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Single Objective Optimization
The problem has a 1 dimensional performance space and the optimum
point is the one that is the furthest toward the desired extreme.

There is typically only a single solution that gives the best objective value.

F-0+

Optimum Optimum



Best in all dimensions?
But what happens in a case like this (conflicting):

F1

F2 Minimize Both F’s

Optimum?

Optimum?
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Why Multi-Objective Optimization?
Buying an Automobile 

• Objective = reduce cost, while maximize 
comfort.

• Which solution (1, A, B, C, 2) is best ???

• No solution from this set makes both
objectives look better than any other
solution from the set.

• No single optimal solution.

• Trade off between conflicting objectives-
cost and comfort.

MO optimization means:

“Take from Peter to pay Paul”
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Formal Definition 
• A multi-objective optimization problem has a number of objective

functions which are to be minimized or maximized.

General form of multi-objective optimization:
Minimize/maximize fm(x), m = 1,2,3,……..,m;
Subject to gj (x) ≥ 0, j = 1,2,3,……….,j;

hk(x) = 0, k = 1,2,3,………,k;
xi

(L) ≤ xi ≤ xi
(U) , i = 1,2,3,……….,n

• A solution x that does not satisfy all of the (J + K) constraints and all of
the 2N Variable bounds is called an infeasible solution.

• On the other hand, if any solution x satisfies all the constraints and
variable bounds, it is called a feasible solution.
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Multi-Objective Optimization
• A MOOP will have many alternative
solutions in the feasible region.

• This is because a solution that is
optimal with respect to one objective
might be a poor candidate for another
objective.

• Even though we may not be able to
assign numerical relative importance to
multiple objectives, we can still
classify some possible solutions as
better than others.
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Multi-objective optimization is the process of simultaneously optimizing
several incommensurable and often competing objectives subject to
certain constraints.

v Maximizing profit and minimizing the cost of a product.

v Maximizing performance and minimizing fuel consumption of a
vehicle.

v Minimizing weight while maximizing the strength of a particular
component.

Evolutionary Approach: General Concept
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Conceptual Example
• Suppose you need to fly on a long trip:

– Should you choose the cheapest ticket (more connections) or
shortest flying time (more expensive)?

• It is impossible to put a value on time, so these two objectives can’t be
linked.

• Also, the relative importance will vary.
– There may be a business emergency you need to go fix quickly.
– Or, maybe you are on a very tight budget.
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Example

• Airplane-Trip Tickets (Travel Time vs. Price):

Ticket Travel Time 
(hrs)

Ticket 
Price ($)

A 10 1700
B 9 2000
C 8 1800
D 7.5 2300
E 6 2200

A, C,  E
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Comparison of Solutions
• If we compare tickets A & B, we can’t say that either is superior without

knowing the relative importance of Travel Time vs. Price.

• However, comparing tickets B & C shows that C is better than B in both
objectives, so we can say that C “dominates” B.

• So, as long as C is a feasible option, there is no reason we would
choose B.

• If we finish the comparisons, we also see that D is dominated by E.

• The rest of the options (A, C, & E) have a trade-off associated with Time
vs. Price, so none is clearly superior to the others.

• We call this the “non-dominated” set of solutions become none of the
solutions are dominated.
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Graph of Solutions
Usually, solutions of this type form a typical shape, shown in the chart below:
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Solution to MOOP 
• The solution to MOOP consists of sets of trade-offs between

objectives.

• The goal of MOO algorithms is to generate these trade-offs.

• Exploring all these trade-offs is particularly important because it
provides the system designer/operator with the ability to understand
and weigh the different choices available to them.
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Traditional Approaches
• Weighted Sum Method.

• Lexicographic Ordering Method.

• The Ɛ-Constraint Method.



Weighted Sum Method
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and m represents the number of objective functions.

• Formulate as a single objective with weighted sum of all objective
functions:

• Multiple objectives are combined into a single objective using weighted
co-efficients.

• Problem is then treated as a single objective problem.



• Relative weights of the objectives are not exactly known in advance.
• Objective function that has the largest variance value may dominate
the multi-objective evaluation.

• Some solutions may be missed.

• A single solution is obtained at one time.
• Multiple runs of the algorithm are required in order to get the whole
range of solutions.

• Difficult to select proper combination of weights.

• Selection of weights depends on user and this restricts the final varies
from user to user.

• Sometimes the differences are qualitative and the relative importance of
these objectives can’t be numerically quantified.

Weighted Sum Method: Limitation
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Evolutionary vs Traditional Approaches
Evolutionary Approaches Traditional Approaches

Can simultaneously deal with a set
of possible solutions (the so-called
population).

Normally work with a single solution.

Allow us to find several members of
the Pareto-Optimal set in a single
run of the algorithm.

Need to perform a series of
separate runs to find a set of
alternative solutions.

less susceptible to the shape or
continuity of the Pareto front -- can
easily deal with discontinuous or
concave Pareto fronts.

These two issues are a real concern
for mathematical programming
techniques

Can be implemented in a parallel
environment.

Difficult for parallel implementation.
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Pareto-Optimality
• Pareto optimization can handle the
problems associated with weighted-sum
approach very efficiently.

• The term domination is used to find the
trade-offs solutions.

• A solution x(1) is said to dominate the
other solution x(2), if both the following
conditions are true:
1. The solution x(1) is no worse than
x(2) in all objectives.

2. The solution x(1) is strictly better
than x(2) in at least one objective.

• The line is called the
Pareto front and solutions
on it are called Pareto-
Optimal.
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Shape of Pareto-Front



• To find a set as close as possible to the Pareto-optimal front
(Convergence).

• To find a set of solutions as diverse as possible (Diversity).
• Representation of the entire Pareto-Optimal front.
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Convergence Metrics: One Example 
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The parameters       and       are the Euclidean distances between the 
extreme solutions of true Pareto front and the boundary solutions of the 
obtained non-dominated set.

di can be any distance measure between neighboring solutions, and       is 
the mean value of these distance measures.
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Diversity Control based on Non-Domination 
Concept
• Fonseca and Fleming (1993) first introduced a multi-objective GA which

used non-dominated classification of a GA population, and
simultaneously maintained diversity in the non-dominated solutions.

• Each solution is checked for its domination in the population.

– A rank equal to (1 + the number of solutions ni that dominates the
solution i ) is assigned to solution i.

• In order to maintain diversity among non-dominated solutions, niching
has been introduced among solutions of each rank.
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Niching: ranking (MOGA)

• Upper figure shows a two-objective
minimization problem having 10
solutions.

• Lower figure shows the rank of each
solution.

• The ranking procedure may not assign
all possible ranks (between 1 and N).

• Ranks 7, 9 and 10 are missing.
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Niching
• The idea of segmenting the

population of the GA into disjoint sets
to have at least one member in each
region of the fitness function that is
"interesting“ – local/global optima;

– General intention is to cover more
than one local optima.

• Niching is used to maintain the
diversity of the population.
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Niching : Sharing Function Model
• To maintain diversity among non-dominated solutions, niching among
solutions of each rank.

• Focusing on degrading the fitness of similar solutions.
• Niche count provides an estimate of the extent of crowding near a
solution.

• The normalized distance between any two solutions i and j in a rank is
calculated as follows:

• Where and are the maximum and minimum objective
function value of the k-th objective.
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Niching : Sharing Function Model

• For the solution i, dij is computed for each solution j (including i) having
the same rank.

• With α = 1, the sharing function value is computed as:

• Thereafter, the niche count is calculated by summing the sharing function
values:

where μ(ri) is the number of solutions in rank ri .

• Calculate the shared fitness value as f’i = fi / nci
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Niching : Sharing Function Model
• Sharing function is used to obtain an estimate of the no. of solutions
belonging to each optimum.

• The parameter d is the distance between any two solutions in the population.
• The above function takes a value in [0,1], depending on the values of d and
σshare.

• If d is zero (two solutions are identical or their distance is zero), Sh(d) = 1.
• A solution has full sharing effect on itself.

• If d ≥ σshare (two solutions are at least a distance of σshare away from each
other, Sh(d) = O.
• Two solutions do not have any sharing effect on each other.

• Any other distance d between two solutions will have a partial effect on each.
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Example * (fitness sharing, not MO)
Assume:
σshare = 0.5
α = 1

* Example taken from Deb, 2001.
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Example
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Example

Similarly, the niche count calculations of all six solutions:
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Example

Similarly, six solutions and corresponding shared fitness values:
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Crowding Distance Assignment
• The crowding operator (≤" ) guides the selection process at the

various stages of the algorithm toward a uniformly spread-out Pareto
optimal front.

• IN NSGA-II, it is used to choose the members of the last front (rank),
which reside in the least crowded region in that front using a niching
strategy.

• It helps to maintain a good spread of solutions in the obtained set of
solutions.

• It does not require any user-defined parameter for maintaining diversity
among populations.
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Crowding Tournament Selection Operator
• A solution i wins a tournament with another solution j if any of the

following conditions are true:

• If solution i has a better rank: ri < rj.

• If they have the same rank but solution i has a better
crowding distance (lower dense) than solution j:
• that is, ri = rj and di > dj.

.
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Crowding Distance Assignment Procedure: 
Crowding-sort(F, <c)

I1 , Il = the lowest and highest objective function
values (different for each objective,
based on sorting), respectively.

l



Minimize

where
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Crowding Distance : Example 

• Search space is of single dimension (given).

• Objective space is of two dimension (given).

• Let population size = 10
• Initialize population with 10 chromosomes having single
dimensioned real value.

• These values are randomly distributed in between [-5, 5].

0.4678
1.7355
0.8183
-0.414
3.2105
-1.272
-1.508
-1.832
-2.161
-4.105

x



-0.414 0.171 5.829
0.467 0.218 2.347
0.818 0.669 1.396
1.735 3.011 0.07
3.210 10.308 1.465
-1.272 1.618 10.708
-1.508 2.275 12.308
-1.832 3.355 14.682
-2.161 4.671 17.317
-4.105 16.854 37.275

x ( )xf1 ( )xf2

Crowding Distance : Example 

• Find out all objective functions values for all chromosomes.
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Crowding Distance : Example 
• Assigning the rank to each individual of the population.
• Rank based on the non-domination sorting (front wise).
• It helps in selection and sorting.
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• Crowning distance can be
calculated for all chromosomes
of same Pareto front.

Crowding Distance Assignment



‘Tournament’ among a few individuals chosen at random from the
population and selects the winner (the one with the best fitness)
for crossover.

Tournament Selection

0.818 0.669 1.396 1 1.378
-1.508 2.275 12.30 3

x ( )xf1 ( )xf2 Rank ..DC

¥

0.818 0.669 1.396 1 1.378

rankrank 21 <

0.467 0.218 2.347 1 0.945
0.818 0.669 1.396 1 1.378

x ( )xf1 ( )xf2 Rank ..DC

0.818 0.669 1.396 1 1.378

rankrank 21 = .... 21 DCDC <
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NSGA- II
• Developed by Prof. K. Deb and his students at Kanpur Genetic

Algorithms Laboratory (2002).

• Famous for Fast non-dominated search.

• Fitness assignment: Ranking based on non-domination sorting.

• It uses an explicit diversity-preserving mechanism:
• Crowding distance.

• Uses Elitism:

Citation: 23228



NSGA- II: Elitism
• The offspring population Qt is first created by using parent population Pt.

• Instead of finding the non-dominated front of Qt only, the two populations
are combined together to form Rt of size 2N.

• Then a non-dominated sorting is used to classify the entire population Rt.

• It allows a global non-domination check among the offspring and parent
solutions.
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Pt

Qt

Rt ={Pt , Qt}

F1

Non-dominated 
sorting (Rank)

Crowding distance 
sorting

F2

F3

Rejected

NSGA- II: Selection for Next Generation

Pt+1

Elitist Replacement 

2N

N

Instead of arbitrarily discarding
some members from the last front,
Use a niching strategy to choose
the members of the last front,
which reside in the least crowded
region in that front.
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NSGA II: Example *

• Parent and offspring populations used in this example:

* Example taken from K. Deb, 2001.
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NSGA II: Example
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NSGA II: Example

A
aA
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NSGA II: Example

Step 3:
• Next, we consider solutions of the second front only and observe that 3

of the 4 solutions must be chosen to fill up 3 remaining slots in the
new population.

• This requires that we first sort this sub-population (solutions 1, 3, a, and
d ) by using crowding distance operator.
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NSGA II: Crowding Distance Assignment
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NSGA II: Crowding Distance Assignment
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NSGA II: Crowding Distance Assignment



56

NSGA II: Crowding Distance Assignment
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NSGA II: Crowding Distance Assignment
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NSGA II: Example
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NSGA II: Example

• The offspring population Qt+1 has to be created next by using this
parent population.

• The exact offspring population will depend on:

• The chosen pair of solutions participating in a tournament ─
Crowding Tournament Selection Operator.

• The chosen crossover.

• The Chosen mutation operators.



Outline
• Introduction to MOO

– Conceptual example

• Pareto-Optimality and Metrics
• Diversity Preservation

– Example: NSGA II

• Other MOO Algorithms
• MOO Application example



61

• Multiple Objective Genetic Algorithm (MOGA)

• Strength Pareto Evolutionary Algorithm (SPEA)

• Niched Pareto Genetic Algorithm (NPGA)

• Pareto-Archived Evolution Strategy (PAES)

• Multi-Objective Messy Genetic Algorithm

Other MOO Algorithms
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Comparison of MOO Algorithms
MOGA NSGA NPGA NSGAII SPEA PAES

Fitness Very simple Excellent due to 
assignment of 
fitness according to 
non dominated 
sets.

No explicit fitness 
assignment is 
needed like most 
other MOEAs.

Due to global non-
domination check 
among offspring and 
parent solutions, elitism 
is implemented 
perfectly.

Easy to calculate. A more direct 
approach is used in 
calculating the 
density while 
comparing the 
fitness.

Effect of 
parameters

Sharing function 
parameter σshare
needs fixing

Very sensitive to 
σshare

Requires fixing 
two important 
parameters: ashare
and tdom

Solutions compete with 
their crowding 
distances. So, no extra 
niching parameter is 
required.

Parameter-less, 
thereby making it 
attractive to use. 

In addition to 
archive size (!), 
depth parameter 
(") is also 
important.

Convergence Slow Front-wise 
selection helps 
better convergence 
speed.

The choice of 
σshare has more 
effect.

Elitism helps speedy 
convergence.

Not so speedy (non-
dominated sorting 
of the whole 
population is not 
used for assigning 
fitness)

Depends on the 
choice of 
parameter values.

When to use If a spread of 
Pareto-optimal 
solutions is 
required on the 
objective space.

It ensures that 
diversity is 
maintained among 
the non-dominated 
solutions.

Computationally 
efficient in solving 
problems with 
many objectives.

When a global non-
domination check 
among offspring and 
parent solutions is 
necessary.

Ensures a better 
spread is achieved 
among the obtained 
non-dominated 
solutions.

Has a direct control 
on the diversity 
that can be 
achieved by using 
the appropriate size 
of the depth size ".
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Layout Optimization for a Wireless 
Sensor Network using NSGA - II

a) Coverage

b) Lifetime

* Slides taken from Prof. Ganapati Panda



Wireless Sensor Network (WSN)

Example of a WSN where sensor nodes are communicating with the DPU through HECN

Data Processing Unit
(DPU)

High Energy Communication Node 
(HECN) 

Node 1

Node 2

Node 3

Node 6

Node 5

Node 8

Node 4

Node 9

Node 7
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Optimization of Coverage

• Coverage is defined as the ratio of the union of areas covered
by each node and the area of the entire ROI.

A
A

C iNi ,...,1==
! Ai - Area covered by the ith node 

N   - Total number of nodes 
A - Area of the ROI



Optimization of Lifetime
• The lifetime of the whole network is the time until one of the

participating nodes run out of energy.
• In every sensing cycle, the data from every node is routed to HECN

through a route of minimum weight.

max

failure

T
TLifetime=

Tfailure =    maximum number of sensing cycles before failure of any node
Tmax =    maximum number of possible sensing cycles



Competing Objectives
Lifetime Coverage

• try to spread out the nodes for
maximizing coverage

• try to arrange the nodes as
close as possible to the
HECN for maximizing lifetime

HECN
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Simulation Parameters

Number of chromosomes 100
Number of generations 50
Crossover Probability 0.9
Mutation Probability 0.5
Distribution index for crossover 20
Distribution index for mutation 20
Tour size 2

Parameters of NSGA-II
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NSGA-II Results

Ø Pareto Front obtained for a WSN with 10 sensors, 100
chromosomes and 50 generations
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NSGA-II: Results
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