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Magnetic fields in media.

In the same way we defined a free and bound charge density for the electric field, we will now
defined free and bound currents.

Magnetic dipole moment

The magnetic dipole moment from a current loop I is

m = ISm, (1)

where Sm is the surface enclosed by the current loop, and m is pointing along the surface
normal of the loop. Magnetic dipoles in a medium will orient along the external magnetic field
B-field due to the torque:

τ = m×B. (2)

Derivation of Ampere’s law in media∮
C
B · dl = µ0

∫
S

(Jfree + Jbound) · dS. (3)

The result will be ∮
C
H · dl =

∫
S
Jfree · dS. (4)

We want to hide the bound currents in a magnetization vector M, and find the field produced
solely by the ”free” currents. We thus need to find Ibound.

We are interested in the current through S. We define

M =

∑
imi

dV
(5)

as an average density of magnetic dipole moment per volume inside the volume element dV .
Only the current loops around the boundary C contribute to a net current through the
surface. We first consider a line segment dl along C.
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The magnetization density M has a related surface element dSm normal to it (according to
(1)). The ”height” of the small cylinder along M is dl cos θ, which gives dV = Smdl cos θ, so
the contribution to Ibound from this cylinder is

dI =
|M|Smdl cos θ

Sm
= M · dl. (6)

Integration along C gives

Ibound =

∮
C
M · dl. (7)

Inserting this into (3) gives ∮
C

(
1

µ0
B−M) · dl =

∫
S
Jfree · dS. (8)

Defining

H =
1

µ0
B−M (9)

gives equation (4).

Relationship between H and B

From the definition of H we have
B = µ0H + µ0M. (10)

For linear media, where M = χmH we get

B = µ0(1 + χm)H = µ0µrH = µH, (11)

where µr is called the relative permeability. For air this parameter is ≈ 1 (non-magnetic),
while for iron (magnetic) it 5000 or even higher for some alloys.

Example: Solenoid

Tightly wound conductor over a cylindrical iron core. Want to find B from Ampere’s law for
media (equation (4)). We first argue that B(r, φ, z) = Bẑ, i.e. B is a constant everywhere (the
cosntant is different intside and outside the solenoid).
B is independent of φ due to the cylinder symmetry, and independent on z as we assume

the solenoid is very long. The r̂-component of B is thus zero, since otherwise there would be a
flux out through a closed cylinder surface around the solenoid.

The φ̂-component of B is zero, since (due to no current in the ẑ-direction):∮
C B · dl =

∮
C Bφdl = 0 along a circular curve C. Since B is independent on φ we get Bφ = 0.

We thus have B = B(r)ẑ. From Ampere’s law (with no current in the ẑ-direction),
integrating along a rectangular curve C inside the solenoid, gives B(a) = B(b) for two
different radi a and b. The same is true outside the solenoid. B is thus a constant both inside
and outside. The constant outside must be zero, since otherwise there would be an infinite
magnetic flux, which is unphysical.

The constant magnitude of B inside the solenoid is found from Ampere’s law, using a
rectangular integration path with a cross section starting at the inside and ending at the
outside. From B = µH we have H = H ẑ inside and H = 0 outside. Equatoin (4) gives∮

C
H · dl = H · l, (12)
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where l is the length of the solenoid. The right hand side of (4) is∫
S
J · dS = N · I, (13)

which gives

H =
NI

l
. (14)

We thus get

B = µH =
µNI

l
ẑ (15)

inside the solenoid, and B = 0 outisde. Note that B is significantly stronger if the core is iron
rather than air.

Exercise 5: Problem 1. 15 min + 5 min solution.

Electrodymanics: Faraday’s law of induction

∇×E = −∂B
∂t
. (16)

In general we have ∇×E 6= 0, since B may vary in time. From Stoke’s theorem we have∮
C
E · dl =

∫
S

(∇×E) · dS =

∫
S

(−∂B
∂t

) · dS = − d

dt

∫
S
B · dS, (17)

where in the last equation we assumed that the loop C does is constant in time (not deformed
or moved). In (17), E is the electric force per charge F

q . In general other forces may act on q
as well. We define the ”electromotoric force” (emf):

e =

∮
C

F

q
· dl. (18)

Assume we move a closed circuit through a constant magnetic field B. Then

e =

∮
C

(v×B)·dl =

∮
C

(
dr

dt
×B)·dl =

1

dt

∮
C

(dr×B)·dl =
1

dt

∮
C
B·(dl×dr) = − 1

dt

∮
C
B·(dr×dl).

(19)
The surface element dr× dl is the change of the surface S enclosed by C during the time dt.
The integral of B · (dr× dl) is thus the change in the flux through S during the time dt, where
S is the surface enclosed by C. We thus get

e = −dΦ

dt
= − d

dt

∫
S
B · dS, (20)

which says that the emf equals the time derivative of the magnetic flux through S. It does not
matter if the change in flux is due to a time-varying B(t) or a time varying surface S = S(t).
The equation

e = −dΦ

dt
, (21)

where Φ is the magnetic flux through S is called Faraday’s law. The law may also be
considered as an experimental fact.
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In differential form:

∇×E = −∂B
∂t
. (22)

If there are several ”emf’s” in a circuit, the following law is valid:∑
emf = RI, (23)

where R is the resistance and I the current in the curciut. For instance, if there are two
”emf’s”: a voltage source Vb and an induced emf due to a time varying B through the circiut
we get

VB + (−dΦ

dt
) = RI. (24)

Example

Consider an uninform Bext = −B0 sin (ωt)ẑ through a rectangular circuit with edges a and b.
What is I?

e = − d

dt

∫
S
B · dS = − d

dt
(−B0 sin (ωt))ab. (25)

Thus
e = ωB0ab cosωt. (26)

Equation (23) together with Ohm’s law gives

I =
e

R
=
ωB0ab cos(ωt)

R
. (27)

Inductance

We have so far ignored the following: The induced current I produces it’s own B-field! The
total B-field is thus given as the sum of the external and the induced field:

Btot = Bext + Bind. (28)

Consider the induced field separately:
∫
S Bind · dS is proportional to I. We thus define the

inductance

L =

∫
S Bind · dS

I
=

Φ

I
. (29)

The inductance only depends on geometric quantities and the material parameter µ. The ”self
inductance” of a circiut is the magnetic flux produced solely by the circiut, divided by the
current in the curcuit. To solve the problem in the last example correctly the self inductance
should be taken into account:

e = RI = − d

dt

∫
S
Bext · dS−

d

dt

∫
S
Bind · dS = ωB0ab cos (ωt)− d

dt
LI. (30)

This gives the differential equation

RI(t) + L
dI

dt
= ωB0ab cos (ωt). (31)

Solution:

I(t) = I0e
−R

L
t +

ωB0ab

L2ω2 +R2
[Lω sin(ωt) +R cos(ωt)]. (32)
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If L→ 0 we get back our previous solution (27). If L is significantly small we may therefore
for simplicity ignore the self-inductance.

We may also define the ”mutual inductance” between two nearby curcuits:

Lij =
Φij

Ij
. (33)

Here Lij is the mutual inductance between circuit i and j, Φij is the flux in circuit i due to
the current in circiut j, and Ij is the current in circuit j.

Lenz’ law:

If you change the flux through a conducting loop, there is induced a current in the loop which
will try to resist the imposed flux-change.

If the flux is increasing, the induced current will produce a B-field in the opposite direction
of the increasing external field. The resistance R of the loop decides to which degree the
induced current resists the flux change: R→∞ gives no ”counter-flux”, while R→ 0
(super-conductor) gives NO net flux through the loop!

Exercise 5: Problem 2 and 3. 25 min + 10 min solution.
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