
Lecture 9
Bees Algorithm (BA)
Artificial Immune Systems (AIS)

Kazi Shah Nawaz Ripon and Pauline Haddow

Outline
• Bees Algorithm (BA)

• Artificial Immune Systems (AIS)

Outline
• Bees Algorithm (BA)

• Artificial Immune Systems (AIS)

4

Bees Algorithm (BA)
• The Bees Algorithm is a nature-inspired optimization algorithm that

mimics the food foraging behavior of honey bees to find the
optimal solution.

• Developed by Prof. D.T. Pham and his co-workers in 2005.

• BA performs both an exploitative neighborhood search combined
with random explorative search.

• Mainly designed for continuous optimization problem.

5

Bees in Nature - 1
A colony of honey bees can exploit a large number of food sources

in big fields and they can fly up to 11 km to exploit food sources.

6

Bees in Nature - 2
• The foraging process begins with randomly searching out

promising flower patches by scout bees.

• Flower patches with plentiful amounts of nectar or pollen that can be
collected with less effort should be visited by more scout bees,
– whereas patches with less nectar or pollen should receive fewer

scouts.

7

Bees in Nature - 3
The scouts who return to the hive, evaluate the different patches
depending on certain quality threshold (measured as a combination of
some elements, such as sugar content).

8

Bees in Nature - 4
• Scout bees deposit their nectar and go to the dance floor in front of

the hive to communicate to the other bees by performing “waggle
dance”.

• A small number of scouts continue to search for new patches
– while bees returning from flower patches continue to

communicate the quality of the patch.

9

Bees in Nature - 5
• Scout bees provide the following information by waggle dance:

1. Quality of the food source (frequency of
the dance).

2. Distance of the source from the hive
(duration of the dance).

3. Direction of the source (angle between the
sun and the patch).

• These information helps the colony to send its bees precisely.

• The scout backs to the flower patch with follower bees to gather
food efficiently and quickly .

10

Bees in Nature - 6
• The same patch will be advertised in the waggle dance again if it is

still good enough as a food source and more bees will be recruited to
that source.

• Thus, according to the fitness, patches can be visited by more bees
or may be abandoned.

11

Bees in Nature

12

Strategy
• The information processing objective of the algorithm is to locate and

explore good sites within a problem search space.

• Initially, scouts are sent out to randomly sample the problem space
and locate good sites.

• The good sites are exploited via the application of a local search,

– although many scouts are sent out each iteration always in
search of additional good sites (exploration).

13

BA: Local Search vs Global Search
• A fraction of the population (scout bees) searches randomly for

regions of high fitness (global search).

• The most successful scouts recruit a variable number of idle agents
(follower bees) to search in the proximity of the fittest solutions (local
search).

• Cycles of global and local search are repeated until an acceptable
solution is discovered, or a given number of iterations have elapsed.

• Implementing Algorithm: Main procedure includes local and global
search routines which are executed concurrently at each cycle.

14

• Similar to other social insect colonies, honey bees also have the
same four basic ingredients for self-organization :

(1) Positive feedback

(2) Negative feedback

(3) Randomness

(4) Multiple interactions

Natural Bees

15

Main Parameters
ns Number of scout bees

ne Number of elite sites

nb Number of best sites

nre Recruited bees for elite sites

nrb Recruited bees for remaining best sites

ngh Initial size of neighbourhood

stlim Limit of stagnation cycles for site abandonment

The algorithm uses a population of n artificial bees, divided into
ns scouts and n-ns followers.

Evaluate the Fitness of the Population

Determine the Size of Neighbourhood
(Patch Size ngh)

Recruit Bees for Elite Sites
(more Bees for the Best ne Sites from nb)

Select the Fittest Bee from Each Site

Assign (ns–nb) Remaining Bees to Random Search

New Population of Scout Bees

Select nb Best Sites for Neighb. Search

N
ei

gh
bo

ur
ho

od
 S

ea
rc

h

Flowchart of the Basic BA

Initialise a Population of ns Scout Bees

17

Pseudocode: Standard BA
1 for i=1,…,ns

i scout[i]=Initialise_scout()

ii flower_patch[i]=Initialise_flower_patch(scout[i])

• In the initialisation routine ns scout bees are randomly placed in the search space, and

– Evaluate the fitness of the solutions where they land.

• For each solution, a neighbourhood (called flower patch) is delimited.

18

Pseudocode: Standard BA
1 for i=1,…,ns

i scout[i]=Initialise_scout()

ii flower_patch[i]=Initialise_flower_patch(scout[i])

2 do until stopping_condition=TRUE
i Recruitment()

• In the recruitment procedure, the scouts that visited the nb ≤ ns fittest solutions (best sites)
perform the waggle dance.

– That is, they recruit followers to search further the neighborhoods of the most promising
solutions.

• The scouts that located the very best ne ≤ nb solutions (elite sites) recruit nre followers each,

– whilst the remaining (nb – ne) scouts recruit nrb (≤ nre) followers each.

• Thus, the number of followers recruited depends on the profitability of the food source.

Waggle Dance

19

Pseudocode: Standard BA
1 for i=1,…,ns

i scout[i]=Initialise_scout()

ii flower_patch[i]=Initialise_flower_patch(scout[i])

2 do until stopping_condition=TRUE
i Recruitment()

ii for i =1,...,nb
1 flower_patch[i]=Local_search(flower_patch[i])

2 flower_patch[i]=Site_abandonment(flower_patch[i])

3 flower_patch[i]=Neighbourhood_shrinking(flower_patch[i])

• In the local search procedure, the recruited followers are randomly scattered within the
flower patches enclosing the solutions visited by the scouts (local exploitation).

– If any of the followers in a flower patch lands on a solution of higher fitness than the
solution visited by the scout, that followers becomes the new scout.

20

Pseudocode: Standard BA
1 for i=1,…,ns

i scout[i]=Initialise_scout()

ii flower_patch[i]=Initialise_flower_patch(scout[i])

2 do until stopping_condition=TRUE
i Recruitment()

ii for i =1,...,nb
1 flower_patch[i]=Local_search(flower_patch[i])

2 flower_patch[i]=Site_abandonment(flower_patch[i])

3 flower_patch[i]=Neighbourhood_shrinking(flower_patch[i])

• If no follower finds a solution of higher fitness, the size of the flower patch is shrunk
(neighbourhood shrinking procedure).

– Usually, flower patches are initially defined over a large area, and their size is gradually
shrunk by the neighbourhood shrinking procedure.

• If no improvement in fitness is recorded in a given flower patch for a pre-set number of
search cycles, the local maximum of fitness is considered found, the patch is abandoned
(site abandonment), and

– a new scout is randomly generated.

Not in Original BA Version

21

Pseudocode: Standard BA
1 for i=1,…,ns

i scout[i]=Initialise_scout()

ii flower_patch[i]=Initialise_flower_patch(scout[i])

2 do until stopping_condition=TRUE
i Recruitment()

ii for i =1,...,nb

1 flower_patch[i]=Local_search(flower_patch[i])

2 flower_patch[i]=Site_abandonment(flower_patch[i])

3 flower_patch[i]=Neighbourhood_shrinking(flower_patch[i])

iii for i = nb,...,ns
1 flower_patch[i]=Global_search(flower_patch[i])}

• As in biological bee colonies, a small number of scouts keeps exploring the solution space
looking for new regions of high fitness (global search).

• The global search procedure re-initialises the last ns-nb flower patches with randomly
generated solutions.

22

Pseudocode: Standard BA
1 for i=1,…,ns

i scout[i]=Initialise_scout()

ii flower_patch[i]=Initialise_flower_patch(scout[i])

2 do until stopping_condition=TRUE

i Recruitment()

ii for i =1,...,nb

1 flower_patch[i]=Local_search(flower_patch[i])

2 flower_patch[i]=Site_abandonment(flower_patch[i])

3 flower_patch[i]=Neighbourhood_shrinking(flower_patch[i])

iii for i = nb,...,ns

1 flower_patch[i]=Global_search(flower_patch[i])}

• At the end of one search cycle, the scout population is again composed of ns scouts:

– nb scouts produced by the local search procedure (some of which may have been re-
initialised by the site abandonment procedure), and

– ns-nb scouts generated by the global search procedure.

Example: BA
The algorithm starts with the ns scout bees being placed randomly in
the search space.

– (for example ns=100)

Example: BA
Fitnesses of the sites visited by the scout bees after return are
evaluated (fitness function evaluation).

• The evaluation of the 100 scout bees is stored in array as follow:

• Then the array will be reordered based on the evaluation from the
higher to the lower value

1 2 3 4 5 6 … … ... 99 100
20 50 60 30 80 10 … … … 35 72

Example: BA
The nb best sites will be selected from ns.

– For example nb=10

– Then we choose the best ne site (elite bee) out off nb.

– For example ne=2

1 2 3 4 5 6 7 8 9 10
80 78 75 72 69 66 65 60 59 58

elite sites
(ne)

remaining best sites
(nb-ne)

Example: BA
A neighborhood search sites of size ngh is determined which will be
used to update the nb bees declared in the previous step.

• Recruit Bees for the selected sites and evaluate the fitness of the
sites.

– Number of bees (nre) will be selected to be sent to ne sites
(nre=40).

– Choosing nrb bees which their number is less than nre,
(nrb=20) to be sent to nb-ne sites.

Example: BA
Choosing the best bee (the highest fitness) from each site (from both
elite sites and the remaining best sites) to form the next bee
population.

Example (Implementation: creating neighborhood
for best sites)

• The best bee from each of ne sites is selected as follow:

– For the first site from ne:

– An array contains nre=40 bees will be constructed,
• where the value of each bee is equal to the value

of the original scout bee with a little modification
depending on the neighborhood ngh.

• Based on the fitness evaluation of nre = 40 bees:

• The results will be stored in temporary array.

• The array will be ordered and the best value will be taken

1 2 3 … 40
82 81.2 79.9 … 79.2

Example (Implementation: creating neighborhood
for best sites)

It is repeated for all nb sites.

• At the end we will get the best nb=10 bees which will be stored
at the beginning of the array (ns=100)

1 2 3 4 5 6 … 10 11 … 99 100

82 79 77 73 70 67 … 58.2

Example (Implementation: creating neighborhood
for best sites)

Example: BA
Initials new population:

• The remaining bees (ns – nb) in the population will be assigned
randomly around the search space (values from 11 to 100 in the
previous array)

• The new population becomes as follow:

1 2 3 4 5 6 … 10 11 … 99 100

82 79 77 73 70 67 … 58.2 Random values

nb ns - nb

Example: Function Optimisation
• The following figure shows the mathematical function.

Example: Function Optimisation

Initialise a Population of (ns=10) Scout Bees
with random Search and evaluate the fitness.

x

y

*

*

*
*

*
* ***

*

Select best (nb=5) Sites for Neighbourhood Search:
(ne=2) elite bees “▪” and (nb-ne=3) other selected bees“▫”

x

y

▪

▫

▪
▫

▫

* ***
*

Example: Function Optimisation

nbne

x

y

▪

▫

▪
▫

▫

Determine the Size of Neighbourhood (Patch Size ngh)

Example: Function Optimisation

x

y

▪

▫

▪
▫

▫

*

* *

*

Recruit Bees for Selected Sites
(more Bees for the ne=2 Elite Sites)

*

*
*

*

*
*

*
* *

*

*
*

* *
* *

Example: Function Optimisation

x

y

▪

▫

▪
▫

▫

*

* *

*

Select the Fittest Bee * from Each Site

*

*
*

*

*
*

*
* *

*

Example: Function Optimisation

x

y

*

Assign the (ns–nb) Remaining Bees to Random Search

*

* *
o *

o

o

o
o

nb

ne

Example: Function Optimisation

x

y *

Graph 7. Find The Global Best point

*
*

*

*

Example: Function Optimisation

40

Variants of BAs
• BA can be divided into four parts:

1. parameter tuning
2. Initialization
3. local search
4. global search.

• Several works to enhance the performance of BA by improving
some of its parts.

• More than one version of the algorithm has been proposed.

41

Variants of BAs
• Three main variation (using several

different formal names):

1. Basic BA

2. Shrinking-based BA

3. Standard BA

• Various implementations of the
shrinking and site-abandonment
procedures are explored and
incorporated into BA to constitute
different BA implementations.

42

Neighbourhood Shrinking (in improved version)
• If no forager improved the fitness of the solution found by the scout,

the size of the neighbourhood (flower patch) is shrunk.

• The neighborhood shrinking mechanism aims to focus progressively
the search in a narrow area around the fitness peak, and is akin to
the SA.

• At each cycle of stagnation, the size of the flower patch is
customarily decreased using the following heuristic formula:

a(t+1)=0.8·a(t)

43

Site Abandonment (in improved version)
• If the local search procedure fails to bring any fitness improvement in

a flower patch for stlim consecutive BA cycles,

– The search is assumed to have found the local fitness optimum.

• In this case, the flower patch is abandoned, and

– A new scout bee is re-initialized at a random location in the
search space.

BA: Pros and Cons
Pros:

• Very efficient in finding optimal solutions.

• Overcoming the problem of local optima.

Cons:

• A number of tunable parameters.

45

45

BA Web Site (Cardiff University, UK)

http://www.bees-algorithm.com/

Outline
• Bees Algorithm (BA)

• Artificial Immune Systems (AIS)

47

Artificial Immune Systems (AIS)
AIS are intelligent and adaptive systems inspired by the immune system
toward real-world problem solving. (Dasgupta)

AIS are adaptive systems, inspired by theoretical
immunology and observed immune functions, principles
and models, which are applied to problem solving. (de
Castro and Timmis)

• Relatively new branch of computational intelligence.

• Not modelling the immune system.

48

History
• Developed from the field of theoretical immunology in the mid 1980’s.

• Bersini first use of immune algos to solve problems in 1990.

• Forrest et al – Computer Security mid 1990’s.

• Hunt et al, mid 1990’s – Machine learning.

49

Biological Immune System (BIS)

Immunity: state or quality of being resistant
(immune), either by virtue of previous
exposure (adaptive immunity) or as an
inherited trait (innate immunity).

Immune system: a system having the primary function
of distinguishing self from not self and protects our
body from foreign substances and pathogenic
organisms by producing the immune response.

50

Motivation
BIS is a

– robust,
– complex,
– highly parallel,
– distributed,
– adaptive

system that defends the body from foreign pathogens.

51

Motivation
• BIS is a robust, complex, highly parallel, distributed, adaptive system

that defends the body from foreign pathogens.

• It uses learning, memory, and associative retrieval to solve
recognition and classification tasks.

• In particular, it learns
• to recognize relevant patterns,
• remember patterns that have been seen previously, and
• use combinatorics to construct pattern detectors efficiently.

52

52

Pathogen, Antigen, Antibody

53

Appealing Features of BIS
• Recognition

• Anomaly detection
• Noise tolerance

• Robustness
• Uniqueness
• Autonomy
• Distributed
• Flexible
• Reinforcement learning
• Memory.

54

Different Immune Systems
• Primary immune response (non-specific / innate)

– Do not distinguish between one threat and another.
– Are present at birth.

• Secondary immune response (specific / adaptive)
– Responds to previously unknown foreign cells.
– Protect against specifically identified threats.
– Most develop after birth upon exposure to an Antigen.
– Learning, adaptability, and memory are important characteristics

of adaptive immunity (main focus of interest).

55

.

White Blood Cells (WBCs)
• WBCs, also called leukocytes or leucocytes, are the cells of the

immune system that are involved in protecting the body against
pathogens.

• Carry antigen receptors that are specific.

• There are two primarily types:

– B-lymphocytes (B cells)

– T-lymphocytes (T cells)

• Both of these originate in the bone marrow.

56

B-cells
• B cells are the detecting antibodies.

• Responsible for the production and secretion of antibodies.

• Each B-cell can only produce one particular antibody.

• Two types:

– Memory Cells

– Plasma Cells.

57

T-cells
The T-cells are of three types:

• Helper-T cells: Essential to the activation cells of immune system
(such as B-cells, or Suppressor T-cells). It is some kind of
permission giver.

• Killer T-cells: Binds to foreign invaders and inject poisonous
chemicals into them causing their destruction.

• Suppressor T-cells: Prevent action of cells that should never act.
Inhibits the action of other immune cells thus preventing allergic
reactions and autoimmune diseases.

58

B-Cell, Plasma and Memory Cell Animation

How Does IS Work

• Antigens bind to B cells.

(II)

(VII)

(VI)

(V)

(IV)

(III)

(I)

Activated B-cell

(plasma cell)

 Lymphokines

B-cell

Activated T-cell

T-cell

Peptide

MHC protein	Antigen

APC

How Does IS Work

• Helper T cells activates B
cells.
• Initiate B cell proliferation.

(II)

(VII)

(VI)

(V)

(IV)

(III)

(I)

Activated B-cell

(plasma cell)

 Lymphokines

B-cell

Activated T-cell

T-cell

Peptide

MHC protein	Antigen

APC

How Does IS Work

• B cells proliferate and
produce plasma cells.
• The plasma cells bear

antibodies with the
identical antigen
specificity.

• The antibodies are
released and circulate
through the body,
binding to antigens.

(II)

(VII)

(VI)

(V)

(IV)

(III)

(I)

Activated B-cell

(plasma cell)

 Lymphokines

B-cell

Activated T-cell

T-cell

Peptide

MHC protein	Antigen

APC

How Does IS Work

• B cells produce memory
cells.
• Memory cells provide

future immunity.

(II)

(VII)

(VI)

(V)

(IV)

(III)

(I)

Activated B-cell

(plasma cell)

 Lymphokines

B-cell

Activated T-cell

T-cell

Peptide

MHC protein	Antigen

APC

63

.

Self / Non-Self Recognition
• Immune system needs to be able to differentiate between self and

non-self cells.
• Cells belonging to the body itself are called the “self” cells.
• External cells are called the “non-self” cells.

• Antigenic encounters may result in cell death, therefore
• Some kind of positive selection.
• Some element of negative selection.

• It is important to keep the “self” cells unharmed in the course of
exterminating the “non-self” cells.

64

Affinity: Define Interaction
• Affinity: Closeness between Antibody and Antigen.

• Affinity is related to distance

– Euclidian ∑
=

−=
L

i
ii AgAbD

1

2)(

• Other distance measures such as Hamming, Manhattan etc.

• Affinity Threshold

65

Basic Immune Models and Algorithms
• Immune Network Models.

• Negative Selection Algorithms.

• Clonal Selection Algorithm.

• Somatic Hypermutation.

• Bone Marrow Models.

66

Negative Selection Algorithms

Self
strings (S)

Generate
random strings

(R0)
Match Detector

Set (R)

Reject

 No
Yes

 No

Yes

Detector Set
(R)

Protected
Strings (S) Match

Non-self
Detected

• Concept of Self and Non-Self.
• Provides tolerance for self cells.
• It deals with the immune system's ability to detect unknown antigens.

– while not reacting to the self cells.

Reject

 No

Generate random strings

(R0)

Detector

Set (R)

Self

strings (S)

Yes

Match

Detected

Non-self

Match

)

S

Strings (

Protected

)

R

(

Set

Detector

Yes

 No

67

Negative Selection Algorithms

68

Clonal Selection
• It establishes the idea that only those cells that recognize the antigen

proliferate.
– Those who do not recognize are slowly removed.

• Cloning is directly proportional to the fitness.

• Mutation is inversely proportional to fitness.

• Procedure:
– calculate the fitness.
– select K best fit.
– clone them proportional to their fitness.
– mutate them inversely proportional to fitness.

69

Clonal Selection (Adaptive IS)

Foreign antigens

Proliferation
(Cloning)

Differentiation

Plasma cells

 Memory cellsSelection

M

M

Antibody

 Self-antigen

 Self-antigen

Clonal deletion
(negative selection)

Clonal deletion
(negative selection)

M

 Memory cells

Plasma cells

M

Differentiation

Clonal deletion

(negative selection)

Selection

Proliferation

(Cloning)

Foreign antigens

Clonal deletion

(negative selection)

 Self-antigen

 Self-antigen

Antibody

70

Clonal Selection
• End result of applying clonal selection is a set of antibodies which

are representative of the antigenic data set:

• Performs data reduction.

• Used for clustering.

• Used for classification (e.g new antigens can be presented,
highest affinity antibody is indicative of class).

71

Somatic Hypermutation
• Mutation rate in proportion to affinity.

• Very controlled mutation in the natural immune system.

• The greater the antibody affinity the smaller its mutation rate.

• Classic trade-off between exploration and exploitation.

72

Bone Marrow Models
• Use gene libraries to store elements that can be combined to form

antibodies.

• Antibody production through a random concatenation from gene
libraries.

• Elements in library can be evolved using a genetic algorithm.

• c libraries of length l cl possible antibodies.

A1 A2 A3 A4 A5 C1 C2 C3 C4 C5B1 B2 B3 B4 B5

A2 B5 C1

73

Implementation of A Basic AIS
Fixed the encoding

Choose a suitable similarity measure

Selection

Mutation

Until stopping criteria are met.

Based on the
similarity measure

• Four decisions have to
be made:

– Encoding

– Similarity Measure

– Selection

– Mutation.

74

Initialisation / Encoding
• Define ‘antigen’ and ‘antibody’ in the context of an application domain.

• Typically, an antigen is the target or solution.
– e.g. data item we need to check to see if it is an intrusion (in IDS).

• The antibodies are the remainder of the data.
– e.g. a set of network traffic that has already been identified (IDS).

• There can be more than one antigen at a time.

• There are usually a large number of antibodies present
simultaneously.

Choice of Representation
• Antigens and antibodies are represented or encoded in the same

way.

• For most problems the most obvious representation is a string of
numbers or features, where
1. the length is the number of variables,
2. the position is the variable identifier and
3. the value is the value (could be binary or real) of the variable.

• For instance, in a five-variable binary problem, an encoding could
look like this: (10010).

Choice of Representation
• Assume the general case:

Ab = <Ab1, Ab2, ..., AbL>
Ag = <Ag1, Ag2, ..., AgL>

• Binary representation
– Matching by bits

• Continuous (numeric)
– Real or Integer, typically Euclidian

• Categorical (nominal)
– E.g female or male of the attribute Gender. Typically no notion

of order

77

Representation (Example)
• For the movie recommendation, a possible encoding is:

User ={{id1, score1}, {id2, score2}, ….. {idn, scoren}}

• For intrusion detection, the encoding may be to encapsulate the
essence of each data packet transferred,

[<protocol> <source ip> <source port> <destination ip> <destination port>]
[<tcp> <113.112.255.254> <108.200.111.12> <25>]

Choice of Affinity Functions
• Referred to as the “matching” or “fitness function in GA”.

• The similarity measure or matching rule is one of the most important
design choices in developing an AIS algorithm.

• Closely coupled to the encoding scheme.

Binary Coding
• Consider the pairs of strings:

3 3

• Quite different as the three matching bits are not connected
• Might be better or worse!!!!!
• Count the number of continuous bits that match and return the length

of the longest matching as the similarity measure.
• First example still be 3; second example it would be 1.

0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 1 0 1 0 Similarity matching /

bit-by-bit comparison

Not Binary
• If the encoding is non-binary, e.g. real variables, there are even

more possibilities to compute the “distance” between the two strings:

• For some problems (e.g. data mining), similarity often means
“correlation”.

Pearson correlation
coefficient

Coding Again…….
• For some applications, “matching” might not actually be beneficial

and hence those items that match might be eliminated.

• This approach is known as “negative selection” (discussed already).

• It mirrors what is believed to happen during the maturation of B-cells
who have to learn not to “match” our own tissues as otherwise we
would be subject to auto-immune diseases.

82

Negative Selection: Example
• Under what circumstance would a negative selection algorithm be

suitable for an artificial immune system implementation?

Anamoly Detection / Intrusion Detection System

• The normal behavior of a system is often characterized by a series
of observations over time.

• The problem of detecting novelties, or anomalies, can be viewed
as finding deviations of a characteristic property in the system. (i.e.
non-self).

83

Intrusion Detection System

Input can be OS log, network data packet,
application system log, firewall log, etc.

Intrusion
Detection

Input
normal

Anomalous

84

IDS using Negative Selection Algorithms
Self

strings (S)

Generate
random strings

(R0)
Match Detector

Set (R)

Reject

 No

Yes

 No

 Yes

Detector Set
(R)

 Strings (e.g.
credit card use
patterns)

Match

Non-self
Detected

Developing the
detector set

Using the
detector set

Reject

 No

Generate random strings

(R0)

Detector

Set (R)

Self

strings (S)

Yes

Match

Strings (e.g. credit card use patterns)

Detected

Non-self

Match

)

R

(

Set

Detector

Yes

 No

85

Mutation
• Very similar to that found in Genetic Algorithms.

– for binary strings bits are flipped.

– for real value strings one value is changed at random.

– for others the order of elements is swapped.

• The mechanism is often enhanced by the ‘somatic’ idea,

– The closer the match (or the less close the match, depending on
what we are trying to achieve),

• the more (or less) disruptive the mutation.

86

Example Application Areas

Computer
Security

OptimisationRobotic
Control

Data-Mining
and
classification

Anomaly
Detection

Network models

Clonal
Selection

Negative
selection

Bone Marrow

87

Y.

Typical Applications of AIS
• Computer Security (Forrest’94’98, Kephart’94, Lamont’98,02, Dasgupta’99’01, Bentley’01,02)
• Anomaly Detection (Dasgupta’96’01’02)
• Fault Diagnosis (Ishida’92’93, Ishiguro’94)
• Data Mining & Retrieval (Hunt’95’96, Timmis’99’01, ’02)
• Pattern Recognition (Forrest’93, Gibert’94, de Castro ’02)
• Adaptive Control (Bersini’91)
• Job shop Scheduling (Hart’98, ’01, ’02)
• Chemical Pattern Recognition (Dasgupta’99)
• Robotics (Ishiguro’96’97,Singh’01)
• Optimization (DeCastro’99,Endo’98, de Castro ’02)
• Web Mining (Nasaroui’02,Secker’05)
• Fault Tolerance (Tyrrell, ’01, ’02, Timmis ’02)
• Autonomous Systems (Varela’92,Ishiguro’96)
• Engineering Design Optimization (Hajela’96 ’98, Nunes’00)

88

• Yuce, B., Packianather, M. S., Mastrocinque, E., Pham, D. T., &
Lambiase, A. (2013). Honey bees inspired optimization method: the
bees algorithm. Insects, 4(4), 646-662.

• Aickelin, U., Dasgupta, D., & Gu, F. (2014). Artificial immune
systems. In Search methodologies (pp. 187-211). Springer, Boston,
MA.

Suggested Reading

	Lecture 9
	Outline
	Outline
	Bees Algorithm (BA)
	Bees in Nature - 1
	Bees in Nature - 2
	Bees in Nature - 3
	Bees in Nature - 4
	Bees in Nature - 5
	Bees in Nature - 6
	Bees in Nature
	Strategy
	BA: Local Search vs Global Search
	Natural Bees
	Main Parameters
	Slide Number 16
	Pseudocode: Standard BA
	Pseudocode: Standard BA
	Pseudocode: Standard BA
	Pseudocode: Standard BA
	Pseudocode: Standard BA
	Pseudocode: Standard BA
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Variants of BAs
	Variants of BAs
	Neighbourhood Shrinking (in improved version)
	Site Abandonment (in improved version)
	Slide Number 44
	BA Web Site (Cardiff University, UK)
	Outline
	Artificial Immune Systems (AIS)
	History
	Biological Immune System (BIS)
	Motivation
	Motivation
	Pathogen, Antigen, Antibody
	Appealing Features of BIS
	Different Immune Systems
	White Blood Cells (WBCs)
	B-cells
	T-cells
	B-Cell, Plasma and Memory Cell Animation
	How Does IS Work
	How Does IS Work
	How Does IS Work
	How Does IS Work
	Self / Non-Self Recognition
	Affinity: Define Interaction
	Basic Immune Models and Algorithms
	Negative Selection Algorithms
	Negative Selection Algorithms
	Clonal Selection
	Clonal Selection (Adaptive IS)
	Clonal Selection
	Somatic Hypermutation
	Bone Marrow Models
	Implementation of A Basic AIS
	Initialisation / Encoding
	Choice of Representation
	Choice of Representation
	Representation (Example)
	Choice of Affinity Functions
	Slide Number 79
	Not Binary
	Coding Again…….
	Negative Selection: Example
	Intrusion Detection System
	IDS using Negative Selection Algorithms
	Mutation
	Example Application Areas
	Typical Applications of AIS
	Suggested Reading

