
’’the information manager from hell’’

2Domenik Ehlert 14.04.2023 | git primer

git is ...

a distributed (open source)
version control system that
tracks changes in a set of
computer files, ...

3Domenik Ehlert 14.04.2023 | git primer

git is a ...

"Global information tracker":
you're in a good mood, and it actually works for
you. Angels sing, and a light suddenly fills the
room.

"Goddamn idiotic truckload of sh*t":
when it breaks.

(github.com/git)

4Domenik Ehlert 14.04.2023 | git primer

git: Version control system

github &
gitlab:

Providers for git-based servers to
synchronise and backup git projects
+ Webfrontend

5Domenik Ehlert 14.04.2023 | git primer

Why use git?

Single User:
● Identify changes to files
● Preserve previous versions / no negative progress
● Keep track of changes, understand why you made

them

Multiple Users:
● Compare files
● Collaborate on a (coding) project

6Domenik Ehlert 14.04.2023 | git primer

An easy start – Single-User Git
Terminology:

● Repository: set of files and their histories managed by git
● Working tree / directory: list of all current files (tracked and untracked)
● Commit: full copy of the tracked files at some particular time, including a

timestamp, log message and link to ≥1 parent commits. Identified by a
unique 160-bit SHA1 hash.

● Index: staging area for changes before they are committed. Sits between
working directory and immutable object database of all previous commits.

● HEAD: reference for the currently checked-out commit.
● Checkout: replace working tree with files from a particular commit.
● Branch: named pointer to a particular commit. Making a commit

automatically advances the active branch.

3
pi

lla
rs

 o
f g

it

7Domenik Ehlert 14.04.2023 | git primer

8Domenik Ehlert 14.04.2023 | git primer

Typical Workflow

en.wikipedia.org/wiki/Git

9Domenik Ehlert 14.04.2023 | git primer

Typical Workflow

1. Figure our what has changed
since the last commit

2. Stage some / all of the changes

3. Commit changes, including a
short note

(4. Push changes to remote)

10Domenik Ehlert 14.04.2023 | git primer

Step 0: Starting a git repo
git init <project directory>

Initialise a new git repository (folder).

git clone <repo address>
“Copy” an existing repo from a
remote server.

11Domenik Ehlert 14.04.2023 | git primer

Step 1: What happened here?
git status

Let’s you know:

● Currently active branch

● Connection to remote-tracking

branches

● Unstaged, modified files

● Untracked files in working tree

12Domenik Ehlert 14.04.2023 | git primer

Tip:
Modify your .gitignore file to hide
irrelevant files from git status.

13Domenik Ehlert 14.04.2023 | git primer

Step 1: What happened here?
git diff <hash1> <hash2>

Shows the difference
between two commits.

w/o arguments: returns the
difference between HEAD
and the working tree.

git diff <filename>
Shows the changes made
to a file since HEAD.

git diff --stat
Shows number of changed
lines per file.

Pick a good text editor!

14Domenik Ehlert 14.04.2023 | git primer

Step 2: Stage modified files
git add <filename>

Stages a single file
for inclusion in the
next commit.

git add -u
Stages ALL MODIFIED
FILES for inclusion in
the next commit.

Note: Additional changes to a
staged file must be staged again.

15Domenik Ehlert 14.04.2023 | git primer

Step 3: Create a new commit
git commit -m ‘<Commit Message>’

Move changes from index (staging area
or “cache”) to the currently active local
branch. Advances branch pointer and
HEAD to latest commit.

git commit --amend
Apply additional, newly-staged changes
to the previous commit.

Use only for minor modifications!
Avoid amending pushed/public commits!

16Domenik Ehlert 14.04.2023 | git primer

Aside: View the history
git log --graph

See commit history, including
hash, branches
(local+remote), Author +
Email, timestamp and commit
message.

git show <hash>
Show all changes made in
that particular commit.

17Domenik Ehlert 14.04.2023 | git primer

Adding a remote server
git remote add <name> <address>

Verifying remote servers

git remote -v

18Domenik Ehlert 14.04.2023 | git primer

Add an ssh key

Our GitLab server is (apparently) set
up to require a public-private key pair
for access.

> need to generate an ssh key pair via
ssh-keygen -C <email>
> upload PUBLIC key to GitLab profile
> add private key to keychain with
ssh-add <private key>

NB: Can also use ssh
key for password-less
authentication with HPC!
> copy pubkey into
~/.ssh/authorized_keys
on server

> live demo

19Domenik Ehlert 14.04.2023 | git primer

Step 4: Push commit to remote
git push <remote_name> <branch>

Push a single branch to the
remote server.

git push --all
Push ALL branches to the remote
server.

git push –all --force
Push ALL branches to the remote
server and ignore merge conflicts
(CAREFUL!).

20Domenik Ehlert 14.04.2023 | git primer

Summary:
Getting started with
Git & GitLab

> live demo

21Domenik Ehlert 14.04.2023 | git primer

Receiving Commits:
Strict downstream

Assume a uni-directional workflow

Local PC GitLab HPC

push pull /
fetch

22Domenik Ehlert 14.04.2023 | git primer

Receiving Commits:
Strict downstream

git fetch origin
git checkout main
git reset --hard origin/main

Case 1: No
changes on HPC

git fetch origin
git checkout main
git merge origin/main

Case 2: Some irrelevant
changes on HPC

All flowcharts: atlassian.com/git/tutorials

23Domenik Ehlert 14.04.2023 | git primer

Merging and Rebasing
Now we have diverging
histories …
(after a git fetch origin)

There are two
different solutions:

git merge
origin/main

git rebase
origin/main

24Domenik Ehlert 14.04.2023 | git primer

Rebasing

Golden Rule of
Rebasing:
Never rebase
public branches!

25Domenik Ehlert 14.04.2023 | git primer

Rebasing - continued

Pro Tip:
Modify previous commits
with interactive rebase.

git rebase -i HEAD~n

n: # of commits to
be modified

> git opens a text editor to
define the modifications

26Domenik Ehlert 14.04.2023 | git primer

Resolving Merge Conflicts
Make sure HEAD is at the receiving branch!

I. Fast Forward Merge – if one branch is strictly ahead

Git simply integrates all of the changes from
the ‘Some Features’ branch into ‘Main’.

(git checkout main)

git merge
‘Some
Features’

27Domenik Ehlert 14.04.2023 | git primer

Resolving Merge Conflicts
II. Three-way Merge – for diverging histories

git merge
‘Some
Features’

Merge Conflict: If the same lines
where changed in both files.

Resolution depends on
merge strategy.

28Domenik Ehlert 14.04.2023 | git primer

Resolving Merge Conflicts
II. Three-way Merge – for diverging histories

Define merge option: git merge -X <option> <branch>

Standard merge strategy: ort (“Ostensibly Recursive’s Twin”)

In case of conflict
ours favour current version
theirs favour other version
<none> must resolve manually

29Domenik Ehlert 14.04.2023 | git primer

Resolving Merge Conflicts
II. Three-way Merge – for diverging histories

Resolve conflicts manually,
then git add the changed files
and git commit as usual.

git edits the files
and highlights
the conflicts.

Pick a good
text editor!

Note: A successful merge
does NOT guarantee that the
code makes sense.

atlassian.com/git/tutorials

30Domenik Ehlert 14.04.2023 | git primer

Additional Links
Git Tutorial
Git Reference
SSH Keys and GitLab
Oh My Git!

Best practices
● Commit regularly
● Write useful commit messages

(what, why & how)
● Avoid complicated merges by

keeping branches short-lived

https://www.atlassian.com/git/tutorials
https://git-scm.com/book/en/v2
https://docs.gitlab.com/ee/user/ssh.html
https://ohmygit.org/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

