"LIPA MILJØPROSJEKT" LINESØYA

Assignment 3

Group 5:

Elisabetha Caharija, Rania Daher, Michael Gruner

Table of Content

- 1. Final Design Description
- 1.1 Design targets
- 1.2 Performance targets
- 2. Energy Performance Calculation (according to PHPP 2007)
- 3. Commissioning and Monitoring Plan
- 4. Construction and Operation strategies
- 4.1 Construction
- 4.2 Operation

Attachments

PHPP 2007 calculation

1. Final design description

1.1 Design targets

The purpose of the Linesøya House project is to refurbish a building and at the same time trying to keep or preserve most of the old parts that not necessarily need to be modify. The parts of the building that should be removed (e.g. roof girders) will be reused for other purposes, for example in other buildings in the neighborhood.

It's a case study for retro fitting where the main goal is to add new technologies to an old system in order to improve the energy efficiency or more precisely to achieve the passive house standard.

The challenge was to refurbish and redevelop the properties of the original building respecting its architectural, historic qualities and local context while creating a multifunctional house.

One of the main ideas of the project was to reveal the "inner life" of the building, to show the composition of the structure with a cut made throughout the house. This kind of work would be used as an educational tool, to let people know how a passive house works, to reveal the depth of the walls, the spaces and the passage of light. The cut has a specific solar orientation (9 degrees) which allows the sun's rays to penetrate through the cut on the summer solstice.

The inspiration has been given by an American artist from the Sixties, Gordon Matta Clark, known for his "building cuts," a series of works in abandoned buildings in which he variously removed sections of floors, ceilings, and walls.

The building's circulation system was another feature in the Linesøya project. It allows people to have an informative walkthrough the building, to experience and to learn more about the construction.

1.2 Perfomance targets

The initial goal was to have a zero net energy building but after some calculations it has been noticed that it's not possible to achieve it, since the building needs always some energy delivered from the grid.

The new target of the project was to have a passive house in order to fulfill the passive house requirements ("Passivhus" and "Passivhus").

The maximization of the usable space within the existing volume was also important in the project. By working with this idea, it was possible to have a very compact building. No extensions have been added to the existing house. The existing storage (on the west side) has been left as it is so the inhabitants could have the possibility to transform the building in the future (the project doesn't end up but is in a continuous transformation).

A new insulating envelope has been added on the outer part of the external walls which helps to reduce efficiently all the thermal bridges that existed in the old structure.

Air leakage is a major cause of energy loss so the air-tightness has been carefully designed into the building envelope during the initial concept design stage. The air barriers are impermeable to air, continuous, durable and vapor open in order to have a diffusion open construction. Internal air barriers are airtight; the external ones are wind-tight.

The materials used in this refurbishment project are environmental friendly: by using one of the "Homatherm" products instead of using the mineral wool and by using the foam glass gravel for the foundations.

2. Energy Performance Calculation

The energy performance was evaluated with the "Passive House Planning Package" ("PHPP") in order to achieve verification with the passive house standard according to the German Passivhaus-Institut Darmstadt. As a general approach the input data was entered in a conservative manner to remain always on the 'safe side'.

According to PHPP the Passivhaus energy performance standard would be achieved with a specific heating demand of 15.4 kWh/(m²·a) resp. 15.1 kWh/(m²·a) according to EN 13790, a test result of the pressurisation test of 0.30 h¹¹, a specific primary energy demand of 82 kWh/(m²·a), and a specific cooling energy demand of 0.3 kWh/(m²·a). The maximum heating load is 10.8 W/m² and the maximum cooling load is 5.0 W/m².

Further comments to the individual spreadsheets as follows:

"Verification" spreadsheet

Since no appropriate climate data for Linesøya or nearby locations are available the climate data for Oslo provided by PHPP was selected.

"Areas" spreadsheet

The "treated floor area" of the building is $402~\text{m}^2$. In contrast, the "bruksareal" according to Norwegian standard NS 3940 is $436~\text{m}^2$. In general, the shape of the building was slightly simplified – the small protrusion of the elevator on the east elevation was neglected. Even though a refurbishment project, the "thermal bridge-free construction" ($\Psi \leq 0.01~\text{W/}$ (m·K)) was chosen. Hence thermal bridges can be neglected and therefore no thermal bridges are to be entered.

Most transmission heat losses appear through south windows (21 %), north windows (16 %), slab to ground (11 %), north- and south-facing roof (each 9 %). If further calculations end in critical results, the reduction of the north window area shows the biggest potential for adjustments.

"Windows" spreadsheet

The big mullioned windows in the South façade on the first floor have been simplified. The

doors are accounted as windows.

"Window type" spreadsheet

Even though not certified by the PHI, "Nordan N-Tech0.7" windows were chosen initially. However, using the "Nordan Energi 2s SSP/Ar" glazing with a g-value of 0.37 a specific heating demand of $15 \text{ kWh/(m} \cdot a)$ cannot be achieveed due to the low g-value which allows less solar gains. Therefore the "Triple-low-e Kr12" glazing had to be chosen.

The unknown thermal properties of "Nordan N-Tech0.7" were substituted by those from the "Passive House frame, good thermal quality". The structural glazing system "batimet TM50 SE" is PHI-certified. The values for the thermal bridge due to window installation $\Psi_{installation}$ is assumed as 0.010 W/(m·K).

"Shading" spreadsheet

Additional shading elements (e.g. trees) are considered for the windows at the ground and first floor with an "Additional shading reduction factor" of 90 %. For summer case see spreadsheet "Summer shading".

"Ventilation" spreadsheet

The design air flow rate is $392 \text{ m}^3\text{/h}$. Even though the ventilation volume is 1005 m^3 (considering 2.50 m clear height) the net air volume for the pressurisation test is estimated as 1400 m^3 .

The wind protection coefficient is 0.10 assuming no considerable screening. The efficiency of the heat recovery system has to be 93 % (and 0.4 Wh/m³ electricity efficiency) and the test results of the pressurisation test at 50 Pa pressure difference n_{50} of less than 0.30 h⁻¹ to achieve the Passive house requirement of 15 kWh/(m²·a).

A subsoil heat exchanger is actually not intended and substituted by preheating the fresh air through cavities in the roof. Since no data for this is available the "Effective heat recovery efficiency subsoil heat exchanger" remained as provided by the example (93 %).

"Heating load" spreadsheet

The required heating power is 3.92 kW resulting in 9.8 W/m^2 . The maximum heating load in the worst case (cold, clear day) is higher than the heating supplied by the ventilation system: $9.8 \text{ W/m}^2 > 8.6 \text{ W/m}^2$. Hence an additional heating system is necessary (1.2 W/m^2 supplementary heating are required in worst case).

"Summer" spreadsheet

Since the building construction contains partly very heavy concrete elements and on the other hand light construction elements the specific heat capacity was altered to 132 Wh/($K \cdot m^2_{TFA}$). The air change rate of the mechanical system in summer is equal to the heating period = 0.3 h^{-1} .

At the required overheating limit of 25 °C the frequency of overheating is 1.0 %. Additional

measures (shading of windows, natural ventilation and supply air cooling) are necessary.

"Summer shading" spreadsheet

Windows receive shading devices. Due to the local windy conditions internal shading with Venetian blinds is used. Except of the very small windows and the "cut" all windows on north, east, south, west facade have a "temporary shading reduction factor" of 70 %. The door on the east façade and the elevator door on the south façade have a shading reduction factor of 0 %. Shading of the surrounding trees is taken into account on the north, east, west side with an "additional shading reduction factor" of 70 % and 90 % on the south side.

"Summer ventilation" spreadsheet

Cross ventilation on all floors at a certain percentage are considered during daytime. The wind velocity is kept at 1 m/s.

"Cooling unit" spreadsheet

Supply air cooling is applied which covers the cooling demand.

"Heat distribution and DHW system" spreadsheet

No space heat distribution system is considered.

"Electricity" spreadsheet

80 % energy-saving fixtures are proposed. Using 100% can reduce the specific electricity demand by $0.8 \text{ kWh/(m}^2 \cdot a)$.

"Auxiliary electricity" spreadsheet

According to input in the "Summer" spreadsheet "Summer ventilation" is used. The circulation pumps for the DHW are placed inside the thermal envelope.

"Primary energy value" spreadsheet

A heat pump covers 100 % of heating and DHW demand. The input data related to the heat pump remained unchanged.

The energy production of the Photovoltaic system refers to the "PVGIS" website.

3. Commissioning and Monitoring Plan

Based on the Kyoto pyramid and the output from the PHPP a monitoring plan can be established which should be the binding and compulsory reference for all partners regarding planning and construction of the building:

1.	Heat loss reduction	
1.1	super insulation	
	wall below ground	$U \le 0.10 \text{ W/m}^2\text{K}$
	wall above ground	$U \le 0.09 \text{ W/m}^2\text{K}$
	roof	$U \le 0.08 \text{ W/m}^2\text{K}$
	slab to ground	$U \le 0.10 \text{ W/m}^2\text{K}$
	thermal bridges	"thermal bridge-free construction", $\Psi \leq 0.01$ W/
		(m·K)
	windows, doors	casing: $U \le 0.72 \text{ W/m}^2\text{K}$
		glazing: $U \le 0.58 \text{ W/m}^2\text{K}$
		installation: $\Psi \leq 0.01 \text{ W/(m\cdot K)}$
	structural glazing	casing: $U \le 0.92 \text{ W/m}^2\text{K}$
		glazing: $U \le 0.58 \text{ W/m}^2\text{K}$
		installation: $\Psi \leq 0.01 \text{ W/(m\cdot K)}$
1.2	air-tightness	
	test result pressurisation test at	$n_{50} = 0.30 \text{ h}^{-1}$
	50 Pa	
	detailing	sealed joints, taped gaps, vapour barrier and wind
		barrier fixed to window frame
	"blower-door-test"	
1.3	heat recovery	
1.3.1	ventilation system	
	type	balanced passive house ventilation
	design air flow rate	392 m³/h
	average air change rate	≥ 0.3 h ⁻¹
	ventilation heat recovery	efficiency \geq 93 %, electricity efficiency \leq 0.40
		Wh/m³
	supply air preheating	cavities under photovoltaics or subsoil heat
		exchanger
	ventilation ducts	insulated
1.3.2	heating system	
	nominal design power	4.3 kW (10.8 W/m ²)
	supplementary heating system	nominal power 1.0 kW (2.6 W/m ²);
		efficient, small capacity, portable systems, low
		temperature (PHPP manual recommendation: liquid
		gas heaters);
		post-heating of ventilation air if possible

1.3.3	cooling system	
	maximum cooling load	2.0 kW (5.0 W/m ²)
1.3.4	domestic hot water	
	heat recovery	desirable
	DHW pipes	insulated (minimum 20 mm, reflective)
2.	reduce energy consumption	
2.1	exploitation of daylight	
	windows	increasing window sizes by splaying
2.2	reduction of cooling	
	summer shading	shading devices on south, east and west façades
	natural ventilation	window ventilation, cross ventilation in day and
		night time during summer
2.3	energy efficient lighting and appliances	
	energy saving light fixtures	≥ 80 %
	energy label household appliances	at least energy label A
3	utilise solar gains	
3.1	passive solar	
	glazing	g-value ≥ 0.5
	windows	splayed sides
	supply air preheating / (-cooling?)	through cavities under roofing
3.2	active solar	
	photovoltaic system	18 kWp mounted on south-facing roof with optimised slope
4	display and control of energy	7 use
4.1	display	
T.1	design	visible energy systems, ducts and pipes as part of
	doorgii	the educational program of the building

	visualisation of consumption	
4.2	control	
	"smart-house-technologies"	
5	renewable energy source	
5.1	heating / DHW	
	ground - water -heat pump	COP ≥ 3.2
5.2	electricity	
	photovoltaic system	18 kWp

4. Construction and Operation strategies

4.1 Construction

Given here are the issues of thermal bridges and air-tightness as incomplete examples for strategies of construction.

The energy performance target reached in the calculation construction was only reached taking into account a "thermal bridge-free" construction according to the Passivhaus Institut Darmstadt with almost non-existing thermal bridges. Therefore the planning of details and the construction in situ have to pay a great deal of attention to the compliance with this standard. Certified "thermal bridge-free" details can be obtained from the manufacturer or the PHI. Alterations (even because of national or local 'customs and habits') are only allowed after consultation and in agreement with the planners after evaluations of the risks.

The required air-tightness has to be ensured. Thus the "Blower-door-test" has to be considered as milestone during the construction phase. All relevant layers of the construction have to be in place by then (e.g. vapour barrier, wind barrier, windows, doors - all fixed, sealed, and taped). The test has to be announced two weeks in advance in order to allow the work to be finished. If the result of the "blower-door-test" fails the required result then a second test has to undertaken. The costs for the second test are split among the hitherto working contractors. If the test result meet or even beat the requirements incentives are to be considered (white-list of contractors?).

4.2 Operation

Improving operation and maintenance practices can significantly improve the energy

efficiency of the building.

HVAC (heating, ventilation, and air conditioning) systems have a major impact on energy usage. Proper selection, installation, operation, and maintenance of HVAC systems can yield substantial energy savings, help control seasonal spikes in energy usage, and can improve comfort and air quality in the building.

Ventilation

Opening the windows in the winter time is not required as the ventilation system with heat recovery ensures an adequate supply of fresh air. The moisture generated in the house and the indoor pollution are completely removed whether the residents open the windows or not. In the summer time, the building is like a normal house where windows are opened at night for cooling.

The maintenance requirements for the ventilation unit are the following: changing filters; permanent use or shutdown with dry filters.

Since the building is essentially air-tight, the rate of air change should be optimized and carefully controlled at 0.3 air changes per hour.

Heating

In the building, the period when heating does take place corresponds from mid-December to mid-March (depending on the regional climate, usage and building details, this can vary by \pm one month). Doors to unheated spaces or rooms should be closed to reduce heating. When the occupants are not at home, the heating system must not be completely switched off. During the rest of the time (summer Time), the heating is not in operation and the windows are used to ventilate as described previously.

Lighting

Also lighting represents a large portion of electrical consumption for the building. If it is used in a proper way it will provide benefits such as: instant energy savings, improved lighting quality, and enhanced productivity, as well as experiencing the long term benefit of having longer-lasting lamps that will reduce the maintenance expenses. The less efficient incandescent light sources should be replace with LEDs (light-emitting diode) which have lower energy consumption and longer lifetime, improved robustness, smaller size, faster switching, and greater durability and reliability.

Lighting controls can further increase the energy savings, by automatically turning the fixtures on and off, or by simply dimming the light output when natural light sources are available.

Shading

Internal shading devices should be added on the windows facing south to have control over the solar gain, natural light and glare. They should be adjustable and movable responding easily to changing requirements and provide benefits in the regulation of insulation level of the windows. At night they also reduce heat losses through the window.

Passive House Verification

PHPP 2007, Verification 110427linesøyaphpp.ods

Passive House Planning AREAS DETERMINATION

Building: "LIPA Miljøpro	sjekt" Heat Demand	15	kWh/(m²a
--------------------------	--------------------	----	----------

					Summary			Average U-
Group Nr.	Area Group	Temp Zone	Area	Unit	Comments	Building Element Overview	Value [W/(m²K)]	
1	Treated Floor Area		402.00	m²	Living area or useful area within the thermal envelope			
2	North Windows	Α	21.31	m²			North Windows	0.785
3	East Windows	Α	7.12	m²			East Windows	0.753
4	South Windows	Α	35.50	m²	Results are from the Windows worksheet.		South Windows	0.730
5	West Windows	Α	3.40	m²			West Windows	0.777
6	Horizontal Windows	Α	0.00	m²			Horizontal Windows	
7	Exterior Door	Α	0.00	m²	Please subtract area of door from respective building element		Exterior Door	
8	Exterior Wall - Ambient	Α	360.20	m²	Window areas are subtracted from the individual areas specified in the "Windows" worksheet.		Exterior Wall - Ambient	0.086
9	Exterior Wall - Ground	В	91.40	m²	Temperature Zone "A" is ambient air.		Exterior Wall - Ground	0.099
10	Roof/Ceiling - Ambient	Α	309.67	m²	Temperature zone "B" is the ground.		Roof/Ceiling - Ambient	0.081
11	Floor Slab	В	229.70	m²			Floor Slab	0.090
12			0.00	m²	Temperature zones "A", "B","P" and "X" may be used. NOT "I"			
13			0.00	m²	Temperature zones "A", "B","P" and "X" may be used. NOT "I"	Factor for X		
14		Х	0.00	m²	Temperature zone "X": Please provide user-defined reduction factor ($0 < f_i < 1$):	75%		
							Thermal Bridge Overview	Ψ [W/(mK)]
15	Thermal Bridges Ambient	Α	0.00	m	Units in m		Thermal Bridges Ambient	
16	Perimeter Thermal Bridges	Р	0.00	m	Units in m; temperature zone "P" is perimeter (see Ground worksheet).	•	Perimeter Thermal Bridges	
17	Thermal Bridges Floor Slab	В	0.00	m	Units in m		Thermal Bridges Floor Slab	
18	Partition Wall to Neighbour	ı	0.00	m²	No heat losses, only considered for the heat load calculation.		Partition Wall to Neighbour	
Total Th	ermal Envelope		1058.30	m²			Average Therm. Envelope	0.129

				Α	rea	Input													
Area Nr.	Building Element Description	Group Nr.	Assigned to Group	Quan- tity	x (a [m]	x	b [m]	+	User-Deter- mined [m²]		User Sub- traction [m²]		Subtraction Window Areas [m²]) =	Area [m²]	Selection of the Corresponding Building Element Assembly	Nr.	U-Value [W/(m²K)]
	Treated Floor Area	1	Treated Floor Area	1	х (х		+	402.00)=	402.0			
	North Windows	2	North Windows													21.3	From Windows sheet		0.785
	East Windows	3	East Windows	」 _						_						7.1	From Windows sheet		0.753
	South Windows	4	South Windows	. F	'lea	ise com	ıpl	ete in W	ine	w awot	or	ksheet	on	ıly!		35.5	From Windows sheet		0.730
	West Windows	5	West Windows	1												3.4	From Windows sheet		0.777
	Horizontal Windows	6	Horizontal Windows	_			_		_						_	0.0	From Windows sheet		0.000
<u> </u>	Exterior Door	7	Exterior Door	1	х (х		+	25.00	٠) -) -		=	25.0	U-Value Exterior Door		
2	north below ground	8	Exterior Wall - Ground Exterior Wall - Ambient	1	x (х		+	44.50	•) -	0.0	1=	33.1		1	0.099
3	north above ground 1 north above ground 2	8	Exterior Wall - Ambient	1	x (Х			81.90	·) -	6.0	ΙΞ	75.9		2	0.093
_		10		1	·		x		+		·) -	4.0	=			4	
4 5	north roof east below ground	9	Roof/Ceiling - Ambient Exterior Wall - Ground	1	x (X		+	142.80	·) -	0.0	=	138.8 18.6		1	0.081 0.099
6	east above ground 1	8	Exterior Wall - Ground	1	x (X			11.30	·) -	1.1	=	10.2		2	0.093
7	east above ground 1	8	Exterior Wall - Ambient	1	x (X			69.90	·) -	6.0	=	63.9		3	0.093
8	east above ground 2	10		1	x (x		+	26.10	·) -	0.0	=	26.1		4	0.083
9	east roof south below ground	9	Roof/Ceiling - Ambient Exterior Wall - Ground	1	x (x		+	33.40	Ė) -	0.0	=	26.1 33.4		1	0.081
10	south above ground 1	8	Exterior Wall - Ground	1	x (X			38.90	·) -	5.5	1=	33.4		2	0.093
11	south above ground 2	8	Exterior Wall - Ambient	1	x (X			78.40	·) -	26.0	=	52.4		3	0.093
12	south roof	10		1	x (X			142.80)-	4.0	1=	138.8		4	0.083
13	west below ground	9	Roof/Ceiling - Ambient Exterior Wall - Ground	1	x (X			142.80	·) -	0.0	Ι÷	14.4		1	0.099
14		8	Exterior Wall - Ambient	1	x (X			25.10	·) -	0.0	=	25.1		2	0.093
15	west above ground 1 west above ground 2	8	Exterior Wall - Ambient	1						69.60	·)-	3.4	÷	66.2		3	-
16	west above ground 2	10	Roof/Ceiling - Ambient	1	x (x		+	5.90	·) -	0.0	=	5.9		4	0.083 0.081
17		11		1	x (X			229.70	·) -	0.0	=	229.7		5	0.090
18	slab to ground	- 11	Floor Slab	1	x (X		+	229.70	·) -	0.0	1	229.7		0	0.090
19				-	x (X		+		·) -	0.0	=			0	\vdash
20				 	x (X		+		·) -	0.0	=			0	\vdash
21				—	x (X		+		·)-	0.0	Ē			0	\vdash
22				 	x (X		+		·) -	0.0	=			0	\vdash
23				-	x (X		+		·) -	0.0	=			0	\vdash
24				\vdash	x (x		+)-	0.0	ΗĒ			0	\vdash
25					x (х		+		Ė) -	0.0	=			0	-
26				\vdash	x (х		+) -	0.0	=			0	\vdash
27					x (x		-		-)-	0.0	1			0	-
28				 	x (X		+		÷) -	0.0	Ē			0	
29					x (x		<u>.</u>		-) -	0.0	=			0	-
30				\vdash	x (x		+		-) -	0.0	Ē			0	\vdash
31				\vdash	x (X		+) -	0.0	Ē			0	\vdash
32					x (х		+)-	0.0	=			0	
33					x (x		+		-)-	0.0	=			0	\vdash
34					x (x		+) -	0.0	=			0	\vdash
35					x (x		+		-) -	0.0	=			0	\vdash
36					x (x		+		-) -	0.0	=			0	\vdash
37					х (х		+		-) -	0.0	=			0	
38					x (х		+		-) -	0.0	=			0	\vdash
39					x (х		+		-) -	0.0	=			0	\vdash
40					x (x		+		-) -	0.0	=			0	
41					x (х		+		-) -	0.0	=			0	
42					х (x		+		-) -	0.0	=			0	
43					х (х		+		-) -	0.0	=			0	
44					x (х		+		-) -	0.0	=			0	
45					x (х		+		-) -	0.0	=			0	
46					x (х		+		-) -	0.0	=			0	
47					x (х		+		-) -	0.0	=			0	
48					x (х		+		-) -	0.0	=			0	
49					x (х		+		-) -	0.0	=			0	
50					х (х		+		-) -	0.0	=			0	\vdash
FLend				_			_		_		_				_			_	

PHPP 2007, Areas 110427linesøyaphpp.ods

Passive House Planning AREAS DETERMINATION

Building: "LIPA Miljøprosjekt"	Heat Demand	15	kWh/(m²a)
--------------------------------	-------------	----	-----------

					Summary			Average U-
Group Nr.	Area Group	Temp Zone	Area	Unit	Comments	Building Element Overview	Value [W/(m²K)]	
1	Treated Floor Area		402.00	m²	Living area or useful area within the thermal envelope			
2	North Windows	Α	21.31	m²			North Windows	0.785
3	East Windows	Α	7.12	m²			East Windows	0.753
4	South Windows	Α	35.50	m²	Results are from the Windows worksheet.		South Windows	0.730
5	West Windows	Α	3.40	m²			West Windows	0.777
6	Horizontal Windows	Α	0.00	m²			Horizontal Windows	
7	Exterior Door	Α	0.00	m²	Please subtract area of door from respective building element		Exterior Door	
8	Exterior Wall - Ambient	Α	360.20	m²	Window areas are subtracted from the individual areas specified in the "Windows" worksheet.		Exterior Wall - Ambient	0.086
9	Exterior Wall - Ground	В	91.40	m²	Temperature Zone "A" is ambient air.		Exterior Wall - Ground	0.099
10	Roof/Ceiling - Ambient	Α	309.67	m²	Temperature zone "B" is the ground.		Roof/Ceiling - Ambient	0.081
11	Floor Slab	В	229.70	m²			Floor Slab	0.090
12			0.00	m²	Temperature zones "A", "B","P" and "X" may be used. NOT "I"			
13			0.00	m²	Temperature zones "A", "B","P" and "X" may be used. NOT "I"	Factor for X		
14		Х	0.00	m²	Temperature zone "X": Please provide user-defined reduction factor ($0 < f_i < 1$):	75%		
							Thermal Bridge Overview	Ψ [W/(mK)]
15	Thermal Bridges Ambient	Α	0.00	m	Units in m		Thermal Bridges Ambient	
16	Perimeter Thermal Bridges	P	0.00		Units in m; temperature zone "P" is perimeter (see Ground worksheet).	· ·	Perimeter Thermal Bridges	
17	Thermal Bridges Floor Slab	В	0.00	m	Units in m	,	Thermal Bridges Floor Slab	
18	Partition Wall to Neighbour	ı	0.00	m²	No heat losses, only considered for the heat load calculation.		Partition Wall to Neighbour	
Total Th	ermal Envelope		1058.30	m²			Average Therm. Envelope	0.129

					Thermal Bridge In	nputs						
Nr. of Thermal Bridge	Thermal Bridge Description	Group Nr.	Assigned to Group	Quanti ty	x(User Dete mined Length [m]	r- -	Subtrac- tion User- Determined Length [m])=	Length I	Input of Thermal Bridge Heat Loss Coefficient W/(mK)	Ψ W/(mK)
1	Ext. wall-basement	15	Thermal Bridges Ambient	1	x (0.00	-) =	0.00	Ext. wall-basement	-0.039
2	Int. wall-basement	17	Thermal Bridges Floor Slab	1	x (0.00	-) =	0.00	Int. wall-basement	0.061
3	Partition walls	15	Thermal Bridges Ambient	1	x (0.00	-) =	0.00	Partition walls	0.000
4	Interior ceilings	15	Thermal Bridges Ambient	1	x (0.00	-) =	0.00	Interior ceilings	0.002
5	Partition wall-roof	15	Thermal Bridges Ambient	1	x (0.00	-) =	0.00	Partition wall-roof	0.005
6	Ext. wall-roof	15	Thermal Bridges Ambient	1	x (0.00	-) =	0.00	Ext. wall-roof	-0.061
	Ext. wall edge	15	Thermal Bridges Ambient	1	x (0.00	-) =	0.00	Ext. wall edge	-0.062
8					x (-) =			
9					x (-) =			
10					x (1) =			
11					x (-) =			
12					x (-) =			
13					x (-) =			
14					х (-) =			
15					x (-) =			
16 17					X (-) =			
18					x (1) =) =			
19					X (÷) =) =			
20					x (-) =			
21					x (-) =			
22					х (-) =			
23					x (-) =			
24					х (-) =			
25					x (ŀ) =			
26 27				\vdash	x (-) =) =			
28					X (+ -) =) =			
29					x (1) =			
30					x (-) =			
31					x (-) =			
32					x (-) =			
33					x (ŀ) =			
34					X (+) =) =			
35 36					x (+) =) =			
37					X (-) =			
38					x (1) =			
39					x (-) =			
40					x (-) =			
41					х (Ŀ) =			
42					x (·) =			
43 44					X (·) =) =		ļ	
44					x (1) =) =			
46				\vdash	X (1) =) =		1	
47					X (1:) =) =		 	
48					x (-) =		i	
49					x (-) =			
50					x (-) =			
TBend	<u> </u>									·		

PHPP 2007, Areas 110427linesøyaphpp.ods

U - LIST

Compilation of the building elements calculated in the U-Values worksheet and other construction types from databases.

	Compilation of the building elements calculated in the U-Values worksheet and other construction types from databases. Type		
Γ.	.,,,,,		
Assem bly No.	Assembly Description	Total Thickness	U-Value
		m	W/(m²K)
1	wall below ground	0.655	0.10
2	wall above ground 1	0.475	0.09
3	wall above ground 2	0.575	0.08
-	roof	0.559	0.08
	slab to ground	1.001	0.09
6			
7			
8			
9			
10			
11			
12			
13			
14 15			
16			
17			
18			
19			
20			
_	Wood24-old	0.275	1.440
	Solid Brick 38-old	0.415	1.640
	Framework18-old	0.210	1.800
-	VerticalCoringBrick30-old	0.335	1.230
	PrecastConcrete-old	0.275	1.300
-	WoodenJoistCeiling-old	0.284	0.990
	BasementFloor-old	0.242	1.230
28			
29	AW-ALS032-mas: alseco, exterior insulation compound system on masonry	0.500	0.100
30	AW-ALS034/035-mas: alseco, exterior insulation compound system on masonry	0.500	0.110
31	AW-ALS040/041-mas: alseco, exterior insulation compound system on masonry	0.500	0.130
32	AW-ALG032-mas: Alligator, exterior insulation compound system on masonry	0.500	0.100
33	AW-ALG034/035-mas: Alligator, exterior insulation compound system on masonry	0.500	0.110
34	AW-ALG040/041-mas: Alligator, exterior insulation compound system on masonry	0.500	0.130
	AW-CAP032-mas: Caparol, exterior insulation compound system on masonry	0.500	0.100
	AW-CAP034/035-mas: Caparol, exterior insulation compound system on masonry	0.500	0.110
	AW-CAP040/041-mas: Caparol, exterior insulation compound system on masonry	0.500	0.130
	AW-FGH035-lei: Fingerhaus, wooden beam load-bearing wall with ETICS	0.415	0.100
	AW-FIN040-lei: Finnforest Merk, FJI-beam	0.404	0.120
	AW-GPT031-mas: Gisoplan-Therm 375/225, ICF from expanded clay	0.400	0.120
	AW-GRE050-mas: Greisel, exterior insulation compound system on porous concre AW-HEB045-mas: Hebel, exterior insulation compound system on porous concret	0.515 0.470	0.119
	AW-HEB045-mas: Hebel, exterior insulation compound system on porous concret AW-HVH035-mas: Heinz von Heiden, exterior insulation compound system on Yton	0.470	0.140
	AW-HVH040-lei: Heinz von Heiden, exterior insufation compound system on room	0.457	0.101
	AW-ISR035-dws: isorast, insulating concrete form Dickwandstein	0.400	0.140
	AW-ISR035-sdw: isorast, insulating concrete form Superdickwandstein	0.463	0.110
	AW-MAR035-mas: Marmorit, ETICS from limestone and PS	0.500	0.110
	AW-MAR040-mas: Marmorit, ETICS from limestone and MW	0.500	0.130
	AW-NUS035-mas: Naumann&Stahr, wooden lightweight elements with DokAW-beams	0.423	0.120
	AW-ST0035-mas: Sto, ETICS from limestone and PS 035	0.495	0.110
51	AW-ST0040-mas: Sto, ETICS from limestone and PS 040	0.495	0.130
52	AW-WOC250-mas: Wochner, ETICS from porous concrete and PS, 250	0.460	0.130
53	AW-WOC300-mas: Wochner, ETICS from porous concrete and PS, 250	0.510	0.110
-	DA-ALS045-lei: alseco, lightweight roof	0.395	0.140
	DA-ALS040-Fla: alseco, Flachdach	0.515	0.130
	DA-ALG045-lei: Alligator, lightweight roof	0.395	0.140
	DA-ALG040-Fla: Alligator, flat roof	0.515	0.130
	DA-CAP045-lei: Caparol, lightweight roof	0.395	0.140
	DA-CAP040-Fla: Caparol, flat roof	0.515	0.130
	DA-FGH035-lei: Fingerhaus, lightweight roof	0.333	0.130
61	DA-FIN040-lei: Finnforest Merk, lightweight roof	0.344	0.141

PHPP 2007, U-List 110427linesøyaphpp.ods

Passive House Planning U-VALUES OF BUILDING ELEMENTS

Wedge Shaped Building Element Layers and Still Air Spaces -> Secondary Calculation to the Right

Assembly No. Building Assembly Do	-	Resistance [m²K/W] interior R_{si} : exterior R_{se} :	0.13			
		exterior N_{se} .	0.00	J		Total Width
Area Section 1	λ [W/(mK)]	Area Section 2 (optional)	λ [W/(mK)]	Area Section 3 (optional)	λ [W/(mK)]	Thickness [mm]
cladding, spruce	0.130					15
homatherm holzflex	0.040					50
concrete, reinforced	2.500					250
foamglas	0.040					340
		Percent	age of Sec. 2	Perce	entage of Sec. 3	Total
		. 0.00	ago 0, 000. 2]	sinage or ede. e	65.5 cm
				J		00.0
				U-Value: 0.099	W/(m²K)	
				0.099	W/(III IX)	

			Heat Transfer I	Resistance [m²K/W] interior	51			
				exterior	R _{se} : 0.13			
								Total Width
A	Area Section 1		λ [W/(mK)]	Area Section 2 (optional)	λ [W/(mK)]	Area Section 3 (optional)	λ [W/(mK)]	Thickness [mm]
9	cladding,	spruce	0.130					15
1	nomatherm	holzflex	0.040					50
•	sb-board	L	0.130					15
1	nomatherm	holzflex	0.040	stud, spruce	0.130			200
1	nomatherm	hdp-q11	0.042					160
1	nomatherm	ud-q11	0.046					35
L								
L								
				Pe	rcentage of Sec. 2	2 Pe	ercentage of Sec. 3	Total
					8.0%			47.5

	Heat Transfer	Resistance [m²K/W] interior R _{si}	0.13			
		exterior Rse	0.13	J		
						Total Width
Area Section 1	λ [W/(mK)]	Area Section 2 (optional)	λ [W/(mK)]	Area Section 3 (optional)	λ [W/(mK)]	Thickness [mm]
cladding, spruce	0.130					15
homatherm holzflex	0.040					60
osb-board	0.130					15
reisverk	0.130					60
homatherm holzflex	0.040	stud, spruce	0.130			230
homatherm hdp-q11	0.042					160
homatherm ud-q11	0.046					35
		Percen	tage of Sec. 2	2 Pero	centage of Sec. 3	Total
			8.0%			57.5 cn

PHPP 2007, U-Values 110427linesøyaphpp.ods

Passive House Planning U-VALUES OF BUILDING ELEMENTS

	wedge Snaped Building Element Layers and
Building: "LIPA Miljøprosjekt"	Still Air Spaces -> Secondary Calculation to the Right

y Description Heat Transfer	Resistance [m²K/M] interior R	0.10	1			
ricat mansier						
	oc		J		Total Width	
λ [W/(mK)]	Area Section 2 (optional)	λ [W/(mK)]	Area Section 3 (optional)	λ [W/(mK)]	Thickness [mm]	
0.130					15	
0.040					50	
0.130					15	
0.040	rafter, spruce	0.130			225	
0.130					19	
0.042					200	
0.046					35	
	Percent	age of Sec. 2	2 Per	centage of Sec. 3	Total	
		8.0%			55.9	cm
			<u></u>			
	λ [W/(mk)] 0.130 0.040 0.130 0.040 0.130 0.040 0.130	Heat Transfer Resistance [m²K/W] interior R _s : exterior R _s : λ [W/(mK)] Area Section 2 (optional) 0.130 0.040 0.130 0.040 rafter, spruce 0.130 0.042 0.046	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Heat Transfer Resistance [m²K/W] interior R _s : 0.10 exterior R _{se} : 0.10 exterior R _{se} : 0.10	Heat Transfer Resistance [m³K/W] interior R _s :	Heat Transfer Resistance [m²K/W] interior R _s : 0.10 exterior R _{se} : 0.10

5 slab to groun	.d					
Assembly No. Building Assembly De	scription					
H	leat Transfer F	Resistance [m²K/W] interior R _{si} :	0.17			
		exterior R _{se} :	0.00			
						Total Width
Area Section 1	λ [W/(mK)]	Area Section 2 (optional)	λ [W/(mK)]	Area Section 3 (optional)	λ [W/(mK)]	Thickness [mm]
homatherm holzflex	0.040					80
concrete, reinforced	2.500					120
pe-film	0.400					1
glass foam gravel	0.090					800
		Percent	age of Sec. 2	Pero	centage of Sec. 3	Total
						100.1 cm
				_		
				U-Value: 0.090	W/(m²K)	

6 Assembly No. Building Assemb		Resistance [m²K/W] interior R _{si}]		
		exterior R _{se}				
				J		Total Width
Area Section 1	λ [W/(mK)]	Area Section 2 (optional)	λ [W/(mK)]	Area Section 3 (optional)	λ [W/(mK)]	Thickness [mm]
1.						
2.						
3.						
4.						
5.						
6.						
7.						
8.						
0.		Percen	tage of Sec. 2)	Percentage of Sec. 3	Total 1
		1 010011	tago or ooc. 2	<u>.</u>	Torontago or coo. o	cm
				J		Gill
				U-Value:	W/(m²K)	
				O-Value.	W/(III IX)	

PHPP 2007, U-Values 110427linesøyaphpp.ods

HEAT LOSSES VIA THE GROUND

Ground C	haracteristic	e		1				Clima	te Data		
Thermal Conductivity	naracteristic	2.0	W/(mK)			Av. Indoor To	emp. Winter	Ciiina	T _i	20.0	ŀc
Heat Capacity	ρC	2.0	MJ/(m³K)				emp. Summe	r	T,	25.0	·c
Periodic Penetration Depth	δ	3.17	m				und Surface			6.1	·c
r enouic r enetiation Deptil	0	5.17	***	J		Amplitude of	T	Temperatu		10.6	·c
							' _{g,ave} Heating Per	ind	I _{g,^}	6.7	months
						_	ree Hours - E		n G	103.6	kKh/a
						neating Deg	iee nouis - E	xterioi	-	103.0	KNI/a
Building Data						Floor Slab U	-Value		U _f	0.090	W/(m²K)
Floor Slab Area	Α	229.7	m²			Thermal Brid	lges at Floor	Slab	Ψ_{R}^* I	0.00	W/K
Floor Slab Perimeter	Р	67.6	m			Floor Slab U	-Value incl. T	В	U,	0.090) W/(m²K)
Charact, Dimension of Floor Slab	B'	6.80	 m			Ea. Thicknes			d.	22.2	
		0.00							-t		
Floor Slab Type (select only one)			Please cho	ose one o	ption only.						
X Heated Ba	sement or Ur	iderground F	loor Slab				Unheated ba Suspended F				
Slab of G	aue						Suspended r	1001			
For Basement or Underground Fl	oor Slab		_								_
Basement Depth	Z	1.00	m			U-Value Beld	owground Wa	II	U_{wB}	0.099	W/(m²K)
Additionally for Unheated Basem	onte					Height Abov	eground Wall		h	0.00	m
Air Change Unheated Basement	n	0.00	h⁻¹			-	veground Wa		Ü _w	0.000	W/(m²K)
Basement Volume	V	0.00	m³				ement Floor			0.000	W/(m²K)
Basement volume	V	U	III			U-value bas	ement Floor	Siau	U _{fB}	0.000	VV/(III-K)
For Perimeter Insulation for Slab	on Grade			1		For Suspen	ded Floor				
Perimeter Insulation Width/Depth	D		m			U-Value Cra			U _{Crawl}		W/(m²K)
Perimeter Insulation Thickness	d _n		m				awl Space Wa	all	h		m ` ´
Conductivity Perimeter Insulation	λ_n		W/(mK)				wl Space Wa		U _w		W/(m²K)
Sociation in Chilleter insulation	'n						ilation Openir		εP		m²
Location of the Perimeter Insulation	horizonta	N.					y at 10 m Hei	-	۲ V	4.0	m/s
(check only one field)	vertica		-			Wind Shield	•	yııı	_	0.10	11113
(check only one lield)	vertica	A1 A	<u></u>			vviilu Siliela	iaciui		f _w	0.10	
Additional Thermal Bridge Heat L	osses at Per	imeter				Steady-State	Fraction		Ψ _{P,stat} *I	0.000	W/K
Phase Shift	β		months			Harmonic Fr	action		$\Psi_{P,harm}^{*}$ I	0.000	W/K
	г								P,narm		
Groundwater Correction			_								
Depth of the Groundwater Table	Z _W	3.0	m			-	El. (w/o Grour	nd)	L _{reg}		7 W/K
Groundwater Flow Rate	q_w	0.05	m/d		Relative In	sulation Stan	idard		d _į /B'	3.20	
						roundwater E	-		z _w /B'	0.44	
Groundwater Correction Factor	G_w	1.0068759	4 -		Relative G	roundwater \	elocity/		I/B'	0.12	2 -
Basement or Underground Floor	Slab										
Eq. Thickness Floor Slab	d_t	22.	2 m			Phase Shift			β	1.44	1 months
U-Value Floor Slab	U_{bf}	0.0	8 W/(m ² K)			Exterior Peri	odic Transmit	tance	L _{pe}	8.8	I W/K
Eq. Thickness Basement Wall	d _w	20.2	0 m								
U-Value Wall	U _{bw}	0.0	9 W/(m²K)								
Steady-State Transmittance	Ls		0 W/K								
,											
Unheated Basement											
Steady-State Transmittance	Ls		W/K			Phase Shift			β		months
						Exterior Peri	odic Transmit	tance	L _{pe}		W/K
									pe		
Slab on Grade											
Heat Transfer Coefficient	U _o		W/(m²K)			Phase Shift			β		months
Eq. Ins. Thickness Perimeter Ins.	d'		m				odic Transmit	tance	L _{pe}		W/K
Perimeter Insulation Correction	υ ΔΨ		W/(mK)			LAWING FEI	outo Haribilli		-pe		*****
Steady-State Transmittance			W/K								
oloduy-olale Hallsmillance	L _s		VV/1\								
O	4-10 :1	/-	0.5 5 :								
Suspended Floor Above a Ventila	-	ace (at max		w Ground)		Dhana Ohin			o		month-
Eq. Ins. Thickness Crawl Space	d _g		m			Phase Shift	e = ::		β		months
U-Value Crawl Space Floor Slab	Ug		W/(m²K)			Exterior Peri	odic Transmit	tance	L _{pe}		W/K
U-Value Crawl Space Wall & Vent.	U _x		W/(m²K)								
Steady-State Transmittance	L _s		W/K								
Interim Results											
Phase Shift	β	1 4	4 months		Steady-Sta	ate Heat Flow	,		Φ_{stat}	333.7	7 W
									stat		
Steady-State Transmittance	L _s		0 W/K		Periodic H				Φ_{harm}	37.9	
Exterior Periodic Transmittance	L_{pe}	8.8	1 W/K		Heat Loss	es During He	ating Period		Q_{tot}	1824	1 kWh
			O :-	Sandar 11		E II A			4	0.010	1
			Ground F	reduction	n Factor 1	or "Annua	I Heat Den	nand" Sh	ieet	0.643	
Monthly Average Ground Te	mperature	s for Mon	thly Metho	d							
Month 1 2	3	4	5	6	7	8	9	10	11	12	Average Va
Winter 5.3 4.5	4.5	5.5	7.0	8.8	10.3	11.1	11.1	10.1	8.6	6.8	7.8
Summer 5.9 5.1	5.1	6.1	7.6	9.4	10.9	11.7	11.7	10.7	9.2	7.4	8.4
Design Ground Temperature	for Heat I	oad Shee	t	4.5	1		for Cooling	2 hen I n	heet	11.7	1
g · · · · · · · · · · · · · · · · · ·			-					,uu U			_

PHPP 2007, Ground 110427linesøyaphpp.ods

Passive House Planning

				REDU	OUCT	и О	FACTOR	SOLA	<u>م</u>	ADIA	, TION,	WINDOW	FACTOR SOLAR RADIATION, WINDOW U-VALUE
Building	Buiking: "LIPA Miljøprosjekt"	øprosjekt"					Annual Heat Demand:	15 KWh	kWh/(m²a)			Heating Degree Hours:	
Climate:	N - Oslo											103.6	
Window Area Orientation	Global Radiation (Cardinal Points)	Shading	Dirt	Non- Perpendicu- lar Incident Radiation	Glazing Fraction	g-Value	Reduction Factor for Solar Radiation	Window	Window U-Value	Glazing Area	Average Global Radiation	Transmission He Losses R	Heat Gains Solar Radiation
maximum:	kWh/(m²a)	0.75	0.95	0.85				m,	W/(m²K)	m,	kWh/(m²a)	kWh/a	kWh/a
Vorth	63	67.0	0.95	0.85	0.703	0.50	0.45	21.31	82.0	15.0	72	1732	344
East	180	0.74	0.95	0.85	0.683	0.50	0.41	7.12	0.75	6.4	132	222	191
South	432	0.93	0.95	0.85	0.767	0.50	0.57	35.50	0.73	27.2	418	2684	4261
Vest	182	0.76	0.95	0.85	0.637	0.50	0.39	3.40	0.78	2.2	242	274	161
lorizontal	233	0.75	0.95	0.85	0.000	0.00	0.00	0.00	0.00	0.0	233	0	0
		Total or Averag	Total or Average Value for All Windows.	Vindows.		0.50	0.51	67.33	0.75	49.2		5245	4956

	Glazed Fraction per Window	%	0.70	0.46	0.78	9.65	0.55	08.0	0.81	9.63	0.71	0.54	0.71	0.55	0.74	0.78	0.81	0.79	0.81	0.55	0.56	0.71										
	U-Value Fr Window W	W/(m²K)	0.75		0.85	0.77			0.82	0.78	0.74	0.82	0.74	0.82	0.72	0.70	89.0	0.83	0.82	0.82	0.82	0.74										
Results	Glazing U-	m² W/	0 68.9	0.20	0.81	0.79		1.55 (3.20	9.0	1.28	0.35	2.55 (1.57 0	1.95	15.17	3.88	1.45 (3.20	0.39	0.50	1.28										
Res	_		9 6.6			1.2 0	2.8	1.9 1	4.0 3		1.8	0.6	3.6 2	2.9	2.6 1		4.8 3	1.8 1	4.0 3		0 6.0	1.8										
	5	<) m ²		0.4	1.0					1.1						19.4				0.7												
₩-Value	₩ instalation	(M/(mK)	0.010	0.010	0.010	0.010	0.010	0.010	0.010	0.010	0.010	0.010	0.010	0.010	0.010	0.010	0.010	0.010	0.010	0.010	0.010	0.010										
*	W Spacer	W/(mK)	0.035	0.035	0.035	0.035	0.035	0.035	0.035	0.035	0.035	0.035	0.035	0.035	0.035	0.035	0.035	0.035	0.035	0.035	0.035	0.035										
<u>_</u>	Head 1/0		1	1	0	-	-	0	0	-	-1	-	-		-			0	0	-		-										
Installation	Right Sill 1/0 1/0		1 1	1 1	1 1	1	1 1	1 0	1 0	1	1	1 1	1 1	1 1	1	1	1	1 1	1 0	1 1	1 1	1 1										
=	Left Rig 1/0		1	1 1	1	-	-	1	1	-	-	1	1	-	-	-	-	1 1	-	-	-	1										
St	Width - Above	ш	0.11	0.11	0.05	0.11	0.11	0.05	0.05	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.05	0.05	0.11	0.11	0.11										
Window Frame Dimensions	Width - W Below A	ш	0.11 0	0.11 0	0.05 0	0.11 0	0.11 0	0.05	0.05	0.11 0	0.11 0	0.11 0	0.11 0	0.11 0	0.11 0	0.11 0	0.11 0	0.05 0	0.05	0.11 0	0.11 0	0.11 0										
v Frame D	Width - M Right E	ш	0.11 (0.11 (0.05	0.11 (0.11 (0.05	0.05	0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 0	0.11 (0.05	0.05	0.11 (0.11 0	0.11 (
Windov	Width - N	ш	0.11 (0.11 (0.05	0.11 (0.11 (0.05	0.05	0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.11 (0.05 (0.05	0.11 (0.11 0	0.11 (
	Frames	W/(m²K)	0.72	0.72 (0.92 0	0.72	0.72	0.92	0.92	0.72	Н	0.72	0.72 (0.72	0.72	0.72 0	0.72	0.92	0.92	0.72	0.72	0.72										
U-Value	Glazing Fr	W/(m²K) W.	0.58 0	0.58 0	0.58 0	0.58 0	0.58 0	0.58 0	28	0.58 0	0.58 0	0.58 0	0.58 0	0.58 0	0.58 0	0.58 0	0.58 0	0.58 0	0.58 0	0.58 0	0.58 0	0.58 0										
er	_)/M			_	H	H		0		L	L		H	H	_	_	_	H	H												\vdash
g-Value	Perpen- dicular Radiation	-	5 0.50	5 0.50	0.50	5 0.50	5 0.50	09.00	09.00	5 0.50	5 0.50	5 0.50	5 0.50	5 0.50	5 0.50	5 0.50	5 0.50	09.00	09.00	5 0.50	5 0.50	5 0.50	0	0	0	0	0	0	0	0	0	0
Frame	Select window from the WinType worksheet	Select:																														
	ž		2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	0	0	0	0	0	0	0	0	0	0
Glazing	Select glazing from the Win Type worksheet	Select:																														
Pa	a		2	2	2	3	3	3	4	9	7	7	7	10	10	11	11	11	12	15	15	15	0	0	0	0	0	0	0	0	0	0
Installed	in Area in the Areas worksheet	Select:																														
Rough	Height	ш	1.500	0.550	1.900	1.100	0.700	3.540	7.210	006.0	1.500	0.800	1.500	0.650	2.400	1.800	2.650	3.320	7.210	0.700	0.600	1.500										
Window Rough Openings	Width	ш	1.100	0.800	0.550	1.100	1.000	0.550	0.550	1.200	1.200	0.800	1.200	1.100	1.100	1.800	1.800	0.550	0.550	1.000	1.500	1.200										
	Orientation		North	North	North	North	North	North	North	East	East	East	East	South	South	South	South	South	South	West	West	West										
	Angle of Inclination from the Horizontal	Degrees	06	90	06	06	06	06	45	06	06	06	06	06	06	06	06	06	45	06	06	06										
	Deviation from North	Degrees	343	343	343	343	343	343	343	73	73	73	73	163	163	163	163	163	163	253	253	253										
	Description		n 00 120x160	n 00 80x55	n 00 cut	n 01 120×120	n 01 110×80	n 01 cut	n roof cut	e 00 door	e 01 door	e 01 90x90	02 120×150	s 00 120×75	s 00 elevato	s 01 190×190	s 01 glazed	s 01 cut	s roof cut	w 01 110×80	w 02 150x60	w 02 120x150										
	Quan- tity		u 9	1 n	1 n	п п	4 n	1 n	1 n	-T	1 0	1 e	2 e	4 8	1 8	9	1 8	1 8	1 8	1 w	1 w	1 w										
	oğ ‡		_	-	-	_	4	_	-	_	_	_	N	_	_	•	_	-	_	_	-	-										

Passive House Planning GLAZING ACCORDING TO CERTIFICATION

for frame types, go to row: 71

	Туре		
Assembly No.	Glazing	g-Value	U _g -Value
			W/(m ² K)
1	Triple-low-e Kr08	0.500	0.700
2	Triple-low-e Kr12	0.500	0.580
3	28 Low-E 0.51 N 52 - GUARDIAN Flachglas	0.520	0.510
4	37 iPlus 3S - INTERPANE	0.520	0.600
5			
6	nordan energi 2s ssp/ar	0.370	0.500
7			
8			
9			
10			
11			

PHPP 2007, WinType 110427linesøyaphpp.ods

Passive House Planning FRAME TYPE ACCORDING TO CERTIFICATION

for glazings, go to row: 2

	Туре	U _f -Value		Frame Dir	nensions		Thermal Bridge	Thermal Bridge
Assembly No.	Frame	Frame	Width - Left	Width - Right	Width - Below	Width - Above	Ψ _{Spacer}	Ψ _{Installation}
		W/(m ² K)	m	m	m	m	W/(mK)	W/(mK)
1	standard PU on wood	0.59	0.135	0.135	0.175	0.135	0.049	0.005
2	junction PU on wood	0.59	0.070	0.125	0.125	0.125	0.049	0.005
3	wide PU on wood	0.59	0.150	0.150	0.175	0.150	0.049	0.005
4								
5	nordan ntech0.7	0.72	0.105	0.105	0.105	0.105	0.035	0.010
6	batimet tm50 se	0.92	0.050	0.050	0.050	0.050	0.035	0.010
7								
8								
9								
10								
11								

PHPP 2007, WinType 110427linesøyaphpp.ods

Passive House Planning CALCULATING SHADING FACTORS

	_					
Reduction Factor	္ခ	%62	74%	93%	%92	100%
Area	ű,	14.99	4.86	27.21	2.17	0.00
Orien- tation		North	East	South	West	Horizontal

	_	_	_																								
Total Shading Reduction Factor	%	r.	75%	%02	%29	75%	74%	65 %	100%	%02	%02	% 29	%82	%68	%68	%86	83%	%08	100%	%99	81%	41%					
Overhang Shading Total Shading Reduction Factor	%	ŗ	100%	100%	100%	100%	100%	100%	100%	400%	100%	400%	100%	100%	100%	400%	400%	100%	100%	100%	400%	100%					
Reveal Shading (%	Ľ	83%	%82	74%	84%	82%	72%	400%	%22	%22	%02	%82	%68	%68	83%	93%	%08	400%	73%	81%	41%					
Horizontal Shading Reduction Factor	%	Ľ	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	400%	100%	100%	100%	100%	100%	100%	100%	100%	100%					
Additional Shading Reduction Factor	%	Coffee	806	806	806	806	\$06	\$06		806	806	806								806							
Distance from Upper Glazing Edge to Overhang	Ε	q																									
Overhang Depth	٤	Oover																									
Distance from Glazing Edge to Reveal	ш	d _{Reveal}	0.105	0.105	0.105	0.105	0.105	0.050	0.05	0.105	0.105	0.105	0.105	0.105	0.105	0.105	0.105	0.05	0.05	0.05	0.05	0.05					
Window Reveal Depth	ε	O _{Reveal}	0.34	0.34	0.34	0.32	0.32	0.32	00.00	0.34	0.34	0.32	0.32	0.34	0.34	0.32	0.32	0.32	00.00	0.32	0.32	0.32					
Horizontal Distance	٤	d _{Host}																									
Height of the Shading Object	Ε	h																									
Glazing Area		Ag	6.9	0.2	8.0	8.0	1.5	1.5	3.2	0.7	1.3	0.3	2.6	1.6	1.9	15.2	3.9	1.4	3.2	0.4	0.5	1.3					
Slazing Height	ε	ů,	1.29	0.34	1.80	0.89	0.49	3.44	7.11	69.0	1.29	0.59	1.29	0.44	2.19	1.59	2.44	3.22	7.11	0.49	0.39	1.29					
Glazing Width Glazing Height Glazing Area	٤	»	0.89	0.59	0.45	0.89	0.79	0.45	0.45	66.0	66.0	0.59	0.99	0.89	0.89	1.59	1.59	0.45	0.45	0.79	1.29	0.99					
Orientation			North	North	North	North	North	North	North	East	East	East	East	South	South	South	South	South	South	West	West	West					
Angle of Inclination from the Horizontal	Degrees		06	06	06	06	06	06	45	06	06	06	06	06	06	06	06	06	45	06	06	06					
Deviation from North	Degrees		343	343	343	343	343	343	343	73	7.3	7.3	73	163	163	163	163	163	163	253	253	253					
Description			n 00 120x160	00 80×55	00 cut	n 01 120×120	01 110x80	n 01 cut	n roof cut	00 door	01 door	01	02 120x150	00 120×75	00 elevator	01 190×190	01 glazed do	01 cut	roof cut	01 110x80	02 150x60	02 120×150					
Quantity			u 9	1 n	1 n	1 2	4 n	1 n	1 1	1	1 e	1 e	2 e	4 8	1 8	9	1 8	1 8	1 8	1 w	1 w	1 w					

Passive House Planning VENTILATION DATA

PHPP 2007, Ventilation 110427linesøyaphpp.ods

Passive House Planning SPECIFIC ANNUAL HEAT DEMAND

Climate: N - Oslo					1		Inte	erior Temperatu	ure:	20.0 °C	
Building: "LIPA Miljøprosje	kt"							0 ,,		Residential	
Location: Linesøya						Tre	eate	d Floor Area A	TFA:	402.0 m²	
		A		11.1/-1	,	Tomp Factors	f	C			per m²
Building Element Temperatu	ire Zone	Area m²		U-Value W/(m²K)		Temp. Factor	t	G _t kKh/a		kWh/a	Treated Floor Area
1.Exterior Wall - Ambient	A	360.2	*	0.086	*	1.00	*	103.6	=	3192	1 Iooi Aica
2 Exterior Wall - Ground	В	91.4	*	0.099	*	0.64	*	103.6	=	603	
3.Roof/Ceiling - Ambient	A	309.7	*	0.081	*	1.00	*	103.6	=	2601	
4. Floor Slab	В	229.7	*	0.090	*	0.64	*	103.6	=	1378	
5.	A		*		*	1.00	*		=	1070	
6.	A		*		*	1.00	*		=		
7.	X		*		*	0.75	*		=		
8. Windows	A	67.3	*	0.752	*	1.00	*	103.6	=	5245	
9.Exterior Door	A		*		*	1.00	*		=	02.10	
10.Exterior TB (length/m)	A		*		*	1.00	*		=		
11 Perimeter TB (length/m)	P		*		*	0.64	*		=		
12 Ground TB (length/m)	В		*		*	0.64	*		=		
Total of All Building Envelop		1058.3					J		-		kWh/(m²a)
Transmission Heat Losses Q _T								т	otal	13019	32.4
Transmission float 200000 Q _T										10010	02. T
						A_{TFA}	Cle	ear Room Heig	jht		
	- "		.,			m²	1	m		m³	
Ventilation System:		ctive Air Volume	, V _v			402.0	*	2.50	=	1005.0	
Effective Heat Recovery Efficiency	η_{eff}	93%									
of Heat Recovery		220	1	n		Ф		n			
Efficiency of Subsoil Heat Exchanger	η_{SHX}	32%	J	n _{V,system} 1/h		Φ_{HR}		n _{v,Res} 1/h		1/h	
Energetically I	Effective	Air Exchange n	ſ	0.300	7/1	0.95	٠ +	0.042	=	0.057	
Energetically	LIICOLIVC	•	v]('		י ען		- 1	0.037	
		V _v		n _v		C _{Air}		G _t			
Vandiladian Haad Laasa O		m³	п. г	1/h	٦.١	Wh/(m³K)	١.	kKh/a	1	kWh/a	kWh/(m²a)
Ventilation Heat Losses Q _v		1005	*	0.057	*	0.33	*	103.6	=	1949	4.8
							R	eduction Facto	r		
				$Q_{_{\mathrm{T}}}$		Q_v		Night/Weekend			
			_	kWh/a	1	kWh/a	_	Saving		kWh/a	kWh/(m²a)
Total Heat Losses Q			(13019	+	1949) ;	1.0	=	14968	37.2
L			٦.		_		J,				
Orientation		Reduction Factor		g-Value		Area		Radiation HP			
of the Area	S	ee Windows Sh	eet	(perp. radiation)							
(N I all-	_	0.45] * [0.50	ا بـ ٦	m²] *	kWh/(m²a)		kWh/a	
1. North	-	0.45	- "	0.50	*	21.31	*	72	=	344	
2. East	-	0.41	*	0.50	*	7.12	*	132	=	191	
3. South		0.57	- " -	0.50	*	35.50	*	418	=	4261	
4. West		0.39	- " -	0.50	*	3.40	*	242	=	161	
^{5.} Horizontal		0.40	ا " ل	0.00	ااا	0.00]	233	=	0	kWh/(m²a)
Available Solar Heat Gains Q _s								т.	ارمده	4956	
Available Solai Heat Gaills Q _s								10	otal	4900	12.3
			1.	ength Heat. Perio	-d (Snec Power o	,	Δ			
		kh/d	L	d/a	Ju (W/m²	11	A _{TFA} m²		kWh/a	kWh/(m²a)
Internal Heat Gains Q		0.024	*	205	*	2.10	*	402.0	=	4144	10.3
intornar riout Gamb Q		0.024	Į	203		2.10	J	402.0	_	7177	10.5
										k/M/b/o	k\\/h/(m2a)
			Ero	a Hoot O				$Q_s + Q_I$	_ 1	kWh/a	kWh/(m²a)
			гіе	e Heat Q _F				Q _S + Q _I	=	9100	22.6
			_					0 / 0			
			Rat	tio of Free Heat to	o Lo	osses		Q_F / Q_L	=	0.61	
Utilisation Factor Heat Gains $\eta_{\scriptscriptstyle G}$				(1 - (Q _F	. / C	(_L) ⁵) / (1	-	$(Q_F/Q_L)^6$	=	97%	
										kWh/a	kWh/(m²a)
Heat Gains Q _G								η_G * Q_F	=	8788	21.9
-											
										kWh/a	kWh/(m²a)
Annual Heat Demand Q _H								$Q_L - Q_G$	=	6180	15
								LG	- 1	0.00	
				kWh/(m²a)	١					(Yes/No)	
		Limiting Value	Г		, 1		Dar	uiromant	ا ر		
		Limiting Value	Į	15	J		req	uirement met	ſ	Yes	

PHPP 2007, Annual Heat Demand 110427linesøyaphpp.ods

Oct

Aug

Jul

Jun

May

Apr

Jan

PASSIVE HOUSE PLANNING

SPECIFIC ANNUAL HEAT DEMAND MONTHLY METHOD

				ĸĸ	ĸŔ	kWh	kWh	kWh/m²	kWh	kWh	kWh	kWh	kWh	kWh	kWh	kWh/m²		kWh	kWh/m²		
			ı						ı								64%				
0	a1	L	Dec	18.8	8.6	2278	358	9.9	15	9	280	7	0	18	628	2.4	100%	1682	4.2	1	
20 °C	lesidentia		Nov	15.2	8.2	1835	300	5.3	22	10	435	13	0	59	809	2.8	100%	1018	2.5		
Interior Temperature:	Building Type/Use: Residential	J. VILEG VILEV.	Oct	11.1	7.3	1348	268	4.0	58	30	629	25	0	26	628	3.6	%66	175	0.4		
Interior 1	Buildir Treated Flo	i ealed Tio	Sep	7.4	6.4	893	235	2.8	118	29	993	46	0	103	809	4.8	%69	0	0.0		
			Aug	4.2	9.9	510	241	1.9	216	103	1213	69	0	156	628	6.9	32%	0	0.0		
			Jul	3.3	8.9	403	247	1.6	298	133	1295	11	0	190	628	6.5	25%	0	0.0		
			Jun	4.1	8.1	497	295	2.0	304	141	1212	72	0	186	809	6.3	31%	0	0.0		
			May	9.7	9.7	925	353	3.2	295	146	1468	88	0	204	628	7.0	45%	0	0.0	and	
			Apr	12.0	10.5	1448	382	4.6	158	88	1101	26	0	130	809	5.3	%58	6	0.0	Spec. Heat Demand * Sum Spec. Losses	
	"		Mar	16.1	11.5	1947	420	5.9	86	26	1079	45	0	66	628	5.0	100%	371	6.0	pec. He	
	prosjekt		Feb	17.5	10.4	2116	381	6.2	39	23	693	24	0	51	267	3.5	100%	1099	2.7	Ø Ø Ø Ø	
- Oslo	LIPA Miljøprosjekt"	nesøya	Jan	19.6	10.9	2374	399	6.9	17	7	356	10	0	23	628	2.6	. %001	1732	4.3		
Climate: N	Building: "LIPA Mi	Location:		Heating Degree Hours - E	Heating Degree Hours - G	Losses - Exterior	Losses - Ground	Sum Spec. Losses	Solar Gains - North				_	Solar Gains - Opaque	Internal Heat Gains	Sum Spec. Gains Solar +		Annual Heat Demand	Spec. Heat Demand	[(q]uow _z w)/q,	esesed oificede Wal bnsmad gnitsəl

Passive House Planning SPECIFIC SPACE HEATING LOAD

Building	"LIPA Mi	liøpr	osiekt"]			Building Type/Use:	Residen	tial		
-	Linesøya		objekt					!			ed Floor Area A _{TFA} :	402.0	m²	Interior	20 °C
								J			Climate (HL):			Temperature:	
De:	sign Tempera	ature	Radiation:	North	East	South	West	Horizont	al		Cililiate (FIL).	N - OSI			
Weather Condition 1:	-13.5	°C		5	10	30	15	15	W/m²						
Weather Condition 2:	-7.6	°C		5	5	10	5	5	W/m²						
Ground Design Temp.	4.5	°C	Area		U-Value		Factor Always 1		TempDiff 1		TempDiff 2		P _T 1		P _T 2
Building Element 1. Exterior Wall	Temperatu		m² 360.2	*	W/(m²K)	*	(except "X") 1.00	1 *	33.5	or	K 27.6	=	W 1034	or	W 850
2 Exterior Wall	- Ground	В	91.4	*	0.099	*	1.00	*	15.5	or	15.5	=	140	or	140
Roof/Ceiling - 4 Floor Slab	Ambient	A B	309.7 229.7	*	0.081	*	1.00	*	33.5 15.5	or or	27.6 15.5	=	842 321	or or	693 321
5.		A		*		*	1.00	*	33.5	or	27.6	=	021	or	021
6. 7.		A X		*		*	1.00 0.75	*	33.5 33.5	or or	27.6 27.6	=		or or	
8. Windows		A	67.3	*	0.752	*	1.00	*	33.5	or	27.6	=	1699	or	1397
9. Exterior Door 10. Exterior TB (leng	th/m)	A		*		*	1.00	*	33.5 33.5	or or	27.6 27.6	=		or or	
11. Perimeter TB (length, 12. Ground TB (length,		P B		*		*	1.00	*	15.5	or or	15.5	=		or or	
13. House/DU Partition		I		*		*	1.00	*	15.5 3.0	or	15.5 3.0	=		or	
Transmission Heat	t Losses	P_													
		- т									Total	=	4036	or [3401
							A_{TFA}	Cle	ar Room Heid	ıht					
Ventilation System:			- #	4:· A :	- 1/-1 1/		m²	1 .	m		m³				
			ЕП	ective Ai	r Volume, V _v		402.0] *	2.50	=	1005		η _{SHX} 1		$\eta_{\text{SHX}}^{}2$
Efficiency of Heat Recovery		η_{HR}	93%			Heat Reco	very Efficiency SH	x	93%		Efficiency SHX		55%	or [46%
of the Heat Exchanger				n _v ,R	es (Heating L	oad)	n _{v,system}		$\Phi_{_{HR}}$		$\Phi_{\rm HR}$				
Energetically Effecti	ive Air Evchar	nge n			1/h 0.104	+	1/h 0.300	*(1-	0.97	or	0.96) =	1/h 0.114	7 or [1/h 0.116
Ventilation Heating					0.104	-	0.500] (1-	0.57	UI	0.50	,-	0.114	or	0.110
	V _L		n _L		n _L		C _{Air}		TempDiff 1		TempDiff 2		P _v 1		P _v 2
	m³ 1005.0	*	1/h 0.114	or	1/h 0.116	*	Wh/(m³K) 0.33	*	К 33.5	or	к 27.6	=	W 1273	or [W 1064
													D 1	_	В 2
Total Heating Lo	ad P.												P _L 1		P _L 2 W
.	. L										$P_{T} + P_{V}$	=	5309	or	4465
Orientation			Area		g-Value		Reduction Fact	or	Radiation 1		Radiation 2		P _s 1		P _s 2
the Area			m²		perp. radiation		Windows works		W/m²		W/m²		W		W
1. North 2. East		1	7.1	*	0.5	*	0.4	*	7	or or	5 4	=	30 10	or or	23 6
3. South		1	35.5	*	0.5	*	0.6	*	28	or	10	=	287	or	98
4. West 5. Horizontal		1	0.0		0.5		0.4		19	or or	5	=	13	or or	0
								J						- '	
Solar Heat Gain, P	s										Total	=	339	or	131
											_				
Internal Heat Gains	s P								Spec. Power		A _{TFA}		P ₁ 1		P ₁ 2
internar rieat Gams	3 F ₁								1.6	*	402	=	643	7 or [643
Heat Gains P _G													P _g 1 W		P _g 2 W
G G											P _s + P _i	=	982	or	774
											D D	_	4000	 7 [2024
											$P_L - P_G$	=	4326	or	3691
Heating Load P _H												=		4326	w
Specific Heating	Load P	' _H / A,	ΓFA									=		10.8	W/m²
				••									25		••
Input Max. Sup Max. Supply Air Tem			52 52	°C			Supply Air To	mneratro	e Without Hea	ating	n		°C 18.9	7 .	°C 18.9
										aury	ϑ _{Supply,Min}		10.9		10.8
For Comparison	: Heatin	g Lo	ad Tran	spor	table by	Sup	ply Air.	P Supply Air	,Max		=	3298	W specific:	8.2	W/m²
														(Yes/No)	
											Sı	ıpply Air H	leating Sufficient	? No	

PHPP 2007, Heating Load 110427linesøyaphpp.ods

SUMMER

PHPP 2007, Summer 110427linesøyaphpp.ods

CALCULATING SUMMER SHADING FACTORS

Climate N - Oslo
Building LIPA Miljøprosjekt"
Lattude: 59.93

 Summer Orien-tation
 Glazing Area Factor
 Shading Factor

 North
 14.99
 57%

 East
 4.86
 28%

 South
 27.21
 99%

 West
 2.17
 44%

 Horizontal
 0.00
 100%

Results from the Summer worksheet: Frequency of Overheating h_{0.20max} 0.0%

		Total Summer Shading Reduction Factor	%	s,	42%	28%	%99	43%	42%	22%	400%	%0	%0	61%	44%	22%	%0	%89	28%	%02	400%	43%	45%	%77						
	Summer	Overhang Shading Reduction Factor	%	°,	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%						
	nS	Reveal Shading Reduction Factor	%	rR	87%	83%	%08	87%	%98	%82	100%	%06	%06	%98	91%	%18	82%	95%	95%	41%	100%	%88	95%	%06						
		Horizontal Shading Reduction Factor	%	н	100%	100%	100%	100%	100%	100%	%001	100%	%001	100%	100%	100%	400%	400%	100%	100%	100%	%001	100%	%001						
Input Field	Summer	Temporary Shading Reduction Factor, z	%		804			804	70%			%0	80		404	804	80	70%	70%			40%	404	804						
		Additional Shading Reduction Factor (Summer)	%	roher	804	804	804	804	804	804		804	804	804	804	%06	%06	806	806	%06		804	804	804						
		Distance from Upper Glazing Edge to Overhang	ш	q																										
		Overhang Depth	٤	Oover																										
200		Distance from Glazing Edge to Reveal	ш	d _{Roveal}	0.11	0.11	0.11	0.11	0.11	0.05	0.05	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.05	0.05	0.05	0.05	0.05						
8.5		Reveal Depth	ε	O _{Reveal}	0.34	0.34	0.34	0.32	0.32	0.32	00.00	0.34	0.34	0.32	0.32	0.34	0.34	0.32	0.32	0.32	00.00	0.32	0.32	0.32						_
101101		Horizontal Distance	ε	d _{Hori}																										_
		Height of the Shading Object	ε	h _{Hori}																										_
		Glazing Area		ď	6.9	0.2	8.0	8.0	1.5	1.5	3.2	0.7	1.3	0.3	2.6	1.6	1.9	15.2	3.9	1.4	3.2	0.4	0.5	1.3						
		Glazing Width Glazing Height	ш	h _g	1.29	0.34	1.80	0.89	0.49	3.44	7.11	69.0	1.29	0.59	1.29	0.44	2.19	1.59	2.44	3.22	7.11	0.49	0.39	1.29						
		Glazing Width		w	0.89	0.59	0.45	0.89	0.79	0.45	0.45	66.0	66.0	0.59	66.0	0.89	0.89	1.59	1.59	0.45	0.45	67.0	1.29	66.0						
		Orientation			North	North	North	North	North	North	North	East	East	East	East	South	South	South	South	South	South	West	West	West						
		Angle of Inclination from the Horizontal	Degrees		06	06	06	06	06	06	45	06	06	06	06	06	06	9.0	90	06	45	06	06	06						
		Deviation from North	Degrees		343	343	343	343	343	343	343	73	73	73	73	163	o 163	163	r 163	163	163	253	253	253						
		Description:			n 00 120×160	n 00 80x55	n 00 cut	n 01 120×120	n 01 110×80	n 01 cut	n roof cut	e 00 door	e 01 door	e 01 90x90	e 02 120×150	s 00 120×75	s 00 elevator do	s 01 190×190	s 01 glazed door	s 01 cut	s roof cut	w 01 110x80	w 02 150x60	w 02 120×150						L
		uantit y	آ		9	1	н	1	4	н	1	П	1	1	7	4	1	9	П	1	н	1	н	1	1			1	1	_

Passive House Planning SUMMER VENTILATION

Building: "LIPA Miljøprosjekt"] [Building Type/Use:	Residential			
Location: Linesøya			Building Volume	1005	m³		
		J	'		J		
Description	00 day	00 night	01 day	01 night	02 day	02 night	
Fraction of Opening Duration	13%	0% Hight	13%	100%	50%	100%	
	130	0 0	130	1000	300	1000	
Climate Boundary Conditions			_			_	_
Temperature Diff Interior - Exterior	4	1	4	1	4	1	K
Wind Velocity	1	0	1	0	1	0	m/s
Window Group 1							
Quantity	6		12	4	2	2	
Clear Width	1.40		0.45	0.45	1.00	1.00	m
Clear Height	1.00		0.75	0.75	1.30	1.30	m
Tilting Windows?	x		x	x	х	x	
Opening Width (for tilting windows)	0.050		0.050	0.050	0.050	0.050	m
Window Group 2 (Cross Ventilation)		•			•		_
Quantity	4		4	4	1	1	
Clear Width	1.00		0.90	0.90	1.00	1.00	m
Clear Height	0.55		0.70	0.70	1.30	1.30	m
Tilting Windows?	×		x	×	х	x	
Opening Width (for Tilting Windows)	0.050		0.050	0.050	0.050	0.050	m
Difference in Height to Window 1	0.00		0.00	0.00	0.00	0.00	m
gg							
Single-Sided Ventilation 1 - Airflow Volume	120	0	122	19	49	24	m³/h
Single-Sided Ventilation 2 - Airflow Volume	37	0	47	21	25	12	m³/h
Cross Ventilation Airflow Volume	305	0	302	40	103	35	m³/h
Contribution to Air Change Rate	0.04	0.00	0.04	0.04	0.05	0.04	1/h

Summary of Summer Ventilation Distribution

Description Ventilation Type	Daily Average Air Change Rate
Nighttime Window Ventilation	0.04 1/h
Daytime Window Ventilation	0.04 1/r
	1/h

PHPP 2007, SummVent 110427linesøyaphpp.ods

PASSIVE HOUSE PLANNING

SPECIFIC USEFUL COOLING DEMAND MONTHLY METHOD

Climate:	N - Oslo					1			Interior	Temperature:	25	l·c		
Building:	"LIPA Mi	ljøprosje	ekt"								Resident	ial		1
- 1	Linesøya									oor Area A _{TFA} :		m²		7
•												,		
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Year]
Heating Degree Hours - E:	23.3	20.8	19.8	15.6	11.3	7.7	7.0	7.9	11.0	14.8	18.7	22.5	181	kKh
Heating Degree Hours - G	14.6	13.8	15.2	14.1	13.4	11.7	10.5	10.3	10.0	11.0	11.8	13.5	150	kKh
Losses - Exterior	2951	2637	2506	1969	1437	973	891	1003	1388	1878	2372	2850	22857	kWh
Losses - Ground	1790	1685	1861	1719	1635	1427	1284	1262	1226	1351	1444	1653	18338	kWh
Losses Summer Ventilatio	943	841	773	582	398	262	244	270	385	541	720	896	6854	kWh
Sum Spec. Heat Losses	14.1	12.8	12.8	10.6	8.6	6.6	6.0	6.3	7.5	9.4	11.3	13.4	119.5	kWh/m²
Solar Load North	13	30	75	121	226	233	229	166	91	45	17	12	1257	kWh
Solar Load East	3	9	22	35	58	56	53	41	24	12	4	2	319	kWh
Solar Load South	241	469	730	745	994	821	877	821	672	446	295	190	7300	kWh
Solar Load West	6	15	27	35	54	44	47	42	28	15	8	4	325	kWh
Solar Load Horiz.	0	0	0	0	0	0	0	0	0	0	0	0	0	kWh
Solar Load Opaque	23	51	99	130	204	186	190	156	103	56	29	18	1244	kWh
Internal Heat Gains	628	567	628	608	628	608	628	628	608	628	608	628	7395	kWh
Sum Spec. Loads Solar +	2.3	2.8	3.9	4.2	5.4	4.8	5.0	4.6	3.8	3.0	2.4	2.1	44.4	kWh/m²
Utilisation Factor Losses	16%	22%	31%	39%	62%	73%	79%	73%	51%	32%	21%	16%	37%]
Useful Cooling Energy De	0	0	0	0	1	6	122	6	0	0	0	0	135	kWh
Spec. Cooling Demand	0.0	0.0	0.0	0.0	0.0	0.0	0.3	0.0	0.0	0.0	0.0	0.0	0.3	kWh/m²

PHPP 2007, Cooling 110427linesøyaphpp.ods

Passive House Planning COMPRESSOR COOLING UNITS

Climate: N - Oslo	Interior Temperature Summer: 25 °C
Building: "LIPA Miljøprosjekt"	Building Type/Use: Residential
Location: Linesøya	Treated Floor Area A _{TFA} : 402.0 m²
	olume V_v 402 * 2.50 = 1005
Hygrically Effective Mech. Air Change Rate Summer 0.	$ \Phi_{HR} $ 1/h Efficiency Humidity Rec. $ (1 - 1) = 0.300 $
1/h1	V,Res
Ambient Air Change Rate Summer	Total 0.41 1/h
Minimum Temperature of Cooling Coil Surface Recirculation Cooling check as appropriate On/Off Mode (check as appropriate) Minimum Temperature of Cooling Coil Surface	x 0 °C x 10 °C m³/h
Humidity Sources Humidity Capacity Building	g/kg g/(m²h) g/(g/kg)/m² g/(g/kg)/m²
Panel Cooling check as appropriate Useful Cooling Demand of which	10.3 0.0 Sensible Fraction 0.3 0.0 kWh/(m²a) 93.7% kWh/(m²a) 0.0 kWh/(m²a) 0.0
Dehumidification Remaining for Panel Cooling	kWh/(m²a) kWh/(m²a)
Total 0	0.0 kWh/(m²a) 93.7%
Unsatisfied Demand 0	0.0 kWh/(m²a)

PHPP 2007, Cooling Units 110427linesøyaphpp.ods

COOLING LOAD

PHPP 2007, Cooling Load 110427linesøyaphpp.ods

Passive House Planning HEAT DISTRIBUTION AND DHW SYSTEM

PHPP 2007, DHW + Distribution 110427linesøyaphpp.ods

Passive House Planning HOT WATER PROVIDED BY SOLAR

PHPP 2007, SolarDHW 110427linesøyaphpp.ods

Passive House Planning LECTRICITY DEMAND

Building: "LIPA Miljøprosjekt"

	# Households	1 H												
A		11 5 0		Solar	Solar Eraction of DHW Wash&Dish	Wach&Dish				Drim Energy Factors		Floctricity	2 7	LIMP/EVA/P
. 3				200	r raction of Drive	wasilaDisii	000			riiii. Eileigy ra		Lecturally 0.00	` r	LAMP DAME
-	#Living Area			Marginal		datio DHW	% 7 7					Natural Gas	T:T	kWh/kWh
	#Annual Heat Demand	15 kWh/(m²a)	m²a)	Marginal	nal Performance Ratio Heating	Ratio Heating	31%			Energy Carrier for Space Heating/DHW:	Space Hea	ing/DHW:	2.7	2.7
Column Nr. 1 2	3	[4	2	9	7	8	8a	6	9	=	12	13	14
Application Used ? (1/0) Within the Thermal Envelope? (1/0)	Norm Demand		Utilization Factor	Fredneucy	Reference Quantity	Useful Energy (kWh/a)	Electric Fraction	Non-Electric Fraction	Electricity Demand (kWh/a)	lsnoifibbA bnsm9G	Marginal Performance Ratio	Solar Fraction	Non-Electric Demand (kWh/a)	Primary Energy- Demand (kWh/a)
Dishwashing Cold Water Connect Clothes Washing Cold Water Connection Clothes Drying with: Cooking with: Cooking with: Cooking with: Clother: Consumer Electronics Consumer Electronics Consumer Electronics Consumer Electricity Consumer Electricity Counter: Clother:	1.10 kwh/Use 0.95 kwh/Use 0.00 kwh/Use 0.25 kwh/d 0.75 kwh/d 0.20 kwh/ds 80 w 50 kwh	* * * * * * * * * * * * * * * * * * *	00:1 00:0 00:0 00:0 00:0 00:0 00:0 00:0	65 (P*a) 57 (P*a) 57 (P*a) 57 (P*a) 365 da 3	* * * * * * * * * * * * * * * * * * *	821 821 1149 1173	100% 100% 100% 100% 100% 100%	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	622 622 0 102 181 0 0 1149 693 505 574 1173	(1+ 0.30) (1+ 0.30) (1+ 0.00) (1+ 0.00)	0.42	= (2217 1679 0 0 0 276 488 0 3101 0 1871 1365 1551 3166
Total						5820kwh	ŕ		5820	DHW Non-Ele KWh	<u>ي</u>	Jish KWh	0	15713
Specific Demand									14.5	Non-Renewable kWh/(m²a)	Ž	on-Electric DHW Wash&Dish 0.0	0.0	39.1
Recommended Maximum Value	alue								18					50

AUXILIARY ELECTRICITY

Building: "LIPA Miljøprosjekt"

] [1			
Wh π²a)	Primary Energy Demand (kWh/a)		1600	1255	211			0		0			100		0		0		0		0	3166	7.9
kWh/kWh kWh(m²a) kW kW c °C] [] []]]]			
2.7 15 3 7689 35	Infernal Heat Source (W)		ficiency	HG	16			0		0			3		0		0		0		0	19	
ctor - Electricity t Demand Demand Semand	Used During Time (kh/a)		considered in heat recovery efficiency	no summer contribution to IHG	4.91			4.91		4.91			8.76		4.91		4.91		8.76		8.76		
Primary Energy Factor - Electricity Annual Space Heat Demand Boiler Rated Power DHW System Heat Demand Design Flow Temperature	es eldslisvA seeH roireinl		considere	no sur	1.0			1.0		1.0			0.6		1.0		1.0		9.0		1.0		
	Electricity Demand (kWh/a)		593	465	78			0		*			37		0		0		0		0	1173	2.9
kh/a kh/a h¹¹ °C			m³ =	m³ =	"			II	ı	II			П		ıı.	•	II	•	II	•	<u> </u>		
4.91 3.85 0.30 -3.0	ω ezic ence Size ω			1005 n	1			1		1			1		1		1		-		_		
inter			kh/a *	kh/a *	kh/a *			kh/a *		kh/a *			kh/a *		kh/a *		kh/a *		kh/a *		*		
rt. System Winter rt. System Summer ste from	ν noisaeqO to boineP		*	3.9	* 0.1	(1/0)		4.9		* 0.00			* 6.2		* 2.6		0.0		* 6.		1.0		
Operation Vent. System Winter Operation Vent. System Summ Air Change Rate Defrosting HX from	Utilization Factor] [* 0.30 h ⁻¹	* 0.30 h ⁻¹	1.00	Controlled/Uncontrolled (1/0)	ਜ	* 0.7		1.00			1.00		1.00		1.00		1.00		1.00		.; .;
	Worm Demand] [0.40 Wh/m³	0.40 Wh/m³	784 w	Cont	21 W	21 w	Μ	25 w		w 9	w 9	×	84 w	×	w 92	×	% × ×]	30 kWh/a		Divide by Living Area:
	Euvelope? (1/0)] [н	-	1		ne Pump	1	0% Load	0		of Pump	1	ne Pump	0	0% Load	0	tW Pump	1]	0		Divid
02 m² 05 d 05 m³ 00 m³	Within the Thermal] [] [Enter the Rated Power of the Pump		Boiler Electricity Consumption at 30% Load			onsumption		Enter the Rated Power of the Pump		Boiler Electricity Consumption at 100% Load		the Solar Dh]			kWh/(m²a)
402 205 1005 1 2100	← (0/1) SesU]	1	-	1		r the Ratec	0	ctricity Cons	er 0		e Power Co		r the Ratec	<u>о</u>	fricity Consu	0	ed Power of	l° -	 ≿		\Box	
Living Area Heating Period Air Volume Dwelling Units Enclosed Volume	Column Nr. Application	Ventilation System	Winter Ventilation	Summer Ventilation	Defroster HX	Heating System	Ente	Circulation Pump	Boiler Elec	Aux. Energy - Heat. Boiler	DHW system	Enter Average Power Consumption of Pump	Circulation Pump	Ente	Storage Load Pump DHW	Boiler Elect	DHW Boiler Aux. Energy	Enter the Rated Power of the Solar DHW Pump	Solar Aux Electricity	Misc. Aux. Electricity	Misc. Aux. Electricity	Total	Specific Demand

Passive House Planning PRIMARY ENERGY VALUE

Building: "LIPA Miljøprosjekt"			Building Type/Use:		
Location: Linesøya		_	eated Floor Area A _{TFA} :	402	m²
		·	mand incl. Distribution eful Cooling Demand:	15 0	kWh/(m²a) kWh/(m²a)
		00	Final Energy	Primary Energy	Emissions CO,-Equivalent
			kWh/(m²a)	kWh/(m²a)	kg/(m²a)
ectricity Demand (without Heat Pump)				PE Value	CO ₂ -Emissions Facto (CO ₂ -Equivalent)
Covered Fraction of Space Heat Demand		(Project)	0%	kWh/kWh	g/kWh
Covered Fraction of DHW Demand		(Project)	0%	2.7	680
Direct Electric Heating DHW Production, Direct Electric (without Wash&Dish)	Q _{H,de}	(DHW+Distribution, SolarDHW)	0.0	0.0	0.0
Electric Postheating DHW Wash&Dish	Q _{DHW,de}	(Electricity, SolarDHW)	0.0	0.0	0.0
Electricity Demand - Auxiliary Electricity	Q _{EHH}	(Electricity worksheet)	11.6 2.9	31.2 7.9	7.9 2.0
Total Electricity Demand (without Heat Pump)			14.5	39.1	9.8
eat Pump				PE Value	CO ₂ -Emission Factor
Covered Fraction of Space Heat Demand		(Project)	100%	kWh/kWh	(CO ₂ -Equivalent)
Covered Fraction of DHW Demand		(Project)	100%	2.7	680
Energy Carrier - Supplementary Heating Annual Coefficient of Performance - Heat Pump		Separate Calculation	Electricity 3.20	2.7	680
Total System Performance Ratio of Heat Generator	•	Separate Calculation	0.45		
Non-Electric Demand, DHW Wash&Dish	Q _{HP}	(Electricity worksheet)	15.7 0.0	42.3 0.0	10.7 0.0
Total Electricity Demand Heat Pump			15.7	42.3	10.7
ompact Heat Pump Unit				PE Value	CO ₂ -Emission Factor
Covered Fraction of Space Heat Demand		(Project)	0%	kWh/kWh	(ČO ₂ -Equivalent)
Covered Fraction of DHW Demand		(Project)	0%	2.7	680
Energy Carrier - Supplementary Heating COP Heat Pump Heating		(Compact worksheet)	0.0	2.7	680
COP Heat Pump DHW		(Compact worksheet)	0.0		
Performance Ratio of Heat Generator (Verification) Performance Ratio of Heat Generator (Planning)		(Compact worksheet) (Compact worksheet)			
Electricity Demand Heat Pump (without DHW Wash&Dish) Non-Electric Demand, DHW Wash&Dish	Q _{HP}	(Compact worksheet)	0.0	0.0	0.0
Total Compact Unit		(Compact worksheet)	0.0	0.0	0.0
					CO _s -Emission Factor
oiler				PE Value	(CO ₂ -Equivalent)
Covered Fraction of Space Heat Demand Covered Fraction of DHW Demand		(Project) (Project)	0% 0%	kWh/kWh 0.2	g/kWh 50
Boiler Type		(Boiler worksheet)			1
Utilisation Factor Heat Generator Annual Energy Demand (without DHW Wash&Dish)		(Boiler worksheet) (Boiler worksheet)	0.0	0.0	0.0
Non-Electric Demand, DHW Wash&Dish Total Heating Oil/Gas/Wood		(Electricity worksheet)	0.0	0.0	0.0
strict Heat				PE Value	CO ₂ -Emission Factor (CO ₂ -Equivalent)
Covered Fraction of Space Heat Demand		(Project)	0%	kWh/kWh	g/kWh
Covered Fraction of DHW Demand		(Project)	0%	0.7	-70
Heat Source Utilisation Factor Heat Generator		(District Heat worksheet) (District Heat worksheet)	95%		
Heat Demand District Heat (without DHW Wash&Dish) Non-Electric Demand, DHW Wash&Dish		(District Heat worksheet) (Electricity worksheet)	0.0	0.0	0.0
Total District Heat		,,	0.0	0.0	0.0
				PF Value	COEmission Facto
her					(CO ₂ -Equivalent)
Covered Fraction of Space Heat Demand Covered Fraction of DHW Demand		(Project) (Project)	0%	kWh/kWh 0.2	g/kWh 55
Heat Source		(Project)	Wood]
Utilisation Factor Heat Generator Annual Energy Demand, Space Heating		(Project)	74% 0.0	0.0	0.0
Annual Energy Demand, DHW (without DHW Wash&Dish) Non-Electric Demand, DHW Wash&Dish		(Electricity worksheet)	0.0	0.0	0.0
Non-Electric Demand Cooking/Drying (Gas)		(Blatt Strom)	0.0	0.0	0.0
Total - Other			0.0		
Total - Other			0.0	0.0	
			0.0	PE Value	CO ₂ -Emission Facto
poling with Electric Heat Pump				PE Value	CO ₂ -Emission Facto (CO ₂ -Equivalent)
poling with Electric Heat Pump		(Project)	100%	PE Value	CO ₂ -Emission Facto (CO ₂ -Equivalent)
Total - Other Covered Fraction of Cooling Demand Heat Source Approx Cooling COR			100%	PE Value	CO ₂ -Emission Facto (CO ₂ -Equivalent)
boling with Electric Heat Pump Covered Fraction of Cooling Demand Heat Source Annual Cooling COP			100%	PE Value	CO ₂ -Emission Facto (CO ₂ -Equivalent)
coling with Electric Heat Pump Covered Fraction of Cooling Demand Heat Source Annual Cooling COP Energy Demand Space Cooling			100% Electricity 3.3 0.1	PE Value KWhikWh 2.7	CO ₂ -Emission Facto (CO ₂ -Equivalent) g/kWh 680
coling with Electric Heat Pump Covered Fraction of Cooling Demand Heat Source Annual Cooling COP Energy Demand Space Cooling ating, Cooling, DHW, Auxiliary and Household Electricity			100% Electricity 3.3	PE Value kWh/kWh 2 · 7	CO ₂ -Emission Facto (CO ₂ -Equivalent) g/kWh 680
coling with Electric Heat Pump Covered Fraction of Cooling Demand Heat Source Annual Cooling COP Energy Demand Space Cooling rating, Cooling, DHW, Auxiliary and Household Electricity Total PE Value		(Project)	100% Electricity 3.3 0.1 30.3	PE Value KWhikWh 2.7	CO ₂ -Emission Facto (CO ₂ -Equivalent) gkWh 680
coling with Electric Heat Pump Covered Fraction of Cooling Demand Heat Source Annual Cooling COP Energy Demand Space Cooling ating, Cooling, DHW, Auxiliary and Household Electricity Total PE Value Total Emissions CO ₂ -Equivalent	Ene	(Project)	100% Electricity 3.3 0.1 30.3 Wh/(m²a) kg/(m²a)	PE Value KWhikWh 2.7	CO ₂ -Emission Facto (CO ₂ -Equivalent) gkWh 680 0.1
coling with Electric Heat Pump Covered Fraction of Cooling Demand Heat Source Annual Cooling COP Energy Demand Space Cooling ating, Cooling, DHW, Auxiliary and Household Electricity Total PE Value Total Emissions CO ₂ -Equivalent Primary	Ene	(Project) 81.7 20.6	100% Electricity 3.3 0.1 30.3 kWh/(m²a) kg/(m²a) t 120	PE Value KWh/kWh 2.7 0.3 81.7 KWh/m'a)	CO_Emission Facto (CO_Equivalent) gkWh 680 0.1 20.6 YesP
covered Fraction of Cooling Demand Heat Source Annual Cooling COP Energy Demand Space Cooling lating, Cooling, DHW, Auxiliary and Household Electricity Total PE Value Total Emissions CO ₂ -Equivalent Primary ating, DHW, Auxiliary Electricity (No Household Applications)	Ene	81.7 20.6 rgy Requiremen	100% Electricity 3.3 0.1 30.3 kWh/(m²a) kg/(m²a) t 120	PE Value kWhiAWh 2.7 0.3 81.7	CO_Emission Facto (CO_Equivalent) gkWh 680 0.1 20.6
oling with Electric Heat Pump Covered Fraction of Cooling Demand Heat Source Annual Cooling COP Energy Demand Space Cooling ating, Cooling, DHW, Auxillary and Household Electricity Total PE Value Total Emissions CO ₂ -Equivalent Primary ating, DHW, Auxiliary Electricity (No Household Applications) Specific PE Demand - Mechanical System	Ene	81.7 20.6 rgy Requiremen	100% Electricity 3.3 0.1 30.3 kWh/(m²a) t 120 18.6 kWh/(m²a)	PE Value KWh/kWh 2.7 0.3 81.7 KWh/m'a)	CO_Emission Facto (CO_Equivalent) gkWh 680 0.1 20.6 Yes
covered Fraction of Cooling Demand Heat Source Annual Cooling COP Energy Demand Space Cooling ating, Cooling, DHW, Auxillary and Household Electricity Total PE Value Total Emissions CO ₂ -Equivalent Primary ating, DHW, Auxiliary Electricity (No Household Applications) Specific PE Demand - Mechanical System	Ene	81.7 20.6 rgy Requiremen	100% Electricity 3.3 0.1 30.3 kWh/(m²a) kg/(m²a) t 120	PE Value KWh/kWh 2.7 0.3 81.7 KWh/m'a)	CO_Emission Facto (CO_Equivalent) gkWh 680 0.1 20.6 Yes
Covered Fraction of Cooling Demand Heat Source Annual Cooling COP Energy Demand Space Cooling ating, Cooling, DHW, Auxiliary and Household Electricity Total PE Value Total Emissions CO ₂ -Equivalent Primary ating, DHW, Auxiliary Electricity (No Household Applications) Specific PE Demand - Mechanical System Total Emissions CO ₂ -Equivalent	Ene	81.7 20.6 rgy Requiremen	100% Electricity 3.3 0.1 30.3 kWh/(m²a) kg/(m²a) 13.6 kWh/(m²a) kg/(m²a)	PE Value kWh/kWh 2.7 0.3 81.7 kWh/(m²a)	CO_Emission Facto (CO_Equivalent)
covered Fraction of Cooling Demand Heat Source Annual Cooling COP Energy Demand Space Cooling Parting, Cooling, DHW, Auxiliary and Household Electricity Total PE Value Total Emissions CO ₂ -Equivalent Primary Primary Pating, DHW, Auxiliary Electricity (No Household Applications) Specific PE Demand - Mechanical System Total Emissions CO ₂ -Equivalent	Ene	81.7 20.6 rgy Requiremen 50.2 12.6	100% Electricity 3.3 0.1 30.3 kWh/(m²a) kg/(m²a) t 120 18.6 kWh/(m²a) kg/(m²a)	PE Value kWh/kWh 2.7 0.3 81.7 kWh/(m²a) 50.2	CO_Emission Facto (CO_Equivalent) gkWh 680 0.1 20.6 Yes 12.6 CO_Emission Facto
covered Fraction of Cooling Demand Heat Source Annual Cooling COP Energy Demand Space Cooling Lating, Cooling, DHW, Auxiliary and Household Electricity Total PE Value Total Emissions CO ₂ -Equivalent Primary Lating, DHW, Auxiliary Electricity (No Household Applications) Specific PE Demand - Mechanical System Total Emissions CO ₂ -Equivalent	Ene	81.7 20.6 rgy Requiremen	100% Electricity 3.3 0.1 30.3 kWh/(m²a) kg/(m²a) 13.6 kWh/(m²a) kg/(m²a)	PE Value kWh/kWh 2.7 0.3 81.7 kWh/(m²a)	CO_Emission Facto (CO_Equivalent)
Covered Fraction of Cooling Demand Heat Source Annual Cooling COP Energy Demand Space Cooling ating, Cooling, DHW, Auxiliary and Household Electricity Total PE Value Total Emissions CO ₂ -Equivalent Primary Primary	Ene	81.7 20.6 rgy Requiremen 50.2 12.6	100% Electricity 3.3 0.1 30.3 kWh/(m²a) kg/(m²a) t 120 18.6 kWh/(m²a) kg/(m²a)	PE Value KWh/KWh 2.7 0.3 81.7 KWh/(m²a) 50.2 PE Value (Savings) KWh/KWh	CO_Emission Facto (CO_Equivalent) gkWh 680 0.1 20.6 Yes7 Yes 12.6 CO_Emission Facto gkWh
Covered Fraction of Cooling Demand Heat Source Annual Cooling COP Energy Demand Space Cooling Source According, Cooling, DHW, Auxiliary and Household Electricity Total PE Value Total Emissions CO ₂ -Equivalent	Ene	81.7 20.6 rgy Requiremen 50.2 12.6	100% Electricity 3.3 0.1 30.3 kWh/(m²a) kg/(m²a) tt 120 18.6 kWh/(m²a) kg/(m²a) kg/(m²a)	PE Value XWh/kWh 2.7 0.3 81.7 KWh/(m²a) 50.2 PE Value (Savings) KWh/kWh 0.7	CO_Emission Factor CO_Emission Factor CO_Emission Factor CO_Emission Factor CO_Emission Factor GWMh CO_Emission Factor GWWh CO_EMISSION Factor

PHPP 2007. PE Value 110427linesøyaphpp.ods

COMPACT UNIT WITH EXHAUST AIR HEAT PUMP

(Calculation from Values Measured in the Laboratory Test for Unit Certification) Building Type/Use: Residential Building: "LIPA Miljøprosjekt" Location: Linesøya Treated Floor Area A Covered Fraction of Space Heat Demand 0% Space Heat Demand + Distribution Losses $\boldsymbol{Q}_{\boldsymbol{H}}\boldsymbol{+}\boldsymbol{Q}_{\boldsymbol{HL}:}\left(\boldsymbol{DHW+Distribution}\right)$ 6180 kWh Solar Fraction for Space Heat η_{Solar, H} (Separate Calculation) 0% **Effective Annual Heat Demand** $Q_{H,Wi} = Q_H^* (1-\eta_{Solar, H})$ 0 k\//h Covered Fraction of DHW Demand (PF Value worksheet) 0% Total Heat Demand of DHW system Q (DHW+Distribution) 7689 kWh Solar Fraction for DHW η_{ster} pun (SolarDHW worksheet) 0% Effective DHW Demand $_{HW,Wi} = Q_{DHW}^* (1 - \eta_{Solar, DHW})$ 0 kWh Selection of Compact Unit (Data Inputs from Row 173): Measured Values from Laboratory Test Ventilation Effective Heat Recovery Efficiency 80% Electric Efficiency 0.43 (Test Stand) Wh/m³ Heating Test Point 2 Test Point 3 Test Point 4 °C Ambient Air Temperature -5.9 2.0 8.1 Measured Thermal Power Heat Pump Heating P_{HP} 1.02 1.18 1.49 Measured COP Heating COP 1.52 1.41 1.91 Test Point Test Point 2 Test Point 3 Test Point 4 Ambient Air Temperature 2.0 10.0 20.0 °C Measured Thermal Power DHW Storage Heating-Up 1.41 1.76 2.05 Measured Thermal Power DHW Storage Reload 1 17 1 64 1 94 ۲W Measured COP DHW Storage Heating-Up COP. 2.70 COPDHM Measured COP DHW Storage Reload 1.45 1.97 2.25 Standby (Inputs required only if different from storage reload) Fest Point est Point Test Point Test Point 4 Ambient Air Temperature 2.0 10.0 20.0 Measured Thermal Power Heat Pump Standby 1.17 1.64 2.05 κ۱۸/ Measured COP Standby COP. 1.45 1.97 2 25 Specific Heat Loss Storage incl. Connections U * A Storage (Test Stand) 2.00 W/K Average Storage Temperature in Standby Mode °C T_num streets (Test Stand) 36 Heat Pump Priority (please check as appropriate) (Manufacturer, Techn. Data) DHW Priorit Heating Priority Room Temperature (°C) Av. Ambient Temp. Heating P. (°C) Av. Ground Temp (°C) Efficiency SHX Exhaust Air Mixing 50% $\eta *_{SHX}$ Heat Recovery Efficiency SHX Exhaust Air Mixing (if applicable) η_{SHX,add} (Design Value) 17% Volume Flow Rate of Added Exhaust Air (if applicable) V_{add} (Test Stand) 150 $\mathbf{Q}_{\mathsf{E},\mathsf{dir}}$ Heat Supplied by Direct Electricity 0 kWh/a $\mathbf{Q}_{\mathrm{HP,Heating}}$ Space Heat Supplied by HP 0 kWh/a Winter DHW Supplied by HP 0 kWh/a Winter Standby Heat Supplied by HP 0 kWh/a Summer DHW Supplied by HP 0 kWh/a Summer Standby Heat Supplied by HP kWh/a Performance Ratio of Heat Generator, DHW & Space Heating Annual Coefficient of Performance COP kWh/a kWh/(m²a) Q_{final} Final Energy Demand Heat Generation **Annual Primary Energy Demand** kg/a kg/(m²a) Annual CO₂-Equivalent Emissions

PHPP 2007, Compact 110427lines@yaphpp.ods

EFFICIENCY OF HEAT GENERATION (GAS, OIL, WOOD)

Building: "LIPA Miljøprosjekt"	Building Type/Use:	Residential		
ocation: Linesøya	Treated Floor Area A _{TFA}	402	m²	
			''''	
Covered Fraction of Space Heat Demand	(PE Value worksheet)	0%		
Space Heat Demand + Distribution Losses	$Q_H + Q_{HS:}$ (DHW+Distribution)	6180	kWh	
Solar Fraction for Space Heat	$\eta_{\text{Solar, H}} \textit{(Separate Calculation)}$	0%		
Effective Annual Heat Demand $\mathbf{Q}_{_{H,W}}$	$_{i}=Q_{H}^{*}(1-\eta_{Solar,H})$	0	kWh	
Space Heat Demand without Distribution Losses	Q _H (Annual Heat Demand)	6180	kWh	
Covered Fraction of DHW Demand	(PE Value worksheet)	0%		
Total Heat Demand of DHW system	Q _{gDHW} (DHW+Distribution)	7689	kWh	
Solar Fraction for DHW	$\eta_{\text{Solar, DHW}} \text{ (SolarDHW worksheet)}$	0%		
Effective DHW Demand $\mathbf{Q}_{\mathrm{DHW,Wi}} \! = \! \mathbf{Q}_{\mathrm{D}}$	$^{\star}_{\text{HW}}$ *(1- $\eta_{\text{Solar, DHW}}$)	0	kWh	
Boiler Type	(Project)	g (Direct and Indi	rect Rel	ease of Heat)
Primary Energy Factor	(Data worksheet)	0.2	kWh/kV	/h
CO ₂ -Emissions Factor (CO ₂ -Equivalent)		50	g/kWh	
Useful Heat Provided	$Q_{\sf Use}$		kWh/a	
Max. Heating Power Required for Heating the Building	P _{BH} (Heating Load worksheet)	4.33	kW	
Length of the Heating Period	t _{HP}	0	h	
Length of DHW Heating Period	t _{DHW}	8760	h	
Use characteric values entered (check	if appropriate)?			
		Project Data		Standard Values
Design Output	P _{nominal} (Rating Plate)	3	kW	15 k
Installation of Boiler (Outdoor: 0, Indoor: 1)		0		0
Input Values (Oil and Gas Boiler)		Project Data		Standard Values
Boiler Efficiency at 30% Load	$\eta_{_{30\%}}$ (Manufacturer)			
Boiler Efficiency at Nominal Output	η _{100%} (Manufacturer)			
Standby Heat Loss Boiler at 70 °C	Q _{B,70} (Manufacturer)			
Average Return Temperature Measured at 30% Load	$artheta_{30\%}$ (Manufacturer)		°C	
Input Values (Biomass Heat Generator)		Project Data		Standard Values
Efficiency of Heat Generator in Basic Cycle	η _{GZ} (Manufacturer)	72%		72%
Efficiency of Heat Generator in Constant Operation	η_{SO} (Manufacturer)	80%		80%
Average Fraction of Heat Output Released to Heating Circuit	Z _{HC,m} (Manufacturer)	0.5		0.5
Temperature Difference Betw. Power-On and Power-Off	$\Delta \vartheta$ (Manufacturer)	10	K	10
For Interior Installations: Area of Mechanical Room	A _{install} (Project)	0	m²	0 r
Useful Heat Output per Basic Cycle	Q _{N,GZ} (Manufacturer)	2.7		2.7
Average Power Output of the Heat Generator	Q _{N,m} (Manufacturer)	1.5	kW	1.5
Utilisation Factor Heat Generator Heating Run	$h_{H,g,K} = f_{\phi}^{\star} \eta_{k^{\circ}}$	0%		
Utilisation Factor Heat Generator DHW Run	$h_{TW,g,K} = \eta_{100\%} / f_{\phi,TW}$	0%		
Utilisation Factor Heat Generator DHW & Heating	h _{g,K}	0%		
		kWh/a		kWh/(m²a)
Final Energy Demand Space Heating	$\mathbf{Q}_{Final,HE} = \mathbf{Q}_{H,wi}^{}} \mathbf{e}_{H,g,K}^{}}$	0		
Final Energy Demand DHW	$\mathbf{Q}_{Final,DHW} = \mathbf{Q}_{WW,wi}^{}} \mathbf{e}_{TW,g,K}^{}}$	0		
Total Final Energy Demand	$\mathbf{Q}_{Final} = \mathbf{Q}_{Final,DHW+} \mathbf{Q}_{Final,HE}$	0		0.0
Annual Primary Energy Demand		0		0.0
Annual CO. Equivalent Emissions		kg/a		kg/(m²a)
Annual CO ₂ -Equivalent Emissions		0		0.

PHPP 2007, Boiler 110427linesøyaphpp.ods

EFFICIENCY OF DISTRICT HEATING STATIONS

Building: "LIPA Miljøprosjekt"		Building Type/Use:	Residential	
Location: Linesøya		Treated Floor Area A _{TFA} :	402	m²
Covered Fraction of Space Heat Demand		(PE Value worksheet)	0%]
Annual Heat Demand kWh/a	$Q_{_{\!\scriptscriptstyle H}}$	(DHW+Distribution)	6180	- kWh
Solar Fraction for Space Heat	$\eta_{\text{Solar, H}}$	(Separate Calculation)		
Effective Annual Heat Demand	$\boldsymbol{Q}_{_{\boldsymbol{H},\boldsymbol{W}\boldsymbol{i}}}\!\!=\!\!\boldsymbol{Q}_{_{\boldsymbol{H}}}^{}\!$		0	kWh
Covered Fraction of DHW Demand		(PE Value worksheet)	0%	7
DHW Demand	Q_{DHW}	(DHW+Distribution)	7689	kWh
Solar Fraction for DHW	$\eta_{\text{Solar, DHW}}$	(SolarDHW worksheet)	0%	_
Effective DHW Demand	$Q_{DHW,Wi} = Q_{DHW}^{} * (1 - \eta_{Solar, DHW})$		0	kWh
Heat Source				
Primary Energy Factor		(Data worksheet)	0.7	kWh/kWh
CO ₂ -Emissions factor (CO ₂ -Equivalent)		(Data worksheet)	-70	g/kWh
Utilisation Factor Heat Transfer Station	$\eta_{a,HX}$		95%	
			kWh/a	kWh/(m²a)
Final Energy Demand Heat Generation	$\mathbf{Q}_{\text{final}} = \mathbf{Q}_{\text{Use}}^* \mathbf{e}_{\text{a,DH}}$		0	0.0
Annual Primary Energy Demand			0	0.0
Annual CO ₂ -Equivalent Emissions			kg/a 0	kg/(m²a) 0.0

PHPP 2007, District Heat 110427linesøyaphpp.ods

Passive House Planning INTERNAL HEAT GAINS

