

Lecture 8

EvoDevo

Håken Jevne, Pauline Haddow and Kazi Ripon

Contents

- Introduction :
 - Complexity and Adaptivity
 - POE System
- Biological Development
- EvoDevo
- EvoDevo challenges
- Different Development Models
- Further EvoDevo challenges
- Related Applications

Scalability In EAs?

- Complex problems:
 - Tune representation
 - Tune GA: operators, selection method....
 - Divide and Conquer
 - Incremental Evolution

Look to biology: Development process

What about Adaptivity?

- An Organism Develops in an Environment
 - Phenotype adapts to THE environment
- An Organism Functions in a potentially changing environment
 - Phenotype adapts to changes in the environment

Function and Structural Adaption

NTNU

- Environment change
 - Less food
- \rightarrow Physical change
- \rightarrow Functional change
 - Plant eater to carnevour
 - Canibalism
- Stable environment
 - Reversed process

POE System

- Phylogenetic or Evolutionary
 - genetic operators, fitness functions, etc.
- **Ontogenetic** or Developmental
 - non-trivial genotype-to-phenotype mapping.
 - genotype is a *recipe* that, through some recursive growth process, produces the phenotype.
- Epigenetic or Learning
 - During actual performance testing
 - system is able to modify itself in some manner that effects future behavior.

A Classic Early Developmental Encoding

NTNU

Kitano's (1990) encoding of ANNs as context-free grammars. The first complete POE system

Contents

- Introduction :
 - Complexity and Adaptivity
 - POE System
- Biological Development
- EvoDevo
- EvoDevo challenges
- Different Development Models
- Further EvoDevo challenges
- Related Applications

Biological Development

Development is essentially the emergence of organised structures from an initially very simple group of cells

- Evolution *designs* life
- Development *builds* it
 - construction and self-organisation
 - interplay of proteins, genes, cells, and environment
 - life time process

Single Cell to Multicellular Organism

- cleavage division (no increase in cellular mass)
- pattern formation initial body plan - coordinate system
 - germ layers ectoderm, mesoderm and endoderm
- morphogenesis
- cellular differentiation

cell signalling asymmetric division

• growth (cellular proliferation, cell size)

Mechanisms: Proteins

- specify cell behaviour
- acts as an enzyme catalyst
- unique sequence of amino acids -
 - distinct 3D form determined by ordered nucleotides in genes
 - codon = nucleotide triplet = distinct amino acid
- Transcription factors

Gene Regulatory Network (GRN)

- Cell: Protein processing machine
- Set of genes, proteins, small molecules
 - Genes encode proteins
 - Proteins control cell function
 - DNA -> RNA -> proteins
 - Each step, self regulation of the cells function
 - Adjust amount/type proteins produced
 - Protein thresholds for cell function activation

GRN: Network of Genes

- Nodes are genes
- Input: transcription factors (proteins)
- Output: Gene expression
 - Cell response
 - Expressed gene = active gene (turned on)
- Unicellular organisms
 - Respond to external environment to make cell survive
- Multicellular organisms
 - Control transcription, cell signalling and development

Signalling Pathways and Transcription Factors

- Signal
 - Incoming molecule to the cell, input to GRN
- Signalling pathways
 - Respond to signals
 - Response: cascade of biochemical reactions
 - · Leads to one or more cellulær activities
 - Gene regulation (on/off specific genes)
 - Protein activity (opening/closing ion channel)
 - Change in cell metabolism (breakdown of glcogen)

Transcription factors

- Proteins that convert DNA to mRNA
- translation: mRNA -> protein)
- Bind to genes

Three Stages of Signal Transduction

Regulating Gene Expression

Contents

- Introduction :
 - Complexity and Adaptivity
 - POE System
- Biological Development

EvoDevo

- EvoDevo challenges
- Different Development Models
- Further EvoDevo challenges
- Related Applications

Artificial Development

- Model biological Development
- Artificial Development : computation technique
 - complex designs

NTNU

- Naturally avoids $1 \rightarrow 1$ compact genotypes
- naturally exploits : symmetry and modular structures
- scalable, self-organised and distributed process
- robustness adaptivity to environment

Synthesis of Development Systems

• By Hand:

NTNU

- The rules are given
- Can "easily" be deduced e.g. Moss leaves
- Geometric specifications are not strict e.g. plant-like
- Search:
 - non trivial developmental outcome
 - neural network robot controller, electronic circuit
- Inverse problem: finding the development process
 - Too challenging

Evolution automates the synthesis of developmental systems and the developmental representation provides a more evolvable and more powerful evolutionary process

Evolution + Development = EvoDevo

Artificial Development

• Problem description = DNA (genome)

- Development Process
 - DNA decompressed(unfolded) into a potential solution
 - Complex process of gene regulation
 - Simpler developmental process
 - Single cell to multicellular organisms through the actions of cells

Genotypic Encodings : DNA

- Direct
 - Position (in chromosome) and bits determine a phenotypic trait, independent of all other genes. s
- Indirect (uncompressed)
 - Genes may interact in determining traits.
 - Chromosomal position and/or bits may only be relative indicators.
- Generative (developmental)
 - Genes encode parameters for a developmental scheme.

Schedule the 3rd exam for the 10th time slot.

1110001101011011.....

Schedule the **next unscheduled** exam for the 10th of the **unfilled** time slots

Contents

- Introduction :
 - Complexity and Adaptivity
 - POE System
- Biological Development
- EvoDevo
- EvoDevo challenges
- Different Development Models
- Further EvoDevo challenges
- Related Applications

D NTNU

Evolving 'DNA'

Goal: Simpler genotype, more efficient evolution

Challenge: Complexity is in the mapping!

Challenge: Finding the Right DNA

Phenotype space = 2^Length of phenotype:

Developmental Representations NTNU

Advantages

- Complex phenotypes generated from compact genotypes.
- More biologically realistic ٠
- Facilitate evolution of repetitive structure.
- Can support gradual evolution of complexity.
- Disadvantages
 - May overconstrain search •
 - Difficulty finding needle in a haystack optimal solutions. •

Challenge: Adaptive Solution

Fixed environment A

Adaptive solution, A and B?

• Test each solution in both environments

Unknown environment?

Challenge: Fitness?

- DNA + development process
- Fitness says little about DNA itself
 - Indirect evaluation of DNA
- What if the evolved developed phenotype does not resemble the organism
 - Need some way of 'goodness*
- How good is the development path chosen?

Fitness should measure the developmental process as well as the result.....

Challenge: Bio-plausible Vs Bio-inspired models

• Bio-Plausible:

NTNU

- support biological research
- mechanisms at work and interplay
- more realistic artificial model for computation
 - disadvantages:
 - resource greedy
 - is such a complicated process needed?
 - will natural development solve artificial problems
- Bio-inspired:
 - Artificial goal
 - Need effective process

Contents

- Introduction :
 - Complexity and Adaptivity
 - POE System
- Biological Development
- EvoDevo
- EvoDevo challenges
- Different Development Models
- Further EvoDevo challenges
- Related Applications

Which Development Model?

- Use someone's favourite model?
 - Not understood
 - Wrong starting point?
 - Normal for a maturer research field / popular
- Start from scratch?
 - Normal early in a research field
- We are still far from understanding
 - what a development model is
 - how it should be applied
 - what such a model might achieve

Model 1: L-systems

L-systems

Introduced as a rewriting system to model organism development.

Represent a powerful formalism to model plant development [Lindenmeyer, 1968]

L-system : rule based system

L-system

- Alphabet A: a set of symbols
- An axiom **w** (initial string of symbols)
- set P of production rules
- stopping condition OR self-limited growth
- Production Rules:
 - predecessor \rightarrow successor
 - applied in parallel
 - recursively replace all symbols in the string
 - identity production rule, p_0 ; $s \rightarrow s$.
 - Assumed if not other specified

Simple example

A: abc W: a P: $a \rightarrow abc$

 $a \rightarrow abc \rightarrow abcbc \rightarrow abcbcbc....$

L-system: Biology Modelling

Development of a Moss Leaf [Lindenmayer 1975]

Primary cellsISecondary CellsIITertiary CellsIII

Production Rule Effects

- Cell division
- Cell type change
- Cell growth (mass)

Grow Rules

- Increase cell Mass or
- duplication

$$A = \{a, b, c, \dots D, R\}$$

Application to Computer Graphics

NTNU

Model 2 GRN: analogue electronics

Biology Concept

- Environment Signal (protein...)
- Protein binding
- \rightarrow activates genes
- \rightarrow gene expression

Analogue Electronic Concept

- Input signal = Env. Signal
- input \rightarrow output (translation)
- output \rightarrow 'protein' mask
- Gene = CAM, Configurable Analogue Module
- \rightarrow activates genes
- \rightarrow CAM expression

Regulating Gene Expression

GRN example: Analogue Circuit

GRN: CAM expression

Model 3: Simple GRN Model

- Masters work Johan Høye, EVODEVO
- 3D structures
- Features:

NTNU

- Cell with DNA, chemicals, proteins
- 6 neighbours
- Set of rules for updates
 - Evolution refines the rules
- Single cell to multicellular organism
 - Static structures
 - Growth (replication)
 - Change (new function colour)

Artificial Development of 3D shapes

When developing shapes(forms), achieving irregularities and asymmetries can be challenging.

Model 4: Rule-based system

2D cellulær automata

Achieving Patterns

Development Time

- Achieving structures
 - Development step
 - Single update/application of the development rules
 - Create new cells, change type of cells..... Based on rules
- Achieving function
 - Development step
 - State Step
 - Function updates across cells
 - Cell function (value) depends on state of neighbours
 - Changes in state neighbour -> state update (next clock)

Achieving Functionality

Grid is the developed organism

- each cell has
 - e a type
 - a value @ time t

Function = entire organism

- interpretation of state patterns
- cyclic patterns over time
 - 4 step pattern

Contents

- Introduction :
 - Complexity and Adaptivity
 - POE System
- Biological Development
- EvoDevo
- EvoDevo challenges
- Different Development Models
- Further EvoDevo challenges
- Related Applications

CA model: Achieving a 4-step counter

And loosing the counter...see DS 13!

Challenges : When to stop?

- EvoDevo:
 - Developing the phenotype for an individual (during evolution)
 - Fitness evaluation
- When to stop development?
 - How many development steps?
 - Example: counter dissappeared...stop earlier?
 - do you want to stop or just stabilise?
 - Adaptive solution needs to re-develop
 - How many state steps?

Challenge: ripple effect: when to stop?

DS1	
DS2	
DS3	
DS4	
DS5	
DS6 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	
DS7	
DS8 Millinininininininininininininininininin	
DS9	
DS10	
DS11 Mininininininininininininininininininin	
DS12	
DS13 hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh	
DS14	
DS15	
DS16	, անդերին են են անդերին են հետերին են հետերին են հետերին հետերին հետերին հետերին հետերին հետերին հետերին հետեր
DS17	
DS18	հեղերի հեղերի հեղերի հեղերի հեղերի հեղերի հեղերի հեղերին հեղերին հեղերին հեղերին հեղերին հեղերին հեղերին հեղեր
DS19	
DS20 MMMMMMMMMMMMMMMMMMMMMMMMMMMMM	
77 State stops	78 State stops

// State steps

78 State steps

Scalability?

Scalability

- increase in solution size scalable?
 - Example: Kozas evolved (GP) analogue solutions
 - Huge resources to create highly complex circuits
 - Good for one-off solutions
 - Efficient scalable technique?

Scaling up of problem size **without** a corresponding increase in resource requirements

Contents

- Introduction :
 - Complexity and Adaptivity
 - POE System
- Biological Development
- EvoDevo
- EvoDevo challenges
- Different Development Models
- Further EvoDevo challenges
- Related Applications

Related Applications : research

- DNA Tiling
 - Part of DNA computing
 - biological form of cellulær computation
 - DNA cells
 - Reconfigurable biological technology

Self-healing Materials

Required Reading

- Chapter 2: 2.1-2.4, chapter 4, Floreano book
- <u>Achieving a simple development model for 3D shapes: are chemicals necessary?</u> Pauline haddow and Johan Høye, <u>Proceedings of the 9th annual conference on Genetic and evolutionary computation</u>, 2007
- EVOLUTIONARY SEARCH APPLIED TO RECONFIGURABLE ANALOGUE CONTROL, Kester Clegg, Susan Stepney, Tim Clarke, International Conference on <u>Field Programmable Logic and Applications, 2007. FPL</u> <u>2007</u>