Lecture 6: Electromagnetic field and wave

- Electric potential in electro-dynamic
- Electromagnetic wave
- Energy stored in electromagnetic field
- Poynting's theorem

Shunguo Wang

Electric potential in electric-dynamic field

In stationary electric field, conservative **E** field has:

$$V = \oint \mathbf{E} \cdot d\mathbf{l} = 0$$

In dynamic field, vector/magnetic potential, A, can be introduced due to $\nabla \cdot \mathbf{B} = 0$

$$\mathbf{B} = \nabla \times \mathbf{A}$$

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} = -\frac{\partial}{\partial t} (\nabla \times \mathbf{A}) = \nabla \times (-\frac{\partial \mathbf{A}}{\partial t}) \qquad \nabla \times \left(\mathbf{E} + \frac{\partial \mathbf{A}}{\partial t} \right) = 0$$

$$\nabla \times \left(\mathbf{E} + \frac{\partial \mathbf{A}}{\partial t} \right) = 0 \quad \text{Electric/scalar potential } V \\ \text{can then be introduced} \qquad \mathbf{E} + \frac{\partial \mathbf{A}}{\partial t} = -\nabla V$$

Stationary electric field:

$$\nabla \times \mathbf{E} = 0$$

$$\mathbf{E} = -\nabla V$$

Electro-dynamic field:

$$\nabla \times \left(\mathbf{E} + \frac{\partial \mathbf{A}}{\partial t} \right) = 0$$

$$\mathbf{E} + \frac{\partial \mathbf{A}}{\partial t} = -\nabla V$$

Maxwell's equations in vacuum

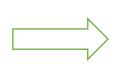
In vacuum, source free

$$egin{aligned}
abla \cdot \mathbf{E} &= 0 \
abla imes \mathbf{E} &= -rac{\partial \mathbf{B}}{\partial t} \
abla \cdot \mathbf{B} &= 0 \end{aligned}$$

$$abla extbf{X} extbf{X} extbf{B} = \mu_0 arepsilon_0 rac{\partial extbf{E}}{\partial t}$$

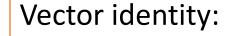
$$rac{1}{c_0^2}rac{\partial^2 {f E}}{\partial t^2} -
abla^2 {f E} = {f 0}$$

$$rac{1}{c_0^2}rac{\partial^2 {f B}}{\partial t^2} -
abla^2 {f B} = {f 0}$$



$$abla imes (
abla imes \mathbf{E}) = -rac{\partial}{\partial t}
abla imes \mathbf{B} = -\mu_0 arepsilon_0 rac{\partial^2 \mathbf{E}}{\partial t^2}$$

$$abla imes (
abla imes \mathbf{B}) = \mu_0 arepsilon_0 rac{\partial}{\partial t}
abla imes \mathbf{E} = -\mu_0 arepsilon_0 rac{\partial^2 \mathbf{B}}{\partial t^2}$$



In vacuum:
$$\nabla \cdot \mathbf{E} = 0$$

$$\nabla \cdot \mathbf{B} = 0$$

$$c_0 = \frac{1}{\sqrt{\mu_0 \varepsilon_0}} = 299,792,500 \text{ m/s}$$

Electromagnetic waves in time domain

$$egin{aligned} rac{1}{c_0^2} rac{\partial^2 \mathbf{E}}{\partial t^2} -
abla^2 \mathbf{E} &= \mathbf{0} \ rac{1}{c_0^2} rac{\partial^2 \mathbf{B}}{\partial t^2} -
abla^2 \mathbf{B} &= \mathbf{0} \end{aligned}$$

$$\frac{\partial^2 \mathbf{E}}{\partial x^2} + \frac{\partial^2 \mathbf{E}}{\partial y^2} + \frac{\partial^2 \mathbf{E}}{\partial z^2} - \frac{1}{c_0^2} \frac{\partial^2 \mathbf{E}}{\partial t^2} = 0$$

$$c_0 = rac{1}{\sqrt{\mu_0 arepsilon_0}}$$

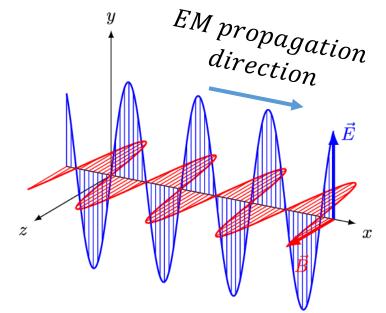
$$f = \frac{1}{T}$$

Electromagnetic waves in frequency/Fourier domain

$$f = \frac{v}{\lambda}$$

$$f = \frac{\omega}{2\pi}$$





$$\mathbf{\nabla}^2\mathbf{E} + k^2\mathbf{E} = 0$$

$$\mathbf{\nabla}^2\mathbf{H} + k^2\mathbf{H} = 0$$

$$k = \sqrt{\mu \varepsilon \omega^2}$$

Helmholtz equations

Wave number

Fourier transform

$$F(\omega) = \int_{-\infty}^{\infty} f(t) e^{-i\omega t} dt$$

Time-harmonic electromagnetics

$$\nabla \cdot \mathbf{E} = \rho/\epsilon$$

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

$$\nabla \cdot \mathbf{B} = 0$$

$$\nabla \times \mathbf{B} = \mu \mathbf{J} + \frac{\mu \epsilon \partial \mathbf{E}}{\partial t}$$

Electromagnetic fields

$$\mathbf{B} = \nabla \times \mathbf{A}$$

$$\mathbf{E} + \frac{\partial \mathbf{A}}{\partial t} = -\nabla V$$

Given an arbitrary function *f*, we define

$$\mathbf{A}' = \mathbf{A} + \nabla f,$$

$$V' = V - \frac{\partial f}{\partial t}.$$

Lorentz gauge

$$\nabla \cdot \mathbf{A} + \varepsilon \mu \frac{\partial V}{\partial t} = 0$$

Antenna equations

With A and V satisfying LG:

$$\nabla^2 V - \epsilon \mu \frac{\partial^2 V}{\partial t^2} = -\frac{\rho}{\epsilon}$$

$$\nabla^2 \mathbf{A} - \epsilon \mu \frac{\partial^2 \mathbf{A}}{\partial t^2} = -\mu \mathbf{J}$$

Coulomb gauge

$$\nabla \cdot \mathbf{A} = 0$$

Impedance

Impedance, Z, is a physical parameter relating the magnitudes of the electric and magnetic fields.

$$Z = \frac{E}{H}$$

E: Amplitude of electric field

H: Amplitude of magnetic field

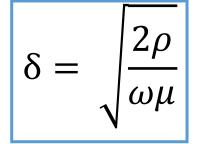
In vacuum,

$$Z_0 = rac{|\mathbf{E}|}{|\mathbf{H}|} = \mu_0 c = \sqrt{rac{\mu_0}{arepsilon_0}}$$

Skin effect

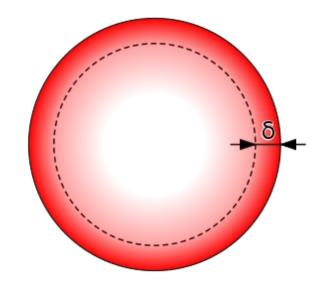
For alternating current (AC), current density/electric field in a conductor decreases exponentially from the surface towards the inside.

Skin depth, δ , is defined as the depth where the current density/electric field is reduced to 1/e.

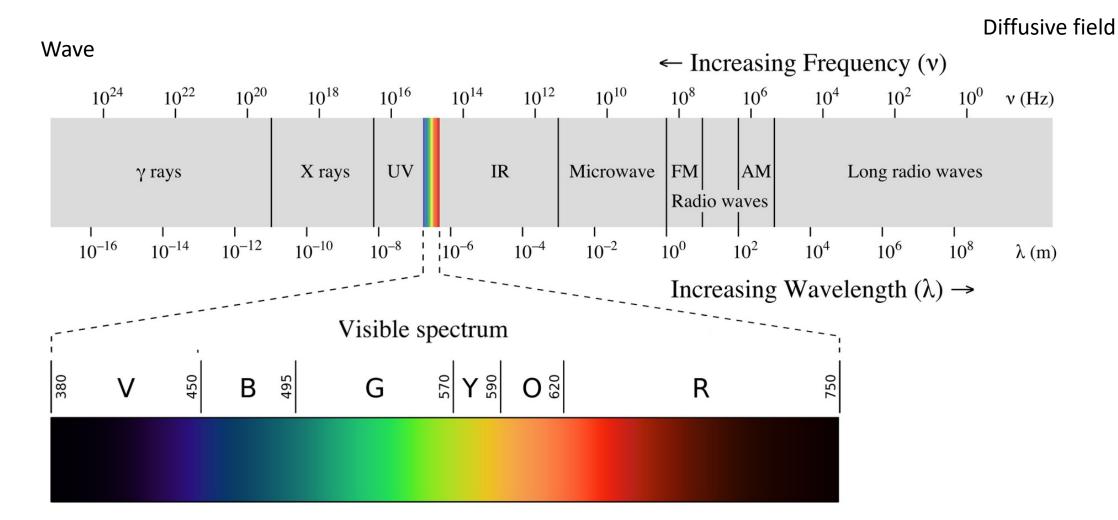


 ρ : Resistivity

 ω : Angular frequency



Electromagnetic spectrum



Poynting's theorem: Power flow in electromagnetic fields

Poynting's theorem states that the rate of energy transfer per unit volume from a region of space equals the rate of work done on the charge distribution in the region, plus the energy flux leaving that region.

$$-\frac{\partial}{\partial t}(\frac{1}{2}\epsilon \mathbf{E}^{2} + \frac{1}{2}\mu\mathbf{H}^{2}) = \mathbf{J} \cdot \mathbf{E} + \nabla \cdot (\mathbf{E} \times \mathbf{H})$$

$$-\nabla \cdot (\mathbf{E} \times \mathbf{H}) = \mathbf{E} \cdot \nabla \times \mathbf{H} - \mathbf{H} \cdot \nabla \times \mathbf{E} = \mathbf{J} \cdot \mathbf{E} + \mathbf{E} \cdot \frac{\partial \mathbf{D}}{\partial t} + \mathbf{H} \cdot \frac{\partial \mathbf{B}}{\partial t}$$

$$\int_{\mathcal{V}} \left(\mathbf{H} \cdot \frac{\partial \mathbf{B}}{\partial t} + \mathbf{E} \cdot \frac{\partial \mathbf{D}}{\partial t} + \mathbf{E} \cdot \mathbf{J}\right) dv = -\oint_{\mathbf{S}} (\mathbf{E} \times \mathbf{H}) \cdot d\mathbf{S}$$

$$\frac{1}{2} \frac{\partial (\mathbf{B} \cdot \mathbf{H})}{\partial t} = \frac{1}{2} \frac{\partial (\mu \mathbf{H}^{2})}{\partial t} = \mathbf{H} \cdot \frac{\partial \mathbf{B}}{\partial t}$$

$$\frac{1}{2} \frac{\partial (\mathbf{D} \cdot \mathbf{E})}{\partial t} = \frac{1}{2} \frac{\partial (\epsilon \mathbf{E}^{2})}{\partial t} = \mathbf{E} \cdot \frac{\partial \mathbf{D}}{\partial t}$$
Ohmic power density

Magnetic energy density

Poynting vector

The integral of **P** over a closed surface equals the power leaving the enclosed volume.

$$\mathbf{P} = \mathbf{E} \times \mathbf{H} (W/m^2)$$

Poynting's vector: Power density

$$\mathbf{W} = -\oint_{S} (\mathbf{E} \times \mathbf{H}) \cdot d\mathbf{s} = \int_{v} \mathbf{P} dv$$

The energy flow direction is perpendicular to both **E** and **H** fields.

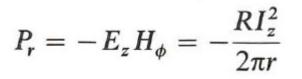
Example

One conductor with DC current I_z , if R is the resistane per unit length.

Calculating the loss over the conductor in unit length.

$$E_z = I_z R$$

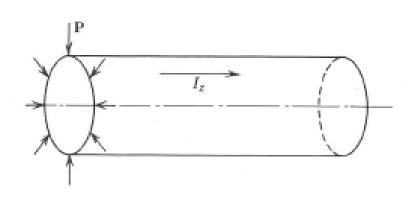
$$H_{\phi} = \frac{I_z}{2\pi r}$$



P has no component normal to the end surfaces

$$W = 2\pi r(-P_r) = I_z^2 R$$

Surface integral over the conductor



Poynting vector directed radially inward

Summary

Divergence and Stokes' theorem

Gradient: fastest rate of increase in spatial

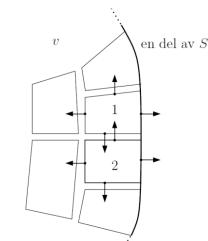
$$\nabla f = \frac{\partial f}{\partial x} \widehat{x} + \frac{\partial f}{\partial y} \widehat{y} + \frac{\partial f}{\partial z} \widehat{z}$$

Divergence: Flux out of a point

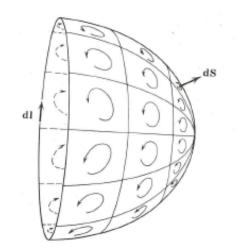
$$\nabla \cdot \mathbf{E} = \frac{\partial E_x}{\partial x} + \frac{\partial E_y}{\partial y} + \frac{\partial E_z}{\partial z}$$

How much does a field circulate around a point
$$\nabla \times \mathbf{A} = (\frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z})\hat{\mathbf{x}} + (\frac{\partial A_x}{\partial z} - \frac{\partial A_z}{\partial x})\hat{\mathbf{y}} + (\frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y})\hat{\mathbf{z}}$$

$$\oint_{S} \mathbf{A} \cdot d\mathbf{S} = \int_{v} \nabla \cdot \mathbf{A} dv$$



$$\oint_C \mathbf{A} \cdot d\mathbf{l} = \int_S \nabla \times \mathbf{A} \cdot d\mathbf{S}.$$



Electric field and electric displacement field

Electric field:
$$\overrightarrow{E} = rac{Q}{4\piarepsilon_0 r^2} \widehat{r}$$

$$\overrightarrow{E} = \overrightarrow{F}/q$$

Electric displacement field:
$$D = \varepsilon_0 E$$

$$\overrightarrow{\boldsymbol{D}} = \frac{Q}{4\pi r^2} \widehat{\boldsymbol{r}}$$

Electric field and potential

The potential difference between two points A and B:

$$V_{AB} = -\int_{r_A}^{r_B} \mathbf{E} \cdot d\mathbf{l} = -\int_{r_A}^{r_B} \frac{Q}{4\pi\varepsilon_0 r_i^2} dr_i = \frac{Q}{4\pi\varepsilon_0} \left(\frac{1}{r_B} - \frac{1}{r_A}\right)$$

$$V = -\oint_{c} \mathbf{E} \cdot d\mathbf{l} = 0 \quad \text{Conservative vector field}$$

$$\mathbf{E} = -\nabla V, \ V/m$$

$$V = \frac{1}{4\pi\varepsilon_0} \frac{Q}{r}$$

Poisson's equation

Inserting $\mathbf{E} = -\nabla V$ into Maxwell's equation $\nabla \cdot \mathbf{E} = \rho/\epsilon_0$ gives

$$-\nabla \cdot (\nabla V) = \frac{\rho}{\epsilon_0},$$

which gives

$$\nabla^2 V = -\frac{\rho}{\epsilon_0}$$
.

Gauss's law

Electric flux flowing out of a closed surface = Enclosed total charges

divided by the permittivity \implies $\oint \mathbf{E} ds = Q/\varepsilon$

$$\nabla \cdot \mathbf{E} = \frac{\rho}{\varepsilon}; \qquad \nabla \cdot \mathbf{D} = \rho$$

Electric polarization and material permittivity

The influence of electric polarization: $\mathbf{D} = \varepsilon_0 \mathbf{E} + \mathbf{P}$

$$\mathbf{P} = \varepsilon_0 \chi_e \mathbf{E}$$

$$\mathbf{D} = \varepsilon_0 \mathbf{E} + \varepsilon_0 \chi_e \mathbf{E} = (1 + \chi_e) \varepsilon_0 \mathbf{E} = \varepsilon_r \varepsilon_0 \mathbf{E} = \varepsilon \mathbf{E}$$

- χ_e is *electric susceptibility*
- $1 + \chi_e = \varepsilon_r$, relative permittivity
- $\varepsilon = \varepsilon_r \varepsilon_0$, electric permittivity

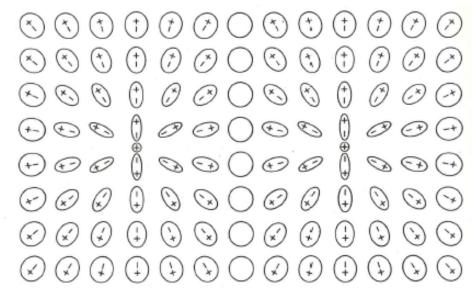


Fig. 1.3c Polarization of the atoms of a dielectric by a pair of equal positive charges.

Capacitor and electric energy

Capacitance is the ability of capacitor to store electrical charge.

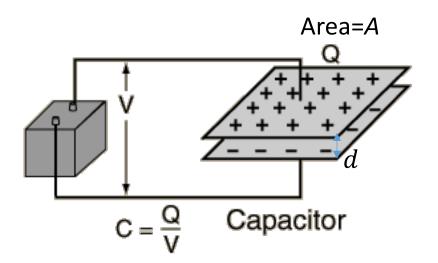
$$C = \frac{Q}{V} = \frac{\varepsilon A}{d}$$

Electric energy in capacitor

$$W_e = \frac{1}{2}CV^2$$

Electric energy density for electric field

$$\eta_e = \frac{1}{2}ED = \frac{1}{2}\varepsilon E^2$$



Conductivity and current

The capability of allowing current to flow is defined by conductivity: $\sigma = 1/\rho$.

When electrons move, they collide atoms and lost energy.

Resistance: $R = \rho \frac{\iota}{s}$

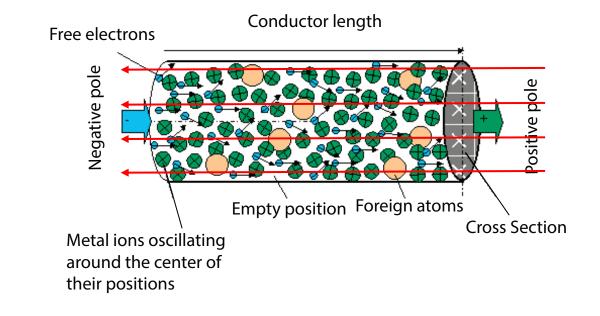
An electric current is a flow of electric charge

$$I = \frac{\mathrm{d}Q}{\mathrm{d}t}$$

Current density **J** is the current per unit area

$$I = \int_{S} \mathbf{J} \cdot \mathbf{dS}.$$

Ohm's law
$$I = \frac{V}{R}$$
 $J = \frac{E}{R}$



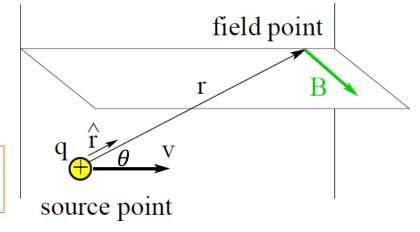
$$\oint_{S} \mathbf{J} \cdot d\mathbf{S} = 0.$$

Magnetic field

Charges in motion generate magnetic field

Magnetic field H in vacuum generated by moving charge q:

$$\boldsymbol{H} = \frac{1}{4\pi} \frac{q\boldsymbol{v} \times \hat{\boldsymbol{r}}}{r^2}$$



Magnetic flux density B in vacuum generated by moving charge q:

$$\mathbf{B} = \mu_0 \mathbf{H}$$

$$\mathbf{v} \times \hat{\mathbf{r}} = |\mathbf{v}| \sin(\theta) \mathbf{n}$$

n is given by **the right-hand rule**

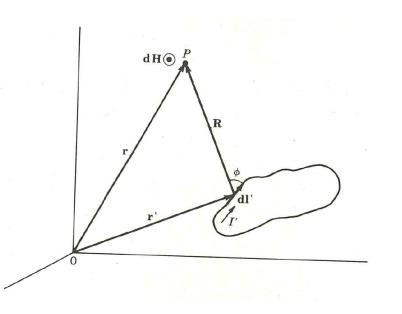
In free space is $\mu_0 = 4\pi \times 10^{-7} H/m$.

A steady current I generates magnetic field, Biot-Savart law

$$\boldsymbol{H(r)} = \int_{\boldsymbol{c}} \frac{I'(r)d\boldsymbol{l}' \times \widehat{\boldsymbol{R}}}{4\pi R^2}$$

$$I'd\mathbf{l}' \times \widehat{\mathbf{R}} = |I'|dl' \sin(\mathbf{\phi}) \,\mathbf{n}$$

n is given by the right-hand rule



Lorentz law

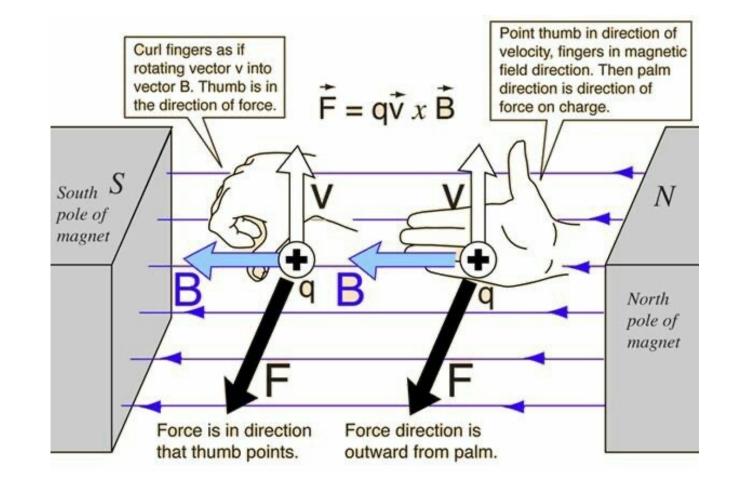
Force exerted by magnetic field **B** on a moving point charge Q is:

$$F = Q v \times B$$

The direction is given by the right-hand rule

Lorentz law

$$\mathbf{F} = q\mathbf{E} + q(\mathbf{v} \times \mathbf{B})$$



Magnetic flux and Gauss's law

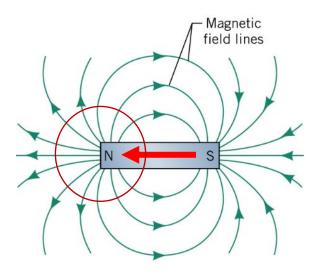
Magnetic flux ϕ is the integral of the flux density across surface

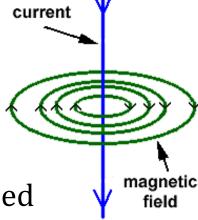
$$\phi = \int_{S} \mathbf{B} \cdot d\mathbf{S}$$

For an enclosed surface, the flux is zero

$$\oint_S \mathbf{B} \cdot d\mathbf{S} = 0.$$
 Gauss's law $\nabla \cdot \mathbf{B} = 0$

$$\nabla \cdot \mathbf{B} = 0$$





Ampere's law

Ampere's law states that the line integral of the magnetic field around closed loop C is equal to the electric current enclosed in the loop.

$$\oint \mathbf{H} \cdot d\mathbf{l} = \int_{S} \mathbf{J} \cdot d\mathbf{s} = I$$

$$\nabla \times \mathbf{B} = \mu_0 \mathbf{J},$$

Currents generate magnetic field

Magnetic field in material

Once there is magnetic field applied to medium, magnetization, M, occurs.

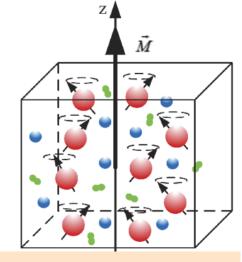
$$\mathbf{B} = \mu_0(\mathbf{H} + \mathbf{M})$$
$$\mathbf{M} = \chi_m \mathbf{H}$$

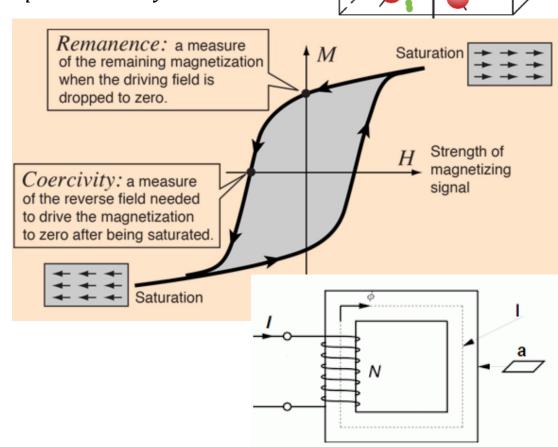
$$\mathbf{B} = \mu_0 (1 + \chi_m) \mathbf{H} = \mu_0 \mu_r \mathbf{H} = \mu \mathbf{H}$$

Magnetomotive force (MMF): $F = NI = HL = \Phi R$

 Φ , magnetic flux $R = \frac{l}{\mu S}$, magnetic reluctance

 χ_m is magnetic susceptibility, used to quantify the additional field \mathbf{M} . μ_r relative permeability.

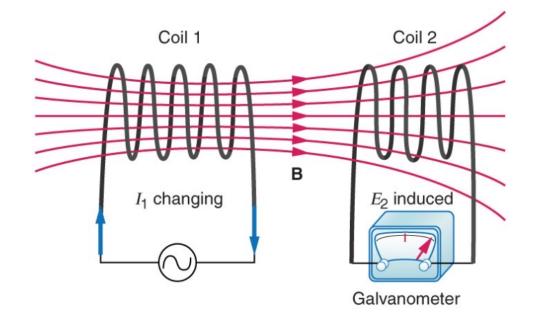




Faraday's law

$$arepsilon = -rac{d \varphi}{dt}$$
 Faraday's law, $\ \varphi = \int_S \ B \cdot dS$ is the magnetic flux.

$$\nabla \times \mathbf{E} = -\frac{\partial B}{\partial t}$$



Time varying magnetic field generates electric field.

Displacement current

Displacement current is defined as the rate of change of electric displacement field.

$$\mathbf{J}_D = \frac{\partial \mathbf{D}}{\partial t}$$

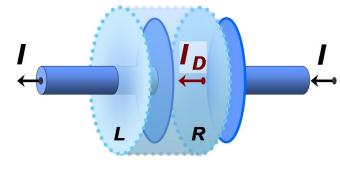
Ampere's law

$$\nabla \times \mathbf{H} = \mathbf{J} + \frac{\partial \mathbf{D}}{\partial t}$$

 $\mathbf{J} = \sigma \mathbf{E}$ is conduction current in materials

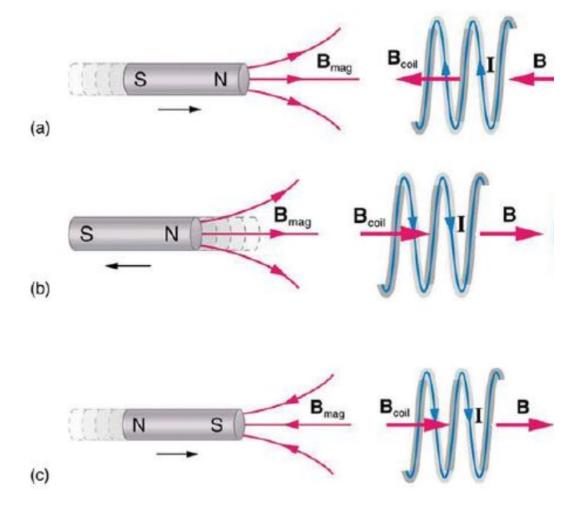
 $\frac{\partial \mathbf{D}}{\partial t}$ is displacement current

Time varying electric field generates magnetic field.



Capacitor

Lenz's law

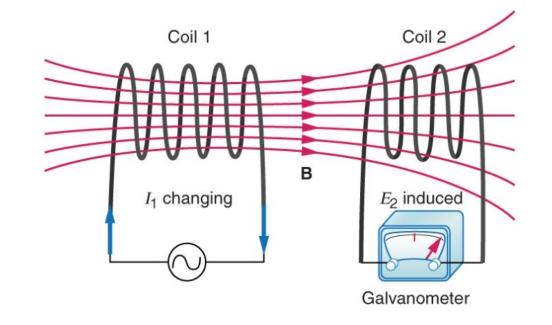


The magnetic field created by the induced current opposes changes in the initial magnetic field.

Inductor and magnetic energy

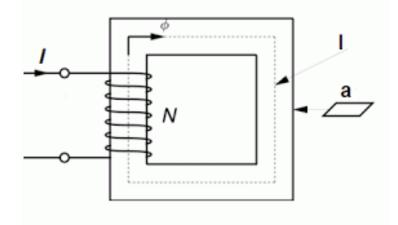
$$L = \frac{\int_{S} \mathbf{B} \cdot d\mathbf{S}}{I}$$

$$W = \int_0^I LI \frac{dI}{dt} dt = \int_0^I LI dI = \frac{1}{2} LI^2$$



Magnetic energy density

$$\eta_m = \frac{W}{V_{vol}} = \frac{B^2}{2\mu}$$



$$L = \frac{N^2 a \mu}{l} = \frac{N^2}{R_m}$$

Electro-magnetic waves in time domain

$$\frac{1}{c_0^2} \frac{\partial^2 \mathbf{E}}{\partial t^2} - \nabla^2 \mathbf{E} = \mathbf{0}$$

$$\frac{1}{c_0^2} \frac{\partial^2 \mathbf{E}}{\partial t^2} - \nabla^2 \mathbf{B} = \mathbf{0}$$

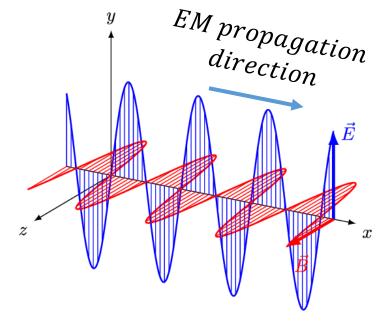
$$\frac{1}{c_0^2} \frac{\partial^2 \mathbf{B}}{\partial t^2} - \nabla^2 \mathbf{B} = \mathbf{0}$$

$$c_0 = \frac{1}{\sqrt{\mu_0 \varepsilon_0}}$$

Electro-magnetic waves in frequency/Fourier domain

$$oldsymbol{
abla}^2 \mathbf{E} + k^2 \mathbf{E} = 0$$
 $oldsymbol{
abla}^2 \mathbf{H} + k^2 \mathbf{H} = 0$
Helmholtz equations
 $k = \sqrt{\mu \epsilon \omega^2}$ Wave number

$$\frac{\partial^2 E_y}{\partial x^2} - \frac{1}{c_0^2} \frac{\partial^2 E_y}{\partial t^2} = 0$$



Boundary condition

$$D_{n1} - D_{n2} = \rho_s$$
 $E_{t1} = E_{t2}$

$$H_{t1} - H_{t2} = J_{s}$$
 $B_{n1} = B_{n2}$

Electromagnetic waves in media

Electromagnetic fields

$$\mathbf{B} = \nabla \times \mathbf{A}$$

$$\mathbf{E} + \frac{\partial \mathbf{A}}{\partial t} = -\nabla V$$

Antenna equations

Lorentz gauge

$$\nabla \cdot \mathbf{A} + \varepsilon \mu \frac{\partial V}{\partial t} = 0$$

With A and V satisfying LG:

$$\nabla^2 V - \epsilon \mu \frac{\partial^2 V}{\partial t^2} = -\frac{\rho}{\epsilon}$$

$$\nabla^2 \mathbf{A} - \epsilon \mu \frac{\partial^2 \mathbf{A}}{\partial t^2} = -\mu \mathbf{J}$$

Impedance

 $Z = \frac{E}{H}$

E: Amplitude of electric field

H: Amplitude of magnetic field

Skin depth

$$\delta = \sqrt{\frac{2\rho}{\omega\mu}}$$

 ρ : Resistivity

 ω : Angular frequency

Poynting's theorem and Poynting vector

Poynting's theorem states that the rate of energy transfer per unit volume from a region of space equals the rate of work done on the charge distribution in the region, plus the energy flux leaving that region.

$$-\frac{\partial}{\partial t}(\frac{1}{2}\varepsilon\mathbf{E}^2 + \frac{1}{2}\mu\mathbf{H}^2) = \mathbf{J}\cdot\mathbf{E} + \nabla\cdot(\mathbf{E}\times\mathbf{H})$$

$$P = E \times H$$

Poynting's vector: Power density

Maxwell's equations

$$\nabla \cdot \mathbf{D} = \rho$$

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

$$\nabla \cdot \mathbf{H} = 0$$

$$\nabla \times \mathbf{H} = \mathbf{J} + \frac{\partial \mathbf{D}}{\partial t}$$

 $\mathbf{B} = \mu \mathbf{H}$

Gauss's law for electric field

Faraday's law

Gauss's law for magnetic field

Ampere's law

Constitutive relations

Lorentz law

$$\mathbf{F} = q\mathbf{E} + q(\mathbf{v} imes \mathbf{B})$$

Coulomb's law

Poynting vector

$$P = E \times H$$

Right-hand rule

$$\mathbf{D} = \varepsilon \mathbf{E}$$
 $\mathbf{J} = \sigma \mathbf{E}$ Ohm's law