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Abstract
In evolutionary computation, the fitness function normally measures progress toward
an objective in the search space, effectively acting as an objective function. Through
deception, such objective functions may actually prevent the objective from being
reached. While methods exist to mitigate deception, they leave the underlying pathol-
ogy untreated: Objective functions themselves may actively misdirect search toward
dead ends. This paper proposes an approach to circumventing deception that also
yields a new perspective on open-ended evolution. Instead of either explicitly seeking
an objective or modeling natural evolution to capture open-endedness, the idea is to
simply search for behavioral novelty. Even in an objective-based problem, such nov-
elty search ignores the objective. Because many points in the search space collapse to a
single behavior, the search for novelty is often feasible. Furthermore, because there are
only so many simple behaviors, the search for novelty leads to increasing complexity.
By decoupling open-ended search from artificial life worlds, the search for novelty
is applicable to real world problems. Counterintuitively, in the maze navigation and
biped walking tasks in this paper, novelty search significantly outperforms objective-
based search, suggesting the strange conclusion that some problems are best solved
by methods that ignore the objective. The main lesson is the inherent limitation of the
objective-based paradigm and the unexploited opportunity to guide search through
other means.
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1 Introduction

It is tempting to believe that measuring progress with respect to an objective, which is
the customary role of the fitness function in evolutionary computation (EC; De Jong,
2006; Fogel et al., 1966; Holland, 1975; Mitchell, 1997), lights a path to the objective
through the search space. Yet as results in this paper will remind us, increasing fitness
does not always reveal the best path through the search space. In this sense, one sobering
message of this paper is the inherent limitation of objective-based search. Yet at the same
time, this message is tempered by the caveat that search need not always be guided
by explicit objectives. In fact, a key insight of this paper is that sometimes, opening up
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the search, more in the spirit of artificial life than traditional optimization, can yield
the surprising and paradoxical outcome that the more open-ended approach more
effectively solves the problem than explicitly trying to solve it. There is no silver bullet
to be found in these results; rather, the benefit is to widen our perspective on search,
both to be more sober and at the same time more open-minded about the potential
breadth of our toolbox.

The concept of the objective function, which rewards moving closer to the goal, is
ubiquitous in machine learning (Mitchell, 1997). The overriding intuition behind the
idea of the objective function, which is widely accepted, is that the best way to improve
performance is to reward improving performance with respect to the objective. In EC,
this objective measure of performance is called the fitness function (De Jong, 2006;
Holland, 1975; Mitchell, 1997), which is a metaphor for the pressure to adapt in nature.

Yet although they are pervasive, objective functions often suffer from the pathology
of local optima, that is, dead ends in the search space with respect to increasing the
value of the objective function. In this way, landscapes induced by objective (e.g.,
fitness) functions are often deceptive (Goldberg, 1987; Liepins and Vose, 1990; Pelikan
et al., 2001). Although researchers are still working to characterize the various reasons
that search methods may fail to reach the objective (Davidor, 1990; Goldberg, 1987;
Grefenstette, 1992; Hordijk, 1995; Jones and Forrest, 1995; Mahfoud, 1995; Mitchell
et al., 1992; Weinberger, 1990), as a rule of thumb, the more ambitious the goal, the
more difficult it may be to articulate an appropriate objective function and the more
likely it is that search can be deceived by local optima (Ficici and Pollack, 1998; Zaera
et al., 1996). The problem is that the objective function does not necessarily reward the
stepping stones in the search space that ultimately lead to the objective. For example,
consider fingers stuck within a Chinese finger trap. While the goal is to free one’s
fingers, performing the most direct action of pulling them apart yields no progress.
Rather, the necessary precursor to solving the trap is to push one’s fingers together,
which seems to entrap them more severely. In this way, the trap is deceptive because
one must seemingly move further from the goal to ever have the hope of reaching it.

Because of deception, ambitious objectives in EC are often carefully sculpted
through a curriculum of graded tasks, each chosen delicately to build upon the prior
(Elman, 1991; Gomez and Miikkulainen, 1997; Van de Panne and Lamouret, 1995). Yet
such incremental evolution is difficult and ad hoc, requiring intimate domain knowl-
edge and careful oversight. Incremental evolution, along with other methods employed
in EC to deal with deception (Ficici and Pollack, 1998; Knowles et al., 2001; Mahfoud,
1995; Pelikan et al., 2001; Stewart, 2001), do not fix the underlying pathology of local
optima; if local optima are pervasive, search will still likely be deceived. Thus, decep-
tion may be an unavoidable consequence of certain objective functions irrespective of
the underlying search algorithm. Paradoxically, in these cases, pursuing the objective
may prevent the objective from being reached.

In contrast to the focus on objective optimization in machine learning and EC,
researchers in artificial life often study systems without explicit objectives, such as
in open-ended evolution (Channon, 2001; Maley, 1999; Standish, 2003). An ambitious
goal of this research is to reproduce the unbounded innovation of natural evolution. A
typical approach is to create a complex artificial world in which there is no final objective
other than survival and replication (Adami et al., 2000; Channon, 2001; Yaeger, 1994).
Such models follow the assumption that biologically inspired evolution can support
an open-ended dynamic that leads to unbounded increasing complexity (Bedau, 1998;
Channon, 2001; Maley, 1999).
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However, a growing yet controversial view in biology is that the drive toward
complexity in natural evolution is a passive force, that is, not driven primarily by
selection (Gould, 1996; Lynch, 2007b; McShea, 1991; Miconi, 2007). In fact, in this view,
the path toward complexity in natural evolution can sometimes be inhibited by selection
pressure. If selection pressure is too high, then any deviation from a locally optimal
behavior will be filtered out by selection. Thus, in this view, instead of being a by-
product of selection, perhaps the accumulation of complexity is better explained by a
different characteristic of natural evolution and open-ended evolutionary systems in
general: They continually produce novel forms (Standish, 2003).

This perspective leads to a key idea in this paper that approaches the problems in
both EC and artificial life in a new way. Instead of modeling natural evolution with the
hope that novel individuals will be continually discovered, it is possible to create an
open-ended dynamic by simply searching directly for novelty. Thus, this paper offers
a comprehensive introduction to the novelty search algorithm, that was first described
in Lehman and Stanley (2008). The main idea is to search with no objective other
than continually finding novel behaviors in the search space. By defining novelty in
this domain-independent way, novelty search can be applied to real world problems,
bridging the gap between open-ended evolution and the practical application of EC.
Interestingly, because there are only so many ways to behave, some of which must
be more complex than others (Gould, 1996), the passive force in nature that leads to
increasing complexity is potentially accelerated by searching for behavioral novelty.

Paradoxically, the search for novelty often evolves objectively superior behavior
to evolution that is actually driven by the objective, as demonstrated by experiments
in this paper in both a deceptive two-dimensional robot maze navigation task and a
challenging three-dimensional biped locomotion domain, as well as in experiments
in several other independent works (Lehman and Stanley, 2010a; Mouret, 2009; Risi
et al., 2009). Counterintuitively, in this paper, novelty search, which ignores the objec-
tive, evolves successful maze navigators that reach the objective in significantly fewer
evaluations than the objective-based method. This result is further investigated under
several different conditions, including expanding the dimensionality of the behavior
space, and is found to be robust. In the biped domain, novelty search evolves controllers
that walk significantly further than those evolved by the the objective-based method.
These results challenge the premise that the objective is always the proper impetus for
search.

The conclusion is that by abstracting the process through which natural evolution
discovers novelty, it is possible to derive an open-ended search algorithm that oper-
ates without pressure toward the ultimate objective. Novelty search is immune to the
problems of deception and local optima inherent in objective optimization because it
entirely ignores the objective, suggesting the counterintuitive conclusion that ignoring
the objective in this way may often benefit the search for the objective. While novelty
search is not a panacea, the more salient point is that objective-based search, which is
ubiquitous in EC, clearly does not always work well. The implication is that while it
seems natural to blame the search algorithm when search fails to reach the objective,
the problem may ultimately lie in the pursuit of the objective itself.

2 Background

This section reviews deception in EC, complexity in natural evolution, open-endedness
in EC, and the neuroevolution method used in the experiments.
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2.1 Deception in Evolutionary Computation

The study of deception is part of a larger study by EC researchers into what may cause
an evolutionary algorithm (EA) to fail and how to remedy such failures. For the purpose
of this paper, it is instructive to study the role of the objective (fitness) function in such
failures and remedies.

2.1.1 Deception and Problem Difficulty
The original definition of deception by Goldberg (1987) is based on the building blocks
hypothesis, in which small genetic building blocks may be integrated by crossover to
form larger blocks (Holland, 1975). In the original conception, a problem is deceptive
if lower-order building blocks, when combined, do not lead to a global optimum. A
variety of work has further refined this definition and investigated performance on
deceptive problems (Goldberg, 1987; Liepins and Vose, 1990; Pelikan et al., 2001). Some
researchers have argued that the importance of deception may be over-emphasized
(Grefenstette, 1992; Mitchell et al., 1992), while Whitley (1991) concluded that the only
challenging problems are those with some degree of deception. Such disagreements
are natural because no measure of problem difficulty can be perfect; in general it is
impossible to know the outcome of an algorithm on a particular set of data without
actually running it (Rice, 1953). Hence, many different metrics of EA problem hardness
have been explored (Davidor, 1990; Hordijk, 1995; Jones and Forrest, 1995; Kauffman,
1993; Manderick et al., 1991; Weinberger, 1990).

Some alternative measures of problem difficulty attempt to model or quantify the
ruggedness of the fitness landscape, motivated by the intuition that optimizing more
rugged landscapes is more difficult (Davidor, 1990; Hordijk, 1995; Kauffman, 1993;
Manderick et al., 1991; Weinberger, 1990). Such approaches are often based on the
concepts of correlation, the degree to which the fitness of individuals are well correlated
to their neighbors in the search space, or epistasis, the degree of interaction among
genes’ effects. A low degree of correlation or a high degrees of epistasis may indicate
a rough landscape that may be difficult to optimize (Davidor, 1990; Hordijk, 1995;
Kauffman, 1993; Manderick et al., 1991; Weinberger, 1990). Importantly, because the
fitness landscape is induced by the objective function, the problem of ruggedness,
presupposing reasonable settings for the EA, can be attributed to the objective function
itself.

Other researchers suggest that ruggedness is overemphasized and that neutral fit-
ness plateaus (neutral networks) are key influences on evolutionary dynamics (Barnett,
2001; Harvey and Thompson, 1996; Stewart, 2001), a view which has some support in
biology (Kimura, 1983). However, neutral networks actually suggest a deficiency in the
objective function. In a neutral network, the map defined by the objective function is
ambiguous with respect to which way search should proceed.

Another approach, by Jones and Forrest (1995), suggests that measuring the degree
to which the heuristic of fitness relates to the real distance to the goal is a good measure of
difficulty. This perspective perhaps most clearly demonstrates that problem difficultly
may often result from an uninformative objective function. When the heuristic has a
weak basis in reality, there is little reason to expect the search to perform well. However,
as demonstrated by the experiments in this paper, sometimes pursuing what appears
to be a reasonable objective produces an unreasonable objective function.

While in general the exact properties of a problem that make it difficult for EAs are
still a subject of research, in this paper the term “deception” will refer to an intuitive
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definition of problem hardness. A deceptive problem is one in which a reasonable EA
will not reach the desired objective in a reasonable amount of time. That is, by exploiting
objective fitness in a deceptive problem, a population’s trajectory is unlikely to uncover
a path through the search space that ultimately leads to the objective. It is important
to note that this definition of deception is different from the traditional definition
(Goldberg, 1987) and is not meant to trivialize the impact or difficulty of choosing
the correct representation (Rothlauf and Goldberg, 2002), parameters (De Jong, 2006),
or search operators (Yao, 1993), all of which affect the performance of the EA and
the structure of the fitness landscape. Rather, the intuitive approach helps to isolate
the general problem with particular objective functions because the word “deception”
itself reflects a fault in the objective function. A deceptive objective function will deceive
search by actively pointing the wrong way.

2.1.2 Mitigating Deception
A common approach to preventing premature convergence to local optima in EC is by
employing a diversity maintenance technique (Goldberg and Richardson, 1987; Hornby,
2006; Hu et al., 2005; Hutter and Legg, 2006; Mahfoud, 1995; Stanley and Miikkulainen,
2002). Many of these methods are inspired by speciation or niching in natural evolution,
wherein competition may be mostly restricted to occur within the same species or niche,
instead of encompassing the entire population. For example, fitness sharing (Goldberg
and Richardson, 1987) enforces competition between similar solutions so that there is
pressure to find solutions in distant parts of the search space. Similarly, hierarchical
fair competition (Hu et al., 2005) enforces competition among individuals with similar
fitness scores, and the age-layered population structure (ALPS; Hornby, 2006) approach
enforces competition among genomes of different genetic ages. The fitness uniform
selection scheme (FUSS; Hutter and Legg, 2006) removes the direct pressure to increase
fitness entirely. In FUSS, an individual is not rewarded for higher fitness, but for a
unique fitness value. This approach can be viewed as a search for novel fitness scores,
which is related to the approach in this paper. Although these methods encourage
exploration, if local optima are pervasive or genotypic difference is not well-correlated
with phenotypic/behavioral difference, these methods may still be deceived.

Other methods for avoiding deception tackle the problem of ruggedness by re-
arranging the genome so that crossover respects genes whose effects are linked
(Goldberg et al., 1989), or by building models of interactions among genes (Pelikan
et al., 2001). When successful, the effect is to smooth a rugged fitness landscape by
deriving additional information from an imperfect objective function. However, given
a sufficiently uninformative objective function, the advantage of such modeling is im-
paired.

Still other methods seek to accelerate search through neutral networks (Barnett,
2001; Stewart, 2001). While these methods may decrease the amount of meandering
that occurs in neutral networks, if an unlikely series of specific mutations is needed to
exit the neutral network, then search may still be stalled for a long time.

Some researchers incrementally evolve solutions by sequentially applying care-
fully crafted objective functions to avoid local optima (e.g., Elman, 1991; Gomez and
Miikkulainen, 1997; Van de Panne and Lamouret, 1995). These efforts demonstrate that
to avoid deception it may be necessary to identify and analyze the stepping stones
that ultimately lead to the objective so that a training program of multiple objective
functions and switching criteria can be engineered. However, for ambitious objectives,
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these stepping stones may be difficult or impossible to determine a priori. Additionally,
the requirement of such intimate domain knowledge conflicts with the aspiration of
machine learning.

In addition to single-objective optimization, there also exist evolutionary methods
that aim to optimize several objectives at once: multi-objective evolutionary algorithms
(MOEAs; Veldhuizen and Lamont, 2000). These MOEAs are not immune to the prob-
lem of deception (Deb, 1999), and adding objectives does not always make a problem
easier (Brockhoff et al., 2007), but the idea is that perhaps deception is less likely when
optimizing multiple objectives because if a local optimum has been reached in one
objective, then sometimes progress can be made with respect to an alternate objec-
tive (Knowles et al., 2001). In this spirit, some researchers have experimented with
multi-objectivization, that is, extending single-objective problems into multi-objective
problems to avoid deception (Knowles et al., 2001). Decomposing a single-objective
problem into a multi-objective problem can either make it easier or harder (Handl et al.,
2008b), and it is necessary to verify that the single-objective optima are multi-objective
optima in the transformed multi-objective problem (Knowles et al., 2001). There have
been several successful applications of multi-objectivization (De Jong and Pollack, 2003;
Greiner et al., 2007; Handl et al., 2008a; Knowles et al., 2001), but as in other reviewed
methods, the fundamental pathology of deception remains a concern.

Yet another avenue of research in EC related to deception is coevolution. Coevolu-
tionary methods in EC attempt to overcome the limitations of a static fitness function by
making interactions among individuals contribute toward fitness. The hope is that such
an interaction will spark an evolutionary arms race that will continually create a gradi-
ent for better performance (Cliff and Miller, 1995). There have been several impressive
successes (Chellapilla and Fogel, 1999; Hillis, 1991; Sims, 1994), but a common problem
is that in practice such arms races may converge to mediocre stable states (Ficici and
Pollack, 1998; Pollack et al., 1996; Watson and Pollack, 2001), cycle among various be-
haviors without further progress (Cartlidge and Bullock, 2004b; Cliff and Miller, 1995;
Watson and Pollack, 2001), or one species may so far out-adapt another that they are
evolutionarily disengaged (Cartlidge and Bullock, 2004a, b; Watson and Pollack, 2001).
The difficulty for practitioners in coevolution, much like the difficulty of crafting an
effective fitness function in standard EC, is to construct an environment that provides
sustained learnability in which the gradient of improvement is always present (Ficici
and Pollack, 1998).

Finally, outside of EC there is also general interest in machine learning in avoiding
local optima. For example, simulated annealing probabilistically accepts deleterious
changes with respect to the objective function (Kirkpatrick et al., 1983), and tabu search
avoids re-searching areas of the search space (Glover, 1989). However, if local optima
are pervasive, then these methods too can fail to reach the global optimum.

While methods that mitigate deception may work for some problems, ultimately
such methods do not address the underlying pathology, that the gradient of the objec-
tive function may be misleading or uninformative. Instead, current methods that deal
with deception attempt to glean as much information as possible from an imperfect
objective function or encourage exploration in the search space. Given a sufficiently
uninformative objective function, it is an open question whether any method relying
solely on the objective function will be effective. Thus, an interesting yet sobering con-
clusion is that some objectives may be unreachable in a reasonable amount of time
by direct objective-based search alone. Furthermore, as task complexity increases, it is
more difficult to successfully craft an appropriate objective function (Ficici and Pollack,
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1998; Zaera et al., 1996). Thus, as experiments in EC become more ambitious, deception
may be a limiting factor for success.

The next section discusses complexity in natural evolution, which, in contrast to
traditional EAs, is a search process without any final objective.

2.2 Complexity in Natural Evolution

Natural evolution fascinates practitioners of search because of its profuse creativity, lack
of volitional guidance, and perhaps above all, its apparent drive toward complexity.

A subject of longstanding debate is the arrow of complexity (Bedau, 1998; Miconi,
2007), that is, the idea that evolutionary lineages sometimes tend toward increasing
complexity. What about evolutionary search in nature causes complexity to increase?
This question is important because the most difficult problems in search, for example,
an intelligent autonomous robot, may require discovering a prohibitive level of solution
complexity.

The topic of complexity in natural evolution is much in contention across biology,
artificial life, and evolutionary computation (Arthur, 1994; Gould, 1996; Lynch, 2007b;
McShea, 1991; Miconi, 2007; Nehaniv and Rhodes, 1999; Stanley and Miikkulainen,
2003). One important question is whether there is selective pressure toward complexity
in evolution. A potentially heretical view that is gaining attention is that progress
toward higher forms is not mainly a direct consequence of selection pressure, but rather
an inevitable passive by-product of random perturbations (Gould, 1996; Lynch, 2007b;
Miconi, 2007). Researchers such as Miconi (2007) in artificial life, Sigmund (1993) in
evolutionary game theory, and Gould (1996), McShea (1991), and Lynch (2007a,b) in
biology argue that natural selection does not always explain increases in evolutionary
complexity. In fact, some argue that to the extent that fitness (i.e., in nature, the ability
to survive and reproduce) determines the direction of evolution, it can be deleterious
to increasing complexity (Lynch, 2007b; Miconi, 2007; Sigmund, 1993). In other words,
rather than laying a path toward the next major innovation, fitness (like the objective
function in machine learning) in effect prunes that very path away.

In particular, Miconi (2007) illustrates this point of view, noting that selection pres-
sure is in fact a restriction on both the scope and direction of search, allowing exploration
only in the neighborhood of individuals with high fitness. Similarly, Sigmund (1993,
p. 85) describes how high levels of selection pressure in nature can oppose innovation
because sometimes ultimately improving requires a series of deleterious intermediate
steps. Gould (1996), a biologist, goes even further, and argues that an increasing upper
bound in complexity is not a product of selection, but simply the result of a drift in
complexity space limited by a hard lower bound (the minimal complexity needed for a
single cell to reproduce). Lynch (2007b), another biologist, argues that selection pressure
in general does not explain innovation, and that nonadaptive processes (i.e., processes
not driven by selection) are often undeservedly ignored. The role of adaptation is also
relegated to a lower level in Kimura’s influential neutral theory of molecular evolution
(Kimura, 1983). Finally, Huyen (1995) suggests that neutral mutations in nature allow a
nearly limitless indirect exploration of phenotype space, a process that this paper seeks
to directly accelerate.

These arguments lead to the main idea in this paper that abandoning the search
for the objective and instead simply searching explicitly for novel behaviors may itself
exemplify a powerful search algorithm.
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2.3 Open-Ended Evolutionary Computation

The open-ended evolution community in artificial life aims to produce simulated worlds
that allow a similar degree of unconstrained exploration as earth. While a precise
definition of open-ended evolution is not uniformly accepted (Maley, 1999; Standish,
2003), the general intuition is that it should continually create individuals “of a greater
complexity and diversity than the initial individuals of the system” (Maley, 1999). Tierra
(Ray, 1992), PolyWorld (Yaeger, 1994), and Geb (Channon, 2001) are typical attempts
to attain such a dynamic. In such systems, there is no objective beyond that of survival
and reproduction. The motivation behind this approach is that as evolution explores
an unbounded range of life forms, complexity will inevitably increase (Channon, 2001;
Miconi, 2007).

Tierra (Ray, 1992) is an open-ended evolutionary model in which self-replicating
digital programs compete for resources on a virtual computer. In several runs of the
system, cycles of parasitism and corresponding immunity arose, demonstrating a basic
coevolutionary arms race. However, Tierra and other similar systems (Adami et al.,
2000; Taylor and Hallam, 1997) all inevitably struggle to continually produce novelty
(Channon and Damper, 2000; Kampis and Gulyás, 2008; Standish, 2003).

Polyword (Yaeger, 1994) is also a simulation of an ecological system of competing
agents, but gives these basic agents embodiment in a two-dimensional world. The only
goal for the agents is survival. Interestingly, emergent behaviors such as flocking and
foraging, although not directly specified by the system, result from the interactions
and evolution of agents. However, as in the Tierra-like systems, eventually innovation
appears to slow (Channon and Damper, 2000). Geb (Channon, 2001), which addresses
criticisms of Polyworld, follows a similar philosophy.

Bedau and Packard (1991) and Bedau et al. (1998) have contributed to formaliz-
ing the notion of unbounded open-ended dynamics by deriving a test that classifies
evolutionary systems into categories of open-endedness. Geb and others are distin-
guished by passing this test (Channon, 2001; Maley, 1999), but the results nevertheless
do not appear to achieve the levels of diversity or complexity seen in natural evo-
lution. This apparent deficiency raises the question of what element is missing from
current models (Maley, 1999; Standish, 2003), with the common conclusion that more
detailed, lifelike domains must be constructed (Kampis and Gulyás, 2008; Maley, 1999;
Yaeger, 1994).

However, this paper presents a more general approach to open-ended evolution
that is motivated well by the following insight from Standish (2003): “The issue of
open-ended evolution can be summed up by asking under what conditions will an evo-
lutionary system continue to produce novel forms” (p. 1). Thus, instead of modeling
natural selection, the idea in this paper is that it may be more efficient to search directly
for novel behaviors. It is important to acknowledge that this view of open-endedness
contrasts with the more commonly accepted notion of prolonged production of adap-
tive traits (Bedau and Packard, 1991; Bedau et al., 1998). Nevertheless, the simpler
view of open-endedness merits consideration on the chance that a dynamic that ap-
pears adaptive might be possible to capture in spirit with a simpler process. Another
benefit of this approach is that it decouples the concept of open-ended search from
artificial life worlds, and can thus be applied to any domain, including real-world
tasks.

The experiments in this paper combine this approach to open-ended evolution with
the NEAT method, which is explained in the next section.
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2.4 NeuroEvolution of Augmenting Topologies (NEAT)

Because in this paper behaviors are evolved that are controlled by artificial neural
networks (ANNs), a neuroevolution (NE) method is required. The NEAT method serves
this purpose well because it is both widely applied (Aaltonen et al., 2009; Allen and
Faloutsos, 2009; Stanley et al., 2005; Stanley and Miikkulainen, 2002, 2004; Whiteson and
Stone, 2006) and well understood. However, the aim is not to validate the capabilities
of NEAT yet again. In fact, in some of the experiments, NEAT performs poorly. Rather,
the interesting insight is that the same algorithm can appear ineffective in an objective-
based context yet excel when the search is open-ended. Thus, as a common approach
to NE, NEAT is a natural conduit to reaching this conclusion.

The NEAT method was originally developed to evolve ANNs to solve difficult con-
trol and sequential decision tasks (Stanley et al., 2005; Stanley and Miikkulainen, 2002,
2004). Evolved ANNs control agents that select actions based on their sensory inputs.
Like the SAGA method (Harvey, 1993) introduced before it, NEAT begins evolution
with a population of small, simple networks and complexifies the network topology
into diverse species over generations, leading to the potential for increasingly sophisti-
cated behavior; while complexifying the structure of an ANN does not always increase
the Kolmogorov complexity of the behavior of the ANN, it does increase the upper
bound of possible behavioral complexity by adding free parameters. Thus, in NEAT,
simpler behaviors must be encountered before more complex behaviors. A similar pro-
cess of gradually adding new genes has been confirmed in natural evolution (Martin,
1999; Watson et al., 1987), and fits well with the idea of open-ended evolution.

However, a key feature distinguishing NEAT from prior work in complexification
is its unique approach to maintaining a healthy diversity of complexifying structures
simultaneously. Complete descriptions of the NEAT method, including experiments
confirming the contributions of its components, are available in Stanley et al. (2005),
and Stanley and Miikkulainen (2002, 2004). Let us review the key ideas on which the
basic NEAT method is based.

To keep track of which gene is which while new genes are added, a historical
marking is uniquely assigned to each new structural component. During crossover,
genes with the same historical markings are aligned, producing meaningful offspring
efficiently. Speciation in NEAT protects new structural innovations by reducing com-
petition among differing structures, thereby giving newer, more complex structures
room to adjust. Networks are assigned to species based on the extent to which they share
historical markings. Complexification, which resembles how genes are added over the
course of natural evolution (Martin, 1999), is thus supported by both historical marking
and speciation, allowing NEAT to establish high-level features early in evolution and
then elaborate on them later. In effect, then, NEAT searches for a compact, appropriate
network topology by incrementally complexifying existing structure.

It is important to note that a complexifying neuroevolutionary algorithm such as
NEAT induces an approximate order over the complexity of behaviors discovered dur-
ing search from simple to complex. An important difference between an ANN with five
connections and one with five million connections is that the larger network, by virtue of
having more free parameters, can exhibit more complex behaviors. Thus, as new nodes
and connections are added over the course of evolution, the potential complexity of the
behaviors representable by the network increases. Encountering simple behaviors first
is significant because the most complex behaviors are often associated with irregularity
and chaos. Thus a search heuristic that encounters them last makes sense.
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In the experiments in this paper, NEAT is combined with novelty search, which is
explained next.

3 The Search for Novelty

Recall that the problem identified with the objective fitness function in EC is that it does
not necessarily reward the intermediate stepping stones that lead to the objective. The
more ambitious the objective, the harder it is to identify a priori these stepping stones.

The suggested approach is to identify novelty as a proxy for stepping stones; in-
stead of searching for a final objective, the learning method is rewarded for finding any
instance whose functionality is significantly different from what has been discovered
before. This idea is related to the concept of curiosity and seeking novelty in reinforce-
ment learning research and developmental robotics (Kaplan and Hafner, 2006; Oudeyer
et al., 2005, 2007; Schmidhuber, 2003, 2006), though novelty search operates on an evolu-
tionary timescale and is motivated by open-ended evolution. In novelty search, instead
of measuring overall progress with a traditional objective function, evolution employs a
measure of behavioral novelty called a novelty metric. In effect, a search guided by such
a metric performs explicitly what natural evolution does passively, that is, gradually
accumulating novel forms that ascend the complexity ladder.

For example, in a biped locomotion domain, initial attempts might simply fall down.
The novelty metric would reward simply falling down in a different way, regardless of
whether it is closer to the objective behavior or not. In contrast, an objective function
may explicitly reward falling the farthest, which likely does not lead to the ultimate
objective of walking, and thus exemplifies a deceptive local optimum. In contrast, in
the search for novelty, a set of instances are maintained that represent the most novel
discoveries. Further search then jumps off from these representative behaviors. After a
few ways to fall are discovered, the only way to be rewarded is to find a behavior that
does not fall right away. In this way, behavioral complexity rises from the bottom up.
Eventually, to do something new, the biped would have to successfully walk for some
distance even though it is not an objective.

At first glance, this approach may seem naive. What confidence can we have that
a search process can solve a problem when the objective is not provided whatsoever?
Where is the pressure to adapt? Yet its appeal is that it rejects the misleading intuition
that objectives are an essential means to discovery. The idea that the objective may be
the enemy of progress is a bitter pill to swallow, yet if the proper stepping stones do
not lie conveniently along its gradient, then it provides little more than false security.

Still, what hope is there that novelty is any better when it contains no information
about the direction of the solution? Is not the space of novel behaviors unboundedly
vast, creating the potential for endless meandering? One might compare novelty search
to exhaustive search. Of course a search that enumerates all possible solutions will
eventually find the solution, but at enormous computational cost.

Yet there are good reasons to believe that novelty search is not like exhaustive search,
and that in fact the number of novel behaviors is reasonable and limited in many
practical domains. The main reason for optimism is that task domains on their own
provide sufficient constraints on the kinds of behaviors that can exist or are meaningful,
without the need for further constraint from an objective function.

For example, a biped robot can only enact so many behaviors related to locomotion;
the robot is limited in its motions by physics and by its own morphology. Although the
search space is effectively infinite if the evolutionary algorithm can add new genes (like
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NEAT), the behavior space into which points in the search space collapse is limited. For
example, after an evaluation, a biped robot finishes at a specific location. If the robot’s
behavior is characterized only by this ending location, all of the many ways to encode
a policy that arrives at a particular point will collapse to the same behavior. In fact, the
behavior space may often collapse into a manageable number of points, significantly
differentiating novelty search from exhaustive enumeration.

Furthermore, novelty search can succeed where objective-based search fails by
rewarding the stepping stones. That is, anything that is genuinely different is rewarded
and promoted as a jumping off point for further evolution. While we cannot know
which stepping stones are the right ones, if the primary pathology in objective-based
search is that it cannot detect the stepping stones at all, then that pathology is remedied.

A natural question about novelty search is whether it follows any principle beyond
naively enumerating all possible behaviors. The answer is that while it does attempt to
find all possible behaviors over time, when combined with a complexifying algorithm
such as NEAT, the order in which they are discovered is principled and not random. To
understand why, recall that NEAT evolves increasingly complex ANNs. That way, the
amount of nodes and connections and thus the maximal possible complexity of behav-
iors discovered by novelty search increases over time, ensuring that simple behaviors
must be discovered before more complex behaviors. Furthermore, this ordering from
simple to complex is generally beneficial because of Occam’s razor. Thus there is an
order in a complexifying search for novelty; it is just a different one than in fitness-based
search. While fitness-based search generally orders the search from low to high fitness,
a structurally-complexifying search for novelty generally orders it from low to high
complexity, which is principled in a different way.

The next section introduces the novelty search algorithm by replacing the objective
function with the novelty metric and formalizing the concept of novelty itself.

4 The Novelty Search Algorithm

Evolutionary algorithms such as NEAT are well suited to novelty search because the
population of genomes that is central to such algorithms naturally covers a wide range of
expanding behaviors. In fact, tracking novelty requires little change to any evolutionary
algorithm aside from replacing the fitness function with a novelty metric.

The novelty metric measures how unique an individual’s behavior is, creating a
constant pressure to do something new. The key idea is that instead of rewarding per-
formance based on an objective, novelty search rewards diverging from prior behaviors.
Therefore, novelty needs to be measured. There are many potential ways to measure
novelty by analyzing and quantifying behaviors to characterize their differences. Im-
portantly, like the fitness function, this measure must be fitted to the domain.

The novelty of a newly generated individual is computed with respect to the be-
haviors of an archive of past individuals whose behaviors were highly novel when they
originated; because novelty is measured relative to other individuals in evolution, it
is driven by a coevolutionary dynamic. In addition, if the evolutionary algorithm is
steady state (i.e., one individual is replaced at a time) then the current population can
also supplement the archive by representing the most recently visited points.

The aim is to characterize how far away the new individual is from the rest of the
population and its predecessors in behavior space, that is, the space of unique behaviors.
A good metric should thus compute the sparseness at any point in the behavior space.
Areas with denser clusters of visited points are less novel and therefore rewarded less.
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A simple measure of sparseness at a point is the average distance to the k-nearest
neighbors of that point, where k is a fixed parameter that is determined experimentally.
If the average distance to a given point’s nearest neighbors is large, then it is in a sparse
area; it is in a dense region if the average distance is small. The sparseness ρ at point x

is given by

ρ(x) = 1
k

k∑

i=0

dist(x, μi), (1)

where μi is the ith-nearest neighbor of x with respect to the distance metric dist, which is
a domain-dependent measure of behavioral difference between two individuals in the
search space. The nearest neighbors calculation must take into consideration individuals
from the current population and from the permanent archive of novel individuals.
Candidates from more sparse regions of this behavioral search space then receive higher
novelty scores. It is important to note that this behavior space cannot be explored
purposefully; it is not known a priori how to enter areas of low density just as it is not
known a priori how to construct a solution close to the objective. Therefore, moving
through the space of novel behaviors requires exploration.

If novelty is sufficiently high at the location of a new individual, that is, above some
minimal threshold ρmin, then the individual is entered into the permanent archive that
characterizes the distribution of prior solutions in behavior space, similar to archive-
based approaches in coevolution (De Jong, 2004). The current generation plus the
archive give a comprehensive sample of where the search has been and where it cur-
rently is; that way, by attempting to maximize the novelty metric, the gradient of search
is simply toward what is new, with no explicit objective. Although novelty search does
not directly seek to reach the objective, to know when to stop the search, it is necessary
to check whether each individual meets the goal criteria.

It is important to note that novelty search resembles prior diversity maintenance
techniques (i.e., speciation) popular in EC (Goldberg and Richardson, 1987; Hornby,
2006; Hu et al., 2005; Mahfoud, 1995). These also in effect open up the search by reducing
selection pressure, but the search is still ultimately guided by the fitness function. In
contrast, novelty search takes the radical step of only rewarding behavioral diversity
with no concept of fitness or a final objective, inoculating it to traditional deception.

It is also important to note that novelty search is not a random walk; rather, it explic-
itly maximizes novelty. Because novelty search includes an archive that accumulates a
record of where search has been, backtracking, which can happen in a random walk, is
mitigated in behavioral spaces of any dimensionality.

The novelty search approach in general allows any behavior characterization and
any novelty metric. Although generally applicable, novelty search is best suited to
domains with deceptive fitness landscapes, intuitive behavioral characterizations, and
domain constraints on possible expressible behaviors.

Once objective-based fitness is replaced with novelty, the NEAT algorithm operates
as normal, selecting the highest-scoring individuals to reproduce. Over generations, the
population spreads out across the space of possible behaviors, continually ascending
to new levels of complexity (i.e., by expanding the neural networks in NEAT) to create
novel behaviors as the simpler variants are exhausted. The power of this process is
demonstrated in this paper through two experiments with results that conflict with
common intuitions, which are described next.
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Figure 1: Maze navigating robot. (a) The artificial neural network that controls the
maze navigating robot. (b) The layout of the sensors. Each arrow outside of the robot’s
body in (b) is a range finder sensor that indicates the distance to the closest obstacle
in that direction. The robot has four pie-slice sensors that act as a compass toward the
goal, activating when a line from the goal to the center of the robot falls within the pie
slice. The solid arrow indicates the robot’s heading.

Figure 2: Maze navigation maps. In both maps, the large circle represents the starting
position of the robot and the small circle represents the goal. Cul de sacs in both maps
that lead toward the goal create the potential for deception.

5 Maze Experiment

An interesting domain for testing novelty search would have a deceptive fitness land-
scape. In such a domain, the search algorithm following the fitness gradient may per-
form worse than an algorithm following novelty gradients because novelty cannot be
deceived with respect to the objective; it ignores objective fitness entirely. A compelling,
easily visualized domain with this property is a two-dimensional maze navigation task.
A reasonable fitness function for such a domain is how close the maze navigator is to
the goal at the end of the evaluation. Thus, dead ends that lead close to the goal are
local optima to which an objective-based algorithm may converge, which makes a good
model for deceptive problems in general.

The maze domain works as follows. A robot controlled by an ANN must navigate
from a starting point to an end point in a fixed time. The task is complicated by cul de
sacs that prevent a direct route and that create local optima in the fitness landscape.
The robot (see Figure 1) has six rangefinders that indicate the distance to the nearest
obstacle and four pie-slice radar sensors that fire when the goal is within the pie slice.
The robot’s two effectors result in forces that turn and propel the robot. This setup is
similar to the successful maze navigating robots in NERO (Stanley et al., 2005).

Two maps are designed to compare the performance of NEAT with fitness-based
search and NEAT with novelty search. The first (see Figure 2(a)) has deceptive dead ends
that lead the robot close to the goal. To achieve a higher fitness than the local optimum
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provided by a dead end, the robot must travel part of the way through a more difficult
path that requires a weaving motion. The second maze (see Figure 2(b)) provides a
more deceptive fitness landscape that requires the search algorithm to explore areas of
significantly lower fitness before finding the global optimum (which is a network that
reaches the goal). Note that this task is not pathfinding. Rather, NEAT is searching for
an ANN that itself can navigate the maze.

Fitness-based NEAT, which will be compared to novelty search, requires a fitness
function to reward maze-navigating robots. Because the objective is to reach the goal,
the fitness f is defined as the distance from the robot to the goal at the end of an
evaluation: f = bf − dg, where bf is a constant bias and dg is the distance from the robot
to the goal. Given a maze with no deceptive obstacles, this fitness function defines a
monotonic gradient for search to follow. The constant bf ensures all individuals will
have positive fitness.

NEAT with novelty search, on the other hand, requires a novelty metric to distin-
guish between maze-navigating robots. Defining the novelty metric requires careful
consideration because it biases the search in a fundamentally different way than the fit-
ness function. The novelty metric determines the behavior-space through which search
will proceed. It is important that the types of behaviors that one hopes to distinguish
are recognized by the metric.

Thus, for the maze domain, the behavior of a navigator is defined as its ending
position. The novelty metric is then the squared Euclidean distance between the ending
positions of two individuals. For example, two robots stuck in the same corner appear
similar, while a robot that simply sits at the start position looks very different from one
that reaches the goal, though they are both equally viable to the novelty metric.

This novelty metric rewards the robot for ending in a place where none have ended
before; the method of traversal is ignored. This measure reflects that what is important
is reaching a certain location (i.e., the goal) rather than the method of locomotion.
Thus, although the novelty metric has no knowledge of the final goal, a solution that
reaches the goal can appear novel. In addition, the comparison between fitness-based
and novelty-based search is fair because both scores are computed only based on the
distance of the final position of the robot from other points. Furthermore, NEAT is given
exactly the same settings in both (see Appendix A), so the only difference is the reward
scheme.

Finally, to confirm that novelty search is indeed not anything like random search,
NEAT is also tested with a random fitness assigned to every individual regardless of
performance, which means that selection is random. If the maze is solved, the number
of evaluations is recorded.

6 Maze Results

On both maps, a robot that finishes within five units of the goal counts as a solution. On
the medium map, both fitness-based NEAT and NEAT with novelty search were able to
evolve solutions in every run (see Figure 3(a)). Novelty search took on average 18,274
evaluations (SD = 20,447) to reach a solution, while fitness-based NEAT was three times
slower, taking 56,334 evaluations (SD = 48,705), averaged over 40 runs. This difference
is significant (p < .001; Student’s t-test). NEAT with random selection performed much
worse than the other two methods, finding successful navigators in only 21 out of 40
runs, which confirms the difference between novelty search and random search.
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Figure 3: Comparing novelty search to fitness-based search. The change in fitness over
time (i.e., number of evaluations) is shown for NEAT with novelty search, fitness-based
NEAT, and NEAT with random selection on the medium (a) and hard (b) maps, both
averaged over 40 runs of each approach. The horizontal line indicates at what fitness
the maze is solved. The main result is that novelty search is significantly more effective.
Only the first 75,000 evaluations (out of 250,000) are shown because the dynamics
remain stable after that point.

Interestingly, the average genomic complexity of solutions evolved by fitness-based
NEAT for the medium map (66.74 connections, SD = 56.7) was almost three times
greater (p < .05; Student’s t-test) than those evolved by NEAT with novelty search (24.6
connections, SD = 4.59), even though both share the same parameters.

On the hard map, fitness-based NEAT was only successful in three out of 40 runs,
while NEAT with random selection fared marginally better, succeeding in four out of 40
runs, showing that deception in this map renders the gradient of fitness no more helpful
than random search. However, novelty search was able to solve the same map in 39 out
of 40 runs, in 35,109 evaluations (SD = 30,236) on average when successful, using 33.46
connections on average (SD = 9.26). Figure 3(b) shows this more dramatic divergence.
Remarkably, because the second maze is so deceptive, the same NEAT algorithm can
almost never solve it when solving the maze is made the explicit objective, yet solves it
almost every time when finding novel behavior is the objective.

6.1 Typical Behavior

Figure 4 depicts behaviors (represented as the final point visited by an individual)
discovered during typical runs of NEAT with novelty search and fitness-based NEAT
on each map. Novelty search exhibits a more even distribution of points throughout
both mazes. Fitness-based NEAT shows areas of density around local optima in the
maze. The typical behavior of a successful robot on either maze was to directly traverse
the maze for both methods.

The results so far raise a number of important questions and concerns, which the
remainder of this section addresses.

6.2 Bounding the Size of the Archive in the Maze Domain

A possible concern about the computational effort required to search for novelty is
that the archive of past behaviors may grow without limit as the search progresses.
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Figure 4: Final points visited over typical runs. Each maze depicts a typical run, stop-
ping at either 250,000 evaluations or when a solution is found. Each point represents
the end location of a robot evaluated during the run. Novelty search is more evenly
distributed because it is not deceived.

As the size of the archive grows, the nearest-neighbor calculations that determine the
novelty scores for individuals become more computationally demanding. Although in
most complex domains the evaluation of individuals will likely be the computational
bottleneck, it is true that the nearest-neighbor calculation increases the amount of com-
putation beyond that required for a simple objective-based search method. Thus, it is
interesting to consider ways in which the archive’s size may be limited.

A simple approach is to change the structure of the archive from an ever-expanding
list to a queue of limited size. When a new individual is added to the archive once the
archive has reached its full size, the earliest entry is overwritten by the new individual
instead of the new individual being appended to the end of the list. While this approach
may lead to some backtracking through behavior space (which the archive is designed
to avoid), the amount of backtracking may be limited because the dropped behaviors
may no longer be reachable from the current population.

To explore the effects of limiting the archive size, 40 additional runs of novelty
search were conducted in the hard maze with the size of the archive limited to the
same size as the population (250). The hard maze was solved in all 40 runs, in 38,324
evaluations (SD = 42,229) on average, which is not significantly different from the
original results of novelty search on the hard maze without a bounded archive. This
result demonstrates that in some domains it is possible to limit the archive size, and thus
the additional computational effort, without significantly decreasing the performance
of novelty search.

6.3 Removing Walls in the Maze Domain

An important question for novelty search is whether it will suffer in relatively uncon-
strained domains. Domain constraints may provide pressure for individuals within a
search for novelty to encode useful information about the domain because exploiting
such information may be the easiest way for evolution to maximize novelty.

Both maps in Figure 2 are enclosed; that is, the space of possible behaviors is
constrained by the outer walls of the map. It is interesting to consider an unenclosed
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Figure 5: Unenclosed map. This unenclosed version of the hard map enlarges the be-
havior space because the robot can travel outside the maze without restriction.

map, in which the behavior space has no such limits. Figure 5 shows a variant of the
hard map that has two walls removed; a navigator in such a map could travel into the
vast empty area outside the map.

In such a map, the search for novelty may not efficiently explore the space of
interesting behaviors that in some way relate to maze navigation. That is, it may be trivial
to create variations of policies that appear novel by ending in significantly different areas
outside the maze, yet encode no useful information about how to navigate within the
maze. While in the constrained maze, learning about how to avoid walls may allow
individuals to reach previously unexplored areas of the maze; in the unbounded maze,
such learning may appear no more novel than a behavior that wanders off in a slightly
different direction than previous robots.

To explore this issue, 100 runs of fitness-based NEAT and NEAT with novelty search
were attempted in the unenclosed map (Figure 5). Interestingly, in this map, novelty
search solved the maze only five times out of 100, which is not significantly better than
fitness-based NEAT, which solved the maze two times out of 100. This result confirms
the hypothesis that constraining the space of possible behaviors is important in some
domains for novelty search to be efficient. However, fitness fares no better, highlighting
that fitness-based search is not necessarily a viable alternative even when novelty search
is not effective.

6.4 Conflation in the Maze Domain

Because the behavioral characterization in the maze experiment earlier consisted only
of the location of the robot at the end of an evaluation, all navigators that end at the
same point are conflated as equivalent even if they take entirely different routes. Thus
they appear identical to the novelty search algorithm. Intuitively, a natural assumption
is that in the maze domain, this conflation makes the search for novelty more efficient.
By conflating individuals that end at the same location, the behavior space is greatly
reduced and many possible uninteresting meandering behaviors that end at the same
location are not rewarded for being different.

An important implication of this assumption is that lengthening the behavioral
characterization might render the search for novelty intractable because the number
of possible behaviors grows exponentially with the dimensionality of the characteriza-
tion. However, as explained in Section 3, the hypothesis in this paper is that intuitive
assumptions about the effect of the size of the behavior space do not take into account
the effect of complexification and therefore wrongly predict that novelty search should
fail in high-dimensional behavior spaces. Conversely, if the behavioral characteriza-
tion does not include enough information, search might also be hindered. Interestingly,
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Figure 6: Increasing the dimensionality of the behavioral characterization. The average
number of evaluations taken to solve the maze is shown for different numbers of samples
of the navigator’s location taken during an evaluation of NEAT with novelty search
on the hard maze. For comparison, the baseline performance is shown as a separate
line. Each point represents the average of 40 runs. The main result is that even with
a behavioral characterization with 200 samples, the performance of novelty search is
largely unaffected.

behavior can also be characterized by the fitness measure, which conflates all behaviors
that would receive the same fitness score; if fitness as a behavioral characterization were
always effective, then it would be trivial to apply novelty search to any domain that
employs an objective function.

Three additional experiments in the maze domain are thus conducted to explore
the effect of behavioral conflation by increasing the behavioral characterization’s di-
mensionality, decreasing the amount of information in the behavioral characterization,
and characterizing behavior by the fitness measure. The remaining experiments in this
section all return to the regular bounded hard maze.

6.4.1 Lengthening the Behavioral Characterization
To increase the dimensionality of the behavioral characterization in the maze domain,
the location of the navigator is sampled multiple times during an evaluation. For exam-
ple, if the navigator’s location is sampled 200 times during an evaluation, the dimen-
sionality of the behavioral characterization becomes 400, which entails a vast space of
behaviors. The question is whether an algorithm that simply searches for behavioral
novelty can hope to find the objective behavior in such a large behavior space.

To answer this question, additional runs of novelty search in the (bounded) hard
maze were conducted with behavioral characterizations of various sizes. In each such
characterization, k equally-spaced samples of the navigator’s (x, y) position are taken
during an evaluation. Each (xi, yi) pair corresponds to the ith sample of the naviga-
tor’s position in the maze. The resulting behavioral characterization is then the vector
that concatenates all of these pairs, where 1 ≤ i ≤ k, to form (x1, y1, x2, y2, . . . , xk, yk).
The novelty metric remains the sum of the squared distances between the controllers’
behavioral characterization vectors.

Figure 6 shows the results of novelty search with different characterization dimen-
sionalities. Contrary to intuition, even in the 400-dimensional behavior space, novelty
search still consistently finds controllers that reach the goal in the hard maze without
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Figure 7: Comparing conflation across different behavioral characterizations. (a) Typi-
cal conflations of behavior are indicated in gray for reducing the amount of information
in the behavioral characterization and (b) characterizing behavior by fitness. In (a) only
geographically similar behaviors are conflated by a rectangle that is a part of a regu-
lar grid, whereas in (b), behaviors that end in very different locations (and are likely
specified by very different policies) are conflated by the circle centered on the goal with
radius equal to a particular fitness value.

any significant decrease in performance. Novelty search is largely unaffected by the
vastness of the 400-dimensional behavioral characterization and is not lost exploring
endless variants of uninteresting behaviors. The underlying rough order of behaviors
imposed by a complexifying algorithm such as NEAT, from simple to more complex,
may be beneficial to novelty search; as the behavioral characterization becomes higher-
dimensional, conflation is reduced, but chaotic behaviors with no guiding principle
still generally require a high level of structural complexity to be expressed in an ANN
controller. That is, such unprincipled policies will be encountered later in search than
simpler policies that exploit regularities in the environment. Thus, this experiment sup-
ports the hypothesis that high-dimensional behavior characterization is not a sufficient
basis for predicting that novelty search should fail.

6.4.2 Reducing the Precision of the Behavioral Characterization
This section addresses what happens if conflation in the maze domain is increased
such that some navigators that end in different locations within the maze nonetheless
receive identical behavioral characterizations. Such conflation would effectively reduce
the size of the behavior space and provide an upper bound on the possible size of
the archive (see Section 6.2). The idea is to study the effect of reduced information on
novelty search’s ability to find the necessary stepping stones that lead to the ultimate
objective.

To investigate this issue, the hard maze is discretized into a two-dimensional grid
such that any two navigators that end in the same grid square are assigned the same
behavioral characterization (see Figure 7(a)). In effect, as the grid becomes coarser,
the resolution of the behavioral measure decreases. For example, if the grid is two by
two, then only four distinct behaviors are recognized by the characterization. In this
context, the original behavioral characterization for the maze domain had effective
resolution of two single-precision floating point numbers (24 bits each) and thus could
be approximately represented by a 224 by 224 grid. Conversely, the most trivial yet
interesting grid that can be constructed is a two by two grid. To obtain a representative
sampling of this wide range of grid sizes, 24 different behavioral characterizations are
constructed. Of these, the ith characterization is the center of the final grid square
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Figure 8: Reducing the amount of information in the behavioral characterization. The
average number of evaluations taken to solve the hard maze is shown for behavioral
characterizations that conflate behaviors that end in the same square of a virtual grid
overlaid on the maze. Each point represents the average of 40 runs. The dotted line
indicates the baseline performance. The main result is that even with a characterization
that only recognizes four behaviors, novelty search still can consistently solve the same
maze that fitness-based search nearly always fails to solve.

encountered by the navigator on a 2i by 2i grid overlaid on the hard maze. For each
of these 24 characterizations, 40 additional runs of novelty search on the hard maze
were conducted. If the maze is not solved within 500,000 evaluations, novelty search is
restarted and the evaluations continue to accumulate until the maze is solved.

The results (see Figure 8) indicate that for all but the smallest grids (two by two
and four by four), the performance of novelty search is largely unaffected. Only four
runs out of 960 total runs failed to solve the hard maze in under 500,000 evaluations
and required a restart. The worst-performing grid (four by four) recognized only 16
behaviors and required on average 117,107 evaluations to solve, which is about three
times slower than the original results, but still significantly better than fitness-based
search, which usually does not solve the hard maze at all.

This result is counterintuitive because it might be expected that discretizing the
behavioral characterization would create plateaus in behavior space that would reduce
novelty search in those areas to random search. However, even in these cases, as soon
as the next plateau is discovered, novelty search then favors exploration there. Further-
more, the behaviors are conflated in a sensible way. Although nearby behaviors appear
identical, distant behaviors still appear distant. Thus, novelty search still works well
with large amounts of such behavioral conflation because the stepping stones are still
respected, although at a lower resolution. This result suggests again that the archive
size can be limited without significant loss of performance.

The next section explores characterizing an individual’s behavior by its fitness
value, which sometimes results in distant behaviors being conflated with each other.

6.4.3 Characterizing Behavior as the Fitness Measure
In traditional EAs, fitness in effect summarizes behavior with a single number, which
conflates behavior in a fundamentally different way from the previous sections. In
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the maze domain, fitness measures how close to the goal location the navigator ends.
Thus, from a fitness standpoint, a navigator that ends at a specific point in the maze
is conflated with all navigators that end on the circle of points that are at the same
distance from the goal (see Figure 7(b)). Therefore, some behaviors are conflated that
end at points separated by a large distance. In this way, the stepping stones may not be
respected; if dead-end behaviors are discovered that mask distant stepping stones, the
search for novelty may fail.

To test this hypothesis, a series of runs with fitness as the behavioral characterization
were conducted in the maze domain. This kind of novelty search is very similar to FUSS
(Hutter and Legg, 2006). The results validate the hypothesis that this type of conflation
can be disruptive to novelty search. The maze was solved in only 11 out of 40 runs,
though it is still better than the fitness-based NEAT performance, which only solved
the hard maze in four out of 40 runs (p < .05; one-tailed Fisher’s exact test). This result
suggests that characterizing behavior by the fitness measure may be a simple way to
improve performance over an objective-based method in a deceptive domain, although
carefully constructing a more appropriate behavioral characterization may yield better
results.

The conclusion is that behavioral conflation is complex, and cannot be characterized
simply by the idea that more is worse, and less is better. Instead, it is more informative
to think of conflation in terms of stepping stones. Conflation is harmful to the search
for novelty if behaviors are conflated in a way that interferes with the discovery of
stepping stones. Such harmful conflation can arise when characterizing the behavior
of a navigator in terms of its fitness. Conversely, if some dimensions of behavior are
completely orthogonal to the objective, it is likely better to conflate all such orthogonal
dimensions of behavior together rather than explore them.

With the knowledge that novelty search can succeed with complex, high-
dimensional behavior characterizations, the next section applies novelty search to the
more challenging real-world domain of biped locomotion.

7 Biped Experiment

While the maze domain illustrates that the search for novelty can circumvent deception,
a reasonable question is whether novelty search is simply well suited to the maze
domain and therefore whether it can be applied successfully to more difficult domains.

Thus, there is a need to test novelty search on a well known problem of considerable
difficulty. The intuition behind such an attempt is that novelty search may succeed in
such a domain because problem difficulty is generally correlated with deceptiveness.
That is, what makes a particular problem intractable to objective search is often that the
gradient defined by the objective function nearly always leads to local optima. Because
novelty search ignores the objective, it may be able to succeed in difficult domains simply
by searching for novelty. The challenge domain in this paper is biped locomotion, a
difficult control task that is popular within machine learning (Hein et al., 2007; McHale
and Husbands, 2004; Reil and Husbands, 2002; Van de Panne and Lamouret, 1995).
The key issue is whether the EA can overcome the deception inherent in the domain.
Furthermore, the problem confronting novelty search is that the space of behaviors is far
greater than in the maze domain and the solution, whatever gait is chosen, significantly
more brittle from the need for balance and oscillation (Katić and Vukobratović, 2003).

In this domain, a three-dimensional biped robot in a realistic physics simulation
is controlled by a type of ANN called a continuous time recurrent neural network
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Figure 9: Biped robot. This visualization shows the biped robot controlled by an
evolved ANN in the experiments in this paper.

(CTRNN) that is able to express the nonlinear dynamics found in natural gaits and is
common in other biped experiments (McHale and Husbands, 2004; Reil and Husbands,
2002). The objective is to walk as far as possible within a given time limit. The task
is difficult because it requires coordination, balance, and the discovery of oscillatory
patterns. Initial random controllers for biped robots tend to provide a bad gradient for
search because they and all of their immediate perturbations tend to simply fall (Van de
Panne and Lamouret, 1995). Thus, even if oscillatory behavior is discovered (which
could be useful), it is penalized and therefore ignored for falling down.

To mitigate deception, most methods that evolve controllers for biped robots imple-
ment domain-specific biases like enforcing symmetry (Allen and Faloutsos, 2009; Hein
et al., 2007; Ok and Kim, 2005; Paul, 2003) or oscillation (Hein et al., 2007; Ishiguro et al.,
2003), simplifying the task (Benbrahim, 1996; McHale and Husbands, 2004), or initially
making the task easier (Allen and Faloutsos, 2009; Ishiguro et al., 2003; Van de Panne
and Lamouret, 1995). These biases mitigate the deceptiveness of walking by restricting
the search and introducing domain knowledge. However, they also impose a priori
expectations on the creative evolutionary process. For example, imposing a constant
oscillatory period may make the first few steps awkward and the restriction precludes
considering alternatives. Thus, to make the problem as difficult and general as possible
so that novelty search is forced to consider the entire space of possible behaviors, unlike
typical approaches to biped walking, no domain-specific biases are implemented in the
experiment in this paper.

The biped domain works as follows. A biped robot is controlled by an ANN for a
fixed duration (15 simulated seconds). The evaluation is terminated if the robot falls or
after the allocated time expires. The objective is that the robot must travel the greatest
possible distance from the starting location.

The ANN that controls the biped has only two inputs, which are contact sensors
that signal for each foot whether it is touching the ground. The sparsity of input makes
the problem more difficult because the ANN has no information on the orientation of
the robot or on the current angles of its joints.

The biped robot (see Figure 9) has a total of 6 DOF: two degrees in each hip joint
(pitch and roll) and one degree in each knee joint (pitch). Simple sphere-shaped feet
make ankle joints unnecessary in this model, although the lack of typical feet or a torso
(which could provide a counterbalance) require knees to bend backward (as in birds)
to balance, adding to the challenge of the model.

The ANN outputs movement requests for each DOF in the model, that is, for each
independent axis of rotation for all joints in the model. The outputs are scaled to match
the angular range of the corresponding DOF, which is interpreted as the angle that
the neural controller is requesting. The difference between the requested angle and
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the current orientation of the DOF denotes the disparity between the state the neural
net is requesting and the current state of the model. A proportional controller applies
torque to reduce this disparity. In other words, the ANN directs the low-level controllers
toward a particular state. This model and method of control are similar to those in Reil
and Husbands (2002).

This experiment again compares fitness-based NEAT to NEAT with novelty search.
It is important to note that NEAT was extended for these experiments to evolve CTRNNs
(which means that it also evolves the time constant assigned to each node). Parameter
settings for NEAT in this experiment (which were the same for fitness and novelty)
and the parameters of the biped physics simulation are given in Appendix A. A natural
fitness function is the squared distance traveled from the starting location. This distance
is measured by recording the location of the center of mass of the biped robot before
and after evaluation, then calculating the distance between the two points. Distance
traveled is a standard measure among evolutionary biped locomotion experiments
(Hein et al., 2007; McHale and Husbands, 2004; Reil and Husbands, 2002; Van de
Panne and Lamouret, 1995), and matches the intuitive notion of learning to walk with
increasing stability and efficiency.

In contrast, NEAT with novelty search requires a behavioral characterization to
distinguish biped gaits. The behavioral characterization in this domain is the offset of
the biped’s center of mass sampled at 1 s intervals during the evaluation:

x ′
k = sign(xk − x0) ∗ (xk − x0)2, (2)

y ′
k = sign(yk − y0) ∗ (yk − y0)2, (3)

where x0 and y0 correspond to the initial planar center of mass (i.e., ignoring the vertical
z component) of the biped robot, and xk and yk correspond to the center of gravity
sample taken after the kth second of simulation. The magnitude of the offsets is squared
just as the fitness measure is to make the comparison uniform. If the robot falls, the
center of gravity for all remaining samples is set to the robot’s center of gravity when
it fell. The behavioral characterization of a particular controller is then the vector that
concatenates all pairs (x ′

i , y
′
i), where 1 ≤ i ≤ m and m is the final sample taken, to form

(x ′
1, y

′
1, x

′
2, y

′
2, . . . , x

′
m, y ′

m).
The novelty metric for two different controllers is the same as in the maze domain,

that is, the sum of the squared distances between the controllers’ behavioral character-
ization vectors. Unlike in the maze domain, temporal sampling is necessary because
the temporal pattern is fundamental to walking. This additional information allows the
novelty metric to differentiate two gaits that end up at the same location by different
means. However, most importantly, note that novelty search is ignorant of the objective
of walking a long distance. In fact, to novelty search, walking clumsily and falling down
can be rewarded just as much as walking well.

The comparison between novelty search and fitness-based search is fair because
both the fitness function and novelty metric are calculated based on the robot’s position.
Although the novelty metric observes additional temporal information to differentiate
biped gaits, the fitness function could not integrate this extra information without in-
troducing a bias toward a certain style of walking. In contrast, novelty search integrates
this information while remaining entirely agnostic about what is good or bad.
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Figure 10: Comparing novelty search to fitness-based search in biped walking. The
change in distance traveled by the best biped over time (i.e., number of evaluations) is
shown for NEAT with novelty search and NEAT with fitness-based search on the biped
task. Results are averaged over 50 runs. The main result is that, as in the maze domain,
novelty search is significantly more effective.

8 Biped Results

Over 50 runs, novelty search evolved controllers that traveled on average 4.04 m (SD =
2.57) in the allotted 15 s while solutions evolved by fitness-based search traveled 2.88 m
(SD = 1.04) on average. The difference in performance is significant (p < .01; Student’s
t-test). Furthermore, even in the beginning of a run, when one might expect a greedy
search to temporarily show an advantage, novelty search still performs better (see
Figure 10).

More dramatically, the best gait discovered by novelty search traveled 13.7 m, while
the best gait discovered by fitness-based search traveled only 6.8 m. In fact, this latter
solution was among only three gaits (in 50) discovered by fitness-based search that
traveled a distance over 4 m (which was average for novelty search). Videos of these
best evolved gaits are available at: http://eplex.cs.ucf.edu/noveltysearch/.

Qualitatively, the solutions evolved by both methods were different. A large pro-
portion of runs of novelty search discovered oscillatory gaits (80%), while more than
40% of runs of fitness-based search converged to nonoscillatory gaits (i.e., less than four
steps) corresponding to deceptive local optima of the objective function.

As in the maze domain, the average genomic complexity of champions from each
run evolved by fitness-based NEAT (272.90 connections, SD = 178.97) was significantly
larger (p < .001; Student’s t-test) than those evolved by NEAT with novelty search (87.52
connections, SD = 48.22), even though both share the same parameters.

9 Discussion

Novelty search highlights the limitations of objectives, suggests a domain-independent
concept of open-endedness, influences our interpretation of natural evolution, and fore-
shadows the potential for an artificial arrow of complexity. This section first discusses
each of these implications in depth, and finally concludes by reviewing further results
on novelty search that provide tentative evidence for its generality.
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9.1 Limitations of Objectives

Novelty search casts the performance of evolutionary algorithms in a new perspective.
Based on the performance of fitness-based NEAT on the second maze and the biped,
the usual conclusion would be that NEAT is ineffective for solving these problems.
Yet NEAT with novelty search, which changes the reward function while preserving
the rest of the algorithm, shows that the pathology is not in NEAT but rather in the
pursuit of the objective itself. It is also notable that the problem is not simply diversity
maintenance: NEAT itself already employs the diversity maintenance technique called
explicit fitness sharing (Goldberg and Richardson, 1987), yet it is still fundamentally
deceived when seeking higher fitness.

Novelty search also faces potential limitations. For example, because it ignores the
objective, there is no bias toward optimization once a solution is found. An optimized
solution may be produced by novelty search only if an individual can appear novel
by reaching such a performance. However, it may be more efficient to take the most
promising results from novelty search and further optimize them based on an objective
function. This idea exploits the strengths of both approaches. Novelty search effectively
finds approximate solutions, while objective optimization is good for tuning approx-
imate solutions. One potential approach is to make novelty an objective and fitness
another objective in a multi-objective formulation of the problem (Mouret, 2009). That
is, it is possible to concurrently reward both fitness and novelty.

Although counterintuitive, the idea that the search for novelty can outperform the
search for the objective introduces critical insight, to wit, objective fitness by necessity
instantiates an imposing landscape of peaks and valleys. For complex problems it
may be impossible to define an objective function through which these peaks and
valleys create a direct route through the search space. Yet in novelty search, the rugged
landscape evaporates into an intricate web of paths leading from one idea to another;
the concepts of higher and lower ground are replaced by an agnostic landscape that
points only along the gradient of novelty. What were once barriers become smooth links
among nodes in a large lattice.

The problem with the objective is that it fails to identify the stepping stones. The
more ambitious and complex the problem, the more difficult it is to formalize an ob-
jective that rewards the stepping stones along the way. Yet it is exactly those stepping
stones that ultimately must be identified and rewarded if search is to find its way up the
ladder of complexity (Miconi, 2007). Novelty search is designed to build gradients that
lead to stepping stones. By abandoning the objective, all the steps along the way come
into greater focus. While the trade-off is a more expansive search, it is better to search far
and wide and eventually reach a summit than to search narrowly and single-mindedly
yet never come close.

Of course, there are likely domains for which the representation is not suited to
discovering the needed behavior or in which the space of behaviors is too vast for
novelty search to reliably discover the objective, such as in the unenclosed maze in
Section 6.3. Another example is the problem of pattern classification, which lacks the
inherent domain restrictions of control tasks (e.g., simulated physics restricts the possi-
ble behaviors of the biped and walls restrict the movement of the maze navigator) and
thus may not be directly amenable to a search for novelty without introducing some
artificial constraints. Additionally, there are some domains in which it may be difficult
to define behavior or a novelty metric; however, interestingly, Gomez (2009) defines
a universal behavioral distance metric based on algorithmic information theory, and
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research in adaptive curiosity in developmental robotics may also provide insight into
defining appropriate characterizations of behavior (Kaplan and Hafner, 2006; Oudeyer
et al., 2005, 2007). Characterizing when and for what reason novelty search fails is an
important future research direction. Yet its performance has proven robust since it was
first introduced in a conference paper in 2008 (Lehman and Stanley, 2008, 2010a; Mouret,
2009; Risi et al., 2009; Soltoggio and Jones, 2009).

Finally, because the results in this paper challenge common intuition, it is important
to interpret them carefully. It would be a mistake to read them as a typical comparison
between competing methodologies. In fact, we would be remiss if the reader infers a
message that novelty search is “better” than objective-based search. Rather, a deeper
interpretation is that search is about much more than objectives alone and ultimately
can be guided by a diverse range of available information, much of it orthogonal to
any explicit objective. Yet the field of EC, and even machine learning, has historically
focused almost exclusively on this single guiding principle (i.e., objectives) among the
many other kinds of searches that are possible, and hence the field is beginning to
encounter the limits of what the objective-based paradigm has to offer. The results in
this paper serve to confirm that indeed the objective is not the only impetus for search
that can lead to interesting results. Thus this study is only beginning to scratch the
surface of such alternative paradigms, which include natural evolution itself (which
has no final objective in the search space). The remainder of this section ponders such
connections and the possibilities that lie ahead.

9.2 Domain-Independent Open-Endedness

Novelty search suggests a perspective on open-endedness that is fitness-agnostic.
Rather than viewing open-ended evolution as an adaptive competition, it can be viewed
simply as a passive drift through the lattice of novelty. While this perspective bypasses
a long-standing notion of adaptive innovation in open-ended evolution (Bedau and
Packard, 1991; Bedau et al., 1998; Maley, 1999), it offers a complementary view that is
recommended by its intuitive simplicity. Open-endedness can be defined simply as the
continual production of novelty.

The benefit of this view is that it means that we can now endow any domain with
this kind of open-endedness. No longer are we restricted to complex artificial life worlds
in our pursuit of open-ended discovery. As long as novelty can be defined (which will
not always be easy), it can be sought explicitly in every domain from simple XOR to the
most complex artificial world, putting many practical problems in machine learning
within its reach.

9.3 Novelty Search and Natural Evolution

Does the success of the search for novelty offer any insight into natural evolution? It is
important to note that there is no evidence that natural evolution is explicitly a search
for novelty. However, as Lynch (2007b) and Miconi (2007) suggest, it is often when the
reigns of selection pressure are lifted that evolution innovates most prolifically. Novelty
search can be viewed as an accelerated version of this passive effect in natural evolution;
unlike in nature, it explicitly rewards drifting away in the phenotype/behavior space,
thereby pushing the innovating process ahead.

Interestingly, there are several mechanisms in nature to encourage novelty. Novelty
is preserved in nature as long as a novel individual meets minimal selection criteria.
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It is also encouraged through niching. By finding a new way to live, an organism
may avoid competition and exploit untapped resources (Kampis and Gulyás, 2008).
Moreover, there is evidence of active novelty search in natural evolution as well. Neg-
ative frequency dependent selection can encourage novelty (Endler and Greenwood,
1988) and lead to mate choice biased toward rare phenotypes (Hughes et al., 1999;
Sigmund, 1993), which is the reward scheme implemented in novelty search. Thus
it is not unreasonable to view natural evolution in part as a passive kind of nov-
elty search subject to minimal criteria, which is an alternative to the more common
interpretation of evolution as an adaptive competition.

This view of natural evolution leads to a unifying insight. To continue their lin-
eages, all organisms ultimately must reproduce though they may live in vastly dif-
ferent ways. Therefore, perhaps natural evolution can be succinctly abstracted as an
algorithm that finds many different ways to express the same functionality. Interest-
ingly, in such an abstraction, the minimal criterion need not always be reproduction.
In fact, it may be possible to construct minimal criteria in a practical domain such
that the search for novelty is made more effective. Such minimal criteria, although
they add restrictions to the search space, may provide a principled way of reduc-
ing the behavior space in tasks in which there are no inherent domain restrictions
and a search for novelty alone may be infeasible. Thus, this perspective motivates
future investigation into the search for novelty subject to minimal criteria. Recently,
Lehman and Stanley (2010b) have begun investigating this research direction.

9.4 The Arrow of Complexity

Novelty search also provides a new hope for creating an artificial arrow of complexity.
This follows the thought that once all the simple ways to live have been exhausted,
the only way to do anything different is to become more complex (Gould, 1996). In
a passive way, this explanation accounts for the arrow of complexity in nature. In
novelty search, the principle should also hold true when coupled with a complexifying
algorithm such as NEAT. Additionally, because novelty search actively encourages new
behaviors, the arrow of complexity may be accelerated. In fact, the result that the ANN
controllers from the maze domain and the biped walking task discovered by NEAT with
novelty search contain about three times fewer connections than those discovered by
fitness-based NEAT suggests that novelty search climbs the ladder of complexity more
efficiently.

Although complexity may increase boundlessly within novelty search as the lower
rungs of the ladder of complexity are filled, complexity is only ultimately interesting to
humans with respect to functionality. For example, the search for novelty in the maze
domain can continue long after the goal has been reached, generating new policies
that yield continually novel behaviors by ending in slightly different areas of the maze.
Each such policy’s function can be viewed as reaching the point in the maze at which it
ended. Because any infinitesimal coordinate in a maze can be seen as a functional task
that a navigator can achieve, this view implies that open-ended evolution and com-
plexity increase could potentially continue indefinitely. However, to a human observer
the result of one of these potentially complex policies is underwhelming. The maze
navigator simply navigates the maze and ends in a novel location.

The implication is that functional complexity alone is not interesting. Investigat-
ing the gap between functional complexity and interesting functional complexity is a
direction for future research.
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9.5 Further Results on Novelty Search

A natural question is whether novelty search can also be applied with algorithms other
than NEAT. In fact, since novelty search was first introduced by Lehman and Stanley
(2008), several works have built upon it (Lehman and Stanley, 2010a; Mouret, 2009; Risi
et al., 2009), some of which do not use NEAT or even neuroevolution.

Recently, the results from the maze domain were replicated in Mouret (2009)
and combined with a multi-objective EA that did not include a genetic diversity-
maintenance technique as in NEAT and was initialized with random network topologies
instead of minimal networks as in NEAT. Experiments also compared optimizing vari-
ous combinations of objectives on the same task; optimizing novelty as the sole objective
evolved solutions the fastest, while combining novelty with fitness would find more
exact solutions. Also, measuring the novelty of a new individual by comparing its be-
havior to both the population and the archive performed better than measuring novelty
alone with respect to the archive.

Two independent works have also demonstrated that behavioral novelty is useful
in evolving adaptive neural networks (i.e., neural networks that learn during their
lifetimes; Risi et al., 2009; Soltoggio and Jones, 2009). Another recent result successfully
applied novelty search to a different representation: genetic programming (GP; Lehman
and Stanley, 2010a); on both a variant of the maze domain and the standard GP artificial
ant benchmark, novelty search outperformed objective-based search. Thus, evidence is
accumulating that novelty search is a general technique. While it is not always going
to work well, the results so far suggest that novelty search is a viable new tool in the
toolbox of EC.

10 Conclusions

This paper is a comprehensive introduction to novelty search (first introduced in
Lehman and Stanley, 2008), a domain-independent method of open-ended search that
illustrates the limitations of objectives. Motivated both by the problem of deceptive
gradients in objective-based search and the desire for a simple approach to open-ended
evolution, novelty search ignores the objective and instead searches only for individuals
with novel behaviors. Counterintuitively, experiments in both a deceptive navigation
task and a difficult biped locomotion task showed that novelty search can significantly
outperform objective-based search. The idea that search can be more effective without
an objective challenges fundamental assumptions and common intuitions about why
search works. It is also the first machine learning approach to take seriously the growing
(yet controversial) view in biology that adaptive selection does not explain the arrow of
complexity in nature (Gould, 1996; Lynch, 2007a,b). Novelty search asks what is left if
the pressure to achieve the objective is abandoned. Thus it teaches an important lesson
on the limits of objective-driven search.

In summary, almost like a riddle, novelty search suggests a surprising new perspec-
tive on achievement: To achieve your highest goals, you must be willing to abandon
them.
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Appendix A Experimental Parameters

In this paper, novelty search was implemented as an extension of NEAT, which when
run with a traditional objective function also served as the control algorithm. Thus,
to facilitate a fair comparison, NEAT with novelty search and objective-based NEAT
have identical settings for all NEAT-specific parameters. Because the biped experiment
is more challenging and operated with CTRNNs, the NEAT parameters required some
adjustment, but were once again identical for both NEAT with novelty search and
objective-based NEAT. The software package used in these experiments, Novelty Search
C++, which is an extended version of the real-time NEAT (rtNEAT) software package,
is available at: http://eplex.cs.ucf.edu.

Table A1 shows the parameters used in both experiments. NEAT has been found
to be robust to moderate variations in parameters (Stanley et al., 2005; Stanley and
Miikkulainen, 2002, 2004). Table A2 gives the physical parameters of the biped model.
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Table A1: NEAT parameter settings. Archive threshold and k-nearest neighbor param-
eters apply only to NEAT with novelty search, while time constant and bias parameters
apply only to the biped experiment.

Parameter Maze experiment Biped experiment
Population Size 250 500
c1 1.0 1.0
c2 1.0 1.0
c3 3.0 3.0
Ct Variable Variable
Probability of adding link 0.1 0.06
Probability of adding node 0.005 0.005
Probability of mutating time constant N/A 0.3
Probability of mutating bias N/A 0.3
Initial archive threshold 6.0 1.0
k-nearest neighbors 15 15

Table A2: Biped simulation parameter settings. Parameters are given for the physical
simulation of the biped robot, implemented using the freely available Open Dynamics
Engine library (see http://www.ode.org). Maximum torque is the most torque a pro-
portional controller can apply. The proportional constant is multiplied by the disparity
between the actual angle of a joint and the angle that the ANN requests to derive the
torque to be applied at that joint.

Parameter Value
Foot radius 0.17 m
Foot density 1.0 kg/m3

Torso radius 0.1 m
Torso length 0.33 m
Torso density 1.0 kg/m3

Leg segment radius 0.2 m
Leg segment length 0.33 m
Leg segment density 1.0 kg/m3

Maximum torque 5.0 N·M
Proportional constant 9.0
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