TFE4120 Electromagnetism: crash course

Intensive course: Two-weeks.

Lecture: Shunguo Wang, shunguo.wang@ntnu.no.

Assistant: Sandra Yuste Munoz, Sandra.y.Munoz@ntnu.no

Exercises help:

Paticipants: should have Bsc in electronic, electrical/ power engineering.
Aim of the course: Give students a minimum pre-requisity to follow a 2 -year master program in electronics or electrical /power engineering.

Webpage: All information is posted there .
https://www.ntnu.no/wiki/display/tfe4120/Crash+course+in+Electromagnetics+2023

Content for lectures:

- Lecture 1: Introduction and Vector calculus
- Lecture 2: Electro-static
- Lecture 3: Electro-dynamic
- Lectrue 4: Magnetic-static
- Lecture 5: Electro-magnetic
- Lecture 6: Electro-magnetic wave

Lecture1: Electro-magnetism and vector calculus

1) What does electro-magnetism describe?
2) Brief induction about Maxwell equations
3) Electric force: Coulomb's law
4) Vector calculus

Electro-magnetism

Originally, electricity and magnetism were considered to be two separate phenomena

Electro-magnetism: Physical interaction between electricity and magnetism.
Electro-magnetic force: one of the four fundamental interactions in the nature. (gravitation, electromagnetism, the strong and weak forces)

Carl Friedrich Gauss (1777-1855): German mathematician and physicist

The electric flux out of a closed surface = total enclosed charge divided by the permittivity of free space

Electrostatic

$$
\oint \overrightarrow{\mathrm{E}} \cdot \mathrm{~d} \overrightarrow{\mathrm{~A}}=\frac{\mathrm{Q}_{\text {in }}}{\varepsilon_{0}}
$$

André-Marie Ampère

Andre-Marie Ampere (1775-1836): French physicist and mathematician

The magnetic field produced by an electric current is proportional to the magnitude of the current with a proportionality constant equal to the permeability of free space (μ_{0}) Magnetostatic $\quad \oint \vec{B} \cdot \overrightarrow{d l}=\mu_{o} I$

Michael Faraday (1791-1867): English Scientist

- In 1831 Faraday observed that a moving magnet could induce a current in a circuit.
- He also observed that a changing current could, through its magnetic effects, induce a current to flow in another circuit.
Magnetodynamic $\quad V=-\frac{d \emptyset}{d t}$

Founder of electromagnetism

James Clerk Maxwell: (1839-1879)

Scottish Mathematician

- Developed a scientific theory to explain electromagnetic waves.
- Coupled the electrical fields and magnetic fields together
- he established the foundations of electricity and magnetism as electromagnetism.
- Maxwell equations

Daily life applications

For example:

- Electric motor/generator:
- Battery charger
- Induction oven

Electromagnetism: Maxwell equations

- A static electric charges produces an electric field
- There is no magnetic charge (monopole).
- A changing maghetic field produces an electric field,
- Charges in motion (an electrical current) produce a magnetic field

Field pattern of a pointed electrode

- A changing electric field produces a magnetic field.
 Electric and Vagnetic fields can produce forces on charges
(Gauss' Law)
(Gauss'Law for Magnetism)
E: electric field, Vector
D: electric flux density, Vector
H: magnetic field, Vector
B: magnetic flux density, Vector
J: current density, Vector ρ : Static charge density

Coulomb's law: force between electrostatic charges

Published in 1785 by French physicist Charles-Augustin de Coulomb and was essential to the development of the theory of electromagnetism

Like charges repel
Unlike charges attract

Scalar: $F=k \frac{q_{1} q_{2}}{r_{12}^{2}}=\frac{q_{1} q_{2}}{4 \pi \varepsilon_{0} r_{12}^{2}}$
Vector: $\vec{F}=\frac{q_{1} q_{2}}{4 \pi \varepsilon_{0} r_{12}^{2}} \widehat{\boldsymbol{r}_{12}}$
$\widehat{\boldsymbol{r}_{12}}$ is just for direction, its absolut value is 1 .
$k=\frac{1}{4 \pi \varepsilon_{0}} \approx 9 x 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}=$ Coulomb's constant

The electrostatic force had the same functional form as Newton's law of gravity
The magnitude of the electrostatic force between two-point charges:

1) directly proportional to the product of the magnitudes of charges
2) inversely proportional to the square of the distance between them
3) The force is along the straight line joining them.

Vector calculus:

Dot product
$\mathbf{v} \cdot \mathbf{w}=\cos \theta\|\mathbf{v}\|\|\mathbf{w}\|$
$\xrightarrow{0^{\circ} \leq \theta<90^{\circ}}$
(a) $\mathbf{v} \cdot \mathbf{w}>0$

(b) Translate \mathbf{w} to the end of \mathbf{v}

(c) The sum $\mathbf{v}+\mathbf{w}$
cross product
$\|\mathbf{v} \times \mathbf{w}\|=\|\mathbf{v}\|\|\mathbf{w}\| \sin \theta$

(b) $\mathbf{v} \cdot \mathbf{w}<0$

(c) $\mathbf{v} \cdot \mathbf{w}=0$

Vector force:

Electric forces follow the law of superposition.
If more than one charge is causing a force on object 1 , then the net force acting on object 1 is just the sum of all the individual forces acting on 1.

Fig. Superposition Law
Net force on $q: F=F_{1}+F_{2}+F_{3}$

$$
\stackrel{\rightharpoonup}{F}_{t o t}=\sum_{i=1}^{n} \frac{q q_{\mathrm{i}}}{4 \pi \varepsilon_{0} r_{i}^{2}} \widehat{r}_{i}
$$

Line integral of vector

Line integral of vector force F along the curve C . Suppose that a curve C is defined by the vector function $r=r(s), 0 \leq s \leq S$, where s is the arc length of the curve. Then the derivative of the vector function

$$
\frac{d r}{d S}=\tau(\text { Tangent direction at each point of the curve) }
$$

Curve direction is important.

$$
\begin{gathered}
\int_{C}(\mathbf{F} \cdot d \mathbf{r})=\int_{0}^{S}(\mathbf{F}(\mathbf{r}(s)) \cdot \boldsymbol{\tau}) d s \\
\int_{C}(\mathbf{F} \cdot d \mathbf{r})=\int_{C_{1} \cup C_{2}}(\mathbf{F} \cdot d \mathbf{r})=\int_{C_{1}}(\mathbf{F} \cdot d \mathbf{r})+\int_{C_{2}}(\mathbf{F} \cdot d \mathbf{r}) ;
\end{gathered}
$$

Surface integral of vector

dA direction is perpendicular to the tangent plane to that surface at A

$$
\iint_{S} \vec{F} \cdot d \vec{S}=\iint_{S} \vec{F} \cdot \vec{n} d S
$$

Gradient:Greatest rate of increase

Gradient: 3-dimension derivative of a scalar function

showing the direction and rate of fastest increase of the scalar function f at a point space.

How quickly something changes from one point to another

$$
\nabla f=\operatorname{grad} f=<\frac{\partial f}{\partial x}(x, y, z), \frac{\partial f}{\partial y}(x, y, z), \frac{\partial f}{\partial z}(x, y, z)>
$$

$$
\nabla \boldsymbol{f}=\frac{\partial \boldsymbol{f}}{\partial x} \widehat{\boldsymbol{x}}+\frac{\partial \boldsymbol{f}}{\partial y} \widehat{\boldsymbol{y}}+\frac{\partial \boldsymbol{f}}{\partial z} \widehat{\boldsymbol{z}}
$$

f : Scalar function

$\nabla \boldsymbol{f}$ (Gradient): Vector function
Direction: fastest rate of increase

Example: air density in the space

$$
D=f(x, y, z)
$$

$$
\overrightarrow{D_{V}}=\frac{\partial D}{\partial x} \hat{i}+\frac{\partial D}{\partial y} \hat{j}+\frac{\partial D}{\partial z}
$$

$\left|\overrightarrow{D_{V}}\right|=$ Maximum Rate at which the Density Increases

Divergence: Flux/field out of a point

Divergence represents the volume density of the outward flux of a vector field from an infinitesimal volume around a given point

$$
\operatorname{div} \mathbf{F}=\nabla \cdot \mathbf{F}=\lim _{V \rightarrow 0} \frac{1}{|V|} \oiint_{S(V)} \mathbf{F} \cdot \hat{\mathbf{n}} d S
$$

Field pattern of a pointed electrode

Divergence: Mathematical calculation

$$
\operatorname{div} \mathbf{A}=\lim _{\Delta v \rightarrow 0} \frac{\oint_{S} \mathbf{A} \cdot \mathrm{~d} \mathbf{S}}{\Delta v} .
$$

$\oint_{S} \mathbf{A} \cdot \mathrm{~d} \mathbf{S}=\oint_{S} \mathbf{A} \cdot \hat{\mathbf{n}} \mathrm{~d} S$
$\oint_{S} \mathbf{A} \cdot \mathrm{~d} \mathbf{S}=\int_{\text {foran }} A_{x}($ foran $) \mathrm{d} y \mathrm{~d} z-\int_{\mathrm{bak}} A_{x}($ bak $) \mathrm{d} y \mathrm{~d} z$

$\mathbf{A}=\left(A_{x}, A_{y}, A_{z}\right)$
$-\int_{\text {venstre }} A_{y}($ venstre $) \mathrm{d} x \mathrm{~d} z+\int_{\text {høyre }} A_{y}($ høyre $) \mathrm{d} x \mathrm{~d} z \longleftarrow A_{y}($ høyre $)-A_{y}($ venstre $)=\frac{\partial A_{y}}{\partial u} \mathrm{~d} y$
$+\int_{\text {topp }} A_{z}(\mathrm{topp}) \mathrm{d} x \mathrm{~d} y-\int_{\text {bunn }} A_{z}($ bunn $) \mathrm{d} x \mathrm{~d} y . \quad \leftarrow \quad A_{z}(\mathrm{topp})-A_{z}($ bunn $)=\frac{\partial A_{z}}{\partial z} \mathrm{~d} z$.

$\oint_{S} \mathbf{A} \cdot \mathrm{~d} \mathbf{S}=\frac{\partial A_{x}}{\partial x} \mathrm{~d} x \mathrm{~d} y \mathrm{~d} z+\frac{\partial A_{y}}{\partial y} \mathrm{~d} x \mathrm{~d} y \mathrm{~d} z+\frac{\partial A_{z}}{\partial z} \mathrm{~d} x \mathrm{~d} y \mathrm{~d} z$

$$
\operatorname{div} \mathbf{A}=\lim _{\Delta v \rightarrow 0} \frac{\oint_{S} \mathbf{A} \cdot \mathrm{~d} \mathbf{S}}{\Delta v} . \quad \square \quad \operatorname{div} \mathbf{A}=\frac{\partial A_{x}}{\partial x}+\frac{\partial A_{y}}{\partial y}+\frac{\partial A_{z}}{\partial z}=\nabla \cdot \mathbf{A} .
$$

$\Delta v=\mathrm{d} x \mathrm{~d} y \mathrm{~d} z$

Divergence theorem

$$
\oint_{S} \mathbf{A} \cdot \mathrm{~d} \mathbf{S}=\int_{v} \nabla \cdot \mathbf{A} d v
$$

$$
\oint_{S} \mathbf{E} \cdot \mathrm{~d} \mathbf{S}=\sum_{i} \oint_{S_{i}} \mathbf{E} \cdot \mathrm{~d} \mathbf{S}=\sum_{i}\left(\frac{1}{\Delta V_{i}} \oint_{S_{i}} \mathbf{E} \cdot \mathrm{~d} \mathbf{S}_{i}\right) \Delta V_{i} \rightarrow \int \nabla \cdot \mathbf{E d V} .
$$

$\nabla . E=\frac{\rho}{\varepsilon_{0}} \quad$ Gauss' Law

Curl: how much does a field circulate around a point.

The curl of a field presents the infinitesimal circulation density at each point of the field

One dimension x

Three dimensions x, y and z

sirkulasjon/curl

$\nabla \times A=\left(\frac{\partial A_{z}}{\partial y}-\frac{\partial A_{y}}{\partial z}\right) \hat{x}+\left(\frac{\partial A_{x}}{\partial z}-\frac{\partial A_{z}}{\partial x}\right) \hat{y}+\left(\frac{\partial A_{y}}{\partial x}-\frac{\partial A_{x}}{\partial y}\right) \hat{z}$

Curl

The curl around x -axis, in yz plane

$$
\begin{aligned}
\oint_{C} \mathbf{A} \cdot \mathrm{~d} \mathbf{l}= & \int_{\text {nede }} A_{y}(\text { nede }) \mathrm{d} y-\int_{\text {oppe }} A_{y}(\text { oppe }) \mathrm{d} y-\int_{\text {venstre }} A_{z}(\text { venstre }) \mathrm{d} z+\int_{\text {høyre }} A_{z}(\mathrm{~h} \emptyset \mathrm{yre}) \mathrm{d} z \\
& A_{y}(\text { nede })-A_{y}(\text { oppe })=A_{y}\left(x_{0}, y_{0}, z_{0}-\mathrm{d} z / 2\right)-A_{y}\left(x_{0}, y_{0}, z_{0}+\mathrm{d} z / 2\right)=-\frac{\partial A_{y}}{\partial z} \mathrm{~d} z \\
& A_{z}(\text { høyre })-A_{z}(\text { venstre })=A_{z}\left(x_{0}, y_{0}+\mathrm{d} y / 2, z_{0}\right)-A_{z}\left(x_{0}, y_{0}-\mathrm{d} y / 2, z_{0}\right)=\frac{\partial A_{z}}{\partial y} \mathrm{~d} y \\
& \oint_{C} \mathbf{A} \cdot \mathrm{~d} \mathbf{l}=\left(\frac{\partial A_{z}}{\partial y}-\frac{\partial A_{y}}{\partial z}\right) \mathrm{d} y \mathrm{~d} z \\
& (\operatorname{curl} \mathbf{A})_{x}=\frac{\partial A_{z}}{\partial y}-\frac{\partial A_{y}}{\partial z}
\end{aligned}
$$

Similar to the curl around y and z-axis

$$
\nabla \times A=\left(\frac{\partial A_{z}}{\partial y}-\frac{\partial A_{y}}{\partial z}\right) \hat{x}+\left(\frac{\partial A_{x}}{\partial z}-\frac{\partial A_{z}}{\partial x}\right) \hat{y}+\left(\frac{\partial A_{y}}{\partial x}-\frac{\partial A_{x}}{\partial y}\right) \hat{z}
$$

$$
\begin{aligned}
P & =\left(x_{0}, y_{0}, z_{0}\right) \\
\mathbf{A} & =\left(A_{x}, A_{y}, A_{z}\right)
\end{aligned}
$$

$$
\mathrm{d} z \underset{\mathrm{~d} y}{\stackrel{\stackrel{\rightharpoonup}{P}}{\stackrel{\leftrightarrow}{P}}}
$$

$\Delta S=\mathrm{d} y \mathrm{~d} z$

Stokes' Theorem

$$
\nabla \times \mathbf{A} \cdot \mathrm{d} \mathbf{S}=\oint_{C_{1}} \mathbf{A} \cdot \mathrm{~d} \mathbf{l}
$$

$$
\begin{gathered}
\oint_{C} \mathbf{A} \cdot \mathrm{~d} \mathbf{l}=\int_{S} \nabla \times \mathbf{A} \cdot \mathrm{d} \mathbf{S} \\
\int_{S} \nabla \times \mathbf{A} \cdot \mathrm{d} \mathbf{S}=\sum_{i} \oint_{C_{i}} \mathbf{A} \cdot \mathrm{~d} \mathbf{l}
\end{gathered}
$$

Different coordinates

Spherial coordinate

Cylindrical coordinate

Cartesia Coordinate

Examples: Probelm 3

Calculate the integral

$$
\begin{equation*}
I=\int_{V}(\nabla \cdot \mathbf{F}) \mathrm{d} V \tag{1}
\end{equation*}
$$

where $\mathrm{F}=r \hat{\mathrm{r}}=x \hat{\mathrm{x}}+y \hat{y}+z \hat{z}$, and the volume V is a sphere with radius R placed in the origin.

$$
\operatorname{div} \mathbf{A}=\frac{\partial A_{x}}{\partial x}+\frac{\partial A_{y}}{\partial y}+\frac{\partial A_{z}}{\partial z}=\nabla \cdot \mathbf{A} .
$$

a) Calculate the integral directly.
b) Calculate the integral using the divergence theorem.

$$
\oint_{S} \mathbf{A} \cdot \mathrm{~d} \mathbf{S}=\int_{v} \nabla \cdot \mathbf{A} \mathrm{~d} v
$$

Solutions:

Calculate the integral

$$
\begin{equation*}
I=\int_{V}(\nabla \cdot \mathbf{F}) \mathrm{d} V \tag{1}
\end{equation*}
$$

where $\mathbf{F}=r \hat{\mathbf{r}}=x \hat{\mathbf{x}}+y \hat{\mathbf{y}}+z \hat{\mathbf{Z}}$, and the volume V is a sphere with radius R placed in the origin.
a) Calculate the integral directly.
b) Calculate the integral using the divergence theorem.

$$
\operatorname{div} \mathbf{A}=\frac{\partial A_{x}}{\partial x}+\frac{\partial A_{y}}{\partial y}+\frac{\partial A_{z}}{\partial z}=\nabla \cdot \mathbf{A} .
$$

$$
\begin{aligned}
& \nabla \cdot \mathbf{F}=3 \\
& \begin{aligned}
\int_{v}(\nabla \cdot \mathbf{F}) \mathrm{d} V & =\int_{0}^{R} \int_{0}^{2 \pi} \int_{0}^{\pi} 3 r^{2} \sin \theta \mathrm{~d} \varphi \mathrm{~d} \theta \mathrm{~d} r \\
& =3 \int_{0}^{R} r^{2} \mathrm{~d} r \int_{0}^{\pi} \sin \theta \mathrm{d} \theta \int_{0}^{2 \pi} \mathrm{~d} \varphi \\
& =\underline{\underline{4 \pi R^{3}}} .
\end{aligned}
\end{aligned}
$$

Solution for b

$$
\begin{array}{rlr}
\int_{v}(\nabla \cdot \mathbf{F}) \mathrm{d} v & =\oint_{S} \mathbf{F} \cdot \mathrm{~d} \mathbf{S} & \oint_{S} \mathbf{A} \cdot \mathrm{~d} \mathbf{S}=\int_{v} \nabla \cdot \mathbf{A} \mathrm{~d} v \\
& =\int_{0}^{2 \pi} \int_{0}^{\pi}(R \hat{\mathbf{r}}) \cdot\left(R^{2} \sin \theta \mathrm{~d} \theta \mathrm{~d} \varphi \hat{\mathbf{r}}\right) & \\
& =R^{3} \int_{0}^{2 \pi} \mathrm{~d} \varphi \int_{0}^{\pi} \sin \theta \mathrm{d} \theta & \\
& =\underline{\underline{4 \pi R^{3}}} . &
\end{array}
$$

Example:

Calculate the line integral

$$
\begin{equation*}
I=\int_{C} \mathbf{F} \cdot \mathrm{~d} \mathbf{l} \tag{2}
\end{equation*}
$$

Where $\mathbf{F}=\left(x y^{2}+2 y\right) \hat{\mathbf{x}}+\left(x^{2} y+2 x\right) \hat{\mathbf{y}}$,
i) Along the curve C_{1} which consists of two straight lines connecting the points (0,0), ($a, 0$) and (a, b), see figure below.
ii) Along the curve C_{2} which consists of one straight line connecting the points (0,0) and (a, b), see figure below.
iii) Why do these calculations produce the same answer? Explain using Stoke's theorem.

$$
\nabla \times A=\left(\frac{\partial A_{z}}{\partial y}-\frac{\partial A_{y}}{\partial z}\right) \hat{x}+\left(\frac{\partial A_{x}}{\partial z}-\frac{\partial A_{z}}{\partial x}\right) \hat{y}+\left(\frac{\partial A_{y}}{\partial x}-\frac{\partial A_{x}}{\partial y}\right) \hat{z}
$$

$$
\oint_{C} \mathbf{A} \cdot \mathrm{~d} \mathbf{l}=\int_{S} \nabla \times \mathbf{A} \cdot \mathrm{d} \mathbf{S}
$$

Solution for i) and ii)

$$
\begin{gathered}
I=\int_{V}(\nabla \cdot \mathbf{F}) \mathrm{d} V \\
\mathbf{F}=\left(x y^{2}+2 y\right) \hat{\mathbf{x}}+\left(x^{2} y+2 x\right) \hat{\mathbf{y}}
\end{gathered}
$$

i) Along the curve C_{1} which consists of two straight lines connecting the points $(0,0)$, $(a, 0)$ and (a, b), see figure below.

$$
\begin{aligned}
I & =\int_{C} \mathbf{F} \cdot \mathrm{~d} \mathbf{l} \\
& =\int_{0}^{b}\left(a^{2} y+2 a\right) \mathrm{d} y \\
& =\underline{\underline{\frac{1}{2} a^{2} b^{2}+2 a b .}}
\end{aligned}
$$

ii) Along the curve C_{2} which consists of one straight line connecting the points $(0,0)$ and (a, b), see figure below.

$$
\begin{aligned}
& \begin{array}{l}
\mathrm{d} \mathbf{l}=\mathrm{d} x \hat{\mathbf{x}}+\mathrm{d} y \hat{\mathbf{y}} \\
\begin{aligned}
& \mathbf{F} \cdot \mathrm{d} \mathbf{l}=F_{x} \mathrm{~d} x+F_{y} \mathrm{~d} y \\
&=\left(x y^{2}+2 y\right) \mathrm{d} x+\left(x^{2} y+2 x\right) \mathrm{d} y \\
& y=\frac{b x}{a}
\end{aligned} \\
I=\int_{C} \mathbf{F} \cdot \mathrm{~d} \mathbf{l} \\
= \\
\int_{0}^{a}\left[x\left(\frac{b x}{a}\right)^{2}+2\left(\frac{b x}{a}\right)\right] \mathrm{d} x+\int_{0}^{b}\left[\left(\frac{a y}{b}\right)^{2} y+2\left(\frac{a y}{b}\right)\right] \mathrm{d} y \\
= \\
\frac{1}{2} a^{2} b^{2}+2 a b .
\end{array}
\end{aligned}
$$

Conservative vector: solution for iii)

iii) Why do these calculations produce the same answer? Explain using Stoke's theorem.

$$
\nabla \times A=\left(\frac{\partial A_{z}}{\partial y}-\frac{\partial A_{y}}{\partial z}\right) \hat{x}+\left(\frac{\partial A_{x}}{\partial z}-\frac{\partial A_{z}}{\partial x}\right) \hat{y}+\left(\frac{\partial A_{y}}{\partial x}-\frac{\partial A_{x}}{\partial y}\right) \hat{z}
$$

These integrals have equal values since \mathbf{F} is a conservative field:

$$
\begin{aligned}
\nabla \times \mathbf{F} & =\left(\frac{\partial F_{y}}{\partial x}-\frac{\partial F_{x}}{\partial y}\right) \hat{\mathbf{z}} \\
& =(2 x y-2 x y) \hat{\mathbf{z}} \\
& =0
\end{aligned}
$$

$$
\oint_{C} \mathbf{A} \cdot \mathrm{~d} \mathbf{l}=\int_{S} \nabla \times \mathbf{A} \cdot \mathrm{d} \mathbf{S}
$$

