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Oppgave 1

a) Due to symmetry we have E = E(r)t for this entire task

i) We let the Gaussian surface be the surface of a cylinder with radius r and length .

The charge per unit length on the inner conductor is Q’. Using Gauss’ law in its
integral from gives

7{6E -dS = 27mrleE(r)

= Qinside 5
=Q'l.
Which results in
Q/
E(r) = r. 2
() 27T67“r 2)
We find @’ by using the definition of potential (the reference point is set on the

outer conductor).
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The electric field can then be written as
W1,

Using the expression for V(a) — V' (b), and the definition of capacitance per unit
length is C' = %}/(b), we find

o =T (5)



i)

iii)

Since there are no free charges in the dielectric material we have that
V- D=V:(E)=0, fora <r <hb. (6)
The divergence in cylindrical coordinates is

19[rD(r)]

v.D=-00 7
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where we have assumed D = D(r)r. The solutions for D(r) and E(r) is then
eCy
D(r) = &4
(=,
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E(r)=—
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where C is a constant that needs to satisfy the boundary conditions on the inner-
and outer conductor. (] is determined by calculating the potential difference just
like we did in the last subtask:

e b
V(a)—V(b):voz/ Dar=cim . (8)
Thus, we have
o= Vo ()
e lng
and Vo1
E=_"""% 1
lngTr (10)
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Since C' = % we need an expression for Q’. Since all charges on the inner
conductor will occur on the surface we can use the boundary condition

pdielectric _ pyinner conductor — " \where pg is the surface charge density. Since there
are 1o field inside the inner conductor Dinner conductor — (- From

Dgielectric _ D(a) - EE(CL) we find

2meV
Q' =2maps = 5, (11)
ny
which gives
/
. Q _ 2me
C' = VO =Lt (12)
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Since € is constant and there are no free charges in the dielectric material we can
use Laplace’s equation:
ViV =0. (13)

(Proof: We have V-D =V - (eE) = p. During static conditions we have E = —-VV
which yields V - (—eVV') = p. Since there are no free charges in the material, and e
is constant, Gauss’ law is reduced to V - (—eVV) = V2V = 0.)

Due to symmetry we have E = E(r)f which implies V' = V(r). By using the
expression for V2 in cylindrical coordinates we get

V2V = iaar (ra‘gff)) =0. (14)




Integrating once more

ov(r)y Cy
- 2 1
or r’ (15)
where (5 is a constant. Integration then gives
V(r)=Cylnr + Cs, (16)
where ('3 is also a constant. Both Cs and C3 needs to satisfy the boundary
conditions for V. Using the condition V'(b) = 0 gives
V(b)=0=Colnb+ Cs, (17)
so that C5 = —CoInb. The boundary condition on 7 = a is V(a) = V) which gives
V(a):V():Cglna—Cglnszgln% (18)

Thus, we have Co = Vp/In ¢ and

Yo 1,7, (19)

Vi =qraing

We find the electric field by using E = —VV in cylindric coordinates, so that

oV (r) Vo lf‘
or lngT '

E=-VV=— (20)

The capacitance can now be found using the same procedure as in the previous
subtask.

b) When ¢, = 3 and g =T we get

,  2mereg  6m pF
C' = ln% = mﬁo = 858; (21)

c¢) i) The stored electrostatic energy per unit length, W, of the cable is given by

1
W! = 5C’VQ. (22)
By inserting the expression for C’ found in a), and by using V' = Vj we get
e
wW! = o~ 2. (23)

ii) The energy density we in an electric field is given by
1
we = 5eE?. (24)

The total energy per unit length of the capacitor is found by integrating the
expression for energy density over the cross section between the two conductors:

b b b
1
W, = / we(r)dA = / §€E227T7‘d’r’ = 7T6/ rE2dr. (25)
By using the expression for F found in a) we find
Vg [t TE _ 9




d) Due to symmetry the total force acting on the outer conductor is equal to zero.

Oppgave 2

a) We start by determining the electric field inside the capacitor. We place a free charge @

b)

on the inner conductor and another —@ on the outer conductor and use Gauss’ law
555 D - dS = Qjuside s- We chose a spherical cap with radius r as our Gaussian surface.
Due to symmetry we have D = D(r)f. Gauss’ law gives then

}’{ D -dS = 47r’D(r) = Q. (27)
Using D(r) = eE(r) yields o
E(r)= -t (28)

We choose the outer conductor as the point of reference for the potential so that

Via) = V(b) = Vo = /E yr — < de:QC—l). (29)
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The capacitance is given by C' =

Vo
C= Zé”_ea;. (30)
We can now see that when b —a = d < a we can write
o

where A = 4mwab is the surface area of the capacitor and d is the distance between the
plates. This expression is similar for parallel plate capacitors.

If we consider a simple conducting sphere from a) with the boundary condition b — oo,
and let € — ¢y, we have
C = 4repa, (32)

for the capacitance for a sphere with radius a.



