
DLNE: A Hybridization of Deep Learning and
Neuroevolution for Visual Control

Andreas Precht Poulsen, Mark Thorhauge, Mikkel Hvilshj Funch, Sebastian Risi
Center for Computer Games Research

IT University of Copenhagen, Denmark
{appo, marth, mhvf, sebr}@itu.dk

Abstract—This paper investigates the potential of combining
deep learning and neuroevolution to create a bot for a simple
first person shooter (FPS) game capable of aiming and shooting
based on high-dimensional raw pixel input. The deep learning
component is responsible for visual recognition and translating
raw pixels to compact feature representations, while the evolving
network takes those features as inputs to infer actions. Two types
of feature representations are evaluated in terms of (1) how
precise they allow the deep network to recognize the position
of the enemy, (2) their effect on evolution, and (3) how well
they allow the deep network and evolved network to interface
with each other. Overall, the results suggest that combining deep
learning and neuroevolution in a hybrid approach is a promising
research direction that could make complex visual domains
directly accessible to networks trained through evolution.

I. INTRODUCTION

The field of artificial intelligence for games has seen
significant advancements in the last few years, using new
combinations of existing algorithms. Deep neural networks
have been a central component in these advancements, and
have proven to be a powerful representation, capable of solving
a wide range of problems. Google DeepMind’s AlphaGo [21]
used deep neural networks and Monte Carlo tree search to
achieve remarkable results, beating a professional Go player
for the first time in history.

While the fundamental algorithms behind these solutions
have existed for decades, the driving factor has primarily been
combining and adjusting them to fit the problem domain,
as well as having large amounts of data and computational
resources available. This naturally raises the question of what
the potential of these algorithms is, and which problems they
can solve. Inspired by the work of both Koutnı́k et al. [10]
and Chen et al. [2], who experimented with feature detection
through convolutional networks for autonomous driving, and
neuroevolution in visual decision making in a car racing
simulation game, this paper investigates the combination of
neuroevolution and deep convolutional neural networks to
learn directly from raw visual input in a first person shooter
(FPS) setting.

The main idea of the approach is to separate the visual
recognition (VRC) and action inferring component (AIC)
for visual control (Figure 1). A deep convolutional network
is trained in a supervised fashion through gradient descent
to determine the position of an enemy bot based on high-
dimensional raw pixel input. This positional information is

then used as input to another network that is evolved to
aim and shoot at a given target. Importantly, the evolving
network is trained in a non-supervised way, i.e. it only relies
on a fitness function and not on a large number of labeled
examples. While some work exists in combining evolution
and deep learning for the generation of 2D artefacts [13, 15]
and 3D objects [12], the hybrid combination of these two
techniques is an unexplored area in visual control. In fact, this
combination could combine the advantages of both methods.
Neuroevolution has difficulties scaling to problems with a large
number of inputs [18], such as 3D shooting games [16], which
could be solved with a deep learning-based visual recognition
component. On the other hand, evolutionary-based approaches
do not rely on differentiable architectures, and work well
in domains with sparse rewards, a challenge for most deep
reinforcement learning approaches [6, 14].

The purely neuroevolutionary-based approach by Koutnı́k et
al. [10] has comparable advantages. It includes two networks,
which are both trained trough evolution: a convolutional
network that learns to transform raw visual input into compact
features, and a recurrent neural controller. While Koutnı́k et
al.’s approach was able to evolve a controller for the TORCS
racing simulator using only visual input, the training time is
a concern; it takes almost 40 hours on an 8-core machine
to evolve a controller that is capable of driving smoothly. A
convolutional network trained with supervised learning could
provide a better foundation for neuroevolution in terms of
evolutionary speed, as the feature representation of the visual
state is explicitly designed for neuroevolution.

The FPS game DOOM [9, 11] and Atari 2600 games
[14] have seen several implementations of deep reinforcement
learning. While yielding impressive results (and it is likely
that our approach requires significantly more development to
achieve a similar performance), training a visual recognition
component and action inferring component separately could
have advantages. For example, we imagine it could poten-
tially lead to several application opportunities in the field of
real-world robotics, as reinforcement learning directly from
visual perception to action is very time consuming [14] and
challenging due to the difficulty of simulating the real world
with realistic visual inputs.

The goal of this paper is an initial proof-of-concept of how
deep learning and neuroevolution could be combined to create
a neural controller for a FPS agent capable of aiming and



Features

NeuroevolutionSupervised learning

Convolutional layers

Actions

Perception Action
Fully connected layers

VRC AIC

Fig. 1: The DLNE Hybrid Approach. The combination of deep learning and neuroevolution translates the high-dimensional
visual state to actions. A deep network visual recognition component (VRC) is trained in a supervised way to identify important
game features (e.g. location of the enemy), which are then provided as input to an evolving network that infers actions (AIC).

shooting, only using the raw visual input of the game. An im-
portant question in this context is which feature representation
of a visual partially observable state makes the combination of
neuroevolution and supervised deep learning perform well. We
aim to answer these research questions implementing two deep
learning-based recognition components with different feature
representations, as well as two matching representations for the
neuroevolution approach. The results in this paper demonstrate
that a particular representation based on partitioning the visual
input works well together with neuroevolution and hints at the
promise of scaling neuroevolution to more complex domains
by exploiting the advances of recent deep learning approaches.

II. BACKGROUND

This section explains the theoretical framework of the
approach presented here and related work on agents learning
from raw visual input in game environments.

A. Deep Learning

Although the idea of training multi-layer neural networks
through back-propagation of error is not new, advances in
computational power, in the availability of data, and in the
understanding of many-layered ANNs, have culminated in a
high-interest field called deep learning (DL) [6]. The basic
idea is to train many-layered (deep) neural networks on big
data through stochastic gradient descent (SGD).

Deep learning approaches now achieve cutting-edge perfor-
mance in diverse benchmarks, including image, speech, and
video recognition; natural language processing; and machine
translation [6]. Such techniques are generally most effective
when the task is supervised, i.e. the objective is to learn a
mapping between given inputs and outputs, and when training
data is ample. Importantly, the deep neural network (DNN)
must be composed only from differentiable operations, which
limits the type of neural architectures and problems it can
directly be applied to.

One focus of DL is object recognition, for which the main
benchmark is the ImageNet dataset [3]. ImageNet is composed
of millions of images, labeled from 1, 000 categories spanning
diverse real-world objects, structures, and animals. DNNs
trained on ImageNet are beginning to exceed human levels
of performance [7], and the learned feature representations of

such DNNs have proved useful when applied to other image
comprehension tasks [17].

The stereotypical deep learning approach is to construct a
network from alternating layers of convolution and pooling,
which facilitate learning increasingly higher-level translation-
invariant features. These convolutional layers often feed into
fully-connected layers and ultimately into a classification layer.
The approach in this paper builds on such deep convolutional
neural networks (DCNN) to detect the location of an enemy in
a 3D environment that are provided as compact input features
for a network evolved by NEAT, which is explained next.

B. NEAT

NeuroEvolution of Augmenting Topologies (NEAT) [19] is
an evolutionary algorithm for evolving both the topology and
weights of an artificial neural networks. NEAT starts with a
population of simple neural networks and then adds complex-
ity over generations by adding new nodes and connections
through mutations. By evolving networks in this way, the
topology of the network does not need to be known a priori;
NEAT searches through increasingly complex networks to find
a suitable level of complexity. Because it starts simply and
gradually adds complexity, it tends to find a solution network
close to the minimal necessary size. For a complete overview
of NEAT see Stanley et al. [19].

C. Related Work

This section presents some related work aimed at allowing
agents to learn directly from raw visual input. In 2014, a visual
agent for playing TORCS was developed using reinforcement
learning to evolve a network with a CNN component [10].
The fitness functions used to train the top layer network were
different than the fitness function for the CNN component. The
top layer network adapted the output of the CNN component
and successfully used it, despite the output of the CNN
component being humanly incomprehensible, and based solely
on the image.

Chen et al. [2] trained a DCNN to detect features of road
images in TORCS, retextured to simulate real driving. The
features included angle of the road tangent and distance to land
markings. The features are similar to the angular representation
we employ (Section III-B). Chen et al. trained their network



with 484,815 training examples for 140,000 iterations, which
is quite resource intensive. The features were translated to
driving actions by a handwritten controller, which is the main
difference to the work presented here.

The FPS shooter DOOM has seen several successful AI
implementations using convolutional neural networks with
reinforcement learning in the Visual DOOM AI competition
[9, 11]. The game domain is similar to the one presented
in this paper, but the training methodology differs. Many
of the top performing entries for the competition used deep
reinforcement learning to estimate the Q-value of states. This
way of controlling the agent is quite different from our
approach, as it is based on a state representation of the game
and does not utilize neuroevolution.

Deep reinforcement learning has been applied to several
different games, using high dimensional sensory input, such
as images. Mnih et al. [14] used deep reinforcement learning
to play Atari 2600 games, surpassing human level performance
in many of them. One of the advantages of this approach
is that it is independent of the feature representation, which
can be a challenge to design manually. However, most deep
reinforcement learning approaches still struggle on games
requiring long term strategic planning or games that only
provide sparse rewards, and in general still take a relatively
long time to train.

Numerous examples of applying supervised learning or evo-
lutionary algorithms to FPS games exist [1, 4] and neuroevo-
lution is frequently applied to many different types of games
[18]. Some of the examples employ the indirect HyperNEAT
encoding [20] to deal with relatively high dimensional input
(16×21 for Atari and 7×7 for Go, compared to 256×256 im-
ages used in this paper), as HyperNEAT can evolve repeating
connection and topological patterns.

III. APPROACH: INTERFACING DEEP LEARNING AND
NEUROEVOLUTION

The basic idea behind the Deep Learning Neuroevolution
(DLNE) approach presented in this paper is shown in Figure 1.
A DCNN preprocesses the scene and extracts relevant features
(e.g. distance to enemies, etc.), trained through a supervised
gradient descent approach. Once this network is trained it
can be used in a pipeline, in which the extracted features
are inputs for a network evolved through NEAT. The NEAT
network can either be trained independently beforehand with
the ground truth position of the enemy extracted from the
engine (the approach we follow in this paper), or directly with
the already trained DCNN. The idea is that by separating the
visual recognition part from the training of the agent’s policy,
we can combine some of the advantages of neuroevolution
and deep learning-based approaches. However, how to best
combine such different approaches is an open question that
the experiments in this paper are trying to elucidate.

A. Experiments

In the proof-of-concept experiments in this paper the goal of
the agents is to aim and shoot a stationary enemy. The position

Agent spawn
along this line

Target spawns
along this line

Field of view

Light source

z-axis

x-axis

Fig. 2: The arena as seen from above. This illustration omits
the y-axis. The lines represent planes, as the agent and the
target spawn randomly along both the y-axis and the x-axis.

of the agent is fixed but it can turn, shoot and reload. The
evolving network has four turning outputs (up, down, left,
right), which are scaled to allow a maximum turn speed of
100 degrees/second. Two additional outputs allow the agent
to decide when to shoot and reload, which are binary actions
that are triggered when the corresponding network outputs are
above a certain threshold.

The game’s arena is quadratic, with the agent spawning on
one side and the targets spawning on the other, as seen in
Figure 2. Both the agent and the target spawn in a random x
and y, while the z coordinate is constant. The first target in
the arena always spawns within sight of the agent in order to
facilitate early learning. The arena is outfitted with three lights
to create different visual variations of the target and weapon
overlay. One light is in the middle of the arena, behind the
agent. The other two lights are placed on the side of the target,
such that they produce varied lighting conditions depending on
the distance of the target. This setup ensures that the visual
recognition component is tested under a variety of different
visual conditions.

The agent starts with an automatic weapon that has 30
bullets in a single magazine and has six extra magazines at
its disposal. The weapon does not automatically reload when
the magazine is empty, forcing the agent to learn to reload
at the right time. If the agent reloads a non-empty magazine,
the remaining bullets are lots. Since no information is given
regarding bullets and magazines left, the agent should ideally
learn to count how much ammo was used. This is important
in order to not waste time attempting to shoot or reload when
there are no more bullets or the weapon is fully loaded, it is
however possible to get very reasonable behaviour from the
agent without perfect reload times. The target spawns with
100 health points, and a single bullet hit causes 10 damage.
Therefore, 10 hits are required to kill the target.



Target

Up
Current aim

Horizontal line Agent

Desired aim

Vvertical

Fig. 3: The vertical angle of the Angular Representation (AR).

B. Feature Representations

Recall that the feature representation is the integration point
between the DCNN and the evolved network. The feature
representation of the visual state should allow the evolving
network to locate an enemy, aim and shoot it, while having
as few dimensions as possible, as the evolutionary speed is
a central concern. Additionally, the DCNN has to be able to
learn the features from training examples through supervised
learning. We compare two different visual representations: the
angular and the visual partitioning representation.

Angular Representation (AR). The angular feature rep-
resentation unambiguously defines the position of the target
on the screen. This representation has a total of four outputs:
two angles, a distance and a binary output indicating whether
the target is within sight. The vertical angle (Figure 3) is
defined by the angle between the current facing of the agent
and a projection of the vector from the agent to the target.
The projection is onto a plane determined by the vector of
the current facing and the up-vector. The horizontal angle
is calculated in the same manner, except that the angle is
calculated based on the projection of both vectors onto the
horizontal plane. These two angles allow the NEAT network
to infer the aiming direction. To allow for changing shooting
behaviour based on distance to the enemy, this information is
also provided. For example, if the agent shoots a full automatic
rifle at a long distance, it might be better to fire separate shots
than using automatic fire. The binary indication of a target
within sight indicates to the agent whether the given angles
reflect the position of a target, or just assume default values.

Visual Partitioning Representation (VPR). The visual
partitioning representation defines the position of the target
as a classification task, where each point on screen belongs to
a class bounded by a square (Figure 6).

As the target can be visually present in multiple squares, the
correct square is defined as the square that contains its center
of mass. The partitioning is finer in the center of the agent’s
view field, allowing for more accurate aim adjustments the
closer the target is to the line-of-fire. The feature representation
is a sparse vector with an entry for each partition. The entry
of the partition that contains the target is one, while all others
are zero. If no partition contains the target, an additional term
indicates the absence of a target. The feature representation of
the VPR has a significantly larger number of dimensions than
the AR (25 compared to 4). The VPR is less detailed and

bound by the width of the partitions. Additionally, the AR
allows the agent to aim precisely, which many FPS shooter
games reward by increasing the damage inflicted for hitting
vulnerable areas on the target. However, we speculate the VPR
representation might be easier for the DCNN to learn.

C. Neuroevolutionary Training

The training of the agent was performed in the Unity 5 game
engine1 with the UnityNEAT framework2, which is a port of
the C# NEAT framework SharpNEAT3.

Instead of evolving the network with the DCNN as input,
which is computationally expensive, here the evolving network
is trained with the ground truth information from the game
engine itself (e.g. exact position of the enemy). A fitness
evaluation lasts for 15 seconds, and as the evaluation includes
some randomness, each evaluation is repeated 20 times and
the results are averaged. The random spawning locations of
the target and agent ensure that the agent does not learn a
specific pattern, but instead learns a general policy.

The agent is rewarded for hitting the target and aiming
close to it. The fitness can be formulated as: f = damage+
aim bonus, where damage is the total damage dealt, and
aim bonus is calculated as: aim bonus = 1

N

∑
n

c
(1+v(n))2 ,

where N is the number of frames and v(n) is the angle
measured in radians between the forward pointing vector of
the agent and the line from the agent to the target in frame
n. Hence v(n) = 0 if the agent aims directly at the target.
The constant c was set to 75, which was found to work well
through prior experimentation; because a killed agent does
generate aim bonus, lower c values sometimes lead to agents
that refrain from dealing damage to the target.

The size of each population is 100 with 20% elitism and
a termination criterion of 260 generations. Sexual offspring
(20%) does not undergo mutation. Asexual offspring (80%)
has 0.8 probability of weight mutation, 0.05 chance of link
addition, and 0.03 chance of node addition. Connections are
deleted with a 0.01 probability.

Data generation for vision module training. In order to
generate the data necessary for the supervised training of the
DCCN (explained in the next section), we record gameplay
(images taken from random positions and camera rotations,
and enemy locations) from random NEAT networks that use
the angular game state as input. The idea is to try to sample
from states the agent might find itself in during actual play.
In the future it will be interesting to perform this training
interleaved with training of the DCNN or using a network
evolved on the ground truth. To increase training speed, the
number of images without an enemy are reduced from approx.
50% to 15%, resulting in a total of 130,000 training images.

D. DCNN Architecture and Training

Both the VPR classification and AR regression networks are
tested with a 12 and a 6 layered architecture, referred to as

1https://unity3d.com/
2https://github.com/lordjesus/UnityNEAT
3http://sharpneat.sourceforge.net/



Convolutional layer 3x3
60 filters of 256x256

Max pooling 2x2

Convolutional layer 3x3
60 filters of 128x128

Max pooling 2x2

Convolutional layer 3x3
80 filters of 64x64

Max pooling 2x2

Convolutional layer 3x3
120 filters of 32x32

Max pooling 2x2

Fully connected layer
40 neurons

Fully connected layer
40 neurons

Fully connected layer
40 neurons

Output layer 26 outputs
Softmax activation

256x256 Image
3 color channels

Convolutional layer 3x3
60 filters of 256x256

Max pooling 2x2

Convolutional layer 3x3
60 filters of 128x128

Max pooling 2x2

Convolutional layer 3x3
80 filters of 64x64

Max pooling 2x2

Convolutional layer 3x3
120 filters of 32x32

Max pooling 2x2

Fully connected layer
250 neurons

Fully connected layer
250 neurons

Fully connected layer
250 neurons

Output layer 4 outputs
Identity activation

Angular regression VP classification

Fig. 4: The topology of the 12-layer DCNN using the AR
representation (left) and VPR representation (right).

deep and shallow respectively. The difference between the two
networks is in the number of neurons in the fully connected
layers and in the activation functions used for the output
(Figure 4). All activation functions employ the rectified linear
unit (ReLU), except in the output layers; here a softmax is
used for classification and identity is used for regression. The
regression network outputs the angular representation, scaled
into the range [−1, 1]. The classification network outputs 26
probabilities summing to 1. The networks takes as input an
RGB image with a size of 256×256×3.

Of the deep network’s 12 layers, the first 8 alternate between
convolutional and pooling layers, while the next 3 layers are
fully connected followed by the output layer. The stride and
zero padding of all the convolutional layers are 1, while the
stride of all the pooling layers is 2. Both networks have
a total of 163,940 parameters (weights and biases) in the
convolutional layers. The classification network has 1,228,800
weights from the last convolutional layer to the first fully
connected layer and 4,386 parameters in the remaining layers.

The shallow convolutional network has a similar architec-
ture but only 6 layers, the first 4 being alternating convolu-
tional and pooling layers, followed by a fully connected layer
and an output layer. The stride and zero padding of all the
convolutional layers are 1, while the stride of all the pooling
layers is 4. Both networks have a total of 246,200 parameters

Fig. 5: The two different visual settings V1 (left) and V2
(right). In contrast to V1, V2 has a weapon overlay that can
occlude the view of the enemy bot and includes more detailed
textures and dynamic lighting.

in the convolutional layers. The classification network has
3,686,400 weights from the last convolutional layer to the first
fully connected layer and 3,266 parameters in the remaining
layers. The regression network has 23,040,000 weights from
the last convolutional layer to the first fully connected layer
and 3,754 parameters in the remaining layers.

The parameters are updated from a mini-batch of size 32,
with a learning rate of 10−3. The process does not include
dropout, but L2-regularisation with a coefficient of 5 · 10−4.
Nesterov’s accelerated gradient is used with a momentum
coefficient of 0.9. The networks are initialised with Xavier
initialisation. The framework used for supervised learning
is DL4J, a deep learning framework for Java, accessible at
https://deeplearning4j.org. In order to allow communication
between the trained DCNN and evolved network, a simple
socket bridge was implemented. The overhead introduced by
this bridge is minimal as it is possible to send the required data
back and forth 10,000 times in approximately three seconds.

Visual Settings. We created two different data sets that test
the network under different difficulty levels (Figure 5). In the
more complex setup V2, the player and weapon overlay can
partially or fully cover the target, making the recognition task
harder, or even impossible. Additionally, the textures in V2
are more detailed and the lighting is dynamic.

IV. RESULTS

Deep Network Accuracy. The accuracy of the VPR (Fig-
ure 7) is measured as the percentage of correct predictions.
The topologies of the networks do not seem to have a
significant impact on the accuracy. The training examples that
the networks failed to predict correctly were either when the
target was in between partitions, or behind the weapon overlay.
The networks were able to classify the partition of the enemy
correctly, even when it was difficult to locate, as seen in
Figure 6. Varying lighting did not seem to cause incorrect
predictions. These results suggest that the VPR is well suited
to detect the location of enemies in this experiment.

The performance measure of the AR representation is the
absolute error on the predicted target distances. The distance
error of the deep network is 0.0893 in V1 and 0.1614 in



Fig. 6: The Visual Partitioning Representation (VPR) is more
fine grained in the direction the gun is pointing. The trained
deep CNN with VPR representation correctly predicts the class
(green square) with a confidence of 55.7%, with only four
pixels of the target being visible.

V2. The shallow network reaches a distance error of 0.153
in V1 and 0.1658 in V2. The distance error is almost twice
as high with the more complex V2 setup and, while more
definite conclusions will require further testing, increasing
network depth does seem to have a greater effect on the AR
representation than on the VPR representation.

0 20 40 60 80 100

Shallow Network (V1)

Deep Network (V1)

Shallow Network (V2)

Deep Network (V2)

96.05

95.94

86.10

86.60

Fig. 7: Accuracy of the best deep and shallow DCNN with
VPR representation on the two different visual settings V1
and V2.

DCNN Feature Map Example. The feature maps shown
in Figure 8 are visualised by scaling the output range [0, 1] of
every neuron in the convolutional layers linearly to the grey
scale range [0, 255]. The feature maps from the two different
representations are different in both the magnitude and the
variance of the output. The network estimating the AR has
often fewer “useful” feature maps in the last max pooling layer
and a tendency to highlight features that are potentially less
relevant for the task at hand, such as the weapon overlay.

Evolutionary Training. A total of ten independent evolu-
tionary runs were performed for each of the two neuroevolu-
tion setups: networks with VPR and networks with AR as input

Conv Max
pool

Conv Max
pool

Conv Max
pool

Conv Max
pool

Fig. 8: A small subset of the feature map activations of a
DCNN with VPR representation. The feature maps highlight
the position of the target. The leftmost column of feature maps
comes from the first conv layer, and the rightmost max pooling
layer is the input to the fully connected layers.

representation trained using ground truth enemy locations. The
average final fitness for the VPR setup is 318,4 (sd = 58,36),
while it is 436,9 (sd = 30,12) for AR. This difference is
significant (p < 0.01; Mann Whitney U-test). Each run took
approximately 10 hours to complete. We observe an overall
tendency of the AR representation to perform better than the
experiments with the VPR, both learning faster and reaching
a higher fitness.

Hybrid Approach. Here we report results on taking the
best network found during evolution on the ground truth
enemy locations combined with the best 12-layer DCNN
we found during supervised training (for both VPR and AR
representations). In other words, the two networks used for the
hybrid approach are trained separately and no further training
is performed once they are combined.

While the game is running with 10 Hz during evolution-
ary training, this frequency is halved during testing of the
combined approach due to the higher computational costs of
the DCNN in the pipeline. We decided to use the deeper 12-
layer networks for the combined approach, since this setup
performed as good on the VPR representation but had a lower
distance error on AR. We applied the hybrid approach to the
more complex V2 setup that includes more detailed textures
and dynamic lighting, and an additional setup that resembles
V2 but without the weapon overlay (V2-no-overlay). Figure 9
shows the performance of these treatments averaged over 200
trials. The evolved network with AR representation as input
reaches a significantly higher score using the ground truth than
any other method (p < 0.05; all tests are two-tailed Mann



VPR AR
0

100

200

300

400

310.71

396.72

281.97

74.73

193.71

106.42

Pe
rf

or
m

an
ce

Ground truth DCNN (V2-no-overlay)
DCNN (V2)

Fig. 9: Comparing DCNN and ground truth as features for
the evolved network for visual settings V2 and V2 without
the weapon overlay (V2-no-overlay). Testing performance is
calculated in terms of fitness (see Section III-C).

Whitney U-tests) but the distances and angles returned by the
DCNN component are not accurate enough for the network to
perform well. In the case of the VPR, performance decreases
slightly (though not significantly) from ground truth to visual
setting V2-no-overlay, but significantly when compared to the
setting that includes the overlay (p < 0.05).

The main conclusion is that, while the combination of
the two techniques is not perfect (see the example video of
the VPR hybrid approach at: https://youtu.be/daFvJa90f8Y),
the hybrid approach performs reasonably well and is in fact
able to aim&shoot based on the raw pixel representation of
256×256×3 images. With 22.87/31.31 hits averaged over the
200 trials, the best hybrid approach has a shooting accuracy
of 42%.

V. DISCUSSION AND FUTURE WORK

A. The DCNN Component

The incorrect VPR predictions of images where the target
is present are generally cases where the target could be
classified as being in either partition, depending on its exact
location of the center of mass. Consequently, such slightly
incorrect predictions do not have a significant impact on
the NEAT network that relies on these features as inputs.
These inaccuracies should therefore be viewed as a natural
consequence of the vague VPR classification definition, and
not a failure of the optimisation of the model.

The AR results show varying degrees of success in regards
to estimating the target’s location to an adequate level. The
topology of the network has a significant impact on the error
of the horizontal angle, vertical angle and distance, especially
when trained without visual distortion. In the future, the testing
error could likely be reduced further by tweaking the network’s
topology or increasing the amount of training data.

The error of the deep network to estimate the AR in V2
is more than twice as large as in the simpler setting V1.
Recall that in contrast to V1, V2 includes dynamic lighting,

detailed textures and weapon overlay. These results raise the
question of how much each of these factors contribute to
the error of the network. In fact, the network has a large
error on some examples where the weapon overlay does not
even partially cover the target, which suggests that dynamic
lighting and textures are more difficult to deal with for the AR
representation than for VPR.

The performance increase between the shallow and deep
network for the AR setup (and preliminary experiments with
deeper architectures) suggest that the AR could be improved
by increasing the number of layers or tuning the learning
process. The network trained by Chen et al. [2] is estimating
features similar to the AR, but uses far more training data
and learns for more iterations. The difference in quality of
feature maps also indicates that the convolutional layers of
the network estimating the AR are not as functional as the
convolutional layers of the network estimating the VPR, which
solidifies this assumption. From a theoretical point of view,
the difference in the quality of feature maps is not surprising,
as the negative log likelihood cost function optimises better
than the euclidean loss cost function used for regression, as
described and visualised by Glorot et al. [5].

B. The Neuroevolution Component

The results of the neuroevolutionary training show that
NEAT is capable of producing networks that can aim and
shoot in a FPS game, using both the AR and the VPR input
representation. However, the applicability of these networks
to other FPS games is challenged by their tendency to learn
from the particularities of the training setup. The distance to
the target does not vary much, which the evolved networks
exploit to implement reloading and shooting behaviour based
on a fixed distance to the target; the relationship between
degrees rotated and the number of pixels that the target shifts
on the screen is almost proportional. Networks based on AR
can exploit the fact that a new target spawns immediately after
an elimination by reloading when the target is near the edge of
the screen. This behaviour tends to result in a single reload as
the time it takes to reload is greater than the time it takes to
aim directly at the target. The VPR-based evolved network
associates specific partitions with reloading; consequently,
none of network learns generalisable reloading behaviour.
Proper reloading behaviour requires either information about
the number of shots left or some form of memory through
recurrent connections, which the networks currently do not
seem to evolve. Running evolution for a longer timespan could
alleviate some of these challenges. In the future, it will be
important to investigate the potential of this approach in FPS
game environments that are more varied and more complex.

C. The Combined Approach

The results show a significant difference between the perfor-
mance of the AR and the VPR representation when combined
with an evolved network. The hybrid approach with AR clearly
performs worse than VPR; the estimation of the AR is far too
inaccurate for the evolved network to successfully infer an



adequate action, and has its fitness reduced by 73.2% when
using the DCNN as input to the evolving network.

The combined approach proved performance intensive, and
the overall performance of the agent is certainly reduced by
running with only 5 Hz instead of the original 10. While the
combined approach could be improved, and studying these
hybrids in more depth is an important future research direction,
the results in this paper do demonstrate that a DLNE hybrid
can learn to aim and shoot from high-dimensional raw input.

The modularity of the combined approach makes it applica-
ble to more complex games but also domains outside of games,
such as real-world robotics. It is often challenging to apply
neuroevolution to physical robotics directly, as the evaluations
take considerable time. Consequently, the neural networks
controlling the robots are often evolved in a simulator and
only afterwards transfered to the real robot. However, one
major issue with this transfer is the reality gap [8] and
especially robot sensors are notoriously difficult to model.
The abstraction provided by the hybrid approach could allow
neuroevolution to be applied to physical robots in a novel way:
A DCNN can be trained on labeled real-world images or other
robot sensory data, while the neuroevolutionary component
can be trained without a visually realistic environment and
without the need for labeled data in a simulator.

VI. CONCLUSIONS

This paper investigated the potential of combining neu-
roevolution and deep learning in the context of a FPS game
and experimented with two different feature representations:
a visual partitioning and an angular representation. Trained
on ground truth data, it was easier for NEAT to evolve a
policy based on the angular input than on the visual par-
titioning input. However, the VPR representation was easier
to train with deep learning and therefore the combination of
an evolved network that takes the predictions of the correct
visual partition of the enemy as input worked best overall. The
presented hybrid approach opens up a new research direction
in neuroevolution by combining some of the advantages of
gradient and evolutionary-based approaches. Extending DLNE
to more complex games and applications in the future could
be a fruitful application area for such a hybrid approach.

REFERENCES

[1] S. Bonacina, P. Luca Lanzi, and D. Loiacono. Evolving dodging
behavior for openarena using neuroevolution of augmenting
topologies. 2008.

[2] C. Chen, A. Seff, A. L. Kornhauser, and J. Xiao. Deepdriving:
Learning affordance for direct perception in autonomous driv-
ing. CoRR, abs/1505.00256, 2015. URL http://arxiv.org/abs/
1505.00256.

[3] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-
Fei. Imagenet: A large-scale hierarchical image database. In
Computer Vision and Pattern Recognition, 2009. CVPR 2009.
IEEE Conference on, pages 248–255. IEEE, 2009.

[4] B. Geisler. An empirical study of machine learning algorithms
applied to modeling player behavior in a first person shooter
video game. 2002.

[5] X. Glorot and Y. Bengio. Understanding the difficulty of
training deep feedforward neural networks. In Proceedings

of the Thirteenth International Conference on Artificial Intel-
ligence and Statistics, AISTATS 2010, Chia Laguna Resort,
Sardinia, Italy, May 13-15, 2010, pages 249–256, 2010. URL
http://www.jmlr.org/proceedings/papers/v9/glorot10a.html.

[6] I. Goodfellow, Y. Bengio, and A. Courville. Deep learning.
Book in preparation for MIT Press, 2016. URL http://goodfeli.
github.io/dlbook/.

[7] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. arXiv preprint arXiv:1512.03385, 2015.

[8] N. Jakobi, P. Husbands, and I. Harvey. Noise and the reality
gap: The use of simulation in evolutionary robotics. Advances
in artificial life, pages 704–720, 1995.

[9] M. Kempka, M. Wydmuch, G. Runc, J. Toczek, and
W. Jaskowski. Vizdoom: A doom-based AI research platform
for visual reinforcement learning. CoRR, abs/1605.02097, 2016.
URL http://arxiv.org/abs/1605.02097.

[10] J. Koutnı́k, J. Schmidhuber, and F. Gomez. Evolving deep unsu-
pervised convolutional networks for vision-based reinforcement
learning. In Proceedings of the 2014 Annual Conference on
Genetic and Evolutionary Computation, GECCO ’14, pages
541–548, New York, NY, USA, 2014. ACM. ISBN 978-
1-4503-2662-9. doi: 10.1145/2576768.2598358. URL http:
//doi.acm.org/10.1145/2576768.2598358.

[11] G. Lample and D. S. Chaplot. Playing FPS games with deep
reinforcement learning. CoRR, abs/1609.05521, 2016. URL
http://arxiv.org/abs/1609.05521.

[12] J. Lehman, S. Risi, and J. Clune. Creative generation of 3d
objects with deep learning and innovation engines. In Pro-
ceedings of the 7th International Conference on Computational
Creativity, 2016.

[13] A. Liapis, H. P. Martı́nez, J. Togelius, and G. N. Yannakakis.
Transforming exploratory creativity with DeLeNoX. In Pro-
ceedings of the Fourth International Conference on Computa-
tional Creativity, pages 56–63, 2013.

[14] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness,
M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland,
G. Ostrovski, et al. Human-level control through deep rein-
forcement learning. Nature, 518(7540):529–533, 2015.

[15] A. Nguyen, J. Yosinski, and J. Clune. Innovation engines:
Automated creativity and improved stochastic optimization via
deep learning. In Proceedings of the Genetic and Evolutionary
Computation Conference, 2015.

[16] M. Parker and B. D. Bryant. Neuro-visual control in the
quake ii game engine. In Neural Networks, 2008. IJCNN
2008.(IEEE World Congress on Computational Intelligence).
IEEE International Joint Conference on, pages 3828–3833.
IEEE, 2008.

[17] A. S. Razavian, H. Azizpour, J. Sullivan, and S. Carlsson. Cnn
features off-the-shelf: an astounding baseline for recognition. In
Computer Vision and Pattern Recognition Workshops (CVPRW),
2014 IEEE Conference on, pages 512–519. IEEE, 2014.

[18] S. Risi and J. Togelius. Neuroevolution in games: State of the
art and open challenges. IEEE Transactions on Computational
Intelligence and AI in Games, 9(1):25–41, March 2017. ISSN
1943-068X. doi: 10.1109/TCIAIG.2015.2494596.

[19] K. O. Stanley and R. Miikkulainen. Evolving neural network
through augmenting topologies. Evolutionary Computation, 10
(2):99–127, 2002. doi: 10.1162/106365602320169811. URL
http://dx.doi.org/10.1162/106365602320169811.

[20] K. O. Stanley, D. B. D’Ambrosio, and J. Gauci. A hypercube-
based encoding for evolving large-scale neural networks. Ar-
tificial Life, 15(2):185–212, 2009. doi: 10.1162/artl.2009.15.2.
15202. URL http://dx.doi.org/10.1162/artl.2009.15.2.15202.

[21] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. E. Reed,
D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.
Going deeper with convolutions. CoRR, abs/1409.4842, 2014.
URL http://arxiv.org/abs/1409.4842.


