TFE4120 Electromagnetics - Crash course

Exercise 1

In this exercise we will recapitulate some mathematical tools from vector-analysis, which is often found in electromagnetics. Notation: Vectors will be written in bold, e.g \mathbf{F} , and unity vectors with circumflex (hat), e.g $\hat{\mathbf{x}}$.

Problem 1

In physics and mathematics there are several types of line integrals. Some of these are

1)
$$\int_C F dl$$
, 2) $\int_C F dl$, 3) $\int_C \mathbf{F} dl$, 4) $\int_C \mathbf{F} \cdot d\mathbf{l}$

- a) Which of the integrals fit to the following physical situations:
 - i) When the mass density of a wire is F, and you want to find the total mass of the wire
 - ii) Given a force \mathbf{F} which acts on a body moving along a curve C, and you want to find the total work done by the force.
- b) Let \mathbf{F} and F be constants, unequal to 0, and use the integration curves C_1 and C_2 from the figure below. In which of the cases 1)-4), above, is the integral along these curves equal to 0? Sketch dl for different positions on each curve.

For surface integrals the corresponding integrals are

1)
$$\int_{S} F dS$$

2)
$$\int_{S} F d\mathbf{S}$$

3)
$$\int_{S} \mathbf{F} dS$$
,

1)
$$\int_{S} F dS$$
, 2) $\int_{S} F dS$, 3) $\int_{S} \mathbf{F} dS$, 4) $\int_{S} \mathbf{F} \cdot dS$

c) Repeat task b) for the surface integrals. Use the surfaces below.

Torus

Open cone (both ends)

- d) How is the direction of dS for the torus defined? Sketch dS at three different points.
- e) Consider the surface S_1 defined by the curve C_1 . In what direction does d**S** for S_1 point?

Problem 2

- a) Define and explain the following terms using your own words.
 - i) Flux
 - ii) Divergence
 - iii) Curl
 - iv) Conservative field.
- b) Write down and briefly explain the following theorems using your own words.
 - i) Divergence theorem
 - ii) Stoke's theorem

Optional tasks: The following tasks are optional, but offers good practice. It is recommended to do them.

Problem 3

Calculate the integral

$$I = \int_{V} (\nabla \cdot \mathbf{F}) dV \tag{1}$$

where $\mathbf{F} = r\hat{\mathbf{r}} = x\hat{\mathbf{x}} + y\hat{\mathbf{y}} + z\hat{\mathbf{z}}$, and the volume V is a sphere with radius R placed in the origin.

- a) Calculate the integral directly.
- b) Calculate the integral using the divergence theorem.

Problem 4

a) Calculate the line integral

$$I = \int_C \mathbf{F} \cdot \mathbf{dl},\tag{2}$$

Where $\mathbf{F} = (xy^2 + 2y)\hat{\mathbf{x}} + (x^2y + 2x)\hat{\mathbf{y}},$

- i) Along the curve C_1 which consists of two straight lines connecting the points (0,0), (a,0) and (a,b), see figure below.
- ii) Along the curve C_2 which consists of one straight line connecting the points (0,0) and (a,b), see figure below.
- iii) Why do these calculations produce the same answer? Explain using Stoke's theorem.

- b) For the following scenarios, sketch the curve C and calculate the integral of the function along that curve (i.e calculate the integral $\int_C f dl$ for i) and ii), and $\int_C \mathbf{F} \cdot d\mathbf{l}$ for iii))
 - i) f = x + y, C is given by: $x = 1 + e^{2t}$, $y = e^{2t}$, $t \in [0, \ln 2]$.
 - ii) $f = \frac{2y}{x}\sqrt{1+x^2}$, C is given by: $y = \frac{1}{2}x^2$, $x \in [0,2]$.
 - iii) $\mathbf{F} = \hat{\mathbf{x}}\cos^2 t + \hat{\mathbf{y}}2\sin t$, along the line $\mathbf{l}(t) = \hat{\mathbf{x}}\tan t \hat{\mathbf{y}}\cos t$, $t \in [-\pi/3, \pi/3]$.