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No Free Lunch Theorems
• No free lunch (NFL) Theorems apply to EC algorithms.

– Theorems imply there can be no universally efficient EC algorithm.
– Performance of one algorithm when averaged over all problems is
identical to that of any other algorithm.

• IN LAYMAN’S TERMS,
– Averaged over all problems.
– For any performance metric related to number of distinct points
seen.

– All non-revisiting black-box algorithms will display the same
performance.



No free lunch – but better? 
• Better?

– What do you want your algorithm to solve?

– What performance do you need?

– How can I tune my algorithm to
• be more efficient?
• reach more optimal solution?

– How much Application knowledge do I need to add? 
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Motivation: working with parameters
An EA has many strategy parameters, e.g.
• mutation operator and mutation rate
• crossover operator and crossover rate
• selection mechanism and selective pressure (e.g. tournament size)
• population size

Good parameter values facilitate good performance

How to find good parameter values ?
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EA parameters are rigid (constant during a run)

BUT

an EA is a dynamic, adaptive process

THUS

optimal parameter values may vary during a run

How to vary parameter values?
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Going Deep: working with parameters



Working with Parameters
• Parameter tuning.

• Parameter control.

9



Parameter Tuning
• Traditional way of testing and comparing different values before the

“real” run

• Problems:
– Users mistakes in settings can be sources of errors or sub-optimal
performance.

– Costs much time.

– Parameters interact: exhaustive search is not practicable.

– Good values may become bad during the run.
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Parameter Control
• Setting values on-line, during the actual run, e.g.

– Predetermined time-varying schedule p = p(t)
– Using feedback from the search process

– Encoding parameters in chromosomes and rely on natural selection

• Problems:

– Finding optimal p is hard, finding optimal p(t) is harder
– Still user-defined feedback mechanism, how to ``optimize"?

– When would natural selection work for strategy parameters?
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Parameter Control: Example
Task to solve:

– min  f(x1,…,xn)

– Li £ xi £ Ui for i = 1,…,n bounds

– gi (x) £ 0 for i = 1,…,q inequality constraints

– hi (x) = 0 for i = q+1,…,m equality constraints

Algorithm:

– EA with real-valued representation (x1,…,xn)

– arithmetic averaging crossover

– Gaussian mutation: x’ i = xi + N(0, s)

standard deviation s is called mutation step size12



• Replace the constant s by a function s(t)

0 £ t £ T is the current generation number
T
t0.9  - 1  ´=)(ts

• Features:
• changes in s are independent from the search progress
• strong user control of s by the above formula
• s is fully predictable
• a given s acts on all individuals of the population

Example: option-1 
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• Replace the constant s by a function s(t) updated after every n steps

by the 1/5 success rule (ES):

• Features:
• changes in s are based on feedback from the search progress
• some user control of s by the above formula
• s is not predictable
• a given s acts on all individuals of the population
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Example: option-2 
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• Assign a personal s to each individual 
• Incorporate this s into the chromosome: (x1, …, xn, s)
• Apply variation operators to xi‘s and s

• Features:
• changes in s are results of natural selection
• (almost) no user control of s
• s is not predictable
• a given s acts on one individual

),0( tss Ne´=¢
),0( s ¢+=¢ Nxx ii

Example: option-3
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Classification of Control Techniques

Various forms of parameter control can be distinguished by:

• primary features:
– what component of the EA is changed.
– how the change is made. 

• secondary features:
– evidence/data backing up changes.
– level/scope of change.
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What is Changed?

• Practically any EA component can be parameterized and thus
controlled on-the-fly:
– representation
– evaluation function
– variation operators
– selection operator (parent or mating selection)
– replacement operator (survival or environmental selection)
– population (size, topology)
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How are Changes Made? 

PARAMETER TUNING
(before the run)

DETERMINISTIC
(time dependent)

ADAPTIVE
(feedback from search)

SELF-ADAPTIVE
(coded in chromosomes)

PARAMETER CONTROL
(during the run)

PARAMETER SETTING
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Example Parameter Tuning for TSP

• TSP for Kosovo municipalities.
• Genetic Algorithm

• Parameters tuned:
1. size of initial population.
2. mutation probability.
3. number of generations.



Varying Mutation Rate
• # generations fixed 10,000.
• Population fixed 1000

• Vary mutation: : 
– 1%, 3%, 5% and 10%



Varying Mutation Rate, Changing 
Population
• Fixed maximal number of 

generations to 10,000.
• Vary Mutation rate 

– 1%, 3%, 5% and 10%
• Vary population: 

– 1000, 5000 and 10000.
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50,000 generations

Different Initial Population, with  Different mutation 
probability, for Different generation

100,000 generations10,000 generations



Varying Population, Fixed Mutation Rate
• Fixed # generations 10,000
• Vary Population :

– 1000, 5000, 10000

• mutation probability (pm):
– 1%



Varying Population, Fixed Mutation Rate
Fixed # generations 10,000, 
Vary population: 1000, 5000, 10000      vary mutation rate (pm) : 1,3,5,10
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Varying Population, Fixed Mut. # Gen. 50k 
Fixed # generations 50,000!
Vary population: 1000, 5000, 10000      vary mutation rate (pm) : 1,3,5,10
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Varying Population, Fixed Mut. # Gen 100k 

Fixed # generations 100,000!
Vary population: 1000, 5000, 10000      
Vary mutation rate (pm) : 1,3,5,10



About Probabilities...
• General rule of thumb:

– Average probability for individual to crossover: ~ 80%.

– Average probability for individual to mutate: 1-2%.

• Probability of genetic operators follow the probability in natural systems

• Better solutions reproduce more often
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• Population size

– Popsize too small premature convergence

– Popsize too large too slow to compute

• Mutation – upholds diversity
– Mutation rate too low not enough exploring

– Mutation rate too high too much noise

• Crossover – often effective
– Late in the search: crossover has smaller effect

– Selective choice of crossover point

Get the Balance Right
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• Trial and error

• Apply general rule of thumb
– Exploration vs exploitation trade-off

• Sensitivity study:
– Vary one parameter at a time
– Study sets of parameters

• Study effect on convergence / time

Setting Parameters: sensitivity study 
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Best-ever, Worst-ever fitness
Design problems

• Best-ever fitness

• Looking for ONE ‘excellent’ solution

Repetitive problems

• Worst–ever fitness

• requiring many ‘good’ yet
‘timely’ solutions.

• Includes on-line control problem
as special case.
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Design Problems
• Optimizing spending on improvements to national road network

• Total cost: billions of Euro
• Computing costs negligible
• Six months to run algorithm on
hundreds computers

• Many runs possible
• Must produce very good result
just once.
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Design Problems
• Quality is the most important.

– Performance (speed) is secondary.

• Algorithm does not need to be fast.
• It can run for several months of computing time

• Performing several runs
• Keeping the best result.

• Very specific.
– No need to be generally applicable.
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Repetitive Problems
• Optimizing Internet shopping delivery routes.

34

• Different destinations each day.

• Limited time to run algorithm
each day.

• Must always be reasonably
good route in limited time.
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Repetitive Problems
• Solutions must be good (better than hand-made ones),

– but not optimal.

• Speed is very crucial.

• Speed vs quality trade-off.

• It is important that the performance is stable.

• Applies repeatedly for different instances of the problem.
– Wide applicability of the algorithm.
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On-Line Control Problem
• Repetitive problem with extremely tight time constraints.

– Traffic light optimization of a single crossing with four crossroads.

• Traffic light – GA controller

– Streaming sensory information

– One full cycle (turns to green)
• Few minutes

• Population of individuals, # generations → good result

36



Academic Research
• Different but important type of context.

• Not application oriented.
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• Off-line measures
– Efficiency and Effectivity measures

• “Working” measures (on-line)
– Population distribution (genotypic)
– Fitness distribution (phenotypic)
– Improvements per time unit 
– Improvements per genetic operator
– …

Measures - online
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Algorithm Quality
• EAs are stochasticà never draw any conclusion from a single run

– perform sufficient number of independent runs

– use statistical measures (averages, standard deviations)

– use statistical tests to assess reliability of conclusions

• EA experimentation is about comparisonà always do a fair competition

– use the same amount of resources for the competitors

– try different competition limits

– use the same Performance Measures
40



Things to Measure
• Many different ways:

– Average result in given time

– Average time for given result

– Proportion of runs within % of target

– Best result over n runs

– Amount of computing required to reach target in given time with 
% confidence

– …

41



Performance Measures
• Efficiency (alg. speed)

– CPU time
– No. of steps, i.e., generated points in the search space
– …….

• Effectivity (alg. quality)
– Success rate
– Solution quality at termination
– …………

42
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• Algorithm Speed

• TIME

– Elapsed time?

• Depends on computer, network etc

– CPU Time?

• Depends on programmer skill, implementation…

– # Generations?

• Difficult to compare when parameters like population size change

• Difficult to compare against non evolutionary results.

– # Fitness Evaluations?

• Evaluation time could depend on algorithm, e.g. direct vs. indirect

representation

Performance Measures : Efficiency



Performance Measures: Effectivity

• Algorithm quality
• Measured with fixed 

computation resources



Performance Measures: Effectivity

Success Rate (SR)
• % runs terminating in success
• Not always measurable, no 

known optimal
– timetabling:  
– benchmark last years

• Algorithm quality
• Measured with fixed 

computation resources
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Performance Measures: Effectivity

Success Rate (SR)

• % runs terminating in success

• Not always measurable, no 
known optimal

– timetabling:  

– benchmark last years

• Algorithm quality

• Measured with fixed 
computation resources

Mean Best Fitness (MBF)
• Explicit fitness

• Best fitness each run 

• BF = AVG ! "#
• Always valid measure

Average # of Evaluations to Solution 
(AES)
• AVG # fitness evaluation in 

solution over n runs

• counts AVG runs reaching 
solution



Combination of SR and MBF

Good Approximiser ‘Murphy’ algorithm
• ↑  SR+ ↓ MBF

– When algorithm goes 
wrong, goes very wrong

• Problem Type

– 3_SAT , # unsatisfied 
clauses as fitness 

• ↓ SR+ ↑MBF
• Try ↑ # generations → ↑SR 

ie allow search to finish
• Optimal solution?

• Problem type
• timetabling



Performance Measures

Comparing algorithms A and B by after terminating at time T1 and T2
(for a minimization problem).
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Fair Experiments
• Basic rule: use the same computational limit for each competitor.

• Allow each EA the same no. of evaluations, but
– Beware of hidden labour, e.g. in heuristic mutation operators.
– Beware of possibly fewer evaluations by smart operators.

• EA vs. heuristic: allow the same no. of steps:
– Defining “step” is crucial, might imply bias!
– Scale-up comparisons eliminate this bias.

50



Scale-Up Comparisons

Comparing algorithms A and B by their scale-up behaviour. Algorithm B
can be considered preferable because its scale-up curve is less steep.51



Peak vs Average Performance
• Typically in EA, average performance is more desirable.

• However, the best solution found in X runs or within Y hours/weeks
is desirable in some applications.
– Typically in design problems.
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• EAs are stochastic 
– sufficient # of independent runs
– Apply statistics

• measures (averages, standard deviations) 
• Tests (t-test…)

• Fair comparison
– Same amount of resources per test
– Different tests, varying resources
– same performance measures

Basic Rules of Experimentation



Off-line Algorithm Comparison
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Best fitness at termination 

• A>B?
– 50 runs
– ↑ MBF
– ↓ fitness variation
– Yes: repetitive application
– NO: design application

• B has 6 runs achieving 
higher fitness

• Good for timetabling once 
a year
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• Same computational limit
– All Performance Measures, SR, MBF etc

• Same # evaluations /steps
• Different # evaluations → different results

– Averaging of algorithm’s runs
• Loss of information

On-line Algorithm Comparison

Algorithm B

Algorithm A

Which algorithm is better?
Why? When?
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Example: Averaging On-line Measures 

time

Run 2

Run 1

average

Averaging can “choke” interesting information



time

Overlay of curves can lead to very “cloudy” figures

Example: Averaging On-line Measures 
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Statistical Comparisons and Significance
• EAs are stochastic

• Results have element of “luck”

• Sometimes can get away with less rigour – e.g. parameter tuning

• For scientific papers where a claim is made: “Newbie recombination
is better ran uniform crossover”, need to show statistical
significance of comparisons
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Example

Is the new method better?

Trial Old Method New Method
1 500 657
2 600 543
3 556 654
4 573 565
5 420 654
6 590 712
7 700 456
8 472 564
9 534 675
10 512 643

Average 545.7 612.3
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Example (cont’d)
Trial Old Method New Method

1 500 657
2 600 543
3 556 654
4 573 565
5 420 654
6 590 712
7 700 456
8 472 564
9 534 675
10 512 643

Average 545.7 612.3
SD 73.5962635 73.5473317
T-test 0.07080798
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• Mean and Standard Deviation
– 2 values to describe a whole set of data

• Randomness?

• TRUE statistical significance of differences
– T-test:

• Comparing 2 algorithms
– ANOVA test

• Comparing more than 2 algorithms

Statistical Comparison
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Statistical tests
• T-test assumes:

– Data taken from continuous interval or close approximation
– Normal distribution
– Similar variances for too few data points
– Similar sized groups of data points

• Other tests:
– Wilcoxon – preferred to t-test where numbers are small or
distribution is not known.

– F-test – tests if two samples have different variances.



Comparison between Samples

Are these groups different?



right hemisphereLeft hemisphere

lesion site
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t-tests

• Compare the mean between 2 samples/ conditions

• if 2 samples are taken from the same population, then they should
have fairly similar means
ð if 2 means are statistically different, then the samples are likely to
be drawn from 2 different populations, ie they really are different

Exp. 1            Exp. 2



occurred because of differences in
our teaching strategies, rather than by chance?

12  13  14  15  16  17  18  19  20  21  22  23  24  25

10
9
8
7
6
5
4
3
2
1

Spelling Test Scores

Suppose we conducted a study to compare two strategies for teaching
spelling.

Group A had a mean score of 19. The range of scores was 16 to 22,
and the standard deviation was 1.5.

Group B had a mean score of 20. The range of scores was 17 to 23,
and the standard deviation was 1.5.

How confident can we be that the difference we found between the
means of Group A and Group B



Formula
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Reporting convention: t= 11.456, df= 9, p< 0.001

Difference between the means divided by the pooled standard error of 
the mean



Formula cont.
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• The t score is a ratio between the difference between two groups and
the difference within the groups.

– A large (absolute) t-score tells you that the groups are different.
– A small t-score (close to 0) tells you that the groups are similar.

T Score
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• How big is “big enough”?

• Every t-value has a p-value (0% to 100%.) to go with it.

• A p-value is the probability that the results from your sample data

occurred by chance.

• They are usually written as a decimal.

– For example, a p value of 5% is 0.05.

• Low p-values are good;

– They indicate your data did not occur by chance.

– A p-value of .01 means there is only a 1% probability that the

results from an experiment happened by chance

T-Values and P-values



Comparison of more than 2 samples

Tell me the 
difference between 
these groups…
Thank God I have 
ANOVA



ANOVA
• ANalysis Of VAriance (ANOVA) 

– Still compares the differences in means between groups but it uses the 
variance of data to “decide” if means are different

• Terminology (factors and levels)

• F- statistic
– Magnitude of the difference between the different conditions
– p-value associated with F is probability that differences between groups 

could occur by chance if null-hypothesis is correct 
– need for post-hoc testing (ANOVA can tell you if there is an effect but not 

where)

Reporting convention: F= 65.58, df= 4,45, p< .001 
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Statistical Resources
• http://fonsg3.let.uva.nl/Service/Statistics.html

• http://department.obg.cuhk.edu.hk/ResearchSupport/

• http://faculty.vassar.edu/lowry/webtext.html

• Microsoft Excel

• http://www.octave.org/



74

Test Problems for Experimental 
Comparisons 

• Use problem instances from an academic repository.

• Use randomly generated problem instances. 

• Use real life problem instances.
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Getting Problem Instances 1
• Testing on real data.
• Advantages:

– Results are application oriented.
• Disadvantages

– Can be few available sets of real data.
– May be commercial sensitive – difficult to publish and to allow
others to compare.

– Results are hard to generalize.
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Getting Problem Instances 2
• Standard data sets in problem repositories, e.g.:

– OR-Library

– http://www.ms.ic.ac.uk/info.html

– UCI Machine Learning Repository
www.ics.uci.edu/~mlearn/MLRepository.html

• Advantage:

– Tried and tested problems and instances (hopefully)

– Much other work on these à results comparable

• Disadvantage:

– Not real – might miss crucial aspect.

– Algorithms get tuned for popular test suites.
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Getting Problem Instances 3
• Problem instance generators produce simulated data for given
parameters, e.g.:
– GA/EA Repository of Test Problem Generators
http://www.cs.uwyo.edu/~wspears/generators.html

• Advantage:
– Allow systematic investigation of an objective function parameter range.
– Can be shared allowing comparisons with other researchers

• Disadvantage:
– Not real – might miss crucial aspect
– Given generator might have hidden bias
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• Overstatements based on simulation results
– ‘Suitable’ performance metric

• Different results from a different performance metric?
– What if runs ran longer or shorter?
– Scope of the superiority claim?

• ‘Selected’ test cases
– is there a property in the ‘good’/bad results that tells you why 

they would be good/bad
• Generalisable results? 

– Sensitivity to parameter changes
• Difficulty of achieving such results in other cases

• Statistical significance in results?

Bad Practice : New Algorithm
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Bad Example
• I invented “tricky mutation”
• Showed that it is a good idea by:

– Running standard (?) GA and tricky GA
– On 10 objective functions from the literature
– Finding tricky GA better on 7, equal on 1, worse on 2 cases

• I wrote it down in a paper
• And it got published!
• Q: what did I learned from this experience? 
• Q: is this good work?
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Bad Example
• What did I (my readers) did not learn:

– How relevant are these results (test functions)?
– What is the scope of claims about the superiority of the
tricky GA?

– Is there a property distinguishing the 7 good and the 2 bad
functions?

– Can the results be generalized? (Is the tricky GA applicable
for other problems? Which ones?)
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• Compare ~3 other algorithms
• Apply benchmark heuristic
• When and why new algorithm is better?
• Problem instance generator

– Generate ~100 problem instances
• Execute all algorithms on all instances
• AES, SR and MBF (with SD, not on SR)
• Statistical significance

Better Practice : New Algorithm
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• Explorative search
– new solutions, quite different from all previous probes,
– Acquire information from uncharted area

• e.g. crossover
• Exploitative Search

– new solutions/probes, slightly different form promising probes
– in an area of known potential
– tries to zero in on the best solution in that region.

• mutation, 
• Selection (prioritises best individuals)

• GA often needs both
• all parameters can be applied for exploration and/or exploitation

Frequency of crossover/mutation ~ measure of exploration vs exploitation

Exploration vs Exploitation
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Exploration, Exploitation and Genetic Operators



Required Reading + References
• Floreano: chapters 1: 1-15

• Downing: Evolutionary Algorithms in Search and 
Problem Solving: sections 1-3

• Downing: Natural and Artificial Selection

• Eiben: chapters: 14, (14-1-14.3, 14.5); 8 (8.1, 8.2, 8.4)

• References: 
– [REX13]  Rexhepi, A., Maxhuni, A., & Dika, A. (2013). 

Analysis of the impact of parameters values on the Genetic 
Algorithm for TSP. International Journal of Computer Science 
Issues, 10(1), 158-164.


