
’’the information manager from hell’’
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git is ...

a distributed (open source) 
version control system that 
tracks changes in a set of 
computer files, ...



3Domenik Ehlert 14.04.2023 | git primer

git is a ...

"Global information tracker":
you're in a good mood, and it actually works for 
you. Angels sing, and a light suddenly fills the 
room.

"Goddamn idiotic truckload of sh*t": 
when it breaks.

(github.com/git)
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git: Version control system

github & 
gitlab:

Providers for git-based servers to 
synchronise and backup git projects
+ Webfrontend
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Why use git?

Single User:
● Identify changes to files
● Preserve previous versions / no negative progress
● Keep track of changes, understand why you made 

them

Multiple Users:
● Compare files
● Collaborate on a (coding) project
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An easy start – Single-User Git
Terminology:

● Repository: set of files and their histories managed by git
● Working tree / directory: list of all current files (tracked and untracked)
● Commit: full copy of the tracked files at some particular time, including a 

timestamp, log message and link to ≥1 parent commits. Identified by a 
unique 160-bit SHA1 hash.

● Index: staging area for changes before they are committed. Sits between 
working directory and immutable object database of all previous commits.

● HEAD: reference for the currently checked-out commit.
● Checkout: replace working tree with files from a particular commit.
● Branch: named pointer to a particular commit. Making a commit 

automatically advances the active branch.

3 
pi

lla
rs

 o
f g

it



7Domenik Ehlert 14.04.2023 | git primer



8Domenik Ehlert 14.04.2023 | git primer

Typical Workflow

en.wikipedia.org/wiki/Git
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Typical Workflow

1. Figure our what has changed 
since the last commit

2. Stage some / all of the changes

3. Commit changes, including a 
short note

(4. Push changes to remote)
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Step 0: Starting a git repo
git init <project directory>

Initialise a new git repository (folder).

git clone <repo address>
“Copy” an existing repo from a 
remote server.
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Step 1: What happened here?
git status

Let’s you know:

● Currently active branch

● Connection to remote-tracking 

branches

● Unstaged, modified files

● Untracked files in working tree
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Tip:
Modify your .gitignore file to hide 
irrelevant files from git status.
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Step 1: What happened here?
git diff <hash1> <hash2>

Shows the difference 
between two commits.

w/o arguments: returns the 
difference between HEAD 
and the working tree.

git diff <filename>
Shows the changes made 
to a file since HEAD.

git diff --stat
Shows number of changed 
lines per file.

Pick a good text editor!
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Step 2: Stage modified files
git add <filename>

Stages a single file 
for inclusion in the 
next commit.

git add -u
Stages ALL MODIFIED 
FILES for inclusion in 
the next commit.

Note: Additional changes to a 
staged file must be staged again.
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Step 3: Create a new commit
git commit -m ‘<Commit Message>’

Move changes from index (staging area 
or “cache”) to the currently active local 
branch. Advances branch pointer and 
HEAD to latest commit.

git commit --amend
Apply additional, newly-staged changes 
to the previous commit.
-----------------------------------------------------
Use only for minor modifications!
Avoid amending pushed/public commits!



16Domenik Ehlert 14.04.2023 | git primer

Aside: View the history
git log --graph

See commit history, including 
hash, branches 
(local+remote), Author + 
Email, timestamp and commit 
message.

git show <hash>
Show all changes made in 
that particular commit.
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Adding a remote server
git remote add <name> <address>

Verifying remote servers

git remote -v
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Add an ssh key

Our GitLab server is (apparently) set 
up to require a public-private key pair 
for access.

> need to generate an ssh key pair via 
ssh-keygen -C <email>
> upload PUBLIC key to GitLab profile
> add private key to keychain with
ssh-add <private key>

NB: Can also use ssh 
key for password-less 
authentication with HPC!
> copy pubkey into 
~/.ssh/authorized_keys 
on server

> live demo
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Step 4: Push commit to remote
git push <remote_name> <branch>

Push a single branch to the 
remote server.

git push --all
Push ALL branches to the remote 
server.

git push –all --force
Push ALL branches to the remote 
server and ignore merge conflicts 
(CAREFUL!).
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Summary:
Getting started with 
Git & GitLab

> live demo
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Receiving Commits: 
Strict downstream

Assume a uni-directional workflow

Local PC GitLab HPC

push pull / 
fetch
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Receiving Commits: 
Strict downstream

git fetch origin
git checkout main
git reset --hard origin/main

Case 1: No 
changes on HPC

git fetch origin
git checkout main
git merge origin/main 

Case 2: Some irrelevant 
changes on HPC

All flowcharts: atlassian.com/git/tutorials
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Merging and Rebasing
Now we have diverging 
histories …
(after a git fetch origin)

There are two 
different solutions:

git merge 
origin/main

git rebase 
origin/main
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Rebasing

Golden Rule of 
Rebasing:
Never rebase 
public branches!
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Rebasing - continued

Pro Tip:
Modify previous commits 
with interactive rebase.

git rebase -i HEAD~n

n: # of commits to 
be modified

> git opens a text editor to 
define the modifications
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Resolving Merge Conflicts
Make sure HEAD is at the receiving branch!

I. Fast Forward Merge – if one branch is strictly ahead

Git simply integrates all of the changes from 
the ‘Some Features’ branch into ‘Main’.

(git checkout main)

git merge 
‘Some 
Features’
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Resolving Merge Conflicts
II. Three-way Merge – for diverging histories

git merge 
‘Some 
Features’

Merge Conflict: If the same lines 
where changed in  both files.

Resolution depends on 
merge strategy.
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Resolving Merge Conflicts
II. Three-way Merge – for diverging histories

Define merge option: git merge -X <option> <branch>

Standard merge strategy: ort (“Ostensibly Recursive’s Twin”)

In case of conflict
ours favour current version
theirs favour other version
<none> must resolve manually
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Resolving Merge Conflicts
II. Three-way Merge – for diverging histories

Resolve conflicts manually, 
then git add the changed files 
and git commit as usual.

git edits the files 
and highlights 
the conflicts.

Pick a good 
text editor!

Note: A successful merge 
does NOT guarantee that the 
code makes sense.

atlassian.com/git/tutorials
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Additional Links
Git Tutorial
Git Reference
SSH Keys and GitLab
Oh My Git!

Best practices
● Commit regularly
● Write useful commit messages 

(what, why & how)
● Avoid complicated merges by 

keeping branches short-lived

https://www.atlassian.com/git/tutorials
https://git-scm.com/book/en/v2
https://docs.gitlab.com/ee/user/ssh.html
https://ohmygit.org/
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