Lecture 6: electro-magnetic wave

* Electric potential in electro-dynamic

 Electro-magnetic wave
* Energy stored in electro-magentic field and poynting’s theorem.



Elelctric potential in electric-dynamic field

In stationaly electric field, conservative E field: VxE=0 V= ngdl =0

A scaler, magnetic potential, basedon V.B =0
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Maxwell’s equations in vacuum
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Typical wave equation in one dimension.

The wave equation for a plane wave traveling in the x direction is

where v is the phase velocity of the wave and u represents the variable which is changing as the wave
passes. This is the form of the wave equation which applies to a stretched string.

Re-write the equations of E and B
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http://hyperphysics.phy-astr.gsu.edu/hbase/Waves/wavsol.html#c5
http://hyperphysics.phy-astr.gsu.edu/hbase/Waves/wavsol.html#c3
http://hyperphysics.phy-astr.gsu.edu/hbase/Waves/waveq.html#c2

Electro-magnetic radiation.

Electromagnetic radiaton consists of electromagnetic waves, which
are synchronized oscillations of electric and magnetic fields that
propagate at the speed of light through a vacuum. The oscillations of
the two fields are perpendicular to each other and perpendicular to the
direction of energy and wave propagation, forming a transverse wave
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https://en.wikipedia.org/wiki/Oscillation
https://en.wikipedia.org/wiki/Electric_field
https://en.wikipedia.org/wiki/Magnetic_field
https://en.wikipedia.org/wiki/Speed_of_light
https://en.wikipedia.org/wiki/Vacuum
https://en.wikipedia.org/wiki/Transverse_wave

Poynting’s theorem: Power flow in electromagentic fields

Poynting's theorem states that the rate of energy transfer per unit volume from a region of space equals the rate
of work done on the charge distribution in the region, plus the enerqy flux leaving that region. The energy transfer

due to time-varying electric and magnetic fields is perpendicular to the fields
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https://en.wikipedia.org/wiki/Work_(physics)
https://en.wikipedia.org/wiki/Energy_flux

Example:

One conductor with DC current I, if R is the resistane per unit length.

Calculating the loss over the conductor in unit length.
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Poynting vector directed radially inward

P has no component normal to the end surfaces

Surface integral over the conductor



Maxwell Equations:
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(Gauss' Law)

(Gauss'Law for Magnetism)

(Faraday's Law)

(Ampere's Law)



Divergence and Stoke’s theorem
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Electric field and coulomb force

A stationary distribution of charges produces an electric field E in vacuum
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Electric field and potential ( voltage)

* Potential is a scalar. vf= Y2 5. 5
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Gauss’ law
Electric flux flowing out of a closed surface = Total charge enclosed divided by

the permittivity of the medium

Eds =— Vector: E = —2— in vacuum, D = ¢
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Electric polarization and material permittivity

The influence of electric polarization: D =&E+P oo 0nno00000006
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* &£ = g,.&y electric permittivity .( dielectric material property)

The polarization reduces the electric field E in the dielectric material compared to vacuum.
The resultant E becomes less.
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Capacitor and Energy in electric field
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Conductivity and current
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Stationary electric field

Conservative field:
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Charges in motion produce magnetic field

Charges in motion (electrical current) produce a magnetic field .
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Magnetic flux and flux contiunity

Magnetic flux ¢ is the integral of the flux density accross surface

b = fs B.dS, p—
For en enclosed surface, the flux is zero )
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Theres is no magnetic monopole, continuous magnetic field.
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Electro-magnetic force

Force exerted by magnetic field B on a moving point charge Qiis:

F=QvXB

Magnetic force acting on a moving charge is always
pependicular to it’s moving directon, so magnetic force
does no work on the charges, but changing the charge’s
moving direction

Lorentz law

F = qE + q(v x B)




Magnetization and material permeability

The influence of magnetization: B = u,(H+ M)
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Magnetization increases in the magnetic flux density B in ferro-magnetic materials
compared to vacuum.

The resultant B becomes higher.



Faraday’s law
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Ampere’s law and Displacement Current:

Displacement current is defined as the rate of change of electric displacement field. L
S
oD S;  os
]D = E | S
N
o
N

0D
Ampereslaw: VX H =] + o
J = oF is conduction current in materials
I Ip I
Z—LZ is displcement current < z>“° %“‘
L R

Capacitor

Time varying electric field produce magnetic field



Inductor and magnetic energy
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Poynting’s theorem and Poynting vector

Poynting's theorem states that the rate of energy transfer per unit volume from a region of space equals
the rate of work done on the charge distribution in the region, plus the energy flux leaving that region.
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Electromagnetism

Maxwell equations Material related Energy density and force
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