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What is a Swarm?
• A loosely structured collection of interacting agents.

– Agents:

• Individuals that belong to a group (but are not necessarily

identical) .

• They contribute to and benefit from the group.

• They can recognize, communicate, and/or interact with each

other.

• A swarm is better understood if thought of as agents

exhibiting a collective behavior.
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Swarming

• Aggregation of similar animals/insects, generally cruising in the

same direction.

• Termites swarm to build colonies.

• Ants / Birds swarm to find food.

• Bees swarm to reproduce.
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Swarming is Powerful

• Swarms can achieve things that an individual cannot (Collective 

Bahaviour).
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Powerful … but simple

• Simple rules for each individual

• No central control

– Decentralized and hence robust

• Emergent

– Performs complex functions

• Self-organization



Big Question ???

• Do Ants know what they are doing?

– No.

– Ants aren't clever little engineers,

architects, or warriors.

• at least not as individuals.

• When it comes to deciding what to

do next, most ants don't have a clue.
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The Big Picture

• Ants aren't smart.

– Ant colonies are.

• A colony can solve problems

unthinkable for individual ants.

• As individuals, ants might be tiny

dummies,

– As colonies they respond

quickly and effectively to their

environment.

• They do it with something called

Swarm Intelligence.
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Swarm Intelligence
• Collective system capable of accomplishing difficult tasks in

dynamic and varied environments without any external guidance and

with no central coordination.

• Generally made up of agents who interact with each other and the

environment.

• Achieving a collective performance which could not normally be

achieved by an individual acting alone.

• Particularly suited to distributed problem solving.
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Why Insects?

• Insects have a few hundred brain cells.

• However, organized insects have been known for:

– Architectural marvels.

– Complex communication systems.

– Resistance to hazards in nature.
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Bees

• Colony cooperation.

• Regulate hive temperature.

• Efficiency via Specialization:

division of labour in the colony.

• Communication: Food sources

are exploited according to quality

and distance from the hive.
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Wasps

• Pulp foragers, water foragers & builders.

• Complex nests.

– Horizontal columns.

– Protective covering.

– Central entrance hole.
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Termites

• Cone-shaped outer walls and 

ventilation ducts.

• Brood chambers in central hive.

• Spiral cooling vents.

• Support pillars.
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Ants

• Organizing highways to and from their

foraging sites by leaving pheromone trails.

• Form chains from their own bodies to

create a bridge to pull and hold leafs

together with silk.

• Division of labour between major and

minor ants.



Social Insects
• Flexible.

– Static, dynamic, online, offline, stationary, time-varying, centralized,

distributed, Monolithic, modular, distributed, parallel, adaptive

• Robust.

– Always finds an optimal solution

– Deals well with change

• Decentralized.

– Point-to-point

– Broadcast like

– indirect

• Self-organized.

– The way complex systems/patterns arise out of a many simple interactions.

– It is often triggered by positive feedback.
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Self-Organization
• Self-organizing systems often display emergent properties.

– An emergent behaviour can appear as a result of the interaction

of components of the system.

– E.g. flocking, or organisation of ant colony.

• Real life example of self-organized behaviour in humans

– Emergence of paths across grassy area.

– Most popular paths are reinforced.



SCHOOL OF FISHES

• Some animal societies display coordinated and purposeful

navigation of several individuals (from tens to thousands).

• Each individual uses only local information about the presence of

other individuals and of the environment.

• There is no predefined group leader.

Emergent Collective Behavior

Flocking Schooling



PROCESSION OF COWS

Processions

In some cases there is a leader and

more restrictive rules on relative

motion, but individuals still use local

information to decide how to move.

V-formations

Emergent Collective Behavior

Herding

19
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Emergent Collective Behavior

individual swarm (ex: ant)

– stereotyped,

– unreliable,

– unintelligent,

– simple.

Collective swarm (ex: ant colony)

– flexible,

– reliable,

– intelligent,

– complex level performance



• Simple individuals (computational or physical) with simple abilities.

• Solve complex problems that a single individual could not solve.

• Robust despite loss of individuals or failure.

• Individuals have:

• Local sensory information

• Little/no memory

• NO global information

Swarm Intelligence

Main principles:

21
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• U.S. military is investigating SI for controlling unmanned vehicles.

• NASA is investigating the use of SI for planetary mapping.

Some SI Applications



Application
A swarm robotic demonstration using 278 miniature e-puck robots at the

Ecole Polytechnique Federale de Lausanne (EPFL) in Lausanne,

Switzerland. Robots in the video are all real, not computer generated.



Outline

• Introduction to Swarm Intelligence

• Ant Colony Optimization (ACO)

• Particle Swarm Optimization (PSO)

I am lost! Where is the line?!

- A Bug’s Life, Walt Disney, 1998
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Ant Colony Optimization (ACO)

• Proposed by Marco Dorigo in 1991.

• Multi-agent approach for solving difficult combinatorial optimization

problems.

• Inspired by the behavior of real ants.

• ACO is a population-based,

general search technique which is

inspired by the pheromone trail

laying behavior of real ant colonies.
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Ant Behavior
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Foraging Behavior of Ants

Two ants start with equal probability of going on either path.
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Foraging Behavior of Ants

The ant on shorter path has a shorter to-and-fro time from

it’s nest to the food.
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Foraging Behavior of Ants

The density of pheromone on the shorter path is higher

because of 2 passes by the ant (as compared to 1 by the

other).
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Foraging Behavior of Ants

The next ant takes the shorter route.
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Foraging Behavior of Ants

Over many iterations, more ants begin using the path with

higher pheromone, thereby further reinforcing it.
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Foraging Behavior of Ants

After some time, the shorter path is almost exclusively

used.



• Almost blind.

• Incapable of achieving complex tasks alone.

• Ant behavior is stochastic.

• The behavior is induced by indirect communication.

• Use stigmergic communication via pheromone trails.

• Limited ability to sense local environment.

• Act concurrently and independently.

• High quality solutions emerge via global cooperation.

The Ants 
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The term indicates communication among

individuals through modification of the environment.

Two individuals interact indirectly when one of

them modifies the environment and the other

responds to the new environment at a later time.

For example, some ants leave a chemical

(pheromone) trail behind to trace the path. The

chemical decays over time.

This allows other ants to find the path between

the food and the nest. It also allows ants to find

the shortest path among alternative paths.

Stigmergy
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Stigmergy in Humans
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• Typical examples are telephone, internet, and any

problem that can be described as TSP.

• Used/adopted by British Telecom, MCI

Worldcom, Barilla, etc.

• Advantage of algorithm is that, as ants do, it allows

dynamic rerouting through shortest path if one

node is broken.

• Most other algorithms instead assume that the

network is static.

Damaged node
Ant Colony Optimization
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Double Bridge Experiments 

(Deneubourg et al.)

Branches have equal length.
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Double Bridge Experiments (variant)

Branches have different length.
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Experimental Results
• Equal length bridges

– convergence to a single path (by random).

– each path is selected 50% of the experiments.

• Different length paths

– convergence to short path (autocatalytic or positive feedback). 

(a) Equal length bridges (a) Shorter length bridges
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High Concentration and Slow 

Evaporation of Pheromone

• Intitially only the long branch.

• After 30 minutes additional short branch.

• The short branch was selected sporadically.

• The colony was trapped on the long branch.
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From Biological Ants to Artificial Ants

Problem:

– Adaptation to reality.

Solution:

– Pheromone upgrade: evaporation.

– Ant aging: after a given time, ants are tired and have to come

back to the nest.

– 2 different pheromones : away (from nest) and back (from

source of food).
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The ACO Meta-Heuristic

• Procedure ACO_Metheuristic

– initialize parameters and pheromone trails

– while termination condition not met do

• generate ant solutions ()
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• Each ant generates a complete tour of nodes using probabilistic

transition rule encouraging choice of edge with

• high pheromone, and

• short distance.

ant k

r

s
t(r,s) pheromone

h(r,s) length

generate ant solutions ()
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The ACO Meta-Heuristic

• Procedure ACO_Metheuristic

– initialize parameters and pheromone trails

– while termination condition not met do

• generate ant solutions ()

• daemon activities() ((local search (optional))

– optional and strictly implementation-dependent, which

cannot be performed by single ants.
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The ACO Meta-Heuristic

• Procedure ACO_Metheuristic

– initialize parameters and pheromone trails

– while termination condition not met do

• generate ant solutions ()

• daemon activities() ((local search (optional))

• update pheromone()
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• The aim of the pheromone update is

1. to increase the pheromone values associated with good

solutions, and

2. to decrease those that are associated with bad ones.

• Usually, this is achieved

1. by decreasing all the pheromone values through pheromone

evaporation, and

2. by increasing the pheromone levels associated with a chosen

set of good solutions.

update pheromone()
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The ACO Meta-Heuristic

• Procedure ACO_Metheuristic

– initialize parameters and pheromone trails

– while termination condition not met do

• generate ant solutions ()

• daemon activities() ((local search (optional))

• update pheromone()

– end-while

• End procedure
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Initialize

Loop

Each ant is positioned on a starting node.

For each ant

Loop

Each ant applies a state transition rule to incrementally build a solution.

A local pheromone updating rule (after complete path found by one ant).

Until all ants have built a complete solution.

A global pheromone updating rule (after complete path found by all ants).

Until End_condition.

Local / Global Pheromone Update



Example: A 4-city TSP

A B

C
D

Pheromone

Ant
AB: 10,   AC: 10,   AD, 30,    BC, 40,    CD 20

Initially, random levels of pheromone are scattered on the edges



Example: A 4-city TSP

A B

C
D

Pheromone

Ant
AB: 10,   AC: 10,   AD, 30,    BC, 40,    CD 20

An ant is placed at a random node



Example: A 4-city TSP

A B

C
D

Pheromone

Ant
AB: 10,   AC: 10,   AD, 30,    BC, 40,    CD 20

The ant decides where to go from that node,

based on probabilities

calculated from:

- pheromone strengths,

- next-hop distances.

Suppose this one chooses BC



Example: A 4-city TSP

A B

C
D

Pheromone

Ant
AB: 10,   AC: 10,   AD, 30,    BC, 40,    CD 20

The ant is now at C, and has a `tour memory’ = {B, C} – so he cannot

visit B or C again. 

Again, he decides next hop

(from those allowed) based

on pheromone strength

and distance;

suppose he chooses

CD



Example: A 4-city TSP

A B

C
D

Pheromone

Ant
AB: 10,   AC: 10,   AD, 30,    BC, 40,    CD 20

The ant is now at D, and has a `tour memory’ = {B, C, D}

There is only one place he can go now: 



Example: A 4-city TSP

A B

C
D

Pheromone

Ant
AB: 10,   AC: 10,   AD, 30,    BC, 40,    CD 20

So, he has nearly finished his tour, having gone over the links:

BC, CD, and DA.  



Example: A 4-city TSP

A B

C
D

Pheromone

Ant
AB: 10,   AC: 10,   AD, 30,    BC, 40,    CD 20

So, he has nearly finished his tour, having gone over the links:

BC, CD, and DA. AB is added to complete the round trip. 

Now, pheromone on the tour

is increased, in line with the 

fitness of that tour.



E.g. A 4-city TSP

A B

C
D

Pheromone

Ant
AB: 10,   AC: 10,   AD, 30,    BC, 40,    CD 20

Next, pheromone everywhere

is decreased a little, to model

decay of trail strength over

time



Example: A 4-city TSP

B

C
D

Pheromone

Ant
AB: 10,   AC: 10,   AD, 30,    BC, 40,    CD 20

We start again, with another ant in a random position.

Where will he go?

Next  , the actual algorithm

and variants.

A
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Variants of ACO
ALGORITHM AUTHORS YEAR

Ant System (AS) Dorigo et al. 1991

Elitist AS Dorigo et al. 1992

ANT-Q Gambardella & Dorigo 1995

Ant Colony System (ACS) Dorigo & Gambardella 1996

MAx-Min AS Stutzle & Hoos 1996

Rank-Based AS Bullnheimer et al. 1997

ANTS Maniezzo 1999

BWAS Cordon et al. 2000

Hyper-Cube AS Blum et al. 2001



: Pheromone trail of combination (i, j)

: Local heuristic of combination (i, j)

: Transition probability of combination (i, j)

: Relative importance of pheromone trail

: Relative importance of local heuristic

: Determines the relative importance of exploitation versus 

exploration

: Trail persistence

ijt

ijh

ijP





0q



Parameters of ACO Algorithm



Ant System (AS) – the earliest version of ACO

State Transition Probability

Pheromone Update Rule




=

Ul

ilil

ijij

ijP




ht

ht

)()(

)()(


=

+=
NA

k

k

ij

old

ij

new

ij

1

ttt

,Qk

ij =t
ij

k

ij
d

Q
=t k

k

ij
L

Q
or =t

Variants of ACO Algorithms



ASelite

ASrank
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Ant-Q & Ant Colony System (ACS)

Local Updating (Online Updating)

Global Updating (Offline Updating)
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Max-Min Ant System (MMAS)

ANTS
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Applications

• TSP

• QAP

• VRP

• Telecommunication Network

• Scheduling

• Graph Coloring

• Water Distribution Network

• etc



Some Inherent Advantages

• Positive Feedback accounts for rapid discovery of good solutions.

• Distributed computation avoids premature convergence.

• The greedy heuristic helps find acceptable solution in the early

stages of the search process.

• The collective interaction of a population of agents.
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Applications to Industrial Problems

• The success on academic problems has raised the attention of a

number of companies that have started to use ACO algorithms for

real-world applications.

• EuroBios (www.eurobios.com).

• AntOptima (www.antoptima.com).
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Current Research

• Dynamic optimization problems.

• Parallel implementation.

• Multi-objective optimization.



The Future?



Outline

• Introduction to Swarm Intelligence

• Ant Colony Optimization (ACO)

• Particle Swarm Optimization (PSO)



Particle Swarm Optimization (PSO)
• Russ Eberhart (engineering Prof) and

James Kennedy (social scientist) in 1995.

• Inspired by social behavior of bird flocking

or fish schooling.

• PSO applies the concept of social

interaction to problem solving.

• Individuals interact with one another while

learning from their own experience, and

gradually move towards the goal.

• Finds a global optimum.
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Motivation: Coordinated Navigation



• Inspired by simulation social behavior.

• It combines local search methods with global search methods,

attempting to balance exploration and exploitation.

• It is easily implemented and has proven both very effective and

quick when applied to a diverse set of optimization problems.

Motivation 



73

Simple Creatures Following Simple Rules

Only three simple rules (Example: Birds flocking)

1. Avoid collision with neighboring birds.

2. Match the velocity of neighboring birds.

3. Steer toward the Center

– Stay near neighboring birds



74

• Particles fly around in a multidimensional

search space.

• During flight, each particle adjusts its

position according to its own experience,

and according to the experience of a

neighboring particle,

• making use of the best position

encountered by itself and its neighbor.

• Bird flocking is one of the best example of

PSO in nature.

Concept



Cooperation example
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Cooperation example
• Of course, this example is a caricatural one, but it presents the

main features of a particle in basic PSO:

• A position,

• A velocity (or, more precisely an operator which can be

applied to a position in order to modify it),

• The ability to exchange information with its neighbors,

• The ability to memorize a previous position, and

• The ability to use information to make a decision.

• Let’s now see more precisely these points.



77

The Basic Idea I

• Each particle (or agent) is searching for the optimum.

• Each particle is moving and hence has a velocity.

• Each particle remembers the position it was in where it had its

best result so far (its personal best - pbest).

• But this would not be much good on its own; particles need help

in figuring out where to search.

• Each particle know the globally best position that one

member of the flock had found, and its value (global

best - gbest).
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The basic idea II

• The particles co-operate.

• They exchange information about what they’ve discovered

in the places they have visited.

• The co-operation is very simple. In basic PSO it is like this:

• A particle has a neighborhood associated with it.

• A particle knows the fitnesses of those in its neighborhood,

and uses the position of the one with global best fitness.

• This position is simply used to adjust the particle’s velocity.



Initialization: Positions and Velocities
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What A Particle Does

• In each timestep, a particle has to move to a new position.

• It does this by adjusting its velocity. Having worked out a new velocity,

its position is simply its old position plus the new velocity.

• The adjustment is essentially of velocity is like this:

(i) The current velocity +

(ii) A weighted random portion in                                                        in 

the direction of its personal                                                         

best +

(iii) A weighted random portion in the                                                    

direction of the neighborhood best.

xi (t + 1) = xi (t) + vi (t + 1)

vi (t + 1)= vi (t) + c1 * rand() * (pbestxi – xi (t))

+ c2 * rand() * (gbestx – xi (t))

where 0 < rand() <1
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Algorithm – Phase 1 (1D)

• Using the co-ordinates of pbest and gbest, each agent calculates its

new velocity as:

vi (t + 1) = vi (t) + c1 * rand() * (pbestxi – xi (t))

+ c2 * rand() * (gbestx – xi (t))

where 0 < rand() <1

xi (t + 1) = xi (t) + vi (t + 1)

Acceleration constants c1 and c2, are real-valued and usually in the

range 0 ≤ (c1 + c2 ) ≤ 4

inertia

Personal / 

cognitive
influence

Social / global 
influence



Neighbourhoods

geographical

social



Neighbourhoods: Size

• Size of the neighborhood could be a problem.

• Fortunately, PSO is not very sensitive to this parameter and

most of users just take a value of 3 or 5 with good results.

• Unlike for the swarm size, there is no mathematical formula,

• but like for the swarm size, there are some adaptive

variants.



Pseudocode

Equation (a)

vi (t + 1) = c0 * vi (t)

+ c1 * rand() * (pbestxi – xi (t))

+ c2 * rand() * (gbestx – xi (t))

(in original method, c0=1, but many researchers now play with this)

Equation (b)

xi (t + 1) = xi (t) + vi (t + 1)



Pseudocode
For each particle 

Initialize particle

END

Do

For each particle 

Calculate fitness value

If the fitness value is better than its peronal best

set current value as the new pBest

End

Choose the particle with the best fitness value of all as gBest

For each particle 

Calculate particle velocity according Equation (a)

Update particle position according Equation (b)
End 

While maximum iterations or minimum error criteria is not attained



Particles adjust their positions according to a ``Psychosocial

compromise’’ between what an individual is comfortable with, and

what society reckons

Here I 
am!

The best 
perf. of my 
neighbours

My best 
perf.

x
pg

pi

v

Position Adjustment
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PSO Solution Update in 2D

x(k) - Current solution (4, 2)

PBest - Particle’s best solution (9, 1)

GBest-Global best solution (5, 10)

GBest

PBest
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PSO Solution Update in 2D

Inertia: v(k)=(-2, 2)

x(k) - Current solution (4, 2)

PBest - Particle’s best solution (9, 1)

GBest-Global best solution (5, 10)

GBest

PBest



89

PSO Solution Update in 2D

➢ Inertia: v(k)=(-2,2)

➢ Cognitive: 

PBest-x(k)=(9,1)-(4,2)=(5,-1)

➢ Social: 

GBest-x(k)=(5,10)-(4,2)=(1,8)

x(k) - Current solution (4, 2)

PBest - Particle’s best solution (9, 1)

GBest-Global best solution (5, 10)

GBest

PBest
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PSO solution update in 2D

x(k) - Current solution (4, 2)

PBest - Particle’s best solution (9, 1)

GBest-Global best solution (5, 10)

➢ Inertia: v(k)=(-2,2)

➢ Cognitive: 

PBest-x(k)=(9,1)-(4,2)=(5,-1)

➢ Social: 

GBest-x(k)=(5,10)-

(4,2)=(1,8)

v(k+1)=(-2,2)+0.8*(5,-1) 

+0.2*(1,8) = (2.2,2.8)

GBest

PBest

v(k+1)
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PSO Solution Update in 2D

GBest

PBest

x(k+1)

x(k) - Current solution (4, 2)

PBest - Particle’s best solution (9, 1)

GBest-Global best solution (5, 10)

➢ Inertia: v(k)=(-2,2)

➢ Cognitive: 

PBest-x(k)=(9,1)-(4,2)=(5,-1)

➢ Social: 

GBest-x(k)=(5,10)-

(4,2)=(1,8)

➢ v(k+1)=(2.2,2.8)

x(k+1)=x(k)+v(k+1)=

(4,2)+(2.2,2.8)=(6.2,4.8)



How to Choose Parameters
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Parameters

• Number of particles

• (10—50) are reported as usually sufficient.

• C1 (importance of personal best)

• C2 (importance of neighbourhood best)

• Usually C1 + C2 = 4. 

• No good reason other than empiricism

• Vmax:  limit on velocity



Vmax

• An important parameter in PSO; typically the only once adjusted.

• Particles' velocities on each dimension are clamped to a maximum

velocity Vmax.

– If the sum of accelerations would cause the velocity on that

dimension to exceed Vmax , the velocity on that dimension is

limited to Vmax .

• Determines “fineness” with which regions are searched

– if too high, can fly past optimal solutions

– if too low, can get stuck in local minima



Adaptive Swarm Size

There has been enough

improvement

but there has been not enough 

improvement

although I'm the worst

I'm the best

I try to kill myself

I try to generate a 

new particle



Adaptive Coefficients

The better I 

am, the more I 

follow my 

own way

The better is my 

best neighbour, the 

more I tend to go 

towards him

v
rand(0…b)(p-x)



Explore PSO and Its Parameters 

http://www.macs.hw.ac.uk/~dwcorne/mypages/apps/pso.html

http://www.macs.hw.ac.uk/~dwcorne/mypages/apps/pso.html
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PSO - Summary
• The method allows the motion of particles to explore the space of

interest.

• Each particle updates its position in discrete unit time steps.

• Not “what” that best solution was, but “where” that best solution

was.

• The velocity is updated by a linear combination of two terms:

– The first along the direction pointing to the best position

discovered by the particle.

– The second towards the overall best position.
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Additional Reading + References


