
Multi-objective Differential Evolution in Finance

Håken Jevne

CTO & Co-founder Fronteer Solutions AS

February 19, 2019

Outline

Part 1
I Modern Portfolio Theory
I Differential Evolution
I Multi-objective Optimization

Part 2
I Fronteer Solutions and Harvest
I My history and the road to where we are now
I Lessons learned

About me

I M.Sc. in Computer Science (Bio-inspired AI) from NTNU
I Published the paper “Evolving Constrained mean-VaR Efficient Frontiers” in 2012
I CTO & Co-founder of Fronteer Solutions AS

Fronteer Solutions AS

I Licensed fund manager
I Manages 250 MNOK in “Faktorfondet Harvest”
I 10 employees
I 3000+ investors
I Operates in Norway and Sweden
I Owned by founders, Investinor, Schibsted and FinStart Nordic

Modern Portfolio Theory

I Harry Markowitz published the seminal work in this field in 1952 for which he later
was awarded the Nobel Price in economics.

I Markowitz developed the simple but profound notion that investors should consider
not only returns, but the risk associated with the investments as well.

I He studied the relationship between reward versus risk in portfolio optimization and
how correlation and diversification affect risk.

I His mean-variance model laid the foundation for modern portfolio theory.

Portfolio Selection
I A portfolio is a collection of financial assets. An investor may choose to allocate his

or her funds amongst these different types of assets.

I Portfolio selection is concerned with the challenge of optimally allocating such
funds amongst a set of risky assets so as to maximize returns and minimize risk.

I A portfolio that provides minimum risk for an expected return or provides maximal
expected return given an upper bound on risk, is termed an efficient portfolio.

Portfolio Definition
Consider a finite set of assets i = 1, 2, . . . , n. A portfolio x ∈ Rn is a vector of allocation
of these assets

x = (x1, x2, . . . , xn). (1)

A portfolio must be fully invested, thus
∑n

i=1 xi = 1 and xi ∈ [0, 1] for all i to disallow
short sales.

Portfolio return
The expected portfolio return, µP , is given by

µP =
n∑

i=1
µixi (2)

where µ ∈ Rn is the vector of expected asset returns and x is a portfolio vector.

The daily average asset return for asset i :

µi = 1
T

T∑
t=1

rit

where rit is the daily asset return for asset i at day t, and T is the number of historical
returns to consider.

Portfolio risk
The risk associated with an asset is its variance.

σ2
i = var(ri) = 1

T

T∑
t=1

(rit − µi)2 (3)

The portfolio variance is given as the sum of the weighted assets combined variance.

σ2
P =

n∑
i=1

n∑
j=1

σijxixj (4)

where the covariance of two assets is

σij = covar(ri , rj) = 1
T

T∑
t=1

(rit − µi)(rjt − µj)

An interesting property of covariance

The covariance of two random variables can be less than the variance of each random
variable, i.e. the risk of two assets combined can be less than the risk of each individual
asset.

Portfolio Optimization - Variance minimization

To construct a portfolio of minimal variance for a given level of return the following
optimization model can be solved

minimize σ2
P

subject to µP = µ̄
n∑

i=1
xi = 1

0 ≤ xi ≤ 1

where µ̄ is the target expected return.

The problem can also be written in standard normal (matrix) form and solved by a
quadratic solver.

minimize xᵀSx + µ̄ᵀx
subject to Gx ≤ h

Ax = b
(5)

where S is the covariance matrix, Gx ≤ h are the inequality constraints and Ax = b are
the equality constraints.

The Efficient Frontier
Efficient Portfolio. A portfolio is efficient if it has maximal expected return given an
upper bound on risk, or, equivalently, it has minimal risk for a given expected return.

The minimum variance curve to the left and the efficient frontier to the right.

Python example - Quadratic optimzation1

import pandas as pd
from cvxopt import matrix

adj_close = pd.read_cvs('data.csv')
r = adj_close.pct_change()
E_r, S = r.mean(), r.cov()
m, n = r.shape

G = matrix(0.0, (n,n))
G[::n+1] = -1.0
h = matrix(0.0, (n,1))
A = matrix(1.0, (1,n))
b = matrix(1.0)

1Example from the book Convex Optimization by Boyd and Vandenberghe

import numpy as np
from cvxopt.solvers import qp
from cvxopt.blas import dot

mus = np.linspace(E_r.min(), E_r.max(), 100)
xs = [qp(mu * S, -E_r, G, h, A, b) for mu in mus]
returns = [dot(E_r, x) for x in xs]
risks = [sqrt(dot(x, S * x)) for x in xs]

Limitations of mean-variance optimization

The model is widely adopted mainly for its ability to easily explain the concept of risk
and return but it is important to acknowledge its limitations.

Computational Complexity. For a large set of assets the computational difficulty
associated with computing the covariance matrix and solving the quadratic programming
model increases exponentially.

Variance as Risk Measure. Since variance is the squared standard deviation the model
does not discriminate negative from positive returns, even though investors seek positive
returns.

Higher Moments. The mean-variance model only considers the first two moments of
the return distributions, namely the mean and variance. Returns are not normally
distributed or even symmetrically distributed

Portfolio Lots. On an exchange, assets cannot be traded in fractions, only as whole
lots. That means you have a rounding error from the efficient portfolio to the real
acquired portfolio.

Fragmentation. The cost of buying portfolios in the efficient frontier increases
significantly since large-scale portfolios usually contains many nonzero elements.

I Minimum transaction lots
I Transaction Costs
I Minimum Allocations

Some of these limitations are addressed in later models, however it is difficult to
implement in optimization frameworks due to the complexities they introduce in
numerical optimization software.

Value-at-Risk (VaR) optimization

In the last decade, Value at Risk (VaR) has become one of the most popular risk
measures in finance. VaR gives a quantitative measure of the possible downside of an
investment.

It is best explained by an example. If an investment has a VaR of $1M over a one-week
time period, at a 95% confidence interval, there is only a 5% chance the investor will
lose more than $1M that week.

Risk averse investors typically set a high confidence interval while risk-seeking investors
might use a lower confidence interval.

Figure 1: From investopedia.com. VaR95 (at the 5th percentile) will not exceed a loss of -4%,
with 95% confidence, during the period.

VaR Complexity

VaR is inherently more difficult to optimize than e.g. variance. The VaR function is
non-convex, non-differentiable and may exhibit many local minima, and is of a
combinatorial character (it grows exponentially in computational complexity).

The complexity of optimizing VaR can be illustrated with an example from Gaivoronski
and Pflug (2005). Consider two assets x1 and x2 and a portfolio x defined by a linear
combination of these assets

x(λ) = λx1 + (1− λ)x2 0 ≤ λ ≤ 1

The difficulty of minimizing VaR comes from the discreteness of the observations in the
historical simulations.

Figure 2: Properties of VaR and CVaR for a portfolio of two assets, from Gaivoronski and Pflug
(2005)

Real world objective functions in finance

Expected Returns Estimation

I Historical returns
I Factor models
I Expert analysis
I Neural Networks
I Genetic Programming

Risk Estimation
I Variance (VAR)
I Value at Risk (VaR)
I Conditional Value at Risk (CVaR)
I Mean-absolute deviation (MAD)
I Drawdown
I Markov Chain Monte Carlo simulations
I GARCH-Copula models

Differential Evolution (DE)

I Storn and Price (1995,1997) “Differential Evolution - A simple and efficient
adaptive scheme for global optimization over continuous spaces.”

I Individuals are encoded as vectors and new offspring are created through the
processes of mutation and crossover between a target vector and several donor
vectors from the parent population.

I This differs from other evolutionary algorithms where features in the offspring are
usually taken in turn from either parent.

I DE moves from exploration → exploitation of the solution space as the algorithm
converges.

I DE is well suited for continuous spaces.

Basic concepts of DE

I The initial population is chosen randomly and should be distributed uniformly
throughout the solution space.

I New candidate solutions are generated by selecting a target vector with multiple
donor vectors and applying mutation, crossover and replacement.

I Mutation is performed by combining multiple parents by vector addition,
subtraction and scaling.

I Each individual has to serve as target vector once to keep diversity and the
population size constant.

Stage 1: Mutation

For each target vector xi ,G = 1, 2, . . . ,NP, randomly select r1, r2, r3 ∈ {1, 2, . . . ,NP}
where i 6= r1 6= r2 6= r3. A mutant vector v is then created as follows:

vi ,G+1 = xr1,G + F (xr2,G − xr3,G) (6)

where NP is the population size; G is the current generation and F ∈ [0, 2] is a scaling
factor for the size of the difference vector.

Stage 2: Crossover

The mutant vector and the target vector are combined through crossover, resulting in a
new vector u, called a trial vector:

ui ,G+1 = (u1i ,G+1, u2i ,G+1, . . . , uDi ,G+1) (7)

The application of crossover takes the form:

uji ,G+1 =
{
vji ,G+1 if (randb(j) ≤ CR) or j = rnbr(i)
xji ,G if (randb(j) > CR) and j 6= rnbr(i)

j = 1, 2, . . . ,D
(8)

where randb(j) ∈ [0, 1] is a uniform random number, CR ∈ [0, 1] is the crossover
constant and rnbr(i) ∈ {1, 2, . . . ,D} is a random index.

Stage 3: Replacement

The final stage involves fitness comparison of the resulting trial vector ui ,G+1 and the
original target vector xi ,G where the one with the highest fitness is forwarded to the next
generation.

xi ,G+1 =
{
ui ,G+1 if f (ui ,G+1) > f (xi ,G)
xi ,G otherwise

(9)

where f is a fitness function.

Differential Evolution Pseudo code
1: For generation G
2: for all x in PG do
3: Select randomly x1, x2, x3 ∈ PG so that x1 6= x2 6= x3 6= x
4: Create mutant vector v = x1 + F (x2 − x3)
5: for i = 1 to |x | do
6: if U(0, 1) < CR or rndx (1, |x |) = i then
7: u[i] = v [i]
8: else
9: u[i] = x [i]

10: end if
11: end for
12: if f (u) > f (x) then
13: PG+1 ← u
14: else
15: PG+1 ← x
16: end if
17: end for

Figure 3: Pseudo-code for the mutation, crossover and selection process

Variations in Differential Evolution
There are several variations within differential evolution. The following notation is used
to separate different DE variants

DE/x/y/z

where

x is the selected vector to mutate. This can be e.g., rand for a random population
vector or best for the vector of highest fitness.

y is the number of difference vectors used, usually 1.

z is the type of crossover used, e.g. “bin” for independent binomial selection or “exp”
for exponential selection.

The DE strategy described earlier can be represented as DE/rand/1/bin in this notation.

The differences amongst DE variants are mainly the way donor solutions are selected,
the number of difference vectors and the type of recombination operator used.

Iorio and Li (2004) uses the strategy DE/current-to-rand/1 which is calculated as
follows:

vi ,G+1 = xi ,G+K (xr3,G − xi ,G) + F (xr1,G − xr2,G)

The shorthand description of this model states that DE/current-to-rand/1 generates
vectors that are linear combinations of the current vector xi ,G , and a randomly chosen
donor xr3,G .

The extra difference vector adds more diversity to the mutant vector v and might help
the algorithm “jump” out of local minima.

For a list of other DE variants see Mezura-Montes (2008).

Multi-objective Differential Evolution (MODE)

I In the real-world, multi-objective optimization problems are very common,
particularly in engineering applications.

I Multi-objective optimization problems involve multiple objectives, often conflicting,
which should be optimized simultaneously.

I EA have proven very efficient at solving multi-objective optimization problems, see
Deb et al. (2002).

I The portfolio selection problem is an example of a multi-objective optimization
problem. The problem consists of optimizing both risk and return at the same time,
i.e. maximize return while minimizing risk.

The problem, with VaR as the risk measure, is named mean-VaR and defined as

maximize R(x)
minimize VaRα(x)

subject to
n∑

i=1
xi = 1

0 ≤ xi ≤ 1

(10)

where x is a candidate solution i.e., portfolio vector, R(x) is the portfolio return and
VaRα(x) is the portfolio Value-at-Risk with a confidence level equal to 1− α.

Optimizing (10) will result in a Pareto-front which will converge to the efficient frontier
as the EA populations are evolved.

Efficient Frontier ⇒ Pareto Optimality

Multiple-objective optimization seeks to find a set of optimal solutions. The set of
solutions are bounded by a curve, termed the Pareto front.

A solution is termed Pareto-optimal (and will lie on the curve) if there exists no other
feasible solution which would decrease some criteria without causing a simultaneous
increase in at least one other criteria (assuming minimization),

By plotting the Pareto-front of an evolved mean-VaR optimization problem, with return
on the y -axis and risk on the x -axis, the Pareto-front becomes the efficient frontier
described earlier.

NSGA-II and NSDE
The Non-dominated Sorting Genetic Algorithm (NSGA-II) is perhaps the most widely
adopted multi-objective evolutionary algorithm.

The NSGA-II algorithm incorporates non-dominated sorting with crowding distance to
select the best individuals from each generation.

Given two candidate vectors with differing non-dominated ranks, the solution with the
lower (better) rank is preferred. Otherwise, if both solutions has the same rank, then the
solution that is located in a lesser crowded region is preferred.

i ≺n j if (irank < jrank) or ((irank = jrank) and (idistance > jdistance))

NSGA-II can be modified to use Differential Evolution for mutation and crossover as in
Iorio and Li (2004) which presents the elitist Non-dominated Sorting Differential
Evolution (NSDE) algorithm.

Performing Elitism

A naive (slow) implementation works as follows

I rank all non-dominated solutions with rank 1, then remove them from the set
I rank all non-dominated solutions in the new set with rank 2, and remove them form

the set
I repeat this process until all solutions have been ranked but this is computationally

slow

Promoting Diversity

Non-dominated Sorting Procedure

I NSGA-II starts with an initial population Pt of size N
I The parent and offspring populations are joined and sorted to get F of all

non-dominated fronts
I A new population Pt+1 is filled with N individuals from F〉, taking the individuals

of lowest rank and with highest crowding distance first
I Pt+1 is the basis for the offspring population Qt+1 of size N
I The algorithm iterates until some termination condition is met

Differences between DE and NSDE (singe-objective → multi-objective)

The NSDE algorithm is almost identical to the NSGA-II algorithm except for the
mutation and crossover operations and a minor adjustment due to the features of DE.

In single-objective DE the trial vector u from the mutation and crossover operations are
compared with the target vector x , and the most fit vector is brought to the next
population.

In a multi-objective setting this comparison is impossible as one does not know which
vector is better until all vectors are sorted and assigned a rank.

Therefore the offspring population Qt+1 is populated with trial vectors u until it reaches
a size of N. The individuals of Qt+1 are evaluated by the objective functions and then
sorted in junction with the trial vectors by the non-dominated sorting algorithm
described above.

Constraints handling

Minimum Transaction Lots

maximize R(x)
minimize VaR(x)

subject to
n∑

i=1
xici ≤ b

wi = wi∑n
j=1 wj

xi =
⌊bwi

ci

⌋
(11)

where b is the total budget to invest and w is a candidate solution. All candidate
solutions wi ∈ [0, 1] but this may violate

∑n
i=1 wi = 1 i.e, the budget constraint, so all

candidate solutions are normalized.

x is a decoded version of the candidate solution w - representing the number of lots
invested in each asset. ci is the cost of buying asset i and xi is an integer - the
fractional budget in asset i divided by its cost (rounded down).

The first inequality constraint in (11) ensures the portfolio does not cost more than the
available budget. This inequality constraint indicates that not all funds are necessarily
invested

ε = b −
n∑

i=1
xici

The residual ε might be reinvested in the portfolio if it is larger than any of the asset
costs.

Transaction Costs
Traditionally, transaction costs are a piecewise linear function with a flat fee up to a
threshold θ1 and a linear fee θ2 of the transaction value after that. The transaction cost
is the maximum value of θ1 or θ2 multiplied by the transaction value.

The transaction cost C(x), from buying a portfolio x , is thus:

C(x) = max(θ1, θ2

n∑
i=1

xici)

(11) can be extended to include transaction costs by subtracting the transaction costs
from the expected portfolio return (in monetary terms).

References

H. Markowitz, “Portfolio Selection,” The Journal of Finance, vol. 7, no. 1, pp. 77–91,
1952.

R. Storn and K. Price, “Differential Evolution - A simple and efficient adaptive scheme
for global optimization over continuous spaces,” ICSI, Tech. Rep., Mar. 1995.

——, “Differential evolution–a simple and efficient heuristic for global optimization over
continuous spaces,” Journal of global optimization, vol. 11, no. 4, pp. 341–359, 1997.

K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective
genetic algorithm: NSGA-II,” IEEE transactions on evolutionary computation, vol. 6, no.
2, pp. 182–197, 2002.

A. W. Iorio and X. Li, “Solving Rotated Multi-objective Optimization Problems Using
Differential Evolution,” Advances in Artificial Intelligence, pp. 861–872, 2004.

