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Exercise 4: Problem 1. 10 min + 5 min solution.

∇×E = −∂B

∂t
= 0, (1)

and
∇ ·E =

ρtot
ε0

(2)

are the two laws concerning E in electrostatics. The corresponding laws for the magnetic field
B are:

1

µ0
∇×B = ε0

∂E

∂t
+ Jtot, (3)

and
∇ ·B = 0. (4)

In ”magnetostatics”, i.e. if all currents are constant in time (so that the electromagnetic fields
are time-independent) we have

1

µ0
∇×B = Jtot. (5)

Biot-Savart’s law (the magnetic equivalent to Coulomb’s law)

If we have to moving charges, Q1 moving with velocity v1, and Q2 moving with v2, the
magnetic force on Q2 from Q1 is

F = Q2v2 × (
µ0
4π

Q1v1 × r̂

r2
), (6)

where µ0 = 4π · 107Ns2C2. This value is exact, because this equation is used as a standard for
1 C (the unit for charge). If v1 is parallel to v2, and v1 is normal to r̂ (the unit vector from
Q1 to Q2) we get

F = −µ0
4π
Q2v2

Q1v1
r2

r̂. (7)

The magnetic force between two positive charges moving parallel to eachother is thus
attractive.
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We define the magnetic field B (the magnetic flux density) produced by a charge Q1

moving at v1:

B =
µ0
4π

Q1v1 × r̂

r2
. (8)

This is called ”Biot-Savart’s law”. The magnetic field B describes the force on a charge Q
moving with a velocity v:

F = Qv ×B. (9)

Example: Charge moving in a constant B-field: The charge will follow a circular path.

B-fields from different current distributions

a) Current along a line:

dB =
µ0
4π

Q′dlv × r̂

r2
, (10)

is the contribution to the total B-field from a line segment dl along the thin conductor.
We have

Q′dlv = dq
dl

dt
=

dq

dt
dl = Idl. (11)

This gives

B =

∫
C

dB =
µ0
4π

∫
C

Idl× r̂

r2
. (12)

This is the magnetic field B from a line current (”Biot-Savart’s law for a line current”).

b) Current along a surface: If the current instead is running along a thin surface we have

JS =
nq

∆S
v = NSqv = ρsv. (13)

This gives

B =

∫
S

dB =
µ0
4π

∫
S

JSdS × r̂

r2
. (14)

This is the magnetic field B from a surface current (”Biot-Savart’s law for a surface
current”).

c) Current through a volume:
J = Nqv, (15)

which gives

B =

∫
V

dB =
µ0
4π

∫
V

J× r̂

r3
dV. (16)

This is the magnetic field B from a volume current (”Biot-Savart’s law for a volume
current”).
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Example: Magnetic field outside a cable with current I in the ŷ-direction. We find B at a
given point (x, y) = (a, b):

B =
µ0
4π

∫ l/2

−l/2

Idy × r̂

r2
,

=
µ0
4π

∫ l/2

−l/2

sin θIdyφ̂

r2
,

=
µ0
4π

∫ l/2

−l/2

aIdy

r3
φ̂,

=
µ0aI

4π

∫ l/2

−l/2

1

(a2 + (b− y)2)3/2
dyφ̂,

=
µ0aI

4π
[

l
2 − b

a2
√
a2 + (b− l

2)2
+

l
2 + b

a2
√
a2 + (b+ l

2)2
]φ̂. (17)

If we assume that the cable is long, i.e. l� a, b1 we get

B =
µ0I

2πa
φ̂. (18)

Exercise 4: Problem 2. 15 min + 5 min solution.

Note: Using Biot-Savart’s law often involves complicated calculations. If the problem has
some degree of symmetry we rather use ”Ampere’s law”.

More about the B-field:

The magnetic force does no work!

dW = Fmag · dl = (qv ×B) · dl

dt
dt = (qv ×B) · vdt = 0. (19)

Magnetic forces may change the direction, but not the velocity of a moving charge.

There are no magnetic monopoles. It may be shown from Biot-Savart’s law that

∇ ·B = 0 (20)

everywhere! This is one of Maxwell’s equations. It means that magnetic fields cannot flow out
from a point. That is, there are not ”magnetic charges”. All magetic fields must ”bite their
own tale”. In integral form: ∫

V
∇ ·BdV =

∮
S

B · dS = 0, (21)

i.e. the total magnetic flux through any closed surface S is always zero!

1in fact we MUST do this, since we have ignored the return-current!
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Amperes law for constant currents

Applyling Stoke’s theorem to (5) gives:∫
S
∇×B · dS =

∫
C

B · dl = µ0

∫
S

J · dS. (22)

This law tells us that the circulation of magnetic field around a closed path is proportional to
the total current through the path.

Example: Magnetic field outside a cable (again).∮
C

B · dl = µ0

∫
J · dS. (23)

Let C be a circular curve centered at the cable. We then have

µ0

∫
S

J · dS = µ0

∫
S
JdS = µ0I, (24)

and ∮
C

B · dl =

∮
C
Bφ̂ · dlφ̂ =

∮
C
Bdl = B

∮
C

dl = B(r)2πr. (25)

We here used that B is directed along the φ̂-direction, i.e. along the circular path around the
cable. Further, we used that B is independent on φ and z, and thus only depends on r. Since
r is constant along C we could thus move B outside the integral. Equations (5), (24) and (25)
gives

B(r) =
µ0I

2πr
φ̂, (26)

which is the same as we got last time.
We now argue why B(r, φ, z) = B(r)φ̂. We assume that the cable is infinitely long. We thus

don’t have to bother about the returing current, or what happens at the end points.
First, B must be independent on z, since the cable is infinitely long. Considering B at

different values for z does not alter the physical situation, and thus our solution B(r, φ, z)
should be independent on z. Similarly, (B) must be independent on φ, since if we rotate the
cable by an angle φ wrt. the ẑ-axis, the physical situation is unaltered, so B(r, φ) must be
independent on φ.

If B has a r̂-component, this will thus be equal for all φ and z. This means we have a net
flow of magnetic field out from a closed cylinder surface around the cable, which contradics (4).

Finally, B cannot have a ẑ-component. This is seen from Biot-Savart’s law:

B =
µ0
4π

∫
C

Idl× r̂

r2
. (27)

Since the current is along the ẑ-axis, we have Idl = Idlẑ, which gives no ẑ-component in B.

Example 2: Cable with final thickness. Assume the current I runs through a cable with
radius a, and that the current is evenly distributed across the cross section: J = I

πa2
ẑ.

Ampere’s law gives ∮
C

B · dl = µ0

∫
S

J · dS. (28)
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As in the previous example, one may argue that B = B(r)φ̂. This gives∮
C

B · dl = 2πrB(r). (29)

The value of the right hand side depends on r. For r > a we have
∫
S J · dS = I, while for

r < a we have
∫
S J · dS = Iπr2

πa2
. This gives for r < a:

B =
µ0Ir

2πa2
φ̂, (30)

and for r > a:

B =
µ0I

2πa
φ̂. (31)

Exercise 4: Problem 3 and 4. 45 min + 15 min solution.
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