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Abstract Shuffled frog leaping algorithm (SFLA) is a
meta-heuristic to handle different large-scale optimization
problems. SFLA is a population-based algorithm that com-
bines the advantages of memetic algorithm and parti-
cle swarm optimization. This paper compares previous
researches on SFLA and its effectiveness, with the most
applied optimization algorithms reviewed and analyzed.
Based on the literature, many efforts by previous researchers
on SFLA denote the next generations of basic SFLA with
diverse structures for modified SFLA or hybrid SFLA. As
well, an attempt is made to highlight these structures, their
enhancements and advantages. Moreover, this paper consid-
ers top improvements on SFLA for solving multi-objective
optimization problems, enhancing local and global explo-
ration, avoiding being trapped into local optima, declining
computational time and improving the quality of the initial
population. The measured enhancements in SFLA are based
on the statistical results obtained from 89 published papers
and by considering the most common and effective modifi-
cations done by a large number of researchers. Finally, the
quantitative validations address the SFLA as a robust algo-
rithm employed in various applications which outperforms
the other optimization algorithms.
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1 Introduction

The optimization problem is to provide the finest solution
from all feasible solutions based on the defined specified
objectives. Multi-objective optimization problems are com-
mon problems which have two or more objectives that regu-
larly conflict with each other and have to be minimized (or
maximized) concurrently. A vector of decision variables is
provided as a result by optimizing the objective functions and
satisfying the predefined constraints (Niknam et al. 2011a).

There are two types of algorithms for solving different
optimization problems: traditional and nontraditional algo-
rithms. Traditional algorithms try to present a local optima
solution, while the solution provided by nontraditional algo-
rithms is only an approximation based on extrinsic model or
objective function. Traditional algorithms, such as Taguchi
method, nonlinear programming, geometric programming,
and dynamic programming, try to find a near-optimal solu-
tion. These kinds of algorithms generally do not succeed in
handling different complex problems, particularly including
nonlinear objective functions or those including numerous
local optima, and may reduce the convergence rate (Rao and
Savsani 2012). Nontraditional or evolutionary algorithms
could overcome these problems. These algorithms are based
on accidental search that emulates the natural biological evo-
lution and the social behavior of the genus (Rameshkhah et
al. 2010). In recent years, these kinds of algorithms have
been found to be sufficiently robust and widely employed by
researchers to solve nonlinear, highly dimensional and com-
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plex optimization problems that provide near-optima solu-
tions (Rao 2011).

Nowadays, various powerful evolutionary optimization
algorithms have been designed to handle various complex
engineering problems. Some of the most functional basic
algorithms with brief description are as follows:

• Genetic algorithm (GA) is a heuristic search based on the
national genetics, proposed by Holland (1973).

• Memetic algorithm (MA) is a genetic-based algorithm
and based on cultural evolution, proposed by Richard
(1976).

• Simulated annealing (SA) works according to the the-
ory of explosion grenade, proposed by Kirkpatrick et al.
(1983).

• Ant colony optimization (ACO) works according to the
theory of foraging behavior of ants looking for food, by
Dorigo (1992).

• Particle swarm optimization (PSO) works according to
the choreography of a bird flock, proposed by Eberhart
and Kennedy (1995).

• Shuffled frog leaping algorithm (SFLA) works accord-
ing to the theory of frogs’ communication, proposed by
Eusuff and Lansey (2003).

• Artificial bee colony (ABC) works according to the the-
ory of foraging behavior of a honey bee, proposed by
Karaboga (2005).

Among these algorithms, SFLA which is proposed to look for
global optimal solution through a heuristic function (Eusuff
and Lansey 2003) is efficient in a wide range of multi-
objective and complex optimization problems. In the next
section, the basic concepts and structure of SFLA and its
next generations to make it more powerful are described in
detail.

2 Overview of SFLA

The SFLA as a population-based algorithm simulates the
behavior of frogs located in swamps seeking around for the
optimum location of food. The algorithm utilizes local search
and global search capabilities (Shayanfar et al. 2010a, b;
Eusuff et al. 2006) and integrates the advantages of the MA
and PSO algorithms (Rameshkhah et al. 2010). The main
advantage of MA is that it passes information among all
population, while in GA there is interaction only between
parent–sibling. On the other hand, PSO algorithm is more
effective and has a fast convergence rate. Also, all its parti-
cles tend to converge to the best global solution and provide
a near-optimal solution with high convergence speed (Rao
2011). Moreover, unlike MA, the PSO algorithm needs a
simple coding process. Hence, SFLA profits from the advan-

tages of MA and PSO and has better performance on the
global search to find an optimal solution.

The population in SFLA, which is a memetic meta-
heuristic, contains a set of frogs (solutions) classified into dif-
ferent memeplexes with various frogs’ cultures. SFLA does
a local exploration using PSO algorithm in each memeplex
simultaneously. The frogs are shuffled and reorganized into
new memeplexes to guarantee global exploration (Wang and
Fang 2011). The shuffling processes and local search con-
tinue until the stopping criteria are satisfied (Rameshkhah et
al. 2010). Memetic evolution enhances individual memetics
quality. The local search in SFLA transfers memetic among
the individuals and the shuffling process transfers memetic
amongst the global (Rao 2011). It is shown that SFLA has bet-
ter performance of the global search in large generation size
of memeplexes that needs high computation time. In addition,
the shuffling process enhances the quality of memetics based
on different memeplexes with different cultures. Exchang-
ing the information between local and global search results
would guarantee the algorithm’s flexibility and robustness
(Amiri et al. 2009).

Alternatively, SFLA is integration of random and determi-
nacy approaches (Eusuff et al. 2006; Rao 2011). The deter-
minacy approach exchanges messages in the algorithm suc-
cessfully and random approach guarantees the robustness and
flexibility of the algorithm (Rao 2011).

3 Basic SFLA

The basic SFLA meta-heuristic technique is structured into
three main phases (Niknam et al. 2011b): initialize, evalua-
tion, and shuffling. In the initialize phase, f frogs are selected
randomly. In the evaluation phase, the frogs are sorted based
on descending order of fitness value. Then, the sorted frogs
are partitioned into m groups (memeplexes) which can per-
form the local search independently. During the local search,
frogs of each memeplex improve to find a better fitness value.
It is feasible to raise the fitness value of a high-quality frog
and reduce the fitness value of a low-quality frog based on
the predefined objective. Shuffling phase is for enhancing the
global search (Zhen et al. 2009). In this phase, after accom-
plishing evolution, the memeplexes are shuffled. The frogs
are optimized globally and generate new memeplexes (Amiri
et al. 2009). The processes of evolution and shuffling con-
tinue several times until the best solution is found. The basic
SFLA’s diagram is shown in Fig. 1.

Consequently, SFLA is developed based on four key para-
meters: the number of memeplexes (m), the number of frogs
in each memeplex (n), the number of frogs in population (p),
the number of evolution or iterations between two consecu-
tive shuffling (s), and the number of maximum iteration (N ).
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Fig. 1 a The proposed SFL-TLBO algorithm’s main diagram, b local search for each memeplex

The population of frogs is shown as

X = {
x1, x2, . . . , x p

}
, (1)

and the frog i is presented as

xi =
{

x1
i , x2

i , . . . , xh
i

}
, (2)

where h indicates the number of decision variables (parame-
ters) in a frog (solution).

To handle multi-objective optimization problems with
several conflicting objectives which have to be consid-

ered simultaneously, the main objective function should be
defined as follows (Niknam et al. 2011b):

(min/max) F = [ f1(x), f2(x), . . . , fk(x)]T , (3)

while quality constraint gi (x) and inequality constraint hi (x)

are satisfied:

gi (x) < 0 i = 1, 2, . . . , N1

hi (x) = 0 i = 1, 2, . . . , N2,
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where k shows the number of objective functions, fi (x) is i th
objective function, and N1 and N2 are the number of equality
and inequality constraints respectively,

The steps of basic SFLA are given as follows:

1. Initialize a random population of p solution (frogs).
2. Calculate the fitness function (position) for each frog

(solution’s fitness value).
3. Sort the frogs based on their fitness values (in descending

order).
4. Partition the population into m groups (memeplexes) as

follows: allocate the frogs to the groups according to the
fitness values. The first frog with the highest value moves
to the first group, the second highest frog moves to the
second group . . . the mth highest frog moves to the last
group. Then, m +1th frog moves to the first group again.
These operations continue until the last frog is allocated
to a group. Finally, each group contains n frogs. Thus,
p = n × m.

5. For each group (memeplex), follow steps 5.1–5.2.

5.1. Select the frogs with the worst position xw and best
position xb.

5.2. For a predefined number of times (s), improve the
worst position by following steps 5.2.1–5.2.7.

5.2.1. Perform a local search for each group (meme-
plex) using the following equation,

x ′
i = xi + r × (xb − xw) i = 1, 2, . . . , m,

(4)

where x ′
i indicates a new position in the next

iteration and r is a random number between 0
and 1.

5.2.2. If x ′
i > xi , then go to step 5.2.7.

5.2.3. Select the global best frog position xg .
5.2.4. Apply global search using the following equa-

tion:

x ′
i = xi + r × (xg − xw). (5)

5.2.5. If x ′
i > xi , then go to step 5.2.7.

5.2.6. Generate a new frog x ′
i randomly.

5.2.7. Replace frog xi with x ′
i .

6. Shuffle all the memeplexes.
7. Check the termination criteria. If it has happened, then

stop; else, continue from step 2.

The termination criteria for the algorithm could be satisfied
by one of the following three conditions:

1. The value of the main objective function F reaches an
acceptable and optimum value.

2. The number of iterations gains to a predefined value (N );
it varies for different number of dimensions in a problem.

3. During several consecutive iterations, no progress could
be seen in the value of the main objective function F .

Table 1 indicates various studies done based on basic
SFLA to attain an effective optimization result in a variety
of applications. In addition, Table 1 gives some information
about the comparison results between the proposed SFLA
and other common optimization techniques on accuracy, con-
vergence rate, computational time, and performance.

3.1 Generations of SFLA

Although basic SFLA applied PSO as a local exploration
and merged information from parallel local explorations to
come up to a global exploration, it has some limitations in
one or the other aspects. For example, being trapped in local
optimum reported by many researchers is a problem in basic
SFLA. Also, as the worst frog’s position in local exploration
will never jump over the best one, the convergence speed will
be slowed down and cause premature convergence. Conse-
quently, in recent years there are some studies to overcome
these problems of basic SFLA.

On the other hand, some of the researches are ongoing to
enhance the basic SFLA performances. For example, they
improve the accuracy of the solution, the diversity of the
search space vector, the algorithm’s searching capacity or
enhance the local search capability. In addition, some studies
try to initialize a high-quality population with an assured level
of diversity to improve solution quality and convergence rate.

Alternatively, there are some studies related to SFLA for
solving continuous, combinatorial and multi-objective opti-
mization problems with imprecise objective functions, while
basic SFLA has some limitations to find the optimum solu-
tion.

Accordingly, researchers continue to improve the perfor-
mance of basic SFLA. Enhancement is done either on the
algorithm by modification of SFLA (MSFLA) or hybridiza-
tion of SFLA (HSFLA). In MSFLA, the algorithm is
improved by applying or replacing new functions, heuristics
or factors. In HSFLA, basic SFLA is integrated with other
evolutionary algorithms.

4 Modified SFLA

As a consequence of the continuous feature of SFLA, it is
difficult to solve large-scale, complicated and combinator-
ial optimization problems (Li and Wang 2011). To handle
these kinds of optimization problems and improve the per-
formance, some previous works proposed different structures
for modified SFLA (MSFLA).

123



Basic, modified and hybrid SFLA

Ta
bl

e
1

C
om

pa
ri

so
n

re
su

lt
be

tw
ee

n
th

e
pr

op
os

ed
SF

L
A

an
d

ot
he

r
pu

bl
is

he
d

al
go

ri
th

m
s

N
o.

R
ef

er
en

ce
Pr

op
os

ed
al

go
ri

th
m

A
cc

ur
ac

y
of

th
e

so
lu

tio
n

C
on

ve
rg

en
ce

ra
te

L
es

s
pr

oc
es

si
ng

tim
e

G
en

er
al

ly
pe

rf
or

m
an

ce
A

pp
lic

at
io

n
R

em
ar

ks
a

1
E

us
uf

f
an

d
L

an
se

y
(2

00
3)

SF
L

A
N

/A
N

/A
SF

L
A

>
G

A
,

SA
SF

L
A

>
G

A
,

SA
W

at
er

di
st

ri
bu

tio
n

ne
tw

or
k

op
tim

iz
at

io
n

pr
ob

le
m

s

Pr
ev

io
us

re
se

ar
ch

w
or

k
co

m
pa

ri
so

ns
:

p
=

51
0,

m
=

30
,n

=
17

,
s

=
17

,
N

=
10

0

2
E

us
uf

f
et

al
.(

20
06

)
SF

L
A

SF
L

A
>

G
A

SF
L

A
>

G
A

SF
L

A
>

G
A

SF
L

A
>

G
A

W
at

er
di

st
ri

bu
tio

n
ne

tw
or

k
op

tim
iz

at
io

n
pr

ob
le

m
s

Pr
ev

io
us

re
se

ar
ch

w
or

k
co

m
pa

ri
so

ns
:

p
=

N
/

A
,
10

0
<

m
<

15
0,

30
<

n
<

10
0,

20
<

s
<

30
,

N
=

N
/A

3
R

ao
(2

01
1)

SF
L

A
A

B
C

>
PS

O
,

G
A

,M
A

>

SF
L

A

A
B

C
>

PS
O

>

M
A

>
G

A
;

SF
L

A
>

G
A

SF
L

A
>

G
A

M
A

>
G

A
C

la
ss

ifi
ca

tio
n

pr
ob

le
m

s
Pr

ev
io

us
re

se
ar

ch
w

or
k

co
m

pa
ri

so
ns

:
p

=
20

,
m

=
5,

n
=

4,
s

=
N

/A
,

N
=

50

4
Ja

ha
ni

et
al

.(
20

11
)

SF
L

A
N

/A
N

/A
N

/A
SF

L
A

>

PS
O

,G
A

E
le

ct
ri

ca
lp

ow
er

sy
st

em
op

tim
iz

at
io

n

Pr
ev

io
us

re
se

ar
ch

w
or

k
co

m
pa

ri
so

ns
:

p
=

N
/A

,
m

=
N

/A
,n

=
N

/A
,

s
=

N
/A

,
N

=
N

/A

5
B

an
at

ia
nd

M
eh

ta
(2

01
2)

SF
L

A
N

/A
M

A
>

G
A

;P
SO

>
M

A
;

SF
L

A
>

PS
O

N
/A

SF
L

A
>

PS
O

,M
A

,
G

A

N
/A

B
en

ch
m

ar
k

co
m

pa
ri

so
ns

:
p

=
N

/A
,m

=
N

/A
,

n
=

N
/A

,s
=

N
/A

,
N

=
N

/A

6
Z

he
n

et
al

.(
20

07
)

SF
L

A
N

/A
SP

SO
>

SF
L

A
,

PS
O

SP
SO

>
PS

O
>

SF
L

A
SP

SO
>

SF
L

A
,P

SO
C

on
tin

ue
s

op
tim

iz
at

io
n

pr
ob

le
m

Pr
ev

io
us

re
se

ar
ch

w
or

k
co

m
pa

ri
so

ns
:

p
=

20
0,

m
=

10
,

n
=

20
,
s

=
15

,

N
=

20
0

7
Ja

ha
ni

et
al

.(
20

10
)

SF
L

A
N

/A
N

/A
N

/A
SF

L
A

>
G

A
,

PS
O

E
le

ct
ri

ca
lp

ow
er

sy
st

em
op

tim
iz

at
io

n

Pr
ev

io
us

re
se

ar
ch

w
or

k
co

m
pa

ri
so

ns
:

p
=

N
/A

,
m

=
N

/A
,n

=
N

/A
,

s
=

N
/A

,
N

=
N

/A

8
R

ao
(2

01
1)

SF
L

A
SF

L
A

>

A
B

C
,S

A
,

H
S,

PS
O

SF
L

A
>

A
B

C
,

SA
,H

S,
PS

O
,

G
A

N
/A

N
/A

N
/A

Pr
ev

io
us

re
se

ar
ch

w
or

k
co

m
pa

ri
so

ns
:

p
=

N
/A

,
m

=
N

/A
,n

=
N

/A
,

s
=

N
/A

,
N

=
N

/A

123



A. Sarkheyli et al.

Ta
bl

e
1

co
nt

in
ue

d

N
o.

R
ef

er
en

ce
Pr

op
os

ed
al

go
ri

th
m

A
cc

ur
ac

y
of

th
e

so
lu

tio
n

C
on

ve
rg

en
ce

ra
te

L
es

s
pr

oc
es

si
ng

tim
e

G
en

er
al

ly
pe

rf
or

m
an

ce
A

pp
lic

at
io

n
R

em
ar

ks
a

9
N

ej
ad

et
al

.(
20

11
)

SF
L

A
SF

L
A

>
G

A
SF

L
A

>
G

A
SF

L
A

>
G

A
SF

L
A

>
G

A
E

le
ct

ri
ca

lp
ow

er
sy

st
em

op
tim

iz
at

io
n

Pr
ev

io
us

re
se

ar
ch

w
or

k
co

m
pa

ri
so

ns
:

p
=

N
/A

,
m

=
N

/A
,n

=
N

/A
,

s
=

N
/A

,
N

=
N

/A

10
Ta

va
ko

la
n

(2
01

1)
SF

L
A

N
/A

SF
L

A
>

G
A

,
PS

O
,A

C
O

SF
L

A
>

G
A

,
PS

O
,A

C
O

SF
L

A
>

G
A

,
PS

O
,A

C
O

T
im

e-
co

st
tr

ad
e-

of
f

co
ns

tr
uc

tio
n

m
an

ag
em

en
t

pr
ob

le
m

;
tim

e-
co

st
-r

es
ou

rc
e

op
tim

iz
at

io
n

pr
ob

le
m

;r
es

ou
rc

e
sc

he
du

lin
g

pr
ob

le
m

Pr
ev

io
us

re
se

ar
ch

w
or

k
co

m
pa

ri
so

ns
:

p
=

N
/A

,
m

=
N

/A
,n

=
N

/A
,

s
=

N
/A

,
N

=
N

/A

11
Ta

va
ko

la
n

an
d

A
sh

ur
i(

20
12

)
SF

L
A

N
/A

SF
L

A
>

G
A

,
PS

O
,A

C
O

SF
L

A
>

G
A

,
PS

O
,A

C
O

SF
L

A
>

G
A

,
PS

O
,A

C
O

T
im

e-
co

st
tr

ad
e-

of
f

co
ns

tr
uc

tio
n

m
an

ag
em

en
t

pr
ob

le
m

;
tim

e-
co

st
-r

es
ou

rc
e

op
tim

iz
at

io
n

pr
ob

le
m

;r
es

ou
rc

e
sc

he
du

lin
g

pr
ob

le
m

Pr
ev

io
us

re
se

ar
ch

w
or

k
co

m
pa

ri
so

ns
:

p
=

N
/A

,
m

=
N

/A
,n

=
N

/A
,

s
=

N
/A

,
N

=
N

/A

12
Y

am
m

an
ie

ta
l.

(2
01

2)
SF

L
A

N
/A

N
/A

N
/A

SF
L

A
>

G
A

O
pt

im
iz

at
io

n
of

pl
ac

em
en

ti
n

di
st

ri
bu

tio
n

ne
tw

or
k

Pr
ev

io
us

re
se

ar
ch

w
or

k
co

m
pa

ri
so

ns
:

p
=

32
,

m
=

4,
n

=
8,

s
=

N
/A

,
N

=
10

0

13
L

uo
et

al
.(

20
08

)
SF

L
A

N
/A

N
/A

N
/A

SF
L

A
>

G
A

T
ra

ve
lin

g
sa

le
sm

an
pr

ob
le

m
B

en
ch

m
ar

k
co

m
pa

ri
so

ns
:

p
=

N
/A

,
m

=
N

/A
,n

=
N

/A
,

s
=

N
/A

,
N

=
N

/A

14
A

m
ir

ie
ta

l.
(2

00
9)

SF
L

A
SF

L
A

>
G

A
,

SA
,T

S,
A

C
O

SF
L

A
>

G
A

,
SA

,T
S,

A
C

O

D
at

a
cl

us
te

ri
ng

pr
ob

le
m

Pr
ev

io
us

re
se

ar
ch

w
or

k
co

m
pa

ri
so

ns
:

p
=

15
0,

m
=

5,
n

=
30

,s
=

50
,

N
=

1,
00

0

15
A

ni
ta

an
d

R
ag

le
nd

(2
01

2)
SF

L
A

SF
L

A
>

IC
G

A
,L

R
SF

L
A

>

IC
G

A
,L

R
U

ni
tc

om
m

itm
en

t
sc

he
du

lin
g

pr
ob

le
m

IC
G

A
:i

nt
eg

er
co

de
d

G
A

;L
R

:L
ag

ra
ng

ia
n;

pr
ev

io
us

re
se

ar
ch

w
or

k
co

m
pa

ri
so

ns
:

p
=

N
/A

,m
=

N
/A

,
n

=
N

/A
,s

=
N

/A
,

N
=

N
/A

123



Basic, modified and hybrid SFLA

Ta
bl

e
1

co
nt

in
ue

d

N
o.

R
ef

er
en

ce
Pr

op
os

ed
al

go
ri

th
m

A
cc

ur
ac

y
of

th
e

so
lu

tio
n

C
on

ve
rg

en
ce

ra
te

L
es

s
pr

oc
es

si
ng

tim
e

G
en

er
al

ly
pe

rf
or

m
an

ce
A

pp
lic

at
io

n
R

em
ar

ks
a

16
C

he
n

(2
00

9)
SF

L
A

N
/A

N
/A

N
/A

SF
L

A
>

E
P,

G
A

C
om

bi
ne

d
ec

on
om

ic
em

is
si

on
di

sp
at

ch
E

P:
ev

ol
ut

io
na

ry
pr

og
ra

m
m

in
g;

pr
ev

io
us

re
se

ar
ch

w
or

k
co

m
pa

ri
so

ns
:

p
=

N
/A

,m
=

N
/A

,
n

=
N

/A
,s

=
N

/A
,

N
=

N
/A

17
C

he
n

et
al

.(
20

09
)

SF
L

A
SF

L
A

>
PS

O
N

/A
N

/A
SF

L
A

>
PS

O
D

yn
am

ic
po

w
er

flo
w

op
tim

iz
at

io
n

Pr
ev

io
us

re
se

ar
ch

w
or

k
co

m
pa

ri
so

ns
:

p
=

N
/A

,
m

=
N

/A
,n

=
N

/A
,

s
=

N
/A

,
N

=
N

/A

18
D

ua
n

an
d

Pa
n

(2
01

0)
SF

L
A

SF
L

A
>

A
C

O
,G

A
N

/A
N

/A
SF

L
A

>

A
C

O
,G

A
L

ot
-s

tr
ea

m
in

g
flo

w
sh

op
sc

he
du

lin
g

pr
ob

le
m

Pr
ev

io
us

re
se

ar
ch

w
or

k
co

m
pa

ri
so

ns
:

p
=

N
/A

,
m

=
N

/A
,n

=
N

/A
,

s
=

N
/A

,
N

=
N

/A

19
E

gh
ba

le
ta

l.
(2

01
1)

SF
L

A
SF

L
A

>

PS
O

,G
A

SF
L

A
>

PS
O

,
G

A
N

/A
N

/A
D

is
tr

ib
ut

io
n

ex
pa

ns
io

n
pl

an
ni

ng
pr

ob
le

m

Pr
ev

io
us

re
se

ar
ch

w
or

k
co

m
pa

ri
so

ns
:

p
=

N
/A

,
m

=
N

/A
,n

=
N

/A
,

s
=

N
/A

,
N

=
N

/A

20
E

us
uf

f
(2

00
4)

SF
L

A
SF

L
A

>
G

A
N

/A
N

/A
SF

L
A

>
G

A
W

at
er

di
st

ri
bu

tio
n

ne
tw

or
k

op
tim

iz
at

io
n

pr
ob

le
m

s

Pr
ev

io
us

re
se

ar
ch

w
or

k
co

m
pa

ri
so

ns
:

p
=

N
/A

,
m

=
N

/A
,n

=
N

/A
,

s
=

N
/A

,
N

=
N

/A

21
L

i(
20

09
)

SF
L

A
SF

L
A

>
G

A
,

PS
O

SF
L

A
>

G
A

,
PS

O
N

/A
N

/A
R

ea
ct

iv
e

po
w

er
flo

w
op

tim
iz

at
io

n
Pr

ev
io

us
re

se
ar

ch
w

or
k

co
m

pa
ri

so
ns

:
p

=
N

/A
,

m
=

N
/A

,n
=

N
/A

,
s

=
N

/A
,

N
=

N
/A

22
R

am
es

hk
ha

h
(2

01
1)

SF
L

A
SF

L
A

>
PS

O
N

/A
N

/A
N

/A
C

lu
st

in
g

pr
ob

le
m

in
po

w
er

sy
st

em
s

Pr
ev

io
us

re
se

ar
ch

w
or

k
co

m
pa

ri
so

ns
:

p
=

N
/A

,
m

=
N

/A
,n

=
N

/A
,

s
=

N
/A

,
N

=
N

/A

123



A. Sarkheyli et al.

Ta
bl

e
1

co
nt

in
ue

d

N
o.

R
ef

er
en

ce
Pr

op
os

ed
al

go
ri

th
m

A
cc

ur
ac

y
of

th
e

so
lu

tio
n

C
on

ve
rg

en
ce

ra
te

L
es

s
pr

oc
es

si
ng

tim
e

G
en

er
al

ly
pe

rf
or

m
an

ce
A

pp
lic

at
io

n
R

em
ar

ks
a

23
Sh

ir
va

ni
et

al
.(

20
12

a)
SF

L
A

SF
L

A
>

C
PS

S
N

/A
N

/A
N

/A
O

pt
im

iz
at

io
n

of
PI

D
po

w
er

sy
st

em
st

ab
ili

ze
r

C
PS

S:
co

nv
en

tio
na

l
po

w
er

sy
st

em
st

ab
ili

ze
r;

pr
ev

io
us

re
se

ar
ch

w
or

k
co

m
pa

ri
so

ns
:

p
=

N
/A

,
m

=
N

/A
,n

=
N

/A
,

s
=

N
/A

,
N

=
N

/A

24
Sh

ir
va

ni
et

al
.(

20
12

b)
SF

L
A

SF
L

A
>

G
A

N
/A

N
/A

N
/A

U
ni

fie
d

po
w

er
flo

w
co

nt
ro

lle
rs

in
el

ec
tr

ic
al

po
w

er
sy

st
em

s

Pr
ev

io
us

re
se

ar
ch

w
or

k
co

m
pa

ri
so

ns
:

p
=

N
/A

,m
=

2,
n

=
N

/A
,s

=
2,

N
=

20

25
L

in
et

al
.(

20
07

)
SF

L
A

SF
L

A
>

G
A

,
SA

,T
S

SF
L

A
>

G
A

,
SA

,T
S

N
/A

N
/A

W
at

er
di

st
ri

bu
tio

n
ne

tw
or

k
op

tim
iz

at
io

n
pr

ob
le

m
s

B
en

ch
m

ar
k

co
m

pa
ri

so
ns

:
p

=
N

/A
,

m
=

N
/A

,n
=

N
/A

,
s

=
N

/A
,

N
=

N
/A

26
L

ip
in

g
et

al
.(

20
12

)
SF

L
A

SF
L

A
>

W
W

,S
M

,
L

4L
,L

U
C

N
/A

N
/A

SF
L

A
>

W
W

,S
M

,
L

4L
,L

U
C

Pr
od

uc
tio

n
pl

an
ni

ng
pr

ob
le

m
W

W
:W

ag
ne

r–
W

hi
tin

;
SM

:S
ilv

er
–M

ea
l;

L
4L

:L
ot

-4
-L

ot
;L

U
C

:
le

as
tu

ni
tc

os
t;

pr
ev

io
us

re
se

ar
ch

w
or

k
co

m
pa

ri
so

ns
:

p
=

10
0,

m
=

10
,

n
=

10
,
s

=
5,

N
=

2,
00

0

27
L

uo
(2

01
2)

SF
L

A
N

/A
N

/A
N

/A
SF

L
A

>
G

A
S

L
og

is
tic

s
di

st
ri

bu
tio

n
ve

hi
cl

e
ro

ut
in

g
pr

ob
le

m
/tr

av
el

in
g

sa
le

sm
an

pr
ob

le
m

(T
SP

)

G
A

S:
hy

br
id

G
A

-A
C

O
-S

A
;

pr
ev

io
us

re
se

ar
ch

w
or

k
co

m
pa

ri
so

ns
:

p
=

N
/A

,m
=

N
/A

,
n

=
N

/A
,s

=
N

/A
,

N
=

N
/A

28
Pa

sh
a

an
d

L
an

se
y

(2
00

9)
SF

L
A

N
/A

N
/A

N
/A

SF
L

A
>

ra
nd

om
se

ar
ch

te
ch

ni
qu

e,
ex

ac
td

at
a

W
at

er
di

st
ri

bu
tio

n
ne

tw
or

k
op

tim
iz

at
io

n
pr

ob
le

m
s

E
xp

er
im

en
ta

ld
at

a:
p

=
3,

50
0,

m
=

50
,
n

=
70

,
s

=
10

,
N

=
N

/A

29
Z

ha
ng

an
d

W
an

g
(2

01
0)

SF
L

A
SF

L
A

>
PS

O
SF

L
A

>
PS

O
N

/A
N

/A
V

ie
w

po
in

ts
el

ec
tio

n
in

vi
su

al
iz

at
io

n
of

3D
da

ta
se

ts

Pr
ev

io
us

re
se

ar
ch

w
or

k
co

m
pa

ri
so

ns
:

p
=

12
,
m

=
3,

n
=

4,
s

=
6,

N
=

30

123



Basic, modified and hybrid SFLA

Ta
bl

e
1

co
nt

in
ue

d

N
o.

R
ef

er
en

ce
Pr

op
os

ed
al

go
ri

th
m

A
cc

ur
ac

y
of

th
e

so
lu

tio
n

C
on

ve
rg

en
ce

ra
te

L
es

s
pr

oc
es

si
ng

tim
e

G
en

er
al

ly
pe

rf
or

m
an

ce
A

pp
lic

at
io

n
R

em
ar

ks
a

30
L

ia
nd

W
an

g
(2

01
1)

M
SF

L
A

N
/A

M
SF

L
A

>

SF
L

A
,P

SO
,

G
A

M
SF

L
A

>

SF
L

A
,

PS
O

,G
A

N
/A

T
ra

ve
lin

g
sa

le
sm

an
pr

ob
le

m

Pr
ev

io
us

re
se

ar
ch

w
or

k
co

m
pa

ri
so

ns
:

p
=

10
0,

m
=

5,
n

=
20

,
s

=
10

,
N

=
N

/A

31
N

ik
na

m
et

al
.(

20
12

)
M

SF
L

A
N

/A
N

/A
N

/A
M

SF
L

A
>

PS
O

-
H

B
M

O
,

PS
O

-A
C

O
,

D
PS

O
-

A
C

O

Fe
ed

er
re

co
nfi

gu
ra

tio
n

pr
ob

le
m

in
di

st
ri

bu
tio

n
ne

tw
or

ks

H
B

M
O

:h
on

ey
be

e
m

at
in

g
op

tim
iz

at
io

n;
D

PS
O

:d
is

cr
et

e
PS

O
;

pr
ev

io
us

re
se

ar
ch

w
or

k
co

m
pa

ri
so

ns
:

p
=

N
/A

,
m

=
N

/A
,n

=
N

/A
,

s
=

N
/A

,
N

=
N

/A

32
M

al
ek

po
ur

et
al

.(
20

12
)

M
SF

L
A

M
SF

L
A

>

SF
L

A
N

/A
N

/A
N

/A
V

ol
t/V

ar
co

nt
ro

l
of

di
st

ri
bu

tio
n

sy
st

em

Pr
ev

io
us

re
se

ar
ch

w
or

k
co

m
pa

ri
so

ns
:

p
=

N
/A

,
m

=
N

/A
,n

=
N

/A
,

s
=

N
/A

,
N

=
N

/A

33
Pa

n
et

al
.(

20
10

)
M

SF
L

A
N

/A
N

/A
N

/A
M

SF
L

A
>

G
A

,H
G

A
,

A
C

O
,T

A
,

N
E

H

Fl
ex

ib
le

jo
b/

flo
w

sh
op

sc
he

du
lin

g
pr

ob
le

m

H
G

A
:H

yb
ri

d
G

A
;T

A
:

th
re

sh
ol

d
ac

ce
pt

in
g

al
go

ri
th

m
;N

E
H

:
N

aw
az

–E
ns

co
re

–H
am

al
go

ri
th

m
;p

re
vi

ou
s

re
se

ar
ch

w
or

k
co

m
pa

ri
so

ns
:

p
=

20
,

m
=

4,
n

=
5,

s
=

N
/A

,
N

=
N

/A

34
B

ag
hm

is
he

h
et

al
.(

20
11

)
M

SF
L

A
N

/A
M

SF
L

A
>

SF
L

A
,B

G
A

,
D

PS
O

SF
L

A
>

M
SF

L
A

;
M

SF
L

A
>

B
G

A
,

D
PS

O

M
SF

L
A

>

SF
L

A
,

B
G

A
,

D
PS

O
(O

n
hi

gh
di

m
en

si
on

al
fu

nc
tio

ns
)

D
is

cr
et

e/
re

al
-

va
lu

ed
op

tim
iz

at
io

n
pr

ob
le

m
s

B
G

A
:b

in
ar

y
G

A
;

D
PS

O
:d

is
cr

et
e

PS
O

;
pr

ev
io

us
re

se
ar

ch
w

or
k

co
m

pa
ri

so
ns

:
p

=
60

,
m

=
6,

n
=

10
,

s
=

10
,

N
=

20
,0

00

35
Pu

et
al

.(
20

11
)

M
SF

L
A

N
/A

M
SF

L
A

>

SF
L

A
,P

SO
M

SF
L

A
>

SF
L

A
,P

SO
M

SF
L

A
>

SF
L

A
,P

SO
A

ut
on

om
ou

s
fli

gh
tc

on
tr

ol
op

tim
iz

at
io

n

Pr
ev

io
us

re
se

ar
ch

w
or

k
co

m
pa

ri
so

ns
:

p
=

20
,

m
=

4,
n

=
5,

s
=

5,
N

=
30

36
Sh

ay
an

fa
r

et
al

.(
20

10
a,

b)
M

SF
L

A
N

/A
M

SF
L

A
>

SF
L

A
,P

SO
N

/A
M

SF
L

A
>

SF
L

A
,P

SO
E

le
ct

ri
ca

lp
ow

er
sy

st
em

op
tim

iz
at

io
n

Pr
ev

io
us

re
se

ar
ch

w
or

k
co

m
pa

ri
so

ns
:

p
=

N
/A

,
m

=
N

/A
,n

=
N

/A
,

s
=

N
/A

,
N

=
N

/A

123



A. Sarkheyli et al.

Ta
bl

e
1

co
nt

in
ue

d

N
o.

R
ef

er
en

ce
Pr

op
os

ed
al

go
ri

th
m

A
cc

ur
ac

y
of

th
e

so
lu

tio
n

C
on

ve
rg

en
ce

ra
te

L
es

s
pr

oc
es

si
ng

tim
e

G
en

er
al

ly
pe

rf
or

m
an

ce
A

pp
lic

at
io

n
R

em
ar

ks
a

37
L

ie
ta

l.
(2

01
2a

,b
)

M
SF

L
A

N
/A

N
/A

N
/A

M
SF

L
A

>

G
A

,
PS

O
-S

A
,

G
A

,
M

A
T

SL
O

,
PS

O
-T

S,
M

O
G

A
,

K
B

A
C

O

Fl
ex

ib
le

jo
b

sh
op

sc
he

du
lin

g
pr

ob
le

m
s

M
O

G
A

:m
ul

ti-
ob

je
ct

iv
e

G
A

;K
B

A
C

O
:

kn
ow

le
dg

e-
ba

se
d

A
C

O
;

be
nc

hm
ar

k
co

m
pa

ri
so

ns
:

p
=

10
0,

m
=

20
,
n

=
5,

s
=

50
,

N
=

N
/A

38
N

ik
na

m
et

al
.(

20
11

a)
M

SF
L

A
M

SF
L

A
>

G
A

,P
SO

,
SF

L
A

M
SF

L
A

>
G

A
,

PS
O

,S
FL

A
M

SF
L

A
>

G
A

,P
SO

,
SF

L
A

M
SF

L
A

>

G
A

,P
SO

,
SF

L
A

Fe
ed

er
re

co
nfi

gu
ra

tio
n

pr
ob

le
m

in
di

st
ri

bu
tio

n
ne

tw
or

ks

Pr
ev

io
us

re
se

ar
ch

w
or

k
co

m
pa

ri
so

ns
:

p
=

10
,

m
=

10
,
n

=
1,

s
=

10
,

N
=

10
0

39
Z

he
n

et
al

.(
20

09
)

M
SF

L
A

M
SF

L
A

>

SF
L

A
,P

SO
M

SF
L

A
>

SF
L

A
,P

SO
N

/A
M

SF
L

A
>

SF
L

A
,P

SO
C

on
tin

ue
s

op
tim

iz
at

io
n

pr
ob

le
m

Pr
ev

io
us

re
se

ar
ch

w
or

k
co

m
pa

ri
so

ns
:

p
=

N
/A

,
m

=
10

,
n

=
N

/A
,

s
=

50
,

N
=

10
0

40
C

hi
tti

ne
ni

et
al

.(
20

11
a)

M
SF

L
A

M
SF

L
A

>

SF
L

A
M

SF
L

A
>

SF
L

A
N

/A
M

SF
L

A
>

SF
L

A
C

la
ss

ifi
ca

tio
n

pr
ob

le
m

s
Pr

ev
io

us
re

se
ar

ch
w

or
k

co
m

pa
ri

so
ns

:
p

=
20

,
m

=
5,

n
=

4,
s

=
N

/A
,

N
=

N
/A

41
A

lg
ha

zi
et

al
.(

20
12

)
M

SF
L

A
M

SF
L

A
>

G
A

,S
A

M
SF

L
A

>
G

A
,

SA
M

SF
L

A
>

G
A

,S
A

M
SF

L
A

>

G
A

,S
A

Fi
na

nc
e-

ba
se

d/
pr

oj
ec

t
sc

he
du

lin
g

pr
ob

le
m

Pr
ev

io
us

re
se

ar
ch

w
or

k
co

m
pa

ri
so

ns
:

p
=

2,
00

0,
m

=
20

,
n

=
10

0,
s

=
15

,
N

=
50

0

42
E

lb
el

ta
gi

et
al

.(
20

07
)

M
SF

L
A

N
/A

N
/A

M
SF

L
A

>

SF
L

A
,G

A
N

/A
Pr

oj
ec

t
sc

he
du

lin
g

pr
ob

le
m

B
en

ch
m

ar
k

co
m

pa
ri

so
ns

:
p

=
20

0,
m

=
20

,
n

=
10

,
s

=
10

,
N

=
N

/A

43
L

ie
ta

l.
(2

01
0)

M
SF

L
A

N
/A

N
/A

N
/A

M
SF

L
A

>

N
G

SA
-I

I,
SP

E
A

-I
I,

dy
na

m
ic

pr
og

ra
m

-
m

in
g

R
es

er
vo

ir
flo

od
co

nt
ro

l
pr

ob
le

m

SP
E

A
:s

tr
en

gt
h

pa
re

to
ev

ol
ut

io
na

ry
al

go
ri

th
m

;
N

SG
A

-I
I:

no
n-

do
m

in
at

ed
so

rt
G

A
;

pr
ev

io
us

re
se

ar
ch

w
or

k
co

m
pa

ri
so

ns
:

p
=

20
0,

m
=

20
,
n

=
10

,
s

=
10

,
N

=
50

0

123



Basic, modified and hybrid SFLA

Ta
bl

e
1

co
nt

in
ue

d

N
o.

R
ef

er
en

ce
Pr

op
os

ed
al

go
ri

th
m

A
cc

ur
ac

y
of

th
e

so
lu

tio
n

C
on

ve
rg

en
ce

ra
te

L
es

s
pr

oc
es

si
ng

tim
e

G
en

er
al

ly
pe

rf
or

m
an

ce
A

pp
lic

at
io

n
R

em
ar

ks
a

44
L

iu
et

al
.(

20
11

)
M

SF
L

A
N

/A
M

SF
L

A
>

M
O

PS
O

,
N

SG
A

-I
I,

SP
E

A
-I

I

M
SF

L
A

>

M
O

PS
O

,
N

SG
A

-I
I,

SP
E

A
-I

I

M
SF

L
A

>

M
O

PS
O

,
N

SG
A

-I
I,

SP
E

A
-I

I

B
ic

lu
st

er
in

g
pr

ob
le

m
M

O
PS

O
:m

ul
ti-

ob
je

ct
iv

e
PS

O
;p

re
vi

ou
s

re
se

ar
ch

w
or

k
co

m
pa

ri
so

ns
:

p
=

60
,
m

=
6,

n
=

10
,

s
=

N
/A

,
N

=
50

,0
00

45
N

ik
na

m
et

al
.(

20
11

b)
M

SF
L

A
N

/A
M

SF
L

A
>

G
A

,
PS

O
N

/A
N

/A
E

le
ct

ri
ca

lp
ow

er
sy

st
em

op
tim

iz
at

io
n

Pr
ev

io
us

re
se

ar
ch

w
or

k
co

m
pa

ri
so

ns
:

p
=

N
/A

,
m

=
N

/A
,n

=
N

/A
,

s
=

N
/A

,
N

=
N

/A

46
W

an
g

et
al

.(
20

11
)

M
SF

L
A

N
/A

M
SF

L
A

>
PS

O
N

/A
M

SF
L

A
>

PS
O

N
o_

id
le

pe
rm

ut
at

io
n

flo
w

sh
op

sc
he

du
lin

g
pr

ob
le

m
s

Pr
ev

io
us

re
se

ar
ch

w
or

k
co

m
pa

ri
so

ns
:

p
=

10
0,

m
=

20
,

n
=

5,
s

=
N

/A
,

N
=

N
/A

47
W

an
g

an
d

Fa
ng

(2
01

1)
M

SF
L

A
N

/A
M

SF
L

A
>

SF
L

A
,P

SO
N

/A
M

SF
L

A
>

SF
L

A
,P

SO
M

ul
ti-

m
od

e
re

so
ur

ce
-

co
ns

tr
ai

ne
d

pr
oj

ec
t

sc
he

du
lin

g
pr

ob
le

m

B
en

ch
m

ar
k

co
m

pa
ri

so
ns

:
p

=
10

0,
m

=
10

,
n

=
10

,
s

=
2,

N
=

N
/A

48
Ja

fa
ri

et
al

.(
20

12
)

M
SF

L
A

N
/A

N
/A

M
SF

L
A

>

G
A

,I
C

A
M

SF
L

A
>

G
A

,I
C

A
O

pt
im

iz
at

io
n

of
an

al
og

in
te

gr
at

ed
ci

rc
ui

ts
si

zi
ng

Pr
ev

io
us

re
se

ar
ch

w
or

k
co

m
pa

ri
so

ns
:

p
=

10
0,

m
=

N
/A

,n
=

N
/A

,
s

=
10

0,
N

=
N

/A

49
H

uy
nh

(2
00

8)
M

SF
L

A
N

/A
M

SF
L

A
>

G
A

,
IC

A
N

/A
M

SF
L

A
>

G
A

,I
C

A
O

pt
im

iz
at

io
n

of
PI

D
po

w
er

sy
st

em
st

ab
ili

ze
r

Pr
ev

io
us

re
se

ar
ch

w
or

k
co

m
pa

ri
so

ns
:

p
=

N
/A

,
m

=
N

/A
,n

=
N

/A
,

s
=

N
/A

,
N

=
N

/A

50
L

ie
ta

l.
(2

01
2a

,b
)

M
SF

L
A

N
/A

N
/A

N
/A

M
SF

L
A

>

G
A

C
on

tin
uo

us
op

tim
iz

at
io

n
pr

ob
le

m

Pr
ev

io
us

re
se

ar
ch

w
or

k
co

m
pa

ri
so

ns
:

p
=

20
0,

m
=

20
,
n

=
10

,

s
=

10
,

N
=

N
/A

51
Fa

ng
an

d
W

an
g

(2
01

2)
M

SF
L

A
M

SF
L

A
>

G
A

N
/A

N
/A

M
SF

L
A

>

G
A

,H
G

A
,

T
S,

SA

R
es

ou
rc

e-
co

ns
tr

ai
nt

pr
oj

ec
ts

ch
ed

ul
in

g
pr

ob
le

m

Pr
ev

io
us

re
se

ar
ch

w
or

k
co

m
pa

ri
so

ns
:

p
=

30
0,

m
=

10
,
n

=
30

,

s
=

N
/A

,
N

=
N

/A

123



A. Sarkheyli et al.

Ta
bl

e
1

co
nt

in
ue

d

N
o.

R
ef

er
en

ce
Pr

op
os

ed
al

go
ri

th
m

A
cc

ur
ac

y
of

th
e

so
lu

tio
n

C
on

ve
rg

en
ce

ra
te

L
es

s
pr

oc
es

si
ng

tim
e

G
en

er
al

ly
pe

rf
or

m
an

ce
A

pp
lic

at
io

n
R

em
ar

ks
a

52
N

ik
na

m
et

al
.(

20
11

c)
M

SF
L

A
M

SF
L

A
>

SF
L

A
,P

SO
N

/A
N

/A
M

SF
L

A
>

SF
L

A
,P

SO
E

le
ct

ri
c

en
er

gy
ne

ce
ss

ita
te

op
tim

al
ec

on
om

ic
di

sp
at

ch

Pr
ev

io
us

re
se

ar
ch

w
or

k
co

m
pa

ri
so

ns
:

p
=

N
/A

,
m

=
N

/A
,n

=
N

/A
,

s
=

N
/A

,
N

=
N

/A

53
W

an
g

an
d

D
i(

20
10

)
M

SF
L

A
N

/A
N

/A
N

/A
M

SF
L

A
>

or
ig

in
al

3-
D

O
ts

u
th

re
sh

-
ol

di
ng

K
na

ps
ac

k
pr

ob
le

m
Pr

ev
io

us
re

se
ar

ch
w

or
k

co
m

pa
ri

so
ns

:
p

=
N

/A
,

m
=

N
/A

,n
=

N
/A

,
s

=
N

/A
,

N
=

N
/A

54
L

iu
et

al
.(

20
12

)
M

SF
L

A
N

/A
M

SF
L

A
>

PS
O

,
SF

L
,D

PS
O

N
/A

M
SF

L
A

>

PS
O

,S
FL

,
D

PS
O

B
ic

lu
st

er
in

g
pr

ob
le

m
D

PS
O

:d
is

cr
et

e
PS

O
;

pr
ev

io
us

re
se

ar
ch

w
or

k
co

m
pa

ri
so

ns
:

p
=

60
,

m
=

10
,n

=
6,

s
=

10
,

N
=

N
/A

55
C

he
n

et
al

.(
20

11
a)

M
SF

L
A

M
SF

L
A

>

PS
O

,G
A

M
SF

L
A

>
PS

O
,

G
A

N
/A

M
SF

L
A

>

PS
O

,G
A

Jo
b-

sh
op

sc
he

du
lin

g
pr

ob
le

m

B
en

ch
m

ar
k

co
m

pa
ri

so
ns

:
p

=
20

0,
m

=
10

,
n

=
20

,
s

=
10

,
N

=
1,

00
0

56
C

he
n

et
al

.(
20

11
b)

M
SF

L
A

M
SF

L
>

G
A

N
/A

N
/A

N
/A

C
om

po
ne

nt
se

qu
en

ci
ng

pr
ob

le
m

Pr
ev

io
us

re
se

ar
ch

w
or

k
co

m
pa

ri
so

ns
:

p
=

24
0,

m
=

15
,
n

=
16

,
s

=
10

,
N

=
30

57
C

hi
tti

ne
ni

et
al

.(
20

11
b)

M
SF

L
A

M
SF

L
>

C
L

O
N

-
A

L
G

,
SF

L
A

M
SF

L
>

C
L

O
N

A
L

G
,

SF
L

A

N
/A

M
SF

L
>

C
L

O
N

-
A

L
G

,
SF

L
A

U
ns

up
er

vi
se

d
da

ta
cl

us
te

ri
ng

B
en

ch
m

ar
k

co
m

pa
ri

so
ns

:
p

=
20

,
m

=
5,

n
=

4,
s

=
30

,
N

=
30

0

58
K

im
iy

ag
ha

la
m

(2
01

2)
M

SF
L

A
M

SF
L

A
>

SF
L

A
,G

A
M

SF
L

A
>

SF
L

A
,G

A
N

/A
N

/A
D

et
ec

tio
n

of
fa

ul
t

lo
ca

tio
n

in
di

st
ri

bu
tio

n
ne

tw
or

ks

Pr
ev

io
us

re
se

ar
ch

w
or

k
co

m
pa

ri
so

ns
:

p
=

N
/A

,
m

=
N

/A
,n

=
N

/A
,

s
=

N
/A

,
N

=
N

/A

59
H

uy
nh

an
d

N
gu

ye
n

(2
00

9)
M

SF
L

A
N

/A
N

/A
N

/A
M

SF
L

A
>

ex
ac

td
at

a
Fu

zz
y

co
nt

ro
lle

rs
/b

al
l

an
d

be
am

sy
st

em

Pr
ev

io
us

re
se

ar
ch

w
or

k
co

m
pa

ri
so

ns
:

p
=

20
,

m
=

4,
n

=
5,

s
=

8,
N

=
50

0

123



Basic, modified and hybrid SFLA

Ta
bl

e
1

co
nt

in
ue

d

N
o.

R
ef

er
en

ce
Pr

op
os

ed
al

go
ri

th
m

A
cc

ur
ac

y
of

th
e

so
lu

tio
n

C
on

ve
rg

en
ce

ra
te

L
es

s
pr

oc
es

si
ng

tim
e

G
en

er
al

ly
pe

rf
or

m
an

ce
A

pp
lic

at
io

n
R

em
ar

ks
a

60
K

av
ou

si
fa

rd
an

d
Sa

m
et

(2
01

1)
M

SF
L

A
M

SF
L

A
-

A
N

N
>

A
N

N

N
/A

N
/A

N
/A

O
pt

im
iz

at
io

n
of

A
N

N
m

od
el

fo
r

pr
ed

ic
tio

n
of

po
w

er
sy

st
em

lo
ad

A
N

N
:a

rt
ifi

ci
al

ne
ur

al
ne

tw
or

k;
pr

ev
io

us
re

se
ar

ch
w

or
k

co
m

pa
ri

so
ns

:
p

=
N

/A
,

m
=

N
/A

,n
=

N
/A

,
s

=
N

/A
,

N
=

N
/A

61
L

ie
ta

l.
(2

01
1a

)
M

SF
L

A
N

/A
N

/A
M

SF
L

A
>

H
C

,G
A

,
H

G
A

,A
C

O

N
/A

L
og

is
tic

s
di

st
ri

bu
tio

n
ve

hi
cl

e
ro

ut
in

g
pr

ob
le

m
→

tr
av

el
in

g
sa

le
sm

an
pr

ob
le

m
(T

SP
)

H
C

:h
ig

h
cl

im
bi

ng
al

go
ri

th
m

;
pr

ev
io

us
re

se
ar

ch
w

or
k

co
m

pa
ri

so
ns

;
p

=
N

/A
,m

=
N

/A
,

n
=

N
/A

,s
=

N
/A

,
N

=
N

/A

62
L

in
et

al
.(

20
12

)
M

SF
L

A
M

SF
L

A
>

SF
L

A
M

SF
L

A
>

SF
L

A
N

/A
N

/A
R

N
A

se
co

nd
ar

y
st

ru
ct

ur
e

pr
ed

ic
-

tio
n/

bi
ol

og
ic

al
sy

st
em

Pr
ev

io
us

re
se

ar
ch

w
or

k
co

m
pa

ri
so

ns
:

p
=

50
,

m
=

5,
n

=
10

,
s

=
10

,
N

=
20

0

63
L

in
et

al
.(

20
11

)
M

SF
L

A
M

SF
L

A
>

SF
L

A
M

SF
L

A
>

SF
L

A
N

/A
N

/A
R

N
A

se
co

nd
ar

y
st

ru
ct

ur
e

pr
ed

ic
-

tio
n/

bi
ol

og
ic

al
sy

st
em

Pr
ev

io
us

re
se

ar
ch

w
or

k
co

m
pa

ri
so

ns
:

p
=

50
,

m
=

5,
n

=
10

,
s

=
50

,
N

=
20

0

64
Pe

re
z

et
al

.(
20

12
)

M
SF

L
A

M
SF

L
A

>

D
E

,P
SO

,
G

A
,S

FL
A

M
SF

L
A

>
D

E
,

PS
O

,G
A

,
SF

L
A

N
/A

N
/A

O
pt

im
iz

at
io

n
of

pa
ra

m
et

er
s

of
in

du
ct

io
n

m
ac

hi
ne

s

D
E

:d
if

fe
re

nt
ia

le
vo

lu
tio

n;
pr

ev
io

us
re

se
ar

ch
w

or
k

co
m

pa
ri

so
ns

:
p

=
10

0,
m

=
10

,
n

=
10

,
s

=
5,

N
=

30

65
G

om
ez

-G
on

za
le

z
(2

01
3)

M
SF

L
A

M
SF

L
A

>

PA
M

P,
PS

O
,G

A

N
/A

N
/A

N
/A

O
pt

im
iz

at
io

n
of

pa
ra

m
et

er
s

of
in

du
ct

io
n

m
ac

hi
ne

s

PA
M

P:
po

w
er

as
yn

ch
ro

no
us

m
ac

hi
ne

pa
ra

m
s

(a
cl

as
si

ca
l

pa
ra

m
et

er
es

tim
at

io
n

m
et

ho
d)

;p
re

vi
ou

s
re

se
ar

ch
w

or
k

co
m

pa
ri

so
ns

:
p

=
60

,
m

=
10

,
n

=
6,

s
=

5,
N

=
50

66
Sa

rd
ou

et
al

.(
20

12
)

M
SF

L
A

M
SF

L
A

>

SF
L

A
,G

A
M

SF
L

A
>

SF
L

A
,G

A
N

/A
N

/A
O

pt
im

iz
at

io
n

of
pl

ac
em

en
ti

n
di

st
ri

bu
tio

n
ne

tw
or

k

Pr
ev

io
us

re
se

ar
ch

w
or

k
co

m
pa

ri
so

ns
:

p
=

10
0,

m
=

20
,
n

=
5,

s
=

6,
N

=
50

123



A. Sarkheyli et al.

Ta
bl

e
1

co
nt

in
ue

d

N
o.

R
ef

er
en

ce
Pr

op
os

ed
al

go
ri

th
m

A
cc

ur
ac

y
of

th
e

so
lu

tio
n

C
on

ve
rg

en
ce

ra
te

L
es

s
pr

oc
es

si
ng

tim
e

G
en

er
al

ly
pe

rf
or

m
an

ce
A

pp
lic

at
io

n
R

em
ar

ks
a

67
Z

hi
jin

et
al

.(
20

08
)

M
SF

L
A

M
SF

L
A

>

G
A

,P
SO

N
/A

N
/A

N
/A

M
ul

ti-
us

er
de

te
ct

io
n

pr
ob

le
m

–
te

le
co

m
m

un
ic

at
io

n

Pr
ev

io
us

re
se

ar
ch

w
or

k
co

m
pa

ri
so

ns
:

p
=

30
,

m
=

3,
n

=
10

,

s
=

N
/A

,
N

=
N

/A

68
X

u
et

al
.(

20
12

)
M

SF
L

A
N

/A
N

/A
M

SF
L

A
>

G
A

,
di

sc
re

te
PS

O

N
/A

N
et

w
or

ke
d

tw
o-

la
ye

r
le

ar
ni

ng
co

nt
ro

ls
ys

te
m

s

Pr
ev

io
us

re
se

ar
ch

w
or

k
co

m
pa

ri
so

ns
:

p
=

20
0,

m
=

20
,
n

=
10

,

s
=

N
/A

,
N

=
N

/A

69
Sa

ye
di

et
al

.(
20

12
)

M
SF

L
A

M
SF

L
A

>

SF
L

A
,G

A
,

PS
O

M
SF

L
A

>

SF
L

A
,G

A
,

PS
O

N
/A

N
/A

E
co

no
m

ic
lo

ad
di

sp
at

ch
pr

ob
le

m
Pr

ev
io

us
re

se
ar

ch
w

or
k

co
m

pa
ri

so
ns

:
p

=
10

0,
m

=
5,

n
=

20
,

s
=

N
/A

,
N

=
20

0

70
Sh

ay
an

fa
r

et
al

.(
20

10
a,

b)
M

SF
L

A
M

SF
L

A
>

PS
O

M
SF

L
A

>
PS

O
N

/A
N

/A
U

ni
fie

d
po

w
er

flo
w

co
nt

ro
lle

rs
in

el
ec

tr
ic

al
po

w
er

sy
st

em
s

Pr
ev

io
us

re
se

ar
ch

w
or

k
co

m
pa

ri
so

ns
:

p
=

N
/A

,
m

=
N

/A
,n

=
N

/A
,

s
=

N
/A

,
N

=
N

/A

71
R

oy
an

d
C

ha
kr

ab
ar

ti
(2

01
1)

M
SF

L
A

M
SF

L
A

>

G
A

N
/A

N
/A

N
/A

E
co

no
m

ic
lo

ad
di

sp
at

ch
pr

ob
le

m
Pr

ev
io

us
re

se
ar

ch
w

or
k

co
m

pa
ri

so
ns

:
p

=
10

0;
m

=
10

;n
=

10
;

s
=

20
;N

=
10

72
M

al
ek

po
ur

an
d

N
ik

na
m

(2
01

1)
M

SF
L

A
M

SF
L

A
>

PS
O

,S
FL

A
N

/A
N

/A
N

/A
V

ol
t/V

ar
co

nt
ro

la
t

di
st

ri
bu

tio
n

ne
tw

or
ks

Pr
ev

io
us

re
se

ar
ch

w
or

k
co

m
pa

ri
so

ns
:

p
=

32
,

m
=

4,
n

=
8,

s
=

10
,

N
=

30

73
R

ah
im

i-
V

ah
ed

an
d

M
ir

za
ei

(2
00

7)
H

SF
L

A
H

SF
L

A
>

M
O

G
A

H
SF

L
A

>

M
O

G
A

N
/A

H
SF

L
A

>

M
O

G
A

Fl
ex

ib
le

jo
b/

flo
w

sh
op

sc
he

du
lin

g
pr

ob
le

m

SF
L

A
-E

T
S

(e
lit

e
ta

bu
se

ar
ch

);
M

O
G

A
:

m
ul

ti-
ob

je
ct

iv
e

G
A

;
pr

ev
io

us
re

se
ar

ch
w

or
k

co
m

pa
ri

so
ns

:
p

=
N

/A
,

m
=

N
/A

,n
=

N
/A

,
s

=
N

/A
,

N
=

N
/A

74
R

ah
im

i-
V

ah
ed

an
d

M
ir

za
ei

(2
00

8)
H

SF
L

A
H

SF
L

A
>

M
O

G
A

H
SF

L
A

>

M
O

G
A

H
SF

L
A

<

M
O

G
A

H
SF

L
A

>

M
O

G
A

A
ss

em
bl

y
lin

e
se

qu
en

ci
ng

pr
ob

le
m

SF
L

A
-B

O
(b

ac
te

ri
a

op
tim

iz
at

io
n)

;p
re

vi
ou

s
re

se
ar

ch
w

or
k

co
m

pa
ri

so
ns

:
p

=
15

,
m

=
5,

n
=

3,
s

=
30

,

N
=

N
/A

123



Basic, modified and hybrid SFLA

Ta
bl

e
1

co
nt

in
ue

d

N
o.

R
ef

er
en

ce
Pr

op
os

ed
al

go
ri

th
m

A
cc

ur
ac

y
of

th
e

so
lu

tio
n

C
on

ve
rg

en
ce

ra
te

L
es

s
pr

oc
es

si
ng

tim
e

G
en

er
al

ly
pe

rf
or

m
an

ce
A

pp
lic

at
io

n
R

em
ar

ks
a

75
R

ah
im

i-
V

ah
ed

et
al

.(
20

08
)

H
SF

L
A

N
/A

N
/A

N
/A

H
SF

L
A

>

N
SG

A
-I

I,
SP

E
A

-I
I

Fl
ex

ib
le

jo
b/

flo
w

sh
op

sc
he

du
lin

g
pr

ob
le

m

SF
L

A
-V

N
S

(v
ar

ia
bl

e
ne

ig
hb

or
ho

od
se

ar
ch

);
pr

ev
io

us
re

se
ar

ch
w

or
k

co
m

pa
ri

so
ns

:
p

=
20

0,
m

=
4,

n
=

50
,

s
=

N
/A

,
N

=
50

0

76
L

ie
ta

l.
(2

00
8)

H
SF

L
A

H
SF

L
A

>

SF
L

A
,D

P
N

/A
H

SF
L

A
>

SF
L

A
,D

P
N

/A
M

id
-l

on
g

te
rm

op
tim

al
op

er
at

io
n

of
ca

sc
ad

e
hy

dr
op

ow
er

st
at

io
ns

SF
L

A
-C

S
(c

ha
os

se
ar

ch
);

be
nc

hm
ar

k
co

m
pa

ri
so

ns
:

p
=

20
0,

m
=

20
,

n
=

10
,
s

=
10

0,
N

=
50

0

77
B

ha
du

ri
an

d
B

ha
du

ri
(2

00
9)

H
SF

L
A

N
/A

H
SF

L
A

>

SF
L

A
,

K
-m

ea
ns

al
go

ri
th

m

N
/A

H
SF

L
A

>

SF
L

A
,

K
-m

ea
ns

al
go

ri
th

m

Im
ag

e
se

gm
en

ta
tio

n
fo

r
co

m
pu

te
r

vi
si

on

SF
L

A
-C

SA
(c

lo
na

l
se

le
ct

io
n

al
go

ri
th

m
);

pr
ev

io
us

re
se

ar
ch

w
or

k
co

m
pa

ri
so

ns
:

p
=

25
,

m
=

5,
n

=
5,

s
=

20
,

N
=

10
0

78
N

ik
na

m
an

d
Fa

rs
an

i(
20

10
)

H
SF

L
A

SF
L

A
>

PS
O

;
H

SF
L

A
>

SF
L

A

PS
O

>
SF

L
A

;
H

SF
L

A
>

PS
O

SF
L

A
>

PS
O

;
H

SF
L

A
>

SF
L

A

H
SF

L
A

>

SF
L

A
,P

SO
Fe

ed
er

re
co

nfi
gu

ra
tio

n
pr

ob
le

m
in

di
st

ri
bu

tio
n

ne
tw

or
ks

M
SF

L
A

-S
A

PS
O

(s
el

f
ad

ap
tiv

e
PS

O
);

pr
ev

io
us

re
se

ar
ch

w
or

k
co

m
pa

ri
so

ns
:

p
=

N
/A

,
m

=
N

/A
,n

=
N

/A
,

s
=

N
/A

,
N

=
N

/A

79
K

ho
rs

an
di

et
al

.(
20

11
)

H
SF

L
A

H
SF

L
A

>

SF
L

A
,

PS
O

,D
E

H
SF

L
A

>

SF
L

A
,P

SO
,

D
E

N
/A

N
/A

O
pt

im
al

re
ac

tiv
e

po
w

er
di

sp
at

ch
pr

ob
le

m

SF
L

A
-N

M
(N

el
de

r–
M

ea
d

al
go

ri
th

m
);

D
E

=
di

ff
er

en
tia

le
vo

lu
tio

n;
p

=
70

,
m

=
5,

n
=

14
,

s
=

N
/A

,
N

=
N

/A

80
Te

ek
en

g
an

d
T

ha
m

m
an

o
(2

01
1)

H
SF

L
A

H
SF

L
A

>
T

S
N

/A
N

/A
N

/A
Fl

ex
ib

le
jo

b/
flo

w
sh

op
sc

he
du

lin
g

pr
ob

le
m

SF
L

A
-F

S
(f

uz
zy

sy
st

em
);

be
nc

hm
ar

k
co

m
pa

ri
so

ns
;

pr
ev

io
us

re
se

ar
ch

w
or

k
co

m
pa

ri
so

ns
:

p
=

50
,

m
=

5,
n

=
10

,
s

=
N

/A
,

N
=

10
0

123



A. Sarkheyli et al.

Ta
bl

e
1

co
nt

in
ue

d

N
o.

R
ef

er
en

ce
Pr

op
os

ed
al

go
ri

th
m

A
cc

ur
ac

y
of

th
e

so
lu

tio
n

C
on

ve
rg

en
ce

ra
te

L
es

s
pr

oc
es

si
ng

tim
e

G
en

er
al

ly
pe

rf
or

m
an

ce
A

pp
lic

at
io

n
R

em
ar

ks
a

81
N

ik
na

m
an

d
N

ay
er

ip
ou

r
(2

01
1)

H
SF

L
A

H
SF

L
A

>

M
PS

O
,

SA
D

PS
O

H
SF

L
A

>

M
PS

O
,

SA
D

PS
O

H
SF

L
A

>

M
PS

O
,

SA
D

PS
O

H
SF

L
A

>

M
PS

O
,

SA
D

PS
O

Fe
ed

er
re

co
nfi

gu
ra

tio
n

pr
ob

le
m

in
di

st
ri

bu
tio

n
ne

tw
or

ks

M
SF

L
A

-S
A

M
PS

O
(s

el
f-

ad
ap

tiv
e

m
od

ifi
ed

PS
O

);
pr

ev
io

us
re

se
ar

ch
w

or
k

co
m

pa
ri

so
ns

:
p

=
N

/A
,m

=
N

/A
,

n
=

N
/A

,s
=

N
/A

,
N

=
N

/A

82
Pa

kr
av

es
h

an
d

Sh
oj

ae
i(

20
11

)
H

SF
L

A
N

/A
N

/A
N

/A
H

SF
L

A
>

SF
L

A
,

PS
O

,G
A

O
pt

im
iz

at
io

n
of

st
ab

le
po

in
ts

fo
r

po
ly

vi
ny

l
ac

et
at

e

SF
L

A
-B

O
(b

ac
te

ri
al

op
tim

iz
at

io
n)

;
SF

L
A

-V
PG

A
(v

ar
ia

bl
e

po
pu

la
tio

n
si

ze
G

A
);

pr
ev

io
us

re
se

ar
ch

w
or

k
co

m
pa

ri
so

ns
:

p
=

60
,

m
=

10
,
n

=
6,

s
=

N
/A

,
N

=
N

/A

83
Se

ye
di

et
al

.(
20

11
)

H
SF

L
A

N
/A

H
SF

L
A

>

G
C

PS
O

,P
SO

,
G

A

H
SF

L
A

>

G
C

PS
O

,
SP

E
A

2

H
SF

L
A

>

G
C

PS
O

,
PS

O
,G

A

V
A

r
pl

an
ni

ng
pr

ob
le

m
SF

L
A

-F
L

(f
uz

zy
lo

gi
c)

;
pr

ev
io

us
re

se
ar

ch
w

or
k

co
m

pa
ri

so
ns

:
p

=
10

0,
m

=
10

,
n

=
10

,
s

=
N

/A
,

N
=

N
/A

84
X

u
et

al
.(

20
11

)
H

SF
L

A
H

SF
L

A
>

G
A

,D
E

N
/A

N
/A

N
/A

H
yb

ri
d

flo
w

-s
ho

p
sc

he
du

lin
g

pr
ob

le
m

SF
L

A
-

M
L

(m
et

a-
L

am
ar

ck
ia

n
lo

ca
l

se
ar

ch
);

D
E

=
di

ff
er

en
tia

l
ev

ol
ut

io
n;

p
=

10
,

m
=

N
/A

,n
=

N
/A

,
s

=
N

/A
,

N
=

10
,0

00

85
L

ie
ta

l.
(2

01
1b

)
H

SF
L

A
H

SF
L

A
>

SF
L

A
H

SF
L

A
>

SF
L

A
N

/A
H

SF
L

A
>

SF
L

A
N

/A
SF

L
A

-P
SO

;b
en

ch
m

ar
k

co
m

pa
ri

so
ns

:p
=

N
/A

,
m

=
N

/A
,n

=
N

/A
,

s
=

N
/A

,
N

=
N

/A

86
L

ie
ta

l.
(2

01
2a

,b
)

H
SF

L
A

N
/A

H
SF

L
A

>

SF
L

A
,P

SO
H

SF
L

A
>

SF
L

A
,P

SO
H

SF
L

A
>

SF
L

A
,P

SO
K

na
ps

ac
k

pr
ob

le
m

M
SF

L
A

-E
O

(e
xt

re
m

al
op

tim
iz

at
io

n)
;b

en
ch

m
ar

k
co

m
pa

ri
so

ns
:

p
=

N
/A

,
m

=
N

/A
,n

=
N

/A
,

s
=

N
/A

,
N

=
N

/A

123



Basic, modified and hybrid SFLA

Ta
bl

e
1

co
nt

in
ue

d

N
o.

R
ef

er
en

ce
Pr

op
os

ed
al

go
ri

th
m

A
cc

ur
ac

y
of

th
e

so
lu

tio
n

C
on

ve
rg

en
ce

ra
te

L
es

s
pr

oc
es

si
ng

tim
e

G
en

er
al

ly
pe

rf
or

m
an

ce
A

pp
lic

at
io

n
R

em
ar

ks
a

87
G

iti
za

de
h

et
al

.(
20

12
)

H
SF

L
A

N
/A

N
/A

N
/A

H
SF

L
A

>

SF
L

A
,P

SO
D

is
tr

ib
ut

io
n

ex
pa

ns
io

n
pl

an
ni

ng
pr

ob
le

m

SF
L

A
-F

L
(f

uz
zy

lo
gi

c)
;

pr
ev

io
us

re
se

ar
ch

w
or

k
co

m
pa

ri
so

ns
:

p
=

N
/A

,m
=

N
/A

,
n

=
N

/A
,s

=
N

/A
,

N
=

N
/A

88
Z

ha
ng

et
al

.(
20

12
)

H
SF

L
A

N
/A

H
SF

L
A

>
SF

L
A

>
A

FS
N

/A
H

SF
L

A
>

SF
L

A
,A

FS
Po

w
er

co
nt

ro
l

pr
ob

le
m

in
co

gn
iti

ve
ra

di
o

sy
st

em

M
SF

L
A

-A
F

(a
rt

ifi
ci

al
fis

h)
;p

re
vi

ou
s

re
se

ar
ch

w
or

k
co

m
pa

ri
so

ns
:

p
=

20
0,

m
=

20
,n

=
10

,
s

=
30

,
N

=
10

0

89
Sr

in
iv

as
a

R
ed

dy
an

d
V

ai
sa

kh
(2

01
3)

H
SF

L
A

H
SF

L
A

>

G
A

,P
SO

,
T

S

N
/A

H
SF

L
A

>

G
A

,P
SO

,
T

S

N
/A

L
ar

ge
sc

al
e

no
n-

co
nv

ex
ec

on
om

ic
di

sp
at

ch
pr

ob
le

m

SF
L

A
-D

E
(d

if
fe

re
nt

ia
l

ev
ol

ut
io

n)
;p

re
vi

ou
s

re
se

ar
ch

w
or

k
co

m
pa

ri
so

ns
:

p
=

20
0,

m
=

20
,
n

=
10

,

s
=

4,
N

=
30

0

T
he

op
er

at
io

n
“A

>
B

”
m

ea
ns

A
ou

tp
er

fo
rm

s
B

an
d

“A
=

B
”

m
ea

ns
A

an
d

B
ha

s
sa

m
e

pe
rf

or
m

an
ce

.T
he

be
st

al
go

ri
th

m
in

ea
ch

co
m

pa
ri

so
n

is
hi

gh
lig

ht
ed

fo
r

th
e

en
tr

ie
s

a
R

em
ar

ks
th

e
co

m
pa

ri
so

n
ty

pe
an

d
al

so
th

e
pa

ra
m

et
er

s
va

lu
es

co
ns

id
er

ed
in

th
e

re
se

ar
ch

es
(p

=
to

ta
ln

um
be

r
of

fr
og

s,
m

=
th

e
nu

m
be

r
of

m
em

ep
le

xe
s,

n
=

th
e

nu
m

be
r

of
fr

og
s

in
ea

ch
m

em
ep

le
x,

s
=

th
e

nu
m

be
r

of
ite

ra
tio

n
fo

r
ea

ch
m

em
pl

ex
,a

nd
N

=
th

e
m

ax
im

um
nu

m
be

r
of

gl
ob

al
ite

ra
tio

n)

123



A. Sarkheyli et al.

Based on the statistical result obtained from previous
researches, evaluation phase in basic SFLA needs most
modifications. For example, the worst frog’s position never
jumps over the best frog’s position. This limitation decreases
the convergence speed, causes premature convergence and
reduces local search space in each memeplex and conver-
gence probability. In addition, the basic SFLA tries to bal-
ance between a deep and wide exploration of the search space
that are close to a local optima (Xu et al. 2011). It is clear
that if the worst and best frog’s positions are close to each
other, the change of leaping is also small. Thus, it causes to
being trapped in the local optimum, and premature conver-
gence reported by several researchers such as Elbeltagi et al.
(2007) is a concern in basic SFLA.

In this section, MSFLA proposed by previous researchers
are considered separately. Also, the goal of the modifica-
tions and their compensation are highlighted. Additionally,
the results of comparisons between the proposed MSFL
with other evolutionary algorithms on different features are
located in Table 1.

The researchers, Teekeng and Thammano (2011) have
considered one more step into their proposed MSFLA. By
this step, for each memeplex, a number of frogs (usually with
higher fitness values) are chosen to make a sub-memeplex
which performs the local exploration independently. Sub-
memeplex could improve the convergence rate and process-
ing times.

To overcome to premature convergence in SFLA, Elbelt-
agi et al. (2007) and Xu et al. (2011) proposed a new equa-
tion by applying a new factor named ‘search-acceleration’.
The factor as a positive constant value, linear, or nonlinear
function of time, could balance local and global local explo-
ration by considering the global exploration fundamentals
and search extremely in the region of feasible solutions.

Zhijin et al. (2008) modify SFLA to solve discrete prob-
lems. Therefore, a threshold selection strategy was employed
in frog leaping operation in solving multi-user detection
problems.

To defeat the problems of premature convergence, low
convergence speed, and finally to improve optimization accu-
racy in MSFLA, Zhen et al. (2009) employed two impor-
tant modifications of SFLA: using a new division strategy of
memeplexes benefits the internal learning effect to make the
memeplexe’s performance uniform; canceling the construc-
tion of sub-memeplex to give the better frogs more learning
chances and increase global exploration.

To overcome the limitations of basic SFLA in the evo-
lution phase and improving the memetic evolution process,
it was recommended by Li and Wang (2011) to utilize local
and global best information for frog leaping and transfer them
between individual frogs.

Consequently, Li et al. (2010) applied an MSFLA to solve
multi-objective optimization problems. The offered algo-

rithm applied a self-adaptive niche technique (a storing tech-
nique) to handle nondominated solutions. As well, Li et al.
(2010) applied the sort strategy proposed by Rahimi-Vahed
and Mirzaei (2008) and Rahimi-Vahed et al. (2008) to handle
multi-objective problems. According to the computational
results, the presented MSFLA is more efficient and com-
petitive for solving the complex problems compared with
dynamic programming and NSGA-II.

Also, Li and Wang (2011) extended basic SFLA by
employing an encoding based on urban-based sequence and
applied a new strategy for individuals to deal with combi-
national optimization problems such as traveling salesman.
Experimental results indicated the effectiveness, maintain-
ing diversity, achieving convergence and time cost of the
proposed MSFLA compared with some other evolutionary
techniques (see Table 1).

To increase the optimization accuracy with minimum iter-
ation number, Roy (2011) proposed a MSFLA by using GA
crossover operation in local and global search. This MSFLA
was applied to solve minimum spanning tree problems.

Shayanfar et al. (2010a, b) utilized a MSFLA to enhance
local search. The MSFLA presented in that paper applied a
new equation for updating the worst frog’s position.

Compared to multi-objective optimization problems,
Malekpour et al. (2012), Niknam et al. (2011a, 2012) and
developed a new MSFLA to handle multi-objective prob-
lems. The proposed MSFLA applied a fuzzy clustering tech-
nique to handle and normalize various objective functions.
Thus, the objective functions were formulated as fuzzy sets.
Also, to improve SFLA stability and search ability for find-
ing the global optima, Malekpour et al. (2012) and Niknam
et al. (2011c) proposed a new solution to find the position
of the selected frog. They applied a chatoic local search
(CLS) to create a new solution if the quality of the new
frogs was not improved compared to the worst frog. Based
on the evaluation result, the proposed algorithm is exact and
can be used in various applications. Niknam et al. (2011c)
solved the economic load dispatch problem by the proposed
MSFLA.

Additionally, Niknam et al. (2011b) modified the basic
SFLA to enhance the convergence rate to solve multi-
objective optimization problems. In the presented MSFLA,
an external repository is defined to hold nondominated solu-
tions. Also, a fuzzy clustering method is applied to man-
age the repository’s size. Evaluation results illustrated that
MSFLA was more effective than GA and PSO algorithms.

Furthermore, Niknam et al. (2011a) employed a new muta-
tion for reducing computational time, raising solutions’ qual-
ity, as well as avoiding being trapped in the local optima.

Moreover, Niknam et al. (2012) used a novel MSFLA
by modifying frog leaping rule in SFLA and Tribe-MSFLA
was employed to prevent the prematurity. Each memeplex is
considered as a tribe in Tribe-MSFLA.
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To improve the global searching capability of SFLA, Pu
et al. (2011) employed a new MSFLA. The algorithm was
proposed by modifying the division method of SFLA to bal-
ance the performance of memeplexes, and by using a new
frog leaping rule and to give more chance for the best frog to
be evolved. The results in that paper showed that the MSFLA
is better than the basic SFLA and PSO algorithm.

To enhance the quality of the initial population, local inten-
sification capability and search efficiency, Pan et al. (2010)
presented a new MSFLA. The proposed algorithm used an
effective heuristic to generate an initial population with a def-
inite level of diversity and quality. In addition, the MSFLA
employs a simple effective local search to develop the local
intensification capability. Also, a high-speed technique was
presented to advance the search efficiency.

To enhance the effectiveness of basic SFLA, Chittineni et
al. (2011a, b) applied a new MSFLA by employing the local
best value of each memeplex rather than creating a new frog.

To initialize a population with high quality, search
exploitation and the exploitation capability, Li et al. (2012a, b)
developed an MSFLA. The following modifications were
done in the MSFLA: first, population initialization (by using
3 initial rules); second, evolution process in each meme-
plex (by using two new crossover techniques to create a
new solution); third, local search (using several neighbor-
hood structures by considering the problem constraints or
the problem objectives to improve the search exploitation
and exploration capability of the algorithm). There is a
large variety of published algorithms which were compared
with the proposed MSFLA such as hybrid PSO–SA, GA,
hybrid PSO–tabu search, artificial immune algorithm (AIA),
the multi-objective genetic algorithm (MOGA) and the
knowledge-based ACO (KBACO). The experimental results
in that paper indicated the effectiveness of the proposed
algorithm.

An effective MSFLA was proposed by Wang et al. (2011)
to improve the capability of exploitation, to solve multi-
mode resource-constraint project scheduling problems. Pop-
ulation in the proposed algorithm was generated by multi-
mode forward–backward improvement as well as a simplified
two-point crossover using traditional binary encoded GA.
Simulation results illustrated that the presented MSFLA was
effective in improving the performance compared with PSO.

In addition, Wang et al. (2011) presented a novel MSFLA
to handle flow shop scheduling problems. The developed
algorithm applies insert-neighborhood-based local search to
improve the search capability. Also, it adopted roulette wheel
selection to find the global best frog in the early stage of
evolution to expand the search space. The statistical results
found by the MSFLA are significantly better than those by
the SFLA and PSO algorithms.

Chen et al. (2011a, b) proposed a new local search based
on random keys scheme in MSFLA to increase the conver-

gence and accuracy in the optimization of job-shop schedul-
ing problem. In addition, Chen et al. (2011a) improved SFLA
in solving component sequencing problem by using muta-
tion operation as well as applying a modified NNH algo-
rithm in generating initial solutions. This algorithm could
dominate randomness in increasing the stability of the initial
solutions.

Kimiyaghalam (2012) applied mutation operation of GA
to avoid being trapped into the local optimal by searching
new positions outside of local optimal position. The close
distance between the best and worst positions in each meme-
plex may decrease the chance of jumping to the best point in
the memeplex.

Jafari et al. (2012) developed a new MSFLA for automated
sizing of analog integrated circuits. In that paper, an equation
for frog leaping was considered to enhance the local search
ability. Also, mutation was applied to create new frogs instead
of random selection to enhance the convergence speed. The
authors proved that the proposed MSFLA outperforms GA
and imperialist competitive algorithm in terms of processing
time and performance.

Moreover, Huynh (2008) modified the frog leaping equa-
tion in basic SFLA to develop a MSFLA for optimization of
multi-variable controllers. Based on the results obtained from
that paper, the proposed MSFLA outperforms GA in terms
of convergence speed and performance. Li et al. (2012a) and
Wang and Di (2010) also presented an MSFLA by extending
the frog leaping formula to avoid the premature convergence
for solving knapsack problem and image segmentation prob-
lem, respectively.

Liu et al. (2012) proposed an MSFLA based on multi-
objective dynamic population shuffled frog leaping biclus-
tering algorithm. The next generation in the presented algo-
rithm is dynamically adjusted according to dynamic popula-
tion strategy which increases the search ability. According to
the result, the presented algorithm outperforms SFLA, PSO
and dynamic PSO (DPSO) algorithms in terms of diversity
and convergence speed.

Huynh and Nguyen (2009), Shayanfar et al. (2010a, b)
and Sayedi et al. (2012) applied a frog leaping rule for local
search and a mimetic shuffling rule for sharing global infor-
mation to enhance searching abilities and avoid being trapped
into the local optimal. Thus, researchers applied a new equa-
tion to decrease the maximum uncertainties exponentially.
This technique has been used to optimize fuzzy controllers,
unified power flow controllers, and economic dispatch
problem.

Lin et al. (2011) modified SFLA by using inertia weight in
the algorithm which is decreased linearly from 0.9 to 0.4 dur-
ing the execution. This weight could make a balance between
exploration and exploitation. Also, Lin et al. (2012) showed
that finding xg after finishing the local search in each meme-
plex will decrease the convergence rate in basic SFLA. Thus,
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modified SFLA was proposed by finding xg after updating
each memeplex.

Sardou et al. (2012) applied two modifications on SFLA
to optimize the distribution automation system by using
(1) fuzzy membership functions for solving multi-objective
problems and (2) considering a subset of memeplexes to
increase a local search area and avoid being trapped into
the local optima.

Also, a new modification is considered by Malekpour and
Niknam (2011) to improve the local search ability in SFLA.
In the proposed MSFLA, four solutions are chosen randomly
among the list of sorted solutions to be changed simultaneity.

5 Hybrid SFLA

As mentioned in the previous sections, an optimization algo-
rithm can be enhanced by using the advantages of other algo-
rithms. These types of algorithms are known as hybrid algo-
rithms. The main goal of hybridization is advancing the effec-
tiveness of individual basic algorithms, expanding the search
space, enhancing convergence, and improving local explo-
ration. Also, it could design flexible, coherent, and effective
algorithms to handle continuous or multi-objective optimiza-
tion problems.

In recent years, different structures for HSFLA have been
developed by previous researchers. This section highlights
the proposed hybrid algorithms by focusing on their par-
ticular advantages. Additionally, the results of comparisons
between the proposed HSFL with other evolutionary algo-
rithms on different features are located in Table 1.

To solve global optimization problems, Zhen et al. (2007)
proposed a new HSFLA by applying an effective adaptive
learning strategy in PSO. As high computational cost is a
disadvantage of the basic SFLA, the self-learning ability in
memeplexes will find the best local solutions fast. Therefore,
the algorithm increases convergence speed and escapes the
local optima. According to the comparison results, the pro-
posed hybrid algorithm outperforms PSO and SFLA in terms
of convergence speed, being away from the local minima, and
computational time for searching solutions.

To enhance convergence and quality of the shuffled frogs
in basic SFLA, Rahimi-Vahed and Mirzaei (2007) introduced
a new HSFLA to solve bi-criteria permutation flow shop
scheduling problem. They applied a novel elite tabu search
(ETS) algorithm for generating high-quality solutions. Also,
they used a strategy to revise the dynamic ideal point (DIP)
and employed an adaptive pareto archive set to utilize new
nondominated solutions when pareto archive size goes to the
upper limit.

Furthermore, the same authors in Rahimi-Vahed and
Mirzaei (2008) developed a hybrid optimization algorithm
based on SFLA and bacteria optimization to handle a mixed-

model assembly line sequencing problem. BO includes two
operations: bacterial mutation and gene transfer. Mutation
was used to optimize the chromosome of a single bacterium.
As well, transferring the genes could shift the informa-
tion between the bacteria in the population. Consequently,
Rahimi-Vahed et al. (2008) integrated basic SFLA and vari-
able neighborhood search (VNS) to search pareto optimal
solutions. Additionally, Rahimi-Vahed and Mirzaei (2008)
and Rahimi-Vahed et al. (2008) applied a multi-start elite
tabu search algorithm to construct initial diverse high-quality
frogs. According to the computational results calculated by
Rahimi-Vahed and Mirzaei (2008) and Rahimi-Vahed et al.
(2008), the proposed HSFLA outperforms the well-known
algorithms (SPEA-II and NSGA-II), significantly in large-
sized problems. In addition, the developed algorithm needs
more computational time compared to GA, but it is reason-
able by considering the quality of the result solutions.

To being trapped into local optima and increase diversity
of solution, Li et al. (2008) proposed a HSFLA based on
Chaos search. Chaos algorithm could improves xg which
discintinues evolution by generating new optimal solutions.

To enhance the convergence rate, accuracy, and solu-
tion stability in basic SFLA in solving image segmenta-
tion problems, Bhaduri and Bhaduri (2009), Chittineni et
al. (2011a, b) and Li et al. (2011a) applied clonal selec-
tion algorithm (CSA) to SFLA. CSA which is inspired
from immune mechanism of human body is able to replace
most horrible antibodies in the population with new ran-
dom ones. Therefore, SFLA processes the worst subset of
population and CSA processes the best subset of popula-
tion. The computational results showed that the proposed
HSFLA outperforms K -means algorithm, CLONALG and
basic SFLA.

Khorsandi et al. (2011) applied a new local search based
on Nelder–Mead (NM) algorithm to basic SFLA in solving a
nonlinear mixed-variable optimization problem. In the pro-
posed HSFLA, the researchers attempted to improve the local
search ability by replacing the worst solution in the popula-
tion with a new one which is better than the current solution.
As well, meta-Lamarckian local search which is applied by
Xu et al. (2011) is a good way to improve the search ability
in basic SFLA.

Zhang et al. (2012) utilized a HSFLA by using the basic
ideas of artificial fish to enhance the accuracy of the solu-
tion. The experimental results indicated that the new HSFLA
improves global convergence and escapes local optima.
Moreover, according to the evaluation results, the proposed
HSFLA could enhance system performance and controllabil-
ity on the target and also reduce the user transmission power.

To enhance local exploration and performance of SFLA,
and avoid premature convergence for solving the distribu-
tion feeder reconfiguration problem, Niknam and Farsani
(2010) developed a new HSFLA. The proposed algorithm
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named SAPSP–MSFLA uses self-adaptive PSO (using two
new turning parameters and increase of other variables’
dimensions) and MSFLA (using new frog leaping equation
to expand the length and trend of each frog’s jump). The
results showed that the proposed HSFLA is very powerful
for global optimization. In addition, Niknam et al. (2011a, b)
extended an HSFLA that combines self-adaptive modified
PSO (SAMPSO) with the MSFLA to proceed toward the
global solution and increase accurate convergence. Low con-
vergence speed and premature convergence are two disad-
vantages in basic SFLA. On the other hand, MPSO algo-
rithm (using a new mutation technique) is a robust global
search procedure, but has some limitations on computational
time and accuracy. As a result, the combination of MSFLA
and SAMPSO algorithms called SAMPSO–MSFLA has
high convergence rate and more accuracy than SAMPSO
and MSFLA individually. To solve N-dimensional problems
through the hybrid algorithms presented by Niknam and
Farsani (2010) and Niknam et al. (2011b), the population
size was considered as 3N . The top N particles are improved
by MSFLA, and the other 2N particles are adjusted through
SAPSO or SAMPSO algorithms.

To improve the effectiveness of SFLA and frog selection
for sub-memeplex in solving flexible job-shop scheduling
problem, Teekeng and Thammano (2011) proposed a new
HSFLA based on fuzzy system (SFLA–FS). The new algo-
rithm applied fuzzy roulette wheel selection to assign frogs
into sub-memeplexes. Experimental results showed that the
applied operation outperformed usual rank selection. Addi-
tionally, a local search was utilized to enhance the accuracy
of the solution.

To enhance success rate and speed, Baghmisheh et al.
(2011) presented a new HSFLA to handle various optimiza-
tion problems. In the proposed algorithm, a discrete version
of SFLA with a difference in worst frog leaping process
in each memeplex was applied. The process applied DPSO
algorithm as well as mutation and crossover operators of
binary GA (BGA). Evaluation results for computational time
showed that the proposed HSFLA is slower than basic SFLA
while it outperforms DPSO and GA. In addition, HSFLA is
better than basic SFLA, BGA, and DPSO in terms of both
speed and success rate.

To improve the performance of SFLA, Pakravesh and Sho-
jaei (2011) presented two effective HSFLAs based on vari-
able population size GA (FSLA–VPGA) and bacterial opti-
mization (FSLA–BO) algorithm. After the completion of the
main SFLA loop, VPGA or BO was called to enhance new
produced solutions. After a certain number of iterations, the
enhanced solutions were returned to the SFLA. High abili-
ties of VPGA and BO algorithms in finding the global optima
make basic SFLA more effective in optimization.

In addition, Seyedi et al. (2011) developed an HSFLA by
applying fuzzy logic to achieve a set of fuzzy objectives to

solve multi-objective planning problems. Based on the com-
putational result, the HSFLA outperforms PSO, guaranteed
convergence PSO (GCPSO) and GA. Also, Gitizadeh et al.
(2012) integrated fuzzy approach to solve multi-objective
distribution network expansion planning.

Moreover, Li et al. (2012b) presented an HSFLA by mod-
ifying the frog leaping rule and employing a hill climbing
local search called extremal optimization (EO). EO has a
high local search capability and could improve the effective-
ness of basic SFLA in optimization.

Srinivasa Reddy and Vaisakh (2013) employed differen-
tial evolution algorithm in HSFLA. In the proposed hybrid
algorithm, all the solutions in each memeplex could take part
in the evolution. As well, using memetic evolution process
in differential evolution algorithm and also a novel mutation
could enhance the local and global search ability, respec-
tively.

6 Highlights on SFLA

SFLA is a robust algorithm with local and global search abil-
ities to solve various large-scale and complex optimization
problems. This algorithm integrates the advantages of MA
and PSO algorithms. SFLA uses memetic evolution in local
search and then PSO approach is applied to complete the
search. Shuffling strategy could transfer information between
local and global explorations.

6.1 Applications

According to the statistical result found from previous
researches (see Table 1) and as it is clear from Table 2, SFLA
has been functional in different sorts of optimization prob-
lems and is practical for various applications. Table 2 shows
the main types of applications which have used SFLA and
Fig. 2 indicates the percentage of usage of SFLA in solv-
ing the problems considered by a number of researchers.
From Fig. 2, it is clear that SFLA has been mostly employed
for flexible job/flow shop scheduling problems, electrical
power flow optimization problems and classification prob-
lems. The optimization results on different applications show
that SFLA is effective in various optimization problems,
especially in solving large-scale combination optimization
problems, high-dimensional problems and when high accu-
rate solutions are required.

6.2 Control parameters

The control parameters in SFLA have to be initialized for
optimization. These parameters are the total number of frogs
or population size (p), number of memeplexes (m), num-
ber of frogs in each memeplex (n), maximum number of
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Table 2 Different application types have applied SFLA by previous
researchers

No. Application type

1 Flexible job/flow shop scheduling problem

2 Feeder reconfiguration problem in distribution networks

3 Water distribution network optimization problems

4 Detection of fault location in distribution networks

5 Electrical power flow optimization

6 Continuous optimization problem

7 Finance-based/project scheduling problem

8 Traveling salesman problem

9 Volt/Var control problem in distribution systems

10 Classification problems

11 Knapsack problem

12 Distribution expansion planning problem

13 Optimization of stable points for poly vinyl acetate

14 Optimization of UAV flight controller

15 Sequencing problem

16 Economic load dispatch optimization problem

17 Flood control problem

18 Multi-user detection problem–telecommunication

19 Optimization of parameters of induction machines

20 Optimization of placement in distribution network

21 Networked two-layer learning control systems

22 Optimization of fuzzy controller

23 RNA secondary structure prediction

24 Production planning problem

25 Power system stabilizer

26 Viewpoint selection in visualization of 3D datasets

27 Mid- to long-term optimal operation of cascade hydropower

stations

28 Optimization of ANN model for prediction of power system

load

29 Optimization of analog integrated circuits sizing

30 Discrete/real-valued optimization problems

31 Unit commitment scheduling problem

evolution or iteration (N ), and maximum number of itera-
tion per memeplex (s). Although the values of parameters
vary in different problems, reviewing the values considered
by previous researchers and optimization results obtained by
them show that determination of proper number of frogs is
an important issue in optimization. Increasing the number of
frogs could enhance the accuracy while it could also increase
the processing time. Specification of the proper number of
memeplexes in SFLA is a major difference between the
power of SFLA with PSO and GA. As well, after reviewing
the number of memeplexes considered by different papers,
it was observed that the number of memeplexes was usually
considered as 10 % of the number of frogs. As well, the num-

ber of frogs per memeplex was determined by (p/m). More-
over, increasing the iteration number in memeplexes could
increase the accuracy of the result, although the processing
time would be increased. In previous works, this iteration
has been defined as a number between m/2 and m × 2. The
number of global iterations completely depends on the appli-
cation, the expected precision of the solutions and usually
considered between 100 and 1,000.

6.3 Comparable algorithms

The most evolutionary algorithms which have been compared
with SFLA by previous researchers are GA, PSO, ABC,
SA, MA, and ACO. Also, some related hybrid algorithms
such as SAMPSO, SPSO, dominated sorted genetic algo-
rithm (NSGA), AIA, KBACO, multi-objective genetic algo-
rithm (MOGA), multi-objective particle swarm optimiza-
tion (MOPSO), and strength pareto evolutionary algorithm
(SPEA) are considered for evaluation. As it is clear from
Table 1, the most comparisons are between SFLA and PSO,
or SFLA and GA. Additionally, although a few number of
researchers such as Rao (2011) reported ABC as a robust opti-
mization algorithm, there is not enough evidence to prove
that SFLA could outperform ABC in special applications.
According to the statistical result obtained from previous
studies (highlighted in Table 1), around 34 % of the stud-
ies are on basic SFLA. However, MSFLA and HSFLA could
overcome basic SFLA to enhance the SFLA performance for
solving complex, multi-objective, and continuous optimiza-
tion problems.

6.4 Consideration features

The accuracy of the solution, convergence rate, processing
time, and performance are the key features of SFLA con-
sidered by the most number of researchers to be evaluated
with other evolutionary optimization algorithms. Based on
the comparison result listed in Table 1, SFLA outperforms
the others especially in terms of convergence rate as well
as performance. Also, based on a few number of evaluation
results, although convergence rate in PSO is equal or some-
times more than the rate in basic SFLA (Eusuff et al. 2006;
Niknam and Farsani 2010), a modified or hybrid SFLA could
overcome this shortcoming.

7 Highlights on improvements of SFLA

In the population-based meta-heuristic optimization algo-
rithm, premature convergence may happen for various rea-
sons: population is converged to local optima of objective
functions; diversity of the population is lost; the search
process is slow; search has not proceeded at all. There are
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Fig. 2 The percentages of papers which applied SFLA in different application types

several strategies that can moderate these shortages. This sec-
tion focuses on the most important enhancement performed
on the basic SFLA by previous researchers. The highlighted
enhancements are obtained from the statistical results and
evaluations of the researches (see Table 1) and are based
on the most common and effective modifications considered
by a large number of studies. According to the result found
from the previous researches, around 85 % of the papers pub-
lished in relation to MSFLA or HSFLA have tried to propose
or enhance the local search by introducing new frog leaping
rule.

7.1 To handle multi-objective optimization problems

According to the results reported by Niknam et al. (2011a, b,
2012), Malekpour et al. (2012), Seyedi et al. (2011), Giti-
zadeh et al. (2012), and Sardou et al. (2012) as the objective
functions are indefinite, a clustering procedure using fuzzy
set could be applied to organize the repository’s size to distin-
guish the best compromise solution using the fuzzy member-
ship function. The membership function of objective func-
tions for each individual in the repository is considered as
follows:

μ f i (X)

⎧
⎪⎪⎨

⎪⎪⎩

1 for fi (X) ≤ f min
i

0 for fi (X) ≥ f max
i

f max
i − fi (X)

f max
i − f min

i
f min
i ≤ fi (X) ≤ f max

i

, (6)

where f max
i and f min

i indicate the maximum and minimum
values of the functions, respectively. The membership value
of individuals in the repository is calculated by the following
equation:

Nμ( j) =
∑n

k=1 wk × μ f k(X j )∑m
j=1

∑n
k=1 wk × μ f k(X j )

, (7)

where m, n are the number of solutions and objective func-
tions, respectively, and wk is the weight of the kth objec-
tive function. Nμ( j) as a normalized value shows a type of
decision-making criterion.

7.2 To avoid being trapped into local optima/to enhance the
local exploration

Based on the results presented by previous researches, two
operations, mutation of the frogs and division of the frogs
into memeplexes, are powerful strategies which can maintain
the diversity of the population and extend the exploration
area. According to previous works, proposing new mutations
which could cause convergence of the global optima and
avoid being trapped into the local optima are the important
modifications. The victorious modifications are motivated
from the theory noted by most of the researchers that SFLA
needs a wide local search space at former iterations to avoid
premature convergence and a narrow search space to speed
up convergence rate at the next iterations.
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• One strategy for modifying the mutation in basic SFLA
is considering a new factor in Eq. (4) (Elbeltagi et al.
2007; Wang and Di 2010; Xu et al. 2011). This constant
factor presents the searching scale for frog leaping step
and should be assigned to a large value. Thus, the new
frog leaping equation is as follows:

x ′
i = xi + r × c × (xb − xw), (8)

where r indicates a random number between 0 < r < c
while 1 < c < 2.

• Additionally, employing one more factor in Eq. (8) as
an inertia weight could regulate the search operation and
enhance local exploration. This factor is assigned to a
large value at first (at the initializing phase) and is reduced
regularly to find more sophisticated solutions (Li et al.
2012a; Huynh (2008); Jafari et al. 2012). The new frog
leaping formula is as follows:

x ′
i = xi + w + r × c × (xb − xw), (9)

where r indicates a random number between −1 and 1,
also wmin < w < wmax, in which wmin and wmax define
the minimum and maximum permitted perception, respec-
tively. This perception weight is linearly decreased during
the algorithm run.

• As well, based on the theory of search space noted by
Huynh and Nguyen (2009), Sayedi et al. (2012), and
Shayanfar et al. (2010a, b), Eq. (10) has been proposed
for finding the perception weight in i th dimension of
the search space. Using a decay factor λ to decrease the
perception weight exponentially is an effective way to
enhance the local exploration ability.

wi = λiw0, (10)

where λi indicates a random number between 0 and 1, and
also w0 is the initial weight.

• Furthermore, considering a frog’s position with higher
fitness value instead of the worst one in Eq. (4) could
improve the diversity. In this way, the mean value of indi-
vidual in each memeplex could also be replaced with the
worst one (Shayanfar et al. 2010a, b; Malekpour et al.
2012).

• In addition, mutation could apply a new random frog in
Eq. (4) to calculate a trial mutated vector (Niknam et
al. 2011a; Perez et al. 2012; Chen et al. 2011a; Gomez-
Gonzalez 2012). Thus, the following equation could be
useful to find the new position,

x ′
i = Xrand +r ×(Xb − Xrand)+r ×(Xg − Xrand), (11)

where xrand is a randomly generated vector.

• Also, a new algorithm named CLS could be utilized to
search the best frogs for each memeplex and initial popu-
lation. Hence after improving the solutions, the best solu-
tion is replaced with the worst frog in Eq. (4) (Malekpour
et al. 2012; Niknam et al. 2011c).

• As well, considering more frogs among the sorted frogs
fed into Eq. (4) could enhance the convergence speed
(Niknam et al. 2011c, 2012) and diversity of the frogs.

• On the other hand, applying a new division method to
make the memeplexes’ performance uniform could help
to enhance the internal learning process in each memeplex
(Zhen et al. 2009). In this kind of division, the frog with
the highest fitness value moves to the first memeplex that
with the second highest value moves to mth memeplex.
The frog with the third value moves to the first memeplex
again. This steps continues until the last frog is placed in
the proper memeplex.

• Hybridization of clonal selection algorithm and SFLA
suggested by Bhaduri and Bhaduri (2009) and Chittineni
et al. (2011a, b) improves the convergence rate and helps
avoid being trapped into the local minima.

7.3 To enhance global exploration/quality of shuffled frogs

Using a wide search space and considering more frogs in
the evaluation could be good ways to enhance global search
ability in SFLA. On the other hand, higher quality of shuffled
frogs could expand local and global exploration, raise conver-
gence probability, and avoid premature convergence. Based
on the result obtained from previous researches, the follow-
ing strategies could help to enhance the quality of shuffled
frogs and convergence probability.

• The frogs in the population get updated information from
the local and the global best solutions, and the search is
infected by the global best solution. Consequently, we
use insert neighborhood-based local searches for finding
local and global best frogs and using roulette wheel selec-
tion for selecting the best frog. Roulette wheel selection
can exploit the frogs with better memes (value) for devel-
opment of new ideas, which ensure the fast convergence
(Wang et al. 2011).

• Applying the strategy of self-adaptive PSO as a local
exploration and integrating the information from local
searches in parallel could increase the accuracy and con-
vergence rate (Niknam et al. 2011a, b).

• By integrating the two operations of bacterial optimiza-
tion algorithm, bacterial mutation and gene transfer,
SFLA reaches higher convergence and better perfor-
mance. These operations could optimize the frog in a
population and transfer the information between the frogs
in the population (Rahimi-Vahed and Mirzaei 2008).
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• Variable neighborhood descent could be utilized to raise
the diversification and frogs’ quality in memeplexes indi-
vidually (Rahimi-Vahed et al. 2008; Pakravesh and Sho-
jaei 2011).

• Employing the concept of AFSA into SFLA during
global information exchange and local deep search could
enhance the convergent rate and local and global explo-
ration as well as accuracy (Zhang et al. 2012). This strat-
egy modifies the mutation operation in finding the new
frog’s position or random frog’s position.

• Although using sub-memeplex recommended by some
researchers enhance local exploration, it could not
improve global exploration. Zhen et al. (2009) ignored
the construction of sub-memeplex and combined local
and global exploration space to expand evaluation space
in each memeplex. This modification increased the learn-
ing ability of good frogs to avoid being trapped into the
local optima and increase the solutions’ diversity.

• Hybridization of clonal selection algorithm and SFLA
suggested by Bhaduri and Bhaduri (2009) and Chitti-
neni et al. (2011a, b) could increase the social behavior
of the new algorithm and increase global exploration with
a high convergence rate.

7.4 Processing time

Modifying the process of leaping frog’s position in each
memeplex could reduce the processing time of the opti-
mization. This modification includes the following opera-
tions: using the Eq. (4) to calculate the new frog’s posi-
tion, using a mutation operator of GA to improve the result,
using crossover operator of GA between the worst and best
global frog, or finally finding the frog’s new position ran-
domly (Baghmisheh et al. 2011; Roy 2011).

7.5 Enhancing the quality of the initial population

SFLA usually begins with an initial collection of solutions
(frogs) constructed randomly. Thus, the result (optimal solu-
tion) of the algorithm strongly depends on the initial set.
Based on the result reached by previous researches, the fol-
lowing highlights are obtained.

• Using a heuristic or initialization rules to distinguish bet-
ter situation for a solution could initialize a population
with high quality and high diversification. It produces an
individual or frog, while all other solutions are produced
accidentally to improve the population’s diversity (Pan et
al. 2010; Li et al. 2012a, b).

• The statistical results presented by Rahimi-Vahed and
Mirzaei (2007, 2008), and Rahimi-Vahed et al. (2008)
show that ETS meta-heuristic algorithm could generate
a set of solutions (frogs) with high quality. This search

begins from a predefined point called ideal point which
is a virtual point considered by the optimization of each
objective function separately and could be estimated by
the DIP. The main advantage of tabu search is sharing the
frequency-based memory to look for less visited spaces.
Thus, solution space could be searched in various direc-
tions to obtain high diversification.

8 Conclusion

In this study, the previous researches related to SFLA for
solving optimization in various applications are considered.
The structure of basic SFLA and its next generations are
considered separately. Also, the advantages of the next gen-
erations of SFLA are reviewed. These advantages are spec-
ified based on some key features of the algorithm. The sta-
tistical results obtained from the applications indicate that
SFLA is widely applied for flexible job shop scheduling prob-
lems. The experimental results in terms of performance show
that SFLA outperforms other evolutionary algorithms such
as GA, PSO, ACO, ABC, and SA and some of their next
generations.

Based on the experimental result, the performance of the
SFLA is significantly enhanced by utilizing novel modifica-
tion or hybridization. Nowadays, a wide range of researchers
have proposed MSFLA and HSFLA on various problems. In
addition, based on the literature review and as HSFL could
bring the best out of basic SFLA and other evolutionary algo-
rithms, HSFL could outperform the other algorithms in solv-
ing complex and continuous problem.

Moreover, the proposed SFLAs by previous researchers
were evaluated to find their most common and valuable
improvements. It is clear that there has not been enough effort
to enhance the processing time and the accuracy of the result.

In summary, the SFLA is a comprehensive meta-heuristic
optimization algorithm and could be extended to various opti-
mization problems. Therefore, the results of this research
can be acquired for prospective researches to be applied to
different processes or to improve old studies by consider-
ing the advantages of other systems proposed by previous
researchers.
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