00	Velocity actual value		Command unit/s			4 bytes (INT32)	TxPDO
6071	00	Target torque	-5,000 to 5,000	0.1%	0	Α	2 bytes (INT16)	RxPDO
6072	00	Max torque	0 to 5,000	0.1%	5,000	Α	2 bytes (U16)	RxPDO
6074	00	Torque demand		0.1%			2 bytes (INT16)	TxPDO
6077	00	Torque actual value		0.1%			2 bytes (INT16)	TxPDO
607A	00	Target position	-2,147,483,648 to 2,147,483,647	Command unit	0	А	4 bytes (INT32)	RxPDO
607C	00	Home offset	-2,147,483,648 to 2,147,483,647	Command unit	0	R	4 bytes (INT32)	
607D		Software position limit						
	01	Min position limit	-2,147,483,648 to 2,147,483,647	Command unit	-500,000	E	4 bytes (INT32)	
	02	Max position limit	-2,147,483,648 to 2,147,483,647	Command unit	500,000	E	4 bytes (INT32)	
607F	00	Max profile velocity	0 to 2,147,483,647	Command unit/s	2,147,483,647	Α	4 bytes (U32)	RxPDO
6081	00	Profile velocity	0 to 2,147,483,647	Command unit/s	0	Α	4 bytes (U32)	RxPDO
6083	00	Profile acceleration	1 to 2,147,483,647	Command unit/s ²	1,000,000	Α	4 bytes (U32)	RxPDO
6084	00	Profile deceleration	1 to 2,147,483,647	Command unit/s ²	1,000,000	Α	4 bytes (U32)	RxPDO
6091		Gear ratio						
	01	Motor revolutions	0 to 1,073,741,824		1	R	4 bytes (U32)	
	02	Shaft revolutions	1 to 1,073,741,824		1	R	4 bytes (U32)	

lu de	Sub-					Data		
Index (hex)	index (hex)	Object name	Setting range	Unit	Default setting	attri- bute	Size	PDO map
6098	00	Homing method	0 to 37		0	E	1 byte (INT8)	
6099		Homing speeds						
	01	Speed during search for switch	1 to 2,147,483,647	Command unit/s	5,000	А	4 bytes (U32)	
	02	Speed during search for zero	1 to 2,147,483,647	Command unit/s	5,000	Α	4 bytes (U32)	
609A	00	Homing acceleration	1 to 2,147,483,647	Command unit/s ²	1,000,000	Α	4 bytes (U32)	
60B0	00	Position offset	-2,147,483,648 to 2,147,483,647	Command unit	0	Α	4 bytes (INT32)	RxPDO
60B1	00	Velocity offset	-2,147,483,648 to 2,147,483,647	Command unit/s	0	A	4 bytes (INT32)	RxPDO
60B2	00	Torque offset	-5,000 to 5,000	0.1%	0	Α	2 bytes (INT16)	RxPDO
60B8	00	Touch probe function	0 to 65,535		0	Α	2 bytes (U16)	RxPDO
60B9	00	Touch probe status					2 bytes (U16)	TxPDO
60BA	00	Touch probe 1 positive edge		Command unit			4 bytes (INT32)	TxPDO
60BC	00	Touch probe 2 positive edge		Command unit			4 bytes (INT32)	TxPDO
60C2		Interpolation time period						
	01	Interpolation time period value	0 to 255		1	E	1 byte (U8)	
	02	Interpolation time index	-128 to 63		-3	E	1 byte (INT8)	
60D0		Touch probe source	44.0				0 14	
	01	Touch probe 1 source	1 to 6		1	A	2 bytes (INT16)	
0000	02	Touch probe 2 source	1 to 6		2	Α	2 bytes (INT16)	
60D9	00	Supported functions			00000001 hex		4 bytes (U32)	
60DA	00	Function Settings	00000000 to		00000001 hex	A	4 bytes (U32)	
60E0	00	Positive torque limit value	0 to 5,000	0.1%	5,000	A	2 bytes (U16)	RxPDO
60E1	00	Negative torque limit value	0 to 5,000	0.1%	5,000	Α	2 bytes (U16)	RxPDO
60E3		Supported homing methods						
	01	1st supported homing method			8		2 bytes (INT16)	
	02	2nd supported homing method			12		2 bytes (INT16)	
	03	3rd supported homing method			19		2 bytes (INT16)	
	04	4th supported homing method			20		2 bytes (INT16)	
	05	5th supported homing method			33		2 bytes (INT16)	
	06	6th supported homing method			34		2 bytes (INT16)	
0054	07	7th supported homing method			37		2 bytes (INT16)	
60F4	00	Following error actual value		Command unit			4 bytes (INT32)	TxPDO

Index (hex)	Sub- index (hex)	Object name	Setting range	Unit	Default setting	Data attri- bute	Size	PDO map
60FA	00	Control effort		Command unit/s			4 bytes (INT32)	TxPDO
60FC	00	Position demand inter- nal value		Encoder unit			4 bytes (INT32)	TxPDO
60FD	00	Digital inputs					4 bytes (U32)	TxPDO
60FE		Digital outputs						
	01	Physical outputs	0000 0000 to FFFFFFF hex		00000001 hex ^{*7}	Α	4 bytes (U32)	RxPDO
	02	Bit mask	0000 0000 to FFFFFFF hex		0000 0000 hex	Α	4 bytes (U32)	
60FF	00	Target velocity	-2,147,483,648 to 2,147,483,647	Command unit/s	0	Α	4 bytes (INT32)	RxPDO
6402	00	Motor Type			3		2 bytes (U16)	
6404	00	Motor manufacturer			OMRON		20 bytes (VS)	
6502	00	Supported drive modes			000003A5 hex		4 bytes (U32)	
6620		safety controlword						
	01	safety controlword 1st Byte					1 byte (U8)	
2004	02	safety controlword 2nd Byte					1 byte (U8)	
6621		safety statusword					1 byta	
	01	safety statusword 1st Byte safety statusword 2nd					1 byte (U8) 1 byte	
6632	00	Byte	 0 to 1		0		(U8)	
6640	00	error acknowledge STO command	0 to 1		0	A	(BOOL)	RxPDO, TxPDO RxPDO,
E600		FSoE Slave Frame Ele-			-		(BOOL)	TxPDO
⊏ 000		ments Axis Ch1 FSoE Slave CMD					4 huda	 T::DDO
	01						1 byte (U8)	TxPDO
	02	FSoE Slave Conn_ID					2 bytes (U16)	TxPDO
F004	03	FSoE Slave CRC_0					2 bytes (U16)	TxPDO
E601	01	Safety input 1 Safety Connection Sta-					 1 bit	TxPDO
E700		tus FSoE Master Frame Ele-					(BOOL)	
E/00		ments Axis Ch1					4 1	
	01	FSoE Master CMD	00 to FF hex		00 hex		1 byte (U8)	RxPDO
	02	FSoE Master Conn_ID	0000 to FFFF hex		0000 hex		2 bytes (U16)	RxPDO
	03	FSoE Master CRC_0	0000 to FFFF hex		0000 hex		2 bytes (U16)	RxPDO
F980		Device Safety Address					0.1	
	01	FSoE Address					2 bytes (U16)	
	02	Restore Default FSoE Address			0	A	5 bytes (VS)	
	03	FSoE Enable Reset			0	А	7 bytes (VS)	

- *1. The data attribute is "R: Updated after the control power is reset or restarted" for the unit version 1.3 or earlier.
- *2. The setting range is specified from 0 to 10,000 for the unit version 1.0.
- *3. This object is available for the unit version 1.4 or later.
- *4. The first value is for the Servo Drive with its capacity 3 kw or less. The second value is for the Servo Drive with its capacity 5 kW or more.
- *5. This object is available for the unit version 1.2 or later.
- *6. This object is available for the unit version 1.1 or later.
- *7. If the unit version is 1.1 or earlier, the default setting is 0000 0000 hex.
- *8. The default setting is 30 for the unit version 1.3 or earlier.

A-4 Sysmac Error Status Codes

This section lists and describes the error event codes that you can see in Sysmac Studio.

A-4-1 Error List

The errors (events) that can occur in 1S-series AC Servo Drives with Built-in EtherCAT Communications are given on the following pages.

Event levels are given in the table as follows:

Min: Minor fault level Obs: Observation Info: Information

Refer to the *NJ/NX-series Troubleshooting Manual* (Cat. No. W503) for all of the event codes that may occur in an NJ/NX-series Controller.

Event code					Level		Refer-
(hex)	Event name	Description	Assumed cause	Min	sqo	Info	ence
04B30000	Regeneration Circuit Error Detected during Power ON*1	An error of the Regeneration Circuit was detected at power ON.	 Power supply voltage is insufficient at power ON, or rising slowly. Power supply voltage fluctuated at power ON. L1, L2, and L3 terminals are not connected or disconnected. N1 and N2 terminals are opened. Servo Drive failure. 	√			P. A-114
04B50000	Inrush Current Prevention Circuit Error*2	An error of inrush current prevention circuit was detected.	Inrush current prevention circuit failure	V			P. A-116
04B60000	Regeneration Circuit Error*2	An regeneration circuit error was detected.	 There is a short circuit between B2 and N2/N3. Regeneration circuit failure Noise into wiring of the external regeneration registor. 	√			P. A-116
05430000	ESC Error	An error occurred in the EtherCAT slave communications controller.	Error of the EtherCAT slave communications controller or false detection when the AL status code is 0051 hex Error access from the non-OMRON EtherCAT master when the AL status code is 0050 hex	V			P. A-117

Eventeede				L	_eve	l	Refer-
Event code (hex)	Event name	Description	Assumed cause	Min	ops	Info	ence
08390000	Power Module Error	An error was detected in the power module.	There is a short-circuit, ground fault, or contact failure on the U, V, or W motor cable There is a short-circuit on the wiring of External Regeneration Resistor or the resistance value is small The insulation resistance failed between the U, V, or W motor cable and the motor ground wire Servo Drive failure	V			P. A-118
083B0000	Self-diagnosis Error	An error was detected by the self-diagnosis of the safety function.	False detection due to a data read error that was caused by excessive noise Hardware failure	V			P. A-119
083C0000	Main Circuit Tem- perature Monitoring Circuit Failure	A temperature monitoring circuit failure was detected on the main circuit.	Broken wiring of the therm- istor, temperature monitor- ing circuit failure	1			P. A-119
083D0000	Fan Error	The rotation speed of the fan is 40% or less of the rating and the cooling performance decreases.	 There is a foreign matter in the cooling fan and it blocks the rotation Cooling fan failure 	V			P. A-120
083F0000	Regeneration Processing Error	The regeneration processing was stopped to protect the Regeneration Resistor.	 The regeneration processing is set inappropriately The Regeneration Resistor is selected inappropriately The Regeneration Resistor is used for continuous regenerative braking The applied power supply voltage is higher than the specified value Regeneration Resistor failure 	1			P. A-121
08410000	Overvoltage Error	The main circuit power supply voltage (P-N voltage) exceeded the operation guarantee range.	 The P-N voltage exceeded the specified value The input voltage increased The Regeneration Resistor wiring is broken The External Regeneration Resistor is set or selected inappropriately Servo Drive failure 	√			P. A-122
08420000	Motor Overheat Error	The encoder detected the temperature that exceeded the protection level of motor.	The temperature is high around the motor The motor is overloaded Encoder failure	V			P. A-123

Event code					Leve		Refer-
(hex)	Event name	Description	Assumed cause	Min	ops	Info	ence
08430000	1-rotation Counter Error	The encoder detected a one-rotation counter error.	There is excessive noise Failure due to vibration, impact, condensation, foreign matter, etc.	1			P. A-123
08440000	Overspeed Error	The encoder detected the overspeed.	The motor was rotated by external forces Encoder failure and false detection	1			P. A-124
08450000	Encoder Memory Error	The encoder detected a non-volatile memory error.	False detection due to a data read error that was caused by excessive noise Non-volatile memory failure Encoder failure	√			P. A-124
08460000	Absolute Position Detection Error	The encoder detected a multi-rotation counter error.	A detection error was detected in the multi-rotation detection section of the encoder There is excessive noise	V			P. A-125
08480000	Main Power Supply Undervoltage (insuf- ficient voltage between P and N)	The main circuit power supply voltage fell below the operation guarantee range during Servo ON.	Incorrect wiring of the main circuit power supply The low power supply voltage is applied to the Servo Drive The long time was set in Momentary Hold Time and the voltage was decreased momentarily Servo Drive failure	V			P. A-126
0849 0000	Overcurrent Error	The current flowing to the motor exceeded the protection level.	There is a short circuit, ground fault, contact failure, disconnection, or break on the U, V, or W motor cable There is a short-circuit on the wiring of External Regeneration Resistor The insulation resistance failed between the U, V, or W motor cable and the motor ground wire False detection due to the noise Servo Drive failure	V			P. A-127
084A0000	Encoder Communications Disconnection Error	The communications disconnection was detected between the encoder and the Servo Drive.	Noise into the encoder cable Contact failure of the signal line, and disconnection of the encoder Power supply undervoltage to the encoder Encoder failure	√			P. A-128

Eventeral					Leve	el	Defer
Event code (hex)	Event name	Description	Assumed cause	Min	sqo	Info	Refer- ence
084B0000	Encoder Communications Error	Illegal data was received from the encoder the specified number of times.	 Noise into the encoder cable Contact failure of the signal line, and disconnection of the encoder Power supply undervoltage to the encoder 	V			P. A-129
084D0000	Non-volatile Memory Hardware Error	An error occurred on the non-volatile memory.	False detection due to a data read error that was caused by excessive noise Non-volatile memory failure	1			P. A-130
18230000	Absolute Encoder Multi-rotation Counter Error	The encoder detected a multi-rotation counter error.	A temporary error occurred in the encoder multi-rotation detection function due to vibration, impact, or condensation Encoder failure	1			P. A-130
18380000	System Error	A hardware error due to the self-diagnosis and a fatal software error were detected.	 False detection due to a data read error that was caused by excessive noise A fatal software error was detected Hardware failure 	V			P. A-131
183A0000	Non-volatile Memory Data Error	An error of data saved in the non-volatile memory was detected.	Power interruption or noise occurred while parameters other than the safety were saved Power interruption or noise occurred while the motor identity information was saved Power interruption or noise occurred while safety parameters were saved	√			P. A-131
246D0000	Motor Non-conformity	The Servo Drive and motor combination is not correct.	The Servo Drive and motor combination is not correct	1			P. A-132
28080000	Main Circuit Power Supply Phase Loss Error	The phase loss of the main circuit power supply was detected	 Incorrect wiring, for example the single-phase power supply is input to a 3-phase input type Servo Drive In the case where the single-phase power supply is input to a single- and 3-phase input type Servo Drive, the phase loss detection is enabled. The power supply voltage is low or insufficient Broken wiring of the main circuit power supply input Servo Drive failure 	V			P. A-133

Event code				L	_eve	ı	Refer-
(hex)	Event name	Description	Assumed cause	Min	Obs	Info	ence
280D0000	Runaway Detected*3	The motor rotated in the direction opposite to the command.	 There is incorrect wiring of the motor cable or a broken cable. The motor rotated in the direction opposite to the command by external forces. 	1			P. A-134
357D 0000	DC Setting Error	A mistake was made in the DC Mode operation setting.	A mistake was made in the DC Mode operation setting	V			P. A-135
357E0000	Synchronization Cycle Setting Error	When the DC mode was established, the cycle time was set to the inoperable value.	The variable PDO mapping is used, and the number of objects is more than the maximum number of mapped objects for the cycle time The cycle time setting is incorrect	√			P. A-135
357F0000	Mailbox Setting Error	An incorrect mailbox setting of Sync Manager was detected.	An incorrect mailbox set- ting of Sync Manager was detected	V			P. A-136
35800000	RxPDO Setting Error	An RxPDO setting error was detected.	The RxPDO setting of EtherCAT master is incorrect Servo Drive failure	V			P. A-136
35810000	TxPDO Setting Error	A TxPDO setting error was detected.	The TxPDO setting of EtherCAT master is incorrect Servo Drive failure	1			P. A-137
35820000	RxPDO Mapping Error	An incorrect RxPDO was set.	An incorrect RxPDO was set, such as out of the allowable range of Index, Subindex, or size	V			P. A-137
35830000	TxPDO Mapping Error	An incorrect TxPDO was set.	An incorrect RxPDO was set, such as out of the allowable range of Index, Subindex, or size	1			P. A-138
35840000	PDO WDT Setting Error	An incorrect PDO WDT setting was detected.	An incorrect PDO WDT set- ting was detected	V			P. A-138
35850000	Node Address Updated	The node address is changed to a value of the ID switches.	The node address is changed from a set value in Sysmac Studio to a value of the ID switches	1			P. A-139
35860000	SM Event Mode Set- ting Error	The unsupported SM Event Mode was set.	The unsupported SM Event Mode was set	1			P. A-139
38570000	Function Setting Error	The function that was set does not support the communications period.	 The electronic gear ratio was not 1:1 when the communications period was set to 125 μs. The Backlash Compensation was enabled when the communications period was set to 125 μs. 	V			P. A-140
38780000	General Input Allo- cation Duplicate Error	More than one function input is allocated to one general input.	More than one function input is allocated to one general input	V			P. A-141

					Leve	el	
Event code (hex)	Event name	Description	Assumed cause	Min	sqo	Info	Refer- ence
38790000	General Output Allo- cation Duplicate Error	More than one function output is allocated to one general output.	More than one function out- put is allocated to one gen- eral output	1			P. A-141
387B0000	Pulse Output Setting Error	The dividing numerator exceeded the dividing denominator when the Encoder Dividing Pulse Output - Dividing Denominator was set to a value other than 0.	The dividing numerator exceeded the dividing denominator when the Encoder Dividing Pulse Output - Dividing Denominator was set to a value other than 0	V			P. A-142
387C0000	Motor Replacement Detected	The connected motor is dif- ferent from the motor that was connected the last time.	The motor was replaced The Servo Drive was replaced	V			P. A-142
387F0000	Electronic Gear Set- ting Error	The electronic gear ratio exceeded the allowable range.	The electronic gear ratio exceeded the allowable range	V			P. A-143
38800000	Servo Drive Over- heat	The internal temperature of Servo Drive exceeded the circuit protection level.	The ambient temperature of the Servo Drive exceeded the specified value Overload	V			P. A-143
38810000	Overload Error	The Load Ratio of Servo Drive or motor (4150-81 hex) exceeded 100%.	 Operation was continued for a long time with high load There is incorrect wiring of the motor cable or a broken cable Increase in friction 	V			P. A-144
38820000	Regeneration Overload Error	The Regeneration Load Ratio (4310-81 hex) exceeded the regeneration overload ratio.	The regeneration processing is set inappropriately The Regeneration Resistor is selected inappropriately The Regeneration Resistor is used for continuous regenerative braking The applied power supply voltage is higher than the specified value Regeneration Resistor failure	V			P. A-145
38830000	Excessive Position Deviation Error	The position deviation is greater than or equal to the value set in the Following error window.	 The motor operation does not follow the command The value of Following error window is small 	V			P. A-146

Eventeeds				L	_eve	el	Refer-
Event code (hex)	Event name	Description	Assumed cause	Min	sqo	Info	ence
38840000	Excessive Speed Deviation Error	The speed deviation is greater than or equal to the value set in the Excessive Velocity Deviation Detection Level.	The motor operation does not follow the command because a parameter value is inappropriate The output axis of motor is limited on the operation by external forces The value of the Excessive Velocity Deviation Detection Level is inappropriate	√			P. A-147
38850000	Excessive Speed Error	The feedback motor speed is greater than or equal to the value set in the Excessive Speed Detection Level.	The velocity command value is too large Overshooting occurred The motor was rotated by external forces	V			P. A-148
38860000	Following Error Counter Overflow	The following error value exceeded the range from -2147483648 to 2147483647.	The motor operation does not follow the command The motor is rotated or limited on the operation by external forces	√			P. A-149
38870000	Absolute Encoder Counter Overflow Error	The multi-rotation counter of the encoder exceeded the maximum number of rotations.	An inappropriate value was set in the Encoder - Operation Selection when Using Absolute Encoder (4510-01 hex) The multi-rotation number of the encoder exceeded the maximum number of rotations	√			P. A-149
3888 0000	Safety Communications Setting Error	Safety process data communications were not established with the Safety CPU Unit because of an incorrect communications setting.	The watchdog time was set incorrectly The processing was not completed within the watchdog time because communications were not established due to the noise	V			P. A-150
38890000	Safety Frame Error	Safety process data com- munications were not estab- lished with the Safety CPU Unit because an incorrect frame was received.	An incorrect frame was received in safety process data communications There is excessive noise	1			P. A-151
388A0000	Safety Parameter Error	Safety process data com- munications were not estab- lished with the Safety CPU Unit because an incorrect parameter was received.	The set safety slave model is incorrect	√			P. A-151
388B0000	FSoE Slave Address Error	Safety process data communications were not established with the Safety CPU Unit because of an incorrect FSoE slave address.	The setting of the FSoE slave address in the safety process data communications settings is different from the setting in the Unit	V			P. A-152

Event code					Leve	el	Refer-
(hex)	Event name	Description	Assumed cause	Min	ops	Info	ence
48080000	FPGA WDT Error	An FPGA error was detected.	False detection due to a data read error that was caused by excessive noise Hardware failure	1			P. A-152
64E30000	Drive Prohibition Input Error	Both the Positive Drive Prohibition (POT) and the Negative Drive Prohibition Input (NOT) turned ON.	An error occurred on the switch, wire, power supply, and wiring that were connected to the Positive Drive Prohibition (POT) or Negative Drive Prohibition Input (NOT) False detection occurred because the control signal power supply was turned ON slowly	√			P. A-153
68200000	Drive Prohibition Detected	The operation was stopped according to the user setting because the motor ran in the prohibited direction when the Drive Prohibition was enabled.	Incorrect or broken wiring of Positive Drive Prohibition Input (POT) or Negative Drive Prohibition Input (NOT) Incorrect setting of the Drive Prohibition Input	V			P. A-154
68210000	Control Right Release Error	Communications between the Sysmac Studio and Servo Drive were inter- rupted while a specific func- tion was used from the Sysmac Studio.	The USB cable or EtherCAT cable was disconnected during the connection with the Sysmac Studio There is excessive noise A command sent from the Sysmac Studio was not sent to the Servo Drive because the computer was in a busy state or the like	√			P. A-155
68220000	Error Stop Input	The Error Stop Input (ESTP) is active.	The Error Stop Input (ESTP) was input The Error Stop Input (ESTP) is incorrectly wired	V			P. A-156
68230000	Software Limit Exceeded	The Position actual value detected the position that exceeded the value set in the Software Position Limit, and stopped the operation according to the user setting.	Incorrect setting of Software Position Limit When the Software Position Limit - Stop Selection was set to Stop according to the setting of Fault reaction option code, the position exceeded the value set in the Software Position Limit	√			P. A-156
78200000	Pulse Output Over- speed Error	The speed, which exceeded the frequency that could be output by the Encoder Dividing Pulse Output function, was detected.	The dividing ratio setting is inappropriate for the actual usage condition	V			P. A-157

Event code				L	_eve	I	Refer-
(hex)	Event name	Description	Assumed cause	Min	Obs	Info	ence
78210000	Brake Interlock Error	The Brake Interlock Output (BKIR) was output by the Timeout at Servo OFF.	The Brake Interlock Output (BKIR) was output because the motor rotation speed did not decrease to or less than the speed set in the Threshold Speed at Servo OFF within the time set in the Timeout at Servo OFF when Servo OFF was performed during the motor operation	√			P. A-157
78230000	Command Error	A mistake was made in using a command.	 When bit 9 (Remote) of the Statusword was set to 1 (remote), and the Servo Drive was in Operation enabled state (Servo ON), the Servo Drive received a command to change the communications state from Operational to another state (Init, Pre-Operational, or Safe-Operational) A mode of operation other than the hm mode was set during the homing operation Modes of operation was set to pp, pv or hm mode when the communications period was set to shorter than 250 µs 	√			P. A-158
84B10000	EtherCAT State Change Error	A communications state change command was received for which the current communications state could not be changed.	A communications state change command was received for which the cur- rent communications state could not be changed	V			P. A-159
84B20000	EtherCAT Illegal State Change Error	An undefined communications state change command was received.	An undefined communica- tions state change com- mand was received	√			P. A-159
84B40000	Synchronization Error	A signal for synchronous communications could not be detected.	Noise Error of the EtherCAT slave communications controller	√			P. A-160
84B50000	Sync Manager WDT Error	PDO communications were interrupted for the allowable period or longer.	An EtherCAT communications cable is disconnected, loose, or broken Host controller error	1			P. A-160
84B60000	ESC Initialization Error	The initialization of Ether-CAT slave communications controller failed.	Data was incorrectly over- written in the non-volatile memory of the EtherCAT slave communications con- troller Failure of the EtherCAT slave communications con- troller	V			P. A-161

Event code				I	_eve	l	Refer-
(hex)	Event name	Description	Assumed cause	Min	Obs	Info	ence
84B70000	SII Verification Error	An error occurred in SII data of the EtherCAT slave communications controller.	Data was incorrectly overwritten in the non-volatile memory of the EtherCAT slave communications controller Failure of the EtherCAT slave communications controller or false detection	V			P. A-161
84B90000	Synchronization Interruption Error	Synchronization interruption did not occur within the specified period.	Incorrect EtherCAT synchronization setting of the host controller Failure of the EtherCAT slave communications controller or false detection	V			P. A-162
84BA0000	Bootstrap State Transition Request Error	The state transition to unsupported Bootstrap was requested.	The EtherCAT master requested the transition of unsupported Bootstrap	V			P. A-162
88100000	Communications Synchronization Error	Communications were not established consecutively because the synchronization with the EtherCAT Master could not be achieved.	 The power supply to the host controller was interrupted during PDO communications. An EtherCAT communications cable is disconnected, broken, short-circuited, or has a contact failure in a daisy chain configuration. An EtherCAT communications cable is broken, short-circuited, or has a contact failure in a ring topology configuration. Noise Failure of the EtherCAT physical layer of a Servo Drive 	V			P. A-163
88120000	Safety Communications Timeout	A communications timeout occurred in safety process data communications with the Safety CPU Unit.	 A setting is not correct. The setting of the safety task period of the Safety CPU Unit is too short There is excessive noise The Safety CPU Unit or safety slave entered a status where it could not continue safety process data communications 	V			P. A-164
98200000	Absolute Value Cleared	The multi-rotation counter of the absolute encoder was cleared.	The multi-rotation counter of the absolute encoder was cleared	1			P. A-164
081C0000	Capacitor Lifetime Warning	The capacitor built into the Servo Drive reached the service life.	The operating time of the capacitor in the Servo Drive exceeded the service life		√		P. A-165

Event code				Level			Refer-
(hex)	Event name	Description	Assumed cause	Min	sqo	Info	ence
081D0000	Inrush Current Prevention Relay Lifetime Warning	The inrush current prevention relay built into the Servo Drive reached the service life.	The number of operating times of the inrush current prevention relay in the Servo Drive exceeded the service life		V		P. A-165
081F0000	Brake Interlock Out- put Relay Lifetime Warning	The brake interlock output (BKIR) relay built into the Servo Drive reached the service life.	The number of operating times of the brake interlock output in the Servo Drive exceeded the service life		1		P. A-166
083A0000	Encoder Communications Warning	Encoder communications errors occurred in series more frequently than the specified value.	 Noise into the encoder cable Contact failure of the encoder cable Power supply undervoltage to the encoder 		V		P. A-167
08470000	Encoder Lifetime Warning	The encoder lifetime is close to the end.	 Temporary noise The end of the encoder life Encoder break down due to impact on the axis or other causes 		√		P. A-168
084C0000	Fan Rotation Warning	The rotation speed of the fan is 80% or less of the rating and the cooling performance decreases.	 There is a foreign matter in the cooling fan and it blocks the rotation Cooling fan failure 		√		P. A-168
084E0000	Absolute Encoder Counter Overflow Warning	The multi-rotation counter of the encoder exceeded the value set in Encoder - Absolute Encoder Counter Overflow Warning Level (4510-02 hex).	An inappropriate value was set in the Encoder - Operation Selection when Using Absolute Encoder (4510-01 hex) The multi-rotation number of the encoder exceeded the warning level		V		P. A-169
18390000	Lifetime Information Corruption Warning	An error was detected in the saved lifetime information.	The lifetime information cor- ruption was detected when the power supply was turned ON		1		P. A-170
34E00000	Data Setting Warn- ing	The object set value is out of the range.	The object set value is out of the range		1		P. A-170
387A0000	Overload Warning	The Load Ratio of Servo Drive or motor (4150-81 hex) exceeded the level set in Overload - Warning Notification Level (4150-01 hex).	 Operation was continued for a long time with high load. There is incorrect wiring of the motor cable or a broken cable Increase in friction 		V		P. A-171

Event code				I	Leve	l	Refer-
(hex)	Event name	Description	Assumed cause	Min	sqo	Info	ence
387D0000	Regeneration Overload Warning	The Regeneration Load Ratio (4150-81 hex) exceeded 85%.	The regeneration processing is set inappropriately The Regeneration Resistor is selected inappropriately The Regeneration Resistor is used for continuous regenerative braking The applied power supply voltage is higher than the specified value Regeneration Resistor failure		√		P. A-172
387E0000	Motor Vibration Warning	The motor vibration, which was higher than or equal to the level set in the Vibration Detection - Detection Level (3B70-01 hex), was detected.	The control parameter is set inappropriately The rigidity decreased due to mechanical looseness or wear		V		P. A-173
78220000	Command Warning	A command could not be executed.	 The Switch ON command was received The Enable operation command was received An operation command in the prohibition direction was received after the immediate stop by the Drive Prohibition Input or Software Position Limit Homing started The positioning start command was received in the Profile position mode 		V		P. A-174
84B00000	EtherCAT Communications Warning	An EtherCAT communications error occurred more than one time.	An EtherCAT communications cable is disconnected, broken, short-circuited, or has a contact failure in a daisy chain configuration. In a ring topology configuration, the ring disconnection status occurred. In a ring topology configuration, the ring disconnection status was fixed. Noise Failure of the EtherCAT physical layer of a Servo Drive		1		P. A-175
90A00000	Unit Restarted	Restart was performed.	Restart was performed			V	P. A-175
98210000	STO Detected	The safety input OFF state was detected via the safety input signal or EtherCAT communications.	The cable is disconnected or broken The STO input was turned OFF via EtherCAT communications The cable is disconnected or broken.			1	P. A-176

Event code				Level			Refer-
(hex)	Event name	Description	Assumed cause		Obs	Info	ence
98220000	Memory All Cleared	The Unit setting was cleared.	Clear All Memory was per- formed			V	P. A-176
98240000	Event Log Cleared	The event log was cleared.	Clear Event Log was per- formed			V	P. A-177

^{*1.} This error can occur in the unit version 1.2 only.

^{*2.} This error can occur in the unit version 1.3 or later.

^{*3.} This error can occur in the unit version 1.1 or later.

A-4-2 Error Descriptions

This section describes errors.

Error Table

The items that are used to describe individual errors (events) are described in the following copy of an error table

Event name	Gives the name	of the error (event	t).	Event code	Gives the code of	f the error (event).	
Description	Gives a short de	escription of the en	ror (event).				
Source	Gives the source of the error (event).		Source details	Gives details on the source of the error.	Detection timing	Tells when the error is detected.	
Error attributes	Level	Tells the influence on control.*1	Recovery	Gives the recovery method.*2	Log category Tells which log the error is saved in.		
Effects	User program	Tells what will happen to execution of the user program.*3	Operation	Provides special results from the e	nformation on the operation that rror (event).		
	EtherCAT NET	RUN	EtherCAT NET E	RR	EtherCAT LINK/	ACT	
Indicators	Gives the status of the built-in EtherNet/IP port and built-in EtherCAT port indicators. Indicator status is given only for errors in the EtherCAT Master Function Module and the EtherNet/IP Function Module.						
System	Variable		Data type		Name		
-defined variables		•		•	variables that prov s that cause the e		
Cause and	Assumed caus	е	Correction		Prevention		
correction	Lists the possib	le causes, correcti	ons, and preventiv	e measures for the	e error (event).	_	
Attached information	Provides the ad	Provides the additional information that is displayed by the Sysmac Studio or an NS-series PT.					
Precautions/ Remarks	Provides precau	itions, restrictions,	and supplemental	information.			

^{*1.} One of the following:

Minor fault: Minor fault level

Observation Information

*2. One of the following:

Automatic recovery: Normal status is restored automatically when the cause of the error is removed.

Error reset: Normal status is restored when the error is reset after necessary measures are taken.

Cycle the power supply: Normal status is restored when the power supply is turned OFF and then back ON after necessary measures are taken.

Replace the Servo Drive: Normal status is restored when the Servo Drive is replaced with a new one.

*3. "Continues." indicates that execution of the user program will continue.

Error Descriptions

Event name	Regeneration C	•			04B30000 hex ^{*1}			
Meaning	An error of the F	n error of the Regeneration Circuit was detected at power ON.						
Source	EtherCAT Master Function Module		Source details	Slave	Detection timing	Continuously		
Error attributes	Level	Minor fault	Recovery	Error reset (after cycling slave power)	Log category	System log		
Effects	User program	Continues.	Operation	Power drive circu	it is OFF			
Indicators	EtherCAT NET	RUN	EtherCAT NET E	RR	EtherCAT LINK/	ACT		
mulcators								
System	Variable	Variable			Name			
-defined	None	None		None				
variables								

	Assumed cause	Correction	Prevention
Cause and correction	Power supply voltage is insufficient at power ON, or rising slowly. Power supply voltage fluctuated at power ON. L1, L2, and L3 terminals are not connected or disconnected. N1 and N2 terminals are opened.	Cut off the main circuit power supply immediately and check whether charge lamp is turned ON/OFF. If the charge lamp is turned OFF, remove the wiring and make the following check. • Check whether there is an abnormality in the appearance of the Servo Drive, and that the wiring is properly done. • Check that the resistance value and the power of the External Regeneration Resistor is correct. • Wait until the voltage between P and N1 goes to less than 1 V to check the resistance value between P and N1. (If it is less than 10 kΩ, replace the Servo Drive.) • Wait until the voltage get stable to check the resistance value between B2 and N1. (If it is less than 100 kΩ, replace the Servo Drive.) • Check whether fluctuation in the power supply occurs or not. (Make sure that an instantaneous power drop does not occur, and that the power rise time is 500 ms or shorter.)	 If you are using the External Regeneration Resistor, make sure that an appropriate resistance value is set and that it is a resistor for the electric power. Increase the power supply capacity to improve the power environment. Separate the Servo Drive and cables from the noise source, or install other devices separately with the power line of the Servo Drive so that the surge voltage that is too large is not imposed. Power rise time must be 500 ms or shorter. Check that the wiring for the following terminals is properly done: L1, L2, L3, N1, N2, N3, B1, B2, B3, and P.
		power supply voltage or power supply occurs or not. (Make sure that an instantaneous power drop does not occur, and that the power rise time is 500 ms or shorter.)	
	Servo Drive failure	If this event occurs again after you performed all corrections shown above, replace the Servo Drive.	None
Attached information	Attached information 1: System in	formation	
Precautions/ Remarks	AL status code: -, Error No.: 1402	hex	

^{*1.} This error can occur in the unit version 1.2 only.

Event name	Inrush Current F	Prevention Circuit I	Error	Event code	04B50000 hex*1		
Meaning	An error of inrus	h current preventi	on circuit was dete	cted.			
Source	EtherCAT Maste ule	-		Slave	Detection timing	During Servo ON	
Error attributes	Level	Minor fault	Recovery	Error reset (after cycling slave power)	Log category	System log	
Effects	User program	Continues.	Operation	Power drive circu	uit is OFF		
Indicators	EtherCAT NET RUN		EtherCAT NET ERR		EtherCAT LINK/ACT		
indicators							
System	Variable		Data type		Name		
-defined variables	None		None	None			
Cause and	Assumed caus	е	Correction		Prevention		
correction	Inrush current p failure	revention circuit	Replace the Servo Drive.		None		
Attached	None				•		
information							
Precautions/	AL status code:	-, Error No.: 1403	hex				
Remarks							

^{*1.} This error can occur in the unit version 1.3 or later.

Event name	Regeneration C	ircuit Error		Event code	04B60000 hex*1		
Meaning	An regeneration	circuit error was	detected.		•		
Source	EtherCAT Maste ule	er Function Mod-	Source details	Slave	Detection timing	Continuously	
Error attributes	Level	Minor fault	Recovery	Error reset (after cycling slave power)	Log category	System log	
Effects	User program	Continues.	Operation	Power drive circ	uit is OFF		
Indicators	EtherCAT NET RUN		EtherCAT NET E	RR	EtherCAT LINK	/ACT	
ilidicators							
System	Variable		Data type	Name			
-defined	None		None	None			
variables							
	Assumed cause		Correction		Prevention		
	There is a short	circuit between	Perform the correct wiring, refer-		Perform the correct wiring.		
Cause and	B2 and N2/N3.		ring the cases of the connection				
correction			with peripheral de				
	Regeneration ci		Replace the Serv		None		
		g of the external	Take noise count	•	Take noise coun	termeasures.	
	regeneration reg	gistor.	shortening wiring	or the like.			
Attached	None						
information							
Precautions/	AL status code:	-, Error No.: 1801	hex				
Remarks							

^{*1.} This error can occur in the unit version 1.3 or later.

				1				
Event name	ESC Error			Event code	0543 0000 hex			
Meaning	An error occurre	ed in the EtherCAT	slave communica	tions controller.				
Source	EtherCAT Maste ule	er Function Mod-	Source details	Slave	Detection At power O timing			
Error attributes	Level	Minor fault	Recovery	Error reset (after cycling slave power)	Log category	System log		
Effects	User program	Continues.	Operation	Power drive circu	uit is OFF			
Indicators	EtherCAT NET	RUN	EtherCAT NET E	RR	EtherCAT LINK	ACT		
indicators								
System	Variable		Data type		Name			
-defined variables	None		None		None			
	Assumed cause		Correction		Prevention			
Cause and correction	munications cor detection when code is 0051 he Error access fro non-OMRON Et	the AL status x m the	If this event occu after you cycled the EtherCAT slations controller is the Servo Drive. Please contact the of EtherCAT mass	he power supply, ve communica- faulty. Replace	None			
Attached information	None							
Precautions/	I AL status code:	status code: 0050 hex or 0051 hex, Error No.: 8804 hex						

Event name	Power Module B	Error		Event code	08390000 hex		
Description	An error was de	tected in the powe	r module.				
Source	EtherCAT Maste ule	er Function Mod-	Source details	Slave	Detection timing	Continuously	
Error attributes	Level	Minor fault	Recovery	Error reset (after cycling slave power)	Log category	System log	
Effects	User program	Continues.	Operation	Power drive circu	it is OFF		
Indicators	EtherCAT NET	RUN	EtherCAT NET E	RR	EtherCAT LINK/	ACT	
iliuicators							
System	Variable		Data type		Name		
-defined variables	None		None		None		
	Assumed caus	e	Correction		Prevention		
	V, or W motor c	failure on the U, able	Correct the conne or W motor cable		Confirm that the motor cables a not broken and connect them correctly.		
Cause and correction	ing of External F	-circuit on the wir- Regeneration resistance value	If there is a short- ing of External Re Resistor, correct	-	Wire the External Regeneration Resistor correctly when using it. Use the recommended External Regeneration Resistor. If a resistance value of the External Regeration Resistor is small, excessive current will flow into the power module and cause a failure.		
	The insulation rebetween the U, cable and the m		Replace the motor.		Confirm that the insulation resistance is insulated between the U, V, and W motor cable and the motor ground wire before using the motor.		
	Servo Drive fail		If this event occurs again after you performed all corrections shown above, replace the Servo Drive.		Do not perform Servo ON/OFF frequently. Doing so may cause a Servo Drive failure.		
Attached information		ation 1: System in					
Precautions/ Remarks	AL status code:	-, Error No.: 1401	hex				

Event name	Self-diagnosis E	Self-diagnosis Error Event code			083B 0000 hex	
Description	An error was de	tected by the self-	diagnosis of the sa	fety function.		
Source	EtherCAT Master Function Module		Source details	Slave	Detection timing	Continuously
Error attributes	Level	Minor fault	Recovery	Error reset (after cycling slave power)	Log category	System log
Effects	User program	Continues.	Operation	Power drive circu	it is OFF	_
Indicators	EtherCAT NET	RUN	EtherCAT NET E	RR	EtherCAT LINK/	ACT
muicators						
System	Variable		Data type		Name	
-defined	None		None		None	
variables						
	Assumed cause		Correction		Prevention	
	Assumed caus	e	Correction		Frevention	
	Assumed caus False detection		If this event does	not occur after	If the normal ope	ration can restart
	False detection read error that v	due to a data vas caused by	If this event does	ower supply, use	If the normal ope after you cycled t	he power supply,
Cause and	False detection	due to a data vas caused by	If this event does you cycled the po the product conti	ower supply, use nuously. It is sup-	If the normal ope after you cycled t consider noise co	he power supply, ountermeasures.
Cause and correction	False detection read error that v	due to a data vas caused by	If this event does you cycled the po the product conti posed that a tem	ower supply, use nuously. It is sup- porary error	If the normal ope after you cycled t consider noise co There may be ex	he power supply, ountermeasures. cessive noise
	False detection read error that vexcessive noise	due to a data vas caused by	If this event does you cycled the potential posed that a tem occurred due to a	ower supply, use nuously. It is sup- porary error a read error. If this	If the normal ope after you cycled t consider noise co	he power supply, ountermeasures. cessive noise
	False detection read error that vexcessive noise	due to a data vas caused by	If this event does you cycled the poduct continuous posed that a tem occurred due to a event occurs aga	ower supply, use nuously. It is sup- porary error a read error. If this	If the normal ope after you cycled t consider noise co There may be ex	he power supply, ountermeasures. cessive noise
correction	False detection read error that vexcessive noise Hardware failure	due to a data vas caused by	If this event does you cycled the potential the product continuous posed that a tem occurred due to a event occurs agas Servo Drive.	ower supply, use nuously. It is sup- porary error a read error. If this	If the normal ope after you cycled t consider noise co There may be ex	he power supply, ountermeasures. cessive noise
correction	False detection read error that vexcessive noise Hardware failure	due to a data vas caused by	If this event does you cycled the potential the product continuous posed that a tem occurred due to a event occurs agas Servo Drive.	ower supply, use nuously. It is sup- porary error a read error. If this	If the normal ope after you cycled t consider noise co There may be ex	he power supply, ountermeasures. cessive noise
Attached information	False detection read error that wexcessive noise Hardware failure	due to a data vas caused by e e ation 1: System in	If this event does you cycled the potential that a tem occurred due to a event occurs aga Servo Drive.	ower supply, use nuously. It is sup- porary error a read error. If this	If the normal ope after you cycled t consider noise co There may be ex	he power supply, ountermeasures. cessive noise
correction	False detection read error that wexcessive noise Hardware failure	due to a data vas caused by	If this event does you cycled the potential that a tem occurred due to a event occurs aga Servo Drive.	ower supply, use nuously. It is sup- porary error a read error. If this	If the normal ope after you cycled t consider noise co There may be ex	he power supply, ountermeasures. cessive noise

Event name	Main Circuit Temperature Monitoring Circuit Failure			Event code	083C0000 hex			
Description	A temperature r	A temperature monitoring circuit failure was detected on the main circuit.						
Source	EtherCAT Master Function Mod- ule		Source details	Slave	Detection timing	Continuously		
Error attributes	Level	Minor fault	Recovery	Error reset (after cycling slave power)	Log category	System log		
Effects	User program	Continues.	Operation	Power drive circu	it is OFF			
Indicators	EtherCAT NET RUN		EtherCAT NET ERR		EtherCAT LINK/ACT			
ilidicators								
System	Variable		Data type		Name			
-defined variables	None		None		None			
	Assumed caus	e	Correction		Prevention			
Cause and	Broken wiring o	f the thermistor,	If this event occu	rs repeatedly	None			
correction	temperature mo	nitoring circuit	after you cycled t	he power supply,				
	failure		replace the Servo	Drive.				
Attached	None							
information								
Precautions/	AL status code:	-, Error No.: 5800	hex					
Remarks								

Event name	Fan Error			Event code	083D0000 hex		
Description	The rotation spe	eed of the fan is 40	% or less of the ra	ting and the coolir	ng performance de	creases.	
Source	EtherCAT Master Function Module		Source details	Slave	Detection timing	Continuously	
Error attributes	Level	Minor fault	Recovery	Error reset (after resetting slave errors)	Log category	System log	
Effects	User program	Continues.	Operation	Power drive circu	uit is OFF		
Indicators	EtherCAT NET	RUN	EtherCAT NET E	RR	EtherCAT LINK	/ACT	
indicators							
System	Variable		Data type		Name		
-defined	None		None		None		
variables					Prevention		
	Assumed caus	Assumed cause		Correction			
	There is a foreig		Check whether the	Check whether there is a foreign		Do not use the fan in an area sur-	
Cause and	-	cooling fan and it blocks the rota-		matter in the fan. If you find a for-		rounded by excessive foreign mat-	
correction		tion		ove it.	ter. Also, do not	allow foreign	
	Cooling fan failure		If there is no improvement after		objects to enter.		
			you performed the correction				
			above, replace the Servo Drive.				
Attached	None						
information		- N - 5000					
Precautions/	AL status code:	-, Error No.: 5900	nex				
Remarks							

Event name	Regeneration P	rocessing Error	Event code	083F0000 hex		
Description	-		stopped to protect			
Description		er Function Mod-	I Stopped to protect	Slave	Detection	Continuously
Source	ule	er Function Mod-	Source details	Slave	timing	Continuously
Error attributes	Level	Minor fault	Recovery	Error reset (after cycling slave power)	Log category	System log
Effects	User program	Continues.	Operation	Power drive circu	uit is OFF	
Indicators	EtherCAT NET	RUN	EtherCAT NET E	RR	EtherCAT LINK	/ACT
maicators	ļ					
System	Variable	Variable			Name	
-defined variables	None		None		None	
	Assumed caus	ie	Correction		Prevention	
Cause and correction	The regeneration set inappropriate. The Regeneration selected inappropriate selected selected inappropriate selected selec	on Resistor is	ing setting, and so as the resistance Regeneration Re Check the operative velocity monitor. The ratio of Regeneral perform the follow accordingly. Increase the deand stopping to the motor.	Check the regeneration processing setting, and set the same value as the resistance value of the Regeneration Resistor in use. Check the operation pattern by the velocity monitor. Check the load ratio of Regeneration Resistor, and perform the following corrections accordingly. Increase the deceleration time and stopping time. Decrease the command velocity to the motor.		given for correc- and take counter- quired.
	The Regenerati used for continutive braking The applied povage is higher that value Regeneration R	ver supply voltant the specified	Servo Drive and the motor. The Regeneration Resistor cannot be used for continuous regenerative braking. Apply the specified power supply voltage. Check whether the Regeneration Resistor is faulty, and use one without failures.		Do not use the Regeneration Resistor for continuous regenerative braking. Review the power supply voltage to be the specified value before use. Confirm that the Regeneration Resistor is not faulty before use.	
Attached information	None		1		<u>I</u>	
Precautions/ Remarks	AL status code:	-, Error No.: 1802	hex			

Event name	Overvoltage Err	or		Event code	08410000 hex		
Meaning	The main circuit	power supply volt	age (P-N voltage)	exceeded the oper	ration guarantee ra	ange.	
Source	EtherCAT Maste ule	er Function Mod-	Source details	Slave	Detection timing	Continuously	
Error attributes	Level	Minor fault	Recovery	Error reset (after cycling slave power)	Log category	System log	
Effects	User program	Continues.	Operation	Power drive circu	it is OFF		
Indicators	EtherCAT NET	RUN	EtherCAT NET E	RR	EtherCAT LINK/	ACT	
iliuicators							
System	Variable		Data type		Name		
-defined variables	None		None		None		
	Assumed caus	e	Correction		Prevention		
	The P-N voltage exceeded the specified value		Input the correct voltage.		Input the correct voltage.		
	The input voltage increased		Use appropriately external devices such as UPS.		Use appropriately external devices such as UPS.		
	The Regenerati	on Resistor wir-	If a resistance val	ue of the external	Check a resistan	ce value of the	
	ing is broken	ing is broken		resistor is infinite between the ter-			
			minal B1 and B2 of the Servo				
			Drive, the wiring is broken. Replace the external resistor.				
Cause and	The External Re	The External Regeneration		Confirm the necessary regenera-		Select an External Regeneration	
correction	Resistor is set of	•	tion processing c			culating the nec-	
	propriately	, , , , , , , , , , , , , , , , , , ,	nect an appropria	•	essary regeneral	•	
	' '		Regeneration Resistor. Also, set		capacity because		
			the parameters of the External			s or the like. Also,	
			Regeneration Resistor to the resis-		set the parameter correctly when		
			tance value of the		using the Externa	al Regeneration	
	Servo Drive faile	ıro	eration Resistor i		Resistor. None		
	Servo Drive falli	ure	performed all cor	•	None		
			above, replace th				
Attached	None				1		
information							
Precautions/	AL status code:	-, Error No.: 1200	hex				
Remarks							

Event name	Motor Overheat	Error		Event code	08420000 hex		
Description	The encoder de	tected the temper	ature that exceede	d the protection lev	vel of motor.		
Source	EtherCAT Maste	EtherCAT Master Function Module		Slave	Detection timing	Continuously	
Error attributes	Level	Minor fault	Recovery	Error reset (after resetting slave errors)	Log category	System log	
Effects	User program	Continues.	Operation	Power drive circu	it is OFF		
Indicators	EtherCAT NET	RUN	EtherCAT NET E	RR	EtherCAT LINK/	ACT	
ilidicators							
System	Variable	Variable		Data type		Name	
-defined variables	None N		None		None		
	Assumed caus	Assumed cause			Prevention		
Cause and	The temperature the motor	The temperature is high around the motor		Adjust the temperature around the motor to be within the range of the operating temperature.		Adjust the ambient temperature to be within the range of the operating temperature before using the motor.	
correction	The motor is overloaded		Adjust the motor load ratio to be within the specified range.		Adjust the operation before use, so that the motor load ratio does not become high for a long time.		
	Encoder failure	Encoder failure		Replace the motor if this event occurs repeatedly.		None	
Attached information	None						
Precautions/ Remarks	AL status code:	AL status code: -, Error No.: 1501 hex					

Event name	1-rotation Counter Error			Event code	0843 0000 hex			
Description	The encoder de	The encoder detected a one-rotation counter error.						
Source	EtherCAT Master Function Mod- ule		Source details	Slave	Detection timing	Continuously		
Error attributes	Level	Minor fault	Recovery	Error reset (after cycling slave power)	Log category	System log		
Effects	User program	Continues.	Operation	Power drive circ	uit is OFF			
Indicators	EtherCAT NET	RUN	EtherCAT NET E	RR	EtherCAT LINK	/ACT		
iliuicators								
System	Variable		Data type		Name			
-defined	None		None		None	None		
variables								
	Assumed cause		Correction		Prevention			
	There is excess	ive noise	Take noise count	ermeasures. If	Take noise coun	termeasures.		
Cause and	Failure due to vi	bration, impact,	this event occurs	after you per-	Do not use the p	Oo not use the product in an area		
correction	condensation, fo	oreign matter, etc.	formed noise cou	ıntermeasures,	surrounded by excessive foreign			
			the motor is fault	y. Replace the	matter. Also, do	matter. Also, do not allow foreign		
			motor.		matter to enter.			
Attached	Attached inform	ation 1: System in	formation					
information								
Precautions/	AL status code:	-, Error No.: 4400	hex					
Remarks								

Event name	Overspeed Erro	or		Event code	08440000 hex		
Meaning	The encoder de	tected the overspo	eed.				
Source	EtherCAT Maste ule	EtherCAT Master Function Mod- ule		Slave	Detection timing	Continuously	
Error attributes	Level	Minor fault	Recovery	Error reset (after cycling slave power)	Log category	System log	
Effects	User program	Continues.	Operation	Power drive circu	it is OFF		
Indicators	EtherCAT NET	RUN	EtherCAT NET E	RR	EtherCAT LINK/	ACT	
maicators							
System	Variable		Data type	Data type		Name	
-defined	None		None		None		
variables			0				
	Assumed cause		Correction		Prevention		
		The motor is rotated by external		Take countermeasures so that the		Take countermeasures so that the	
Cause and	forces		motor is not subjected to external		motor is not rotated by external		
correction			forces if the motor is rotated by external forces.		forces.		
Correction	Encoder failure	and false detec-		If this event occurs repeatedly, the		None	
	tion		encoder is faulty. Replace the		None		
			motor.				
Attached	None		1		1		
information							
Precautions/	AL status code:	-, Error No.: 4700	hex				
Remarks							

Event name	Encoder Memor	y Error		Event code	08450000 hex		
Description	The encoder de	tected a non-volat	ile memory error.		•		
Source	EtherCAT Master Function Module		Source details	Slave	Detection timing	Continuously	
Error attributes	Level	Minor fault	Recovery	Error reset (after cycling slave power)	Log category	System log	
Effects	User program	Continues.	Operation	Power drive circ	uit is OFF		
Indicators	EtherCAT NET RUN		EtherCAT NET E	RR	EtherCAT LINK	/ACT	
ilidicators							
System	Variable		Data type		Name		
-defined	None		None		None		
variables							
	Assumed caus	Assumed cause		Correction		Prevention	
	False detection		If this event occu	•	None		
Cause and	read error that v	•	cycled the power				
correction	excessive noise		encoder is faulty.	Replace the			
	Non-volatile me	mory failure	motor.				
	Encoder failure						
Attached	None						
information							
Precautions/	AL status code:	-, Error No.: 4301	hex				
Remarks							

Event name	Absolute Position	on Detection Error		Event code	0846 0000 hex	
Description	The encoder de	tected a multi-rota	tion counter error.			
Source	EtherCAT Maste ule	EtherCAT Master Function Mod- ule		Slave	Detection timing	Continuously
Error attributes	Level	Minor fault	Recovery	Error reset (after cycling slave power)	Log category	System log
Effects	User program	Continues.	Operation	Power drive circu	iit is OFF	
Indicators	EtherCAT NET	RUN	EtherCAT NET E	RR	EtherCAT LINK	ACT
ilidicators						
System	Variable		Data type		Name	
-defined variables	None		None		None	
	Assumed cause		Correction	Correction		
Cause and correction	A detection error was detected in the multi-rotation detection sec- tion of the encoder		Perform the Absolute Encoder Setup after cycling the power supply, and update the multi-rotation		None	
	There is excessive noise		Take noise countermeasures. Replace the motor if this event occurs repeatedly.		Take noise coun	termeasures.
Attached information	None					
Precautions/ Remarks	AL status code:	AL status code: -, Error No.: 4501 hex				

Event name	Main Power Sup	oply Undervoltage and N)	(insufficient volt-	Event code	0848 0000 hex		
Meaning	•	,	age fell below the	operation guarante	ee range during Se	ervo ON.	
Source	EtherCAT Maste	er Function Mod-	Source details	Slave	Detection timing	During Servo ON	
Error attributes	Level	Minor fault	Recovery	Error reset (after resetting slave errors)	Log category	System log	
Effects	User program	Continues.	Operation	Power drive circu	it is OFF		
Indicators	EtherCAT NET	RUN	EtherCAT NET I	RR	EtherCAT LINK/	ACT	
ilidicators							
System	Variable		Data type		Name		
-defined variables	None		None		None		
	Assumed cause		Correction		Prevention		
	Incorrect wiring of the main circuit power supply		If the power supply cables are not wired to the main circuit power supply terminals (L1, L2, L3), connect them.		Check the wiring of the main circuit power supply before use.		
Cause and	The low power supply voltage is applied to the Servo Drive		Increase the power supply capacity if it is small. Measure the applied power supply voltage, and apply the voltage according to the specification.		Apply the voltage the Servo Drive.	e appropriate for	
correction	tary Hold Time a	The long time was set in Momentary Hold Time and the voltage		Remove the cause that momentarily decreased the voltage.		Set an appropriate value in the Momentary Hold Time.	
	was decreased	was decreased momentarily		Set a short time in the Momentary Hold Time so as not to detect this error due to a momentary decrease in voltage.			
	Servo Drive failure		If this event occurs again after you performed all corrections shown above, replace the Servo Drive.		None		
Attached information	None						
Precautions/ Remarks	AL status code:	-, Error No.: 1300	hex				

Event name	Overcurrent Error Event code			0849 0000 hex			
Meaning	The current flow	ving to the motor ex	xceeded the protec	ction level.			
Source	EtherCAT Maste	er Function Mod-	Source details	Slave	Detection timing	During Servo ON	
Error attributes	Level	Minor fault	Recovery	Error reset (after cycling slave power)	Log category	System log	
Effects	User program	Continues.	Operation	Power drive circu	it is OFF		
Indicators	EtherCAT NET	RUN	EtherCAT NET E	RR	EtherCAT LINK/	ACT	
indicators							
System	Variable		Data type		Name		
-defined variables	None		None		None		
	Assumed cause		Correction		Prevention		
	There is a short circuit, ground fault, contact failure, disconnection, or break on the U, V, or W motor cable.		Correct the connection of the U, V, or W motor cable. If the cable is broken, replace it.		Confirm that the motor cables are not broken and connect them correctly.		
	There is a short-circuit on the wiring of External Regeneration Resistor		Correct the wiring of External Regeneration Resistor.		Wire the External Regeneration Resistor correctly when using it.		
Cause and correction	The insulation resistance failed between the U, V, or W motor cable and the motor ground wire		Replace the motor.		Confirm that the insulation resistance is insulated between the U, V, and W motor cable and the motor ground wire before connecting and using the motor.		
	False detection	due to the noise	Take noise count	Take noise countermeasures.		Take noise countermeasures because excessive noise may cause false detection.	
	Servo Drive failure		If this event occurs again after you performed all corrections shown above, replace the Servo Drive.		Do not perform Servo ON/OFF frequently. Doing so may cause a Servo Drive failure.		
Attached information	None						
Precautions/ Remarks	AL status code:	-, Error No.: 1400	hex				

Event name	Encoder Comm	unications Disconi	nection Error	Event code	084A0000 hex		
Description	The communication	tions disconnection	n was detected be	n was detected between the encoder and the Servo Drive.			
Source	EtherCAT Maste ule	er Function Mod-	Source details	Slave	Detection timing	Continuously	
Error attributes	Level Minor fault		Recovery	Error reset (after cycling slave power)	Log category	System log	
Effects	User program	Continues.	Operation	Power drive circu	iit is OFF		
Indicators	EtherCAT NET	RUN	EtherCAT NET E	RR	EtherCAT LINK/	ACT	
mulcators							
System	Variable		Data type		Name		
-defined variables	None	None		None			
	Assumed cause		Correction		Prevention		
	Noise into the encoder cable		 Separate the motor cable and the encoder cable if they are bundled together. Connect the shield to FG. Check that the motor ground wire is connected to FG. 		 Separate the motor cable and the encoder cable if they are bundled together. Connect the shield to FG. Check that the motor ground wire is connected to FG. 		
Cause and	Contact failure	of the signal line,	Replace the enco	eplace the encoder cable if it is		Confirm that the encoder is not	
correction	and disconnecti	on of the encoder	broken. Firmly connect the encoder connector to the Servo Drive.		broken before use, and connect the encoder connector to the Servo Drive securely.		
	Power supply until the encoder	ndervoltage to	Use the recommended encoder cable.		Use the recommended encoder cable.		
	Encoder failure		If this event occurs again after you performed all corrections shown above, replace the motor.		None		
Attached information	None				•		
Precautions/ Remarks	AL status code:	-, Error No.: 2100	hex				

Event name	Encoder Comm	unications Error		Event code	084B 0000 hex				
Description	Illegal data was	received from the	encoder the specified number of times.						
Source	or Level Minor fault		Source details	Source details Slave		Continuously			
Error attributes			Recovery	Error reset (after cycling slave power)	Log category	System log			
Effects	User program	Continues.	Operation	Power drive circ	uit is OFF				
Indicators	EtherCAT NET	RUN	EtherCAT NET E	RR	EtherCAT LINK	ACT			
System	Variable		Data type		Name				
-defined variables	None		None		None				
	Assumed cause		Correction		Prevention				
	Noise into the encoder cable		 Separate the motor cable and the encoder cable if they are bundled together. 		 Separate the motor cable and the encoder cable if they are bundled together. 				
			Connect the shield to FG.		Connect the shield to FG.				
Cause and correction			 Check that the motor ground wire is connected to FG. 		Confirm that the motor ground wire is connected to FG.				
COTTCCTION	Contact failure of the signal line,		Replace the encoder cable if it is		Confirm that the encoder is not				
	and disconnection of the encoder		broken. Firmly connect the encoder connector to the Servo		broken before use, and connect the encoder connector to the				
			Drive.		Servo Drive securely.				
	Power supply u	ndervoltage to	Use the recomme	ended encoder	Use the recomm	ended encoder			
	the encoder		cable.		cable.				
Attached information	None								
Precautions/ Remarks	AL status code:	-, Error No.: 2101	hex	AL status code: -, Error No.: 2101 hex					

Event name	Non-volatile Memory Hardware Error			Event code	084D 0000 hex	
Description	An error occurred on the non-volatile memory.					
Source	EtherCAT Maste ule	EtherCAT Master Function Module		Slave	Detection timing	At power ON
Error attributes	Level	Minor fault	Recovery	Error reset	Log category	System log
Effects	User program	Continues.	Operation	Power drive circu	iit is OFF	
Indicators	EtherCAT NET	RUN	EtherCAT NET E	RR	EtherCAT LINK	/ACT
System	Variable		Data type		Name	
-defined variables	None		None		None	
	Assumed cause		Correction		Prevention	
Cause and correction	False detection due to a data read error that was caused by excessive noise Non-volatile memory failure		if this error occurs although the erro non-volatile mem	After you cycled the power supply, if this error occurs continuously although the error is reset, the non-volatile memory is faulty. Replace the Servo Drive.		
Attached information	Attached inform	ation 1: System in	· ·		1	
Precautions/ Remarks	AL status code: -, Error No.: 3700 hex					

Event name	Absolute Encod	er Multi-rotation C	ounter Frror	Event code	1823 0000 hex		
Meaning			tion counter error.		10200001108		
Source	EtherCAT Master Function Module		Source details	Slave	Detection timing	Continuously	
Error attributes	Level	Minor fault	Recovery	Error reset (after cycling slave power)	Log category	System log	
Effects	User program	Continues.	Operation	Power drive circu	it is OFF		
Indicators	EtherCAT NET RUN		EtherCAT NET E	RR	EtherCAT LINK/	ACT	
iliuicators							
System	Variable		Data type		Name		
-defined	None		None		None		
variables							
	Assumed cause		Correction		Prevention		
		or occurred in the	-	continuously if this	Do not use the product in an envi-		
Cause and	encoder multi-ro			ccur after improv-	ronment where the	•	
correction		vibration, impact,	ing the operating	environment.	and vibration res		
	or condensation		Replace the motor	or if this event	the specified leve	el.	
	Encoder failure		occurs again.				
Attached	None						
information							
Precautions/	AL status code:	-, Error No.: 4500	hex				
Remarks							

Event name	System Error			Event code	1838 0000 hex		
Description	A hardware erro	r due to the self-d	iagnosis and a fata	l software error we	ere detected.		
Source	EtherCAT Master Function Module		Source details	Slave	Detection timing	Continuously	
Error attributes	Level	Minor fault	Recovery	Error reset (after cycling slave power)	Log category	System log	
Effects	User program	Continues.	Operation	Power drive circu	it is OFF		
Indicators	EtherCAT NET	RUN	EtherCAT NET E	RR	EtherCAT LINK/	ACT	
inuicators							
System	Variable		Data type		Name		
-defined	None		None		None		
variables				Correction			
	Assumed caus	Assumed cause			Prevention		
	False detection due to a data		If this event does not occur after		If the normal ope	ration can restart	
	read error that was caused by		you cycled the power supply, use		after you cycled the power supply,		
Cause and		excessive noise		the product continuously. It is sup-		consider noise countermeasures.	
correction	A fatal software error was		posed that a temporary error		There may be excessive noise		
		detected		occurred due to a read error.		Drive.	
	Hardware failure		If this event occurs again, a fatal error exists. Replace the Servo Drive.				
Attached	Attached inform	ation 1: System in	formation				
information							
Descentional	AL status code: -, Error No.: 3501 hex						
Precautions/	AL Status Code.	al status code, Ettot 190 330 i flex					

Event name	Non-volatile Me	mory Data Error		Event code	183A 0000 hex			
Description	An error of data	saved in the non-	volatile memory w	as detected.				
Source	EtherCAT Maste	er Function Mod-	Source details	Slave	Detection timing	At power ON		
Error attributes	Level	Minor fault	Recovery Error reset		Log category	System log		
Effects	User program	Continues.	Operation	Power drive circu	uit is OFF			
Indicators	EtherCAT NET	RUN	EtherCAT NET	RR	EtherCAT LINK	/ACT		
indicators								
System	Variable		Data type		Name			
-defined	None		None		None			
variables								
	Assumed caus	е	Correction		Prevention			
	Power interruption or noise		Save data after s	Save data after setting the param-		the power while		
	occurred while parameters other		eter again, and o	ycle the power	the parameter is	saved.		
	than the safety		supply.					
Cause and	Power interrupti			Execute the Motor Setup, and				
correction	occurred while the motor identity information was saved		cycle the power supply.					
	Power interruption or noise		Clear the FSoE slave address,					
	occurred while s	occurred while safety parameters		execute FSoE Enable Reset, and				
	were saved		cycle the power supply.					
	Attached Inform	ation 1: Cause De	etails					
Attached	1: Data corruption	on of parameters	other than the safe	ty				
information	2: Data corruption	on of the motor ide	entity information					
	3: Data corruption	3: Data corruption of the safety parameters						
Precautions/	AL status code:	-, Error No.: 3600	hex					
Remarks								

Event name	Motor Non-conf	Motor Non-conformity			246D 0000 hex	
Description	The Servo Drive	and motor combi	nation is not corre	ot.		
Source	EtherCAT Master Function Module		Source details	Slave	Detection timing	At power ON
Error attributes	Level	Minor fault	Recovery	Error reset (after cycling slave power)	Log category	System log
Effects	User program	Continues.	Operation	Power drive circ	rive circuit is OFF	
Indicators	EtherCAT NET RUN		EtherCAT NET ERR		EtherCAT LINK/ACT	
ilidicators						
System	Variable		Data type		Name	
-defined	None		None		None	
variables						
Cause and	Assumed caus	e	Correction		Prevention	
correction	The Servo Drive	e and motor com-	Replace the motor with one that		Use a motor that matches the	
CONTOCUON	bination is not correct		matches the Servo Drive.		Servo Drive.	
	Attached Inform	ation 1: Cause De	tails			
Attached	1: Error at a time	e when the capacit	y of the connected	Servomotor does	not conform to the	capacity of Servo
information	Drive.					
	2: The Servomo	tor with different o	perating voltage is	connected.		
Precautions/	AL status code:	-, Error No.: 9501	hex			
Remarks						

	I o	0 1 5		I -	I 0000 0000 I		
Event name		wer Supply Phase		Event code	2808 0000 hex		
Description	·		power supply was				
Source	EtherCAT Maste ule	er Function Mod-	Source details	Slave	Detection timing	Continuously	
Error attributes	Level Minor fault		Recovery	Error reset (after resetting slave errors)	Log category	System log	
Effects	User program	Continues.	Operation	Power drive circu	iit is OFF	_	
Indicators	EtherCAT NET RUN		EtherCAT NET E	RR	EtherCAT LINK/	ACT	
ilidicators							
System	Variable		Data type		Name		
-defined variables	None		None		None		
	Assumed cause		Correction		Prevention		
	Incorrect wiring, for example the single-phase power supply is input to a 3-phase input type Servo Drive		Confirm the Servo Drive specifications, and perform the correct wiring.		Confirm the Servo Drive specifications, and perform the correct wiring.		
Cause and	gle-phase power to a single- and type Servo Drive	In the case where the sin- gle-phase power supply is input to a single- and 3-phase input type Servo Drive, the phase loss detection is enabled.		Set Main Circuit Power Supply - Phase Loss Detection Enable (4320-02 hex) to 0 (disabled).		Disable the phase loss detection when you input the single-phase power supply to a single- and 3-phase input type Servo Drive.	
correction	The power supply voltage is low or insufficient		Improve power supply conditions by increasing the power supply capacity or the like.		Improve power supply conditions by increasing the power supply capacity or the like.		
	_	Broken wiring of the main circuit power supply input		Replace the main circuit power supply input cable.		Confirm that the main circuit power supply input cable is not broken before use.	
	Servo Drive failure		If this event occurs again after you performed all corrections shown above, replace the Servo Drive.		None		
Attached information	None						
Precautions/ Remarks	AL status code:	-, Error No.: 1301	hex				

Event name	Runaway Detec	ted		Event code	280D0000 hex*1			
Description	The motor rotate	ed in the direction	opposite to the cor	nmand.				
Source	EtherCAT Maste ule	EtherCAT Master Function Mod- ule		Slave	Detection timing	Continuously		
Error attributes	Level Minor fault		Recovery	Error reset (after resetting slave errors)	Log category	System log		
Effects	User program	Continues.	Operation	Power drive circu	iit is OFF			
Indicators	EtherCAT NET	RUN	EtherCAT NET E	RR	EtherCAT LINK	ACT		
mulcators						_		
System	Variable		Data type		Name			
-defined	None		None		None			
variables								
	Assumed cause		Correction		Prevention			
		There is incorrect wiring of the		Connect the motor cable as shown		or cable as shown		
	motor cable or a broken cable.		in the wiring diagram. If the cable		in the wiring diagram. Connect the			
				is broken, replace it.		motor cable and encoder		
			Or, connect the motor cable and encoder cable that are used together to the same motor.		cable/external encoder cable that are used together to the same motor.			
Cause and								
correction								
		ed in the direction	Take countermeasures so that the		Take countermeasures so that the			
	opposite to the command by		motor is not subjected to external		motor is not rotated by external			
	external forces.	external forces.		forces.		forces.		
		1		tection - Enable				
			(3B71-01 hex) to 0 (disabled) when the motor runs as intended.					
Attached	None		when the motor r	uns as mienueu.				
information	INOTIE							
Precautions/	Al status code:	-, Error No.: 2000	hev					
Remarks	AL Status Code.	-, LITOI INO 2000	IICA					
Kemarks								

^{*1.} This error can occur in the unit version 1.1 or later.

Event name	DC Setting Erro	r		Event code	357D 0000 hex		
Description	A mistake was r	made in the DC Mo	ode operation setti	ng.			
Source	EtherCAT Master Function Module		Source details	Slave	Detection timing	When establishing EtherCAT communications	
Error attributes	Level	Minor fault	Recovery	Error reset	Log category	System log	
Effects	User program	Continues.	Operation Power drive circu		uit is OFF		
Indicators	EtherCAT NET RUN		EtherCAT NET ERR		EtherCAT LINK/ACT		
indicators							
System	Variable		Data type		Name		
-defined	None		None		None		
variables							
	Assumed caus	Assumed cause		Correction		Prevention	
Cause and	A mistake was r	made in the DC	Check the DC Mode setting, and		Configure the setting of communi-		
correction	Mode operation	setting	then download it	then download it to the EtherCAT		in the EtherCAT	
Correction			master again.		master in accordance with ESI		
					data.		
Attached	None						
information							
Precautions/	AL status code:	0030 hex, Error N	o.: 9003 hex				
Remarks							

Event name	Synchronization	Cycle Setting Erro	or	Event code	357E 0000 hex	
Description	When the DC m	ode was establish	ed, the cycle time	was set to the inor	erable value.	
Source	EtherCAT Master Function Mod- ule		Source details	Slave	Detection timing	When establishing EtherCAT communications
Error attributes	Level	Minor fault	Recovery	Error reset	Log category	System log
Effects	User program	Continues.	Operation	Power drive circu	uit is OFF	
Indicators	EtherCAT NET	RUN	EtherCAT NET E	RR	EtherCAT LINK/	ACT
maicators						
System	Variable		Data type		Name	
-defined variables	None		None		None	
	Assumed cause		Correction		Prevention	
	The variable PDO mapping is used, and the number of objects		Set the number of objects to a value smaller than the maximum		Confirm the maximum number of mapped objects and the limit on	
Cause and		maximum num-	number of mapped objects for the		the number of objects before using	
correction	ber of mapped of cycle time	objects for the	cycle time.		the variable PDO mapping.	
	The cycle time setting is incorrect		Correct the cycle time setting.		Confirm the EtherCAT slave specifications, and set the cycle time.	
Attached information	None					
Precautions/ Remarks	AL status code:	0035 hex, Error N	o.: 9004 hex			

Event name	Mailbox Setting	Error		Event code	357F0000 hex			
Description	An incorrect ma	An incorrect mailbox setting of Sync Manager was detected.						
Source	EtherCAT Master Function Mod- ule		Source details	Slave	Detection timing	When establishing EtherCAT communications		
Error attributes	Level	Minor fault	Recovery	Error reset	Log category	System log		
Effects	User program	Continues.	Operation Power drive circu		it is OFF			
Indicators	EtherCAT NET RUN		EtherCAT NET ERR		EtherCAT LINK/ACT			
mulcators								
System	Variable		Data type	Data type				
-defined	None		None		None	_		
variables								
	Assumed caus	Assumed cause		Correction		Prevention		
Cause and	An incorrect ma	ilbox setting of	Check the mailbo	Check the mailbox setting, and		ting of communi-		
correction	Sync Manager was detected		then download it to the EtherCAT master again.		cations to slaves in the EtherCAT master in accordance with ESI data.			
Attached	None							
information								
Precautions/	AL status code:	0016 hex, Error N	o.: 9000 hex					
Remarks								

Event name	RxPDO Setting	Error		Event code	3580 0000 hex		
Meaning	Ŭ	ng error was dete	cted.				
Source	EtherCAT Master Function Module		Source details	Slave	Detection timing	When establishing EtherCAT communications	
Error attributes	Level	Minor fault	Recovery	Error reset	Log category	System log	
Effects	User program	Continues.	Operation	Power drive circu	it is OFF		
Indicators	EtherCAT NET	RUN	EtherCAT NET E	RR	EtherCAT LINK/	ACT	
Illuicators							
System	Variable		Data type		Name		
-defined	None	None		None			
variables					Prevention		
	Assumed cause		Correction	Correction			
	The RxPDO set	The RxPDO setting of EtherCAT		Correct the RxPDO setting accord-		Configure the setting of communi-	
	master is incorrect		ing to the definition of ESI of Servo		cations to slaves in the EtherCAT		
Cause and			Drive, and then download it to the		master in accordance with ESI		
correction				EtherCAT master again.		data.	
Correction	Servo Drive fail	ure	If this event occurs repeatedly		None		
			after the downloa	after the download to the Ether-			
				CAT master, the Servo Drive is			
			faulty. Replace the Servo Drive.				
Attached	None			·	·		
information							
Precautions/	AL status code:	001D hex, Error N	No.: 9005 hex	·	·		

Event name	TxPDO Setting Error			Event code	3581 0000 hex	
Meaning	A TxPDO setting	g error was detect	ed.		l	
Source	EtherCAT Master Function Mod- ule		Source details	Slave	Detection timing	When establishing EtherCAT communications
Error attributes	Level	Minor fault	Recovery	Error reset	Log category	System log
Effects	User program	Continues.	Operation	Power drive circu	it is OFF	
Indicators	EtherCAT NET	EtherCAT NET RUN		RR	EtherCAT LINK/	ACT
System	Variable		Data type		Name	
-defined	None	None		None		
variables						
	Assumed cause		Correction		Prevention	
		ting of EtherCAT		O setting accord-	•	tting of communi-
	The TxPDO set master is incorr	•	ing to the definition	on of ESI of Servo	cations to slaves	in the EtherCAT
Cause and		•	ing to the definition Drive, and then d	on of ESI of Servo	cations to slaves master in accord	in the EtherCAT
Cause and	master is incorr	ect	ing to the definition	on of ESI of Servo	cations to slaves master in accord data.	in the EtherCAT
Cause and correction		ect	ing to the definition Drive, and then d	on of ESI of Servo ownload it to the again.	cations to slaves master in accord	in the EtherCAT
	master is incorr	ect	ing to the definition Drive, and then d EtherCAT master	on of ESI of Servo ownload it to the again. rs repeatedly	cations to slaves master in accord data.	in the EtherCAT
	master is incorr	ect	ing to the definition Drive, and then define EtherCAT master If this event occu	on of ESI of Servo ownload it to the again. rs repeatedly d to the Ether-	cations to slaves master in accord data.	in the EtherCAT
	master is incorr	ect	ing to the definition Drive, and then define the CAT master If this event occurafter the download	on of ESI of Servo ownload it to the again. rs repeatedly d to the Ether- Servo Drive is	cations to slaves master in accord data.	in the EtherCAT
	master is incorr	ect	ing to the definition Drive, and then define the CAT master If this event occurafter the download CAT master, the	on of ESI of Servo ownload it to the again. rs repeatedly d to the Ether- Servo Drive is	cations to slaves master in accord data.	in the EtherCAT
correction	master is incorrected and servo Drive fails	ect	ing to the definition Drive, and then define the CAT master If this event occurafter the download CAT master, the	on of ESI of Servo ownload it to the again. rs repeatedly d to the Ether- Servo Drive is	cations to slaves master in accord data.	in the EtherCAT
correction	Master is incorrectly Servo Drive fails	ect	ing to the definition Drive, and then do EtherCAT master If this event occurafter the download CAT master, the faulty. Replace the	on of ESI of Servo ownload it to the again. rs repeatedly d to the Ether- Servo Drive is	cations to slaves master in accord data.	in the EtherCAT

Event name	RxPDO Mappin	a Frror		Event code	3582 0000 hex		
Meaning	An incorrect Rxl				100020000	_	
Source	EtherCAT Master Function Module		Source details	Slave	Detection timing	When establishing EtherCAT communications	
Error attributes	Level	Minor fault	Recovery	Error reset	Log category	System log	
Effects	User program	Continues.	Operation	Power drive circu	uit is OFF		
Indicators	EtherCAT NET RUN		EtherCAT NET E	RR	EtherCAT LINK/	ACT	
mulcators							
System	Variable		Data type		Name		
-defined	None		None		None		
variables							
	Assumed caus	Assumed cause		Correction		Prevention	
	An incorrect Rxl	PDO was set,	Correct the RxPI	OO setting, and	Confirm the specifications of ETG		
Cause and	such as out of the	ne allowable	then download it	to the EtherCAT	or FSoE, and configure the setting		
correction	range of Index, Subindex, or size		master again.		of communications to slaves in the EtherCAT master in accordance with ESI data.		
Attached	None	_		_		_	
information							
Precautions/	AL status code:	0025 hex, Error N	o.: 9007 hex	_		_	
Remarks							

Event name	TxPDO Mapping	g Error		Event code	3583 0000 hex	_	
Meaning	An incorrect Txl	PDO was set.			•		
Source	EtherCAT Master Function Mod- ule		Source details	Slave	Detection timing	When establishing EtherCAT communications	
Error attributes	Level	Minor fault	Recovery	Error reset	Log category	System log	
Effects	User program	Continues.	Operation	Power drive circu	uit is OFF		
Indicators	EtherCAT NET RUN		EtherCAT NET ERR		EtherCAT LINK/	ACT	
System	Variable		Data type		Name		
-defined	None		None		None		
variables							
	Assumed caus	Assumed cause		Correction		Prevention	
	An incorrect Txl	PDO was set,	Correct the TxPDO setting, and		Confirm the specifications of ETG		
Cause and	such as out of the		then download it	then download it to the EtherCAT		or FSoE, and configure the setting	
correction	range of Index,	Subindex, or size	master again.		of communications to slaves in the		
					EtherCAT master in accordance with ESI data.		
Attached	None						
information							
Precautions/	AL status code:	0024 hex, Error N	o.: 9008 hex				
Remarks							

Event name	PDO WDT Setti	ng Error		Event code	35840000 hex	
Meaning	An incorrect PD	O WDT setting wa	s detected.			
Source	EtherCAT Maste ule	er Function Mod-	Source details	Slave	Detection timing	When establishing EtherCAT communications
Error attributes	Level	Minor fault	Recovery	Error reset	Log category	System log
Effects	User program	Continues.	Operation	Power drive circu	it is OFF	_
Indicators	EtherCAT NET RUN		EtherCAT NET ERR		EtherCAT LINK/ACT	
indicators						
System	Variable		Data type		Name	
-defined	None		None		None	
variables						
	Assumed caus	е	Correction		Prevention	
Cause and	An incorrect PD	O WDT setting	Check the PDO WDT setting, and		Configure the setting of communi-	
correction	was detected		then download it	to the EtherCAT	cations to slaves in the EtherCAT	
COTTCCTION			master again.		master in accordance with ESI	
					data.	
Attached	None					
information						
Precautions/	AL status code:	001F hex, Error N	lo.: 9001 hex			
Remarks						

Event name	Node Address U	Indated		Event code	3585 0000 hex		
		•	alua af tha ID au		3303 0000 TICX		
Description			value of the ID sv				
		er Function Mod-		Slave	Detection	When establish-	
Source	ule		Source details		timing	ing EtherCAT	
						communications	
Error		Minor fault		Error reset		System log	
attributes	Level		Recovery	(after cycling	Log category		
attributes				slave power)			
Effects	User program	Continues.	Operation	Not affected.			
Indicators	EtherCAT NET RUN		EtherCAT NET ERR		EtherCAT LINK/ACT		
System	Variable		Data type		Name		
-defined	None		None		None		
variables							
	Assumed caus	e	Correction	Correction		Prevention	
Cause and	The node addre	ss is changed	Check the node a	address value.			
correction	from a set value	in Sysmac Stu-	Set a correct value	Set a correct value if it is wrong.			
	dio to a value of	f the ID switches					
Attached	None						
information							
Precautions/	AL status code:	0061 hex, Error N	o.: 9009 hex				
Remarks							

Event name	SM Event Mode Setting Error			Event code	3586 0000 hex	
Meaning	The unsupporte	d SM Event Mode	was set.			
Source	EtherCAT Master Function Mod- ule		Source details	Slave	Detection timing	When establishing EtherCAT communications
Error attributes	Level	Minor fault	Recovery	Error reset	Log category	System log
Effects	User program	Continues.	Operation	Power drive circu	uit is OFF	
Indicators	EtherCAT NET RUN		EtherCAT NET E	RR	EtherCAT LINK/	ACT
iliuicators						
System	Variable		Data type		Name	
-defined variables	None		None		None	
	Assumed caus	е	Correction		Prevention	
Cause and correction	The unsupported SM Event Mode was set		Check the synchronization setting, and then download it to the EtherCAT master again.		Configure the setting of communications to slaves in the EtherCAT master in accordance with ESI data.	
Attached	None		•		•	
information						
Precautions/	AL status code:	0028 hex, Error N	o.: 9002 hex			
Remarks						

Event name	Function Setting	g Error		Event code	38570000 hex	_
Meaning	The function that	at was set does no	t support the comn	nunications period.		
Source	EtherCAT Master Function Module		Source details	Slave	Detection timing	When establishing EtherCAT communications
Error attributes	Level	Minor fault	Recovery	Error reset (after resetting slave errors)	Log category	System log
Effects	User program	Continues.	Operation	Power drive circu	it is OFF	_
Indicators	cators EtherCAT NET RUN EtherCAT NET ERR		EtherCAT NET E	RR	EtherCAT LINK/	ACT
mulcators						
System	Variable		Data type		Name	
-defined	None		None		None	_
variables					Prevention	
	Assumed caus	Assumed cause		Correction		
Cause and	The electronic of 1:1 when the conperiod was set		Correct the electronic gear ratio to 1:1, or set the communications period to longer than 125 µs.		Check the Servo Drive specifications to avoid the amused causes of this event, and use the	
correction	The Backlash C	ompensation	Disable the Back	lash	Servo Drive corre	ectly.
	was enabled wh	nen the	Compensation, o	Compensation, or set the		
	communications	s period was set	communications	period to longer		
	to 125 µs.		than 125 µs.			
Attached		ation 1: Condition c gear ratio was no				
information	2: The Backlash	Compensation w	as enabled			
information Precautions/ Remarks	2: The Backlash	•	as enabled			

Event name	General Input A	llocation Duplicate	Error	Event code	3878 0000 hex				
Description	·	•	ocated to one gene	eral input.					
Source	EtherCAT Maste	er Function Mod-	Source details	Slave	Detection timing	At power ON			
Error attributes	Level	Minor fault	Recovery	Error reset (after cycling slave power)	Log category	System log			
Effects	User program	Continues.	Operation	Power drive circu	uit is OFF				
Indicators	EtherCAT NET	RUN	EtherCAT NET E	RR	EtherCAT LINK/	ACT			
maicators									
System	Variable		Data type		Name				
-defined variables	None		None	None		None			
	Assumed caus	Assumed cause			Prevention				
Cause and	More than one function input is		Correct the duplic	Correct the duplicate general input		e is no duplicate			
correction	allocated to one general input		allocation.		allocation when setting a function				
					input.				
	Attached Inform	Attached Information 1: Cause Details							
	1: General Inpu	t 1 (IN1) Allocation	Duplicate Error						
	2: General Inpu	t 2 (IN2) Allocation	Duplicate Error						
	3: General Inpu	t 3 (IN3) Allocation	Duplicate Error						
Attached information	4: General Inpu	t 4 (IN4) Allocation	Duplicate Error						
information	5: General Inpu	t 5 (IN5) Allocation	Duplicate Error						
	6: General Inpu	t 6 (IN6) Allocation	Duplicate Error						
	7: General Inpu	t 7 (IN7) Allocation	Duplicate Error						
	8: General Inpu	t 8 (IN8) Allocation	Duplicate Error						
Precautions/		-, Error No.: 3300	•						
Remarks									

Event name	General Output	Allocation Duplica	te Error	Event code	3879 0000 hex	
Description	More than one f	unction output is a	Illocated to one ge	neral output.		
Source	EtherCAT Master Function Module		Source details	Slave	Detection timing	At power ON
Error attributes	Level	Minor fault	Recovery	Error reset (after cycling slave power)	Log category	System log
Effects	User program	Continues.	Operation	Power drive circu	uit is OFF	
Indicators	EtherCAT NET RUN		EtherCAT NET E	RR	EtherCAT LINK/	ACT
maicators						
System	Variable		Data type		Name	
-defined	None		None		None	
variables						
	Assumed cause		Correction		Prevention	
Cause and		unction output is	Correct the duplicate general out-		Confirm that there is no duplicate	
correction	allocated to one general output		put allocation.		allocation when setting a function output.	
	Attached inform	ation 1: Cause det	tails			
	1: General Outp	out 1 (OUT1) Alloca	ation Duplicate Erre	or		
Attached information	2: General Outp	out 2 (OUT2) Alloca	ation Duplicate Erre	or		
illioilliation	3: General Outp	out 3 (OUT3) Alloca	ation Duplicate Erre	or		
	4: General Outp	out 4 (OUT4) Alloca	ation Duplicate Erro	or		
Precautions/	AL status code:	-, Error No.: 3309	hex			
Remarks						

Event name	Pulse Output Se	etting Error		Event code 387B 0000 hex		
Description	_		the dividing denon value other than (ncoder Dividing Po	ulse Output -
Source	EtherCAT Maste	er Function Mod-	Source details	Slave	Detection timing	At power ON
Error attributes	Level	Minor fault	Recovery	Error reset (after cycling slave power)	Log category	System log
Effects	User program	Continues.	Operation	Power drive circu	iit is OFF	
Indicators	EtherCAT NET RUN		EtherCAT NET ERR		EtherCAT LINK/ACT	
maicators						
System	Variable		Data type		Name	
-defined	None		None		None	
variables						
	Assumed caus		Correction		Prevention	
	The dividing nu		Correct the setting of Encoder		Set the Encoder Dividing Pulse	
Cause and		ividing denomina-	Dividing Pulse Output - Dividing		Output - Dividing Numerator to a	
correction		coder Dividing	Denominator and Dividing Numer-		value smaller than the Dividing	
	Pulse Output -	•	ator.		Denominator.	
		as set to a value				
	other than 0					
Attached	None					
information						
Precautions/	AL status code:	-, Error No.: 2800	hex			
Remarks						

Event name	Motor Replacen	nent Detected		Event code	387C0000 hex	
Description	The connected	motor is different f	rom the motor that	was connected the	e last time.	
Source	EtherCAT Master Function Mod- ule		Source details	Slave	Detection timing	At power ON
Error attributes	Level	Minor fault	Recovery	Error reset (after cycling slave power)	Log category	System log
Effects	User program	Continues.	Operation	Power drive circu	it is OFF	
Indicators	EtherCAT NET	RUN	EtherCAT NET E	RR	EtherCAT LINK/	ACT
mulcators						
System	Variable None		Data type None		Name	
-defined variables					None	
	Assumed cause		Correction		Prevention	
Cause and correction	The motor was replaced		Perform the Motor Setup and Absolute Encoder Setup.		After replacing the motor, perform the Motor Setup and Absolute Encoder Setup before use.	
correction	The Servo Drive was replaced		Perform the Motor Setup.		After replacing the Servo Drive, perform the Motor Setup before use.	
Attached	None		•		•	
information						
Precautions/	AL status code:	-, Error No.: 9505	hex			
Remarks						

Event name	Electronic Gear	Setting Error		Event code	387F0000 hex		
Description	The electronic g	ear ratio exceede	d the allowable ran	ge.			
Source	EtherCAT Maste ule	er Function Mod-	Source details	Slave	Detection timing	At power ON	
Error attributes	Level	Minor fault	Recovery	Error reset (after cycling slave power)	Log category	System log	
Effects	User program	User program Continues.		Power drive circu	it is OFF		
Indicators	EtherCAT NET RUN		EtherCAT NET ERR		EtherCAT LINK/ACT		
mulcators							
System	Variable		Data type		Name		
-defined	None		None		None		
variables							
	Assumed caus	е	Correction	Correction		Prevention	
Cause and	The electronic g	jear ratio	Correct the electr	onic gear ratio to	Set the electronic gear ratio to the		
correction	exceeded the al	llowable range	the range from 1/	2,000 to 2,000	range from 1/2,000 to 2,000 times.		
			times.				
Attached	None						
information							
Precautions/	AL status code:	-, Error No.: 9300	hex				
Remarks							

Event name	Servo Drive Ove	erheat		Event code	3880 0000 hex		
Meaning	The internal tem	perature of Servo	Drive exceeded th	ne circuit protection	level.		
Source	EtherCAT Maste ule	er Function Mod-	Source details	Slave	Detection timing	Continuously	
Error attributes	Level	Minor fault	Recovery	Error reset (after resetting slave errors)	Log category	System log	
Effects	User program	Continues.	Operation	Power drive circu	it is OFF		
Indicators	EtherCAT NET RUN		EtherCAT NET E	RR	EtherCAT LINK/	ACT	
illuicators							
System	Variable		Data type		Name		
-defined	None		None		None		
variables					Prevention		
	Assumed cause		Correction	55115541511			
	The ambient ter	The ambient temperature of the		Improve the ambient temperature		Check the ambient temperature of	
	Servo Drive exc	eeded the speci-	and the cooling conditions of the		the Servo Drive and set up the		
Cause and	fied value	fied value		Servo Drive.		necessary cooling conditions.	
correction	Overload		Increase the setting of the acceleration/deceleration time or stopping time to lighten the load. Or, increase the capacities of the Servo Drive and the motor.		Increase the setting of the acceleration/deceleration time or stopping time as much as possible to lighten the load.		
Attached	None						
information							
Precautions/	AL status code:	-, Error No.: 1500	hex				
Remarks							

Event name	Overload Error			Event code 3881 0000 hex		
Meaning	The Load Ratio	of Servo Drive or	motor (4105-81 he	x) exceeded 100%).	
Source	EtherCAT Maste	er Function Mod-	Source details	Slave	Detection timing	During Servo ON
Error attributes	Level	Minor fault	Recovery	Error reset (after resetting slave errors)	Log category	System log
Effects	User program		Operation	Power drive circu	•	
Indicators	EtherCAT NET	RUN	EtherCAT NET E	RR	EtherCAT LINK	ACT
Custom	Variable		Data tuna		Name	
System -defined	None		Data type		Name None	
variables	None		None		None	
	Assumed caus		Correction		Prevention	
	Operation was o		Perform the follow	ving corrections		given for correc-
	long time with high load		accordingly.			and take counter-
			Increase the se		measures as req	ulleu.
			acceleration/de			
			and the stop time. • Lighten the load.			
			J	Adjust the gain or inertia ratio.		
				 If torque waveforms oscillate excessively, adjust the system 		
			-	that the oscilla-		
			tion does not or	-		
Cause and			 Set the appropriate brake timing. Increase the capacities of the Servo Drive and the motor. 			
correction						
	There is incorre	-	Connect the mo			or cable as shown
	motor cable or a	a broken cable	shown in the wiring diagram. If			ram. Connect the
			the cable is broken, replace it. Or, connect the motor cable and encoder cable that are used		motor cable and	encoder ncoder cable that
					are used togethe	
			together to the		motor.	
			Measure the vo			
			brake terminal.			
			applied, release			
	Increase in fricti	on	Check machine c		Take countermed	
			remove the cause	e of the friction.	machine distortion ated.	on is not gener-
A 1	Attached Inform	ation 1: Cause De	tails		•	
Attached information	1: The Servo Dr	ive is overloaded				
inomation	2: The Servomo	tor is overloaded				
Precautions/ Remarks	AL status code:	-, Error No.: 1600	hex			

Event name	Regeneration O			Event code	3882 0000 hex	
Meaning		`	310-81 hex) excee		ion overload ratio.	
Source	EtherCAT Maste ule	er Function Mod-	Source details	Slave	Detection timing	During Servo ON
Error attributes	Level	Minor fault	Recovery	Error reset (after cycling slave power)	Log category	System log
Effects	User program	Continues.	Operation	Power drive circu	uit is OFF	
Indicators	EtherCAT NET	RUN	EtherCAT NET E	RR	EtherCAT LINK/	ACT
maicators						
System	Variable		Data type		Name	
-defined variables	None		None		None	
	Assumed caus	е	Correction		Prevention	
Cause and correction	The regeneration set inappropriate. The Regeneration selected inappropriate.	ely on Resistor is	Check the regeneration processing setting, and set the same value as the resistance value of the Regeneration Resistor in use. Check the operation pattern by the velocity monitor. Check the load ratio of Regeneration Resistor, and perform the following corrections accordingly. Increase the deceleration time and stopping time. Decrease the command velocity to the motor. Use an External Regeneration Resistor.		Check the items given for corrections in advance and take countermeasures as required.	
	The Regeneration Resistor is used for continuous regenerative braking The applied power supply voltage is higher than the specified		Servo Drive and the motor. The Regeneration Resistor cannot be used for continuous regenerative braking. Apply the specified power supply voltage.		Do not use the Regeneration Resistor for continuous regenerative braking. Review the power supply voltage to be the specified value before	
	Regeneration Resistor failure		Check whether the Regeneration Resistor is faulty, and use one without failures.		Confirm that the Regeneration Resistor is not faulty before use.	
Attached information	None					
Precautions/ Remarks	AL status code:	-, Error No.: 1800	hex			

Event name	Excessive Posit	ion Deviation Erro	r	Event code	3883 0000 hex	_
Meaning	The position de	viation is greater th	nan or equal to the	value set in the Fo	llowing error wind	OW.
Source	EtherCAT Maste ule	er Function Mod-	Source details	Slave	Detection timing	During Servo ON
Error attributes	Level	Minor fault	Recovery	Error reset (after resetting slave errors)	Log category	System log
Effects	User program	Continues.	Operation	Power drive circu	it is OFF	
Indicators	etherCAT NET RUN EtherCAT NET ERF		RR	EtherCAT LINK/	ACT	
maicators						
System	Variable		Data type		Name	
-defined variables	None None			None		
	Assumed caus	е	Correction		Prevention	
	The motor operation does not follow the command		Identify and remove a cause that limits the motor operation.		Adjust the gain and limit values appropriately before use.	
			During the acceleration/decelera-		Set the operation pattern appropri-	
			tion, the comman	,	ately according to the connected	
Cause and			lowed depending	•	load.	
correction			patterns. In that c	•		
			gain, increase the accelera- tion/deceleration time or the like.			
	The value of Fe	llowing orrer win	,		Ingrana the sett	ing of the Follow-
	dow is small	llowing error win-	Increase the setti ing error window	•	ing error window	
	dow is siliali		range.	ю ап ассертавле	range.	to all acceptable
Attached	None		<u>, </u>		<u>. </u>	
information						
Precautions/	AL status code:	-, Error No.: 2400	hex			
Remarks						

Event name	Evenssive Spec	ed Deviation Error		Event code	3884 0000 hex	
Meaning	·		n or equal to the v			eviation Detection
Source	EtherCAT Maste	er Function Mod-	Source details	Slave	Detection timing	During Servo ON
Error attributes	Level	Minor fault	Recovery	Error reset (after resetting slave errors)	Log category	System log
Effects	User program	Continues.	Operation	Power drive circu	uit is OFF	
Indicators	EtherCAT NET	RUN	EtherCAT NET E	RR	EtherCAT LINK	ACT
indicators						
System	Variable		Data type		Name	
-defined variables	None		None		None	
	Assumed caus	ie	Correction		Prevention	
	The motor operation does not fol- low the command because a parameter value is inappropriate		Adjust the gain to improve the fol- lowing ability. Or, increase the acceleration/deceleration time for the internal position command velocity.		Adjust the gain to improve the following ability. Or, increase the acceleration/deceleration time for the internal position command velocity.	
Cause and correction	The output axis of motor is limited on the operation by external forces		Take countermeasures so that the output axis is not limited on the operation by external forces.		Take countermeasures so that the output axis is not limited on the operation by external forces.	
	The value of the Excessive Velocity Deviation Detection Level is inappropriate		Increase the setting of the Excessive Velocity Deviation Detection Level to an acceptable range. Disable the Excessive Velocity Deviation Detection if it is unnecessary to monitor the velocity deviation.		Increase the setting of the Excessive Velocity Deviation Detection Level to an acceptable range. Disable the Excessive Velocity Deviation Detection if it is unnecessary to monitor the velocity deviation.	
Attached information	None		I	•	1	
Precautions/ Remarks	AL status code:	-, Error No.: 2401	hex			

Event name	Excessive Spee	ed Error		Event code	38850000 hex	
Meaning	The feedback m	otor speed is grea	ter than or equal to	the value set in the	ne Excessive Spee	d Detection Level.
Source	EtherCAT Maste ule	er Function Mod-	Source details	Slave	Detection timing	During Servo ON
Error attributes	Level	Minor fault	Recovery	Error reset (after resetting slave errors)	Log category	System log
Effects	User program	Continues.	Operation	Power drive circu	uit is OFF	_
Indicators	EtherCAT NET RUN EtherCAT NET ERR		EtherCAT LINK/	ACT		
indicators						
System	Variable		Data type		Name	
-defined variables	None		None		None	
	Assumed cause		Correction		Prevention	
Cause and	The velocity command value is too large		command. Check	Do not give the excessive velocity command. Check whether the electronic gear ratio is set correctly.		ommand value n which the feed- ity does not ss velocity detec-
correction	Overshooting occurred		If overshooting occurred due to faulty gain adjustment, adjust the gain.		Do not increase the gain too much.	
	The motor is rotated by external forces		Check whether the motor is rotated by external forces.		Check whether the motor is rotated by external forces.	
Attached	None					
information						
Precautions/ Remarks	AL status code:	-, Error No.: 2600	hex			

Event name	Following Error	Counter Overflow		Event code	3886 0000 hex	
Meaning	The following er	ror value exceede	d the range from -2	2147483648 to 214	17483647.	
Source		er Function Mod-	Source details	Slave	Detection timing	During Servo ON
Error attributes	Level	Minor fault	Recovery	Error reset (after resetting slave errors)	Log category	System log
Effects	User program	Continues.	Operation	Power drive circu	it is OFF	
Indicators	EtherCAT NET RUN EtherCAT NET ERR		RR	EtherCAT LINK/	ACT	
indicators						
System	Variable		Data type		Name	
-defined	None		None		None	
variables					Prevention	
	Assumed cause		Correction	Correction		
	The motor operation does not fol-		Identify and remove a cause that		Adjust the gain and limit values	
	low the command		limits the motor operation. During		appropriately before use.	
			the acceleration/deceleration, the		Set the operation pattern appropri-	
Cours and				command may not be followed		the connected
Cause and correction			depending on ope	eration patterns. nge the operation	load.	
Correction				•		
				pattern by increasing the acceleration/deceleration time or the like.		
	The Servomotor	r is rotated or lim-	Take countermea		Take countermea	sures so that the
	ited on the oper	ation by external	motor is not subje		motor operation is	s not interfered by
	forces	,	forces.		external forces.	
Attached	None		I		I.	
information						
Precautions/	AL status code:	-, Error No.: 2903	hex			
Remarks						

Event name	Absolute Encod	er Counter Overflo	w Error	Event code	3887 0000 hex		
Meaning	The multi-rotation	on counter of the e	ncoder exceeded t	he maximum numl	ber of rotations.		
Source	EtherCAT Maste	er Function Mod-	Source details	Slave	Detection timing	Continuously	
Error attributes	Level	Minor fault	Recovery	Error reset (after cycling slave power)	Log category	System log	
Effects	User program	Continues.	Operation	Power drive circu	it is OFF		
Indicators	EtherCAT NET RUN EtherC		EtherCAT NET E	RR	EtherCAT LINK/	ACT	
Indicators							
System	Variable		Data type		Name		
-defined	None		None		None		
variables							
-	Assumed cause		Correction		Prevention		
	An inappropriate value was set in		Set the appropriate value in the		Set the appropria	ite value in the	
	the Encoder - Operation Selec-		Encoder - Operation Selection		Encoder - Operation Selection		
	the Encoder - 0	Operation Selec-	Lilcodel - Opera	tion ocicotion		when Using Absolute Encoder	
Cause and	the Encoder – 0 tion when Usin	•	when Using Abs			solute Encoder	
Cause and		g Absolute	•			solute Encoder	
Cause and correction	tion when Usin Encoder (4510-	g Absolute	when Using Abs	olute Encoder	when Using Abs		
	tion when Usin Encoder (4510- The multi-rotation	g Absolute -01 hex)	when Using Abs (4510-01 hex).	cance so that the	when Using Abs (4510-01 hex).	tance so that the	
	tion when Usin Encoder (4510- The multi-rotation	ng Absolute -01 hex) on number of the led the maximum	when Using Abs (4510-01 hex). Set the travel dist	ance so that the	when Using Abs (4510-01 hex). Set the travel dis	tance so that the	
	tion when Usin Encoder (4510- The multi-rotation encoder exceed	ng Absolute -01 hex) on number of the led the maximum	when Using Abs (4510-01 hex). Set the travel dist multi-rotation nun	ance so that the	when Using Abs (4510-01 hex). Set the travel dis multi-rotation nur	tance so that the	
correction	tion when Usin Encoder (4510- The multi-rotation encoder exceed	ng Absolute -01 hex) on number of the led the maximum	when Using Abs (4510-01 hex). Set the travel dist multi-rotation nun exceed the maxir	ance so that the	when Using Abs (4510-01 hex). Set the travel dis multi-rotation nur exceed the maxin	tance so that the	
correction	tion when Usin Encoder (4510- The multi-rotation encoder exceed number of rotation	ng Absolute -01 hex) on number of the led the maximum	when Using Abs (4510-01 hex). Set the travel dist multi-rotation nun exceed the maxir	ance so that the	when Using Abs (4510-01 hex). Set the travel dis multi-rotation nur exceed the maxin	tance so that the	
correction	tion when Usin Encoder (4510- The multi-rotation encoder exceed number of rotation	ng Absolute -01 hex) on number of the led the maximum	when Using Abs (4510-01 hex). Set the travel dist multi-rotation nun exceed the maxin rotations.	ance so that the	when Using Abs (4510-01 hex). Set the travel dis multi-rotation nur exceed the maxin	tance so that the	

Event name	Safety Commur	nications Setting E	rror	Event code	38880000 hex		
Meaning	Safety process rect communica		ons were not estab	lished with the Saf	ety CPU Unit beca	ause of an incor-	
Source	EtherCAT Maste ule	er Function Mod-	Source details	Slave	Detection timing	When establishing FSoE communications	
Error attributes	Level	Minor fault	Recovery	Error reset (after resetting slave errors)	Log category	System log	
Effects	User program	Continues.	Operation	Power drive circu	iit is OFF		
Indicators	EtherCAT NET RUN EtherCAT NET ERR		RR	EtherCAT LINK/	ACT		
indicators							
System	Variable		Data type		Name		
-defined variables	None		None		None	None	
	Assumed cause		If the watchded time of the cafety		Prevention Set the wetchdoor	a timo in consider	
Cause and correction			If the watchdog time of the safety process data communications setting is set to a value inappropriate for the communications cycle or the configuration, correct it, and transfer the setting to the Safety CPU Unit. If there is no improvement after you performed noise countermeasures, set the longer watchdog time, and transfer the setting to the		ation of the actual and surrounding	•	
Attached information	None		Safety CPU Unit.				
Precautions/ Remarks	AL status code:	-, Error No.: 7001	hex				

Event name	Safety Frame E	rror		Event code	3889 0000 hex	3889 0000 hex	
Meaning	Safety process frame was recei		ons were not estab	lished with the Sa	fety CPU Unit bec	ause an incorrect	
Source	EtherCAT Maste ule			Slave	Detection timing	When establish- ing FSoE com- munications	
Error attributes	Level	Minor fault	Recovery	Error reset (after resetting slave errors)	Log category	System log	
Effects	User program	Continues.	Operation	Power drive circu	uit is OFF		
Indicators	EtherCAT NET RUN		EtherCAT NET ERR		EtherCAT LINK/ACT		
Illuicators							
System	Variable		Data type		Name		
-defined variables	None		None		None		
	Assumed caus	Assumed cause		Correction			
Cause and correction	An incorrect frame was received in safety process data communications		The Servo Drive model does not match the safety slave model that is sent from the safety master. Check the connection configuration and configure it correctly.		Set the system configuration and setup according to the corrections that are given on the left.		
	There is excessive noise		Take noise countermeasures.		Take noise countermeasures if excessive noise caused the error.		
Attached information	None				•		
Precautions/ Remarks	AL status code:	-, Error No.: 7003	hex				

Event name	Safety Paramet	er Error		Event code	388A0000 hex		
Description	Safety process parameter was		ons were not estab	lished with the Sat	ety CPU Unit beca	use an incorrect	
Source	EtherCAT Master Function Mod- ule		Source details	Slave	Detection timing	When establishing FSoE communications	
Error attributes	Level	Minor fault	Recovery	Error reset (after resetting slave errors)	Log category	System log	
Effects	User program	Continues.	Operation Power drive circui		it is OFF		
Indicators	EtherCAT NET RUN		EtherCAT NET ERR		EtherCAT LINK/ACT		
illuicators							
System	Variable		Data type		Name		
-defined variables	None		None		None		
	Assumed caus	е	Correction		Prevention		
Cause and	The set safety s	lave model is	Check whether the	ne connected	Set the correct safety slave model		
cause and	incorrect		safety slave mod	el matches the	that matches the actual connection		
Correction			safety slave mod	safety slave model that is set from		configuration.	
			the Sysmac Studio, and correct it.				
Attached	None					_	
information							
Precautions/	AL status code:	-, Error No.: 7000	hex				
Remarks							

Event name	FSoE Slave Address Error			Event code	388B0000 hex		
Description	Safety process data communications were not established with the Safety CPU Unit because of an incorrect FSoE slave address.						
Source	EtherCAT Master Function Mod- ule		Source details	Slave	Detection timing	When establishing FSoE communications	
Error attributes	Level	Minor fault	Recovery	Error reset (after resetting slave errors)	Log category	System log	
Effects	User program	Continues.	Operation	Power drive circu	uit is OFF		
Indicators	EtherCAT NET RUN		EtherCAT NET ERR		EtherCAT LINK/ACT		
System	Variable	Variable		Data type		Name	
-defined	None		None		None		
variables							
	Assumed cause		Correction		Prevention		
	The setting of the FSoE slave		Perform the FSoE Slave Address		If you use a Servo Drive for which		
Cause and	address in the safety process		Clear for the Servo Drive.		safety process data communica-		
correction	data communications settings is				tions were previously established		
correction	different from the setting in the				in another system, perform the		
	Unit				FSoE Slave Address Clear before		
					you use the Servo Drive.		
Attached	None						
information							
Precautions/	AL status code: -, Error No.: 7002 hex						
Remarks							
						-	

Event name	FPGA WDT Error			Event code	48080000 hex		
Description	An FPGA error was detected.						
Source	EtherCAT Master Function Module		Source details	Slave	Detection timing	Continuously	
Error attributes	Level	Minor fault	Recovery	Error reset (after cycling slave power)	Log category	System log	
Effects	User program	Continues.	Operation	Power drive circu	it is OFF		
Indicators	EtherCAT NET RUN		EtherCAT NET ERR		EtherCAT LINK/ACT		
indicators							
System	Variable		Data type		Name		
-defined	None		None		None		
variables							
	Assumed cause		Correction		Prevention		
	False detection due to a data		If this event does not occur after		If the normal operation can restart		
	read error that was caused by		you cycled the power supply, use		after you cycled the power supply,		
Cause and			the product continuously. It is sup-		consider noise countermeasures.		
correction	Hardware failure		posed that a temporary error occurred due to a read error. If this event occurs again, the hardware		There may be excessive noise around the Servo Drive.		
		is faulty. Replace the Servo Drive.					
Attached	Attached information 1: System information						
information							
Precautions/	AL status code: -, Error No.: 3500 hex						
Remarks							

Event name	Drive Prohibition	n Input Error	Event code		64E30000 hex		
Description	Both the Positive Drive Prohibition (POT) and the Negative Drive Prohibition Input (NOT) turned ON.						
Source	EtherCAT Master Function Module		Source details	Slave	Detection timing	Continuously	
Error attributes	Level	Minor fault	Recovery	Error reset (after resetting slave errors)	Log category	System log	
Effects	User program	Continues.	Operation	Power drive circu	it is OFF		
Indicators	EtherCAT NET RUN		EtherCAT NET ERR		EtherCAT LINK/ACT		
indicators							
System	Variable		Data type		Name		
-defined	None	None		None		None	
variables							
	Assumed cause		Correction		Prevention		
	An error occurred on the switch,		Check and correct an error on the		Confirm that there are not discon-		
	wire, power supply, and wiring		switch, wire, power supply, and		nection and incorrect logic setting,		
	that were connected to the Posi-		wiring that were connected to the		and use the Drive Prohibition		
Cause and	tive Drive Prohibition (POT) or		Positive Drive Prohibition Input or		Input.		
correction	Negative Drive Prohibition Input (NOT)		Negative Drive Prohibition Input.				
	False detection occurred		Check whether the control signal		Adjust the timing at which the con-		
	because the control signal power		power supply (12 to 24 VDC) is		trol signal power supply is turned		
	supply was turned ON slowly		turned ON slowly, and adjust the		ON so that the signal can be input		
			timing if it is slow.		correctly.		
Attached	None						
information							
Precautions/	AL status code: -, Error No.: 3800 hex						
Remarks							

Event name	Drive Prohibition Detected Eve			Event code	6820 0000 hex		
Description	The operation was stopped according to the user setting because the motor ran in the prohibited direction when the Drive Prohibition was enabled.						
Source	EtherCAT Master Function Module		Source details	Slave	Detection timing	Continuously	
Error attributes	Level	Minor fault	Recovery	Error reset (after resetting slave errors)	Log category	System log	
Effects	User program	Continues.	Operation	Power drive circu	it is OFF		
Indicators	EtherCAT NET RUN		EtherCAT NET ERR		EtherCAT LINK/ACT		
indicators							
System	Variable		Data type		Name		
-defined	None		None		None		
variables							
	Assumed cause		Correction		Prevention		
	Incorrect or broken wiring of Pos-		Correct the wiring if the Positive		Confirm that the Positive Drive		
	itive Drive Prohibition Input		Drive Prohibition Input (POT) or		Prohibition Input (POT) and Nega-		
	(POT) or Negative Drive Prohibi-		Negative Drive Prohibition Input		tive Drive Prohibition Input (NOT)		
Cause and	ion		(NOT) is wired incorrectly. If the		are wired correctly. Confirm that		
correction			cable is broken, replace it.		the cable is not broken before use.		
		of the Drive Pro-	Review the setting of the drive pro-		Configure the setting of the drive		
	hibition Input		hibition input port and set it cor-		prohibition input port to be appro-		
			rectly.		priate for the actual connection condition.		
Attached	Attached information 1: System information						
information							
Precautions/	AL status code:	-, Error No.: 3801	hex				
Remarks							

Event name	Control Right Re	elease Error		Event code	6821 0000 hex					
Description	Communications between the Sysmac Studio and Servo Drive were interrupted while a specific function									
Description	was used from t	the Sysmac Studio).							
Source	EtherCAT Master Function Mod-		Source details	Slave	Detection	Continuously				
Source	ule	ule			timing					
Error		Minor fault		Error reset		System log				
attributes	Level		Recovery	(after resetting	Log category					
				slave errors)						
Effects	User program	Continues.	Operation	Power drive circu	uit is OFF					
Indicators	EtherCAT NET	RUN	EtherCAT NET E	RR	EtherCAT LINK	ACT				
illuicators						_				
System	Variable		Data type		Name					
-defined	None	None		None		None				
variables										
	Assumed caus	e	Correction		Prevention					
	The USB cable or EtherCAT		Connect the USE	cable or Ether-	Do not disconne	ct the cable during				
	cable was disconnected during		CAT cable between	en the Servo	the operation of	Sysmac Studio.				
	the connection with the Sysmac		Drive and the computer that con-							
	Studio		trols the Servo Drive if it is discon-							
Cause and			nected.							
correction	There is excessive noise		Take noise countermeasures for		Use the recommended USB cable					
			the USB cable or EtherCAT cable.		or EtherCAT cable.					
	A command ser	•	Finish other applications to reduce		Do not use the Sysmac Studio with					
	mac Studio was		the processing load of the com-		more than one application active					
	Servo Drive bed		puter.	puter.		so that the computer does not go				
	like	puter was in a busy state or the			into a busy state	•				
Attached	None		1		<u> </u>					
information	INOTIE									
inionnation										
Drescutions	Al atatua acda.	Error No . COOO	hav		AL status code: -, Error No.: 6200 hex					
Precautions/ Remarks	AL status code:	-, Error No.: 6200	hex							

Event name	Error Stop Input			Event code	68220000 hex		
Meaning		Input (ESTP) is ac	tive	Event code	0022 0000 Nex		
wearing		er Function Mod-	Slave		Detection	Continuously	
Source	ule		Source details	Slave	timing	Continuously	
Error attributes	Level	Minor fault	Recovery	Error reset (after resetting slave errors)	Log category	System log	
Effects	User program	Continues.	Operation	Power drive circu	uit is OFF		
	EtherCAT NET		EtherCAT NET E	RR	EtherCAT LINK	ACT	
Indicators							
System	Variable		Data type		Name		
-defined variables	None None				None		
	Assumed caus	e	Correction		Prevention		
	The Error Stop I	nput (ESTP) was	Remove the caus	se of Error Stop	A preventative m	neasure is not	
Cause and correction	input		Input (ESTP).		required because detect an error.	e the purpose is t	
	The Error Stop	Input (ESTP) is	Correct the wiring	g if the Error Stop	Confirm that the	Error Stop Input	
	incorrectly wired Ir		Input (ESTP) is incorrectly wired.		(ESTP) is correct	tly wired.	
Attached	None		•				
information							
Precautions/ Remarks	AL status code:	-, Error No.: 8700	hex				
Event name	Software Limit Exceeded			Event code	68230000 hex		
Description			d the position that exceeded the value set in the Software Position Limit				
<u> </u>		and stopped the operation according to the user s					
Source	ule LinerCAT Maste	er Function Mod-	Source details	Slave	Detection timing	Continuously	
Error attributes	Level	Minor fault	Recovery	Error reset (after resetting slave errors)	Log category	System log	
Effects	User program	Continues.	Operation	Power drive circu	uit is OFF		
Indicators	EtherCAT NET	RUN	EtherCAT NET E	RR	EtherCAT LINK	ACT	
Indicators							
System	Variable		Data type		Name		
-defined variables	None		None		None		
	Assumed caus	е	Correction		Prevention		
	Incorrect setting	of Software	Correct the settin	g of Software	Confirm that the	setting of Soft-	
	Position Limit		Position Limit.		ware Position Li	mit is correct.	
Cause and	When the Softw	are Position Limit	Set the command value to be		Set the command value to be		
	- Stop Selection was set to <i>Stop</i>		within the range of Software Posi-		within the range	of Software Posi	
correction	1		tion Limit.		tion Limit.		
correction	_	setting of Fault	tion Limit.				
correction	reaction option	code, the position	HOIT LITTIC.				
correction	reaction option of exceeded the value	code, the position alue set in the	tion Elinit.				
	reaction option of exceeded the vision Software Position	code, the position alue set in the	tion Limit.				
Attached information	reaction option of exceeded the value	code, the position alue set in the	uon Linne.				

Precautions/

Remarks

AL status code: -, Error No.: 3401 hex

Event name	Pulse Output O	verspeed Error		Event code	7820 0000 hex	
Description	The speed, which tion, was detect		equency that could	d be output by the	Encoder Dividing I	Pulse Output func-
Source	EtherCAT Master Function Module		Source details	Slave	Detection timing	Continuously
Error attributes	Level	Minor fault	Recovery	Error reset (after resetting slave errors)	Log category	System log
Effects	User program	Continues.	Operation	Power drive circu	uit is OFF	
Indicators	EtherCAT NET RUN		EtherCAT NET ERR		EtherCAT LINK	ACT
mulcators						
System	Variable		Data type		Name	
-defined	None		None		None	
variables						
	Assumed cause		Correction		Prevention	
	_	io setting is inap-	Correct the setting of Encoder		Set the Encoder Dividing Pulse	
Cause and	propriate for the actual usage		Dividing Pulse Output - Dividing		Output - Dividing Denominator	
correction	condition		Denominator and Dividing Numer-		and Dividing Numerator to a	
			ator.		value appropriate for the maximum	
					speed that is detected during operation.	
Attached	None		1		1	
information						
Precautions/	AL status code:	-, Error No.: 2800	hex			
Remarks						

Event name	Brake Interlock	Error		Event code	78210000 hex		
Description	The Brake Inter	lock Output (BKIR)	was output by the Timeout at Servo OFF.				
Source	EtherCAT Master Function Module		Source details	Slave	Detection timing	Continuously	
Error attributes	Level	Minor fault	Recovery	Error reset (after resetting slave errors)	Log category	System log	
Effects	User program	Continues.	Operation	Power drive circu	it is OFF	•	
Indicators	EtherCAT NET	RUN	EtherCAT NET E	RR	EtherCAT LINK	/ACT	
indicators							
System	Variable		Data type	Data type			
-defined variables	None	None None			None		
	Assumed caus	ie .	Correction		Prevention		
Cause and correction	The Brake Interlock Output (BKIR) was output because the motor rotation speed did not decrease to or less than the speed set in the Threshold Speed at Servo OFF within the time set in the Timeout at Servo OFF when Servo OFF was per- formed during the motor opera- tion		Increase the setting of the Timeout at Servo OFF according to actual operation conditions.		Confirm the corr given on the left		
Attached information	None				l		
Precautions/ Remarks	AL status code:	-, Error No.: 9700	hex				

Event name	Command Error	r		Event code	78230000 hex	
Meaning	A mistake was r	made in using a co	mmand.			
Source	EtherCAT Master Function Module		Source details	Slave	Detection timing	Continuously
Error attributes	Level Minor fault		Recovery	Error reset	Log category	System log
Effects	User program	Continues.	Operation	Power drive circu	uit is OFF	
Indicators	EtherCAT NET	RUN	EtherCAT NET E	RR	EtherCAT LINK	ACT
illuicators						
System	Variable		Data type		Name	
-defined	None		None		None	
variables						
	Assumed cause		Correction		Prevention	
Cause and correction	tusword was se and the Servo Dation enabled state Servo Drive mand to change tions state from another state (In tional, or Safe-C A mode of operathe hm mode with homing operation of the service of the	Orive was in Oper- tate (Servo ON), received a com- e the communica- Operational to nit, Pre-Opera- Operational) ation other than as set during the on tion was set to ode when the s period was set	Check the Servo Drive specifications and use the command correctly.		Check the Servo Drive specifications and use the command correctly.	
Attached	None	-00 μθ				
information						
Precautions/ Remarks	AL status code:	-, Error No.: 9101	hex			

Event name	EtherCAT State	Change Error		Event code 84B10000 hex				
Description	A communication not be changed	communications state change command was received for which the current communications state could not be changed.						
Source	EtherCAT Master Function Mod- ule		Source details	Slave	Detection timing	Continuously		
Error attributes	Level	Minor fault	Recovery	Error reset (after resetting slave errors)	Log category	System log		
Effects	User program	Continues.	Operation	Power drive circu	it is OFF			
Indicators	EtherCAT NET RUN		EtherCAT NET ERR		EtherCAT LINK/ACT			
System	Variable		Data type		Name			
-defined	None		None		None			
variables								
	Assumed cause		Correction		Prevention			
Cause and	A communication	ns state change	Check the command specifications		Check the command specifications			
correction	command was r	eceived for which	for communications state transi-		for communications state transi-			
		munications state	tions in the host of	controller and cor-	tions in the host controller and pro-			
	could not be changed		rect host controller processing.		gram host controller processing.			
Attached	None							
information								
Precautions/	AL status code:	0011 hex, Error N	o.: 8301 hex					
Remarks		AL status code: 0011 hex, Error No.: 8301 hex						

Event name	EtherCAT Illegal State Change Error		ror	Event code	84B20000 hex			
Description	An undefined co	An undefined communications state change command was received.						
Source	EtherCAT Master Function Module		Source details	Slave	Detection timing	Continuously		
Error attributes	Level	Minor fault	Recovery	Error reset (after resetting slave errors)	Log category	System log		
Effects	User program	Continues.	Operation	Power drive circu	it is OFF			
Indicators	EtherCAT NET RUN		EtherCAT NET E	EtherCAT NET ERR		ACT		
ilidicators								
System	Variable		Data type		Name			
-defined variables	None		None		None			
	Assumed cause		Correction		Prevention			
Cause and	An undefined co	ommunications	Check the command specifications		Check the command specifications			
correction	state change co	mmand was	for communications state transi-		for communications state transi-			
Correction	received		tions in the host controller and cor-		tions in the host controller and pro-			
			rect host controller processing.		gram host controller processing.			
Attached	None							
information								
Precautions/	AL status code:	0012 hex, Error N	o.: 8302 hex					
Remarks								

A - 159

Event name	Synchronization	Error		Event code 84B4 0000 hex		
Description	A signal for synd	chronous commun	ications could not l	oe detected.		
Source	EtherCAT Maste ule	er Function Mod-	Source details	Slave	Detection timing	Continuously
Error attributes	Level	Minor fault	Recovery	Error reset (after resetting slave errors)*1	Log category	System log
Effects	User program	Continues.	Operation	Power drive circu	it is OFF	
Indicators	EtherCAT NET	RUN	EtherCAT NET E	RR	EtherCAT LINK/	ACT
mulcators						
System	Variable		Data type	Data type		
-defined	None		None		None	
variables						
	Assumed cause		Correction		Prevention	
	Noise		Take noise countermeasures if		Take noise countermeasures if	
Cause and			excessive noise affects the Ether-		excessive noise affects the Ether-	
correction			CAT communications cable.		CAT communications cable.	
	Error of the Ethe	erCAT slave com-	If this event occurs again after you		None	
	munications cor	ntroller	cycled the power supply, replace			
			the Servo Drive.			
Attached	None					
information						
Precautions/	AL status code:	002C hex, Error N	lo.: 8304 hex			
Remarks						

^{*1. &}quot;Error reset (after cycling slave power)" is specified for the unit version 1.0.

Event name	Sync Manager \	WDT Error		Event code 84B50000 hex			
Description	PDO communic	ations were interr	upted for the allowa	able period or longe	er.		
Source	EtherCAT Master Function Mod- ule		Source details	Slave	Detection timing	Continuously	
Error attributes	Level	Minor fault	Recovery	Error reset (after resetting slave errors)	Log category	System log	
Effects	User program	Continues.	Operation	Power drive circu	it is OFF		
Indicators	EtherCAT NET	RUN	EtherCAT NET E	RR	EtherCAT LINK/	ACT	
mulcators							
System	Variable		Data type		Name		
-defined	None		None		None		
variables							
	Assumed caus	ie .	Correction		Prevention		
Cause and	An EtherCAT co cable is disconr broken	ommunications nected, loose, or	Connect the EtherCAT communications cable securely.		Connect the EtherCAT communications cable securely.		
correction		orror	Charly the appretion of the heat		None		
correction	Host controller error		Check the operation of the host controller. Take appropriate countermeasures if there is a problem.		Notice		
Attached information	None						
Precautions/	AL status code:	001B hex, Error N	lo.: 8305 hex				
Remarks							

Event name	ESC Initializatio	n Error		Event code	84B60000 hex		
Description	The initialization	of EtherCAT slav	e communications	controller failed.			
Source	EtherCAT Master Function Module		Source details	Slave	Detection timing	At power ON	
Error attributes	Level	Minor fault	Recovery	Error reset (after cycling slave power)	Log category	System log	
Effects	User program	Continues.	Operation	Power drive circu	iit is OFF		
Indicators	EtherCAT NET	RUN	EtherCAT NET E	RR	EtherCAT LINK/	ACT	
maicators							
System	Variable		Data type		Name		
-defined	None		None		None		
variables							
	Assumed cause		Correction		Prevention None		
		Data was incorrectly overwritten		If this event does not occur after			
		le memory of the		ou cycled the power supply, use			
Cause and correction		communications	the product continuously. It is sup-				
correction	controller	ob a POAT alays	posed that a tem	porary error read error. If this			
	Failure of the Et		event occurs aga				
	Communications	s controller	Servo Drive.	п, геріасе ше			
Attached	None		OCIVO DIIVO.				
information	1.0110						
Precautions/	AL status code:	-, Error No.: 8801	hex				
Remarks							

Event name	SII Verification I	Error		Event code 84B70000 hex		
Description	An error occurred in SII data of the EtherCAT slave communications controller.					
Source	EtherCAT Maste ule	er Function Mod-	Source details	Slave	Detection timing	At power ON
Error attributes	Level	Minor fault	Recovery	Error reset (after cycling slave power)	Log category	System log
Effects	User program	Continues.	Operation	Power drive circu	it is OFF	
Indicators	EtherCAT NET	RUN	EtherCAT NET E	RR	EtherCAT LINK	/ACT
maicators						
System	Variable		Data type	Data type		
-defined variables	None		None		None	
	Assumed cause		Correction		Prevention	
	Data was incorrectly overwritten		If this event does not occur after		None	
	in the non-volatile memory of the		you cycled the power supply, use			
Cause and	EtherCAT slave	communications	•	nuously. It is sup-		
correction	controller		posed that a tem	•		
		Failure of the EtherCAT slave		occurred due to a read error. If this		
		communications controller or		event occurs again, replace the		
	false detection		Servo Drive.			
Attached	None					
information						
Precautions/	AL status code:	0014 hex, Error N	o.: 8803 hex			
Remarks						

Event name	Synchronization	n Interruption Error	-	Event code 84B9 0000 hex			
Description	•		ot occur within the				
	•	er Function Mod-		Slave	Detection	Continuously	
Source	ule		Source details		timing		
_		Minor fault		Error reset		System log	
Error	Level		Recovery	(after cycling	Log category	'	
attributes			•	slave power)			
Effects	User program	Continues.	Operation	Power drive circu	it is OFF		
	EtherCAT NET	RUN	EtherCAT NET E	RR	EtherCAT LINK/	ACT	
Indicators							
System	Variable		Data type		Name		
-defined	None		None		None		
variables							
	Assumed caus	se .	Correction		Prevention		
	Incorrect Ether(CAT synchroniza-	Set the synchron	ization setting of	Confirm the sync	hronization speci-	
		ne host controller		r according to the	fications for the E	-	
			synchronization s	specifications for	and configure the	e synchronization	
			the EtherCAT sla	ve.	setting from the h	nost controller cor-	
					rectly.		
Cause and	Failure of the E	therCAT slave	If this event does not occur after		None		
correction	communications	s controller or	you cycled the po				
	false detection		-	nuously. It is sup-			
			posed that a tem				
			occurred due to a read error. If this				
			_	event occurs again, the Servo Drive is faulty. Replace the Servo			
			-	eplace the Servo			
Attached	None		Drive.				
information	None						
Precautions/	Al status code:	002D hex, Error N	lo : 8802 hex				
Remarks	/ LE Glatas Godo.	TOZB HOX, EHOL I	10 0002 nox				
,					_		
Event name	·	Transition Reques		Event code	84BA0000 hex		
Description			d Bootstrap was re	quested.			
Source		er Function Mod-	Source details	Slave	Detection	Continuously	
	ule				timing		
Error	Level	Minor fault	Recovery	Error reset	Log category	System log	
attributes			,				
Effects	User program		Operation	Power drive circu			
Indicators	EtherCAT NET	RUN	EtherCAT NET E	RR	EtherCAT LINK/	ACT	
System	Variable		Data type		Name		
-defined variables	None		None		None		
variables	Assumed saug	•	Correction		Prevention		
	Assumed caus		Check the Ether	CAT moster set	Check the Ether	CAT moster set	
Cause and	the transition of	master requested	ting so that the E		ting so that the E		
correction	Bootstrap	unsupporteu	does not request		does not request		
	Bootstrap		Bootstrap.	the transition to	Bootstrap.	the transition to	
Attached	None		Dootottap.		Bootstap.		
information	I NOTIG						
Precautions/	Al status code:	0013 hex, Error N	In : 8306 hav				
Remarks	AL SIGIUS COUE.	OUTO HEA, EHOLIN	io UUUU II C X				
	I						

Event name	Communication	s Synchronization	Error	Event code	8810 0000 hex		
		•		because the sync		e EtherCAT Mas-	
Meaning	ter could not be		,	,			
Source	EtherCAT Maste	er Function Mod-	Source details	Slave	Detection timing	Continuously	
Error attributes	Level	Minor fault	Recovery Error reset (after resetting slave errors)		Log category	System log	
Effects	User program	Continues.	Operation	Power drive circu	iit is OFF		
Indicators	EtherCAT NET	RUN	EtherCAT NET E	RR	EtherCAT LINK/	ACT	
ilidicators							
System	Variable		Data type		Name		
-defined variables	None		None				
	Assumed caus	6 e	Correction		Prevention		
	The power supply to the host controller was interrupted during PDO communications		Reset the error in the host control- ler. This event reports an error that was detected when the power sup- ply to the host controller was inter- rupted. It does not indicate that an error currently exists.		If you turn OFF the power supply to the host controller, also turn OFF the power supply to the Servo Drive.		
Cause and	An EtherCAT communications cable is disconnected, broken, short-circuited, or has a contact failure in a daisy chain configuration.		Connect the EtherCAT communications cable securely. If the cable is broken, replace it.		Connect the Ethe cations cable sec		
correction	An EtherCAT communications cable is broken, short-circuited, or has a contact failure in a ring topology configuration.		Setting (2200 Connect the Einications cable cable is broken	 Set Communications Error Setting (2200 hex) to 2 or more. Connect the EtherCAT communications cable securely. If the cable is broken, replace it. 		Set Communications Error Setting (2200 hex) to 2 or more. Connect the EtherCAT communications cable securely.	
	Noise		excessive noise	Take noise countermeasures if excessive noise affects the Ether-CAT communications cable.		Take noise countermeasures if excessive noise affects the Ether-CAT communications cable.	
	Failure of the EtherCAT physical layer of a Servo Drive		If this event occurs again after you performed all corrections shown above, replace the Servo Drive.		None		
Attached information	None						
Precautions/ Remarks	AL status code:	0034 hex, Error N	o.: 8303 hex				

Event name	Safety Commun	nications Timeout		Event code	code 8812 0000 hex		
Meaning			ed in safety proces			ty CPI I I Init	
Wearing		er Function Mod-	ed in salety proces	Slave		When establish-	
Source	ule	or randadir Mod	Source details	olavo	Detection timing	ing FSoE com- munications/dur ing FSoE com- munications	
Error attributes	Level	Minor fault	Recovery	Error reset (after resetting slave errors)	Log category	System log	
Effects	User program Continues.		Operation	Power drive circu	uit is OFF		
Indicators	EtherCAT NET	RUN	EtherCAT NET E	RR	EtherCAT LINK/	ACT	
maicators							
System	Variable	Variable			Name		
-defined	None		None		None		
variables							
	Assumed caus	е	Correction		Prevention		
	A setting is not correct. The set- ting of the safety task period of the Safety CPU Unit is too short		the Safety CPU L	Increase the safety task period of the Safety CPU Unit and then transfer the settings to the Safety		onfiguration and to the corrections the left.	
Cause and correction	There is excessive noise The Safety CPU Unit or safety slave entered a status where it could not continue safety process data communications		Take noise countermeasures. Check the status of the Safety CPU Unit or safety slave.		Take noise countermeasures if excessive noise caused the error.		
					Refer to troubleshooting information for the Safety CPU Unit or safety slave.		
Attached information	None						
Precautions/ Remarks	AL status code:	-, Error No.: 7004	hex				
Event name	Absolute Value	Cleared		Event code	98200000 hex		
Meaning			bsolute encoder w				
		er Function Mod-		Slave	Detection	Continuously	
Source	ule	er i direttori mod-	Source details	Slave	timing	Continuously	
Error attributes	Level	Minor fault	Recovery	Error reset (after cycling slave power)	Log category	System log	
Effects	User program	Continues.	Operation	Power drive circu	it is OFF		
Indicators	EtherCAT NET	RUN	EtherCAT NET E	RR	EtherCAT LINK/	ACT	
System	Variable		Data type		Name		
-defined variables	None		None		None		
	Assumed caus	ie	Correction		Prevention		
Cause and correction	The multi-rotation counter of the absolute encoder was cleared		This operation is	This operation is performed for safety and is not an error.		easure is not this is a safety	
			,		measure.		
Attached information Precautions/	None AL status code:	-, Error No.: 2701	hex				
Remarks							

Event name	Capacitor Lifetir	ne Warning		Event code	081C0000 hex		
Meaning	The capacitor b	uilt into the Servo	Drive reached the	service life of the n	nanufacturer's gua	rantee.	
Source	EtherCAT Master Function Module		Source details	Slave	Detection timing	Continuously	
Error attributes	Level	Observation*1	Recovery		Log category	System log	
Effects	User program	Continues.	Operation	Not affected.			
Indicators	EtherCAT NET	RUN	EtherCAT NET E	RR	EtherCAT LINK/	ACT	
mulcators							
System	Variable		Data type		Name		
-defined	None		None		None		
variables							
	Assumed caus	Assumed cause		Correction		Prevention	
	The operating ti	me of the capaci-	Send the Servo Drive for repair or		None		
Cause and	tor in the Servo	Drive exceeded	replace the Servo	Drive with a new			
correction	the service life		one. It is necessa	one. It is necessary to replace the			
			component that r	eached the ser-			
			vice life.				
Attached	None						
information							
Precautions/	AL status code:	-, Error No.: A701	hex				
Remarks							

^{*1.} You can change the level to minor fault by using Warning Level Change 1 Selection (4020-05 hex).

Event name	Inrush Current I	Prevention Relay L	ifetime Warning	Event code	081D 0000 hex			
Description		The inrush current prevention relay built into the Servo Drive reached the service life of the manufacturer's guarantee.						
Source	EtherCAT Master Function Module		Source details	Slave	Detection timing	Continuously		
Error attributes	Level	Observation*1	Recovery		Log category	System log		
Effects	User program	Continues.	Operation	Not affected.				
Indicators	EtherCAT NET RUN		EtherCAT NET E	RR	EtherCAT LINK/ACT			
iliuicators								
System	Variable		Data type		Name			
-defined variables	None		None		None			
	Assumed cause		Correction		Prevention			
Cause and correction	The number of operating times of the inrush current prevention relay in the Servo Drive exceeded the service life		Send the Servo Drive for repair or replace the Servo Drive with a new one. It is necessary to replace the component that reached the service life.		None			
Attached information	None							
Precautions/ Remarks	AL status code:	-, Error No.: A702	hex					

^{*1.} You can change the level to minor fault by using Warning Level Change 1 Selection (4020-05 hex).

Event name	Brake Interlock	Output Relay Lifet	ime Warning	Event code	081F0000 hex			
Description		The brake interlock output (BKIR) relay built into the Servo Drive reached the service life of the manufacturer's guarantee.						
Source	EtherCAT Master Function Module		Source details	Slave	Detection timing	Continuously		
Error attributes	Level	Observation*1	Recovery		Log category	System log		
Effects	User program	Continues.	Operation	Not affected.				
Indicators	EtherCAT NET RUN		EtherCAT NET ERR		EtherCAT LINK/ACT			
indicators								
System	Variable		Data type		Name			
-defined	None		None		None			
variables								
	Assumed caus	Assumed cause		Correction		Prevention		
	The number of o	perating times of	Send the Servo I	Orive for repair or	None			
Cause and	the brake interlo	ock output in the	replace the Servo Drive with a new					
correction	Servo Drive exc	eeded the ser-	one. It is necessary to replace the					
	vice life		component that r	eached the ser-				
			vice life.					
Attached	None							
information								
Precautions/	AL status code:	AL status code: -, Error No.: A704 hex						
Remarks								

^{*1.} You can change the level to minor fault by using Warning Level Change 1 Selection (4020-05 hex).

Event name	Encoder Comm	unications Warnin	g	Event code	083A 0000 hex		
Description	Encoder commi	unications errors o	ccurred in series m	nore frequently tha	n the specified val	ue.	
Source	EtherCAT Maste	er Function Mod-	Source details	Slave	Detection timing	Continuously	
Error attributes	Level Observation*1		Recovery		Log category	System log	
Effects	User program	Continues.	Operation	Not affected.			
Indicators	EtherCAT NET	RUN	EtherCAT NET E	RR	EtherCAT LINK	ACT	
ilidicators							
System	Variable		Data type		Name		
-defined variables	None		None		None		
	Assumed caus	e	Correction		Prevention		
Cause and	Noise into the e	ncoder cable	 Separate the motor cable and the encoder cable if they are bundled together. Connect the shield to FG. Check that the motor ground wire is connected to FG. 		 Separate the motor cable and the encoder cable if they are bundled together. Connect the shield to FG. Confirm that the motor ground wire is connected to FG. 		
Cause and correction	Contact failure of the encoder cable		Check whether the connector is disconnected. Connect the connector securely if it is disconnected or loose. Check that the encoder cable is not broken. Replace the encoder cable if it is broken.		Confirm that the connector is connected. Use the recommended cable and periodically check that the encoder cable is not broken.		
	Power supply u	ndervoltage to	Use the recommended encoder cable.		Use the recommended encoder cable.		
Attached information	Attached inform	ation 1: System in	formation		1		
Precautions/ Remarks	AL status code:	AL status code: -, Error No.: A400 hex					

^{*1.} You can change the level to minor fault by using Warning Level Change 1 Selection (4020-05 hex).

Event name	Encoder Lifetim	e Warning		Event code	0847 0000 hex		
Description	The encoder life	The encoder lifetime is close to the end.					
Source	EtherCAT Master Function Mod- ule		Source details	Slave	Detection timing	Continuously	
Error attributes	Level	Observation*1	Recovery		Log category	System log	
Effects	User program	Continues.	Operation	Not affected.			
Indicators	EtherCAT NET	RUN	EtherCAT NET E	RR	EtherCAT LINK	ACT	
ilidicators							
System	Variable		Data type		Name		
-defined	None		None		None		
variables							
	Assumed cause		Correction		Prevention		
	Temporary noise			If this event occurs repeatedly, the		None	
Cause and	The end of the	encoder life	lifetime is close to the end.				
correction	Encoder breakd	own	Replace the motor.				
			This warning also occurs when the				
				ue to impact on			
			the axis.				
Attached	None						
information							
Precautions/	AL status code:	-, Error No.: A706	hex				
Remarks							

^{*1.} You can change the level to minor fault by using Warning Level Change 1 Selection (4020-05 hex).

Event name	Fan Rotation Warning			Event code	084C0000 hex	
Description	The rotation spe	eed of the fan is 80	% or less of the ra	ting and the coolin	ig performance ded	creases.
Source	EtherCAT Master Function Module		Source details	Slave	Detection timing	Continuously
Error attributes	Level	Observation*1	Recovery		Log category	System log
Effects	User program	Continues.	Operation	Not affected.		
Indicators	EtherCAT NET	RUN	EtherCAT NET E	RR	EtherCAT LINK/	ACT
System	Variable		Data type		Name	
-defined	None		None		None	
variables						
	Assumed cause		Correction		Prevention	
	There is a forei		Check whether there is a foreign		Do not use the fan in an area sur-	
Cause and	cooling fan and	cooling fan and it blocks the rota-		matter in the fan. If you find a for-		ssive foreign mat-
correction	tion		eign matter, remove it.		ter. Also, do not allow foreign	
	Cooling fan failu	ıre	If there is no improvement after		matter to enter.	
			you performed the correction			
			above, replace the Servo Drive.			
Attached	None					
information						
Precautions/	AL status code:	-, Error No.: A300	hex			
Remarks						

^{*1.} You can change the level to minor fault by using Warning Level Change 1 Selection (4020-05 hex).

Event name	Absolute Encod	Absolute Encoder Counter Overflow Warning Event code 084E 0000 hex							
						Encoder Counter			
Description		ing Level (4510-0		ne value set in En	coder - Absolute	Lincoder Counter			
Source		EtherCAT Master Function Module		Slave	Detection timing	Continuously			
Error attributes	Level Observation*1		Recovery		Log category	System log			
Effects	User program	Continues.	Operation	Not affected.					
lu di e et e ue	EtherCAT NET	RUN	EtherCAT NET E	RR	EtherCAT LINK	/ACT			
Indicators									
System	Variable	Variable		Data type		Name			
-defined	None	None		None		None			
variables									
	Assumed cause		Correction		Prevention				
	An inappropriate value was set in		Set an appropriate value in the		Set an appropriate value in the				
		the Encoder – Operation Selec-		Encoder - Operation Selection		Encoder - Operation Selection			
	tion when Usin	tion when Using Absolute		when Using Absolute Encoder		when Using Absolute Encoder			
Cause and	Encoder (4510	-01 hex)	(4510-01 hex).		(4510-01 hex).				
correction	The multi-rotation	on number of the	Set the travel distance so that the		Set the travel distance so that the				
30113011011	encoder exceed	led the warning	multi-rotation number does not		multi-rotation number does not				
	level	level		exceed the value set in the		e set in the			
				lute Encoder	Encoder - Abso				
				w Warning	Counter Overfl	•			
			Level (4510-02 h	nex).	Level (4510-02	hex).			
Attached	None								
information									
Precautions/	AL status code:	-, Error No.: AB00	hex						
Remarks									

^{*1.} You can change the level to minor fault by using Warning Level Change 1 Selection (4020-05 hex).

Event name	Lifetime Information Corruption Warning			Event code	18390000 hex		
Description	An error was de	tected in the save	d lifetime information	on.			
Source	EtherCAT Master Function Mod- ule		Source details	Slave	Detection timing	At power ON	
Error attributes	Level	Observation*1	Recovery		Log category	System log	
Effects	User program	Continues.	Operation	Not affected.			
Indicators	EtherCAT NET	RUN	EtherCAT NET E	RR	EtherCAT LINK	/ACT	
indicators							
System	Variable		Data type		Name		
-defined	None	None		None		None	
variables							
	Assumed cause		Correction		Prevention		
	The lifetime information corrup-		Perform the Lifetime Information		None		
	tion was detecte		Clear. Note that the lifetime may				
Cause and	power supply was turned ON		not be detected correctly after the				
correction			clear operation because the value				
				of lifetime information is cleared. If			
			this event occurs repeatedly, the				
			area to save lifetime information is				
Attaclass	Name		faulty. Replace th	e Servo Drive.			
Attached information	None						
Precautions/	AL status code:	-, Error No.: A705	hex				
Remarks							

^{*1.} You can change the level to minor fault by using Warning Level Change 1 Selection (4020-05 hex).

Event name	Data Setting Warning			Event code	34E00000 hex			
Description	The object set v	The object set value is out of the range.						
Source	EtherCAT Master Function Module		Source details	Slave	Detection timing	Continuously		
Error attributes	Level Observation*1		Recovery		Log category	System log		
Effects	User program	Continues.	Operation	Not affected.				
Indicators	EtherCAT NET RUN		EtherCAT NET ERR		EtherCAT LINK/ACT			
ilidicators								
System	Variable		Data type		Name			
-defined	None		None		None			
variables								
Cause and	Assumed cause		Correction		Prevention			
correction	The object set v	alue is out of the	Correct the object setting to be		Correct the object setting to be			
00110011011	range		within the specified range.		within the specified range.			
Attached	None							
information								
Precautions/	AL status code:	-, Error No.: B000	hex					
Remarks								

^{*1.} You can change the level to minor fault by using Warning Level Change 1 Selection (4020-05 hex).

Event name	Overload Warni	ng		Event code	387A 0000 hex		
Description		of Servo Drive or vel (4150-01 hex)	motor (4150-81 he	x) exceeded the le	evel set in the Ove	rload - Warning	
Source	EtherCAT Maste	er Function Mod-	Source details	Slave	Detection timing	Continuously	
Error attributes	Level	Observation*1	Recovery		Log category	System log	
Effects	User program	Continues.	Operation	Not affected.			
Indicators	EtherCAT NET RUN		EtherCAT NET E	RR	EtherCAT LINK	/ACT	
muicators							
System	Variable		Data type		Name		
-defined variables	None		None		None		
	Assumed caus	6 e	Correction		Prevention		
	Operation was continued for a		Perform the follow	wing corrections		given for correc-	
	long time with h	igh load.	accordingly.			and take counter-	
			Increase the se		measures as rec	quired.	
				celeration time			
			and the stop time. • Lighten the load.				
				Adjust the gain or inertia ratio.			
			, ,				
			If torque wavef	orms oscillate just the system			
				o that the oscilla-			
			tion does not o				
Cause and			• Set the appropriate brake timing.				
correction			Increase the capacities of the				
			Servo Drive an				
	There is incorre	-		Connect the motor cable as		tor cable as shown	
	motor cable or a	a broken cable	shown in the wiring diagram. If the cable is broken, replace it.		motor cable and	gram. Connect the	
			Or, connect the motor cable and			ncoder cable that	
			encoder cable that are used		are used together		
			together to the	together to the same motor.			
			Measure the vo	oltage at the			
			brake terminal.				
			applied, releas				
	Increase in fricti	ion	Check machine o		Take counterme		
			remove the cause	e oi uie iricüon.	machine distortion ated.	on is not gener-	
	Attached Inform	nation 1: Cause De	tails				
Attached information		rive is overloaded					
		otor is overloaded					
Precautions/ Remarks	AL status code:	-, Error No.: A000	hex				

^{*1.} You can change the level to minor fault by using Warning Level Change 1 Selection (4020-05 hex).

Event name	Regeneration Overload Warning			Event code	387D0000 hex	
Description	The Regenerat	ion Load Ratio (4	310-81 hex) excee	ded 85% of the re	generation overloa	ad ratio.
Source	EtherCAT Maste	er Function Mod-	Source details	Slave	Detection timing	Continuously
Error attributes	Level	Observation*1	Recovery		Log category	System log
Effects	User program	Continues.	Operation	Not affected.		
Indicators	EtherCAT NET	RUN	EtherCAT NET E	RR	EtherCAT LINK	ACT
mulcators						
System	Variable		Data type		Name	
-defined variables	None		None		None	
	Assumed caus	е	Correction		Prevention	
	The regeneration	n processing is	Check the regene	eration process-	Check the items	given for correc-
	set inappropriate		ing setting, and se	•		and take counter-
		•	as the resistance	value of the	measures as rec	juired.
			Regeneration Re	sistor in use.		
	The Regeneration	on Resistor is	Check the operati	ion pattern by the		
	selected inappro	opriately	,	velocity monitor. Check the load		
			ratio of Regeneration Resistor, and			
			perform the follow	ving corrections		
			accordingly.			
			Increase the deceleration time			
			and stopping tir	and stopping time.		
Cause and			Decrease the c	ommand velocity		
correction			to the motor.			
			Use an Externa	l Regeneration		
			Resistor. Increase the capacities of the Servo Drive and the motor.			
	The Regeneration	on Posistor is			Do not use the R	Pagaparation
	used for continu		_	The Regeneration Resistor can-		inuous regenera-
	tive braking	iodo regenera	erative braking.	not be used for continuous regenerative braking.		madad rogemera
	The applied pov	ver supply volt-	Apply the power s	supply voltage to	tive braking. Review the power	er supply voltage
	age is higher tha	· · ·	be the specified v		to be the specifie	
	value				use.	
	Regeneration R	esistor failure	Check whether the Regeneration		Confirm that the	Regeneration
			Resistor is faulty,	and use one	Resistor is not fa	ulty before use.
			without failures.			
Attached	None					
information						
Precautions/	AL status code:	-, Error No.: A100	hex			
Remarks						

^{*1.} You can change the level to minor fault by using Warning Level Change 1 Selection (4020-05 hex).

Event name	Motor Vibration	Warning		Event code	387E0000 hex			
Description	The motor vibration, which was higher than or equal to the level set in the Vibration Detection - Detection							
Description	Level (3B70-01	hex), was detected	ed.					
Source	EtherCAT Maste	er Function Mod-	Source details	Slave	Detection	During Servo		
Source	ule		Source details		timing	ON		
Error	Level	Observation*1	Recovery L		Log category	System log		
attributes	Level		Recovery		Log category			
Effects	User program	Continues.	Operation	Not affected.				
Indicators	EtherCAT NET	RUN	EtherCAT NET E	RR	EtherCAT LINK/	ACT		
indicators								
System	Variable		Data type		Name			
-defined	None		None		None			
variables								
	Assumed cause		0		D			
	Assumed caus	6 e	Correction		Prevention			
	The control para			arameters such as	Set and use the	appropriate con-		
						appropriate con-		
	The control para		Set the control pa	, and filter to	Set and use the	appropriate con-		
Cause and	The control para		Set the control pa inertia ratio, gain	, and filter to	Set and use the	appropriate con-		
Cause and correction	The control para	ameter is set	Set the control pa inertia ratio, gain appropriate value	, and filter to es by gain tuning	Set and use the			
	The control para inappropriately	reased due to	Set the control painertia ratio, gain appropriate value or manually.	, and filter to es by gain tuning ne mechanical	Set and use the trol parameter.	nanical system		
	The control para inappropriately The rigidity deci	reased due to	Set the control painertia ratio, gain appropriate value or manually. Check whether the	, and filter to es by gain tuning ne mechanical se and secure it	Set and use the trol parameter. Secure the mech	nanical system		
	The control para inappropriately The rigidity deci	reased due to	Set the control parametria ratio, gain appropriate value or manually. Check whether the system is not loof firmly. If the rigidian	, and filter to es by gain tuning ne mechanical se and secure it	Set and use the trol parameter. Secure the mech	nanical system		
	The control para inappropriately The rigidity deci	reased due to	Set the control parametria ratio, gain appropriate value or manually. Check whether the system is not loof firmly. If the rigidian	, and filter to es by gain tuning ne mechanical se and secure it ty of mechanical ed, adjust the con-	Set and use the trol parameter. Secure the mech	nanical system		
	The control para inappropriately The rigidity deci	reased due to	Set the control painertia ratio, gain appropriate value or manually. Check whether the system is not loofirmly. If the rigidity system is change.	, and filter to es by gain tuning ne mechanical se and secure it ty of mechanical ed, adjust the con-	Set and use the trol parameter. Secure the mech	nanical system		
correction	The control para inappropriately The rigidity decimechanical loos	reased due to	Set the control painertia ratio, gain appropriate value or manually. Check whether the system is not loofirmly. If the rigidity system is change.	, and filter to es by gain tuning ne mechanical se and secure it ty of mechanical ed, adjust the con-	Set and use the trol parameter. Secure the mech	nanical system		
Correction	The control para inappropriately The rigidity decomechanical loos None	reased due to	Set the control parameter age inertia ratio, gain appropriate value or manually. Check whether the system is not loo firmly. If the rigiding system is change trol parameter age	, and filter to es by gain tuning ne mechanical se and secure it ty of mechanical ed, adjust the con-	Set and use the trol parameter. Secure the mech	nanical system		

^{*1.} You can change the level to minor fault by using Warning Level Change 1 Selection (4020-05 hex).

Event name	Command Warning Event code			Event code	78220000 hex	
Meaning	A command cou	lld not be executed	d.			
Source	EtherCAT Maste	er Function Mod-	Source details	Slave	Detection timing	Continuously
Error attributes	Level	Observation*1	Recovery		Log category	System log
Effects	User program	Continues.	Operation	Not affected.		
Indicators	EtherCAT NET	RUN	EtherCAT NET E	RR	EtherCAT LINK	/ACT
indicators						
System	Variable		Data type		Name	
-defined	None		None		None	
variables						
	Assumed caus	е	Correction		Prevention	
	The Switch on c	ommand was	Send the Switch	on command with	Use the Servo D	rive after confirm-
	received		the main circuit p	ower supply ON.	ing the correction	ns that are given
	The Enable ope	ration command	Send the <i>Enable</i>		on the left.	J
	was received		mand under the f	•		
	was received		tions.	J		
			In supported operation mode			
			The motor rotation speed is 30			
			r/min or less.			
				mada tha intar		
			• In the free-run mode, the inter- polation time period is the inte-			
			gral multiple of			
			communication			
Cause and	An operation co	mmand in the	Check status of the			
correction		tion was received	tion Input and So			
	•		-			
	after the immediate stop by the Drive Prohibition Input or Soft-		Limit by the Digital inputs, Sta- tusword, and Software Position			
	ware Position Li		Limit. Then, do not issue the com-			
	ware Position Limit			prohibition direc-		
			tion.			
	Homing started		Set a supported r	number of the	_	
			Homing method f			
			Start homing at th	ne timing of when		
			homing is not per	-		
	The positioning	start command	Set a supported v		1	
		the Profile posi-	6 in the Controlw			
	tion mode	•				
Attached	None		ı		1	
information						
Precautions/	AL status code:	-, Error No.: B100	hex			
Remarks						

^{*1.} You can change the level to minor fault by using Warning Level Change 3 Selection (4020-07 hex).

Event name	EtherCAT Comr	munications Warni	ng	Event code	84B00000 hex	
Description	An EtherCAT co	mmunications erro	or occurred more th	nan one time.		
Source	EtherCAT Maste	er Function Mod-	Source details	Source details Slave		Continuously
Error attributes	Level	Observation*1	Recovery		Log category	System log
Effects	User program	User program Continues.		Not affected.		
Indicators	EtherCAT NET RUN		EtherCAT NET E	RR	EtherCAT LINK	ACT
indicators						
System	Variable		Data type		Name	
-defined variables	None		None		None	
Variables	Assumed caus	e	Correction		Prevention	
Cause and correction	failure in a daisy tion. In a ring topol tion, the ring of tus occurred. In a ring topol	nected, broken, or has a contact y chain configura- logy configura- disconnection sta- logy configura- disconnection sta-	Connect the Ethe cations cable sec is broken, replaced Refer to 13-4 Meconnection Maint Inspection on page form inspection.	thod for Ring Disenance and	Confirm that the EtherCAT communications cable is not broken before use, and connect it securely.	
	Noise Failure of the EtherCAT physical layer of a Servo Drive		Take noise countermeasures so that the noise does not affect the EtherCAT communications cable. If this event occurs again after you performed all corrections shown above, replace the Servo Drive.		Take noise countermeasures so that the noise does not affect the EtherCAT communications cable. None	
Attached information	None				l	
Precautions/ Remarks	AL status code:	-, Error No.: B200	hex			

^{*1.} You can change the level to minor fault by using Warning Level Change 3 Selection (4020-07 hex).

Event name	Unit Restarted			Event code	90A00000 hex	
Description	Restart was per	formed.			_	
Source	EtherCAT Master Function Module		Source details Slave		Detection timing	Operation by user
Error attributes	Level	Information	Recovery		Log category	System log
Effects	User program	Continues.	Operation	Not affected.		
lu di e et e ve	EtherCAT NET RUN		EtherCAT NET ERR		EtherCAT LINK/ACT	
Indicators						
System	Variable		Data type		Name	
-defined variables	None		None		None	
Cause and	Assumed caus	e	Correction		Prevention	
correction	Restart was per	formed				
Attached	None		1		•	
information						
Precautions/	AL status code:	8000 hex, Error N	lo.: -			
Remarks						

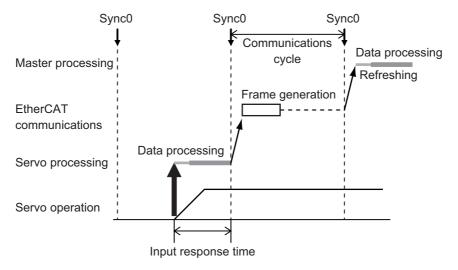
Event name	STO Detected			Event code	98210000 hex	
Description	The safety input	t OFF state was de	etected via the safe	ty input signal or l	therCAT commun	ications.
Source	EtherCAT Maste ule	er Function Mod-	Source details	Slave	Detection timing	Continuously
Error attributes	Level	Information*1	Recovery		Log category	System log
Effects	User program	Continues.	Operation	Power drive circu	iit is OFF	
Indicators	rs EtherCAT NET RUN		EtherCAT NET E	RR	EtherCAT LINK/	ACT
mulcators						
System	Variable		Data type		Name	
-defined	None		None		None	
variables						
	Assumed caus	e	Correction		Prevention	
	The cable is dis	connected or bro-	Reconnect the input wiring for		Connect the input wiring for safety	
	ken		safety inputs 1 and 2. If the cable		inputs 1 and 2 securely.	
Cause and			is broken, replace it.			
correction		was turned OFF	Remove the caus		Improve the surrounding environ-	
	via EtherCAT co	mmunications	OFF the safety in	. •	ment based on the cause that	
			Safety Input Unit.		turned OFF the safety input signal of the Safety Input Unit.	
			, ,		of the Safety Inpo	ut Unit.
Attached	None				of the Safety Inpo	ut Unit.
Attached information	None				of the Safety Inpo	ut Unit.
7 11110 5110 0		-, Error No.: C000			of the Safety Inpo	ut Unit.

^{*1.} You can change the level to minor fault by using Information Level Change Selection (4030-01 hex).

Event name	Memory All Clea	ared		Event code	98220000 hex		
Meaning	The Unit setting	was cleared.					
Source	EtherCAT Master Function Mod- ule		Source details	Slave	Detection timing	Operation by user	
Error attributes	Level	Information	Recovery		Log category	System log	
Effects	User program	Continues.	Operation	Not affected.			
Indicators	EtherCAT NET RUN		EtherCAT NET ERR		EtherCAT LINK/ACT		
mulcators							
System	Variable		Data type		Name		
-defined	None		None		None		
variables							
Cause and	Assumed caus	e	Correction		Prevention		
correction	Clear All Memor	ry was performed					
Attached	None						
information							
Precautions/	AL status code:	-, Error No.: -					
Remarks							

F	Front and 0004 0000 have						
Event name			Event code	9824 0000 hex			
Meaning	The event log w	as cleared.					
Source	EtherCAT Maste	er Function Mod-	Source details	Slave	Detection	Operation by	
Source	ule		Source details		timing	user	
Error attributes	Level	Information	Recovery		Log category	System log	
Effects	User program	Continues.	Operation	Not affected.			
Indiantors	EtherCAT NET RUN		EtherCAT NET E	EtherCAT NET ERR		EtherCAT LINK/ACT	
Indicators							
System	Variable		None		Name None		
-defined	None						
variables							
Cause and	Assumed caus	е	Correction		Prevention	Prevention	
correction	Clear Event Log	was performed					
Attached	None						
information							
Precautions/	AL status code:	-, Error No.: -					
Remarks							

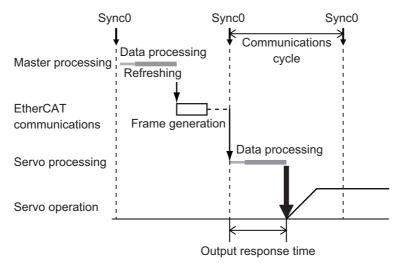
A-5 Response Time in EtherCAT Process Data Communications


The input response time and output response time of each slave unit are required to calculate the system I/O response time in the EtherCAT process data communications.

The specifications of this product are given below.

Refer to the manuals for your master unit when you calculate the system I/O response time.

A-5-1 Input Response Time


The input response time of this product is given below.

Input response time: Communication cycle - Shift time

A-5-2 Output Response Time

The output response time of this product is given below.

Output response time: 100 µs

A-6 Version Information

This section describes the relationship between the unit versions of 1S-series Servo Drives and the Sysmac Studio versions, and the functions that were added or changed for each unit version.

A-6-1 Relationship between Unit Versions and Sysmac Studio Versions

This section also describes how the unit versions of 1S-series Servo Drives correspond to Sysmac Studio versions.

Unit Versions and Corresponding Sysmac Studio Versions

The following table gives the relationship between unit versions of 1S-series Servo Drives and the corresponding Sysmac Studio versions.

Unit version	Corresponding version of Sysmac Studio
Ver.1.0	Ver.1.16 or higher
Ver.1.1	Ver.1.18 or higher
Ver.1.2	Ver.1.22 or higher
Ver.1.3 ^{*1}	Ver.1.27 or higher
Ver.1.4 ^{*1}	Ver.1.43 or higher

^{*1.} Sysmac Studio version 1.44 or higher enables you to use the cable redundancy function and configure a ring topology.

Specifications for Combinations of Unit Versions and Sysmac Studio Versions

The operation specifications depending on combinations of unit versions of 1S-series Servo Drives and Sysmac Studio versions are given in this section.

Using a Lower Version of the Sysmac Studio

When you use the Sysmac Studio that does not correspond to the unit version of Servo Drive, you cannot select the unit version of your Servo Drive from the device list of Sysmac Studio. When you use the Sysmac Studio without its update, select from the displayed unit versions.

Example: Unit version 1.2 of Servo Drive

Sysmac Studio version 1.17

Sysmac Studio version 1.17 corresponds to up to the unit version 1.0 of the Servo Drive. Therefore, you select the unit version 1.0. In this case, the Servo Drive operates as follows.

- The Servo Drive can use only functions of Sysmac Studio that are supported by the unit version 1.0.
- It is impossible to set the servo parameters that were added in the unit version 1.2. Therefore, the Servo Drive operates with the present set values.
- When you execute *Initialize drive* by Sysmac Studio, all servo parameters of the unit version 1.2 are restored to the default values.

 When you initialize the drive by which the brake interlock function for a General Output (OUT 1 to 3) is selected, it is impossible to select the brake interlock function for a General Output (OUT 1 to 3) in the lower version of the Sysmac Studio.

Using an Earlier Unit Version of the Servo Drive

When you use the Sysmac Studio that corresponds to the unit version of Servo Drive, select the unit version of your Servo Drive from the device list of Sysmac Studio.

Example: Unit version 1.0 of Servo Drive Sysmac Studio version 1.22

Sysmac Studio version 1.22 corresponds to up to the unit version 1.2 of the Servo Drive. Therefore, you select the unit version 1.0 from the device list. In this case, the Servo Drive can use all functions that are implemented in the unit version 1.0.

When you select the unit version 1.2 from the device list, the online connection to the unit version 1.0 of the Servo Drive is impossible. Select the unit version 1.0 from the device list.

Backup and Restore Using Sysmac Studio

The specifications for when you use the backup function of Sysmac Studio are given in this section.

- When you back up files that are created by the earlier unit version, and restore them to the later unit version, only parameters that are covered by the earlier unit version are restored.
- When you back up files that are created by the later unit version, you cannot restore them to the earlier unit version.
- When you use the latest unit version of Servo Drive, match EtherCAT slave configurations so as to back up all parameters, and recreate backup files.

The examples for when you use the unit version 1.0 and unit version 1.2 are given below.

- When you back up files by the EtherCAT slave configuration that is created as the unit version 1.0, and restore them to the unit version 1.2, only parameters that are covered by the unit version 1.0 are restored.
- When you back up files by the unit version 1.2 of the EtherCAT slave configuration, you cannot restore them to the unit version 1.0.

A-6-2 Functions That Were Added or Changed for Each Unit Version

Added or Changed Functions

This section gives the functions that were added or changed for each unit version of 1S-series Servo Drive.

	Function	Addition/ change	Unit version	Reference
EtherCAT com- munications	Cable Redundancy Function	Addition	Ver.1.3	P. 5-20
	Multiple Drives Tuning Function	Addition	Ver.1.1	D 44.6
Adjustment Function	Multiple Drives Tuning Function	Addition	ver. i . i	P. 11-6
Object	Basic Functions - Control Method Selection	Change	Ver.1.4	P. 9-7
	(3000-03 hex)			
	Machine - Inertia Ratio	Change	Ver.1.1	P. 9-12
	(3001-01 hex)			
	Position Command - Following Error	Addition	Ver.1.4	P. 9-16
	After Interpolation			
	(3010-92 hex)			
	Command Dividing Function - Interpola-	Addition	Ver.1.2	P. 9-27
	tion Method Selection in csp			
	(3041-10 hex)			
	TDF Position Control - Command Fol-	Addition	Ver.1.1	P. 9-31
	lowing Gain Selection			
	(3120-10 hex) TDF Position Control - Command Fol-	Addition	Ver.1.1	P. 9-31
	lowing Gain 2	Addition	ver. i . i	P. 9-31
	(3120-11 hex)			
	TDF Velocity Control - Command Fol-	Addition	Ver.1.1	P. 9-32
	lowing Gain Selection			
	(3121-10 hex)			
	TDF Velocity Control - Command Fol-	Addition	Ver.1.1	P. 9-32
	lowing Gain 2			
	(3121-11 hex)			
	Runaway Detection (3B71 hex)	Addition	Ver.1.1	P. 9-77
	Motor Advanced Setting (4412 hex)	Addition	Ver.1.4	P. 9-102
	Function Output - Bit Mask (4602-01 hex)	Change	Ver.1.4	P. 9-110
	Function Output - Physical Outputs	Change	Ver.1.2	P. 9-110
	(4602-F1 hex)		Ver1.4	1
	Brake Interlock Output - Threshold	Change	Ver.1.4	P. 9-113
	Speed at Servo OFF			
	(4610-03 hex)*1			
	External Brake Interlock Output (4663 hex)	Addition	Ver.1.2	P. 9-130
	Digital outputs - Physical outputs	Change	Ver.1.2	P. 9-110
	(60FE-01 hex)	- Criarigo	Ver.1.4	
	Digital outputs - Bit mask (60FE-02 hex)	Change	Ver.1.4	P. 9-110

	Function	Addition/ change	Unit version	Reference
Error detection	Runaway Detection	Addition	Ver.1.1	P. 12-10
function	Synchronization Error	Change	Ver.1.1	P. 12-11
	Regeneration Circuit Error Detected during	Addition	Ver.1.2	P. 12-10
	Power ON	Delete	Ver.1.3	
	Inrush Current Prevention Circuit Error	Addition	Ver.1.3	P. 12-10
	Regeneration Circuit Error	Addition	Ver.1.3	P. 12-10
Applied Func-	Brake Interlock	Addition	Ver.1.2	P. 7-22
tions		Change	Ver.1.4	

^{*1.} With the unit version Ver.1.4 or later, the default setting is changed. Refer to 9-14-6 4610 hex: Brake Interlock Output on page 9-113 for details.

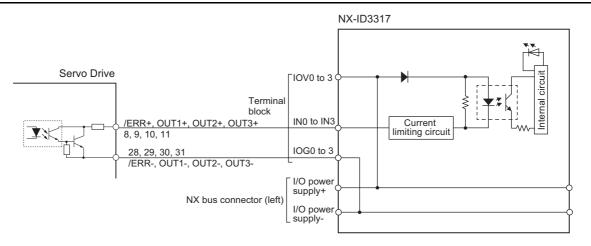
Specifications for Combinations of Unit Versions and Motor Power Cables

For the motor power cables, there are two types of cable versions available: version 1.0 and 1.1, and eight types of cable lengths available: 3 m, 5 m, 10 m, 15 m, 20 m, 30 m, 40 m, and 50 m. When you use a unit version 1.2 or earlier of Servo Drive, use a motor power cable of 20 m or less.

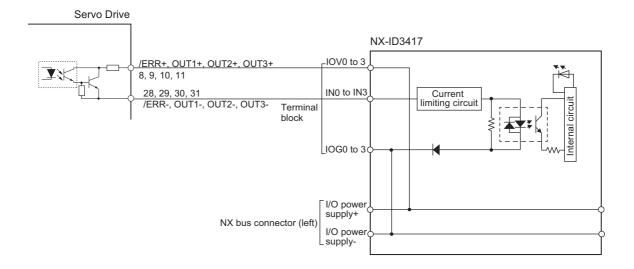
The following table shows the specifications for combinations of cable versions, cable lengths, and unit versions.

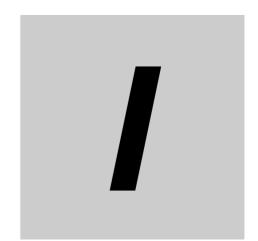
				Spec	ifications f	or combina	tions
	Motor Power Cable			Unit v	ersion	Unit v	ersion
					earlier	1.3 or later	
Model (R88A-)	Cable length		version		version		version
` ′		Ver.1.0	Ver.1.1	Ver.1.0	Ver.1.1	Ver.1.0	Ver.1.1
CA1A□□□S	3 m, 5 m, 10 m, 15 m, 20 m	Yes	Yes	Available	Available	Available	Available
CA1A□□□SF	30 m, 40 m, 50 m		Yes		Unavail- able		Available
CA1A□□□SFR					able		
CA1A□□□B							
CA1A□□□BF							
CA1B□□□S	3 m, 5 m, 10 m, 15 m, 20 m	Yes	Yes	Available	Available	Available	Available
CA1B□□□SF	30 m, 40 m, 50 m		Yes		Unavail-		Available
CA1B□□□B					able		
CA1B□□□BF							
CA1C□□□S	3 m, 5 m, 10 m, 15 m, 20 m	Yes	Yes	Available	Available	Available	Available
CA1C□□□SF	30 m, 40 m, 50 m		Yes		Unavail-		Available
CA1C□□□B					able		
CA1C□□□BF							
CA1D□□□B	3 m, 5 m, 10 m, 15 m, 20 m	Yes		Available		Available	
CA1D□□□BF	30 m, 40 m, 50 m	Yes		Unavail- able		Available	
CA1E□□□S	3 m, 5 m, 10 m, 15 m, 20 m	Yes	Yes	Available	Available	Available	Available
CA1E□□□SF	30 m, 40 m, 50 m		Yes		Unavail-		Available
CA1E□□□B					able		
CA1E□□□BF							
CA1F□□□S	3 m, 5 m, 10 m, 15 m, 20 m	Yes		Available		Available	
CA1F□□□SF	30 m, 40 m, 50 m	Yes		Unavail-		Available	
CA1F□□□B				able			
CA1F□□□BF							

Motor Power Cable				Specifications for combinations			
				Unit version		Unit version	
				1.2 or earlier		1.3 or later	
Model (R88A-)	Cable length	Cable version		Cable version		Cable version	
Woder (RooA-)		Ver.1.0	Ver.1.1	Ver.1.0	Ver.1.1	Ver.1.0	Ver.1.1
CA1H0□□SF	3 m, 5 m, 10 m, 15 m, 20 m	Yes		Available		Available	
CA1H0□□BF							
CA1HE□□BF	10 m, 20 m	Yes		Unavail-		Avail-	
				able ^{*1}		able ^{*2}	
CA1J0□□SF	3 m, 5 m, 10 m, 15 m, 20 m	Yes		Available		Available	
CA1J0□□BF							
CA1JE□□BF	10 m, 20 m	Yes		Unavail-		Avail-	
				able ^{*1}		able*2	
CA1K0□□SF	3 m, 5 m, 10 m, 15 m, 20 m	Yes		Available		Available	
CA1K0□□BF							
CA1KE□□BF	10 m, 20 m	Yes		Unavail-		Avail-	
				able ^{*1}		able ^{*2}	


^{*1.} You cannot use an extension cable for a unit version 1.2 or earlier of Servo Drive.

^{*2.} This can be used when the total wire length of motor power cables per Servo Drive is 50 m or less. Refer to *3-4-3 Combination of Power Cable and Extension Cable* on page 3-134 for details.


A-7 Connection Examples


A-7-1 Example of Connecting to NX-series Digital I/O Unit

Example of Connecting to NX-ID3317

Example of Connecting to NX-ID3417

Index

Index

Numerics	F
7-segment LED Display	Free-Run Mode 5-14
A	Н
Absolute encoder 2-5, 2-6, 2-7, 2-8, 3-44	Home Proximity Input (DEC)3-30, 7-3, 7-7
Accessories 30 AL Status Code List 12-38	1
В	ID switch1-6, 1-10, 1-14, 5-2 indicators1-14, 5-2
Brake Interlock Connector (CN12)1-7, 1-9, 1-15, 3-35	Information
С	L
CAN application protocol over EtherCAT5-5, A-12	LED1-14, 10-5
Charge lamp1-6, 1-8, 1-10, 1-14 Checking the Error Occurrence	M
CiA 402 Drive Profile	Main Circuit Connector (CNA)1-6, 1-10, 1-15, 3-14
Control Circuit Connector (CND)	Main Circuit Connector A (CNA)1-15, 3-15
Control I/O Connector (CN1) 1-6, 1-8, 1-10, 1-14, 3-27	Main Circuit Connector B (CNB)1-8, 1-15, 1-16, 3-15
Control Power Supply Connector (CND)1-8, 1-16	Modes of Operation
Controlword	Monitor input
D	Motor Connector (CNC)1-7, 1-9, 1-16, 3-15, 3-16
<u> </u>	N
DC Mode 5-14	
Decelerator2-19, 2-100, 2-101, 2-103, 3-70	Negative Drive Prohibition Input7-3, 7-7
Distribution Completed Output (DEN)7-8, 7-14	Negative Torque Limit Input (NCL)7-3, 7-7
E	Node Address
EDM	0
EDM output	
EDM Output Circuit	object dictionary
Encoder	Object List
Encoder Connector (CN2)1-7, 1-9, 1-14, 3-35	One-degree-of-freedom (ODF) control 6-2
Error Clear Attribute Output (ERR-ATB)7-8, 7-13	Р
Error List	<u>'</u>
Error Output (ERR)3-28, 3-32, 7-8, 7-11	PDO5-7
Error Stop Input (ESTP)3-30, 7-3, 7-7	PDO Mapping
EtherCAT Communications Connector	PDS state
	PFH
EtherCAT Slave Information (ESI)5-18	Position Command Status Output (PCMD)7-8, 7-13
EtherCAT State Machine (ESM) 5-6	Position Completion Output (INP1, INP2)
Event codeA-100	Position control6-2, 6-5
External Latch Input	Positive Drive Prohibition Input (POT)3-30, 7-3, 7-7
External Regeneration Resistance Unit2-34, 2-120, 3-148, 3-149, 3-151, 4-77	Positive Torque Limit Input (PCL)7-3, 7-7
External Regeneration Resistor	
2-34, 2-120, 3-147, 4-76, 4-77	

R Reactor 2-35, 2-122, 3-152 Remote output3-32 Remote Output (R-OUT1 to R-OUT3) 7-8, 7-14 RxPDO5-7 S Safety Input Circuits3-34 SDO5-13 SDO communications5-13 Servo Drive Characteristics3-5 Dimension2-37 General Specifications3-3 How to Read Model Numbers2-4 Installation Conditions4-2 Model Table2-11 Replacing12-4 Servo Drive and Servomotor Combination Tables ..2-17 Servo Ready Output (READY) 3-32, 7-8, 7-11 Servomotor Characteristics3-45 General Specifications3-43 Installation Conditions4-7 Model Tables2-12 Replacing12-4 Servo Drive and Servomotor Combination Tables ..2-17 Servomotor model number2-5 Slave Information Interface (SII)5-19 State Machine A-2 Status Indicators 1-6, 1-10, 1-14, 5-3 STO function8-2 Sysmac Error Status5-16 Sysmac Studio 1-2, 2-2, 10-9 T Two-degree-of-freedom (TDF) control6-2 TxPDO5-7 U USB connector (CN7)1-6, 1-10, 1-15, 3-36 V Velocity Attainment Detection Output (TGON) 7-8, 7-12 Velocity Conformity Output (VCMP)7-8, 7-13

W

Warning List	12-8
Warning Output (WARN1, WARN2)	.7-8, 7-13
z	

Zero Speed Detection Output (ZSP)	.7-8,	7-12
Zone Notification Output (ZONE1, ZONE2)	.7-8,	7-14

Appendices

OMRON Corporation **Industrial Automation Company**

Kyoto, JAPAN

Contact: www.ia.omron.com

Regional Headquarters OMRON EUROPE B.V.

Wegalaan 67-69, 2132 JD Hoofddorp The Netherlands Tel: (31)2356-81-300/Fax: (31)2356-81-388

OMRON ASIA PACIFIC PTE. LTD.

OMRON ASIA PACIFIC PTE. LTD.

No. 438A Alexandra Road # 05-05/08 (Lobby 2),
Alexandra Technopark,
Singapore 119967
Tel: (65) 6835-3011/Fax: (65) 6835-2711

OMRON ELECTRONICS LLC

OMRON (CHINA) CO., LTD.
Room 2211, Bank of China Tower,
200 Yin Cheng Zhong Road,
PuDong New Area, Shanghai, 200120, China
Tel: (86) 21-5037-2222/Fax: (86) 21-5037-2200

2895 Greenspoint Parkway, Suite 200 Hoffman Estates, IL 60169 U.S.A. Tel: (1) 847-843-7900/Fax: (1) 847-843-7787

Authorized Distributor:

© OMRON Corporation 2016-2021 All Rights Reserved. In the interest of product improvement, specifications are subject to change without notice.

Cat. No. I586-E1-14

1221