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ABSTRACT

Novelty search has shown to be a promising approach for
the evolution of controllers for swarms of robots. In exist-
ing studies, however, the experimenter had to craft a task-
specific behaviour similarity measure. The reliance on hand-
crafted similarity measures places an additional burden to
the experimenter and introduces a bias in the evolutionary
process. In this paper, we propose and compare two generic
behaviour similarity measures: combined state count and
sampled average state. The proposed measures are based
on the values of sensors and effectors recorded for each in-
dividual robot of the swarm. The characterisation of the
group-level behaviour is then obtained by combining the
sensor-effector values from all the robots. We evaluate the
proposed measures in an aggregation task and in a resource
sharing task. We show that the generic measures match the
performance of task-specific measures in terms of solution
quality. Our results indicate that the proposed generic mea-
sures operate as effective behaviour similarity measures, and
that it is possible to leverage the benefits of novelty search
without having to craft task-specific similarity measures.

Categories and Subject Descriptors

I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent systems

General Terms

Algorithms

Keywords

Evolutionary swarm robotics, novelty search, behaviour
characterisation, deception

1. INTRODUCTION
Swarm robotics is a promising approach to collective

robotics, where the group-level behaviour emerges from the
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local interactions among agents, and from the interactions
between the agents and the environment [4]. This approach
has the potential to incite several desirable properties in a
group of agents, such as robustness, flexibility, and scalabil-
ity [4]. However, the complexity stemming from the intricate
dynamics required to produce self-organised behaviour com-
plicates the hand-design of control systems [21]. Artificial
evolution has been shown capable of exploiting the intricate
dynamics and synthesise self-organised behaviours (see for
example [21, 22, 2, 3]), but the approach engenders several
issues. The most prominent issue associated with common
evolutionary techniques is deception [23]. Deception occurs
when the fitness function misguides the search towards lo-
cal maxima that do not contain adequate solutions to the
problem. As the complexity of a problem increases, the
fitness landscape typically becomes more rugged and gains
more local maxima [19]. As such, it becomes more diffi-
cult to craft a fitness function that can successfully guide
the search towards the objective [24], i.e., the evolutionary
process becomes more vulnerable to deception.

Novelty search [15] is a distinctive evolutionary approach
where candidate solutions are rewarded based solely on their
behavioural novelty, with respect to previously evaluated so-
lutions. In recent work [7, 8, 9], it was shown that nov-
elty search can avoid deception in the evolution of swarm
robotics systems. Besides not being affected by deception,
it was also shown that novelty search is able to find a greater
diversity of solutions, and the successful solutions were sim-
pler in terms of neural network complexity when compared
to those found by fitness-based evolution. But these ad-
vantages come at a price: for novelty search to work, it is
necessary to craft a behaviour similarity measure, used to
compute the novelty of the individuals, specifically for the
given task. The results showed that the choice of the nov-
elty metric has a significant impact in the performance of
novelty search, and can introduce a significant bias in the
evolutionary process.

Previous works have proposed task-independent be-
haviour similarity measures [10, 6, 18]. These generic mea-
sures can potentially be used to overcome the aforemen-
tioned limitation of novelty search. Generic measures are
typically based exclusively on the sensor and effector values
of the agents, and do not rely on task-specific knowledge
provided by the experimenter. However, the generic mea-
sures described in previous works are aimed at single robot
systems.

In this paper, we study how generic measures can be
adapted to swarm robotics systems. We propose generic be-



haviour similarity measures that use the sensor and effector
values of the robots of the swarm to obtain a representa-
tion of the typical behaviour of the swarm as whole. The
measures are evaluated in two swarm robotics tasks: (i) an
aggregation task; and (ii) a task where robots must share an
energy recharging station in order to survive. Following pre-
vious results [8], novelty search is used in combination with
the fitness function, through a linear scalarization of nov-
elty and fitness objectives. NEAT is used as the underlying
neuroevolution method.
The results of our experiments suggest that novelty search,

when combined with fitness-based evolution, achieves a sim-
ilar performance with the proposed generic similarity mea-
sures and with task-specific similarity measures, regarding
the quality of the evolved solutions. We show that the
prominent advantages of novelty search, such as its capacity
to bootstrap evolution and to circumvent deception [7], are
also present with the use of generic measures.

2. RELATED WORK
In this section, we describe the novelty search algorithm,

and how novelty search can be combined with fitness-based
evolution to improve the effectiveness of the evolutionary
process. We move on to discuss the previous applications of
novelty search in evolutionary robotics. We conclude with
a discussion of the generic behaviour similarity measures
proposed in previous works.

2.1 Novelty Search
Novelty search [15] can be implemented over any evolu-

tionary algorithm. The distinctive aspect of novelty search
is how the individuals of the population are scored. Instead
of being scored according to how well they perform a given
task – which is typically measured by a fitness function, the
individuals are scored based on their behavioural novelty
according to a novelty metric. This metric quantifies how
different an individual is from the other, previously evalu-
ated individuals with respect to behaviour.
To measure how far an individual is from others individ-

uals in behaviour space, the novelty metric relies on the
average distance of that individual to the k-nearest neigh-
bours, among the current population and a sample of the
previously seen behaviours (stored in an archive). Candi-
dates from sparse regions of the behaviour space thus tend
to receive higher novelty scores, thereby creating a constant
evolutionary pressure towards behavioural innovation.
The behaviour distance between each two individuals is

given by a function dist that should be provided by the ex-
perimenter. The function dist is typically defined with do-
main knowledge. Following this approach, the behaviour of
each individual is characterised by a vector of real numbers.
The experimenter should design the behaviour characterisa-
tion vector so that it captures behaviour features that are
considered relevant to the problem or task. The behaviour
distance between two individuals is then given as the Eu-
clidian distance between the corresponding behaviour char-
acterisation vectors of the individuals. A distinct approach
is to use distance functions that do not rely on any task-
specific knowledge. Such an approach is the main focus of
this paper and will be detailed in Section 2.2.

2.1.1 Combining Novelty and Fitness

As novelty search is guided by behavioural innovation

alone, its performance can be greatly affected by the size
and shape of the behaviour space. In particular, behaviour
spaces that are vast or contain dimensions not related with
the task can cause novelty search to perform poorly [14, 5],
because most of the effort may be spent exploring behaviours
that are irrelevant for the goal task. To address this issue,
several authors have proposed techniques that combine nov-
elty search with fitness-based evolution [14, 5, 8, 16, 18].

In our experiments, we use a linear scalarization of novelty
and fitness objectives [5]. We chose this approach because
it can be used together with NEAT without any further
modifications, and has shown promising results in previous
studies [8]. Linear scalarization of novelty and fitness objec-
tives directs the exploration towards regions of the behaviour
space associated with high fitness scores. An individual i is
evaluated to measure both fitness, fit(i), and novelty, nov(i),
which after being normalised (Eq. 1) are combined according
to Eq. 2.

fit(i) =
fit(i)− fitmin

fitmax − fitmin
, nov(i) =

nov(i)− novmin

novmax − novmin
(1)

score(i) = (1− ρ) · fit(i) + ρ · nov(i) (2)

The parameter ρ controls the relative weight of novelty,
and must be specified by the experimenter. fitmin and
novmin are the lowest fitness and lowest novelty score in the
current population, and fitmax and novmax are the highest
fitness and highest novelty score, respectively.

2.1.2 Novelty Search in Evolutionary Robotics

Novelty search, and other evolutionary techniques based
on behavioural diversity, have been applied with success to
single robot systems. Some of these applications include
body-brain co-evolution [12]; biped robot control [15]; robot
navigation in deceptive mazes [15]; sequential light seek-
ing [18]; and a robot ball-collecting task [18]. A comprehen-
sive study of the use of diversity-based techniques in evolu-
tionary robotics is presented in [18].

Gomes et al. [7, 8, 9] showed that novelty search can
also provide a valuable contribution evolutionary swarm
robotics. In particular, the results showed that the use of
novelty search circumvented deception and bootstrapping
problems, and could unveil a broad diversity of solutions
for a given task. However, the same studies revealed that
defining behaviour characterisations for this domain can be
a delicate endeavour.

The mapping from behaviour to behaviour characteri-
sation is not injective, and when different behaviours re-
ceive the same characterisation, they are said to be con-

flated. Since there are infinitely many behavioural possibil-
ities, many behaviours must be conflated in order to con-
struct a viable search space. Excessive conflation, however,
can hinder the evolution of certain types of solutions, and
degrade the performance of novelty search. Furthermore,
the definition of the behaviour characterisation adds a hu-
man bias to the process, which is an aspect that should be
minimised in evolutionary robotics [19].

2.2 Generic Novelty Measures
Gomez [10] proposed the use of generic measures for as-

sessing the behaviour similarity between individuals in a sin-
gle agent task. The proposed approach consists of building
state-action trajectories for the agent, i.e., the history of



actions of the agent through time. These trajectories are
then compared, obtaining a measure of behaviour similarity,
without the need of providing task-specific knowledge. To
compare the sequences of actions, the author evaluated the
use of Hamming distance, relative entropy, and normalised
compression distance (NCD). The experimental setup was
based on a discrete box-pushing task, and the results showed
that the NCD distance offered the best performance, fol-
lowed closely by the Hamming distance. NCD is a sim-
ilarity measure that exploits regularities in the sequences
of observations, but introduces a significant computational
overhead.
To address the difficulty in designing behaviour character-

isations for evolutionary robotics, Doncieux and Mouret [6]
proposed and compared generic behaviour similarity mea-
sures for evolutionary robotics. Any robotics experiment
involves robots with effectors and sensors, whose values re-
flect the microscopic behaviour of the robot. This notion led
to the definition of the following generic measures [6]:

Hamming distance A vector is built with the sensor and
effector values of the robot, sampled throughout the sim-
ulation:

ϑ = [{s(t), e(t)}, t ∈ [0, T ]] , (3)

where s(t) and e(t) are the vectors of the sensor and effec-
tor values at time t, respectively, and T is the simulation
time. The vector ϑ is then binarised into ϑbin, by trans-
forming each value to either 0 or 1. The similarity mea-
sure is then given as the Hamming distance between the
corresponding ϑbin vectors obtained for each individual.

Discrete fourier transform The ϑ vectors are obtained
for each individual, similar to the Hamming distance mea-
sure. But instead of using the complete vectors, a Discrete
Fourier Transform (DFT) is used to reduce the dimension-
ality. The similarity measure is defined as the Euclidean
distance between the first nF coefficients of the DFT.

Systematic state count Perception-action states are de-
fined based on the possible combinations of ϑbin. Rely-
ing on the sensor-effector data, the number of times the
robot was in a particular state is then evaluated, result-
ing in a vector of n integers, n being the number of such
states. The similarity measure is then defined as the mean
element-wise distance between the vectors.

These methods were evaluated in a ball collection task,
where the robot had 9 sensors and 3 effectors. The nov-
elty metric was combined with the fitness function through
multi-objectivisation. The results showed that the Ham-
ming distance measure was the most effective, being superior
to the task-specific similarity measure. The systematic state
count and DFT measures displayed a significantly lower per-
formance.
The Hamming distance similarity measure was further

tested in [18]. In these experiments, the measure was eval-
uated in three different tasks (deceptive maze, sequential
light seeking, ball-collecting robot) and compared to a num-
ber of different diversity maintenance techniques. When us-
ing multi-objectivisation of novelty and fitness, the results
showed that the generic Hamming distance was at least as
good a measure as the task-specific similarity measures, re-
garding the quality of the evolved solutions.

3. METHODS

3.1 Combined State Count
We propose Combined State Count which is an adap-

tation of Systematic State Count (see Section 2.2). De-
spite the lower performance in the experiments of Doncieux
& Mouret [6], when compared to the other generic mea-
sures, the concept of this method can be directly adapted
to swarms of robots. As such, it is the starting point of our
study. The principle is to define states based on the val-
ues from the sensors and effectors recorded for each robot.
Then, the number of times the robots of the swarm are in
each state is computed. There is no discrimination in terms
of which robot was in a particular state, i.e, the state count-
ing at the swarm level is the sum of the state counts for each
robot in the swarm.

The state counting approach is, however, prone to scala-
bility issues, since the number of states grows exponentially
with the number of sensors/effectors, and with the num-
ber of possible values for each sensor/effector. To address
this issue, we propose modifications over the original State
count. Scalability is achieved through the use of efficient
structures for representing states and characterisations, and
mechanisms for reducing the effective number of states.

Efficient State Count Representation

Representing each behaviour characterisation as a vector
with one position for each state (as in [6]) can compromise
the efficiency of the algorithm if there is a large number of
states. However, the number of visited states in one simula-
tion is only a small fraction of the total number of possible
states. As such, we can represent each characterisation as
a map from states to counts. The counting is normalised
according to the size of the swarm, to allow fair compar-
isons between simulations with different swarm sizes. The
behaviour similarity measure is then given by the difference
between the state count maps. To calculate the characteri-
sation map m′ for each individual, Algorithm 1 is used:

Algorithm 1 State count characterisation

m←Map < Int, F loat >
for all simulation-steps do

for all r in robots do
ϑr ← read-state(r)
ϑ′
r ← discretise(ϑr)

h← hash(ϑ′
r)

if m does not contain h then
m[h]← 0

end if
m[h]← m[h] + 1/swarmsize

end for
end for
m′ ← filter(m)
return m′

The function read-state retrieves the current sensor-
effector state ϑr for a particular robot r:

ϑr = {sr, er} , (4)

where sr is the vector of size ns, composed of the values
coming from the ns sensors of the robot r; and er is the
vector composed of the effector values.



The discretised vector ϑ′
r is obtained by independently

normalising each element of ϑr to the interval [0,K − 1],
followed by an approximation to the nearest integer:

ϑ′
i,r =

∥

∥

∥

∥

ϑi,r − ϑi,min

ϑi,max − ϑi,min
· (K − 1)

∥

∥

∥

∥

, (5)

where ϑi,max and ϑi,min are respectively the maximum and
minimum values of the i-th sensor/effector, and K is the
number of target partitions. The parameter K has direct
implications in the number of possible states, and it should
be empirically determined. A rule of thumb is to define it
accordingly to the length of ϑ. For most applications, K
values of 2 and 3 are adequate, categorising the value of
each sensor in High/Low, or High/Medium/Low. However,
if the robots have a small number of sensors (ϑ is relatively
short), higher values of K might be preferred, in order to
operate with more detailed behaviour characterisations.
The function hash was implemented with the Jenkins’

one-at-a-time hash.1 The intent of hashing the vector ϑ′
r

is twofold. First, it allows lookups of the corresponding en-
try in the m map in O(n) time, n being the length of ϑ′

r.
Second, hashing vectors removes the need of storing ϑ′ vec-
tors, which improves the space complexity of the algorithm.

Reducing the Number of States

The function filter eliminates the least observed states, in
order to improve the efficiency of the algorithm. Preliminary
results revealed that robots tend to spend most of their time
in a small subset of the state space. Most of the states are
visited only in one or a few simulation steps. As such, elim-
inating these states from the behaviour characterisation can
significantly improve the efficiency of the algorithm, practi-
cally without compromising the accuracy of the character-
isation. The function filter removes the states where the
robots spent less than T% of the time:

m′ =

{

(h, c) ∈ m : c >
∑

i∈m

m[i] · T

}

. (6)

The constant T should be empirically determined. In our
experiments, a value of only 1% was enough to drastically
reduce the number of states in each characterisation. For in-
stance, the preliminary results showed that on average 99%
of the simulation time was spent in only 10% of the visited
states.

Distance Between Characterisations

To calculate the distance between two characterisations we
chose to use the Bray-Curtis dissimilarity, a well-known mea-
surement for quantifying the difference between samples of
abundance data. Bray-Curtis is a modified Manhattan mea-
sure, where the summed differences between the variables
are standardised by the summed variables of the samples.
This measure is within the range of 0 to 1. A value of 0
means that the two samples have are equal, while a value of
1 means the two samples do not share any element.
Adapting the Bray-Curtis dissimilarity behaviour charac-

terisations, the difference b between two characterisations

1http://www.burtleburtle.net/bob/hash/doobs.html

m1 and m2 is given by:

b(m1,m2) =
∑

i∈m1∩m2

|m1[i]−m2[i]|+
∑

i∈m1\m2

m1[i] +
∑

i∈m2\m1

m2[i]

∑

i∈m1

m1[i] +
∑

i∈m2

m2[i]
.
(7)

3.2 Sampled Average State
The second similarity measure relies on the principles of

the Hamming distance measure (see Section 2.2), which was
one of the most successful generic similarity measures in pre-
vious works with single robot systems [6, 18]. However, this
measure relies on the full description of the sensor-effector
states of the robot through time. As such, it can not be
directly used for swarms of robots because (i) it would not
scale with the number of robots, and (ii) the behaviour of an
individual robot in a swarm often has a significant stochas-
tic component. To overcome these issues, we propose the
following modifications:

• The state of the swarm at a given instant is the average
of the sensor-effector states of all robots. This allows
scalability in respect to the size of the swarm.

• The state of the swarm is averaged over time windows.
This reduces the sensitivity to the initial conditions,
and to the stochastic nature of the individual robots
behaviour.

The characterisation of an individual is given by:

ϑ = [{v1(w), · · · , vn(w)}, w ∈ {1..W} ] , (8)

where W is the number of time windows and vi(w) is the
average value of the i-th sensor/effector over the w-th time
window:

vi(w) =
W

T

wT/W
∑

t=(w−1)T/W

1

R

R
∑

r=1

v′i,r(t) , (9)

T is the total simulation time, R the number of robots, and
v′i,r(t) is the normalised value of the i-th sensor/effector of
the robot r, at instant t:

v′i,r(t) =
vi,r − vi,min

vi,max − vi,min
, (10)

vi,max and vi,min are the maximum and minimum values of
the i-th sensor/effector, respectively.

The distance between two characterisations ϑ1 and ϑ2 is
then given by the Manhattan distance between the vectors:

dMan(ϑ1, ϑ2) =
∑

∣

∣ϑ1[i]− ϑ2[i]
∣

∣ . (11)

4. EXPERIMENTAL SETUP
The proposed generic similarity measures are evaluated

over two swarm robotics tasks: aggregation and resource
sharing. The generic measures are compared with task-
specific measures, and with fitness-based evolution.

Our experimental framework is based on Simbad 3d Robot
Simulator [11]. In both tasks, the environment is a 3m by
3m square arena bounded by walls. The swarms are homo-
geneous. Each robot is modelled after the e-puck, but with
modifications to the sensor setup. Each robot is circular

http://www.burtleburtle.net/bob/hash/doobs.html


with a diameter of 8 cm, and is equipped with a differential
drive capable of delivering speeds of up to 12 cm/s. The lo-
cal on-board controllers are recurrent neural networks. The
inputs of the neural networks are the normalised values of
the sensors of the robot, and there are three outputs: one to
control each of the two motors, and one dedicated to com-
pletely halt the movement of the robot. Each simulation
lasts for 2500 simulation steps, which corresponds to 250 s
of simulated time.

4.1 Aggregation Task
Aggregation is a commonly studied task in swarm

robotics [21, 2]. In this task, a dispersed robot swarm must
form a single cluster in any point of the arena. The swarm
has a fixed size of 7 robots. Each robot is equipped with
(i) 8 sensors evenly distributed around its chassis for the de-
tection of obstacles (walls or other robots) within a range
of 10 cm; (ii) 8 sensors dedicated to the detection of other
robots within a range of 25 cm; and (iii) a sensor that re-
turns the percentage of nearby robots (within a radius of
25 cm), relative to the swarm size.
The fitness function Fa is defined as the average distance

of the robots to the centre of mass of the swarm, measured
at the last instant of the simulation:

Fa = 1−

N
∑

i=1

dist(RT , ri,T )

N
, (12)

where T is the simulation length, RT is the centre of mass
in the last step of simulation, ri,T is the position of robot i,
and N is the swarm size; dist is normalised to [0, 1].
The task-specific behaviour characterisation, used as

benchmark, is based on the average distance to the centre
of mass of the swarm, and the number of clusters, sampled
during the simulation [7]. Considering a simulation with
τ temporal samples (50 samples were used in our experi-
ments), the characterisation ba is given by:

ba = {cm, cl}

cm =
1

N

[

N
∑

i=1

dist(R1, ri,1), · · · ,
N
∑

i=1

dist(Rτ , ri,τ )

]

(13)

cl =
1

N
[clusterCount(1), · · · , clusterCount(τ)]

The function clusterCount returns the number of robot
clusters. Two robots belong to the same cluster if
the distance between them is less than the robot sensor
range (25 cm).

4.2 Resource Sharing Task
In this task, the swarm must coordinate in order to allow

each member periodical access to a single battery charging
station. The robots should first find the charging station,
and then effectively share the station to ensure the survival
of all the robots in the swarm. The charging station can
only hold one robot at the time.
We use a group of 3 robots for our experiments. Each

robot has (i) 8 sensors for the detection of obstacles up to a
range of 10 cm; (ii) 8 sensors dedicated to the detection of
other robots up to a range of 25 cm; (iii) 8 sensors for the
detection of the charging station up to a range of 1m; (iv) a
binary sensor that indicates if the robot is in the charging
station or not; and (v) a proprioceptive sensor that reads
the current energy level of the robot.

Each robot starts with full energy (1000 units), and spends
energy at a rate linearly dependent on motor usage: a robot
spends 5 units per second when motors are off, and 10 units
of energy per second when motors propel the robot at its
maximum speed. The charging station is placed in the centre
of the arena, and charges a robot at a rate of 100 units
of energy per second. The robots have to be completely
stopped in order to charge.

The fitness function Fs used to evaluate the controllers is
a linear combination of the number of robots alive at the
end of the simulation and the average energy of the robots
throughout the entire simulation:

Fs = 0.9 ·
aT

N
+ 0.1 ·

T
∑

t=1

N
∑

i=1

ei,t
TNemax

, (14)

where T is the length of the simulation, aT is the number
of robots still alive at the end, N is the number of robots in
the swarm, ei,t is the energy of the robot i at time t, and
emax is the maximum energy of a robot. The second term of
Fs concerning the average energy is included to differentiate
solutions where the same number of robots survive.

The task-specific behaviour characterisation is an exten-
sion of the characterisation used in previous experiments
with this task [8]. The characterisation is a vector of length
four, composed by the following behavioural features that
are related to the task: (i) The number of robots that
reached the end of the simulation alive; (ii) the average en-
ergy of the alive robots throughout the simulation; (iii) the
average movement of all alive robots; and (iv) the average
distance of all alive robots to the charging station. Each of
these elements is normalised to [0, 1].

4.3 Configuration of the Algorithms
NEAT [20] is used as the underlying neuroevolution algo-

rithm. The NEAT parameters were the same in all experi-
ments: recurrent links are allowed, crossover rate – 25%, mu-
tation rate – 10%, population size – 200. The remaining pa-
rameters were assigned their default value in the NEAT4J2

implementation used in our experiments.
The implementation of novelty search follows the descrip-

tion in [15]. We used a k value of 15 nearest neighbours, and
individuals are added to the novelty archive with a proba-
bility of 2% [13]. The size of the archive is bounded to
500 individuals. When the archive is full, individuals are
randomly removed as needed. Novelty search is combined
with fitness-based evolution through a linear scalarization
(see Section 2.1.1). In all novelty search experiments, the
value of ρ was set to 0.7, which means that the score of each
individual is based on 70% of the novelty score and 30% of
the fitness score. This value was empirically chosen, and in
agreement with previous experiments [8].

For the combined state count measure, the filter threshold
T was set to 1% in all experiments, and the discretisation
level K was set to 3. For the sampled average state mea-
sure, three values of W were tested: 1, 10, and 50, which
correspond to time windows of 250 s, 25 s, and 5 s, respec-
tively. In both generic similarity measures, the values com-
ing from the sensor arrays (composed of 8 sensors for the
detection of obstacles, other robots, or the charging station)
were compressed in four values. These four values represent
the closest distance measured at the front of the robot, left,

2Version 1.0. http://neat4j.sourceforge.net

http://neat4j.sourceforge.net


right, and back. This compression was done to reduce the
number of states (in the combined state count measure), and
to reduce the length of the characterisation (in the sampled

average state measure).
Each controller was evaluated in 10 simulations, randomly

varying the initial positions and orientations of the robots.
The fitness scores obtained in each simulation are combined
to a single value using the harmonic mean as advocated
in [1]. The behaviour characterisations obtained in the mul-
tiple simulations are also merged in a single characterisation
through an element-wise average (in the task-specific mea-
sures and in sampled average state), and by summing the
state counts (in combined state count). The best individuals
of each generation were post-evaluated with 50 simulations,
in order to obtain a more accurate estimate of their fitness.

5. RESULTS
The following treatments were applied to each task. Each

evolutionary method was evaluated in 10 independent evo-
lutionary runs. The parameters of each method were set as
specified in Section 4.3.

SC Combined state count
AS-1 Sampled average state with W = 1
AS-10 Sampled average state with W = 10
AS-50 Sampled average state with W = 50
TS Novelty with task-specific similarity measure
Fit Fitness-based evolution

The quality of the solutions evolved with each evolution-
ary method is depicted in Figure 1. The boxplots represent
the highest fitness score found until a given generation, in
each evolutionary run of each treatment. The depicted re-
sults are further explained below.

5.1 Aggregation
As the results show (Figure 1 – Aggregation), the fitness

function is not deceptive, as fitness-based evolution can al-
most always reach high quality solutions. The most noto-
rious advantage of novelty search is its capacity of avoiding
deception. However, previous work [7] has shown that even
in non-deceptive swarm robotics tasks, novelty search can
offer a number of advantages. As such, it is still valuable
to analyse the performance of novelty search with generic
behaviour similarity measures in this non-deceptive task.
In early stages of evolution (at generation 20), novelty

search has an advantage over fitness-based evolution, con-
firming that novelty search quickly bootstraps the evolu-
tionary process [7, 17]. All similarity measures, except for
combined state count were superior to fitness-based evolu-
tion (p-value < 0.05, Mann-Whitney U test).
Around the middle of evolution (generation 75), the dif-

ferences between the treatments are less pronounced. By
the end of the evolution, the task-specific similarity mea-
sure is only superior to the state count measure (p-value <
0.05). This absence of significant difference between treat-
ments is actually a promising result. Previous work [7] has
shown that when the behaviour similarity measure is poorly
chosen, the performance of novelty search tends to degrade
significantly, regarding the quality of the solutions evolved.
In our experiment, the generic measures yielded results sim-
ilar to fitness-based evolution and to the task-specific mea-
sure, which suggests that the generic measures are acting as
effective behaviour similarity measures.
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Figure 1: Performance comparison of the evolution-
ary treatments in both tasks, regarding the high-
est fitness score achieved at different stages of the
evolutionary process. The boxplots represent the
distribution of the fitness scores obtained in the 10
evolutionary runs of each treatment.

5.2 Resource Sharing
As previous experiments have shown [8], the resource shar-

ing task is inherently deceptive. In particular, fitness-based
evolution tends to get stuck in two local maxima: (i) The
robots do not move at all in order to conserve energy and
survive longer, and as a consequence, they can not find the
charging station and all the robots run out of energy (fitness
score around 0.04); and (ii) when a robot finds the charg-
ing station, it occupies it and never leaves, condemning the
other robots (fitness score around 0.38). The deceptiveness
of this task makes it especially suitable to solve using novelty
search. As such, this task is a good benchmark to evaluate
if the behaviour similarity measures are capable of avoiding
deception and guiding evolution towards good solutions.



At the early stages of evolution (generation 50, see Fig-
ure 1 – Resource sharing), almost all runs of fitness-based
evolution are still stuck in the local maximum where the
robots do not move. On the other hand, all treatments
based on behavioural novelty could successfully bootstrap
the evolution. At this early stage, there are still no signifi-
cant differences between the novelty based treatments. By
the middle of the evolutionary process, the task-specific sim-
ilarity measure stands out, being superior to all the treat-
ments (p-value < 0.05, Mann-Whitney U test), except for
AS-50. There are no statistically significant differences be-
tween generic similarity measures at this stage.
Comparing the final results obtained with the different

treatments, the task-specific measure clearly outperformed
the other measures and fitness-based evolution, see Figure 1
– Resource sharing, generation 250. However, all novelty
based treatments were superior to fitness-based evolution (p-
value < 0.05), and more or less consistently, all reached high
fitness scores. Regarding the generic similarity measures,
theAS-50 treatment stands out, being significantly superior
to SC and AS-1 (p-value < 0.05).

5.3 Combined State Count
In both tasks, the combined state count measure was the

least effective measure. Nevertheless, the performance was
close to the sampled average state, which contrasts with the
results in [6]. To understand the inferior performance of
combined state count, we analysed the sensor-effector states
that are visited with each individual (Figure 2).
The increasing average number of states depicts the in-

creasing complexity of the solutions throughout evolution.
However, the average number of common states does not fol-
low this trend. Since the distance between two state count
characterisations is determined by the states they share, this
distance can lose accuracy if the characterisations share few
states. In the extreme case, if no states are shared, the
distance value is always the same. To overcome this issue,
we suggest that the similarity between states should also be
considered in the distance metric, besides the count of each
state. This way, the distance will maintain its accuracy, re-
gardless of the number of shared states. Further studies are
required to assess the viability of this approach.

5.4 Sampled Average State
Regarding the sampled average state technique, the most

important factor to study is the influence of the parameter
W . This parameter controls the length of the characterisa-
tion and how accurately it captures the temporal component
of the robots behaviour. In the aggregation task, there was
no significant difference among the treatments with different
W values (p-value < 0.05). On the other hand, in the re-
source sharing task there is a trend in the results: the higher
the W , the better the performance of the evolutionary pro-
cess, regarding the quality of the solutions. The treatment
with W = 50 delivers significantly higher fitness scores than
the treatment with W = 1 (p-value < 0.05).
The reason for the different impact of the W value in dif-

ferent tasks is still not clear. Our hypothesis is that the
difference is due to the degree of behaviour regularity neces-
sary to solve each task. The aggregation task can be solved
using a regular pattern of behaviour, almost a reactive ap-
proach. As such, a low W value might be sufficient to ad-
equately characterise the behaviour of the swarm. On the
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Figure 2: Average number of sensor-effector states
visited by each population individual (after the fil-
tering step), compared with the average number of
states that each individual shares with the current
population and the novelty archive.

other hand, the resource sharing task requires a more se-
quential behaviour, which involves first finding the charging
station, and then a different behaviour for sharing it with
the other robots. As a consequence, higher W values might
be preferred, as they allow the sequential component of the
behaviour to be adequately captured. Further experiments
are required to confirm or reject this hypothesis.

6. CONCLUSION
We proposed two generic similarity measures for the do-

main of evolutionary swarm robotics, and used them to drive
novelty search. The proposed measures rely on the principle
that by analysing the microscopic behaviour of the robots
of the swarm, it is possible to obtain a characterisation of
the swarm behaviour as whole. The microscopic behaviour
of each robot is exclusively based on the sensor and effector
values of the robots, keeping the characterisation completely
independent of the experimenter’s understanding of the task.

The proposed measures were tested in two distinct tasks,
and compared with carefully crafted task-specific measures.
The results showed that the performance obtained with
the generic measures is close to the performance obtained
with the task-specific measures, regarding the quality of the
evolved solutions. In each task, the highest scoring generic
measures were not significantly worse than the task-specific
measure. Furthermore, the results show that the advantages
of novelty search identified in previous work [7, 9] hold with
the generic measures: novelty search excelled in the earlier
stages of evolution and was successful in circumventing de-
ception. Our results suggest that the proposed measures
are sufficiently generic to scale to complex robotics tasks.
In the resource sharing task, for instance, the robots had a
reasonably large number of sensors and effectors, originat-
ing a large search space. Nevertheless, the generic novelty
measures could deliver a reasonably good performance.

In the comparison between the proposed generic similarity
measures, we found that the sampled average state achieved
the best results in both tasks. However, from a general per-
spective, this measure is associated with a number of limi-
tations: (i) characterisations can become too long if there is
a high number of sensors/effectors and a high value of W is
necessary; (ii) it is not applicable to tasks where simulations
can have different lengths; and (iii) in tasks where the robots
of the swarm are performing different sub-tasks simultane-



ously, averaging the sensor-effector states of all robots can
result in a meaningless characterisation. On the other hand,
the combined state count measure does not suffer from these
limitations, despite the inferior performance verified in the
two tasks presented in this paper. As such, we contend that
the state count approach should not be dismissed, and it
should be further improved in future work. More experi-
ments, with different tasks, are also needed in order to de-
termine how well our results generalise, and clarify which
measures are more suitable for different types of tasks.
The use of novelty search with generic behaviour similar-

ity measures, in combination with traditional fitness-based
evolution, opens interesting possibilities in the domain of
evolutionary swarm robotics. First, it facilitates the use of
straightforward fitness functions. There is no need to shape
the fitness function in order to avoid local maxima, since
novelty search circumvents that issue, without relying on
additional information provided by the experimenter. The
use of generic measures is a step towards evolving complex
solutions with minimal intervention from the experimenter.
Second, generic measures can potentially be used to unveil
a true diversity of solutions, with the evolved diversity not
being conditioned by the experimenter.
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