Study of X-ray flares from the wind-fed X-ray binaries

Maksat Satybaldiev

Astro and Theory Seminar, NTNU 07/11/2023

Pic credits: DALL-E 2

Disk-fed

(RLOF)

Low Mass X-ray Binaries (LMXBs) $M_C \lesssim 1 M_{\odot}$ old: ~ 10^9 years (bursters, symbiotic binaries...)

X-ray Binaries NS/BH + Donor Star

High Mass X-ray Binaries (HMXBs) $M_C \gtrsim 10 M_{\odot}$ young: $\lesssim 10^7$ years (SgXBs, BeXBs, SFXTs...) Wind-fed

• IGR J16195-4945 (SFXT)

• 3A 1954+319 (RSG XB)

Credits: ESA/AOES Medialab

SFXT - Supergiant Fast X-ray Transient

• HMXB: compact object accretes the clumpy wind from supergiant companion

• Bright sporadic X-ray flares: dynamic range ≥ 10 , duration ~1000 s, duty cycle $\lesssim 5\%$

• Average luminosity $L \lesssim 10^{34} \mathrm{erg} \mathrm{s}^{-1}$

• Possible models:

- extremely clumpy winds (in't Zand 2005): clump masses ~ $10^{21} - 10^{23} g$, - centrifugal or magnetic gates (Grebenev 2008; Bozzo et al. 2008): $B \sim 10^{12} G, P_{spin} \sim 10 s \text{ or } B \sim 10^{14} G, P_{spin} \gtrsim 1000 s,$

- quasi-spherical subsonic settling accretion (Shakura et al. 2012): $L_X \lesssim 4 \times 10^{36} \text{ erg s}^{-1}$

X-ray Binaries with Red Supergiant Donor (RSGXBS) Wind-fed X-ray Binaries Galactic RSG SgXBs: 3A 1954+319 (Hinkle et al. 2020) SWIFT J0850.8-4219 (De et al. 2023) (?) CXO 174528.79-290942.8 (Gottlieb et al. 2020)

IGR J16195-4945

- Discovered by INTEGRAL (Walter et al. 2004)
- Orbital period $P_o = 3.945 \pm 0.005 d$ (Cusumano et al., 2016)
- Eclipsing HMXB, duration ~3.5% of P_o (Cusumano et al., 2016)
- Blue Supergiant ON9.7lab companion star (Coleiro et al., 2013)
- Distance ~5-15 kpc (Tomsick et al., 2006)

SRG/ART-XC observed IGR J16195-4945 from 2021-03-03 01:42 UTC to 2021-03-04 01:40 UTC

Epoch Folding

Hardness = counts[8-20 keV]/counts[4-8 keV]

Hardness = counts[8-20 keV]/counts[4-8 keV]

Bin time: 500 s

Hardness = counts[8-20 keV]/counts[4-8 keV]

Bin time: 500 s

tbabs*cutoffpl

Segment	$N_H,{ m cm^{-2}}$	Γ	E_{cut}
Full ART-XC + XRT + BAT	$(12 \pm 2) \times 10^{22}$	0.56 ± 0.15	13
Full ART-XC	$(16 \pm 8) imes 10^{22}$	0.87 ± 0.35	15
Full ART-XC (fixed N_H)	$12 imes 10^{22}$	0.67 ± 0.27	15
ART-XC: ACG (fixed N_H)	$12 imes 10^{22}$	$0.58\substack{+0.84 \\ -0.97}$	10
ART-XC: BDF (fixed N_H)	$12 imes 10^{22}$	0.59 ± 0.27	15

tbabs*cutoffpl

Segment	$N_H,{ m cm^{-2}}$	Γ	E_{cut}
Full ART-XC + XRT + BAT	$(12 \pm 2) \times 10^{22}$	0.56 ± 0.15	13
Full ART-XC	$(16 \pm 8) \times 10^{22}$	0.87 ± 0.35	15
Full ART-XC (fixed N_H)	$12 imes 10^{22}$	0.67 ± 0.27	15
ART-XC: ACG (fixed N_H)	$12 imes 10^{22}$	$0.58\substack{+0.84 \\ -0.97}$	10
ART-XC: BDF (fixed N_H)	$12 imes 10^{22}$	0.59 ± 0.27	15

tbabs*cutoffpl

Segment	$N_H,{ m cm^{-2}}$	Γ	E_{cut}
Full ART-XC + XRT + BAT	$(12 \pm 2) \times 10^{22}$	0.56 ± 0.15	13
Full ART-XC	$(16 \pm 8) \times 10^{22}$	0.87 ± 0.35	15
Full ART-XC (fixed N_H)	$12 imes 10^{22}$	0.67 ± 0.27	15
ART-XC: ACG (fixed N_H)	$12 imes 10^{22}$	$0.58\substack{+0.84 \\ -0.97}$	10
ART-XC: BDF (fixed N_H)	$12 imes 10^{22}$	0.59 ± 0.27	15

100

tbabs*cutoffpl

Segment	$N_H,{ m cm^{-2}}$	Γ	E_{cut}
Full ART-XC + XRT + BAT	$(12 \pm 2) \times 10^{22}$	0.56 ± 0.15	13
Full ART-XC	$(16 \pm 8) \times 10^{22}$	0.87 ± 0.35	15
Full ART-XC (fixed N_H)	$12 imes 10^{22}$	0.67 ± 0.27	15
ART-XC: ACG (fixed N_H)	$12 imes 10^{22}$	$0.58\substack{+0.84 \\ -0.97}$	10
ART-XC: BDF (fixed N_H)	$12 imes 10^{22}$	0.59 ± 0.27	15

tbabs*cutoffpl

Segment	$N_H,{ m cm^{-2}}$	Γ	E_{cut}
Full ART-XC + XRT + BAT	$(12 \pm 2) \times 10^{22}$	0.56 ± 0.15	13
Full ART-XC	$(16 \pm 8) \times 10^{22}$	0.87 ± 0.35	15
Full ART-XC (fixed N_H)	$12 imes 10^{22}$	0.67 ± 0.27	15
ART-XC: ACG (fixed N_H)	$12 imes 10^{22}$	$0.58\substack{+0.84\\-0.97}$	10
ART-XC: BDF (fixed N_H)	$12 imes 10^{22}$	0.59 ± 0.27	15

100

tbabs*cutoffpl

Segment	$N_H, { m cm^{-2}}$	Γ	E_{cut}
Full ART-XC + XRT + BAT	$(12 \pm 2) \times 10^{22}$	0.56 ± 0.15	13
Full ART-XC	$(16 \pm 8) \times 10^{22}$	0.87 ± 0.35	15
Full ART-XC (fixed N_H)	$12 imes 10^{22}$	0.67 ± 0.27	15
ART-XC: ACG (fixed N_H)	$12 imes 10^{22}$	$0.58\substack{+0.84 \\ -0.97}$	10
ART-XC: BDF (fixed N_H)	$12 imes 10^{22}$	0.59 ± 0.27	15

"Colorless" variability

$L_{bol} = (1.38 \pm 0.05) \times 10^{35} (d/5 \text{ kpc})^2 \text{ erg s}^{-1} < L_{crit} = 4 \times 10^{36} \text{ erg s}^{-1}$

Setting accretion?

	1
C	
$\mathbf{\Sigma}$	

 $L_{crit} = 4 \times 10^{36} \text{ erg s}^{-1} (\dot{M}_{crit} = 4 \times 10^{16} \text{ g s}^{-1})$ Shakura et al., 2012

Quasi-spherical subsonic settling accretion: $\dot{M} < \dot{M}_{crit} = 4 \times 10^{16} \text{ g s}^{-1}$

Bondi-Hoyle-Littleton accretion (supersonic):

 $\dot{M} > \dot{M}_{crit} = 4 \times 10^{16} \text{ g s}^{-1}$

Bondi, 1952

Sidoli et al. 2019, Shakura et al. 2014

 $v_w \approx 500 \text{ km s}^{-1}$ typical for HMXBs (Martinez-Nunez et al. 2017)

IGR J16195-4945 in Ks filter (red dots) according to the VVV survey. White markers show magnitudes of comparison stars normalized to the average magnitude of IGR J16195-4945

Rapid IR variability

- Changes in brightness for 0.1-0.2 magnitudes over several days
- Atypical for blue supergiants. Usual variability in range 0.02-0.04 (Buysschaert et al. 2015; Aerts et al. 2017)

3A 1954+319

- Discovered by the Uhuru (Forman et al. 1978)
- Slowest NS in XBs (spin period ~5 hours; Corbert et al. 2008)
 - with spin-ups and spin-downs (Marcu et al. 2011)
- SyXB with M4-5 III optical companion at a distance of 1.7 kpc (Masetti et al. 2006)

3A 1954+319

- Discovered by the Uhuru (Forman et al. 1978)
- Slowest NS in XBs (spin period ~5 hours; Corbert et al. 2008) with spin-ups and spin-downs (Marcu et al. 2011)
- SyXB with M4-5 III optical companion at a distance of 1.7 kpc (Masetti et al. 2006)
- Gaia revealed that 3A 1954+319 is SgXB with RSG donor at a distance of ~3.3 kpc (Hinkle et al. 2020)
- NS may have magnetar-like magnetic field B $\gtrsim 10^{14}$ G or settling accretion regime (Enoto et al. 2014, Bozzo et al. 2022)

Harrison et al. 2013

Harrison et al. 2013

Time, s

tbabs*highecut*pow

 $N_H = (8.3^{+0.4}_{-0.6}) \times 10^{22} \text{ cm}^{-2}$ $E_{C} = 7.2^{+0.3}_{-0.6} \text{ keV}$ $E_{F} = 26^{+1}_{-2} \text{ keV}$ $\Gamma = 1.65^{+0.28}_{-0.57}$

 $L_{bol} = (1.6^{+0.5}_{-0.7}) \times 10^{36} \text{ erg s}^{-1} < L_{crit} = 4 \times 10^{36} \text{ erg s}^{-1}$

 $v_w \approx 1700 \text{ km s}^{-1}$ inconsistent with RSG wind velocities ($\sim 10 - 30 \text{ km s}^{-1}$)

- spectral and temporal analysis of IGR J16195-4945 and 3A 1954+319
- IGR J16195-4945 shows "colorless" X-ray variability
- flare properties of IGR J16195-4945 are consistent with subsonic settling accretion model and with other SFXTs
- no pulsations detected in IGR J16195-4945 data
- IGR J16195-4945 wind velocity estimated $v_{w} \approx 500$ km s⁻¹
- IGR J16195-4945 exhibits unusual rapid IR variability
- 3A 1954+319 flare properties are different from SFXTs
- 3A 1954+319 wind velocity estimation is too high for red supergiants

Spectral and temporal analysis of the Supergiant Fast X-ray Transient IGR J16195-4945 with SRG/ART-XC

M. N. Satybaldiev^{*1,2}, I. A. Mereminskiy¹, A. A. Lutovinov¹, D. I. Karasev¹, A. N. Semena¹, A. E. Shtykovsky¹

> ¹Space Research Institute, Moscow ²Moscow Institute of Physics and Technology

Received 28.03.2023. Revised 19.05.2023. Accepted 03.06.2023.

https://ui.adsabs.harvard.edu/abs/2023AstL...49..249S/abstract

Thank you.

Orbital folded light curve of IGR J16195-4945(Cusumano et al., 2016)

Segment	$N_H, { m cm^{-2}}$	Γ	E_{cut}, keV	χ^2 / d.o.f.	$F[4-20 \text{ keV}], \text{ erg s}^{-1} \text{ cm}^{-2}$
Full ART-XC + XRT + BAT	$(12 \pm 2) \times 10^{22}$	0.56 ± 0.15	13 ± 2	$231.29 \ / \ 185$	$(2.5 \pm 0.1) \times 10^{-11}$
ART-XC	31 ± 15	1.09 ± 0.41	19^{+28}_{-7}	$191.15\ /\ 157$	$(2.9^{+0.4}_{-0.2}) \times 10^{-11}$
Full ART-XC (fixed N_H)	$12 imes 10^{22}$	0.67 ± 0.27	15^{+12}_{-5}	$196.49\ /\ 158$	$(2.4 \pm 0.3) \times 10^{-11}$
ART-XC: ACG (fixed N_H)	$12 imes 10^{22}$	$0.58\substack{+0.84 \\ -0.97}$	10^{+88}_{-5}	$187.16 \ / \ 158$	$(0.9 \pm 0.1) \times 10^{-11}$
ART-XC: BDF (fixed N_H)	$12 imes 10^{22}$	0.59 ± 0.27	15_{-5}^{+9}	$184.15 \ / \ 158$	$(4.1 \pm 0.2) \times 10^{-11}$

#	Energy, 10^{38} erg (1-10 keV)	Waiting time, s	Duration, s	Rise time, s	Pre-flare L_x , $10^{34} \text{ erg s}^{-1}$ (1-10 keV)
1	4.4 ± 0.2	15000(*)	4000	2500	1.6 ± 0.1
2	5.9 ± 0.3	8500	5500	2500	4.0 ± 0.2
3	3.1 ± 0.3	6250	2000	500	5.5 ± 0.3
4	3.5 ± 0.2	4750	4500	1500	5.4 ± 0.4
5	4.1 ± 0.2	15750	5000	1500	2.6 ± 0.1
6	3.4 ± 0.2	15500	3000	2000	4.3 ± 0.2

 Table 1. Parameters of the best-fit for the spectra of IGR J16195-4945

Table 2. Measured flare properties

tions have the form: flare waiting time ΔT on pre-flare luminosity ($L_{X,pre}$, pre-flare):

$$\Delta T \approx 130 [\text{s}] \left(\frac{\alpha}{0.03}\right) A \zeta^{2/9} \mu_{30}^{2/3} \dot{M}_{16}^{-1},$$

energy released in a flare ΔE on its duration Δt :

$$\Delta E \approx 3 \times 10^{35} [\text{erg s}^{-1}] \left(\frac{\alpha}{0.03}\right) A \zeta^{2/9} \mu_{30}^{2/3} v_8^3 \Delta t,$$

flare rise time δt_{rise} on $L_{X,pre}$:

$$\delta t_{rise} \simeq 30 [c] \zeta^{4/27} \mu_{30}^{7/9} \dot{M}_{16}^{-2/3},$$

ratio between the flare energy and the waiting time $\Delta E/\Delta T$:

$$\frac{\Delta E}{\Delta T} = 10^{36} [\text{erg s}^{-1}] \dot{M}_{16},$$

where the mass accretion rate $\dot{M}_X = 10^{16} [{\rm g \ s}^{-1}] \dot{M}_{16}$ related to pre-flare luminosity as $L_{\rm X,pre} = 0.1 \dot{M}_X c^2$, $\alpha \sim 0.03$ - , the dimensionless factor, defining the non-linear growth rate , $A \leq 1$ is the effective Atwood number, $\zeta \leq 1$ characterizes the size of the RTI region in units of the magnetospheric radius R_m , $\mu = 10^{30} [{\rm G \ cm}^3] \mu_{30}$ - the NS magnetic moment, v = $10^8 [{\rm cm \ s}^{-1}] v_8$ - the relative wind velocity.

 $\Delta t \approx 400 [\text{s}] \left(\frac{v_w}{1000 [\text{km s}^{-1}]} \right)$

Figure 1. From top to bottom: *INTEGRAL* observations of 3A 1954 + 319 with an offset angle $\leq 10^{\circ}$ and *INTEGRAL*-ISGRI detections (blue and brown tickmarks, respectively). The long-term light curve shown was obtained by Swift-BAT in the 15–50 keV range and has been rebinned to a resolution of 5 days. The lower part of the figure shows the pulse period evolution as determined by BAT (black) and ISGRI (red).

Figure 3. Upper panel: ISGRI pulse profiles for the flaring episode in 2008, in the energy ranges of 20–40 keV (black) and 40–100 keV (red, multiplied by 3 for better visibility). Middle panel: hardness ratio obtained by dividing the 40–100 keV by the 20–40 keV profile. The dashed line indicates the mean hardness. Lower panel: deviation of the hardness ratio from the mean hardness in units of σ . The dashed line indicates no deviation.

Marcu et al. 2011