

Lecture 1

The NEW AI

Håken Jevne, Pauline Haddow and Kazi Ripon

Outline

- What is the new AI?
- Traditional problem solvers
- What is Natural/Bio-inspired Computation?
 - Complexity
 - Emergent Systems
 - Adaptive Systems
- Bio-inspired vs Bio-plausible
- Bio-inspired Techniques

GOFAI -> New AI

- Early (1955 1980) GOFAI
 - tasks that humans find difficult
 - Human brains and cognitive reasoning
 - Challenge: easy tasks (computationally hard)
 - Computers lack common sense
- Later (1985) SEAI
 - Experience and survival -> common sense
 - Situated and Embodied AI (SEAI)
 - I am therefore I think
 - · Low road to intelligence
 - Basic building blocks to intelligence are simple behaviours
 - 'Nouvelle Al'
 - Rodney Brooks pioneer

NTNU

New Al

- 1990s Technology revolution
 - ↑ demand for automated complex problem solvers
 - Newer concepts
 - •Real-time and embedded intelligence
 - •Autonomous behaviour
 - •Self-adaptation, self-organisation
 - •Social awareness
- Fundamental aspects of biological intelligence
 -> survival in unknown and changing environments
- Look to Nature beyond the brain
 - The evolutionary process
 - Other biological processes / organisms

Top-down vs Bottom-up Al

- Top-down idealist approach
 - Looks at Cognition:
 - High-level phenomena independent of the low-level implementation ie brain
 - Knowledge intensive
 - What's necessary to implement this vision/goal?"
 - Break down knowledge
 - Symbols -> symbolic Al
 - Symbol processing
- Bottom-up pragmatic approach
 - "What can we do with what we've got?"
 - Simple behaviours in building blocks
 - Create networks of building blocks
 - simple behaviours combine > more complex behaviour
 - Sub-symbolic
 - Connectionist view

Areas of the new AI: bottom-up AI

- Artificial Life
- Evolution
- Artificial Development
- Artificial Neural Networks
- Deep Learning
- Artificial Immune Systems
- Swarm Intelligence
- SEAI
- Incremental cognition

SEAI: Karl Sim's Evolving Creatures

Karl Sim's evolving creatures

1994

Evolving body and control Provided artificial 3D environment and artificial goal

Outline

- What is the new AI?
- Traditional problem solvers
- What is Natural/Bio-inspired Computation?

- Complexity
- Emergent Systems
- ³Adaptive Systems
- Bio-inspired vs Bio-plausible
- Bio-inspired Techniques

Problem Solvers

Optimisation

- Desired output/artificial goal
- TSP, shortest path (optimal)
- Portfolio optimisation
-) Modelling
 - Sets of inputs -> outputs
 - Economic system
 - Correct model, prediction too
-) Simulation
 - Test theories
 - prototype

Non-linear problems- search landscape

Hill-climbing search

function HILL-CLIMBING(problem) *return* a state that is a local maximum *input:* problem, a problem *local variables:* current, *a node.* neighbour, *a node.*

current ← MAKE-NODE(INITIAL-STATE[problem]) loop do

neighbour \leftarrow a highest valued successor of current **if** VALUE [neighbor] \leq VALUE[current] **then return** STATE[current] current \leftarrow neighbour

- Continuous movement
- Increasing value > peak
- Greedy local search
- Random?
 - Choose between set of best successors (best value)
- Variations exist providing improvements

Simulated Annealing

function SIMULATED-ANNEALING(*problem, schedule*) return a solution state

input: problem, a problem schedule, a mapping from time to temperature

local variables: current, a node.

next, a node.

T, a "temperature" controlling the probability of downward

```
current ← MAKE-NODE(INITIAL-
STATE[problem])
```

for $t \leftarrow 1$ to ∞ do

steps

 $T \leftarrow schedule[t]$

if *T* = 0 then return *current*

 $\textit{next} \leftarrow \text{a randomly selected successor of } current$

 $\Delta E \leftarrow VALUE[next] - VALUE[current]$

if $\Delta E > 0$ then *current* \leftarrow *next*

else *current* \leftarrow *next* only with probability $e^{\Delta E/T}$

- random new state
 +ve positive move
 o/w prob. move
- can be very slow,
 - slow fall in temp gradient
 - High T prob. of locally bad move is higher
- theoretically will always find the global optimum

Outline

- What is the new AI?
- Traditional problem solvers
- What is Natural/Bio-inspired Computation?
 - Complexity
 - Emergent Systems
 - Adaptive Systems
- Bio-inspired vs Bio-plausible
- Bio-inspired Techniques

Natural Computation

- models of computation
- inspired by the functioning of natural systems
 - Biological, physical, chemical

- 1. Novel problem-solving techniques.
- 2. Synthesis of natural phenomena.
- 3. Employ natural materials (e.g., molecules) to compute.

NTNU

Emergent Intelligent Behaviour

- Prominent behaviour of life
- Definition

NTNU

- 'The arising of novel and coherent structures, patterns and properties during the process of selforganisation in complex systems'
 - [corning, 2002]
- intelligence is often in the eye of the observer
 - sees the global pattern,

Nature as a Complex System

• Complex:

Difficulty of predicting the emergent whole from the interacting parts.

- Biological Principles
 - Global information
 - · Patterns over the individual components
 - positive feedback
 - Randomness
 - Parallel
 - exploration and exploitation
 - Continuous interaction between bottom-up and top-down mechanisms

Complex Adaptive System

- Desired global pattern
- Bottom-up:
- Agents random actions interactions
 - Regularities /emerging patterns
- Top-down:
 - Global behaviour affects individuals through feedback

Stock market booms and busts

Pond ice formation

Stigmergy in Social insects

Orderly crowd movement

V-formation Flying birds

Adaptive System : Developmental process

Similar DNA – > adaption to environment

Outline

- What is the new AI?
- Traditional problem solvers
- What is Natural/Bio-inspired Computation?

- Complexity
- Emergent Systems
- ³Adaptive Systems
- Bio-inspired Techniques

Nature/bio-inspired algorithms

Problem Solver

Traditional

- mostly local search
 - depend on the initial state
 - global optimality?
- Methods tend to be problemspecific
- Challenge

shoulder

objective function

- non-linear optimization
- problems with discontinuity.

global maximum

current

local maximum

"flat" local maximum

state space

Bio-inspired

- Local and global search
 - Parallel search
 - Global optimality
- Black box approach
 - Wide range problems
- Efficient solver
 - Highly non-linear optimisation
 - Problems with discontinuity
 - NP hard combinatorial

Application example: Evolved satellite dish holder boom

- Optimisation task
 - Regular design (top)
- Evolved design (bottom) 20,000% better Non intuitive Exhibits no symmetry

ADV:

outwith human thinking

DISADV:

outwith verification methods?

Natural/Bio-inspired computing

- 1. bio-inspired (but not SI-based).
- 2. swarm intelligence (SI) based.
- 3. physics/chemistry-based.

Evolution

- Bio-inspired (not swarm-based)
 - Individuals (population based)
- Biological evolution.
- Survival of the fittest.
 - Genetic Algorithm (GA).
 - Evolutionary Strategies (ES)
 - Genetic Programming (GP).
 - Multi-objective Optimisation
 - Differential Evolution
- Other processes
 - Development
 - Immune

Swarm Intelligence

- collective emergent behaviour
 - multiple, interacting agents
 - simple rules.
 - social insects (...ants, bees)
 - animal societies (flocks of birds or fish)
- self-organization behaviour
- collective intelligence.

Ant Colony Optimization (ACO) Particle Swarm Optimization (PSO). Bee Algorithm. Firefly algorithm Cuckoo search

NTNU

Classification: *Physics/Chemistry-Based*

- Mimicking physical and/or chemical laws
 - Chemical Reaction Optimization (CRO).
 - Harmony search.
 - Central force optimization.
 - Electro-magnetism optimization

Does nature have all the answers?

Bio-inspired vs Bio-plausible

Biological Plausible model

- What are the underlying mechanisms?
- How to apply?
- How do they work?
- How do they effect each other?
- How to implement abstraction level

Bio-inspired model

- Which mechanisms to apply?
- How to allow them to interact

Are Bio-plausible models the way to go to achieve biological properties?

- Complexity, adaptivity, emergence

Artificial organism vs natural organism

Evolutionary Swarm Robotics

- Masters work:
 - Box pushing swarm behaviour