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Properties of the fields: Divergence and curl

Gradient: ∇ =< ∂
∂x ,

∂
∂y ,

∂
∂z >. ”3-dimensional derivative of a scalar function”.

The gradient points in the direction of the greatest rate of increase of the function, and its
magnitude is the slope of the graph in that direction.

Divergence:

How much does the field flow out of a point?

divE = ∇ ·E = lim∆V→0

∮
S E·dS
∆V .

Curl:

How much does the field circulate around a point?

curlE = ∇×E = lim∆S→0

∮
C E·dl
∆S .

Useful theorems

Divergence theorem: ∮
S

E · dS =

∫
V
∇ ·EdV. (1)

”Proof”: Two ways to find the flux out of a sphere.

a) Flux out of one surface.

b) Flux out of many small surfaces.

∮
S

E · dS =
∑
i

∮
Si

E · dS =
∑
i

(
1

∆Vi

∮
Si

E · dSi)∆Vi →
∫
∇ ·EdV. (2)
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Stokes theorem: ∮
C

E · dl =

∫
V
∇×E · dS. (3)

”Proof”: Two ways to calculate the integral of E pointing along a closed loop.

a) Integrate along the edge of the surface.

b) ... or along the edges of many small surfaces (no gaps between them).

Since the integral along any ”inner edges” cancel out, these two calculations must be equal.∮
C

E · dl =
∑
i

∮
Ci

E · dl =
∑
i

(

∮
Si

E · dSi

∆Si
)∆Si →

∫
∇×E · dS. (4)

This ”proof” was for a flat surface, but the theorem is valid in general.

Exercise 1: Problem 2. 5 min + 5 min solution.

Exercise 2: Problem 1. 10 min + 5 min solution.

Application of the divergence theorem: proof of Gauss’ law)

Gauss’ law: a simpler way to find E from a charge distribution (with some degree of
symmetry) than from Coulomb’s law.

We first consider a single point charge, and draw a spherical surface S around it. The
divergence theorem gives: ∮

S
E · dS =

∫
V
∇ ·EdV (5)

This problem has spherical symmetry, so we use spherical coordinates. ∇ ·E in spherical
coordinates may be found at the formula sheet:

∇ ·E =
1

r2

∂(r2Er)

∂r
+

1

r sin θ

∂

∂θ
(sin θEθ) +

1

r sin θ

∂Eφ
∂φ

. (6)

The symmetry of the problem gives E(r) = E(r) = Er(r)r̂. That is Eθ = Eφ = 0.
Coulomb’s law gives

Er(r) =
Q

4πε0r2
r̂. (7)

From Eqs. (6) and (7) we get

∇ ·E =
1

r2

∂

∂r
(r2 Q

4πε0r2
), (8)

which gives ∇ ·E = 0 for all r except at r = 0.
We may thus split the last integral in (5) into two parts:∫

V
∇ ·EdV =

∫
r>a
∇ ·EdV +

∫
r≤a
∇ ·EdV =

∫
r≤a
∇ ·EdV, (9)

where a is some small radius (can in fact be made arbitrary small). We here used that∫
r>a∇ ·EdV = 0 since ∇ ·E = 0 everywhere except at r = 0. We therefore have

2



∮
S

E · dS =

∮
Sa

E · dS = E(a)

∮
Sa

dS = E(a) · 4πa2 =
Q

4πε0a2
4πa2 =

Q

ε0
. (10)

What did we find from this? we ended where we started, just with a smaller sphere.

Note: We never used the assumption that the outer surface was a sphere. The outer surface
could have been arbitrary in shape and size, as long as it contains Q and is closed, and we
would still get the same result!

The fact that ∮
S

E · dS =
Q

ε0
, (11)

for an arbitrary closed surface surrounding a charge Q is called Gauss’ law. In words: The
flux out of a closed surface is always proportional to the charge inside it. Generalized to more
charges:

∮
S

E·dS =

∫
V
∇·EdV =

∫
V1

∇·EdV+

∫
V2

∇·EdV+

∫
V3

∇·EdV+

∫
V4

∇·EdV =
Q1

ε0
+
Q2

ε0
+
Q3

ε0
+
Q4

ε0
.

(12)
The general form of Gauss’ law is thus∮

S
E · dS =

Qin S

ε0
, (13)

where S is any arbitrary closed surface, and Qin S is the total charge inside S.

Gauss’ law in differential form

Express Qin S in terms of the charge distribution ρ:∮
S E · dS =

∫
V ∇ ·EdV = Qin S/ε0 =

∫
V ρdV/ε0.

Consider a small volume element dV :

∇ ·EdV =
ρ

ε0
dV, (14)

which gives

∇ ·E =
ρ

ε0
. (15)

This is called Gauss’ law in differential form.

Exercise 2: Problem 2+3. 20 min + 10 min solution.

Wrong usage of Gauss’ law:
∮
S E · dS = +Q−Q

ε0
= 0. Does this mean E = 0? NO!!

This means the flux out of the surface S is zero, meaning as much field is flowing OUT of S
is also flowing INTO S (at different areas of S).
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Scalar potential

One of Maxwell’s equations says that ∇×E = −∂B
∂t = 0 in electrostatics. This means in

electrostatics we may define a scalar function V such that

E = −∇V. (16)

It is possible to define such a V since

∇× (−∇V ) = −∇× (∇V ) = 0, (17)

since the curl of any gradient is zero! (no circulation)
We now solve for V : ∫ r

rref

(∇V ) · dl = V (r)− V (rref), (18)

which follows from the second fundamental theorem of calculus (the integral of a derivative of
a function equals the difference of the functions values at the boundary values of the integral).
It is common to let rref →∞ and set V (rref) = 0. Inserting (16) into (18) gives

V (r) = −
∫ r

∞
E · dl =

∫ ∞
r

E · dl. (19)

Interpretation: V (r) =
∫∞
r E · dl = 1

q

∫∞
r F · dl = Work

q . That is, the potential V (r) is the
amount of work required to move a charge q from r to our reference point at ∞, divided by
the charge q. The electric potential is thus related to potential energy (i.e. the name).

Example: Potential from a point charge.

V (R) =

∫ ∞
R

E · dl =

∫ ∞
R

E(r)dr =

∫ ∞
R

Q

4πε0r2
dr =

Q

4πε0R
. (20)

Potential difference: What is the potential difference between A and B?

VAB =

∫ B

A
E · dl =

∫ ∞
A

E · dl +

∫ B

∞
E · dl =

∫ ∞
A

E · dl−
∫ ∞
B

E · dl = V (A)− V (B). (21)

For a point charge:

VAB =
Q

4πε0A
− Q

4πε0B
=

Q

4πε0
(

1

A
− 1

B
). (22)

The potential is independent of the integration path Introducing the potential V is
an advantage: it is often easier to calculate than E.∮

C1&C2

E · dl =

∫
C1

E · dl−
∫
C2

E · dl. (23)

Stokes theorem gives ∮
C1&C2

E · dl =

∫
S
∇×E · dS = 0, (24)
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which again gives ∫
C1

E · dl =

∫
C2

E · dl. (25)

This is true for arbitrary integration paths C1 and C2 from A to B. Potential differences are
therefore independent of the path we integrat E · dl along.

Exercise 2: Problem 4. 15 min + 5 min solution.

Poisson’s equation

Inserting E = −∇V into Maxwell’s equation ∇ ·E = ρ/ε0 gives

−∇ · (∇V ) =
ρ

ε0
, (26)

which gives

∇2V = − ρ
ε0
. (27)

This is called Poisson’s equation. Here

∇2 =<
∂2

∂x2
,
∂2

∂y2
,
∂2

∂z2
> (28)

in cartesian coordinates.

Capacitance

Consider two conductors where a voltage source has moved a charge Q from the lower to the
upper conductor. There is thus a voltage difference V0 between them. We define a quantity
known as capacitance:

C =
Q

V0
. (29)

Since V is proportional to Q we will end up with an expression for C which is independent of
Q and V0. The capacitance only depends on geometrical quantities and ε (material parameter).

Example 1: Parallel plate capacitor. We want to find the
capacitance between two parallel plate conductors with air
between them. Our strategy is to first find Q and V0 in terms of
E

a) Find Q: Gauss’ law on a cylinder surface placed through one of the plates gives∮
S

E · dS =
ρsA

ε0
, (30)

where Q = ρsA. Symmetry gives that E = En̂ where n̂ is the normal vector of the plate.
Since there only is flux through the top and bottom of the syllinder, and the flux
through both of them must be equal (again due to symmetry) we get∮

E · dS = 2AE =
ρsA

ε0
. (31)
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This gives E = ρs
2ε0

n̂. Between the plates the total field is given as the sum of the field

from each of the plates, i.e. E = − Q
Aε0

x̂. This gives

Q = −EAε0. (32)

b) Find V0. Poisson’s equation ∇2V = ∂2

∂x2
= 0 (between the plates there are no charges,

i.e. ρ = 0). This means V (x) = C1x+ C2. From the boundary conditions V (0) = 0 and
V (d) = V0 we get

V (x) =
V0

d
x, (33)

which gives E = −∇V = −V0/d. We have thus found

V0 = −Ed. (34)

Inserting 1 and 2 into (29) gives

C =
ε0A

d
. (35)

Potential from point/line/surface/space charge

We let rref →∞. We list the potentials from

a) A point charge:

V =

∫ ∞
R

Q

4πε0r2
dr =

Q

4πε0R
, (36)

b) A line charge (line charge density Q′):

V =

∫
C

Q′

4πε0R
dl, (37)

c) A surface charge (surface charge density ρs):

V =

∫
S

ρs
4πε0R

dS, (38)

d) A space charge (charge density ρ):

V =

∫
V

ρ

4πε0R
dV. (39)

The last three is found by superposition from the point charge expression.
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Exercise 2: Problem 5
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