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Lecture 4: Magnetic fields, Biot-Savart’s law, Ampere’s law

Thursday August 11th, 9-12 am.

Exercise 4: Problem 1. 10 min + 5 min solution.
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are the two laws concerning E in electrostatics. The corresponding laws for the magnetic field
B are:
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V-B=0. (4)

In "magnetostatics”, i.e. if all currents are constant in time (so that the electromagnetic fields
are time-independent) we have
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Biot-Savart’s law (the magnetic equivalent to Coulomb’s law)

If we have to moving charges, ()1 moving with velocity vi, and Q2 moving with va, the
magnetic force on Q2 from @ is

po Q1v1 X T

F=Qavax(~——5—) (6)

where o = 47 - 10"Ns?C2. This value is exact, because this equation is used as a standard for
1 C (the unit for charge). If v; is parallel to v, and v is normal to ¥ (the unit vector from

Q1 to Q2) we get
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The magnetic force between two positive charges moving parallel to eachother is thus
attractive.



We define the magnetic field B (the magnetic flux density) produced by a charge Q;
moving at vi:
po Q1vi X T
= —=. 8
dr 1?2 (®)
This is called ” Biot-Savart’s law”. The magnetic field B describes the force on a charge @
moving with a velocity v:

F = Qv x B. (9)

Example: Charge moving in a constant B-field: The charge will follow a circular path.

B-fields from different current distributions

a) Current along a line:
po Q'dlv x ¢

dB =~ —, (10)
is the contribution to the total B-field from a line segment dl along the thin conductor.
We have a dg

Q'dlv = dq I3 = dtdl 1dl. (11)
This gives
B = / dB = ! dix r (12)

This is the magnetic field B from a line current ( Biot-Savart’s law for a line current”).

b) Current along a surface: If the current instead is running along a thin surface we have

Js = Z—gv = Ngqv = psv. (13)

Jst X T
B = /dB / = (14)

This is the magnetic field B from a surface current (”Biot-Savart’s law for a surface
current”).

This gives

c) Current through a volume:
J = Ngv, (15)

which gives

J
/ dB = “Tv. (16)
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This is the magnetic field B from a volume current (”Biot-Savart’s law for a volume
current”).



Example: Magnetic field outside a cable with current I in the y-direction. We find B at a
given point (z,y) = (a,b):
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If we assume that the cable is long, i.e. [ > a,b! we get

pol
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Exercise 4: Problem 2. 15 min + 5 min solution.

Note: Using Biot-Savart’s law often involves complicated calculations. If the problem has
some degree of symmetry we rather use ” Ampere’s law”.

More about the B-field:

The magnetic force does no work!
dl
AW = Fpae - dl = (gv x B) - adt = (qgv x B) - vdt = 0. (19)
Magnetic forces may change the direction, but not the velocity of a moving charge.
There are no magnetic monopoles. It may be shown from Biot-Savart’s law that
V-B=0 (20)

everywhere! This is one of Maxwell’s equations. It means that magnetic fields cannot flow out
from a point. That is, there are not ”magnetic charges”. All magetic fields must ”bite their
own tale”. In integral form:

/V-dezjfB-dszo, (21)
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i.e. the total magnetic flux through any closed surface S is always zero!

Yin fact we MUST do this, since we have ignored the return-current!



Amperes law for constant currents

Applyling Stoke’s theorem to (5) gives:

/VxB-dS:/B-dl:ug/J-dS. (22)
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This law tells us that the circulation of magnetic field around a closed path is proportional to
the total current through the path.

Example: Magnetic field outside a cable (again).

?{CB-dlzuo/J-dS. (23)

Let C be a circular curve centered at the cable. We then have
o [ 3-d8 = o [ 748 = pul, (24)
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and

7§CB-d1:chqB-dz&s:jqchdzzBJ({CdzzB(rmr. (25)

We here used that B is directed along the éﬁ—direction, i.e. along the circular path around the
cable. Further, we used that B is independent on ¢ and z, and thus only depends on r. Since
r is constant along C' we could thus move B outside the integral. Equations (5), (24) and (25)
gives ;
Mol
B(r) = £ (26)
which is the same as we got last time.

We now argue why B(r, ¢, z) = B(r)¢. We assume that the cable is infinitely long. We thus
don’t have to bother about the returing current, or what happens at the end points.

First, B must be independent on z, since the cable is infinitely long. Considering B at
different values for z does not alter the physical situation, and thus our solution B(r, ¢, z)
should be independent on z. Similarly, (B) must be independent on ¢, since if we rotate the
cable by an angle ¢ wrt. the z-axis, the physical situation is unaltered, so B(r, ¢) must be
independent on ¢.

If B has a r-component, this will thus be equal for all ¢ and z. This means we have a net
flow of magnetic field out from a closed cylinder surface around the cable, which contradics (4).

Finally, B cannot have a z-component. This is seen from Biot-Savart’s law:

po [ Idlx ¢
—
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Since the current is along the z-axis, we have I'dl = Idlz, which gives no z-component in B.
Example 2: Cable with final thickness. Assume the current I runs through a cable with

radius a, and that the current is evenly distributed across the cross section: J = #i
Ampere’s law gives

fB-cu:uo/J-ds. (28)
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As in the previous example, one may argue that B = B(r)¢. This gives

j{ B - dl =27rB(r). (29)
C

The value of the right hand side depends on 7. For r > a we have |, gJ-dS =1, while for
r < a we have [(J-dS = I;Z’;. This gives for r < a:

polr -
= — 30
502 ®" (30)
and for r > a: s
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Exercise 4: Problem 3 and 4. 45 min + 15 min solution.



