Ten Lessons From Three Generations Shaped Google's TPUv4i

 $\bullet \bullet \bullet$

Patrick Legendre & Joergen Fagervik

Agenda

- Evolution of Google TPU designs
- 10 Lessons from 3 Generations TPU designs
- Results
- Conclusion

From TPUv1 to TPUv4i

Figure 1. TPUv1 block diagram (left) vs TPUv2/v3.

Feature	TPUv1	TPUv2	TPUv3	TPUv4i	NVIDIA T4	
Peak TFLOPS / Chip	92 (8b int)	<u>46 (bf16)</u>	<u>123 (bf16)</u>	138 (bf16/8b int)	65 (ieee fp16)/130 (8b int)	
First deployed (GA date)	Q2 2015	<u>Q3 2017</u>	<u>Q4 2018</u>	<u>Q1 2020</u>	Q4 2018	
DNN Target	Inference only	Training & Inf.	Training & Inf.	Inference only	Inference only	
Network links x Gbits/s / Chip		4 x 496	<u>4 x 656</u>	<u>2 x 400</u>		
Max chips / supercomputer		256	<u>1024</u>	<u></u>		
Chip Clock Rate (MHz)	700	700	<u>940</u>	<u>1050</u>	585 / (Turbo 1590)	
Idle Power (Watts) Chip	28	<u>53</u>	<u>84</u>	<u>55</u>	36	
TDP (Watts) Chip / System	75 / 220	<u>280 / 460</u>	<u>450 / 660</u>	<u>175 / 275</u>	70 / 175	
Die Size (mm ²)	< 330	<u>< 625</u>	<u>< 700</u>	< 400	545	
Transistors (B)	3	<u>9</u>	<u>10</u>	<u>16</u>	14	
Chip Technology	28 nm	<u>16 nm</u>	16 nm	<u>7 nm</u>	12 nm	
Memory size (on-/off-chip)	28MB / 8GB	<u>32MB / 16GB</u>	32MB / 32GB	<u>144MB / 8GB</u>	18MB / 16GB	
Memory GB/s / Chip	34	<u>700</u>	<u>900</u>	<u>614</u>	320 (if ECC is disabled)	
MXU Size / Core	1 256x256	<u>1 128x128</u>	<u>2 128x128</u>	<u>4 128x128</u>	8 8x8	
Cores / Chip	1	2	2	1	40	
Chips / CPUHost	4	4	4	8		
Table 1. Key characteristics of DSAs. The underlines show changes over the prior TPU generation, from left to right. System TDP						
includes power for the DSA memory system plus its share of the server host power, e.g., add host TDP/8 for 8 DSAs per host.						

Compiler Compatibility Trumps Binary Compatibility

- Maintain backwards compatibility
- Achieve better instruction level parallelism
- Share source code vs sharing binary files

Target Total Cost over Initial Cost

• TCO vs CapEx

TCO = CapEX + n * Opex

CapEx (CapitalExpense) = price of an item

Opex (OperationExpense) = cost of operation (electricity, power provisioning)

TCO = Total cost of Ownership

n = number of years in operation

• perf/TCO over raw performance

Semi-Conductor Technology Advances Unequally

Operation		Picojoules per Operation				
		45 nm	7 nm	45/7		
+	Int 8	0.03	0.007	4.3		
	Int 32	0.1	0.03	3.3		
	BFloat 16		0.11			
	IEEE FP 16	0.4	0.16	2.5		
	IEEE FP 32	0.9	0.38	2.4		
×	Int 8	0.2	0.07	2.9		
	Int 32	3.1	1.48	2.1		
	BFloat 16		0.21			
	IEEE FP 16	1.1	0.34	3.2		
	IEEE FP 32	3.7	1.31	2.8		
SRAM	8 KB SRAM	10	7.5	1.3		
	32 KB SRAM	20	8.5	2.4		
	1 MB SRAM ¹	100	14	7.1		
GeoMe	an ¹			2.6		
DRAM		Circa 45 nm	Circa 7 nm			
	DDR3/4	1300 ²	1300 ²	1.0		
	HBM2		$250-450^2$			
	GDDR6		350-480 ²			
Table 2. Energy per Operation: 45 nm [16] vs 7 nm. Memory						
is pJ per 64-bit access.						

Support Multi-Tenancy

- Support future DNN requirements
- Up to 8 TPUs on 1 host CPU
- Sharing can reduce costs and latency
- Support for multiple batch sizes
- Support fast switching times between models

Deep Neural Networks grow 1.5x Annually

• Production DNNs needs grow as fast as Moore's law

Model	Annual Memory Increase	Annual FLOPS Increase
CNN1	0.97	1.46
MLP1	1.26	1.26
CNN0	1.63	1.63
MLP0	2.16	2.16

DNN advances evolve Workloads

- Ambitious
- Waiting for software and hardware to catch up
- Fast paced area
- Larger and more complex networks

Inference requires Floating Point

- Quantization
- Precision
- The 1% drop

Inference DSAs need Air Cooling

- TPUv3 used liquid cooling
- Data centres
- Storage

Applications limit latency

- Latency limit
- Not batch size

Production				MLPerf 0.7				
DNN	ms	batch	DNN	ms	batch	DNN	ms	batch
MLP0	7	200	RNN0	60	8	Resnet50	15	16
MLP1	20	168	RNN1	10	32	SSD	100	4
CNN0	10	8	BERT0	5	128	GNMT	250	16
CNN1	32	32	BERT1	10	64			

Support Backwards compatibility

- Time-to-market constraints
- Same results no matter versions
- The horrors of IEEE754 and associativity
- BFloat16 vs Float32

$$(a+b)+c = a+(b+c)$$

The Associative Law of Multiplication

www.suzanneshares.com

 $(a \times b) \times c = a \times (b \times c)$

Google TPUv4i

Results

Conclusion

Questions ?

References

- A Survey of Different Approaches for Overcoming the Processor Memory Bottleneck - Scientific Figure on ResearchGate. Available from: https://www.researchgate.net/figure/Yearly-improvement-of-processor-and-DRAM -memory-speeds-for-a-time-period-of-three_fig2_340621273 [accessed 20 Oct, 2023]
- Memory Systems for AI, Steven Woo, Available from: <u>https://www.rambus.com/blogs/memory-systems-for-ai-part-6/</u> [accessed 20 Oct, 2023]
- BFloat16. Available from: <u>https://en.wikipedia.org/wiki/Bfloat16_floating-point_format</u> [accessed 23 Oct, 2023]