Lecture 6: electro-magnetic wave

* Electric potential in electro-dynamic
* Electro-magnetic wave
* Energy stored in electro-magnetic field and Poynting’s theorem.



Electric potential in electric-dynamic field

In stationary electric field, conservative E field: VUxE=0 V= f E-dl=0

A scaler, magnetic potential, basedon V-B =10
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Maxwell’s equations in vacuum

In vacuum
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Vectorlidentity:

In vacuum
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Typical wave equation in one dimension

The wave equation for a plane wave traveling in the x direction is
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where v is the phase velocity of the wave and u represents the variable which is changing as
the wave passes. This is the form of the wave equation which applies to a stretched string.
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http://hyperphysics.phy-astr.gsu.edu/hbase/Waves/wavsol.html
http://hyperphysics.phy-astr.gsu.edu/hbase/Waves/wavsol.html
http://hyperphysics.phy-astr.gsu.edu/hbase/Waves/waveq.html

Electro-magnetic wave in 3D
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Electro-magnetic radiation

Electromagnetic radiation consists of electromagnetic waves, which
are synchronized oscillations of electric and magnetic fields that
propagate at the speed of light through a vacuum. The oscillations of
the two fields are perpendicular to each other and perpendicular to the
direction of energy and wave propagation, forming a transverse wave.



https://en.wikipedia.org/wiki/Oscillation
https://en.wikipedia.org/wiki/Electric_field
https://en.wikipedia.org/wiki/Magnetic_field
https://en.wikipedia.org/wiki/Speed_of_light
https://en.wikipedia.org/wiki/Vacuum
https://en.wikipedia.org/wiki/Transverse_wave

Poynting’s theorem: Power flow in electromagnetic fields

The energy transfer due to time-varying electric and magnetic fields is perpendicular to the fields
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Example:

One conductor with DC current I, if R is the resistane per unit length.

Calculating the loss over the conductor in unit length.
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Poynting vector directed radially inward

P has no component normal to the end surfaces

Surface integral over the conductor



Example:
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where r is a unit vector in the r-direction.



Example

Assume stationary conditions. Show that the scalar potential V' in a linear, isotropic
and homogeneous material satisfies Poisson’s equation
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Summary

Maxwell’s Equations:

. Differential
Integral equations .
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Electric field produced by charges

Q
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Electric field: E = 7 in vacuum

Electric displacement field D and D= ¢,E.

Coulomb's law: F = 4nq£Qr2 r Field pattern of
’ a pointed electrode




Operators
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Divergence theorem and Stokes’ theorem
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Electric field and potential (voltage)

e Potential is a scalar.
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Poisson equation

Inserting E = —VV into Maxwell’s equation V - E = p/¢y gives
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Gauss’s law

Electric flux flowing out of a closed surface = Enclosed total
charges divided by the permittivity
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Current and electric field

Free charges move along electric field direction

Conductor length
Free electrons

m | -

k) Y _

o 2 —© - E

= w >

© =

e 2

z &

Empty position Foreign atoms J =0E Ohm’s law
Metal ions oscillating Cross Section g g
i illati _

around the center of F qE

their positions



Electric polarization and material permittivity

The influence of electric polarization: D = ¢;E + P
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* ¢ = g,.& electric permittivity (dielectric material property)



Conservative vector field: stationary electric field

Stationary Electric field is a conservative vector.

* Conservative vector fields have the property that the line
integral is path independent.

* A conservative vector field is also irrotational. In three

dimensions, it has vanishing curl. VXE=0. NN N T Y
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Boundary conditions in electrostatics

Electric field involves more than one materials
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Fig. 1.14a Boundary between two different media.
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Charges in motion

Charges in motion (electrical current) produce a magnetic field .
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Electro-magnetic force

Force exerted by magnetic field B on a moving point charge Q is:
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Lorentz law F = gE + g(v x B)
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Magnetic force acting on a moving charge is always
perpendicular to it’s moving direction, so magnetic force
does not work on the charges, but changing the charges’
moving direction



Magnetostatic: Ampere’s law and Kirchhoff's law
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At magnetostatic: No change of electric field involved, — = 0 B

Ampere’s law

The integral of magnetic field around a closed curve is equal to the ” \ }‘Kl | | HE
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Magnetization and material permeability

Magnetic field in material:

B = upH in vacuum

Once there is magnetic field applied to medium, the electronic spin motions

in the atoms can be thought of as circulating current that produce a field M,
magnetization, which adds to magnetic field H.

B = uo(H+ M)
Magnetic susceptibility y,, is used to quantify the additional field M.

Inserting an iron core may
give a magnetic field several
hundred times that of the

equivalent air core solenoid.

Above 580°

B = uo(1+ x;u)H = puH = pou, H

Below 580° Below 580~
no external magnetic external magnetic
field present field present

Copyright 1999 John Wilay and Sors. Inc. All nights reserved



Boundary condition for static magnetic field
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Faraday’s law

£ = —% Faraday’s law, ¢= fs B - dS isthe magnetic flux.

Coil 1

ﬁ
——
11 changing E, induced

—

Galvanometer



Lenz’s law




Energy stored in inductance
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Electro-magnetic wave in 3D
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Poynting’s theorem

The energy transfer due to time-varying electric and magnetic fields is perpendicular to the fields
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Maxwell’s equations
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Lorentz law

F = qE + q(v x B)




