TFE4120 Electromagnetism: crash course

Intensive course: Two-weeks.

Lecturer: Anyuan Chen, anyuan.chen@ntnu.no.

Assistant: Amar Abideen, amar.abideen@ntnu.no

Paticipants: should have Bsc in electronic, electrical/power engineering.

Aim of the course: Give students a minimum pre-requisity to follow a 2-year master program in electronics or electrical /power engineering.

Webpage: All information is posted there .

https://www.ntnu.no/wiki/display/tfe4120/Crash+course+in+Electromagnetics+2024

Lecture plan

Lecture Plan

Week	Date	Time	Room	Topics
32	Monday 5/8	09.15-12.00	EL6	Maxwell's equations, Vector calculus, Divergence's Theorem, Stokes' Theorem
	Tuesday 6/8	09.15-12.00	EL6	Coulomb's law, Gauss' law, Potential, Poisson equation
	Thursday 7/8	09.15-12.00	EL6	Energy in electric field, Electric field in material, Capacitance, Boundary conditions for electric fields, Ideal conductors, Current density
	Thursday 8/8	09.15-12.00	EI6	Exercise help session with additional time
33	Tuesday 13/8	09.15-12.00	EL1	Magnetic fields, Biot-Savart's law, Ampere's law, Magnetic field in material, Boundary conditions for magnetic field
	Wednesday 14/8	09.00-12.00	EL1	Faraday's law, Ampere's law, Induction, Inductance, Lenz's law
	Thursday15/8	09.15-12.00	EL1	Maxwell's equations, Wave equations, Poynting's theorem, Summary
	Friday 16/8	09.15-12.00	EL1	Exercise help session

Lecture1: Electro-magnetism and vector calculus

- 1) What does electro-magnetism describe?
- 2) Brief induction about Maxwell equations
- 3) Vector calculus

Electro-magnetism

Electricity and magnetism were considered to be two separate phenomena until Maxwell published his masterpiece of electricity and magnetism in 1873.

Electro-magnetism: Physical interaction among electric charges, magnetic moments, and electromagnetic field.

Electro-magnetic force: one of the four fundamental interactions in the nature. (gravitational, electromagnetic, strong and weak forces)

History:

Carl Friedrich Gauss (1777-1855): German mathematician and physicist

The electric flux out of a closed surface = total enclosed charge divided by the permittivity of free space

Electrostatic

Andre-Marie Ampere (1775-1836): French physicist and mathematician

The magnetic field produced by an electric current is proportional to the magnitude of the current with a proportionality constant equal to the permeability of free space (μ_{o})

Magnetostatic

$$\oint \vec{B} \cdot \vec{dl} = \mu_o I$$

Michael Faraday (1791-1867): English Scientist

- In 1831 Faraday observed that a moving magnet could induce a current in a circuit.
- He also observed that a changing current could, through its magnetic effects, induce a current to flow in another circuit.

Magnetodynamic
$$V = -\frac{d\phi}{dt}$$

Carl Friedrich Gauss

André-Marie Ampère

Michael Faraday

Founder of electromagnetism

James Clerk Maxwell: (1839-1879) Scottish Mathematician

Maxwell published his work" A treatise on electricity and magnetism" in 1873.

- Maxwell equations
- Developed a scientific theory to explain electromagnetic waves.
- Coupled the electrical fields and magnetic fields together
- Established the foundations of electricity and magnetism as electromagnetism.

Daily life applications

For example:

• Electric motor/generator:

Battery charger

Induction oven

•

Electromagnetism: Maxwell equations

- A static electric charge produces electric field (Gauss's law in electric form)
- There is no magnetic charge (monopole) (Gauss's law in magnetic form)
- A changing magnetic field produces an electric field (Faraday's law)
- Charges in motion (an electrical current) produce a magnetic field (Ampere's law)
- A changing electric field produces a magnetic field.

Electric and Magnetic fields can produce forces on charges

$$\nabla \cdot \mathbf{E} / = \frac{p}{\varepsilon_0}$$

$$abla \cdot \mathbf{B}' = 0$$

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

$$abla imes \mathbf{B} = \mu_0 \left(\mathbf{J} + arepsilon_0 rac{\partial \mathbf{E}}{\partial t}
ight)$$

E: Electric field, Vector

B: Magnetic field, Vector

J: Current density, Vector

ρ: Electric charge density, Scalar

Field pattern of a pointed electrode

Electricity and magnetism had been unified into electromagnetism!

Gradient, electric potential and field

Gradient: 3-dimension derivative of a scalar function

- The gradient is a vector.
- Its **direction is along the fastest increase** of the scalar function at a point space.
- Its magnitude quantifies the change of a scalar field per unit distance.

Indicating how quickly a scalar increase per unit distance in a point space?

$$abla f = \operatorname{grad} f = \langle \frac{\partial f}{\partial x}(x,y,z), \frac{\partial f}{\partial y}(x,y,z), \frac{\partial f}{\partial z}(x,y,z)
angle$$

$$\nabla f = \frac{\partial f}{\partial x} \widehat{x} + \frac{\partial f}{\partial y} \widehat{y} + \frac{\partial f}{\partial z} \widehat{z}$$

 $\mathbf{E} = -\nabla V_{\mathbf{E}}$

f: Scalar function

 ∇f (Gradient): Vector function

Direction: fastest rate of increase

Basic Vector calculus:

(a) Vectors \mathbf{v} and \mathbf{w}

(b) Translate \mathbf{w} to the end of \mathbf{v}

(c) The sum $\mathbf{v} + \mathbf{w}$

Dot product

$$\mathbf{v} \cdot \mathbf{w} = \cos \theta \| \mathbf{v} \| \| \mathbf{w} \|$$

cross product

$$\|\mathbf{v} \times \mathbf{w}\| = \|\mathbf{v}\| \|\mathbf{w}\| \sin \theta$$

Flux and Flow

Flux: field perpendicular to the boundary

Flow: field tangential to the boundary

Divergence (Flux density)

Divergence of a field represents the flux density of the outward <u>flux</u> of a vector field from an infinitesimal volume (boundary) around a given point

$$\operatorname{div} \mathbf{F} =
abla \cdot \mathbf{F} = \lim_{V o 0} rac{1}{|V|} \iint_{S(V)} \mathbf{F} \cdot \hat{\mathbf{n}} \, dS$$

F is a vector $\nabla \cdot F$ is a scalar.

$$\nabla \cdot F = \frac{\partial F_x}{\partial x} + \frac{\partial F_y}{\partial y} + \frac{\partial F_z}{\partial z}$$

Field pattern of a pointed electrode

Divergence theorem

$$\oint_{S} \mathbf{A} \cdot d\mathbf{S} = \int_{v} \nabla \cdot \mathbf{A} dv$$

$$\oint_{S} \mathbf{E} \cdot d\mathbf{S} = \sum_{i} \oint_{S_{i}} \mathbf{E} \cdot d\mathbf{S} = \sum_{i} \left(\frac{1}{\Delta V_{i}} \oint_{S_{i}} \mathbf{E} \cdot d\mathbf{S}_{i}\right) \Delta V_{i} \to \int \nabla \cdot \mathbf{E} dV.$$

$$\nabla \cdot E = \frac{\rho}{\varepsilon_0}$$

Gauss' Law

Divergence of magnetic field is zero

Curl: Circulation density

The curl presents the circulation density of vector field at an infinitesimal point

One dimension x

$$(\operatorname{curl} \mathbf{A})_x = \lim_{\Delta S \to 0} \frac{\oint_C \mathbf{A} \cdot \mathrm{d}\mathbf{l}}{\Delta S}$$

Three dimensions x, y and z

$$\nabla \times A = \left(\frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z}\right) \hat{x} + \left(\frac{\partial A_x}{\partial z} - \frac{\partial A_z}{\partial x}\right) \hat{y} + \left(\frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y}\right) \hat{z}$$

Stokes' Theorem

$$\oint_C \mathbf{A} \cdot d\mathbf{l} = \int_S \nabla \times \mathbf{A} \cdot d\mathbf{S}.$$

Dot and Cross product

Line integral of vector

Curve direction is important.

$$rac{dr}{dS} = au$$
 (Tangent direction at each point of the curve)

$$\int\limits_{C}\left(\mathbf{F}\cdot d\mathbf{r}
ight)=\int\limits_{0}^{S}\left(\mathbf{F}\left(\mathbf{r}\left(s
ight)
ight)\cdotoldsymbol{ au}
ight)ds,$$

$$\int\limits_C \left(\mathbf{F} \cdot d\mathbf{r}
ight) = \int\limits_{C_1 \cup C_2} \left(\mathbf{F} \cdot d\mathbf{r}
ight) = \int\limits_{C_1} \left(\mathbf{F} \cdot d\mathbf{r}
ight) + \int\limits_{C_2} \left(\mathbf{F} \cdot d\mathbf{r}
ight);$$

Surface integral of vector

dA direction is perpendicular to the tangent plane to that surface at A

$$\iint_{S} \vec{F} \cdot d\vec{S} = \iint_{S} \vec{F} \cdot \vec{n} \ dS$$

Different coordinates

Cylindrical coordinate

Cartesia Coordinate

VECTOR DIFFERENTIAL OPERATIONS

$$\nabla \Phi = \hat{\mathbf{x}} \frac{\partial \Phi}{\partial x} + \hat{\mathbf{y}} \frac{\partial \Phi}{\partial y} + \hat{\mathbf{z}} \frac{\partial \Phi}{\partial z}$$

$$\nabla \cdot \mathbf{D} = \frac{\partial D_x}{\partial x} + \frac{\partial D_y}{\partial y} + \frac{\partial D_z}{\partial z}$$

$$\nabla \times \mathbf{H} = \hat{\mathbf{x}} \left(\frac{\partial H_z}{\partial y} - \frac{\partial H_y}{\partial z} \right) + \hat{\mathbf{y}} \left(\frac{\partial H_x}{\partial z} - \frac{\partial H_z}{\partial x} \right) + \hat{\mathbf{z}} \left(\frac{\partial H_y}{\partial x} - \frac{\partial H_x}{\partial y} \right)$$

$$\nabla^2 \Phi = \frac{\partial^2 \Phi}{\partial x^2} + \frac{\partial^2 \Phi}{\partial y^2} + \frac{\partial^2 \Phi}{\partial z^2}$$

$$\nabla^2 \mathbf{A} = \hat{\mathbf{x}} \nabla^2 A_x + \hat{\mathbf{y}} \nabla^2 A_y + \hat{\mathbf{z}} \nabla^2 A_z$$

$$\nabla \Phi = \hat{\mathbf{f}} \frac{\partial \Phi}{\partial r} + \hat{\Phi} \frac{1}{r} \frac{\partial \Phi}{\partial \phi} + \hat{\mathbf{z}} \frac{\partial \Phi}{\partial z}$$

$$\nabla \cdot \mathbf{D} = \frac{1}{r} \frac{\partial}{\partial r} (rD_r) + \frac{1}{r} \frac{\partial D_{\phi}}{\partial \phi} + \frac{\partial D_z}{\partial z}$$

$$\nabla \times \mathbf{H} = \hat{\mathbf{f}} \left[\frac{1}{r} \frac{\partial H_z}{\partial \phi} - \frac{\partial H_{\phi}}{\partial z} \right] + \hat{\Phi} \left[\frac{\partial H_r}{\partial z} - \frac{\partial H_z}{\partial r} \right] + \hat{\mathbf{z}} \left[\frac{1}{r} \frac{\partial (rH_{\phi})}{\partial r} - \frac{1}{r} \frac{\partial H_r}{\partial \phi} \right]$$

$$\nabla^2 \Phi = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial \Phi}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 \Phi}{\partial \phi^2} + \frac{\partial^2 \Phi}{\partial z^2}$$

$$\nabla^2 \mathbf{A} = \hat{\mathbf{f}} \left(\nabla^2 A_r - \frac{2}{r^2} \frac{\partial A_{\phi}}{\partial \phi} - \frac{A_r}{r^2} \right) + \hat{\Phi} \left(\nabla^2 A_{\phi} + \frac{2}{r^2} \frac{\partial A_r}{\partial \phi} - \frac{A_{\phi}}{r^2} \right) + \hat{\mathbf{z}} (\nabla^2 A_z)$$

$$\nabla \Phi = \hat{\mathbf{r}} \frac{\partial \Phi}{\partial r} + \hat{\mathbf{\theta}} \frac{1}{r} \frac{\partial \Phi}{\partial \theta} + \frac{\hat{\mathbf{\phi}}}{r \sin \theta} \frac{\partial \Phi}{\partial \phi}$$

$$\nabla \cdot \mathbf{D} = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 D_r) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (\sin \theta D_\theta) + \frac{1}{r \sin \theta} \frac{\partial D_\phi}{\partial \phi}$$

$$\nabla \times \mathbf{H} = \frac{\hat{\mathbf{r}}}{r \sin \theta} \left[\frac{\partial}{\partial \theta} (H_\phi \sin \theta) - \frac{\partial H_\theta}{\partial \phi} \right]$$

$$+ \frac{\hat{\mathbf{\theta}}}{r} \left[\frac{1}{\sin \theta} \frac{\partial H_r}{\partial \phi} - \frac{\partial}{\partial r} (r H_\phi) \right] + \frac{\hat{\mathbf{\phi}}}{r} \left[\frac{\partial}{\partial r} (r H_\theta) - \frac{\partial H_r}{\partial \theta} \right]$$

$$\nabla^2 \Phi = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial \Phi}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial \Phi}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 \Phi}{\partial \phi^2}$$

$$\nabla^2 \mathbf{A} = \hat{\mathbf{r}} \left[\nabla^2 A_r - \frac{2}{r^2} \left(A_r + \cot \theta A_\theta + \csc \theta \frac{\partial A_\phi}{\partial \phi} + \frac{\partial A_\theta}{\partial \theta} \right) \right]$$

$$+ \hat{\mathbf{\Phi}} \left[\nabla^2 A_\theta - \frac{1}{r^2} \left(\csc^2 \theta A_\theta - 2 \frac{\partial A_r}{\partial \theta} + 2 \cot \theta \csc \theta \frac{\partial A_\phi}{\partial \phi} \right) \right]$$

$$+ \hat{\mathbf{\Phi}} \left[\nabla^2 A_\phi - \frac{1}{r^2} \left(\csc^2 \theta A_\phi - 2 \csc \theta \frac{\partial A_r}{\partial \phi} - 2 \cot \theta \csc \theta \frac{\partial A_\theta}{\partial \phi} \right) \right]$$

Examples: Probelm 3

Calculate the integral

$$I = \int_{V} (\nabla \cdot \mathbf{F}) dV \qquad (1)$$

where $\mathbf{F} = r\hat{\mathbf{r}} = x\hat{\mathbf{x}} + y\hat{\mathbf{y}} + z\hat{\mathbf{z}}$, and the volume V is a sphere with radius R placed in the origin.

- a) Calculate the integral directly.
- b) Calculate the integral using the divergence theorem.

$$\operatorname{div} \mathbf{A} = \frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z} = \nabla \cdot \mathbf{A}.$$

$$\oint_{S} \mathbf{A} \cdot d\mathbf{S} = \int_{v} \nabla \cdot \mathbf{A} dv$$

Solutions:

Calculate the integral

$$I = \int_{V} (\nabla \cdot \mathbf{F}) dV \qquad (1)$$

where $\mathbf{F} = r\hat{\mathbf{r}} = x\hat{\mathbf{x}} + y\hat{\mathbf{y}} + z\hat{\mathbf{z}}$, and the volume V is a sphere with radius R placed in the origin.

- a) Calculate the integral directly.
- b) Calculate the integral using the divergence theorem.

$$\nabla \cdot \mathbf{F} = 3.$$

$$\int_{v} (\nabla \cdot \mathbf{F}) dV = \int_{0}^{R} \int_{0}^{2\pi} \int_{0}^{\pi} 3r^{2} \sin \theta d\varphi d\theta dr$$
$$= 3 \int_{0}^{R} r^{2} dr \int_{0}^{\pi} \sin \theta d\theta \int_{0}^{2\pi} d\varphi$$
$$= \underline{4\pi R^{3}}.$$

$$\int_{V} (\nabla \cdot \mathbf{F}) dV = 3 \int_{V} dV = 4\pi R^{3}.$$

$$\operatorname{div} \mathbf{A} = \frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z} = \nabla \cdot \mathbf{A}.$$

Solution for b

 $\int_{v} (\nabla \cdot \mathbf{F}) dv = \oint_{S} \mathbf{F} \cdot d\mathbf{S}$ $= \int_{0}^{2\pi} \int_{0}^{\pi} (R\hat{\mathbf{r}}) \cdot (R^{2} \sin \theta d\theta d\varphi \hat{\mathbf{r}})$ $= R^{3} \int_{0}^{2\pi} d\varphi \int_{0}^{\pi} \sin \theta d\theta$ $= \underline{4\pi R^{3}}.$

$$\oint_{S} \mathbf{A} \cdot d\mathbf{S} = \int_{v} \nabla \cdot \mathbf{A} dv$$

Example:

Calculate the line integral

$$I = \int_{C} \mathbf{F} \cdot d\mathbf{l}$$
, (2)

Where $\mathbf{F} = (xy^2 + 2y)\hat{\mathbf{x}} + (x^2y + 2x)\hat{\mathbf{y}}$,

- Along the curve C₁ which consists of two straight lines connecting the points (0,0), (a,0) and (a,b), see figure below.
- Along the curve C₂ which consists of one straight line connecting the points (0,0) and (a, b), see figure below.
- Why do these calculations produce the same answer? Explain using Stoke's theorem.

$$\nabla \times A = \left(\frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z}\right) \hat{x} + \left(\frac{\partial A_x}{\partial z} - \frac{\partial A_z}{\partial x}\right) \hat{y} + \left(\frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y}\right) \hat{z}$$

$$\oint_C \mathbf{A} \cdot d\mathbf{l} = \int_S \nabla \times \mathbf{A} \cdot d\mathbf{S}.$$

Solution for i) and ii)

$$I = \int_{V} (\nabla \cdot \mathbf{F}) dV$$

$$\mathbf{F} = (xy^2 + 2y)\hat{\mathbf{x}} + (x^2y + 2x)\hat{\mathbf{y}}$$

i) Along the curve C_1 which consists of two straight lines connecting the points (0,0), (a,0) and (a,b), see figure below.

$$I = \int_C \mathbf{F} \cdot d\mathbf{l}$$
$$= \int_0^b (a^2y + 2a) dy$$
$$= \frac{1}{2}a^2b^2 + 2ab.$$

ii) Along the curve C_2 which consists of one straight line connecting the points (0,0) and (a,b), see figure below.

$$d\mathbf{l} = dx\hat{\mathbf{x}} + dy\hat{\mathbf{y}}.$$

$$\mathbf{F} \cdot d\mathbf{l} = F_x dx + F_y dy$$
$$= (xy^2 + 2y)dx + (x^2y + 2x)dy.$$

$$y = \frac{bx}{a}$$

$$I = \int_{C} \mathbf{F} \cdot d\mathbf{l}$$

$$= \int_{0}^{a} \left[x \left(\frac{bx}{a} \right)^{2} + 2 \left(\frac{bx}{a} \right) \right] dx + \int_{0}^{b} \left[\left(\frac{ay}{b} \right)^{2} y + 2 \left(\frac{ay}{b} \right) \right] dy$$

$$= \underbrace{\frac{1}{2} a^{2} b^{2} + 2ab}_{a}.$$

Conservative vector: solution for iii)

iii) Why do these calculations produce the same answer? Explain using Stoke's theorem.

$$\mathbf{F} = (xy^2 + 2y)\hat{\mathbf{x}} + (x^2y + 2x)\hat{\mathbf{y}}$$

These integrals have equal values since \mathbf{F} is a conservative field:

$$\nabla \times \mathbf{F} = \left(\frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y}\right) \hat{\mathbf{z}}$$
$$= (2xy - 2xy) \hat{\mathbf{z}}$$
$$= 0.$$

$$\nabla \times A = \left(\frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z}\right) \hat{x} + \left(\frac{\partial A_x}{\partial z} - \frac{\partial A_z}{\partial x}\right) \hat{y} + \left(\frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y}\right) \hat{z}$$

$$\oint_C \mathbf{A} \cdot d\mathbf{l} = \int_S \nabla \times \mathbf{A} \cdot d\mathbf{S}.$$