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a b s t r a c t 

Proliferation of multi-national corporations and extremely competitive business environ- 

ments have led to an unprecedented demand for third-party logistics services. However, 

recent studies on the vehicle routing problem (VRP) have considered only simple con- 

straints. They also do not scale well to real-world problems that are encountered in the 

logistics industry. In this paper, we introduce a novel vehicle routing problem with time 

window and pallet loading constraints; this problem accounts for the actual needs of busi- 

nesses in the logistics industry such as the delivery of consumer goods and agricultural 

products. To solve this new VRP, we propose a hybrid approach by combining Tabu search 

and the artificial bee colony algorithm. A new benchmark data set is generated to ver- 

ify the performance of the proposed algorithm because the proposed VRP has never been 

reported in the literature. Experiments are performed for a data set of Solomon’s 56 ve- 

hicle routing problem with time windows. Our approach is superior to a number of other 

heuristic algorithms in a comparison on Solomon’s VRPTW instances. 

© 2017 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

The vehicle routing problem (VRP) is a classical problem from the logistics and transportation fields. It is concerned

with route planning for vehicles that start from a central depot and go to a set of customers. Due to its wide range of

applications in both commercial and public entities, the VRP is considered to be one of the most important problems in

operational research [5] . The VRP was first proposed by Dantzig and Ramser [11] . Further improvements and variants of this

problem have been extensively studied in recent years. Although various objectives were introduced to the classical VRP in

recent years, the majority of these variants were mostly related to the addition of new constraints to the original problem.

For example, pallet and time window are the two constraints that are most often used by a variety of researchers in the

VRP. In the pallet constraint, goods of different sizes must be transported in boxes of standard size and limited capacity.

In the time window constraint, goods must be delivered during a certain time window. A number of studies related to the

above constraints have been reported in the literature. For pallet constraints, Leung et al. [25] solved heterogeneous fleet

VRPs with two-dimensional loading constraints by using simulated annealing. Wei et al. [39] proposed an adaptive variable

neighborhood search for a heterogeneous fleet VRP with three-dimensional loading constraints. For VRPs with time window

constraints, Cherkesly et al. [6] developed branch-price-and-cut algorithms for the pickup and delivery problem with time
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E-mail addresses: dfzhang@xmu.edu.cn (D. Zhang), 277970699@qq.com (F. Ye). 

http://dx.doi.org/10.1016/j.ins.2017.02.028 

0020-0255/© 2017 Elsevier Inc. All rights reserved. 

http://dx.doi.org/10.1016/j.ins.2017.02.028
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ins
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ins.2017.02.028&domain=pdf
mailto:dfzhang@xmu.edu.cn
mailto:277970699@qq.com
http://dx.doi.org/10.1016/j.ins.2017.02.028


168 D. Zhang et al. / Information Sciences 394–395 (2017) 167–182 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

windows and multiple stacks. Hifi and Wu [17] solved the VRP with time windows by considering the number of vehicles

and the total distances in order. Gong et al. [15] developed a discrete particle swarm optimization approach for the vehicle

routing problem with time windows. 

However, these two constraints are normally considered separately in the existing research. In reality, both constraints

co-exist in transportation problems. How to address the daily dispatching problem is generally recognized as the primary

concern of most logistic companies. However, when designing simple VRPs, researchers often neglect some of the constraints

that are encountered in real-world scenarios. In most situations, these constraints are considered separately. Therefore, VRPs

that involve a single constraint usually suffer from several drawbacks. For example, the VRP with time windows focuses on

constructing routes without accounting for the properties of the items to be shipped. Although there are VRPs with time

windows that consider the capacity of vehicles, they still ignore the actual physical dimensions of the items. On the other

hand, the VRPs with the pallet constraint focus only on constructing routes that have feasible loading conditions without

considering the time factor. Due to the omission of the time factor, for some real-world scenarios, goods might not be

delivered to the customers on time. Therefore, it is necessary to further investigate the realistic situations for the VRP by

accounting for both the time window and pallet constraints (the three-dimensional loading problem in particular). 

To the best of our knowledge, the VRP with both time window and three-dimensional loading constraints has been

addressed only in the work of Zachariadis et al. [43] . The problem defined in [43] has specific constraints and includes a

mix of different request types. This VRP (proposed in [43] ) might not meet the dispatching requirements of some logistics

companies, especially from the electronic commerce area. The reason is that the VRP proposed in [43] considers both pick-

up and delivery activities, whereas logistics companies from electronic commerce usually concern the dispatching service

only. 

The problem introduced in this paper can be considered to be a VRP that includes two types of constraints: the time

window and three-dimensional loading constraints. In contrast to [43] , the problem addressed in this paper more closely

mimics the real-world situations because it accounts for both the actual needs of the businesses (detailed below) and the

unique types of depots and customers. 

For the first type of constraint, the depot and customers are specified with a time window that includes exact start and

end times. This means that vehicles must depart and return within the depot’s work time window. A vehicle must also visit

a customer between the specified start and end times. If a vehicle arrives before the start time of a customer, any unloading

will be postponed until the customer is available. 

In addition to the basic space constraint, other three-dimensional loading constraints, such as the fragility, supporting

surface, and order of unloading, are also considered. Businesses involved in the shipping of electrical appliances and the

distribution of fresh agricultural products can greatly benefit from the proposed solution because the proposed approach

considers not only the time window but also the three-dimensional loading constraints from real-world scenarios. For the

VRP with only the loading constraint, a container loading problem can be adopted to validate the feasibility of the loading.

However, for the VRP with time window and pallet loading constraints (VRPTWP), the loading problem can be considered to

be a three-dimensional bin loading problem in which a fixed number of rectangular items are loaded into larger rectangular

boxes [16] . 

Earlier works on the VRP were based mainly on the exact approaches. At the same time, rapid developments in the

logistics industry and the dynamic nature of today’s business environment had a significant impact on the scale and com-

plexity of the VRPs. Clearly, traditional exact approaches might not be able to match the scale of real-world situations. This

circumstance has led to the development of heuristic/metaheuristic algorithms for the VRP. Tabu search is one of the most

important methods in early research on heuristics. One of the earliest reports on solving the VRP using Tabu search was

proposed by Gendreau et al. [13] .Since then, many researchers have used Tabu search to solve VRPs. Tabu search and unified

Tabu search were used by Taillard et al. [34] and Cordeau et al. [9] to solve VRPs with soft time windows as well as VRPs

with time windows. Leung et al. [26] applied extended guided Tabu search and a new packing algorithm for the VRP with

the two-dimensional loading constraint. The artificial bee colony algorithm introduced by Karaboga in [20] is a new and

excellent algorithm for NP-hard problems. Over the past ten years, approaches based on the artificial bee colony algorithm

have been increasingly adopted by researchers to solve VRPs. In [33] , Szeto et al applied the artificial bee colony algorithm

to solve the capacitated VRP. Later, Yao et al. [40] proposed an artificial bee colony algorithm with a scanning strategy for

the periodic VRP. At the same time, other heuristics, such as simulated annealing [21] and genetic algorithms [18] , have

also been widely used to solve VRPs. Hybrid approaches that combine different metaheuristics were used to solve VRPs as

well; for example, Bortfeldt et al. [4] described a hybrid algorithm for the VRP that involves clustered backhauls and loading

constraints. Beheshti and Hejazi [3] proposed a hybrid algorithm of column generation and metaheuristics for variants of

the VRP. Zhang et al. [45] developed a hybrid algorithm by combining an evolutionary local search with the recombination

method for the VRP with three-dimensional loading constraints. Akpinar [1] proposed a hybrid large neighborhood search

algorithm for the capacitated VRP. 

The main contributions of our work are two-fold. First, we consider a new variant of the VRP that involves loading and

time window constraints. This variant is designed to mimic real-world scenarios from the logistics industry, combining the

two constraints for the first time. In contrast with previous research, we address the loading constraint with an efficient

method. Second, we propose a hybrid algorithm by combining Tabu search and the artificial bee colony algorithm (Tabu-

ABC). The performance of the algorithm was evaluated against other heuristics on a set of Solomon’s 56 VRP with time

windows (VRPTW). The novel hybrid algorithm takes advantage of two heuristics and performs more efficiently, which pro-
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Fig. 1. An illustration of VRPTW routing. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

vides a potential approach for problems in other domains. In addition, the set of benchmark data generated for the VRPTWP

from this work can be adopted by other interested parties for further research in this area. 

The remainder of this paper is organized as follows. In Section 2 , the VRPTWP is introduced in detail. In Section 3 , we

describe the new hybrid algorithm (Tabu-ABC) in detail. In Section 4 , the computational results of the proposed algorithm

are reported, and finally, we conclude our work in Section 5 . 

2. The problem 

Let G ( V, A ) be an undirected graph, where V = {0 , 1 , …, n } is the set of vertices and A is the set of edges. Let C ij be the

transportation cost between vertices i and j . Vertex 0 in V is called the depot. The main objective of solving the VRP is to

search for a solution that covers the shortest distance but traverses every vertex. The traversal must start and end at the

depot. 

Recall that the VRP to be addressed in this paper accounts for both the time window and loading constraints to reflect

real-world situations. In this context, we assume that there is a customer at each vertex and that each customer needs a

set of items from the depot. Each set of items is specified with a pre-defined total weight. Each item can be considered to

be a three-dimensional cuboid of length l i , width w i and height h i . At the depot vertex, there are some vehicles available

for carrying goods, and each of them has a fixed loading space (a container) of dimension L ×W ×H , where L, W and H are

the length, width and height of the loading space, respectively. In addition, each vehicle is specified with a weight capacity

D . Each vertex can be either the depot or a customer, and each has a specific work time window [ t si , t ei ] and work time t i .

In addition, all of the work at a specific vertex must be performed within each vertex’s work time window. An example of

time window in a route is given in Fig. 1 . 

In the VRPTWP, the following conditions must be met to satisfy the loading constraints: 

(i) Each customer (vertex) is visited only once. In other words, one customer belongs to only one route. 

(ii) All of the routes must start and end at the depot. 

(iii) All of the routes must depart and return within the time window of the depot. 

(iv) All of the customers (vertices) are available during their work time window. 

(v) All of the items that are needed by the customers in a route are loaded onto the vehicle that serves that route. 

Before a vehicle can depart from the depot, it is necessary to ensure that all of the needed items are loaded on the

vehicle. This can be considered as a process for verifying the feasibility of the three-dimensional loading problem while

accounting for the following conditions: 

(i) All of the items must be completely loaded and fit into the container of a vehicle, i.e., the edges of the items and the

container do not intersect one another. 

(ii) Items are not allowed to overlap. 
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(iii) The bottom of each item must be sufficiently supported by the bottom of the other items or by the bottom of the

container. 

(iv) The surface of each item must be in parallel with the surface of the container. 

In addition to the above basic conditions, we add the following conditions to better reflect real-world situations: 

(v) Orientation: The items have fixed vertical orientation, which means that they have fixed bottom surfaces. 

(vi) Capacity: The sum of the items’ weights is less than or equal to the vehicle’s loading capacity. 

(vii) Fragility: Nonfragile items cannot be loaded on top of fragile items. 

(viii) LIFO: If customer i is visited earlier than customer j , then the items of customer j should be packed earlier than those

of customer i . 

Mathematically, our objective is to find a minimum travel distance, which can be expressed as follows: 

min 

r ∑ 

i =1 

( 

n i −1 ∑ 

j=1 

C j ( j+1 ) 

) 

(1) 

where r is the number of routes (the number of vehicles is equal to the number of routes because each vehicle serves a

unique route), n i is the number of vertexes in route i , and C j ( j +1 ) denotes the cost of traveling from vertex j to vertex j + 1

(in this paper, the traveling cost is equal to the distance). 

The time windows constraints can be described as follows: 

t ai < t ei (2) 

where 

t ai = t l ( i −1 ) + t C i ( i −1 ) , (3) 

t li = 

{
t ai + t i , i f t ai > t si 

t si + t i , otherwise 
(4) 

where t si and t ei are the start and end times of vertex i in the route, t ai is the time that the vehicle arrives at vertex i, t li is

the time that the vehicle leaves from vertex i, t i is the time cost of working for vertex i in the route, and t C i ( i −1 ) is the time

cost of traveling from vertex i to vertex i–1. 

Because the loading constraint is met with many conditions and handled with a heuristic algorithm, there is no need

to provide the mathematical formulation for this constraint. Note that the VRPTWP can be considered as a combination of

two NP-hard sub-problems. Therefore, the VRPTWP can be classified as a more difficult NP-hard problem. In the following

section, we describe a heuristic algorithm to address this problem. 

3. The proposed approach 

According to the description given in Section 2 , the VRPTWP can be treated as a combination of a VRP with three-

dimensional loading and time window constraints. In this section, a two-stage approach is proposed. First, we consider

multiple strategies to solve the three-dimensional loading problem. Next, a hybrid algorithm is used to solve the VRPTW by

combining Tabu search with an artificial bee colony approach. 

3.1. Three-dimensional loading problem 

One of the key aspects of the proposed approach is the use of an innovative method to judge whether boxes (items) that

are needed by customers along a route can be loaded onto the vehicle. Such a feasibility test has a significant effect on the

outcome because it is repeatedly invoked by the main algorithm described in Section 3.2 . 

3.1.1. Loading positions 

The container (of a vehicle) is placed in a three-dimensional system of coordinates (see Fig. 2 .), and the origin of the

coordinates is located at the bottom-left corner of the container. L, W and H represent the length, width and height of the

container. To fully utilize the available space, the boxes to be loaded are required to be close to the container or to the

boxes that are already loaded. Because the boxes can be rotated in the horizontal direction, when a box i of length l i , width

w i and height h i is being loaded into the container, its values along the x, y and z axes 〈 l i ’, w i ’, h i ’ 〉 can be considered to

be 〈 l i , w i , h i 〉 or 〈 w i , l i , h i 〉 . 
We denote B = { b 1 , b 2 ,…, b n } as a set of boxes. First, b 1 will be loaded if there is an available loading position at (0, 0,

0) . Next, there are three available loading positions for b 2 , namely, ( l 1 ’, 0, 0), (0, w 1 ’, 0) and (0, 0, h 1 ’ ). Suppose that b 2 is

loaded at position ( l 1 ’, 0, 0); then, ( l 1 ’, 0, 0) is deleted, and another three available loading positions ( l 1 ’ + l 2 ’, 0, 0), ( l 1 ’, w 2 ’,

0) and ( l 1 ’, 0, h 2 ’ ) will be generated. Therefore, five loading positions are now available for b 3 . In the general case, if the i th 

box is loaded at location ( x, y, z ), then ( x, y, z ) will be deleted from the available loading positions list. Subsequently, ( x + l i ’,

y, z ), ( x, y + w ’, z ) and ( x, y, z + h ’ ) will be added to the available loading positions list (see Fig. 1 .). When a box is loaded,
i i 
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Fig. 2. Updating process of loading positions. 

Algorithm 1 Verifying the feasibility of three-dimensional loading. 

PalletisationFeasibility( B , Vehicle) 

1. I = {(0, 0, 0)}, Lz = Lx = 0 ; 

2. for i = 0 to n 

3. flag = false; 

4. for ( x, y, z ) ∈ I 
5. if x + l i 

′ ≤ Lx, z + h i 
′ ≤ Lz and b i can be loaded on ( x, y, z ) 

6. flag = true, go to line 19; 

7. if Lx = 0 or Lx = L 

8. if b i can be loaded on (0, 0, Lz ) 

9. x = 0 , y = 0 , flag = true, z = Lz, Lz = Lz + h i ’ , Lx = l i ’ ; 

10. else 

11. Lz = H, Lx = L, i = i – 1; 

12. else 

13. for ( x, y, z ) ∈ I 
14. if x = Lx and y = 0 

15. if z + h i 
′ ≤ Lz and b i can be loaded on ( x, y, z ) 

16. Lx = Lx + l i ’ , flag = true, go to line 19; 

17. else 

18. Lx = L, i = i – 1; 

19. if flag = true 

20. load b i on ( x, y, z ), I = I/ ( x, y, z ), move b i with the translational 

operator and mark b i ’ s new position ( x’, y’, z’ ), I = I ∪ ( x’ + l i ’, y’, z’ ), ( x’, y’ + w i ’, z’ ), 

( x’, y’, z’ + h i ’ ); 

21. else 

22. return false; 

23. return true ; 

 

 

 

 

 

 

 

 

 

 

 

 

 

an available loading position will be deleted, and three new available loading positions will be added. Therefore, there will

be 2( i -1) + 1 available loading positions for box b i . If b i cannot be loaded to any of the available loading positions, then it is

assumed that boxes { b 1 , b 2 ,…, b n } cannot be packed in the container. 

3.1.2. Reference line 

Two reference lines are considered in this study to control the used space and to pack efficiently. Lz and Lx denote the

two reference lines for the z axis and x axis, respectively. When checking whether box b i can be loaded at position ( x, y, z ),

we must ensure that the conditions stated in Section 2 are not violated. In addition, loading must also satisfy the conditions

z + h i < Lz and x + l i < Lx . Once an available loading position is deemed to be feasible, b i will be loaded, and the available

loading positions list will be updated. The following two situations are considered when none of the positions are available:

(1) If Lx < L, Lx will be increased to L ; (2) if Lz < H, Lz will be increased to H . If a feasible position for b i is not found after

( 1 ) and ( 2 ), then we can conclude that the boxes cannot be packed into the container. 

3.1.3. Translational operator 

Once an available loading position is chosen and the box is loaded, the position of the box will be adjusted by decreasing

the values of x, y , and z until it is blocked by other boxes or the container. 

3.1.4. Loading algorithm 

In this paper, we adopt the loading algorithm ( Algorithm 1 ) from [44] . I is a list of available loading positions, which are

sorted in increasing order based on x. The parameters y and z are used to break ties when the values of x for the loading

positions are the same. We maintain the order of the list I while it is updated. Additionally, a flag variable is used to express

whether a box can be loaded into the container or not. The loading algorithm accepts the ordered boxes B and the container

of the vehicle as the inputs. The algorithm will return true if all of the boxes can be loaded into the container. 
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Algorithm 2 Initialization of VRPTWP. 

Initialization (C) 

1. Route _ Num = 0 , c = C, S = φ; 

2. while c 	 = φ

3. Select customer c i from C randomly. 

4. if Route_Num = 0 

5. Route_num = Route_num + 1; 

6. Generate a new route s, S = S + s; 

7. Insert c i to s, c = c/ c i ; 

8. else if c i can be inserted into a route in S 

9. Select s that causes least increase of cost after insertion; 

10. Insert c i into s in the position that causes least increase of cost after insertion; 

11. c = c/ c i ; 

12. else 

13. Route_num = Route_num + 1; 

14. if Route_num > number of vehicles 

15. Go to line 1; 

16. else 

17. Generate a new route s, S = S + s; 

18. Insert c i to s, c = c/ c i ; 

C is the set of customer, S is the set of routes and Route_Num is the number of routes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

First, the original available loading position is set to (0, 0, 0), and Lz and Lx are initialized to 0. The boxes are readied in

such a way that they can be loaded into the container in order. In this algorithm, each box is first tested to see whether it

can be loaded into the container without exceeding the reference lines. If it cannot be loaded, then the algorithm changes

the value of Lx . When Lx is equal to 0 or L , the algorithm increases Lz . When Lz is equal to H and if the box still cannot

be loaded, the algorithm increases Lx . When the algorithm attempts to increase the value of Lx , all of the positions that

satisfy x = Lx and y = 0 are tested for the ability to load the box. Once Lx is equal to L and the box cannot be loaded, the

algorithm returns false . When a box is loaded successfully, the selected loading position is deleted from the list I . After the

box is moved with adjusting of the position, three new available loading positions are generated. The algorithm will return

true if all of the boxes are loaded successfully; otherwise, it will return false . 

3.2. Overall structure of the VRPTWP solution 

Recall that the VRPTWP consists of two problems, namely, the VRP with three-dimensional loading constraints (3L-CVRP)

and the VRPTW. Because the former problem was addressed in Section 3.1 , we are now ready to solve the VRPTWP. In our

approach, we use a local search to improve the solution. We define six neighborhood structures. One of them is randomly

selected during each iteration, and the algorithm attempts to find a better solution, which has a lower cost, during each

iteration. However, this strategy could lead the algorithm to be trapped in a local optimum. To avoid local optima, we adopt

the Tabu search and artificial bee colony algorithms. 

3.2.1. Construction of the initial VRPTWP solution 

Our algorithm begins by generating an initial feasible solution (explained below). Once this initialization step is com-

pleted, further improvement can be performed to achieve better results. Note that all of the constraints described in Section

2 must be satisfied by this initial solution. 

In this algorithm, customers are randomly inserted into the routes one by one. During the insertion process, the customer

is inserted at the position where the increase in cost is minimal provided that all of the constraints mentioned in Section

2 have been satisfied. After a new customer is inserted and if all existing routes cannot be assigned for that customer, a

new route will be set up. If the total number of routes exceeds the number of available vehicles, the algorithm will restart.

Otherwise, the algorithm continues until all of the customers are processed. The process of construction is described in

Algorithm 2 . 

3.2.2. Neighborhood solutions 

When we attempt to find a better solution, we can reassign the positions of the vertices along different routes to con-

struct a new solution. At each step, we choose a neighborhood structure randomly. Six neighborhood structures are applied

in this paper and are defined as follows: 

(i) Swapping : In this strategy, the locations of two customers are exchanged. Two customers can be either on the same

route (see Fig. 3 (a).) or on different routes (see Fig. 3 (b).). 

(ii) Relocation : With this strategy, a customer is moved to another position. The new position can be on its original route

(see Fig. 3 (c).) or on different route (see Fig. 3 (d).). 

(iii) Routes swapping : Each route is divided into two sub-routes by a vertex (customer). The two sub-routes (the part that

is visited after the specific vertex) of the two routes are exchanged entirely (see Fig. 3 (f).). 
(iv) Route reversal : A sub-route reverses the order of customers (see Fig. 3 (e).). 
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Fig. 3. Neighborhood structures. 
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3.2.3. Tabu-ABC 

Tabu-ABC is a combination of the Tabu search and artificial bee colony algorithm. It uses Tabu search to rapidly generate a

high quality solution that is used by the artificial bee colony algorithm. At the same time, the artificial bee colony algorithm

takes advantage of Tabu search to increase the variety of food sources. 

Tabu search is designed to search for the best solution in its neighborhood, even if there is no better solution. This

approach could pose the risk of getting stuck in a local optimum ( Fig. 4 ). A, B, C and D are four different solutions. In A’s

neighborhood, B is the best solution. C is the best solution in B’s neighborhood, and A is the best in C’s neighborhood.

According to the proposed algorithm, the best solution that is found can only be B, C and A. In this situation, the local

search becomes trapped in a loop, and the solution cannot be improved further. Although D is the true best solution, it is

missed by the algorithm. This case highlights the problem of the search being trapped in a local optimum. 

To avoid this trap, a Tabu list is introduced to prohibit previously visited customers from being revisited by the algorithm.

Once we have found a better solution with the neighborhood structure, all of the recently exchanged customers are inserted

into a Tabu list. In the subsequent iterations of searching, these customers will not be selected unless the algorithm can
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Algorithm 3 The framework of Tabu-ABC. 

Tabu-ABC 

1. Find original food sources x i , i = 1 , 2 , . . . , n , with initialization; 

2. Evaluate the fitness of each food source f ( x i ) , i = 1 , 2 , . . . , n ; 

3. Improve the fitness of food sources with Tabu search (Searching for new food sources in neighborhood, if a new food source is better than old 

one and not in the Tabu tenure, replace the old one with it); 

4. No update times: l 1 = l 2 = · · · = l n = 0 ; 

5. While not satisfy termination condition do 

6. Employed bees stage: search x i 
′ in neighborhood of x i , if f ( x i 

′ ) is greater than f ( x i ), replace x i with x i 
′ , l i = 0 ; else l i = l i + 1 ; 

7. Onlookers stage: Select a x i 
′ according to the traditional roulette wheel selection; find the best x i 

′ in neighborhood of x i , if f ( x i 
′ ) is greater 

than f ( x i ), replace x i with x i 
′ , l i = 0 ; else l i = l i + 1 ; 

8. Scout bees stage: for each food source x i , if l i = limit , find a new food sources that similarity with all existed food sources is lower than the 

predetermined limit, and replace x i with it; 

9. End while . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

obtain a solution that is better than the current best solution. The maximum length of the Tabu list is called the Tabu

tenure. 

The artificial bee colony algorithm is a class of swarm intelligence techniques. Honey bees from the algorithm are clas-

sified into three types: employed bees, onlookers and scouts. The job of employed bees is to exploit the food sources. They

gather and share information with the onlookers. According to the information shared by the employed bees, the onlookers

select a food source that has a higher quality. Hence, food sources that have good quality will be chosen by the onlook-

ers. The scout bees randomly explore new food sources. When the onlookers and scout bees find a new food source, they

become employed bees. 

Because Tabu search starts with a random solution, its performance can be easily influenced by the initial solution.

Therefore, we introduce the artificial bee colony algorithm to alleviate this shortcoming. The artificial bee colony algorithm

can generate a set of initial solutions for Tabu search by eliminating the influence of the initial solution. Because Tabu search

can assist the artificial bee colony in generating better food sources, a hybrid algorithm (Tabu-ABC) is proposed in this paper.

Tabu-ABC ( Algorithm 3 ) starts by generating random solutions as food sources and associating each source with em-

ployed bees. Before this associating event, Tabu search is applied to improve the initial solutions (food sources). Then, each

employed bee determines new food sources in the neighborhood of its associated food source. If it finds a new and better

food source, it will switch from the old source to the new source. After all of the employed bees finish their work, which

occurs at a fixed iteration, they share their information with the onlookers. The onlookers then select food sources accord-

ing to the traditional roulette wheel selection method. After the onlookers have selected their food sources, they explore,

as well as evaluate, food sources that are nearby to the chosen food source. For each old food source, if a new and better

food source is found, the old source is replaced by the new source. Additionally, a food source is abandoned if it has not

shown improvement in a predefined number of iterations. At that time, the employed bee is transformed into a scout and

will be associated with a new food source. Here, we apply the Tabu approach again. The similarity of new food sources

and old food sources cannot exceed a predefined threshold. New food sources are randomly generated until one of them

satisfies the similarity condition. In the context of VRPTWP as stated in this paper, route a’s similarity to route b is defined

as the length of their longest common subsequence divided by the length of route a. Solution A’s similarity to solution B

is the average of the highest similarities of each of A’s routes to B’s routes. The algorithm is terminated when it reaches a

predefined number of iterations. 

4. Computational results 

To obtain effective solutions for the VRPTWP and to provide a basis of comparison for further study, we construct a set of

benchmarks for the VRPTWP and report their computational results. To generate the benchmarks, we combine two famous

instances. The first is the set of instances proposed in [14] for the 3L-CVRP, and the other is the well-known instances of

the VRPTW introduced by Solomon [32] . The position information in the 3L-CVRP instances is replaced one by one with

the 27 instances (C1, C2, and R101 - R110) of Solomon. At the same time, the time window information is also imported.

To maintain the feasibility of the instances, the maximum number of vehicles allowed is double. We generated a set of

benchmarks 1 and tested the proposed approach. We believe that the computational results obtained can be used as baseline

approaches for any future developments in this field. 

In this section, the computational results on the VRPTWP and VRPTW are presented. The proposed algorithm is coded in

C ++ and runs on a machine with an Intel Core i5 CPU, 2.6 GHz/8 G of RAM. 
1 https://github.com/maomiT/VRPTWP 

https://github.com/maomiT/VRPTWP
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Fig. 5. Process of Tabu search on some instances. 

Fig. 6. Results on different Tabu tenure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.1. Sensitivity analysis of the parameters 

To analyze the influence of the parameters, we performed many experiments with different settings. To find the relation-

ship between the time consumption and the quality of the solutions, we applied Tabu search on four instances with 800

iterations in 10 runs. Fig. 5 presents the process of Tabu search on instances r104, r208, rc104 and rc208. The horizontal

and vertical axes represent the number of iterations and the total travel distance (the cost of the solution). Fig. 5 shows that

the improvements achieved are very small after 300 iterations. The lowest total travel distances found for each instance

are 1037.95, 758.38, 1224.74 and 946.74, respectively. In Fig. 6 , the average results from different Tabu tenures are shown.

Obviously, the travel distance with the Tabu tenure of 30 is shorter than the travel distance with the other Tabu tenures

in most cases. To test more parameters of Tabu-ABC, Fig. 7 presents the influence of the update restriction (the maximum

allowable number of iterations without an update), and Fig. 8 presents the influence of the similarity restriction (the least

similarity that allows scout bees to accept a new source). According to Fig. 7 , the update restriction and similarity restriction

show little influence on the final results. Although different values of the update restriction could cause a large influence on

specific instances (such as r104 and rc208), they still show similar results on average. When the similarity restriction is 0.7,

the average result of the four instances is the shortest, and the results are similar to the other sets. In fact, according to the

figures, we can find that Tabu-ABC is robust, and the parameters show a minor effect on the total travel distance. For the

time cost, for each test on the VRPTWP instance, the length of the Tabu tenure is set to 30, and Tabu search is conducted

for 300 iterations. The group size of the food sources is also set to 10, and the limit of the number of no updating iterations

is set to 10 n ( n is the number of customers). The limit on the sources’ similarity is set to 0.7, and the ABC is conducted for

50 n iterations. For each test on the VRPTW, Tabu search is conducted for 500 iterations, while the population size of the

food sources is set to 20. The ABC is conducted for 200 n iterations, and the other parameters’ settings are the same as the

settings on the VRPTWP instances. The parameter settings are shown in Table 1 . 
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Fig. 7. Results on different update restriction . 

Fig. 8. Results on different similarity restriction . 

Table 1 

Parameter settings. 

Tabu tenure 30 

Tabu search iteration times 300 in the VRPTWP and 500 in the VRPTW 

Group size of food sources 10 in the VRPTWP and 20 in the VRPTW 

Limit of no update times 10 n, n = the number of customers 

The limit of sources’ similarity 0 .7 

ABC iteration times 50 n in the VRPTWP and 200 n in the VRPTW 

n = the number of customers 

 

 

 

 

 

 

 

 

4.2. Computational results on the VRPTWP instances 

The results on the VRPTWP are presented in Table 2 , in which “NV” represents the number of vehicles, “TD” means the

total travel distance (solution cost), and “CPU” denotes the computational time (in second). The algorithm has allocated 10

independent runs for each instance. The proposed Tabu-ABC algorithm is computationally expensive because it addresses

three-dimensional loading problems. Some computational results on the three-dimensional loading problem are presented 

in [44] . According to Table 2 , a greater fleet size does not necessarily result in a greater cost. As seen in VRPTWP15 and

VRPTWP22, the lowest cost actually results in a greater fleet size compared with the average fleet size over all of the runs.

Similar situations are shown in Tables 5 and 6 . In fact, the cost of buying more vehicles is far cheaper than the cost of

traveling more distance in the long term. 

4.3. Computational results on the VRPTW instances 

The main contributions of our work consist of the new VRPTWP problem and a novel strategy called Tabu-ABC. To

evaluate the performance of the algorithm, we performed extensive experiments on the set of Solomon’s 100 customers
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Table 2 

Results of the VRPTWP. 

Data 

set 

Best Mean 

Gap Sd CPU 
NV TD NV TD 

VRPTWP01 5 322 .33 5 322 .33 0 0 325 .10 

VRPTWP02 5 295 .29 5 299 .89 0 .02 3 .61 232 .28 

VRPTWP03 5 303 .60 5 303 .60 0 0 430 .27 

VRPTWP04 6 380 .19 6 380 .80 0 0 .57 371 .88 

VRPTWP05 7 416 .35 7 417 .66 0 2 .95 545 .72 

VRPTWP06 7 408 .99 7 409 .09 0 0 .07 306 .38 

VRPTWP07 7 407 .91 7 409 .89 0 1 .81 604 .70 

VRPTWP08 7 425 .90 8 425 .90 0 0 637 .32 

VRPTWP09 8 530 .50 10 532 .63 0 1 .80 549 .60 

VRPTWP10 10 668 .74 11 669 .11 0 0 .83 956 .40 

VRPTWP11 11 619 .34 9 626 .27 0 .01 4 .21 1032 .98 

VRPTWP12 9 688 .60 10 .40 690 .10 0 1 .56 671 .37 

VRPTWP13 11 626 .72 8 .40 630 .43 0 .01 4 .40 1347 .24 

VRPTWP14 8 765 .37 12 766 .78 0 1 .93 1221 .68 

VRPTWP15 12 713 .23 10 .60 715 .72 0 3 .41 1091 .86 

VRPTWP16 11 746 .67 11 .80 748 .15 0 0 .83 429 .32 

VRPTWP17 15 994 .28 15 .20 997 .27 0 4 .55 484 .99 

VRPTWP18 18 1206 .51 18 1207 .60 0 1 .49 636 .18 

VRPTWP19 16 1211 .99 15 .60 1217 .63 0 4 .87 783 .59 

VRPTWP20 24 1644 .56 23 .20 1652 .96 0 .01 6 .52 1512 .11 

VRPTWP21 23 1603 .88 22 1612 .42 0 .01 9 .29 2174 .74 

VRPTWP22 26 1811 .19 26 .20 1817 .75 0 5 .83 2170 .98 

VRPTWP23 24 1654 .13 24 1675 .25 0 .01 15 .22 1950 .79 

VRPTWP24 21 1644 .55 21 .40 1649 .61 0 7 .22 1745 .54 

VRPTWP25 27 1836 .02 26 .80 1856 .52 0 .01 16 .43 2877 .48 

VRPTWP26 32 2144 .47 32 2160 .37 0 .01 10 .42 3250 .49 

VRPTWP27 28 2002 .63 29 .60 2030 .71 0 .01 21 .35 3037 .26 

Gap = ( Mean TD − Best TD ) / Best TD , and Sd is the standard deviation of 15 times 

TD. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VRPTW, and the results were compared with other heuristic approaches. Solomon’s VRPTW was divided into six sets, C1,

C2, R1, R2, RC1 and RC2. The customers in sets C1 and C2 are clustered in groups. In sets R1 and R2, they are uniformly

distributed, and in sets RC1 and RC2, they are semi-clustered. The proposed algorithm was executed for 10 independent

runs on each instance. 

To prove the effectiveness, Tabu-ABC was compared with nine other heuristic approaches. The comparison is presented

in Table 3 , which shows the average best total distance and the number of vehicles for each set. Obviously, the proposed

algorithm achieves the best results for C1, R2 and RC2, and the average result is also better than some other heuristics. In

Table 4 , we compare the average mean total distance and the number of vehicles for each set. Our algorithm still achieves

the best average solution for four sets (R1, R2, RC1 and RC2). 

In Table 5 , we compare Tabu-ABC with heuristics from some recently published papers on the VRPTW. From the experi-

ment results, we can observe that in most instances, the proposed algorithm achieves the best solutions. We also compare

our work with best-known solutions, which are listed in Table 6 . Most of the best-known results are summarized in [42] .

Some of these results are updated based on our recent findings. From Table 6 , we can observe that our algorithm achieves

better solutions in 15 instances. In 4 instances, it achieves the best-known solution. The performance of the proposed algo-

rithm is also similar to that of the best-known solutions in other instances. In addition, Tabu-ABC achieves better results on

four specific instances in Fig. 5 , which reflects that Tabu-ABC improves the pure Tabu effectively. Because the CPU time in

Table 6 is large, we test the algorithm with different parameters. From Table 7 , the algorithm achieves good results with less

CPU time. The results also indicate that the parametric values slightly influence the performance of the Tabu-ABC approach.

5. Conclusions 

This paper introduces a new vehicle routing problem with time window and pallet loading constraints (VRPTWP), which

was taken from the logistics industry. The VRPTWP consists of two sub NP-hard problems, namely, the three-dimensional

loading problem and the VRPTW. In addition, the VRPTWP addressed in this paper considers time window constraints and

closely reflects real-world situations. To the best of our knowledge, the VRPTWP is a new problem that has never been

addressed before. To find the best solutions for the VRPTWP, a new algorithm called Tabu-ABC is proposed in this paper.

Tabu-ABC is a hybrid algorithm based on Tabu search and the ABC. We also created a set of new benchmarks for the

VRPTWP. The experimental results show that the proposed approach is highly effective in comparison to other heuristics

on Solomon’s VRPTW instances. For future work, we would like to develop more efficient approaches to solve the VRPTWP,

especially in terms of improving the CPU time cost of Tabu-ABC. Because Tabu-ABC can be easily modified and extended for

different requirements, we are planning to use this approach in other problem areas. 
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Appendix 

( Tables 3–7 ). 
Table 3 

Comparison among different heuristics on the VRPTW (Average of best solutions). 

Date set Tan et al. (2006) [35] Yu et al. (2011) [42] Cordeau and Maischberger (2012) [10] Gong et al. (2012) [15] 

C1 NV 10 10 10 10 

TD 828.71 829.01 828.38 835.91 

C2 NV 3 3.3 3 3 

TD 590.07 590.78 589.86 593.41 

R1 NV 12.92 13.1 12 12.58 

TD 1187.35 1196.96 1209.19 1232.28 

R2 NV 3.55 4.6 2.73 3 

TD 951.74 951.36 951.17 1016.66 

RC1 NV 12.38 12.7 11.5 12.13 

TD 1355.37 1380.55 1385.9 1385.47 

RC2 NV 4.25 5.6 3.25 3.38 

TD 1068.26 1095.84 1120.53 1169.07 

Avg. NV 6.59 7.04 6.07 6.30 

TD 996.92 1007.42 1014.17 1038.80 

Barbucha. (2014) [2] Luo et al. (2015) [28] Yassen et al. (2015) [41] Tabu-ABC 

C1 NV 10 10 – 10 

TD 828.38 828.38 838.47 828.38 

C2 NV 3 3 – 3 

TD 589.86 589.86 605.41 590.39 

R1 NV 11.92 11.92 – 13.75 

TD 1232.13 1210.34 1207.76 1187.90 

R2 NV 3.09 2.73 – 4.64 

TD 922.48 951.03 977.19 891.24 

RC1 NV 12 11.5 – 13.13 

TD 1355.36 1384.16 1381.96 1361.08 

RC2 NV 3.38 3.25 – 5.5 

TD 1106 1119.24 1099.12 1017.47 

Avg. NV 7.23 7.07 – 8.34 

TD 1005.70 1013.84 1018.32 979.41 

Table 4 

Comparison among different heuristics on the VRPTW (average of mean solutions). 

Date set Chiang and Russell (1997) [7] Lau et al. (2003) [24] Tan et al. (2006) [35] Yu et al. (2011) [42] 

C1 NV 10 10 – 10 

TD 828.38 828.38 837.21 841.92 

C2 NV 3 3 – 3.3 

TD 591.42 589.86 632.42 612.75 

R1 NV 12.17 12 – 13.1 

TD 1204.19 1217.73 1240.31 1213.16 

R2 NV 2.73 2.73 – 4.6 

TD 986.32 967.75 1068.57 952.3 

RC1 NV 11.88 11.63 – 12.7 

TD 1397.44 1382.42 1381.23 1415.62 

RC2 NV 3.25 3.25 – 5.6 

TD 1229.54 1129.19 1154.88 1120.37 

Avg. NV 7.17 7.10 – 8.22 

TD 1039.55 1019.22 1052.44 1026.02 

Cordeau and Maischberger (2012) [10] Gong et al. (2012) [15] Luo et al. (2015) [28] Tabu-ABC 

C1 NV 10 10 10 10 

TD 828.94 856.44 828.38 828.73 

( continued on next page ) 
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Table 4 ( continued ) 

Date set Chiang and Russell (1997) [7] Lau et al. (2003) [24] Tan et al. (2006) [35] Yu et al. (2011) [42] 

C2 NV 3 3.03 3 3 

TD 590.85 612.93 589.86 591.45 

R1 NV 12.02 13.01 11.92 13.82 

TD 1213.57 1263.25 1210.75 1195.49 

R2 NV 2.73 3.1 2.7 4.5 

TD 959.62 1073.72 951.51 902.88 

RC1 NV 11.55 12.66 11.5 13.56 

TD 1386.39 1400.97 1384.62 1373.25 

RC2 NV 3.25 3.59 3.25 5.47 

TD 1130.27 1228.95 1119.63 1028.92 

Avg. NV 7.09 7.57 7.06 8.39 

TD 1018.27 1072.71 1014.13 986.79 

Table 5 

Comparison among four heuristics. 

Algorithm HSFLA (2015) [28] CPLA (2014) [2] PITSH (2012) [10] Tabu-ABC 

Data set TD NV TD NV TD NV TD NV 

C101 828 .94 10 828 .94 10 828 .94 10 828 .94 10 

C102 828 .94 10 828 .94 10 828 .94 10 828 .94 10 

C103 828 .06 10 828 .06 10 828 .07 10 828 .07 10 

C104 824 .78 10 824 .78 10 824 .78 10 824 .78 10 

C105 828 .94 10 828 .94 10 828 .94 10 828 .94 10 

C106 828 .94 10 828 .94 10 828 .94 10 828 .94 10 

C107 828 .94 10 828 .94 10 828 .94 10 828 .94 10 

C108 828 .94 10 828 .94 10 828 .94 10 828 .94 10 

C109 828 .94 10 828 .94 10 828 .94 10 828 .94 10 

C201 591 .56 3 591 .56 3 591 .56 3 591 .56 3 

C202 591 .56 3 591 .56 3 591 .56 3 591 .56 3 

C203 591 .17 3 591 .17 3 591 .17 3 591 .17 3 

C204 590 .6 3 590 .6 3 590 .6 3 594 .89 3 

C205 588 .88 3 588 .88 3 588 .88 3 588 .88 3 

C206 588 .49 3 588 .49 3 588 .49 3 588 .49 3 

C207 588 .29 3 588 .29 3 588 .29 3 588 .29 3 

C208 588 .32 3 588 .32 3 588 .32 3 588 .32 3 

R101 1650 .8 10 1656 .21 19 1650 .8 19 1643 .18 20 

R102 1486 .12 17 1501 .97 17 1486 .12 17 1460 .26 18 

R103 1292 .67 13 1295 .6 13 1294 .23 13 1217 .39 15 

R104 1007 .31 9 1017 .38 9 981 .2 10 987 .61 11 

R105 1377 .11 14 1381 .89 14 1377 .11 14 1363 .91 15 

R106 1252 .03 12 1258 .76 12 1252 .62 12 1247 .90 13 

R107 1104 .66 10 1117 .85 10 1104 .66 10 1087 .50 12 

R108 960 .88 9 976 .06 9 963 .99 9 961 .85 11 

R109 1194 .73 11 1229 .71 11 1194 .73 11 1152 .99 13 

R110 1118 .84 10 1196 .49 10 1118 .84 10 1091 .50 12 

R111 1096 .73 10 1123 .64 10 1096 .73 10 1067 .46 12 

R112 982 .14 9 1030 .02 9 989 .27 9 973 .25 10 

R201 1252 .37 4 1253 .02 4 1252 .37 4 1174 .69 6 

R202 1191 .7 3 1086 .08 4 1191 .7 3 1046 .10 5 

R203 939 .5 3 945 .8 3 941 .08 3 884 .02 5 

R204 825 .52 2 752 .13 3 825 .52 2 750 .40 4 

R205 994 .43 3 1017 .93 3 994 .43 3 960 .75 5 

R206 906 .14 3 920 .37 3 906 .14 3 900 .97 4 

R207 890 .61 2 815 .26 3 890 .61 2 809 .72 4 

R208 726 .82 2 729 .42 2 726 .82 2 723 .14 5 

R209 909 .16 3 916 .33 3 909 .16 3 863 .12 5 

R210 939 .37 3 943 .1 3 939 .37 3 927 .54 5 

R211 885 .71 2 767 .82 3 885 .71 2 763 .22 4 

RC101 1696 .95 14 1626 .09 15 1696 .95 14 1646 .17 16 

RC102 1554 .75 12 1486 .17 13 1554 .75 12 1481 .61 14 

RC103 1261 .67 11 1268 .79 11 1261 .67 11 1280 .76 12 

RC104 1135 .48 10 1136 .27 10 1135 .48 10 1162 .03 11 

RC105 1629 .44 13 1542 .29 14 1633 .72 13 1545 .30 16 

RC106 1424 .73 11 1394 .1 12 1424 .73 11 1401 .17 14 

RC107 1230 .48 11 1234 .06 11 1232 .2 11 1235 .28 12 

RC108 1139 .82 10 1155 .1 10 1147 .69 10 1136 .35 11 

RC201 1406 .94 4 1435 .27 4 1406 .94 4 1271 .78 7 

RC202 1365 .64 3 1162 .8 4 1367 .09 3 1116 .21 6 

RC203 1049 .62 3 1062 .32 3 1050 .64 3 941 .81 5 

RC204 798 .46 3 799 .08 3 798 .46 3 801 .87 4 

RC205 1297 .65 4 1303 .68 4 1297 .65 4 1165 .82 7 

RC206 1146 .32 3 1155 .33 3 1153 .61 3 1072 .85 5 

RC207 1061 .14 3 1095 .37 3 1061 .14 3 977 .11 5 

RC208 828 .14 3 834 .16 3 828 .71 3 792 .33 5 
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Table 6 

Detail results of our algorithm and comparison with best-known solutions. 

Best-known This work 

Data set NV TD Authors Best TD NV Mean TD NV Gap Sd CPU 

C101 10 827 .3 Desrochers, Desrosiers, and Solomon (1992) [12] 828 .94 10 828 .94 10 0 0 3592 .54 

C102 10 827 .3 Desrochers et al. (1992) [12] 828 .94 10 828 .94 10 0 0 668 .07 

C103 10 826 .3 Tavares, Machado, Pereira and Costa (2003) [37] 828 .07 10 828 .07 10 0 .00 0 .00 252 .88 

C104 10 822 .9 Tavares et al. (2003) [37] 824 .78 10 827 .93 10 0 .54 5 .57 140 .18 

C105 10 827 .3 Tavares et al. (2003) [37] 828 .94 10 828 .94 10 0 0 1204 .79 

C106 10 827 .3 Desrochers et al. (1992) [12] 828 .94 10 828 .94 10 0 0 1184 .74 

C107 10 827 .3 Tavares et al. (2003) [37] 828 .94 10 828 .94 10 0 0 782 .00 

C108 10 827 .3 Tavares et al. (2003) [37] 828 .94 10 828 .94 10 0 0 498 .37 

C109 10 827 .3 Tavares et al. (2003) [37] 828 .94 10 828 .94 10 0 0 252 .69 

C201 3 589 .1 Cook and Rich (1999) [8] 591 .56 3 591 .56 3 0 0 4155 .89 

C202 3 589 .1 Cook and Rich (1999) [8] 591 .56 3 591 .56 3 0 0 630 .48 

C203 3 591 .17 Li and Lim (2003) [27] 591 .17 3 591 .31 3 0 .35 3 .66 278 .99 

C204 3 590 .6 Potvin and Bengio (1996) [29] 594 .89 3 603 .16 3 2 .95 10 .12 152 .45 

C205 3 588 .88 Potvin and Bengio (1996) [29] 588 .88 3 588 .88 3 0 .00 0 .00 1731 .04 

C206 3 588 .49 Lau et al. (2003) [24] 588 .49 3 588 .49 3 0 .00 0 .00 1181 .93 

C207 3 588 .29 Rochat and Taillard (1995) [30] 588 .29 3 588 .29 3 0 0 853 .12 

C208 3 588 .03 Tan, Chew and Lee. (2006) [35] 588 .32 3 588 .32 3 0 0 476 .75 

R101 18 1607 .7 Desrochers et al. (1992) [12] 1643 .18 20 1645 .82 20 0 .39 5 .48 1137 .93 

R102 17 1434 Desrochers et al. (1992) [12] 1460 .26 18 1463 .91 18 .08 0 .43 4 .00 434 .26 

R103 13 1175 .67 Lau, Lim, and Liu (2001) [23] [21] 1217 .39 15 1223 .27 14 .92 0 .30 2 .41 398 .70 

R104 10 974 .2 Tan et al. (2006) [35] 987 .61 11 1002 .54 11 .33 0 .92 6 .04 227 .74 

R105 15 1346 .12 Kallehauge, Larsen, and Madsen (2006) [19] 1363 .91 15 1372 .01 15 .75 0 .68 5 .45 641 .26 

R106 13 1234 .6 Cook and Rich (1999) [8] 1247 .90 13 1256 .45 13 .42 0 .93 4 .76 457 .90 

R107 11 1051 .84 Kallehauge et al. (2006) [19] 1087 .50 12 1097 .41 12 .00 1 .03 4 .46 336 .94 

R108 10 954 .03 Tan et al. (2006) [35] 961 .85 11 965 .82 10 .83 1 .25 5 .91 220 .71 

R109 12 1013 .2 Chiang and Russell (1997) [7] 1152 .99 13 1163 .07 13 .00 1 .23 7 .20 365 .31 

R110 12 1068 Cook and Rich (1999) [8] 1091 .50 12 1100 .83 12 .17 1 .49 8 .51 340 .76 

R111 12 1048 .7 Cook and Rich (1999) [8] 1067 .46 12 1076 .61 12 0 .98 7 .16 302 .90 

R112 10 953 .63 Rochat and Taillard (1995) [30] 973 .25 10 978 .16 10 .67 0 .71 6 .47 240 .36 

R201 8 1198 .15 Tan et al. (2001) [36] 1174 .69 6 1178 .90 6 .08 0 .46 4 .85 547 .67 

R202 6 1077 .66 Tan et al. (2001) [36] 1046 .10 5 1053 .44 5 .08 1 .41 7 .88 331 .63 

R203 5 933 .286 Tan et al. (2001) [36] 884 .02 5 896 .05 4 .92 1 .43 7 .77 273 .62 

R204 3 752 .13 Barbucha (2014) [2] 750 .40 4 758 .13 4 1 .52 6 .50 230 .77 

R205 3 994 .42 Rousseau, Gendreau, and Pesant (2002) [31] 960 .75 5 975 .83 4 .92 1 .36 7 .61 290 .46 

R206 3 833 Thangiah, Osman, and Sun (1994) [38] 900 .97 4 908 .18 4 .25 1 .61 6 .76 226 .36 

R207 3 814 .78 Rochat and Taillard (1995) [30] 809 .72 4 826 .74 4 2 .15 11 .31 234 .11 

R208 2 729 .42 Barbucha (2014) [2] 723 .14 5 732 .31 3 .42 1 .37 6 .99 198 .33 

R209 3 855 Thangiah et al. (1994) [38] 863 .12 5 882 .22 4 .92 1 .35 6 .71 226 .84 

R210 3 943 .10 Barbucha (2014) [2] 927 .54 5 938 .63 4 .92 2 .09 9 .31 232 .11 

R211 2 767 .82 Barbucha (2014) [2] 763 .22 4 781 .23 4 2 .18 7 .61 189 .63 

RC101 15 1619 .8 Kohl, Desrosiers, Madsen, Solomon, and Soumis (1999) [22] 1646 .17 16 1656 .01 16 .33 0 .66 6 .93 663 .29 

RC102 13 1470 .26 Tan et al. (2006) [35] 1481 .61 14 1488 .79 14 .83 0 .81 7 .29 441 .74 

RC103 12 1196 .12 Tan et al. (2006) [35] 1280 .76 12 1298 .32 12 .08 1 .94 18 .50 308 .63 

RC104 10 1135 .48 Cordeau, Laporte, and Mercier (2001) [9] 1162 .03 11 1168 .13 11 .00 0 .60 5 .43 217 .15 

RC105 14 1542 .29 Barbucha (2014) [2] 1545 .30 16 1554 .79 16 .17 1 .57 8 .50 545 .30 

RC106 13 1371 .69 Tan et al. (2006) [35] 1401 .17 14 1413 .38 14 .00 0 .82 7 .41 301 .56 

RC107 11 1222 .16 Tan et al. (2006) [35] 1235 .28 12 1256 .98 12 .50 1 .96 11 .91 277 .52 

RC108 11 1133 .82 Luo, Li, Chen and Liu (2015) [28] 1136 .35 11 1149 .65 11 .17 1 .67 9 .76 235 .20 

RC201 6 1134 .91 Tan et al. (2006) [35] 1271 .78 7 1284 .59 6 .92 0 .78 5 .71 476 .51 

RC202 5 1130 .53 Tan et al. (2006) [35] 1116 .21 6 1122 .97 5 .75 0 .71 5 .25 350 .15 

RC203 4 1026 .61 Tan et al. (2006) [35] 941 .81 5 951 .30 5 .08 0 .79 6 .33 226 .52 

RC204 3 799 .08 Barbucha (2014) [2] 801 .87 4 809 .09 4 2 .22 8 .13 162 .89 

RC205 5 1295 .46 Tan et al. (2006) [35] 1165 .82 7 1172 .80 7 2 .23 16 .34 335 .38 

RC206 4 1112 .2 Yu, Yang and Yao. (2011) [42] 1072 .85 5 1082 .93 5 .50 1 .15 8 .40 272 .82 

RC207 4 1040 .67 Tan et al. (2006) [35] 977 .11 5 998 .46 5 .42 2 .34 9 .82 211 .82 

RC208 3 829 .69 Rousseau et al. (2002) [31] 792 .33 5 809 .23 4 .67 2 .11 8 .65 191 .15 

Gap = ( Mean TD − Best TD ) / Best TD , and Sd is the standard deviation of 15 times TD. 
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