Lecture 5: Electro-dynamics

e Faraday’s law
* Conductive current and displacement current
* Inductance and Lenz’ law

* Energy store in inductance



Changing magnetic field: Faraday’s law

£ = —% Faraday’s law, c1)=fs B -dS isthe magnetic flux.

In static-electric field, VXE = 0; and gﬁc E - dl = 0, conservative vector field,
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Faraday’s law for a moving system: generator

The angle between B and surface normal directionis: @ = wt. //

What is the EMF and its waveform with time.
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Displacement current

oD : : : :
VXH =]+ 0 (J = oE is conduction current in materials)

o

Displacement current is defined in terms of the rate of change of electric displacement field. Y -1 s
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This additional term solves some problems:
1) Charge conservation argument:

VxB=yJ m8) V. (VxB)=0,m8) V.J=0.

I Ip
2) Electro-magnetic wave propagates in vacuum, where there is no current J. 4 B <
3) Current in capacitor L R
When charging/discharging capacitor, there is current in the cable, but no _
Capacitor

current between the two plates (assume vacuum medium), but electric field
changing.



Capacitor and displacement current

Capacitor is charging with current I:

Capacitance : C —_ ﬁ charge currentis | = CdV
' ' 1’ & T dt LI
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Calculating the integral over surface S2,

ijH ds —j (+6D) ds —j 9D 45 —j eV s, =AY
s Z_S]at 27 ), et CRT) Ldt TRT L odt

J =0 at surface S2, D = ¢E = e%, only inside capacitor.



Maxwell's equations

Name

Gauss's law

Ampeére's circuital law (with

Maxwell's addition)

Gauss's law for magnetism

Maxwell-Faraday equation
(Faraday's law of induction)

Integral equations
(Sl convention)

Differential
equations
(S| convention)
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oD
VxH=J —
X £l 5

9B
VxE=_22
8 ot



Example:

Coil 1 :1(t) = Isin(wt) , coil crosss—section area 1 = area 2.

o Coil 1 y
The flux |.orodu-ced from 1 gomg.thro-ugh coil 2: B(t) = Bsin(wt) T ——1\ A
1) What is the induced voltage in coil 2? i > il
2) Assuming resistance in coil 2 is R, calculating the current in coil 2? —— —
—F =
= ™~
bd=N fS Bds (flux linkage between coil 1 and coil 2) I; changing E, induced N
d N [ Bsin(wt)ds NABsin( wt R ' ) >y 6
Vo(t) = ——CI) = - fs = — ( ) = —NwABcos(wt) (\JJ \ )
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Galvanometer



Inductance and Lenz’s law

Inductance definition : L = e

I
o N [. B-dS
Inductance definition : L = —= 1
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Self-inductance: L; = —=
I1 I1
. N, [. B,dS
Mutual inductance: L, = P12__2 75y
L(t) = Vo(t)  NwABcos(wt) . b, NJs, B2dS
R R 2= I, I
Lenz’s Law:

The magnetic field created by the induced current
opposes changes in the initial magnetic field.

When B1 increase, the direction of B2
is opposite. Against the change
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When B1 decreases, the direction of B2 is
the same as B1. Against the change



Lenz’s law




Example : calculating inductance

A coaxial line carrying curent | on the inner conductor and -l on the outer.
Calculate the magnetic field H at r distance, ( Current evenly distributed in the two conductors)
The

Calculating the external inductance of the coaxial line in unit length.
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Inductance calculation:

Assume the total length is [ and the cross-section area is a
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Energy stored in inductance
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Energy stored in magnetic field
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Example

Given a tightly wound toroid with radius a, and N number of turns that is conducting a
constant direct current I. Use a = 10cm, N = 1000 and | = 1mA. Find the magnetic field B
everywhere (both inside and outside the toroid) assuming the core consists of

a) vacuum
b) an iron core with u, = 5000.
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B2mr = uNI

~ uNI
27r

B




Example

a) Find the self inductance L of a long, tightly wound solenoid.
b) If the number of turns is doubled (and everything else remains the same), what will happen with the self inductance?
c) Assume that the current is decaying from loto O during the time T. Find the induced voltage as a function of lo, T and L.
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Example

Problem 3

A telephone line and a power line is running parallel with each other. Both the power line and
the telephone line consists of two thin, parallel conductors as shown in the figure below. The
power line is assumed to be infinitely long, and the telephone line is assumed to be a closed,
rectangular loop with length [ and width 6. Assume that the thickness of the conductor is
negligible compared to the distances a, b, d, and [. —

a) Find the mutual inductance between the to lines. d
Hint: Use L12 — (1)12/]1.

Power line Telephone line
b) Find the amplitude of the induced electromotive force in the telephone line when there is
a harmonic alternating current with an amplitude Iy and a frequency f in the power
line. As a numerical example, we say that f = 50Hz, Iy = 100A, [ = 500m, d = 10m,
a = 50cm, and b = 10cm.

(Answer: 1.57mV.)



Solution: a)

We have decided z = 0 at the left conductor of the telephone line

the magnetic flux within C5 is given by
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Solution: b)

dP 12
dt

Faraday’s law e —

I1(t) = Igcos (27 ft)

d [ polycos(2mft)l b — z1 b — 2o
e = — In — In
dt 27 —21 —2Z9
b — =z b — =z
= polofsin(2mw ft)l [111 ( } 1) — In ( } 2)] :
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The amplitude e, of the induced electromotive force:
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eo = |polofl {ln( - 1)111( - 2)]
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9.7

10.3 9.8
eg = |4 - 10~7-100 - 50 - 500 [111 (10 2) — In (—)] V =1.5TmV.



