INTEGRATED ENERGY DESIGN – assignment 3

Lin Du, ArjunBasnet, Tina Viklund

1. INTRODUCTION

The core of the Linesøya project is to generate a showcase project for sustainable architecture and environmental measures. It aims to complete Scandinavia's first retrofit of a single unit building to zero-energy standard. The existing school building from the 1950 will be renovated to passive house standard to develop energy-efficient retrofitting and on-site energy production. In this context, we have just completed our design studio. For the energy calculation of this project, we have divided the building into three zones which are residential (106.5m²), culture/office (198m²) and sports area (159.5m²). So the total heated floor area is 464m².

2. METHODOLOGY

In this assignment, we have basically used the PHPP to to work out more updated energy budgets and quality control related to the project. In this regards, we will somewhat compare the calculations that we have made earlier in the 2nd assignment and the design project. In the earlier assignments, we basically calculated manually and also used Ecotect to some extent.

3. CALCULATION RESULTS

Comparative study of calculations made during the design project with PH	IPP
Heating	

	heat		electricity		total
	Net energy demand [kwh/a]	Specific energy demand [kwh/(m ² a) (464.4m ²)]	Net energy demand [kwh/a]	Specific energy demand [kwh/(m ² a) (464.4m ²)]	
heating	10093.768	21.74			
domestic hot water(DHW)	12119.0918	26.10		_	
fans			4820.724	10.38	
pumps	[1441.44	3.10	
lighting			6430.144	13.85	
technical equipment			4876.782	10.50	
cooling					
sum	22212.8598		17569.09		39781.95
		47.83		37.83	85.66

Figure 1: Energy demand of the building (calculation during the design project)

	HEATING	COOLING	TOTAL
MONTH	(Wh)	(Wh)	(Wh)
Jan	1667302	0	1667302
Feb	1505826	0	1505826
Mar	1358103	25953	1384056
Apr	684460	70939	755398
May	317166	375289	692455
Jun	13253	425503	438756
Jul	6498	695363	701862
Aug	5775	760896	766671
Sep	66788	348524	415312
Oct	117361	60807	178168
Nov	946406	24155	970561
Dec	2226450	3524	2229974
TOTAL	8915389	2790952	11706342
PER M	19197.6507	6009.80189	41.3386105
Floor Area:	464.4	m2	

Figure 2: Heating demand of the building from the Ecotect

From fig1, we see that the maximum heating demand of the building is 21.74kwh/(m²a). This number is calculated according to the Norwegian Passive House Standard. However, the simulation result of the heating requirement from the Ecotect is 19.2kwh/(m²a)(Fig 2). It seems that this result doesn't meet the passive house requirement of no more than 15 kwh/(m²a). The reasons behind this are, first the limitation of the Ecotect, for example, we were not able to find all materials which we choose in our project, so the deviation exists during simulation. Second one is because this house is not only serves for a residential purpose, but is also a multipurpose space with office, a gym and a conference . In this case, the heating demand for the office as per the standard is no more than 25 kwh/(m²a). Therefore, our design meets the Passive House Standard.

Figure 3: Simulation results from PHPP

Figure 4: Heating demand of the building from PHPP

Fig3 and 4 show that the specific space heat demand of the building is $8 \text{kwh/(m}^2 a)$. This is because we choose an excellent insulation in the real situation, which helps reduce the heating demand of the building. And also, we can notice that the treated floor area is 472m^2 , which is bigger than the heated floor area(464 m²) which we used in the energy calculation manually during the design process. This 472m^2 also contains about the partition wall area and elevator. The primary energy demand is 93 kwh/(m²a), which also meets the passive house standard.

Electricity

For reference see attached PHPP (appendix)

In PHPP we have calculated the electricity demand for lighting. This depends on the category, the geometry and orientation of the room, and of course the window sizes. This gives us the lightning demand of 8083 kWh/a. Here we also can see that even though the gym does not demand high illuminance level it is still the biggest consumer of electricity for lighting. This is because it takes 26% of the floor area and has small windows compared to its size. This lighting demand is about 1600 kWh higher then calculated in the energy budget in previous phase.

When it comes to office equipment we have calculated with 2 PCs with monitors, 1 copier, 2 printers, 1 server and 1 telephone system. The telephone system is the largest consumer in this chart mainly because it runs for 8769 hours a year. In the café kitchen we have a gas stove, dishwasher, refrigerator and a coffee machine. Since we have chosen to treat the building as non-domestic in PHPP the household appliances are not taken into account. But we have manually calculated them to 4587 kWh/a. This contains dishwasher, washing machine, refrigerator, freezer, consumer electronics and other small appliances. The office equipment and the kitchen cafè demands are 2114 kWh compared to 4875 kWh calculated in previous phase. The difference is because we earlier calculated this with a standard value for technical equipment in offices, while in PHPP we have specified the type and number of equipment.

raction of Opening Duration	Day GF	Day UF	uliding Volume	1180	mª		
raction of Opening Duration	Day GF	DAV UF					
raction of Opening Duration			Day	Night	Night	Night	-
	136	13%	13%	100%	100%	100%	
dary Conditions							
emperature Diff Interior - Exterio	4	4	4	1	1	1	×
Vind Velocity	2	2	2	0	0	Q	m/s
.1		•••••••					
wentity	6	6	2	2	6	6	
lear Width	1.90	1.21	4.00	4.00	1.90	1.21	m
lear Height	1.90	1.61	2.00	2.00	1.90	1.61	m
liting Windows?	x	x	x	ж	x	x	
pening Width (for tilting window	0.050	0.050	0.050	0.050	0.050	0.050	m
p 2 (Cross Ventilation)							
wentity	5	4	2	2	5	4	
lear Width	1.11	1.21	1.17	1.17	1.11	1.21	
lear Height	0.81	0.75	1.38	1.38	0.81	0.75	m
liting Windows?	x	x	x	x	x	x	3
pening Width (for Tilting Windov	0.050	0.050	0.050	0.050	0.050	0.050	m
Ifference in Height to Window 1	0.20	0.40	0.30	0.30	0.20	0.40	m
d Ventilation 1 - Airflow Volume	303	218	135	55	134	97	net the
d Ventilation 2 - Airflow Volume	90	70	61	27	33	25	main
	0.10	780	493	82	168	121	m3/b
ross Ventilation Airflow Volume	246	1.000					
	emperature Diff Interior - Extendo Vind Velocity p 1 Juanthy litear Height Tisting Windows? Ibening Windows? Ibening Windows? Iber Windh Litear Windh Stear Height Tisting Windows? Jeaning Windows? Jeaning Windows? Iterence in Height to Window Merence in Height to Window 1	emperature Diff Interior - Extendor 4 Wind Velocity 2 p1 2 bantity 6 iter Width 1.90 iter Height 1.90 Titing Windows? x iter Width 5 iter Width 5.11 iter Width 0.950 p2 (Cross Ventilistion) 5 iter Width 0.91 iter Height 0.91 iter Height 0.91 iter Height 0.910 Width (for Tititing Window 1 0.200 wid Ventiliation 1 - Aliflow Volume 303 wid Ventiliation 2 - Aliflow Volume 301	emperature Diff Interior - Exercity 4 4 Vind Velocity 2 2 p 1 2 2 basisty 6 6 ites Witch 1.90 1.61 ites velocity 0.050 0.050 ites velocity 5 4 velocity 0.050 0.050 velocity 0.020 0.40	emperature Diffiniterior - Extended 4 4 4 Wind Velocity 2 2 2 p 1 2 2 2 hanstly 6 6 2 p 1 5 1.50 1.21 4.00 lear Height 1.90 1.61 2.00 iteling Windows7 x x x logening Windows7 0.050 0.050 0.050 p 2 (Cross Ventiliation) 5 4 2 logening Windows7 x x x partity 5 4 2 logening Windows7 x x x partity 5 4 2 logening Windows7 x x x partity Windows7 x x x value windows7 x x x users Width 0.050 0.050 0.050 windows7 x x x x value wi	Emperature Diff Interior - Extends 4 4 4 4 1 Wind Velocity 2 2 2 0 p 1 2 2 2 0 p 1 6 6 2 2 p 1 6 6 2 2 p 1 1.950 1.21 4.00 4.00 iter Witch 1.950 1.61 2.00 2.00 iter Witch 1.950 1.61 2.00 2.00 iter Witch (for fitting windows? x x x x iter Witch 5 4 2 2 iter Witch 0.11 1.11 1.21 1.17 1.17 iter Height 0.91 0.75 1.28 1.38 x iter Height 0.91 0.75 1.28 1.38 x iter Witch 0.050 0.050 0.050 0.050 0.050 iter Witch (for Titeling Windov 0.050 0.050	Emperature Diff Interior - Extended 4 4 4 4 1 1 Wind Velocity 2 2 2 0 0 p 1 Ausoto 6 6 2 2 0 0 p 1 Ausoto 1 90 1.21 4.00 4.00 1.90 ites Witch 1.90 1.61 2.00 2.00 1.90 ites Height 1.90 1.61 2.00 2.00 1.90 ites Witch (for tilting window) 0.050 0.050 0.050 0.050 0.050 gening Witch (for tilting window) 5 4 2 2 5 ites Witch 1.11 1.21 1.17 1.17 1.11 ites Witch 0.81 0.75 1.38 0.81 ites Height 0.81 0.75 1.38 0.81 ites Witch 0.050 0.050 0.050 0.050 0.050 ites Witch 0.75 1.38 <t< th=""><th>empendure Diff Interior - Exercit 4 4 4 1 1 1 Wind Velocity 2 2 2 0 0 0 p1 Manstly 6 6 2 2 0 0 0 p1 Manstly 6 6 2 2 6 6 6 1.90 1.21 4.00 4.00 1.90 1.21 4.00 1.90 1.61 Mark Width 1.90 1.61 2.00 2.00 1.90 1.61 Mark Widows7 X X X X X X X Manstly 5 4 2 2 5 4 Mass Width (for filting window 5 4 2 2 5 4 Mass Width 1.11 1.21 1.17 1.17 1.11 1.21 Mass Width 0.81 0.75 3.8 1.38 0.81 0.75 Mark Width 0.850</th></t<>	empendure Diff Interior - Exercit 4 4 4 1 1 1 Wind Velocity 2 2 2 0 0 0 p1 Manstly 6 6 2 2 0 0 0 p1 Manstly 6 6 2 2 6 6 6 1.90 1.21 4.00 4.00 1.90 1.21 4.00 1.90 1.61 Mark Width 1.90 1.61 2.00 2.00 1.90 1.61 Mark Widows7 X X X X X X X Manstly 5 4 2 2 5 4 Mass Width (for filting window 5 4 2 2 5 4 Mass Width 1.11 1.21 1.17 1.17 1.11 1.21 Mass Width 0.81 0.75 3.8 1.38 0.81 0.75 Mark Width 0.850

Passive House Planning

Figure 5: Summer ventilation

We decide to use cross ventilation in the summer, figure 5 shows that the air change rate of the night time widow ventilation is 0.31 1/h and the day time widow ventilation is 0.24 1/h.

Figure 6: Cooling demand of the building

Figure 6 shows that the cooling demand of the building in Oslo is not too much, which is just $0.4 \text{ kwh/(m}^2a)$ in July.

Secondary Calculation: Ψ -Values of Plumbing

Nominal Width	240	mm
Insulation Thickness:	100	mm
Reflective? Please mark with an "; x Yes No	x"!	
Thermal Conductivity	0.035	W/(mK)
<u>Δ</u> 3	30	к
Interior Pipe Diameter:	0.24000	m
Exterior Pipe Diameter	0.24225	m
Exterior Pipe Diameter	0.44225	m
α-Surface	2.72	W/(m ² K)
Ψ-Value	0.333	W/(mK
Surface Temperature Difference	0.000	К

Figure 7 : The dimension of the plumbing of the solar thermal system

Secondary Calculation: Ψ-value Supply or Ambient Air Duct

Nominal Width	100 mm
Insul. Thickness:	150 mm
Reflective? Please mark with	i an "x"!
Thermal Conductivity	0.04 W/(mK)
Nominal Air Flow Rate	354 m³/h
Δ9	21 K
Interior Duct Diameter	0.100 m
Interior Diameter	0.100 m
Exterior Diameter	0.400 m
a-Interior	46.12 W/(m ² K)
α-Surface	2.32 W/(m ² K)
Ψ-value	0.169 W/(mK)
urface Temperature Difference	1.467 K

Figure 8: The dimension of the supply air duct of the heat recovery system

Secondary Calculation: Ψ-value Extract or Exhaust Air Duct

Nominal Width	125	mm
Insul. Thickness:	100	mm
Reflective? Please mark wi	th an "x"!	
No Thermal Conductivity	0.04	W/(mK)
Nominal Air Flow Rate	354	m³/h
Δ. 3	21	к
Interior Duct Diameter	0.12500	m
Exterior Duct Diameter	0.12500	m
Exterior Diameter	0.32500	m
a-Interior	30.86	W/(m ² K)
α-Surface	2.61	W/(m ² K)
Ψ-value	0.235	W/(mK)
urface Temperature Difference	2.269	K

Figure 9: The dimension of the exhaust air duct of the heat recovery system

Figure 10: Total CO2 emissions

Heating, Cooling, DHW, Auxiliary and Household Electricity	<u>91</u>	44.7	119.7	30.0
Total PE Value	119.7	kWh/(m²a)		
Total Emissions CO ₂ -Equivalent	30.0	kg/(m²a)		(Yes/No)
Primary Ene	ergy Requiremen	t 120	kWh/(m²a)	Yes
Heating, DHW, Auxiliary Electricity (No Household Applications	5)	12.7	34.3	8.6
Specific PE Demand - Mechanical System	34.3	kWh/(m²a)	67 	10
Total Emissions CO ₂ -Equivalent	8.6	kg/(m²a)		
		LAND -		
Solar Electricity			E DE MANA (Sampac)	CO. Emission Easter
Solar Electricity	Senarate Calculation	KVVII/a	PE Value (Savings)	CO ₂ -Emission Factor
Solar Electricity Planned Annual Electricity Generation	Separate Calculation	8628	PE Value (Savings) kWh/kWh 0.7	CO ₂ -Emission Factor g/kWh 250
Solar Electricity Planned Annual Electricity Generation Specific Demand	Separate Calculation	8628	PE Value (Savings) kWh/kWh 0.7 12.8	CO ₂ -Emission Factor g/kWh 250 4.6
Solar Electricity Planned Annual Electricity Generation Specific Demand PE Value: Conservation by Solar Electricity	Separate Calculation	8628 18.3 kWh/(m²a)	PE Value (Savings) kWh/kWh 0.7 12.8	CO ₂ -Emission Factor g/kWh 250 4.6

Figure 11: PE value and CO_2 emissions

Fig10 shows that the total CO_2 emissions for the whole year of the building is 6849.32kg which is 14.7 kg/(m²a). But the result from PHPP(Fig11) shows that the CO2- Equivalent is 8.6 kg/(m²a). This is because the design from PHPP doesn't contain the wind turbine system which we decide to use in our primary design.

Strategies used in the design:

Passive

- Orientation of the sunspace
- Thermal mass
- Insulation
- Natural ventilation

Active

- PV
- Solar thermal collector
- Heat pump
- Wind turbine
- Heat recovery system

Strategy in PHPP:

- Insulation
- Cross ventilation

Active

- PV
- Solar thermal collector
- Compact heat pump
- Heat recovery system

According to PHPP the U-values of the building elements are; wall 0,103 W(m³K), roof 0,080 W(m³K), and ground floor 0,124 W(m³K). This corresponds with other information we found about the construction chosen. This construction is also used In Oslo's first passive house on Ladeveien.

5. Conclusions

We have tried to use PHPP for our calculations even though our knowledge in this package is limited. In the process, we have realised that there are some differences in the parameters that we used in the calculations manually or using Ecotect to that used in PHPP. Hence, the calculations have to be viewed based on these realities.

From the calculations by PHPP, we see that the results are better in terms of use of energy. One of the reason is we used the exact windows with relevant U-values that is recommened by PHPP. In the earlier calculations, we had not detailed out the electricity used in lighting as PHPP has helped us to do it now. So, the values for energy seems to be higher than that we have calculated earlier.

5. Limitations

Due to limitations with the knowledge on the package PHPP, unable to understand all the topics raised in the assignments and time limitations, we may not have been able solve all the issues stated in the assignments. We wished there was some guidance, however this was not possible due to time restriction. Inspite of all these, we have tried our best.

Plans

Natural Ventilation

Reference

[1] M. Haase, V. Novakovic, Renewable energy application in zero emission buildings- a case study, NTNU, Norway.

[2] M. Haase, Energy calculations and documentations lectures, NTNU, Norway.

- [3] Norwegian Passive house standard (NS3700, 2010)
- [4] Dr. Wolfgang Feist, Passiv Haus Institut. Passive House Planning Package 2007.

Appendix

Passive House Verification

Specific Useful Cooling Energy Demand:	kWh/(m²a)	15 kWh/(m²a)
Cooling Load:	8 W/m ²	

AREAS DETERMINATION

Building: Linesöya group 4

					Summary		Average U-
Group Nr.	Area Group	Temp Zone	Area	Unit	Comments	Building Element Overview	Value [W/(m²K)]
1	Treated Floor Area		472.00	m²	Living area or useful area within the thermal envelope		
2	North Windows	Α	21.42	m²		North Windows	0.786
3	East Windows	Α	5.29	m²		East Windows	0.787
4	South Windows	Α	43.66	m²	Results are from the Windows worksheet.	South Windows	0.762
5	West Windows	Α	0.00	m²		West Windows	
6	Horizontal Windows	Α	0.00	m²		Horizontal Windows	
7	Exterior Door	Α	0.00	m²	Please subtract area of door from respective building element	Exterior Door	
8	Exterior Wall - Ambient	Α	416.63	m²	Window areas are subtracted from the individual areas specified in the "Windows" worksheet.	Exterior Wall - Ambient	0.103
9	Exterior Wall - Ground	В	0.00	m²	Temperature Zone "A" is ambient air.	Exterior Wall - Ground	
10	Roof/Ceiling - Ambient	Α	314.00	m²	Temperature zone "B" is the ground.	Roof/Ceiling - Ambient	0.080
11	Floor Slab	В	214.00	m²		Floor Slab	0.124
12			0.00	m²	Temperature zones "A", "B","P" and "X" may be used. NOT "I"		
13			0.00	m²	Temperature zones "A", "B", "P" and "X" may be used. NOT "I" Factor for >		
14		Х	0.00	m²	Temperature zone "X": Please provide user-defined reduction factor ($0 < f_t < 1$): 75 %		
						Thermal Bridge Overview	Ψ [W/(mK)]
15	Thermal Bridges Ambient	Α	0.00	m	Units in m	Thermal Bridges Ambient	
16	Perimeter Thermal Bridges	Р	0.00	m	Units in m; temperature zone "P" is perimeter (see Ground worksheet).	Perimeter Thermal Bridges	
17	Thermal Bridges Floor Slab	В	0.00	m	Units in m	Thermal Bridges Floor Slab	
18	Partition Wall to Neighbour	I	0.00	m²	No heat losses, only considered for the heat load calculation.	Partition Wall to Neighbour	
Total Th	ermal Envelope		1015.00	m²		Average Therm. Envelope	0.146

				A	rea	Input											Selection of the		
Area Nr.	Building Element Description	Group Nr.	Assigned to Group	Quan- tity	x (a [m]	x	b [m] +	U n	ser-Deter- nined [m²]		User Sub- traction [m ²]		Subtraction Window Areas [m²])=	Area [m²]	Corresponding Building Element Assembly	Nr.	U-Value [W/(m²K)]
	Treated Floor Area	1	Treated Floor Area	1	x (х	+		472.00	-) =	472.0			
	North Windows	2	North Windows								-				/	21.4	From Windows sheet		0.786
	East Windows	3	East Windows													5.3	From Windows sheet		0.787
	South Windows	4	South Windows	F	Plea	ase com	pla	ete in Win	d	ows w	or	ksheet	on	nlv!		43.7	From Windows sheet		0.762
	West Windows	5	West Windows													0.0	From Windows sheet		0.000
	Horizontal Windows	6	Horizontal Windows						_							0.0	From Windows sheet		0.000
	Exterior Door	7	Exterior Door		х(х	+		16.00	-) -		=		U-Value Exterior Door		
1	Exterior wall south	8	Exterior Wall - Ambient	1	х(Х	+		162.00	-	11.00) -	40.0	=	111.0	Exterior wall	1	0.103
2	Exterior wall north	8	Exterior Wall - Ambient	1	х(Х	+		165.00	-) -	25.1	=	139.9	Exterior wall	1	0.103
3	Exterior wall west	8	Exterior Wall - Ambient	1	х(Х	+		93.00	-) -	0.0	=	93.0	Exterior wall	1	0.103
4	Roof	10	Roof/Ceiling - Ambient	1	х(Х	+		162.00	-) -	0.0	=	162.0	Roof 🗸 🔻	2	0.080
5	Basement floor	11	Floor Slab	1	х (Х	+		214.00	-) -	0.0	=	214.0	Ground Floor	3	0.124
6	EXTERIOR WALL EAST	8	Exterior Wall - Ambient	1	х (х	+		83.00	-	5.00) -	5.3	=	72.7	Exterior wall	1	0.103
7					х (х	+			-) -	0.0	=			4	
8	ROOF 2	10	Roof/Ceiling - Ambient	1	Х(х	+		152.00	-) -	0.0	=	152.0	Roof	2	0.080
9					Х(х	+			-) -	0.0	=			0	
10					Х(х	+			-) -	0.0	=		-	0	
11					Х(х	+			-) -	0.0	=		-	0	
12					Х(х	+			-) -	0.0	=		-	0	
13					Х(х	+			-) -	0.0	=		~	0	
14					Х(х	+			-) -	0.0	=			0	
15					х (х	+			-) -	0.0	=			0	
16					х (х	+			-) -	0.0	=			0	
17					х (х	+			-) -	0.0	=		▼	0	
18					х(х	+			-) -	0.0	=			0	
19					х(х	+			-) -	0.0	=		-	0	
20					х(х	+			-) -	0.0	=		▼	0	
21					х (х	+			-) -	0.0	=		▼	0	
22					х (х	+			-) -	0.0	=		▼	0	
23					х (х	+			-) -	0.0	=		-	0	
24					х(х	+			-) -	0.0	=		▼	0	
25					х (х	+			-) -	0.0	=		▼	0	
26					х (х	+			-) -	0.0	=		▼	0	
27					х(х	+			-) -	0.0	=		▼	0	
28					х (х	+			-) -	0.0	=		▼	0	
29					х (х	+			-) -	0.0	=		▼	0	
30					х(х	+			-) -	0.0	=		-	0	
31					х(х	+			-) -	0.0	=		▼	0	
32					х (х	+			-) -	0.0	=			0	
33					х (х	+			-) -	0.0	=		▼	0	
34					х (х	+			-) -	0.0	=		-	0	
35					х(х	+			-) -	0.0	=		▼	0	
36					х (х	+			-) -	0.0	=			0	
37					х (х	+			-) -	0.0	=			0	
38					х (х	+			-) -	0.0	=		-	0	
39					х (х	+			-) -	0.0	=		▼	0	
40					х (х	+			-) -	0.0	=			0	
41					х (х	+			-) -	0.0	=		-	0	
42					х (х	+			-) -	0.0	=		-	0	
43					х (х	+			-) -	0.0	=		▼	0	
44					х (х	+			-) -	0.0	=		▼	0	
45					х (x	+			-) -	0.0	=		~	0	
46					х (х	+			-) -	0.0	=		•	0	
47					х (x	+			-) -	0.0	=		~	0	
48					х (х	+	Γ		-) -	0.0	=		-	0	
49					х (х	+			-) -	0.0	=			0	
50					х (х	+			-) -	0.0	=			0	
FLend					-						1								

AREAS DETERMINATION

Building: Linesöya group 4

					Summary		Average U-
Group Nr.	Area Group	Temp Zone	Area	Unit	Comments	Building Element Overview	Value [W/(m²K)]
1	Treated Floor Area		472.00	m²	Living area or useful area within the thermal envelope		
2	North Windows	Α	21.42	m²		North Windows	0.786
3	East Windows	Α	5.29	m²		East Windows	0.787
4	South Windows	Α	43.66	m²	Results are from the Windows worksheet.	South Windows	0.762
5	West Windows	Α	0.00	m²		West Windows	
6	Horizontal Windows	Α	0.00	m²		Horizontal Windows	
7	Exterior Door	Α	0.00	m ² Please subtract area of door from respective building element		Exterior Door	
8	Exterior Wall - Ambient	Α	416.63	m²	Window areas are subtracted from the individual areas specified in the "Windows" worksheet.	Exterior Wall - Ambient	0.103
9	Exterior Wall - Ground	В	0.00	m²	Temperature Zone "A" is ambient air.	Exterior Wall - Ground	
10	Roof/Ceiling - Ambient	Α	314.00	m²	Temperature zone "B" is the ground.	Roof/Ceiling - Ambient	0.080
11	Floor Slab	В	214.00	m²		Floor Slab	0.124
12			0.00	m²	Temperature zones "A", "B","P" and "X" may be used. NOT "I"		
13			0.00	m²	Temperature zones "A", "B", "P" and "X" may be used. NOT "I" Factor for X		
14		Х	0.00	m²	Temperature zone "X": Please provide user-defined reduction factor ($0 < f_{1} < 1$): 75%		
		· · ·				Thermal Bridge Overview	Ψ [W/(mK)]
15	Thermal Bridges Ambient	Α	0.00	m	Units in m	Thermal Bridges Ambient	
16	Perimeter Thermal Bridges	Р	0.00	m	Units in m; temperature zone "P" is perimeter (see Ground worksheet).	Perimeter Thermal Bridges	
17	Thermal Bridges Floor Slab	В	0.00	m	Units in m	Thermal Bridges Floor Slab	
18	Partition Wall to Neighbour	I	0.00	m²	No heat losses, only considered for the heat load calculation.	Partition Wall to Neighbour	
Total Th	ermal Envelope		1015.00	m²		Average Therm. Envelope	0.146

	Thermal Bridge Inputs													
Nr. of Thermal Bridge	Thermal Bridge Description	Group Nr.	Assigned to Group	Quanti ty	x (User Deter- mined Length [m]	-	Subtrac- tion User- Determined Length [m])=	Length / [m]	Input of Thermal Bridge Heat Loss Coefficient W/(mK)	Ψ W/(mK)		
1	Ext. wall-basement	15	Thermal Bridges Ambient	1	х (0.00	-) =	0.00	Ext. wall-basement	-0.039		
2	Int. wall-basement	17	Thermal Bridges Floor Slab	1	x (0.00	-) =	0.00	Int. wall-basement	0.061		
3	Partition walls	15	Thermal Bridges Ambient	1	х (0.00	-) =	0.00	Partition walls	0.000		
4	Interior ceilings	15	Thermal Bridges Ambient	1	x (0.00	-) =	0.00	Interior ceilings	0.002		
5	Partition wall-roof	15	Thermal Bridges Ambient	1	x (0.00	-) =	0.00	Partition wall-roof	0.005		
6	Ext. wall-roof	15	Thermal Bridges Ambient	1	x (0.00	-) =	0.00	Ext. wall-roof	-0.061		
7	Ext. wall edge	15	Thermal Bridges Ambient	1	x (0.00	-) =	0.00	Ext. wall edge	-0.062		
8			5		× (-) =					
9					x (-) =					
10					x (-) =					
11					x(-) =					
12					x (-) =					
13					x (-) =					
14					x (-) =					
15					X(-) =					
10					× (-) =					
18					x (-) =					
19					x (-) =					
20					x (-) =					
21					x (-) =					
22					X (-) =					
23					X (-) =					
24					× (-) =					
26					x (-) =					
27					x (-) =					
28					х (-) =					
29					x (-) =					
30					X (-) =					
32					× (-) =					
33					x (-) =					
34					x (-) =					
35					x (-) =					
36					x (-) =					
37					X (-) =					
39					× (-) =					
40					x (-) =					
41					x (-) =					
42					x (-) =					
43					X (<u> -</u>) =					
44					<u> </u>		-) =					
40					X (1) =					
47					×(-) =					
48					x (<u> </u> -) =					
49					x (-) =					
50					х (-) =					
Bend														

Additional Inputs for Radiation Balance												
Exterior Absorptivity	Exterior Emissivity	Deviation from North	Angle of Inclination from the Horizontal	Reduction Factor Shading								
For	These columns ser the radiation balance of e Inputs only for those surfaces wh consideration of heating in Central I	rve for considering xterior, opaque su hich are adjacent European climate	g urfaces. to ambient air! s no input is requ	ired.								
0 60	0.90	164	90	0 90								
0.60	0.90	344	90	0.90								
0.60	0.90	254	90	0.90								
0.90	0.90	164	27									
0.60	0.90	74	90	0.90								
0.90	0.90	344	27									

	A Tool for Thermal B	ridge Conv	ersion To	Exterior D	Dimension	S
	Description	Units	Example			
	Ψ Interior Dimensions	W/(mK)	0.027			
	Temperature Diff. TB	K	30			
Adjacent	Temperature Diff. ∆9 I	К	30			
Area I	Exterior - Interior Dim. I	m	0.40			
	U-Value Building Element I	W/(m²K)	0.138			
Adjacent	Temperature Diff. ∆ϑ II	K	30			
Area II	Exterior - Interior Dim. II	m	0.30			
	U-Value Building Element II	W/(m²K)	0.110			
	Ψ Exterior Dimensions	W/(mK)	-0.061			

AREAS DETERMINATION

Building: Linesöya group 4

					Summary		Average U-	
Group Nr.	Area Group	Temp Zone	Area	Unit	Comments	Building Element Overview	Value [W/(m²K)]	
1	Treated Floor Area		472.00	m²	Living area or useful area within the thermal envelope			
2	North Windows	Α	21.42	m²		North Windows	0.786	
3	East Windows	Α	5.29	m²		East Windows	0.787	
4 South Windows A 43.66		43.66	m²	Results are from the Windows worksheet.	South Windows	0.762		
5	West Windows	Α	0.00	m²		West Windows		
6	Horizontal Windows	Α	0.00	m²		Horizontal Windows		
7	Exterior Door	Α	0.00	m²	Please subtract area of door from respective building element	Exterior Door		
8	Exterior Wall - Ambient	Α	416.63	m²	Window areas are subtracted from the individual areas specified in the "Windows" worksheet.	Exterior Wall - Ambient	0.103	
9	Exterior Wall - Ground	В	0.00	m²	Temperature Zone "A" is ambient air.	Exterior Wall - Ground		
10	Roof/Ceiling - Ambient	Α	314.00	m²	Temperature zone "B" is the ground.	Roof/Ceiling - Ambient	0.080	
11	Floor Slab	В	214.00	m²		Floor Slab	0.124	
12			0.00	m²	Temperature zones "A", "B","P" and "X" may be used. NOT "I"			
13			0.00	m²	Temperature zones "A", "B", "P" and "X" may be used. NOT "I" Factor for >			
14		Х	0.00	m²	Temperature zone "X": Please provide user-defined reduction factor ($0 < f_t < 1$): 75 %			
						Thermal Bridge Overview	Ψ [W/(mK)]	
15	Thermal Bridges Ambient	Α	0.00	m	Units in m	Thermal Bridges Ambient		
16	Perimeter Thermal Bridges	Р	0.00	m	Units in m; temperature zone "P" is perimeter (see Ground worksheet).	Perimeter Thermal Bridges		
17	17 Thermal Bridges Floor Slab B 0.00		m	Units in m	Thermal Bridges Floor Slab			
18	18 Partition Wall to Neighbour I 0.00 m			m²	No heat losses, only considered for the heat load calculation.	Partition Wall to Neighbour		
Total Th	al Thermal Envelope 1015.			m²		Average Therm. Envelope	0.146	

				A	rea	Input											Selection of the		
Area Nr.	Building Element Description	Group Nr.	Assigned to Group	Quan- tity	x (a [m]	x	b [m] +	U	ser-Deter- nined [m²]		User Sub- traction [m ²]		Subtraction Window Areas [m²])=	Area [m²]	Corresponding Building Element Assembly	Nr.	U-Value [W/(m²K)]
	Treated Floor Area	1	Treated Floor Area	1	x (х	+		472.00	-) =	472.0			
	North Windows	2	North Windows								-				/	21.4	From Windows sheet		0.786
	East Windows	3	East Windows													5.3	From Windows sheet		0.787
	South Windows	4	South Windows	F	Plea	ase com	pla	ete in Win	d	ows w	or	ksheet	on	nlv!		43.7	From Windows sheet		0.762
	West Windows	5	West Windows													0.0	From Windows sheet		0.000
	Horizontal Windows	6	Horizontal Windows						_							0.0	From Windows sheet		0.000
	Exterior Door	7	Exterior Door		х(х	+		16.00	-) -		=		U-Value Exterior Door		
1	Exterior wall south	8	Exterior Wall - Ambient	1	х(Х	+		162.00	-	11.00) -	40.0	=	111.0	Exterior wall	1	0.103
2	Exterior wall north	8	Exterior Wall - Ambient	1	х(Х	+		165.00	-) -	25.1	=	139.9	Exterior wall	1	0.103
3	Exterior wall west	8	Exterior Wall - Ambient	1	х(Х	+		93.00	-) -	0.0	=	93.0	Exterior wall	1	0.103
4	Roof	10	Roof/Ceiling - Ambient	1	х(Х	+		162.00	-) -	0.0	=	162.0	Roof 🗸 🔻	2	0.080
5	Basement floor	11	Floor Slab	1	х (Х	+		214.00	-) -	0.0	=	214.0	Ground Floor	3	0.124
6	EXTERIOR WALL EAST	8	Exterior Wall - Ambient	1	х (х	+		83.00	-	5.00) -	5.3	=	72.7	Exterior wall	1	0.103
7					х (х	+			-) -	0.0	=			4	
8	ROOF 2	10	Roof/Ceiling - Ambient	1	Х(х	+		152.00	-) -	0.0	=	152.0	Roof	2	0.080
9					Х(х	+			-) -	0.0	=			0	
10					Х(х	+			-) -	0.0	=		-	0	
11					Х(х	+			-) -	0.0	=		-	0	
12					Х(х	+			-) -	0.0	=		-	0	
13					Х(х	+			-) -	0.0	=		~	0	
14					Х(х	+			-) -	0.0	=			0	
15					х (х	+			-) -	0.0	=			0	
16					х (х	+			-) -	0.0	=			0	
17					х (х	+			-) -	0.0	=		▼	0	
18					х(х	+			-) -	0.0	=			0	
19					х(х	+			-) -	0.0	=		-	0	
20					х(х	+			-) -	0.0	=		▼	0	
21					х (х	+			-) -	0.0	=		▼	0	
22					х (х	+			-) -	0.0	=		▼	0	
23					х (х	+			-) -	0.0	=		-	0	
24					х(х	+			-) -	0.0	=		▼	0	
25					х (х	+			-) -	0.0	=		▼	0	
26					х (х	+			-) -	0.0	=		▼	0	
27					х(х	+			-) -	0.0	=		▼	0	
28					х (х	+			-) -	0.0	=		▼	0	
29					х (х	+			-) -	0.0	=		▼	0	
30					х(х	+			-) -	0.0	=		-	0	
31					х(х	+			-) -	0.0	=		▼	0	
32					х (х	+			-) -	0.0	=			0	
33					х (х	+			-) -	0.0	=		▼	0	
34					х (х	+			-) -	0.0	=		-	0	
35					х(х	+			-) -	0.0	=		▼	0	
36					х (х	+			-) -	0.0	=			0	
37					х (х	+			-) -	0.0	=			0	
38					х (х	+			-) -	0.0	=		-	0	
39					х (х	+			-) -	0.0	=		▼	0	
40					х (х	+			-) -	0.0	=			0	
41					х (х	+			-) -	0.0	=		-	0	
42					х (х	+			-) -	0.0	=		-	0	
43					х (х	+			-) -	0.0	=		▼	0	
44					х (х	+			-) -	0.0	=		▼	0	
45					х (x	+			-) -	0.0	=		~	0	
46					х (х	+			-) -	0.0	=		•	0	
47					х (x	+			-) -	0.0	=		~	0	
48					х (х	+	Γ		-) -	0.0	=		-	0	
49					х (х	+			-) -	0.0	=			0	
50					х (х	+			-) -	0.0	=			0	
FLend					-						1								

AREAS DETERMINATION

Building: Linesöya group 4

					Summary		Average U-	
Group Nr.	Area Group	Temp Zone	Area	Unit	Comments	Building Element Overview	Value [W/(m²K)]	
1	Treated Floor Area		472.00	m²	Living area or useful area within the thermal envelope			
2	North Windows	Α	21.42	m²		North Windows	0.786	
3	East Windows	Α	5.29	m²		East Windows	0.787	
4	South Windows	Α	43.66	m²	Results are from the Windows worksheet.	South Windows	0.762	
5	5 West Windows A		0.00	m²		West Windows		
6	Horizontal Windows	Α	0.00	m²		Horizontal Windows		
7	Exterior Door	Α	0.00	m²	Please subtract area of door from respective building element	Exterior Door		
8	Exterior Wall - Ambient	Α	416.63	m²	Window areas are subtracted from the individual areas specified in the "Windows" worksheet.	Exterior Wall - Ambient	0.103	
9	Exterior Wall - Ground	В	0.00	m²	Temperature Zone "A" is ambient air.	Exterior Wall - Ground		
10	Roof/Ceiling - Ambient	Α	314.00	m²	Temperature zone "B" is the ground.	Roof/Ceiling - Ambient	0.080	
11	Floor Slab	В	214.00	m²		Floor Slab	0.124	
12			0.00	m²	Temperature zones "A", "B","P" and "X" may be used. NOT "I"			
13			0.00	m²	Temperature zones "A", "B", "P" and "X" may be used. NOT "I" Factor for X			
14		Х	0.00	m²	Temperature zone "X": Please provide user-defined reduction factor ($0 < f_{1} < 1$): 75%			
		· · ·				Thermal Bridge Overview	Ψ [W/(mK)]	
15	Thermal Bridges Ambient	Α	0.00	m	Units in m	Thermal Bridges Ambient		
16	Perimeter Thermal Bridges	Р	0.00	m	Units in m; temperature zone "P" is perimeter (see Ground worksheet).	Perimeter Thermal Bridges		
17 Thermal Bridges Floor Slab B			0.00	m	Units in m	Thermal Bridges Floor Slab		
18	18Partition Wall to NeighbourI0.00			m²	No heat losses, only considered for the heat load calculation.	Partition Wall to Neighbour		
Total Th	al Thermal Envelope 1015.00					Average Therm. Envelope	0.146	

	Thermal Bridge Inputs													
Nr. of Thermal Bridge	Thermal Bridge Description	Group Nr.	Assigned to Group	Quanti ty	x (User Deter- mined Length [m]	-	Subtrac- tion User- Determined Length [m])=	Length / [m]	Input of Thermal Bridge Heat Loss Coefficient W/(mK)	Ψ W/(mK)		
1	Ext. wall-basement	15	Thermal Bridges Ambient	1	х (0.00	-) =	0.00	Ext. wall-basement	-0.039		
2	Int. wall-basement	17	Thermal Bridges Floor Slab	1	х (0.00	-) =	0.00	Int. wall-basement	0.061		
3	Partition walls	15	Thermal Bridges Ambient	1	х (0.00	-) =	0.00	Partition walls	0.000		
4	Interior ceilings	15	Thermal Bridges Ambient	1	х (0.00	-) =	0.00	Interior ceilings	0.002		
5	Partition wall-roof	15	Thermal Bridges Ambient	1	x (0.00	-) =	0.00	Partition wall-roof	0.005		
6	Ext. wall-roof	15	Thermal Bridges Ambient	1	x (0.00	-) =	0.00	Ext. wall-roof	-0.061		
7	Ext. wall edge	15	Thermal Bridges Ambient	1	x (0.00	-) =	0.00	Ext. wall edge	-0.062		
8	-		, , , , , , , , , , , , , , , , , , ,		x (-) =					
9					× (-) =					
10					× (-) =					
11					x(-) =					
12					х (-) =					
13					x (-) =					
14					<u> </u>		-) =					
15					X (-) =					
10					× (-) =					
18					x (-) =					
19					x (-) =					
20					x (-) =					
21					X (-) =					
22					× (-) =					
23					× (-) =					
25					x (-) =					
26					x (-) =					
27					x (-) =					
28					X(-) =					
<u>29</u> 30					× (-) =					
31					x (-) =					
32					х (-) =					
33					x (-) =					
34					x (-) =					
35					X (-) =					
37					× (-) =					
38					× (-) =					
39					x (-) =					
40					x (-) =					
41					X (-) =					
42					X (<u> -</u>) =					
44					×(<u> </u>) =					
45					x (<u> </u>) =					
46					x (-) =					
47					x (<u> -</u>) =					
48					<u> </u>		<u> -</u>) =					
49 50					X (-) =					
TBend			1		~(<u> </u>		/		I			

Additional Inputs for Radiation Balance												
Exterior Absorptivity	Exterior Emissivity	Deviation from North	Angle of Inclination from the Horizontal	Reduction Factor Shading								
For	These columns ser the radiation balance of e Inputs only for those surfaces wh consideration of heating in Central I	rve for considering xterior, opaque su hich are adjacent European climate	g urfaces. to ambient air! s no input is requ	ired.								
0 60	0.90	164	90	0 90								
0.60	0.90	344	90	0.90								
0.60	0.90	254	90	0.90								
0.90	0.90	164	27									
0.60	0.90	74	90	0.90								
0.90	0.90	344	27									

	A Tool for Thermal Bridge Conversion To Exterior Dimensions												
	Description	Units	Example										
	W Interior Dimensione	\ N ///res. I ()	0.027										
		W/(MK)	20										
	Temperature Diff. TB	K	30										
Adjacent	Temperature Diff. ∆9 I	К	30										
Area I	Exterior - Interior Dim. I	m	0.40										
	U-Value Building Element I	W/(m²K)	0.138										
Adjacent	Temperature Diff. ∆ϑ II	К	30										
Area II	Exterior - Interior Dim. II	m	0.30										
	U-Value Building Element II	W/(m²K)	0.110										
	Ψ Exterior Dimensions	W/(mK)	-0.061										

					We	edge Shaped Build	ding Element Layers and	d
	Building: Linesöya gı	roup 4			Still Air Spa	aces -> Secondary	Calculation to the Righ	٦t
	1 Exterior wall	L						
	Assembly No. Building Assembly De	escription			1			
	н	leat Transfer F	esistance [m ² K/W] interior R _{si}	: 0.13	-			
			exterior R _{se}	0.04				
							Total Width	
	Area Section 1	λ [W/(mK)]	Area Section 2 (optional)	λ [W/(mK)]	Area Section 3 (optional)	λ [W/(mK)]	Thickness [mm]	
1.	MASSIVE WOOD	0.130					84	
2.	VAPOUR RETARDER							
3.	INSULATION ROCKWOOL	0.040					350	
4.	FURRING						53	
5.	CLADDING	0.130					22	
6.								
7.								
8.								
			Percer	tage of Sec. 2	Pe	ercentage of Sec. 3	Total	
							50.9 cm	
						$M/(m^{2}k)$		
						W/(IIFK)		

	2	Roof							
	Assembly No.	Building Assembly	Description						
			Heat Transfer R	esistance [m ² K/W]	interior R _{si} :	0.10			
					exterior R _{se} :	0.04			
							J		Total Width
	Area Section	1	λ [W/(mK)]	Area Section 2 (opti	onal)	λ [W/(mK)]	Area Section 3 (optional)	λ [W/(mK)]	Thickness [mm]
1.	MASSIVE	WOOD	0.130						98
2.	WOOD FIB	ER BOARD	0.070						6
3.	VAPOUR R	ETARDER							
4.	XPS		0.032						300
5.	ROCKWOOL		0.040						80
6.	FURRING								102
7.	CLADDING		0.130						22
8.									
					Percenta	age of Sec. 2	P	ercentage of Sec. 3	Total
						2.0%			60.8 cm
							U-Value: 0.080	W/(m²K)	

3 Ground Floor

Assembly No. Building Assembly Description

	F	leat Transfer R	Resistance [m ² K/W] interior R_{si} :	0.17			
			exterior Rse:	0.17			
							Total Width
	Area Section 1	λ [W/(mK)]	Area Section 2 (optional)	λ [W/(mK)]	Area Section 3 (optional)	λ [W/(mK)]	Thickness [mm]
1.	Parquet	0.130					22
2.							
3.							
4.	Concrete	2.100					160
5.	Polystyrene Foam	0.040					300

PHPP 2007, U-Values

	Heat Transfer F	Resistance [m²K/W] interior R _{si} :	0.13	-		
		exterior R _{se} :	0.13			
And Oration 1	2 [M//(mK)]		2 [W//(mK)]		A [W//(mK)]	Total Width
Area Section 1	7. [W/(iii()]	Area Section 2 (optional)	7. [W/(IIIX)]	Area Section 3 (optional)	7. [W/(IIIX)]	
		Percent	age of Sec. 2	Perc	centage of Sec. 3	Total
]		C

	Heat Transfer F	Resistance [m ² K/W]	interior R_{si} :				
			exterior R_{se} :				
							Total Width
Area Section 1	λ [W/(mK)]	Area Section 2 (opt	ional)	λ [W/(mK)]	Area Section 3 (optional)	λ [W/(mK)]	Thickness [mm

PHPP 2007, U-Values

Building: Linesö	ya group 4				We Still Air Spa	edge Shaped Build aces -> Secondary	ing Element Layers Calculation to the R
Area Section 1	λ [W/(mK)]	Area Section 2 (optional)	λ [W/(mK)]	Area Sectio	on 3 (optional)	λ [W/(mK)]	Total Width Thickness [mm]
1.							
2.							
•							
•							
•							
		Percer	tage of Sec. 2	1	Pe	ercentage of Sec. 3	Total
							cm
				U-Value:		W/(m²K)	

PHPP 2007, U-Values

Building: Linesöya group 4

Wedge Shaped Building Element Layers and Still Air Spaces -> Secondary Calculation to the Right

	Heat Transfer F	Resistance [m ² K/W] interior R _s	i :	-		
		exterior R _s				Total Width
Area Section 1	λ [W/(mK)]	Area Section 2 (optional)	λ [W/(mK)]	Area Section 3 (optional)	λ [W/(mK)]	Thickness [mm]
		Perce	ntage of Sec. 2	2 Per	centage of Sec. 3	Total
						C

8 Assembly No. Building As	sembly Description					
	Heat Transfer F	Resistance [m ² K/W] interior R _{si} :				
		exterior R _{se} :				
Area Section 1	λ [W//(mK)]	Area Section 2 (ontional)	λ [W//(mK)]	Area Section 3 (ontional)	λ [W/(mK)]	Total Width
1.			70 [117/(III3)]		70 [VV/(IIIV)]	
2.						
3.						
4.						
5						
6						
7						
8.			())			
		Percent	age of Sec. 2	Perc	entage of Sec. 3	l otal
						Cin
				U-Value:	W/(m²K)	
				-		

9						
Assembly No.	Building Assembly Description					
	Heat Transfer Resistance [m ² K/W]	interior R _{si} :				
		exterior R				

se

							Total Width
_	Area Section 1	λ [W/(mK)]	Area Section 2 (optional)	λ [W/(mK)]	Area Section 3 (optional)	λ [W/(mK)]	Thickness [mm]
1.							
2.							
3.							
4.							
5.							
6.							
7.							

PHPP 2007, U-Values

PHPP 2007, U-Values

 Building: Linesöya group 4
 Wedge Shaped Building Element Layers and Still Air Spaces -> Secondary Calculation to the Right

 10
 Image: Contract of the Contract o

	Heat Transfer I	Resistance [m²K/W] interior R _s	:			
		exterior R _{se}	:			
				_		Total Width
Area Section 1	λ [W/(mK)]	Area Section 2 (optional)	λ [W/(mK)]	Area Section 3 (optional)	λ [W/(mK)]	Thickness [mm]
		Percer	tage of Sec. 2	2 Per	centage of Sec. 3	Total

	11							
	Assembly No.	Building Assembly L	Description			1		
			Heat Transfer R	esistance [m ² K/W] interior R _{si}		-		
				exterior R _{se}				
								Total Width
	Area Section 1		λ [W/(mK)]	Area Section 2 (optional)	λ [W/(mK)]	Area Section 3 (optional)	λ [W/(mK)]	Thickness [mm]
1.								
2.								
3.								
4								
5								
5. 6								
0.								
7.								
8.								
				Percent	age of Sec. 2	Perce	ntage of Sec. 3	Total
								cm
							_	
						U-Value:	W/(m²K)	

 12

 Assembly No. Building Assembly Description

 Heat Transfer Resistance [m²K/W]

 interior R_{si} :

 exterior R_{se} :

							Total Width
_	Area Section 1	λ [W/(mK)]	Area Section 2 (optional)	λ [W/(mK)]	Area Section 3 (optional)	λ [W/(mK)]	Thickness [mm]
1.							
2.							
3.							
4.							
5.							
6.							
7.							

PHPP 2007, U-Values

PHPP 2007, U-Values

Wedge Shaped Building Element Layers and Building: Linesöya group 4 Still Air Spaces -> Secondary Calculation to the Right Assembly No. Building Assembly Description Heat Transfer Resistance [m²K/W] interior R_{si} :

			exterior R _{se} :					
							Total Width	
	Area Section 1	λ [W/(mK)]	Area Section 2 (optional)	λ [W/(mK)]	Area Section 3 (optional)	λ [W/(mK)]	Thickness [mm]	
1.								
2.								
3.								
4.								
5.								
6.								
7.								
8.								
			Percenta	age of Sec. 2	Percen	tage of Sec. 3	Total	
							cm	
					U-Value:	W/(m²K)		

		Building Accombly F	Vacariation					
	Assembly No	. Building Assembly L	Heat Transfer R	esistance [m ² K/M] interior R		1		
				evterior R :		-		
				exterior rt _{se} .				T (1)40 10
	Area Section	1	λ [W/(mK)]	Area Section 2 (optional)	λ [W/(mK)]	Area Section 3 (optional)	λ [W/(mK)]	Total Width Thickness [mm]
1.								
2.								
3.								
4.								
5.								
6.								
7.								
8.								
				Percent	age of Sec. 2	Percer	ntage of Sec. 3	Total
								cm
							-	
						U-Value:	W/(m²K)	

15 Assembly No. Building Assembly Description Heat Transfer Resistance [m²K/W] interior R_{si} : exterior R_{se} :

							Total Width
_	Area Section 1	λ [W/(mK)]	Area Section 2 (optional)	λ [W/(mK)]	Area Section 3 (optional)	λ [W/(mK)]	Thickness [mm]
1.							
2.							
3.							
4.							
5.							
6.							
7.							

PHPP 2007, U-Values

13

PHPP 2007, U-Values

5.									
6.									
7.									
8.									
		Percenta	age of Sec. 2		Percenta	ige of Sec. 3	Т	otal	1
									cm
				U-Value:	,	W/(m²K)			

	17							
	Assembly No.	Building Assembly De	escription			_		
		Н	eat Transfer R	esistance [m²K/W] interior R _{si}				
				exterior R_{se}				
								Total Width
	Area Section 1		λ [W/(mK)]	Area Section 2 (optional)	λ [W/(mK)]	Area Section 3 (optional)	λ [W/(mK)]	Thickness [mm]
1.								
2.								
3.								
4.								
5.								
6.								
7.								
8.								
				Percen	age of Sec. 2	Percer	ntage of Sec. 3	Total
								cm
					K	-		
						U-Value:	W/(m²K)	

18						
Assembly No.	Building Assembly Description					
	Heat Transfer Resistance [m ² K/W]	interior R _{si} :				
		exterior R				

56

							Total Width
_	Area Section 1	λ [W/(mK)]	Area Section 2 (optional)	λ [W/(mK)]	Area Section 3 (optional)	λ [W/(mK)]	Thickness [mm]
1.							
2.							
3.							
4.							
5.							
6.							
7.							

PHPP 2007, U-Values

1. 2. 3. 4.

Г

PHPP 2007, U-Values

Wedge Shaped Building Element Layers and Building: Linesöya group 4 Still Air Spaces -> Secondary Calculation to the Right Assembly No. Building Assembly Description

	Heat Transfer Resistance [m ² K/W]	interior R _{si} :			
		exterior R _{se} :			
			-		Total Width
Area Section 1	λ [W/(mK)] Area Section 2 (opt	tional) λ [W/(mK)]	Area Section 3 (optional)	λ [W/(mK)]	Thickness [mm]
1.					
2.					
3.					
4.					
5.					
6.					
7.					
8.					
	I I	Percentage of Sec. 2	2 Perc	centage of Sec. 3	Total
			U-Value:	W/(m²K)	
				,(

	Assembly No. Building As	ssembly Description	lesister of [st2]/(AA/) interior D		1		
		Heat Transfer R	exterior R		-		
			oxtenor rt _{se}	•			Total Width
	Area Section 1	λ [W/(mK)]	Area Section 2 (optional)	λ [W/(mK)]	Area Section 3 (optional)	λ [W/(mK)]	Thickness [mm]
1.							
2.							
3.							
4.							
5.							
6.							
7.							
8.			Dereer		Deve		Tatal
			Percer	nage of Sec. 2	Perc	centage of Sec. 3	
							Cili
					U-Value:	W/(m²K)	

PHPP 2007, U-Values

19

Secondary Calculation: Equivalent Thermal Conductivity of Still Air Spaces

	Air Layer Thickness	100	mm			λ
	Direction of		Upwards	h _a	1.25 W/(m²K)	0.542 W/(mK)
	Heat Flow	x	Horizontal	h _r	4.17 W/(m ² K)	
(0	check only one field)		Downwards			

Secondary Calculation: Equivalent Thermal Conductivity of Still Air Spaces

PHPP 2007, U-Values

Wedge-Shaped Layers (at an inclination of max. 5%) (Calculation following EN 6946 Appendix C)

2.1 Example: Flat roof	with slor	ed insulation				
Assembly No. Building Assembly Description						
Heat T	ansfer Resista	ance [m²K/W] interior R _{si}	0.10			
		exterior R _{se}	0.04	-		
A Parallel Assemblies Layer				2		Total Width
Area Section 1	λ [W/(mK)]	Area Section 2 (optional)	λ [W/(mK)]	Area Section 3 (optional)	λ [W/(mK)]	Thickness d ₀ [mm]
1. Concrete Ceiling	0.000					0
2. PS Rigid Foam	0.000					0
3.						
4.						
5.						
		Percent	age of Sec. 2	2 Percent	tage of Sec. 3	Total
			0.0%		0.0%	0.0 cm
				U₀: 7.143	W/(m²K)	
				R a: 0.140	(m²K)/W	
B Wedge-Shaped Assembly Laver						
Area Section 1	λ [W/(mK)]	Area Section 2 (optional)	λ [W/(mK)]	Area Section 3 (optional)	λ [W/(mK)]	Thickness d₁ [mm]
PS rigid foam insulation	0.040					150
		Percent	age of Sec. 2	2 Percent	tage of Sec. 3	Thickness d ₁ [CM]
			0.0%			15.0 cm
					_	
				U ₁: 0.267	W/(m²K)	
				R ₁: 3.750	(m²K)/W	
		Rectanç	gular Area	U-Value: 0.887	W/(m²K)	
U-value o	f triangular	area with the thickest	t point at t	he apex: 1.306	W/(m²K)	
U-value of	f triangular	area with the thinnest	t point at t	he apex: 0.467	W/(m²K)	
				-	_	

PHPP 2007, U-Values

Wedge-Shaped Layers (at an inclination of max. 5%) (Calculation following EN 6946 Appendix C)

	with alor	ing ingulation				
Assembly No. Building Assembly Description	with stop	ping insulation				
Heat	Transfer Resista	ance [m²K/W] interior R	0.10			
		exterior R.	0.04	_		
A Parallel Assemblies Laver		3				Total Width
Area Section 1	λ.[W/(mK)]	Area Section 2 (optional)	λ [W/(mK)]	Area Section 3 (optional)	λ.[W/(mK)]	Thickness do [mm]
1. Concrete Ceiling	2.100					
2. PS rigid foam insulation	0.040					0
3.						
4.						
5.						
		Perce	ntage of Sec. 2	2 Percen	tage of Sec. 3	Total
			0.0%		0.0%	0.0 cm
				U₀: 7.143	W/(m²K)	
				U₀: 7.143 R₀: 0.140	W/(m²K) (m²K)/W	
B Wedge-Shaped Assembly Layer				U ₀ : 7.143 R ₀ : 0.140	W/(m²K) (m²K)/W	
B Wedge-Shaped Assembly Layer Area Section 1	λ [W/(mK)]	Area Section 2 (optional)	λ [W/(mK)]	U ₀ : 7.143 R ₀ : 0.140 Area Section 3 (optional)	W/(m²K) (m²K)/W λ [W/(mK)]	Thickness d ₁ [mm]
B Wedge-Shaped Assembly Layer Area Section 1 PS rigid foam insulation	λ[W/(mK)] 0.040	Area Section 2 (optional)	λ [W/(mK)]	U ₀ : 7.143 R ₀ : 0.140 Area Section 3 (optional)	W/(m²K) (m²K)/W λ [W/(mK)]	Thickness d₁ [mm]
B Wedge-Shaped Assembly Layer Area Section 1 PS rigid foam insulation	λ[W/(mK)] 0.040	Area Section 2 (optional)	λ [W/(mK)]	U ₀ : 7.143 R ₀ : 0.140 Area Section 3 (optional)	W/(m²K) (m²K)/W λ [W/(mK)]	Thickness d₁ [mm] 150
B Wedge-Shaped Assembly Layer Area Section 1 PS rigid foam insulation	λ[W/(mK)] 0.040	Area Section 2 (optional)	λ [W/(mK)]	U ₀ : 7.143 R ₀ : 0.140 Area Section 3 (optional)	W/(m ² K) (m ² K)/W λ [W/(mK)]	Thickness d ₁ [mm]
B Wedge-Shaped Assembly Layer Area Section 1 PS rigid foam insulation	λ[W/(mK)] 0.040	Area Section 2 (optional)	λ [W/(mK)]	U ₀ : 7.143 R ₀ : 0.140 Area Section 3 (optional) Percen	W/(m ² K) (m ² K)/W λ [W/(mK)]	Thickness d ₁ [mm] 150 Thickness d ₁ [cm]
B Wedge-Shaped Assembly Layer Area Section 1 PS rigid foam insulation	λ[W/(mK)] 0.040	Area Section 2 (optional)	λ [W/(mK)] ntage of Sec. 2	U ₀ : 7.143 R ₀ : 0.140 Area Section 3 (optional)	W/(m ² K) (m ² K)/W λ [W/(mK)]	Thickness d₁ [mm] 150 Thickness d₁ [CM] 15.0 cm
B Wedge-Shaped Assembly Layer Area Section 1 PS rigid foam insulation	λ [W/(mK)] 0.040	Area Section 2 (optional)	λ [W/(mK)]	U ₀ : 7.143 R ₀ : 0.140 Area Section 3 (optional) Percen	W/(m ² K) (m ² K)/W λ [W/(mK)]	Thickness d1 [mm] 150 Thickness d1 [Cm] 15.0
B Wedge-Shaped Assembly Layer Area Section 1 PS rigid foam insulation	λ[W/(mK)] 0.040	Area Section 2 (optional)	λ [W/(mK)]	U ₀ : 7.143 R ₀ : 0.140 Area Section 3 (optional) Percen U ₁ : 0.267 R ₁ : 3.750	W/(m ² K) (m ² K)/W λ [W/(mK)] tage of Sec. 3	Thickness d ₁ [mm] 150 Thickness d ₁ [Cm] 15.0 cm
B Wedge-Shaped Assembly Layer Area Section 1 PS rigid foam insulation	λ[W/(mK)]	Area Section 2 (optional) Perce	λ [W/(mK)] ntage of Sec. 2 0.0%	U ₀ : 7.143 R ₀ : 0.140 Area Section 3 (optional) 2 Percen U ₁ : 0.267 R ₁ : 3.750 U-Value: 0.887	W/(m ² K) (m ² K)/W λ [W/(mK)] tage of Sec. 3	Thickness d ₁ [mm] 150 Thickness d ₁ [Cm] 15.0 cm
B Wedge-Shaped Assembly Layer Area Section 1 PS rigid foam insulation U-value	λ [W/(mK)] 0.040	Area Section 2 (optional) Perce Rectar	λ [W/(mK)] ntage of Sec. 2 0.0%	U ₀ : 7.143 R ₀ : 0.140 Area Section 3 (optional) 2 Percent U ₁ : 0.267 R ₁ : 3.750 U-Value: 0.887 the apex: 1.306	W/(m ² K) (m ² K)/W λ [W/(mK)] tage of Sec. 3 W/(m ² K) (m ² K)/W W/(m ² K) W/(m ² K)	Thickness d ₁ [mm] 150 Thickness d ₁ [CM] 15.0 cm
B Wedge-Shaped Assembly Layer Area Section 1 PS rigid foam insulation U-value U-value	λ [W/(mK)] 0.040	Area Section 2 (optional) Perce Rectar area with the thicke area with the thinne	λ [W/(mK)] htage of Sec. 2 0.0% ngular Area st point at t	U ₀ : 7.143 R ₀ : 0.140 Area Section 3 (optional) 2 Percent U ₁ : 0.267 R ₁ : 3.750 U-Value: 0.887 the apex: 1.306 the apex: 0.467	W/(m ² K) (m ² K)/W λ [W/(mK)] tage of Sec. 3 W/(m ² K) (m ² K)/W W/(m ² K) W/(m ² K) W/(m ² K)	Thickness d ₁ [mm] 150 Thickness d ₁ [CM] 15.0 cm

PHPP 2007, U-Values

Passive House Planning HEAT LOSSES VIA THE GROUND

Ground C	haracteristics	6	_					Climate Dat	a		
Thermal Conductivity	λ	2.0	W/(mK)			Av. Indoor T	emp. Winter	T _i		20.0	°C
Heat Capacity	ρ	2.0	MJ/(m³K)			Av. Indoor T	emp. Summer	T _i		25.0	°C
Periodic Penetration Depth	δ	3.17	m			Average Gr	ound Surface To	emperature T _{g,av}	e	6.1	°C
				1		Amplitude o	f T _{a ave}	T _a ^		10.6	°C
						Length of th	e Heating Perio	n n		6.7	months
						Heating Deg	gree Hours - Ex	terior G _t		103.6	kKh/a
										0.104	
						Floor Slad U		U _f		0.124	VV/(M²K)
Floor Slab Area	A	214.0	m²			Thermal Bri	dges at Floor Sl	lab Ψ_{B}^* l		0.00	JW/K
Floor Slab Perimeter	Р	25.0	m			Floor Slab L	J-Value incl. TB	U _f '		0.124	W/(m²K)
Charact. Dimension of Floor Slab	Β'	17.12	m			Eq. Thickne	ss Floor	d _t		16.2	m
Floor Slab Type (select only one)											
X Heated Ba	sement or Un	derground Fl	oor Slab				Unheated base	ement			
Slab on G	ade						Suspended Flo	oor			
For Basement or Underground Flo	oor Slab										
Basement Depth	Z	0.90	m			U-Value Be	lowground Wall	U _{wB}		0.103	W/(m²K)
Additionally for Unheated Baseme	ents					Height Abov	eground Wall	h		0.00	m
Air Change Unheated Basement	n	0.00	h ⁻¹			U-Value Ab	oveground Wall	Uw		0.103	W/(m²K)
Basement Volume	V	0	m³			U-Value Ba	sement Floor Sl	lab U _{fB}		0.645	W/(m²K)
For Perimeter Insulation for Slab	on Grado			1		Eor Susper	adad Eloor				
Perimeter Insulation Width/Depth	D		m			U-Value Cra	awl Space	Ucre			W/(m²K)
Perimeter Insulation Thickness	d		m			Height of Cu	rawl Space Wal	U b	wi		m
	u _n							· []			
Conductivity Perimeter Insulation	λ _n		W/(mK)			U-Value Cra	awl Space Wall	Uw			W/(m²K)
						Area of Ven	itilation Opening	ls εΡ			m²
Location of the Perimeter Insulation	horizontal					Wind Veloci	ity at 10 m Heig	ht V		4.0	m/s
(check only one field)	vertical	x				Wind Shield	factor	t _W		0.05	-
Additional Thermal Bridge Heat Lo	osses at Peri	meter				Steady-Stat	e Fraction	Ψ _{P.si}	tat*I	0.000	W/K
Phase Shift	β		months			Harmonic F	raction	Ψ _{Ph}	arm*l	0.000	W/K
	I-							1,11			
Groundwater Correction											
Depth of the Groundwater Table	Z _W	3.0	m		Transm. E	Belowground	El. (w/o Ground) L _{reg}		28.78	W/K
Groundwater Flow Rate	\mathbf{q}_{W}	0.05	m/d		Relative Ir	nsulation Star	ndard Dooth	d _t /B'		0.96	-
Groundwater Correction Factor	Gw	1 1078208	8 _		Relative G	Groundwater V	Velocity	Z _W /B		0.18	-
		1.1070200	•					-			
Basement or Underground Floor	Slab										
Eq. Thickness Floor Slab	d,	16.2	2 m			Phase Shift		в		1.42	months
' U-Value Floor Slab	Ŭ.,	0.08	3 W/(m²K)			Exterior Per	iodic Transmitta	ance L		3 87	W/K
	d	10.40	$\frac{1}{2}$					Libe Lpe		0.07	
	u _w	19.42									
U-Value Wall	U _{bw}	90.0	∂ W/(m²K)								
Steady-State Transmittance	L _S	21.80) W/K								
Linboated Bacomont											
Steady-State Transmittance			W/K			Phase Shift		ß			months
	-8		VV/IX			Exterior Der	iadia Tranamitta	p L			
						EXIGNOI PEI					VV/N
Slab on Grade											
Heat Transfer Coefficient	U.		W/(m²K)			Phase Shift		R			months
Eq. Inc. Thicknoon Derimeter Inc.						Extorior De-	iodic Troportitio	h boo			\\//k
Perimeter Insulation Correction			\///mK					Lpe			vv/IX
Steady-State Transmittenes	Δ¥ L -		vv/(IIIK) \\\/⊮								
oleauy-olale mansmillance	⊾s		vv/r\								
Suspended Floor Above a Ventile	ad Crawl Sec	ace (at may	0.5 m Balan	Ground							
Eq. Ins. Thickness Crawl Space	d_ d_	iee (at max.	m m	Ground)		Phase Shift		R			months
II Value Crowl Space Fleer Clab	Gg II		\\//~~2\<\				iodio Tronore '''	h h			
U-Value Crawl Space Floor Slab	Ug		vv/(m²K)			Exterior Per	iodic i ransmitta	ance L _{pe}			VV/K
U-Value Crawl Space Wall & Vent.	U _x		W/(m²K)								
Steady-State Transmittance	L _S		W/K								
Interim Results											
Phase Shift	β	1.42	2 months		Steady-St	ate Heat Flov	N	Φ_{stat}	t	301.9	W
Steady-State Transmittance	Ls	21.80) W/K		Periodic H	leat Flow		Φ _{ber}	m	16.8	W
Exterior Periodic Transmittance		3.87	7 W/K		Heat Loss	ses Durina He	eating Period	Qtat		1565	kWh
	-he	0.07					<u></u>	⊶tot			_
			Ground R	eductio	n Factor	for "Annu	al Heat Dem	and" Sheet		0.525	
Monthly Average Ground Te	emperature	s for Mon	thiv Metho	d							
Month <u>1 2</u>	3	4	5	6	7	8	9	10	11	12	Average Va
Winter 8.5 8.1 Summer 9.7 0.2	8.1	8.5	9.2	9.9	10.6	10.9	10.9	10.5	9.8	9.1	9.5
3.1 3.3	3.4	3.0	10.4	11.1	11.0	1 12.1	14.1		1.0	10.0	10.7
					-				_		•

Passive House Planning GLAZING ACCORDING TO CERTIFICATION

	for frame types, go to row:	: 71	
	Туре		
Assembly No.	Glazing	g-Value	U _g -Value
			W/(m ² K)
1	Triple-low-e Kr08	0.500	0.700
2	Triple-low-e Kr12	0.500	0.580
3	28 Low-E 0.51 N 52 - GUARDIAN Flachglas	0.520	0.510
4	37 iPlus 3S - INTERPANE	0.520	0.600
5			
6			
7			
8			
9			
10			
11			

Passive House Planning FRAME TYPE ACCORDING TO CERTIFICATION

	Туре	U _f -Value		Frame Dir	Thermal Bridge	Thermal Bridge		
Assembly No.	Frame	Frame	Width - Left	Width - Right	Width - Below	Width - Above	Ψ_{Spacer}	$\Psi_{ ext{Installation}}$
		W/(m ² K)	m	m	m	m	W/(mK)	W/(mK)
1	standard PU on wood	0.59	0.135	0.135	0.175	0.135	0.049	0.005
2	junction PU on wood	0.59	0.070	0.125	0.125	0.125	0.049	0.005
3	wide PU on wood	0.59	0.150	0.150	0.175	0.150	0.049	0.005
4								
5								
6								
7								
8								
9								
10								
11								

VENTILATION DATA

Building:	Linesöya	group 4]			
Treated Floor Area A	TFA		m²	472]	(Areas worksheet)			
Room Height h			m	2.5		(Annual Heat Demand	worksheet)		
Room Ventilation Vol	ume (A _{TFA} *h) =	V _v	m³	1180		(Annual Heat Demand	worksheet)		
Ventilation System I	Design - Standa	ard Operation							
Occupancy			m²/P	39	1				
Number of Oc	cupants		Р	12.0					
Supply Air per	Person		m³/(P*h)	30	-				
Supply Air Red	quirement		m³/h	360	-				
Extract Air Ro	Extract Air Rooms				Bathroom	Shower	WC		
Quantity	Quantity				1	1	3		
Extract Air Re	quirement per R	loom	m³/h	60	40	20	20		
Total Extract A	Air Requirement		m³/h	240					
Design Air Flow Rate	(Maximum)		m³/h	460]				
Average Air Change	Rate Calculati	on							
		Daily Operation Duration		Factors Reference Maximum	ed to	Air Flow Rate		Air Change Rate	
Type of Operation		h/d			٦	m³/h	1	1/h	
Maximum				1.00		460		0.39	
Standard		24.0		0.77		354		0.30	
Basic				0.54		248		0.21	
Minimum				0.40		184		0.16	
					Aver	age Air Flow Rate (m³/h) Ave	rage Air Change Rate	
Residential Bu	uilding	Δ.	vorano valuo	0 77		254		0.20	

Infiltration Air Change Rate according to EN 13790

	Wind Prote	ction Coefficients According						
			Several	One				
	Coefficient e for Screening Class		Sides	Side				
			Exposed	Exposed				
	No Screening		0.10	0.03				
	Moderate Screening		0.07	0.02				
	High Screening		0.04	0.01				
	Coefficient f		15	20				
			for Annual Demand:	for Heat Load:	-			
	Wind Protection Coefficient, e		0.10	0.25				
	Wind Protection Coefficient, f		15	15	Net Air Volume for Press. Test	V _{n50}	Air Permeability	q ₅₀
	Air Change Rate at Press. Test n ₅₀	1/h	0.14	0.14	480	m³	0.07	m³/(h
	Type of Ventilation System							
x	Balanced PH Ventilation Pleas	e Check	for Annual Demand:	for Heat Load:				

Pure Extract Air

Excess Extract Air

Infiltration Air Change Rate n_{V,Res}

 1/h
 0.00
 0.00

 1/h
 0.006
 0.014

Effective Heat Recovery Efficiency of the Ventilation System with Heat Recovery

x Central unit within the thermal envelope.

Central unit outside of the thermal envelope.

Efficiency of Heat Recovery η _{HR}		0.83	Heat Recovery Unit	
Transmittance Ambient Air Duct Ψ	W/(mK)	0.169	Calculation see Secondary Calculation	
Length Ambient Air Duct	m	1.1		
Transmittance Exhaust Air Duct Ψ	W/(mK)	0.235	Calculation see Secondary Calculation	
Length Exhaust Air Duct	m	1.5	Room Temperature (°C)	20
Temperature of Mechanical Services Room	°C	11	Av. Ambient Temp. Heating P. (°C)	-1.1
(Enter only if the central unit is outside of the thermal	envelope.)		Av. Ground Temp (°C)	6.1

Effective Heat Recovery Efficiency $\eta_{HR,eff}$

Effective Heat Recovery Efficiency Subsoil Heat Exchanger

SHX Efficiency Heat Recovery Efficiency SHX

η* _{SHX}	93 %
η_{SHX}	32%

Secondary Calculation:

 Ψ -value Supply or Ambient Air Duct

Nominal Width	100	mm
Insul. Thickness:	150	mm
Reflective? Please	mark with an "x"!	
Thermal Conductivity	0.04	W/(mK)
Nominal Air Flow Rate	354	m³/h
Δ9	21	к
Interior Duct Diameter	0.100	m
Interior Diameter	0.100	m
Exterior Diameter	0.400	m
α-Interior	46.12	W/(m²K)
α–Surface	2.32	W/(m²K)
Ψ-value	0.169	W/(mK)
Surface Temperature Difference	1.467	К

Secondary Calculation: Ψ -value Extract or Exhaust Air Duct

Nominal Width	125	mm
Insul. Thickness:	100	mm
Reflective? Please	mark with an "x"!	
× Yes		
No		
Thermal Conductivity	0.04	W/(mK)
Nominal Air Flow Rate	354	m³/h
Δ9	21	К
Interior Duct Diameter	0.12500	m
Exterior Duct Diameter	0.12500	m
Exterior Diameter	0.32500	m
α-Interior	30.86	W/(m²K)
α–Surface	2.61	W/(m²K)
Ψ-value	0.235	W/(mK)
Surface Temperature Difference	2.269	K

SPECIFIC ANNUAL HEAT DEMAND

For buildings with a gain-loss-ratio above 0,7 you should use the Monthly Method (cf. manual).

PASSIVE HOUSE PLANNING

SPECIFIC ANNUAL HEAT DEMAND MONTHLY METHOD

Climate:	N - Oslo		Interior Tempe					Temperature:	20	°C				
Building:	Linesöya	group 4							Build	ing Type/Use:	dwelling	g/cultural		
Location:					Treated Fl	oor Area A _{TFA} :	472	m²						
Ι	lon	Fab	Mor	Apr	Mov	luo		Aug	San	Oct	Nov	Dee	Veer	7
Heating Degree Hours E	Jan 20.2	FeD	16.5	<u>Apr</u>			<u> </u>	Aug	<u> </u>		15.6		141	- LKh
Heating Degree Hours - E	20.2	8.0	8.8	8.2	7.9 8.0	4.3	5.0	4.4	7.0	7 1	73	19.4 8 1	01	kKb
Lossos - Exterior	2525	2258	2072	1540	004	5/2	0.1	<u> </u>	0.0	1//5	1066	2442	17758	
Losses - Exterior	2000	2200	2072	37/	994 364	328	440 277	307	208	321	332	2442	/110	k\//b
Sum Spec, Losses	6.2	5.6	52	<u> </u>	29	1.8	1.5	1.8	230	37	4 9	6.0	46.3	kWh/m²
Solar Gains - North	11	28	70	108	2.0	207	204	148	84	43	15	9	1127	kWh
Solar Gains - East	5	16	38	59	98	94	89	69	40	20	7	4	538	kWh
Solar Gains - South	349	666	1008	996	1300	1060	1139	1085	915	624	424	278	9844	kWh
Solar Gains - West	0	0	0	0	0	0	0	0	0	0	0	0	0	kWh
Solar Gains - Horiz.	0	0	0	0	0	0	0	0	0	0	0	0	0	kWh
Solar Gains - Opaque	31	72	144	193	306	280	286	234	151	81	40	24	1842	kWh
Internal Heat Gains	1229	1110	1229	1189	1229	1189	1229	1229	1189	1229	1189	1229	14472	kWh
Sum Spec. Gains Solar +	3.4	4.0	5.3	5.4	6.6	6.0	6.2	5.9	5.0	4.2	3.5	3.3	58.9	kWh/m²
Utilisation Factor	100%	100%	97%	75%	43%	31%	25%	31%	53%	88%	100%	100%	64%	
Annual Heat Demand	1299	728	59	0	0	0	0	0	0	2	623	1266	3977	kWh
Spec. Heat Demand	2.8	1.5	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.3	2.7	8.4	kWh/m²

SPECIFIC SPACE HEATING LOAD

1															
Building:	Building: Linesöya group 4			Building Type/Use: dwelling/cultural											
Location:	Linesöya							4		Treate	ed Floor Area A _{TFA} :	472.0	m²	Interior Temperature:	20
											Climate (HL):	N - Osl	0		
De	sign Temperat	ture	Radiation:	North	East	South	West	Horizont	al		ι.				
Weather Condition 1:	-13.5	°C		5	10	30	15	15	W/m²						
Weather Condition 2:	-7.6	°C		5	5	10	5	5	W/m²						
Ground Design Temp.	8.1	°C	Area		U-Value		Factor		TempDiff 1		TempDiff 2		Ρ _T 1		P _⊤ 2
Building Element	Temperatu	ire Zone	m²		W/(m²K)		Always 1 (except "X")		К		К		W		W
1. Exterior Wall -	· Ambient	A	416.6	*	0.103	*	1.00	*	33.5	or	27.6	=	1435	or	1181
2. Exterior Wall -	Ground	В		*		*	1.00	*	11.9	or	11.9	=		or	
3. Roof/Ceiling -	Ambient	A	314.0	*	0.080	*	1.00	*	33.5	or	27.6	=	841	or	692
4. Floor Slab		В	214.0	*	0.124	*	1.00	*	11.9	or	11.9	=	314	or	314
5.		A		*		*	1.00	*	33.5	or	27.6	=		or	
6.		A		*		*	1.00	*	33.5	or	27.6	=		or	
7.		X		*		*	0.75	*	33.5	or	27.6	=		or	
8. Windows		A	70.4	*	0.771	*	1.00	*	33.5	or	27.6	=	1820	or	1497
9. Exterior Door		Α		*		*	1.00	*	33.5	or	27.6	=		or	
10. Exterior TB (lengt	h/m)	A		*		*	1.00	*	33.5	or	27.6	=		or	
11. Perimeter TB (leng	th/m)	Р		*		*	1.00	*	11.9	or	11.9	=		or	
12. Ground TB (length/	m)	В		*		*	1.00	*	11.9	or	11.9	=		or	
13. House/DU Partition	Wall	I		*		*	1.00	*	3.0	or	3.0	=		or	
Transmission Hoof		C													
Transmission Heat	Losses I	9 _T									Total			 	2694
Transmission Heat	Losses I	> _T									Total	=	4411	or	3684
Transmission Heat	Losses I	∍ _T					A _{TFA}	Cle	ear Room Heig	ght	Total	=	4411	or [3684
Transmission Heat	Losses I	PT					A _{TFA} m²	Cle	ear Room Heio 	ght	Total m³	=	4411	or	3684
Transmission Heat	Losses I	PT	Effe	ective Ai	r Volume, V _v		A _{TFA} m ² 472.0	Cle *	ear Room Heig m 2.50	ght =	Total ^{m³} 1180	=	4411	or	3684
Transmission Heat	Losses I	PT	Effe	ective Ai	r Volume, V _V		A _{TFA} m ² 472.0	Cle	ear Room Heig m 2.50	ght =	Total ^{m³} 1180	=	4411 η _{SHX} 1	 or	<u>3684</u> _{л_{SHX} 2}
Transmission Heat	Losses I	P_T ղ _{HR} [Effe 83%	ective Ai	r Volume, V _V	Heat Recove	A _{TFA} m ² 472.0 ery Efficiency SHX	Cle *	ear Room Heig m 2.50 93%	ght =	Total m³ 1180 Efficiency SHX	=	4411 η _{SHx} 1 55%	or	3684 _{лых} 2 46%
Transmission Heat	Losses I	ס ד ח _{HR} [Effe 83%	ective Ai	r Volume, V _V	Heat Recove	A _{TFA} m ² 472.0 ery Efficiency SHX	Cle *	ear Room Heig m 2.50 93%	ght =	Total m³ 1180 Efficiency SHX	=	4411 η _{SHx} 1 55%	or	3684 _{лых} 2 46%
Transmission Heat	Losses I	P _T η _{HR} [Effe 83%	ective Ai n _v ,R	r Volume, V _V les (Heating L	Heat Recove	A _{TFA} m ² 472.0 ery Efficiency SHX n _{V,system}	Cl6	ear Room Heig m 2.50 93% Φ _{HR}	ght =	Total m³ 1180 Efficiency SHX $\Phi_{\rm HR}$	=	4411 ղ _{ՏΗΧ} 1 55%	or	3684 _{лых} 2 46%
Transmission Heat	Losses I	ס _ד η _{нк} [Effe 83%	ective Ai n _v ,R	r Volume, V _v tes (Heating L <u>1/h</u>	Heat Recove .oad)	A _{TFA} m² 472.0 ery Efficiency SHX n _{V,system} 1/h	Cle *	ear Room Heig m 2.50 93% Ф _{HR}	ght =	Total m³ 1180 Efficiency SHX $\Phi_{\rm HR}$	=	4411 η _{SHx} 1 55% 1/h	or	3684 _{л_{SHX} 2 46% 1/h}
Transmission Heat	Losses I ive Air Exchan	PT η _{HR} [ge n _v	Effe 83%	ective Ai n _v ,R	r Volume, V _V tes (Heating L 1/h 0.014	Heat Recove .oad) +	A _{TFA} m ² 472.0 ery Efficiency SHX n _{V,system} 1/h 0.300	Cle *	ear Room Heig m 2.50 93% Φ _{HR} 0.92	ght = Or	Total m ³ 1180 Efficiency SHX $\Phi_{\rm HR}$ 0.91) =	4411 η _{SHX} 1 55% 1/h 0.038	or or	3684 _{лзнх} 2 46% 1/h 0.042
Transmission Heat Ventilation System: Efficiency of Heat Recovery of the Heat Exchanger Energetically Effection Ventilation Heating	E Losses I ive Air Exchan	רד η _{HR} ge n _v	Effe 83%	ective Ai n _v ,R	r Volume, V _V tes (Heating L 1/h 0.014	Heat Recove .oad) +	A _{TFA} m ² 472.0 ery Efficiency SHX n _{V,system} 1/h 0.300	Cla *	ear Room Heig m 2.50 93% Φ _{HR} 0.92	ght = Or	Total m³ 1180 Efficiency SHX $\Phi_{\rm HR}$ 0.91) =	4411 η _{SHX} 1 55% 1/h 0.038	or [3684 _{лых} 2 46% 1/h 0.042
Transmission Heat	ive Air Exchan J Load P v VL	PT ղ _{HR} [Effe 83%	ective Ai n _v ,R	r Volume, V _V tes (Heating L 1/h 0.014 n _L	Heat Recove .oad) +	A _{TFA} m ² 472.0 ery Efficiency SHX n _{V,system} 1/h 0.300 C _{Air}	Cle *	ear Room Heig m 2.50 93% Φ _{HR} 0.92 TempDiff 1	ght = Or	Total m³ 1180 Efficiency SHX Φ _{HR} 0.91 TempDiff 2) =	1 1 55% 1/h 0.038 ₽_v 1	or	3684 ^η SHX ² 46 % 1/h 0.042 Р_V 2
Transmission Heat Ventilation System: Efficiency of Heat Recovery of the Heat Exchanger Energetically Effection Ventilation Heating	ive Air Exchan J Load P v VL m ³	P T η _{HR} [Effe 83% Ոլ 1/h	ective Ai n _v ,R	r Volume, V _V tes (Heating L 1/h 0.014 n _L 1/h	Heat Recove .oad) +	A _{TFA} m ² 472.0 ery Efficiency SHX n _{V,system} 1/h 0.300 C _{Air} Wh/(m ³ K)	Cle *	ear Room Heig m 2.50 93% Φ _{HR} 0.92 TempDiff 1 K	ght = Or	Total m ³ 1180 Efficiency SHX Φ _{HR} 0.91 TempDiff 2 K) =	4411 η _{SHX} 1 55% 1/h 0.038 P_V 1 W	or [3684 л _{SHX} 2 46 % 1/h 0.042 P_V 2 W

 $P_L 1$ P_L 2

SUMMER

Mechanical, Automatically Controlled Ventilation

70.9

(for window ventilation: at 1 K temperature difference indoor - outdoor)

472

) =

22.0

°C

Minimum Acceptable Indoor Temperature

/ (

204

1000

Daily Temperature Swing due to Solar Load

К

0.7

SUMMER VENTILATION

Building:	Linesöya group 4		Building Type/Use: dwelling/cultural					
Location:	Linesöya		Building Volume	1180	m³			
			1	I				
Description]	Day CE	Day UF	Dav	Night	Night	Night	
Description	Freeding of Operating Dynation				1000	1000		
	Fraction of Opening Duration	13%	13%	13%	100%	100%	100%	
Climate Bou	ndary Conditions							
	Temperature Diff Interior - Exterior	4	4	4	1	1	1	ĸ
	Wind Velocity	2	2	2	0	0	0	m/s
Window Gro	սթ 1							
	Quantity	6	6	2	2	6	6	
	Clear Width	1.90	1.21	4.00	4.00	1.90	1.21	m
	Clear Height	1.90	1.61	2.00	2.00	1.90	1.61	m
	Tilting Windows?	x	x	x	x	x	x	
	Opening Width (for tilting windows)	0.050	0.050	0.050	0.050	0.050	0.050	m
Window Gro	up 2 (Cross Ventilation)							
	Quantity	5	4	2	2	5	4	
	Clear Width	1.11	1.21	1.17	1.17	1.11	1.21	m
	Clear Height	0.81	0.75	1.38	1.38	0.81	0.75	m
	Tilting Windows?	x	x	x	x	x	x	
	Opening Width (for Tilting Windows)	0.050	0.050	0.050	0.050	0.050	0.050	m
	Difference in Height to Window 1	0.20	0.40	0.30	0.30	0.20	0.40	m
Single	-Sided Ventilation 1 - Airflow Volume	303	218	135	55	134	97	m³/h
Single	-Sided Ventilation 2 - Airflow Volume	90	70	61	27	33	25	m³/h
	Cross Ventilation Airflow Volume	946	780	493	82	168	121	m³/h
	Contribution to Air Change Rate	0.10	0.08	0.05	0.07	0.14	0.10	1/h

Summary of Summer Ventilation Distribution

Description Ventilation Type	Daily Average Air Change Rate
Nighttime Window Ventilation	0.31 1/h
Daytime Window Ventilation	0.24 1/ł
	1/ł

PHPP 2007, SummVent

PASSIVE HOUSE PLANNING

SPECIFIC USEFUL COOLING DEMAND MONTHLY METHOD

Climate:	N - Oslo	
Building:	Linesöya group 4	
Location:	Linesöya	

Interior Temperature:25°CBuilding Type/Use:dwelling/culturalTreated Floor Area A
TFA:472m²

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Year	7
Heating Degree Hours - E	23.3	20.8	19.8	15.5	11.3	7.7	7.0	7.9	11.0	14.8	18.7	22.5	180	kKh
Heating Degree Hours - G	12.3	11.3	12.5	11.8	11.8	10.8	9.8	10.5	10.2	10.8	10.9	11.8	135	kKh
Losses - Exterior	4978	4447	4227	3322	2423	1642	1503	1691	2342	3168	4001	4806	38549	kWh
Losses - Ground	326	300	332	314	311	287	260	278	269	286	289	313	3565	kWh
Losses Summer Ventilatio	5860	5317	6146	4692	3278	2195	2051	2268	3173	4383	5733	5965	51062	kWh
Sum Spec. Heat Losses	23.7	21.3	22.7	17.6	12.7	8.7	8.1	9.0	12.3	16.6	21.2	23.5	197.3	kWh/m²
Solar Load North	15	39	99	153	283	292	288	210	118	61	21	13	1591	kWh
Solar Load East	7	22	53	83	138	133	126	98	56	29	10	5	760	kWh
Solar Load South	262	499	756	747	975	795	854	814	686	468	318	208	7384	kWh
Solar Load West	0	0	0	0	0	0	0	0	0	0	0	0	0	kWh
Solar Load Horiz.	0	0	0	0	0	0	0	0	0	0	0	0	0	kWh
Solar Load Opaque	31	72	144	193	306	280	286	234	151	81	40	24	1842	kWh
Internal Heat Gains	1229	1110	1229	1189	1229	1189	1229	1229	1189	1229	1189	1229	14472	kWh
Sum Spec. Loads Solar +	3.3	3.7	4.8	5.0	6.2	5.7	5.9	5.5	4.7	4.0	3.3	3.1	55.2	kWh/m²
Utilisation Factor Losses	14%	17%	21%	28%	49%	65%	68%	61%	38%	24%	16%	13%	28%	
Useful Cooling Energy De	0	0	0	0	0	0	194	0	0	0	0	0	194	kWh
Spec. Cooling Demand	0.0	0.0	0.0	0.0	0.0	0.0	0.4	0.0	0.0	0.0	0.0	0.0	0.4	kWh/m²

COOLING LOAD

Ventilation	Heat	Load P_v
-------------	------	------------

Total	=
-------	---

	Orientation	Area		g-Value	F	Reduction Fact	or	Radiation		Ps	
	of the Area	m²		(perp. radiation)			W/m²		W	
1.	North	21.4	*	0.5	*	0.50	*	107	=	578	
2.	East	5.3	*	0.5	*	0.51	*	200	=	271	
3.	South	43.7	*	0.5	*	0.33	*	213	=	1530	
4.	West	0.0	*	0.0	*	0.40	*	220	=	0	
5.	Horizontal	0.0	*	0.0	*	0.40	*	350	=	0	
6.	Sum Opaque Areas						1			577	
He	eat Gain - Solar Heat Load,	Ps				Spoo Bower		Total	=	2955 P	
						Spec. Power		A _{TFA}			
						VV/m²] .	m²		VV	
In	ternal Heat Load P _I					4.5	*	472	=	2124	
C	ooling Load P _c				Ρ _τ	+ P _V + P _S +	· P _I		=	3629	w
S	pecific Maximum Coolir	ng Load P _c	; / A	EB					=	7.7	W/m²
		Solar Load		Time		Spec. Capacit	y	A_{TFA}			
		W		h/d		Wh/(m²K)		m²			
Dai	ly Temperature Swing due to Solar Load	2955.5	*	24	/ (204	*	472) =	0.7	Κ

HEAT DISTRIBUTION AND DHW SYSTEM

Annual Heat Loss from Circulation Lines	Qz	= $L_{HS} \cdot q_{Z} \cdot (1 - \eta_{GDHW})$	299	86			kvvn/a	
		-			-	1		
Total Length of Individual Pipes	L _U (Project)		9.00				m	
Exterior Pipe Diameter	d _{U_Pipe} (Project)		0.012				m	
Heat Loss Per Tap Opening	q _{Individual}	= $(c_{pH2O}V_{H2O}+c_{pMat}V_{Mat})(\vartheta_{dist}-\vartheta_X)$	0.0322				kWh/tap open	ing
Occupancy Coefficient	n _{Tap}	= n _{Pers} . 3 . 365 / n _{LU}	13140				Tap openings	per year
Annual Heat Loss	q _U	$= n_{Tap} \cdot q_{Individual}$	423.4				kWh/a	
Possible Utilization Factor of Released Heat	η_{G_U}	=t _{heating} /8760*η _G	35.8%					
Annual Heat Loss of Individual Pipes	Q _U	$= q_U \cdot (1 - \eta_{G_U})$	271.7			272	kWh/a	
						Tota	l 1,2,3	
Average Heat Released From Storage	Ps			98			W	
Possible Utilization Factor of Released Heat	η _{G_} s	$=t_{heating}/8760^*\eta_G$		0.0%				
Annual Heat Losses from Storage	Qs	= P _S ·8.760 kh·(1-η _{G_S})		857.8		858	kWh/a	
					-	Tota	l 1,2,3	
Total Heat Losses of the DHW System	Q _{WL}	$= Q_Z + Q_U + Q_S$				1514	kWh/a	
Specif. Losses of the DHW System	q _{WL}	$= Q_{WL} / A_{TFA}$					kWh/(m²a)	3.2
Utilisation Factor DHW Distrib and Storage	$\eta_{a,WL}$	$= q_{DHW} / (q_{DHW} + q_{WV})$				82.7%	-	
Total Heat Demand of DHW system	Q_{gDHW}	$= Q_{DHW} + Q_{WL}$				8730	kWh/a	
Total Spec. Heat Demand of DHW System	q _{gDHW}	$= Q_{gDHW} / A_{TFA}$			Ľ		kWh/(m²a)	18.5

Secondary Calculation: Ψ -Values of Plumbing

Nomin	al Width	240	mm
	Insulation Thickness:	100	mm
	Reflective? Please mark with	n an "x"!	
X	Yes		
	No		
	Thermal Conductivity	0.035	W/(mK)
	$\Delta \vartheta$	30	K
	Interior Pipe Diameter:	0.24000	m
	Exterior Pipe Diameter	0.24225	m
	Exterior Pipe Diameter	0.44225	m
	<u>α-Surface</u>	2.72	W/(m²K)
	Ψ-Value	0.333	W/(mK)
Sur	face Temperature Difference	0.000	К

HOT WATER PROVIDED BY SOLAR

ng: Linesöya group 4			Bu	ilding Type/Use:	dwelling	/cultural	
on: Linesöya			Treated	Floor Area A _{TFA} :	472.0	m²	
Solar Fraction with DHW Demand includi	ng Washing and	d Dish-Was	shing				
Heat Demand DHW	q_{gDHW}	8730	kWh/a	from DHW+[Distribution	worksheet	
Latitude:		59.9	0	from Climate	Data works	sheet	
Selection of collector from list (see below):		8	Selection:	8 Vacuum Tube	Collector		
Solar Collector Area		26.00	m²				
Deviation from North		164	o				
Angle of Inclination from the Horizontal		27	o				
Height of the Collector Field		1	m				
Height of Horizon	h _{Hori}		m				
Horizontal Distance	a _{Hori}		m				
Additional Reduction Factor Shading	r _{other}		%				
Occupancy		12.0	Persons				
Specific Collector Area		2.2	m²/Pers				
			_				
Estimated Solar Fraction of DHW Produc	ction	73%					
Solar Contribution to Useful I	leat	6402	kWh/a	14	kWh/(m²a)		
Secondary Calculation of Storage Lo	sses						
Selection of DHW storage from list (see below):		12	Selection:	12 Stratified Sola	ar Storage		-
Total Storage Volume		490	litre				61
Volume Standby Part (above)		147	litre				
Volume Solar Part (below)		343	litre				
Specific Heat Losses Storage (total)		3.3	W/K				
Typical Temperature DHW		60	°C				
Room Temperature		20	°C				
Storage Heat Losses (Standby Part Only)		98	W				

Building:	Linesč	òya gro	oup 4		Calcula [tion Dom	in Electi workshe	ricity No eet!	ELE	СТ	RICIT	Y	DEM	A N	D				
			# Households Persons Living Area Annual Heat Dema	1 12.0 472 n: 8	HH P m² kWh/(m²a)			Solar Fr Margina Margina	raction of DH I Performan	HW Wa Ince Ra Ince Ra	ash&Dish tio DHW tio Heating	61ક 56ક 64ક				Prim. Energy Factors: Energy Carrier for Space I	Electricity Natural Gas Heating/DHW:	2.7 1.1 2.7	kWh/kWh kWh/kWh 2.7
Column Nr.		2	3		4		5	_	6		7	8	8a		9	10 11	12	13	14
Application	Used ? (1/0)	Within the Thermal Envelope? (1/0)	Norm Demand		Utilization Factor		Frequency		Reference Quantity		Useful Energy (kWh/a)	Electric Fraction	Non-Electric Fraction		Electricity Demand (kWh/a)	Additional Demand Marginal Performance Ratio	Solar Fraction	Non-Electric Demand (kWh/a)	Primary Energy- Demand (kWh/a)
Dishwashing DHW Connection	1	1	1.10 kWh/Use		* 1.00	*	65	/(P*a)	* 12.0 F	° =	858	* 50%	50%] = [429	* (1+ 0.30) * 0.56	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	122	1158 328
Clothes Washing	1	1	0.95 kWh/Use		* 1.00	*	57	/(P*a)	* 12.0 F	° =	650	* 55%		1 = 1	357				965
DHW Connection	(l		L		i)						*	45%			* (1+ 0.05) * 0.56	*(1- 0.61) =	67	181
Clothes Drying with:	1	0	0.00 kWh/Use	Residual dampness	0.88	*	57	/(P*a)	* 12.0 F	> =	0	0%		=	0				0
Clothesline		·		0.60						=	0		0%			1.00	*	0	0
Energy Consumed by	1	0	0.00 kWh/Use		* 0.60	*	57	/(P*a)	* 12.0 F	> =	0	*	100%			* (1+ 0.00) * 0.64	*(1- 0.74) =	• 0	0
Refrigerating	1	1	0.28 kWh/d		* 1.00	*	365	d/a	* 1 +	нн =	102	* 100%)	=	102				276
Freezing	1	0	0.55 kWh/d		* 0.90	*	365	d/a	* 1 +	HH =	181	* 100%)	=	181				488
or Combined Unit	0	1	0.70 kWh/d		* 1.00	*	365	d/a	* 1 +	нн =	0	* 100%)	=	0				0
Cooking with:	1	1	0.25 kWh/Use		* 1.00	*	500	/(P*a)	* 12.0 F) =	1500	* 100%)] = [1500				4050
Electricity				Percentage CFLs]							*	0%					0	0
Lighting	1	1	21 W	80%	* 1.00	*	2.90	kh/(P*a)	* 12.0 F) =	724	* 100%)] = [724				1954
Consumer Electronic	s 1	1	<mark>80</mark> w		* 1.00	*	0.55	kh/(P*a)	* 12.0 F	° =	528	* 100%)	=	528				1426
Small Appliances, etc	2	1	50 kWh		* 1.00	*	1.00	/(P*a)	* 12.0 F	> =	600	* 100%)] = [600				1620
Total Aux. Electricity											890				890				2402
Other:	· · · · · · · · · · · · · · · · · · ·													-		_			
											0				0				0
											0			_	0				0
											0				0				0
Total											6032 H	κWh		[5311	DHW Non-Electric - Wa kWh 865	sh&Dish kWł	188	14848
Specific Demand															11.3	kWh/(m ² a) 0.7	kWh/(m ² a	0.4	31.5
Recommended N	axim	um Va	alue												18				50

	Building:	Linesöya	group 4				
Treated Floor	Area A _{TFA} :	[472.0	m²			
Auxiliary Electricity	Demand:		889.8	kWh/a			
Primary Energy E Energy Carrier Solar Fraction Marginal Performance Ra	Factors: Electricity: Gas: for DHW: n of DHW atio DHW:		2.7 1.1 1.1 73%	kWh/kWh kWh/kWh kWh/kWh			
					Facade	e with W	indows
Lighting / Non-Domestic	Fraction of Treated Floor Area	Room Category	Room Category	Nominal Illuminance Level	Deviation from North	Orientation	Light Transmission Glazing
Room / Zone				Lux	Degrees		-
			2	45			
CAFÈ	35%	31	Canteen	200	164	South	<mark>69</mark> %
BEDROOM 1	6%	29	Bedroom	300	164	South	<mark>69</mark> %
BEDROOM 2	5%	29	Bedroom	300	344	North	<mark>69</mark> %
KITCHEN PUB	3%	33	Kitchen Non-	500	74	East	<mark>69</mark> %
WC PUBLIC	<mark>6</mark> %	35	WC, Sanitary	200	74	East	<mark>69</mark> %
LIVING	6 %	36	Other Habitable	300	164	South	<mark>69</mark> %
BEDROOM 3	5%	29	Bedroom	300	344	North	<mark>69</mark> %
GYM	26%	50	Gymnasium	300	164	South	<mark>69</mark> %
WC/CHANGE	8 %	35	WC, Sanitary	200	164	South	<mark>69</mark> %
					90	East	<mark>69</mark> %
					90	East	<mark>69</mark> %
					90	East	<mark>69</mark> %
					90	East	<mark>69</mark> %
					90	East	<mark>69</mark> %
					90	East	<mark>69</mark> %
					90	East	<mark>69</mark> %
					90	East	<mark>69</mark> %
					90	East	<mark>69</mark> %
					90	East	<mark>69</mark> %
					90	East	<mark>69</mark> %
					90	East	<mark>69</mark> %
					90	East	<mark>69</mark> %

Passive House Planning ELECTRICITY DEMAND Non-Domestic Use

Window Properties (from Windows worksheet):

	Shading	Dirt Factor	Non- Perpendicular Radiation	Glazing Fraction
North	0.75	0.95	0.85	0.59
East	0.75			0.60
South	0.75			0.72
West	0.75			0.00

Roo	m Geor Room d	netry: In or Room	put of a h by Roo	Typical m		-		-		-			
Room Depth	Room Width	Room Height	Lintel Height	Window Width	Input Warning	Daylight Utilisation	User Data: Installed Lighting Power	Installed Lighting Power (Standard)	Lighting Control	Motion Detector with/without (1/0)	Lighting Control	Utilisation Hours per Year [h/a]	
~	-			m		1	101/002	101/m2					1

Room Depth	Room Width	Room Height	Lintel Height	Window Width	Input Warning	Daylight Utilisation	User Data: Installed Lighting Power	Installed Lighting Power (Standard)	Lighting Control	Motion Detector with/without (1/0)	Lighting Control		Utilisation Hours per Year [h/a]	User Determined: Lighting Full Load Hours	Full Load Hours of Lighting	Electricity Demand (kWh/a)	Spec. Electricity Demand (kWh/(m²a))	Primary Energy Demand (kWh/a)
m	m	m	m	m			W/m²	W/m²						h/a		kWh/a		
,				ş		-,							9		,		ş	
8.9	18.4	3.2	2.9	13.3		low		7.2	1	0	manual	Without Motion	1750		1396.1	1660.5	10.1	4483.5
5.9	4.6	3.2	2.7	4.5		medium		9.8	1	0	manual	Without Motion	8760	1460	1460.0	405.2	14.3	1094.0
5.7	4.6	3.2	2.7	1.2		none		9.8	1	0	manual	Without Motion	8760	1460	1460.0	337.7	14.3	911.7
4.4	3.5	3.2	2.4	1.5		none		15.0	1	0	manual	Without Motion	3900		3550.0	754.0	53.3	2035.9
4.4	5.1	3.2	0.0	0.0	Contradiction: Check width and height inputs	none		7.2	3	1	autarkic, with off- mode	With Motion	2750		524.3	106.9	3.8	288.7
5.9	4.4	2.8	2.7	4.5	Contradiction: Check width and height inputs	low		9.8	1	0	manual	Without Motion	2750	2920	2920.0	810.4	28.6	2188.1
5.7	4.6	2.8	2.7	1.5		none		9.8	1	0	manual	Without Motion	8760	1460	1460.0	337.7	14.3	911.7
8.9	13.6	2.8	2.7	4.8		none		9.8	1	0	manual	Without Motion	4500	2920	2920.0	3511.8	28.6	9481.7
8.5	4.4	2.8	2.7	1.2		none		7.2	3	1	autarkic, with off- mode	With Motion	2750		490.6	133.4	3.5	360.1
								0.0	1	0	manual	Without Motion					0.0	
								0.0	1	0	manual	Without Motion					0.0	
								0.0	1	0	manual	Without Motion					0.0	
								0.0	1	0	manual	Without Motion					0.0	
								0.0	1	0	manual	Without Motion					0.0	
								0.0	1	0	manual	Motion					0.0	
								0.0	1	0	manual	Motion					0.0	
								0.0	1	0	manual	Motion					0.0	
								0.0	1	0	manual	Motion					0.0	
								0.0	1	0	manual	Motion					0.0	
								0.0	1	0	manual	Motion					0.0	
								0.0	1	0	manual	Motion					0.0	
								0.0	1	0	manual	Motion					0.0	

Cooking Dishwashing Hot Water Connection Refrigerating Total Auxiliary Electricity Total Specific Demand

Passive House Planning AUXILIARY ELECTRICITY

		otor Electricity	2 7			
	Annual Space Hea	t Demand	2/	$k \sqrt{h} (m^2 n)$		
	Boiler Rated Power		3	k///		
	DHW System Heat D	Demand	8730	kWh/a		
	Design Flow Temper	ature	55	°C		
7	8	9	10	11		
Electricity Demand (kWh/a)	Available as Interior Heat	Used During Time Period (kh/a)	Internal Heat Source (W)	Primary Energy Demand (kWh/a)		
605	considered	d in heat recovery of	ficionav	1977		
095		a in heat recovery en		1077		
0	* 10 /			0		
U	1.0 /	4.91 =	U	U		
77	* 1.0 /	4.91 =	0	207		
-						
0	* 1.0 /	4.91 =	0	0		
33	* 0.6 /	8.76 =	0	88		
0	* 1.0 /	4.91 =	0	0		
0	* 1.0 /	4.91 =	0	0		
86	* 0.6 /	8.76 =	6	231		
0	* 1.0 /	8.76 =	0	0		
890			6	2402		
]					
1.9				5.1		

PRIMARY ENERGY VALUE

Building: Linesöya group 4			Building Type/Use:	dwelling/cul	tural
Location: Linesöya		T	reated Floor Area A _{TFA} :	472	m²
		Space Heat De	emand Incl. Distribution	9	kWh/(m²a)
		0	Serui Cooling Demand.		Emissions
					CO ₂ -Equivalen
			i kWh/(m⁻a)	kWh/(m⁻a)	kg/(m ⁻ a)
Electricity Demand (without Heat Pump)				PE Value	(CO ₂ -Equivalent)
Covered Fraction of Space Heat Demand		(Project)	0%	kWh/kWh	g/kWh
Covered Fraction of DHW Demand		(Project)	0%	2.7	680
Direct Electric Heating	Q _{H,de}		0.0	0.0	0.0
DHW Production, Direct Electric (without Wash&Dish)	$Q_{DHW,de}$	(DHW+Distribution, SolarDHW)	0.0	0.0	0.0
Electric Postheating DHW Wash&Dish	0	(Electricity, SolarDHW)	0.0	0.0	0.0
Electricity Demand - Auxiliary Electricity	∽EHH	Leoundy Hollonooy	1.9	5.1	1.3
Total Electricity Demand (without Heat Pump)			23.4	63.3	15.9
					COEmission Facto
leat Pump				PE Value	(CO ₂ -Equivalent)
Covered Fraction of Space Heat Demand		(Project)	0%	kWh/kWh	g/kWh
Covered Fraction of DHW Demand		(Project)	0%	2.7	680
Energy Carrier - Supplementary Heating		Concerto Coloulation	Electricity	2.7	680
Total System Performance Ratio of Heat Generator		Separate Calculation	0.45		
Electricity Demand Heat Pump (without DHW Wash&Dish)	Q_{HP}		0.0	0.0	0.0
Non-Electric Demand, DHW Wash&Dish Total Electricity Demand Heat Pump		(Electricity worksheet)	0.0	0.0	0.0
· • • • • • • • • • • • • • • • • • • •					
ompact Heat Pump Unit				PE Value	CO ₂ -Emission Factor
Covered Erection of Choose Light Derived		(Project)	1000		(CO ₂ -Equivalent)
Covered Fraction of Space Heat Demand Covered Fraction of DHW Demand		(Project) (Project)	100% 100%	kwh/kWh 2.7	g/kWh 680
				0.7	
Energy Carrier - Supplementary Heating COP Heat Pump Heating		(Compact worksheet)	Electricity 1.6	2.7	680
COP Heat Pump DHW		(Compact worksheet)	1.8		
Performance Ratio of Heat Generator (Verification)		(Compact worksheet)	0.81		
Electricity Demand Heat Pump (without DHW Wash&Dish)	Q _{HP}	(Compact worksheet)	10.8	29.3	7.4
Non-Electric Demand, DHW Wash&Dish		(Compact workshoot)	0.0	0.1	0.0
		(Compact worksheet)	10.9	29.4	/.4
- 11 - 2				25.11	CO ₂ -Emission Fact
oller				PE Value	(CO ₂ -Equivalent)
Covered Fraction of Space Heat Demand		(Project)	0% 0%	kWh/kWh	g/kWh
Covered Fraction of DHVV Demand		(Project)	08	1.1	250
Boiler Type		(Boiler worksheet)	00]
Utilisation Factor Heat Generator Annual Energy Demand (without DHW Wash&Dish)		(Boiler worksheet) (Boiler worksheet)	0.0	0.0	0.0
Non-Electric Demand, DHW Wash&Dish		(Electricity worksheet)	0.0	0.0	0.0
Total Heating On/Gas/Wood			0.0	0.0	0.0
istrict Hoat				DE Volue	CO ₂ -Emission Fact
					(CO ₂ -Equivalent)
Covered Fraction of Space Heat Demand		(Project) (Project)	0% 0%	kWh/kWh	g/kWh -70
		(1.10)000			
Heat Source		(District Heat worksheet)	05%		
Heat Demand District Heat (without DHW Wash&Dish)		(District Heat worksheet)	0.0	0.0	0.0
Non-Electric Demand, DHW Wash&Dish		(Electricity worksheet)	0.0	0.0	0.0
Total District Heat			0.0	0.0	0.0
ther				DE Value	CO ₂ -Emission Fact
					(CO ₂ -Equivalent)
Covered Fraction of Space Heat Demand Covered Fraction of DHW Demand		(Project) (Project)	0% 0%	kWh/kWh 0.2	g/kWh 55
					3
Heat Source Utilisation Factor Heat Generator		(Project) (Project)	Wood 74१		_
Annual Energy Demand, Space Heating			0.0	0.0	0.0
Annual Energy Demand, DHW (without DHW Wash&Dish) Non-Electric Demand, DHW Wash&Dish		(Electricity worksheet)	0.0	0.0	0.0
Non-Electric Demand Cooking/Drying (Gas)		(Blatt Strom)	0.6	0.7	0.0
Total - Other			0.6	0.7	0.0
coling with Electric Heat Dump				DE Volue	CO ₂ -Emission Fac
					(CO ₂ -Equivalent)
Covered Fraction of Cooling Demand		(Project)	100%	kWh/kWh 2.7	g/kWh 680
			·		
Heat Source			Electricity		
Energy Demand Space Cooling			0.0	0.0	0.0
eating, Cooling, DHW, Auxiliary and Household Electricity			34.9	93.3	23.3
Total PE Value		93.3	kWh/(m²a)		
Total Emissions CO ₂ -Equivalent		23.3	kg/(m²a)		(Yes
Prima	ry Ene	rgy Requiremen	t 120	kWh/(m²a)	Yes
			L		
eating DHW Auxiliary Electricity (No Household Application)	s)		127	3/ 3	2.6
wanny, Errer, Auxiliary Liectricity (No nousehold Applications	•)		L/M/b//m2=)	34.3	0.0
Charlie DE Damard Martine 100 1			$\frac{1000}{1000}$		
Specific PE Demand - Mechanical System		34.3			
Specific PE Demand - Mechanical System Total Emissions CO ₂ -Equivalent		34.3 8.6	kg/(m²a)		
Specific PE Demand - Mechanical System Total Emissions CO ₂ -Equivalent		34.3 8.6	kg/(m²a)		
Specific PE Demand - Mechanical System Total Emissions CO ₂ -Equivalent		34.3 8.6	kg/(m²a)	DE Malue (Oction)	CO -Emission Francisco

Planned Annual Electricity Generation	Separate Calculation	8628	kWh/kWh	g/kWh		
			0.7	250		
Specific Demand		18.3	12.8	4.6		
PE Value: Conservation by Solar Electricity	36.6	kWh/(m²a)				
CO ₂ -Emissions Avoided Due to Solar Electricity	7.9	kg/(m²a)				
		4				

PHPP 2007, PE Value