Lecture 5: Electro-dynamics

* A changing magnetic field and Faraday’s law
* A changing electrc field and displace current.
* Inductance and Lenz’ law

* Energy store in inductance



Changing magnetic field: Faraday’s law

E = —% Faraday’s law, ¢= fs B - dS is the magnetic flux.

In static-electric field, V X E=0; and 43C E dl = 0, conservative vector field,
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Electro-motive force (EMF): electric potential caused by changeint the magnetic filed.
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Faraday’s law for a moving system: generator

The angle between B and surface normal directionis: @ = Wt. //

What is the emf and its waveform with time.
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Displacement current:

] : : : :
VXH=]+ a—lz; (J = oF is conduction current in materials)

Displacement current is defined in terms of the rate of change of electric displacement field.
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This addtional term solves some problems:
1) Charge conservation argument:
VxB=yl == V- (VxB)=0, =5 v.j—o0. VxH=Z+1

2) Electro-magnetic wave propagates in vacuum, where there is no current J. PEAT—
3) Current in Capacitor

When charging / discharging capacitor, there is current in the cable, this is no
current between the two plates ( assume vacuum medium), but electric field
changing. ( does not satisfy current continuty argument ) Capacitor




Capacitor and displacement current

Capcitor is charging with current I:

cA dV
Capacitance : C —_ T, charge currentis [ = CE 1‘1
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Calculating the integral over surface S2,
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J=0 at surface 52, D = ¢E = s%, only in the area of capacitor plate A.



Maxwell equations

(Gauss'Law)

(Gauss'Law for Magnetism)

(Faraday's Law)

(Ampere's Law)



Example:

Coil 1 : I(t)=Isin(wt) , coil cross — section area 1 and 2 is same A. ' _
The flux produced form 1 going through coil 2: B(t)=Bsin(wt) Gl Coll2
1) What is the induced voltage in coil 2? M ‘;Q'H’W-//
2) Assuming resistance in coil 2 is R, calculating the current in coil 2? s =
I = -3
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Inductance and Lenz’ law

When B1 increase, the direction of B2
is opposite. Against the change

Inductance definition : L = %
N N [. B-dS
Inductance definition : L = —= —;
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Mutual inductance: L, = b12_ %5,
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Lenz’s Law:

The induced magnetic field by a current that is caused from a change in

magnetic flux (Faraday's Law) counteracts the change in flux.
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When B1 decreases, the direction of B2 is
the same as B1. Against the change



Example : calculating inductance

A coaxial line carrying curent | on the inner conductor and —I| on the outer .
Calculate the magnetic field H at r distance, ( Current evenly distributed in the two conductors)
The

Calculating the external inductance of the coaxial line in unit length. ;




Inductance calculation:

Assum the total length is [ and the cross-section area is a
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Energy store in inductance

Energy stored in inductance:

B-dS
L =1 :

difinition:
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Energy stored in magnetic field
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Example

Given a tightly wound toroid with radius a, and N number of turns that is conducting a constant direct current |. Use a
=10cm, N = 1000 and | = ImA. Find the magnetic field B everywhere (both inside and outside the toriod) assuming
the core consists of
a) vacuum.
b) an iron core with ur=5000.
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example

a) Find the self inductance L of a long, tightly wound solenoid.
b) If the number of turns is doubled (and everything else remains the same), what will happen with the self inductance?
c) Assume that the current is decaying from loto O during the time T. Find the induced voltage as a function of lo, T and L.
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Example

A telephone line and a power line is running parallel with each other. Both the power line and
the telephone line consists of two thin, parallel conductors as shown in the figure below. The
power line is assumed to be infinitely long, and the telephone line is assumed to be a closed,
rectangular loop with length I and width 6. Assume that the thickness of the conductor is
negligible compared to the distances a, b, d, and 1.

a) Find the mutual inductance between the to lines.
Hint: Use Lia = P12/1.

b) Find the amplitude of the induced electromotive force in the telephone line when there is . b
a harmonic alternating current with an amplitude Iy and a frequency f in the power Il\ ' ‘f 1 '
line. As a numerical example, we say that f = 50Hz, Iy = 100A, [ = 500m, d = 10m, p l
al — Elﬁcm. a_[ld b: J_{}Eln. Flll ----------------------- II*I
(Answer: 1.5TmV.) |

c) Why is it a good idea to twirl the conductors of the telephone line? .
Power line Telephone Iine



Solution: (a)

We have decided z = 0 at the left conductor of the telephone line

the magnetic flux within Cy is given by
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Solution: b

dd 12 .
e= =0 \ Faraday’s law
(17

I1(t) = Igcos (2w ft)
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the amplitude eg of the induced electromotive force
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