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Oppgave 1

a) Due to symmetry we have E = E(r)r̂ for this entire task

i) We let the Gaussian surface be the surface of a cylinder with radius r and length l.
The charge per unit length on the inner conductor is Q′. Using Gauss’ law in its
integral from gives ∮

εE · dS = 2πrlεE(r)

= Qinside S

= Q′l.

(1)

Which results in

E(r) =
Q′

2πεr
r̂. (2)

We find Q′ by using the definition of potential (the reference point is set on the
outer conductor).

V (a)− V (b) = V0 − 0

=

∫ b

a
E(r)dr

=
Q′

2πε

∫ b

a

dr

r

=
Q′

2πε
ln
b

a
.

(3)

The electric field can then be written as

E =
V0

ln b
a

1

r
r̂. (4)

Using the expression for V (a)− V (b), and the definition of capacitance per unit

length is C ′ ≡ Q′

V (a)−V (b) , we find

C ′ =
2πε

ln b
a

. (5)
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ii) Since there are no free charges in the dielectric material we have that

∇ ·D = ∇ · (εE) = 0, for a ≤ r ≤ b. (6)

The divergence in cylindrical coordinates is

∇ ·D =
1

r

∂[rD(r)]

∂r
= 0, (7)

where we have assumed D = D(r)r̂. The solutions for D(r) and E(r) is then

D(r) =
εC1

r
,

E(r) =
C1

r
,

where C1 is a constant that needs to satisfy the boundary conditions on the inner-
and outer conductor. C1 is determined by calculating the potential difference just
like we did in the last subtask:

V (a)− V (b) = V0 =

∫ b

a

C1

r
dr = C1 ln

b

a
. (8)

Thus, we have

C1 =
V0

ln b
a

(9)

and

E =
V0

ln b
a

1

r
r̂. (10)

Since C ′ = Q′

V0
we need an expression for Q′. Since all charges on the inner

conductor will occur on the surface we can use the boundary condition
Ddielectric

n −Dinner conductor
n = ρs, where ρs is the surface charge density. Since there

are no field inside the inner conductor Dinner conductor
n = 0. From

Ddielectric
n = D(a) = εE(a) we find

Q′ = 2πaρs =
2πεV0

ln b
a

, (11)

which gives

C ′ =
Q′

V0
=

2πε

ln b
a

. (12)

iii) Since ε is constant and there are no free charges in the dielectric material we can
use Laplace’s equation:

∇2V = 0. (13)

(Proof: We have ∇ ·D = ∇ · (εE) = ρ. During static conditions we have E = −∇V
which yields ∇ · (−ε∇V ) = ρ. Since there are no free charges in the material, and ε
is constant, Gauss’ law is reduced to ∇ · (−ε∇V ) = ∇2V = 0.)

Due to symmetry we have E = E(r)r̂ which implies V = V (r). By using the
expression for ∇2 in cylindrical coordinates we get

∇2V =
1

r

∂

∂r

(
r
∂V (r)

∂r

)
= 0. (14)
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Integrating once more
∂V (r)

∂r
=
C2

r
, (15)

where C2 is a constant. Integration then gives

V (r) = C2 ln r + C3, (16)

where C3 is also a constant. Both C2 and C3 needs to satisfy the boundary
conditions for V . Using the condition V (b) = 0 gives

V (b) = 0 = C2 ln b+ C3, (17)

so that C3 = −C2 ln b. The boundary condition on r = a is V (a) = V0 which gives

V (a) = V0 = C2 ln a− C2 ln b = C2 ln
a

b
. (18)

Thus, we have C2 = V0/ ln a
b and

V (r) =
V0

ln a
b

ln
r

b
. (19)

We find the electric field by using E = −∇V in cylindric coordinates, so that

E = −∇V = −∂V (r)

∂r
r̂ =

V0

ln b
a

1

r
r̂. (20)

The capacitance can now be found using the same procedure as in the previous
subtask.

b) When εr = 3 and b
a = 7 we get

C ′ =
2πεrε0

ln b
a

=
6π

ln 7
ε0 = 85.8

pF

m
. (21)

c) i) The stored electrostatic energy per unit length, W ′e, of the cable is given by

W ′e =
1

2
C ′V 2. (22)

By inserting the expression for C ′ found in a), and by using V = V0 we get

W ′e =
πε

ln b
a

V 2
0 . (23)

ii) The energy density we in an electric field is given by

we =
1

2
εE2. (24)

The total energy per unit length of the capacitor is found by integrating the
expression for energy density over the cross section between the two conductors:

W ′e =

∫ b

a
we(r)dA =

∫ b

a

1

2
εE22πrdr = πε

∫ b

a
rE2dr. (25)

By using the expression for E found in a) we find

W ′e = πε
V 2
0

ln2 b
a

∫ b

a

r

r2
dr =

πε

ln b
a

V 2
0 . (26)
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d) Due to symmetry the total force acting on the outer conductor is equal to zero.

Oppgave 2

a) We start by determining the electric field inside the capacitor. We place a free charge Q
on the inner conductor and another −Q on the outer conductor and use Gauss’ law∮
S D · dS = Qinside S . We chose a spherical cap with radius r as our Gaussian surface.

Due to symmetry we have D = D(r)r̂. Gauss’ law gives then∮
D · dS = 4πr2D(r) = Q. (27)

Using D(r) = εE(r) yields

E(r) =
Q

4πεr2
. (28)

We choose the outer conductor as the point of reference for the potential so that

V (a)− V (b) = V0 =

∫ b

a
E(r)dr =

Q

4πε

∫ b

a

dr

r2
=

Q

4πε

(
1

a
− 1

b

)
. (29)

The capacitance is given by C = Q
V0

:

C =
4πεab

b− a
. (30)

We can now see that when b− a = d� a we can write

C ' εA
d
, (31)

where A = 4πab is the surface area of the capacitor and d is the distance between the
plates. This expression is similar for parallel plate capacitors.

b) If we consider a simple conducting sphere from a) with the boundary condition b→∞,
and let ε→ ε0, we have

C = 4πε0a, (32)

for the capacitance for a sphere with radius a.
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