
A Black-Box Attack on Neural Networks
Based on Swarm Evolutionary Algorithm

Xiaolei Liu1(B), Teng Hu1,2, Kangyi Ding2, Yang Bai2,3, Weina Niu2,
and Jiazhong Lu4

1 Institute of Computer Application, China Academy of Engineering Physics,
Mianyang, China

luxaole@gmail.com, mailhuteng@gmail.com
2 University of Electronic Science and Technology of China, Chengdu, China

kangyiding@gmail.com, alicepub@163.com, niuweina1@126.com
3 China Electronic Technology Cyber Security Co., Ltd., Chengdu, China

4 Chengdu University of Information Technology, Chengdu, China
ljz@cuit.edu.cn

Abstract. Neural networks play an increasingly important role in the
field of machine learning and are included in many applications in society.
Unfortunately, neural networks suffer from adversarial examples gener-
ated to attack them. However, most of the generation approaches either
assume that the attacker has full knowledge of the neural network model
or are limited by the type of attacked model. In this paper, we propose
a new approach that generates a black-box attack to neural networks
based on the swarm evolutionary algorithm. Benefiting from the improve-
ments in the technology and theoretical characteristics of evolutionary
algorithms, our approach has the advantages of effectiveness, black-box
attack, generality, and randomness. Our experimental results show that
both the MNIST images and the CIFAR-10 images can be perturbed to
successful generate a black-box attack with 100% probability on average.
In addition, the proposed attack, which is successful on distilled neural
networks with almost 100% probability, is resistant to defensive distilla-
tion. The experimental results also indicate that the robustness of the
artificial intelligence algorithm is related to the complexity of the model
and the data set. In addition, we find that the adversarial examples to
some extent reproduce the characteristics of the sample data learned by
the neural network model.

Keywords: Adversarial examples · Neural networks · Deep learning ·
Swarm evolutionary algorithm

1 Introduction

In recent years, neural network models have been widely applied in various fields,
especially in the field of image recognition, such as image classification [11,31]

X. Liu—This research was supported by Director of Computer Application Research
Institute Foundation (SJ2020A08, SJ2019A05).

c© Springer Nature Switzerland AG 2020
J. K. Liu and H. Cui (Eds.): ACISP 2020, LNCS 12248, pp. 268–284, 2020.
https://doi.org/10.1007/978-3-030-55304-3_14

A Black-Box Attack on Neural Networks 269

and face recognition [4]. However, users of such model are more concerned about
the performance of the model and largely ignore the vulnerability and robust-
ness of the model. In fact, most existing models are easily misled by adversarial
examples deliberately designed by attackers and enable the attackers to achieve
the purpose of bypassing the detection [20,30]. For example, in an image clas-
sification system, by adding the disturbance information to the original image,
attackers can achieve the goal of changing image classification results with high
probability [21]. The generated adversarial examples can even be classified with
an arbitrary label according to the purpose of an attacker, making this type of
attack a tremendous threat to the image classification system [6]. More seriously,
printing the generated images of adversarial examples and then photographing
them with a camera, the captured images are still misclassified, confirming the
presence of adversarial examples in the real world [15]. These vulnerability prob-
lems make people raise the question on whether neural networks can be applied
to security-critical areas.

Several papers have studied related security issues [16,17,19]. Unfortunately,
in most previous generation approaches of adversarial examples, when ε is fixed,
the similarity of the sample is fixed: in the algorithm’s calculation, it won’ change
dynamically. This may cause the image to be disturbed so much that it can be
visually distinguishable [22]. Moreover, the existing approaches mainly use gra-
dient information to transform the original samples into the required adversarial
examples. If the parameters of the model are unknown, the attackers cannot
generate effective adversarial examples [7,12]. Others also proposed some black-
box attack approaches [24,25]. However, Papernot [25] takes the transferabil-
ity assumption. If transferability of the model to be attacked is reduced, the
effectiveness of the attack will be reduced. LSA [24] cannot simply modify the
required distance metrics, such as L0, L2, Lmax. In most cases, it is only guar-
anteed that the disturbance is successful at Lmax, but not guaranteed that the
disturbance can be kept minimum under other distance functions.

In this paper, we propose a new approach that generates a black-box attack
to deep neural networks. Our approach is named BANA, denoting A (B)lack-
box (A)ttack on (N)eural Networks Based on Swarm Evolutionary (A)lgorithm.
Compared with the previous approaches [2,8,26,30], our approach has the fol-
lowing main advantages:

Effectiveness. The adversarial examples generated by our approach can mis-
classify the neural networks with 100% probability both on non-targeted attacks
and targeted attacks. The L2 distance between adversarial examples and origi-
nal images is less than 10 on average, indicating that images can be disturbed
with so small changes that are not to be undetectable. If we continue to increase
the number of iterations of our proposed algorithm, we expect to achieve even
better results.

Black-Box Attack. adversarial examples can be generated without the knowl-
edge of the internal parameters of the target network, such as gradients and
structures. Existing attacks such as Carlini and Wagner’s attacks [2] usually
require such information.

270 X. Liu et al.

Generality. Our proposed attack is a general attack to neural networks. For
the attack, we can generate effective adversarial examples of DNNs, CNNs, etc.
We have even tested our proposed attack in a wider range of machine learning
algorithms and it still misleads the model with 100% probability.

Randomness. Benefiting from the characteristics of evolutionary algorithms,
the adversarial examples generated each time are different for the same input
image, so they are able to resist defensive mechanisms such as defensive distil-
lation.

In particular, our proposed attack is based on the swarm evolutionary algo-
rithm [1]. The swarm evolutionary algorithm is a population-based optimization
algorithm for solving complex multi-modal optimization problems. It can trans-
form the optimization problems into the individual fitness function and has a
mechanism to gradually improve individual fitness. Evolutionary algorithms do
not require the use of gradient information for optimization and do not require
that the objective function be differentiable or deterministic. Different from
another approach also based on an evolutionary algorithm [29], our approach
focuses on the optimization of results rather than the number of disturbed pix-
els. Therefore, we have completely different optimization function and iterative
processes from the one pixel attack. Without knowing the parameters of the
model, our proposed approach uses the original sample as the input to apply to
generate an adversarial example of the specific label. The used information is
only the probability of the various labels produced by the model.

Our attack also addresses technical challenges when applying the swarm evo-
lutionary algorithm to generate the adversarial examples. The improvements
made in our approach include the optimization of calculation results and con-
vergence speed (see more details in Sect. 3).

The rest of the paper is organized as follows. Section 2 introduces the related
work of adversarial examples. Section 3 presents SEAA (Swarm Evolutionary
Algorithm For Black-box Attacks to Deep Neural Networks. Section 4 presents
and discusses our experimental results. Section 5 concludes.

2 Related Work

The adversarial examples of deep neural networks have drawn the attention of
many researchers in recent years. [30] used a constrained L-BFGS algorithm to
generate adversarial examples. L-BFGS requires that the gradient of the model
can be solved, limiting the diversity of the model and the objective function,
and making this approach computationally expensive to generate adversarial
examples. [8] proposed the fast gradient sign method (FGSM). However, this
approach is designed without considering the similarity of the adversarial exam-
ples: the similarity of the generated adversarial samples may be low. The con-
sequence is that the generated adversarial samples may be detected by defen-
sive approaches or directly visually distinguished. An adversarial example attack
named the Jacobian-based Saliency Map Attack (JSMA) was proposed by [26].
JSMA also requires the gradient of the model to be solved, and the approach is

A Black-Box Attack on Neural Networks 271

limited to the L0 distance, and cannot be generated using other distance algo-
rithms [2]. These approaches all assume that the attackers have full access to the
parameters of the model. [23] proposed a non-targeted attack approach named
Deepfool. This approach assumes that the neural network is linear and makes
a contribution to the generation of adversarial examples, while actually neural
networks may be not linear. Besides, this approach also does not apply to non-
neural network model. Some previous research focused on generating adversarial
examples to the malware detection models [3,18,32]. These adversarial exam-
ples also successfully disrupted the model’s discriminant results, showing that
the common models of machine learning are vulnerable to attacks.

Some recent research aimed to defend against the attack of adversarial exam-
ples and proposed approaches such as defensive distillatione [5,10,27]. However,
experiment results show that these approaches do not perform well in particular
situations due to not being able to defend against adversarial examples of high
quality [9].

3 Methodology

3.1 Problem Description

The generation of adversarial examples can be considered as a constrained opti-
mization problem. We use Lp distance (which is Lp norm) to describe the similar-
ity between the original images and the adversarial images. Let f be the m-class
classifier that receives n-dimensional inputs and gives m-dimensional outputs.
Different from L-BFGS [30], FGS [8], JSMA [26], Deepfool [23] and Carlini and
Wagner’s attack [2], our approach is a black-box attack without using the gra-
dient information. This optimization problem is formalized as follows:

F = D(x, x′) + M × loss(x′) (1)

where for a non-targeted attack (whose purpose is to mislead the classifier
to classify the adversarial examples as any of the error categories), loss(x′) is
defined as

loss(x′) = max([f(x′)]r − max([f(x′)]i�=r) , 0) (2)

and for a targeted attack (whose purpose is to mislead the classifier to classify
the adversarial examples as a specified category), loss(x′) is defined as

loss(x′) = max(max([f(x′)]i�=t) − [f(x′)]t , 0) (3)

and x = (x1, ..., xn) is the original image, x′ = (x′
1, ..., x

′
n) is the adversarial

example to be produced and D(x, x′) is the Lp distance. M is a positive number
much larger than D(x, x′), r is the real label, and t is the target label. The
output of [f(x)]r is the probability that the sample x is recognized as the label r
and the output of [f(x)]i�=r is the probability set that the sample x is separately
recognized as other labels. Since loss(x′) ≥ 0, we discuss the case of loss(x′) > 0
and loss(x′) = 0 for the targeted attacks, respectively. The non-targeted attacks
are the same.

272 X. Liu et al.

(1) When loss(x′) > 0, the [f(x′)]t is not the maximum in Eq. 3, indicating
that the adversarial example x′ is not classified as the targeted label at
this time. Since M is much larger than D(x, x′), the objective function in
Eq. 1 is approximately equal to the latter half. In this case, it is equivalent
to optimizing x′ to minimize Q, i.e., increasing the probability that the
classifier identifies the sample x′ as being a class t.

minimize loss(x′) (4)

(2) When loss(x) = 0, the adversarial example has been classified as the target
label at this time. In this case, it is equivalent to optimizing x′ to minimize
the value of D(x, x′), i.e., to improve the similarity between the adversarial
example and the original sample as much as possible.

minimize D(x, x′) (5)

Through the preceding objective function, the population is actually divided
into two sections, as shown in Fig. 1. The whole optimization process can be
divided into three steps.

Fig. 1. Individuals distribution diagram

Step 1. At this time the adversarial example cannot successfully mislead the
classifier. Individuals at the top of section A gradually approach the bottom
through crossover and mutation operators.

A Black-Box Attack on Neural Networks 273

Step 2. The individuals move from Section A to Section B, indicating that
loss(x′) = 0, i.e., the adversarial examples generated at this time can successfully
mislead the classifier.

Step 3. Individuals at the top of Section B gradually approach the bottom,
indicating the improvement of the similarity between the adversarial image and
the original image.

Eventually, the bottom individual of Section B becomes the optimal indi-
vidual in the population, and the information that it carries is the adversarial
example being sought out.

3.2 Our BANA Approach

As the generation of adversarial examples has been considered as an optimiza-
tion problem formalized as Eq. 1, we solve this optimization problem by the
swarm evolution algorithm. In this algorithm, fitness value is the result of F ,
population is a collection of x′ and many individuals make up the population.
By constantly simulating the process of biological evolution, the adaptive indi-
viduals which have small fitness value in the population are selected to form the
subpopulation, and then the subpopulation is repeated for similar evolutionary
processes until the optimal solution to the problem is found or the algorithm
reaches the maximum number of iterations. After the iterations, the optimal
individual obtained is the adversarial example x′. As a widely applied swarm
evolutionary algorithm, such genetic algorithm is flexible in coding, solving fit-
ness, selection, crossover, and mutation. Therefore, in the algorithm design and
simulation experiments, we use the following improved genetic algorithm as an
example to demonstrate the effectiveness of our BANA approach. The advan-
tages of this approach are not limited to the genetic algorithm. We leave as the
future work the investigation of the effects of different types of swarm evolution-
ary algorithms on our approach.

Algorithm Workflow. The whole algorithm workflow is shown in Fig. 2. Clas-
sifiers can be logistic regression, deep neural networks, and other classification
models. We do not need to know the model parameters and just set the input
and output interfaces. Each individual is transformed into an adversarial exam-
ple and then sent to the classifier to get the classification result. After that, the
individual fitness value is obtained through solving the objective function. The
individuals in the population are optimized by the genetic algorithm to solve the
feasible solution of the objective function (i.e., the adversarial example of the
image).

The workflow of our BANA approach is as follows:
Step 1. Population Initialization. One gene corresponds to one pixel, and for

the grayscale images of (28, 28), there are a total of 784 genes, and there are
32 × 32 × 3 = 3072 genes for the color image of (32, 32).

Step 2. Calculate the Fitness Value. Calculate the value of the fitness function
according to the approach described in Sect. 3.1 and take this value as the fitness

274 X. Liu et al.

Fig. 2. Algorithm workflow of our BANA approach

of the individual. Since this problem is a minimization problem, the smaller the
value, the better the individual’s fitness. After that, the best individual with the
minimum fitness value in the current population is saved as the optimal solution.

Step 3. Select Operation. According to the fitness of individuals in the pop-
ulation, through the tournament algorithm, individuals with higher fitness are
selected from the current population.

Step 4. Cross Operation. Common crossover operators include single-point
crossover, multi-point crossover, and uniform crossover. Our algorithm uses uni-
form crossover. That is, for two random individuals, each gene crosses each
independently according to the probability p. Due to the large number of genes
that each individual carries, uniform crossover allows for a greater probability of
generating new combinations of genes and is expected to combine more beneficial
genes to improve the searching ability of genetic algorithms.

Step 5. Mutation Operation. In order to speed up the search ability of genetic
algorithms, combining with the characteristics of the problem to be solved,
the operator adopts a self-defined Gaussian mutation algorithm. In the process
of mutation, Gaussian noise gauss(m, s) is randomly added to the individual
(shown in Eq. 6 below), where m is the mean of Gaussian noise and s is the
standard deviation of Gaussian noise:

xmutation = xorigin ± gauss(m, s) (6)

The reason for adopting this mutation operation is that the resulting adversarial
example inevitably has a high degree of similarity with the input sample, and a
feasible solution to the problem to be solved must also be in the vicinity. This
technique can effectively reduce the number of iterations required to solve the
problem.

Step 6. Terminate the Judgment. The algorithm terminates if the exit con-
dition is satisfied, and otherwise returns to Step 2.

A Black-Box Attack on Neural Networks 275

Improvements. There are two major technical improvements made in our
approach.

Improvements of Result. In order to improve the optimization effect of
BANA, we adopt a new initialization technique. Considering the problem to
be solved requires the highest possible degree of similarity, this technique does
not use random numbers while using the numerical values related to the original
pixel values. Let x be the original image, and x′ be the initialized adversarial
image. Then x′ = x + ε, where ε is a very small value.

Improvements of Speed. In order to speed up the convergence of BANA,
on one hand, we constrain the variation step of each iteration in the mutation
stage. On the other hand, we try to keep the point that has the pixel value of 0,
because it is more likely that such a point is at the background of the picture.
These improvements help the algorithm converge faster to the optimal solution.

4 Experiments

The datasets used in this paper include MNIST [14], CIFAR-10 [13] and Ima-
geNet [28]. 80% of the data are used as a training set and the remaining 20%
as a test set. In order to assess the effectiveness of the adversarial examples, we
attack a number of different classifier models. The used classifiers include logistic
regression (LR), fully connected deep neural network (DNN), and convolutional
neural network (CNN). We evaluate our BANA approach by generating adver-
sarial examples from the MNIST and CIFAR10 test sets.

The parameters used by BANA are shown in Table 1. The experimental
results show that different parameters affect the convergence rate of BANA.
However, with the increase of the iterations, the results would eventually be
close. The parameters listed in Table 1 are our empirical values.

Table 1. The parameters of BANA

Database MNIST CIFAR-10 ImageNet

Population 100 200 300

Genes number 28× 28× 1=784 32× 32× 3=3072 200× 200× 3 = 120000

Cross probability 0.5 0.5 0.5

Mutation probability 0/05 0/05 0/05

Iterations 200 200 100

Gaussian mean 0 0 0

Gaussian variance 30 20 40

4.1 Adversarial Example Generation on MNIST

In the first experiment, the used dataset is MNIST. The used classification mod-
els are LR, DNN, and CNN. We train each of these models separately and then

276 X. Liu et al.

(a) The trend of success rate. (b) The trend of best fitness value.

Fig. 3. The results of targeted attacks and non-targeted attacks for each undistilled
model on MNIST.

(a) The trend of success rate. (b) The trend of best fitness value.

Fig. 4. The results of targeted attacks and non-targeted attacks for each undistilled
model on CIFAR-10.

test the accuracy of each model on the test set. Logistic Regression (LR), DNN,
and CNN achieve the accuracy of 92.46%, 98.49%, and 99.40% respectively. In
the generation of adversarial examples, we set the number of iterations of the
genetic algorithm is 200, and the sample with the smallest objective function
value generated in each iteration is selected as the optimal sample. For a tar-
geted attack, we select first 100 samples initially correctly classified from the test
set to attack. Each of the samples generates adversarial examples from 9 different
target labels, resulting in 100 * 9 = 900 corresponding target adversarial exam-
ples. For non-targeted attacks, we select the first 900 samples initially correctly
classified from the test set to attack. Each sample generates a corresponding
adversarial example, resulting in 900 non-target adversarial examples.

The results are shown in Table 2 and Fig. 3. For each model, our attacks find
adversarial examples with less than 10 in the L2 distance, and succeed with

A Black-Box Attack on Neural Networks 277

Table 2. Comparison of our attacks with previous work for a number of MNIST
models.

MNIST Models

LR DNN CNN CNN**

UD(Undistilled) D(Distilled*) UD D* UD D* UD D*

Non-targeted attack Mean 0.82 – 2.48 2.91 3.90 3.99 1.76 2.20

SD 0.62 – 1.67 2.34 2.46 2.70 – –

Prob 100% – 100% 99.89% 100% 100% 100% 100%

Targeted attack Mean 3.65 – 5.04 7.93 7.60 8.33 – –

SD 3.80 – 2.88 5.95 4.12 5.34 – –

Prob 100% – 100% 99.78% 100% 100% – –

(* The details of distilled model are shown in Sect. 4.3. There is no distilled LR model.

*** This model is attacked by the approach proposed by Carlini and Wagner [2].)

(a) The trend of success rate. (b) The trend of best fitness value.

Fig. 5. The results of targeted attacks and non-targeted attacks for each distilled model
on MNIST and CIFAR-10. Compare to Fig. 3 and Fig. 4 for undistilled models.

100% probability. Compared with the results generated by Carlini and Wag-
ner’s attack [2], our perturbations are slightly larger than their results. How-
ever, both of our attacks succeed with 100% probability and our BANA is a
black-box attack. Besides, there is no visual difference between the adversar-
ial examples. Figure 3(a) and Fig. 3(b) show that as the model becomes more
complex, the number of iterations required to produce an effective adversarial
example increases. The distribution of the 900 best fitness values after 200 iter-
ations is shown in Fig. 6(a). The figure indicates that the more complex the
model, the larger the mean and standard deviation. The reason is that sim-
ple classification models do not have good decision boundaries. For the same
classification model, non-targeted attacks require fewer iterations than targeted
attacks, resulting in about 2× lower distortion and stability. Such result indi-
cates that for the attacker the targeted adversarial example is generated at a
higher cost. However, with the increasing of iterations, all the best fitness values
tend to be 0. The difficulty caused by the targeted attack can be overcome by
increasing the number of iterations. Overall, BANA is able to generate effective
adversarial examples for LR, DNN, and CNN on MNIST.

278 X. Liu et al.

By comparing the trend of success rate and best fitness values for targeted
attack and non-targeted attack, respectively, it can be seen that the robustness of
the classification model against adversarial examples is related to the complexity
of the model, and the more complex the model, the better the robustness of the
corresponding classification model.

4.2 Adversarial Example Generation on CIFAR-10 and ImageNet

In the second experiment, the used dataset is CIFAR-10. Our purpose is to find
whether BANA is able to generate effective adversarial examples on CIFAR-
10. Considering the conclusion in Sect. 4.1, we choose CNN as the classification
model to be attacked. Our CNN achieves an accuracy of 77.82% on CIFAR-
10. After generating the adversarial examples with BANA, we get the results
shown in Fig. 3. Our attacks find adversarial examples with less than 2 in the L2

distance and succeed with 100% probability. We can find the same conclusion as
Sect. 4.1 from Fig. 4 and Table 3.

Fig. 6. The distribution of best fitness in Fig. 3, Fig. 4 and Fig. 5.

A Black-Box Attack on Neural Networks 279

Figure 7 shows a case study of our BANA on ImageNet. As shown in Fig. 7,
there is no visual difference between the original images and the perturbed
images. Figure 7 shows that our attack is able to generate adversarial examples
with small visually invisible perturbations even on complex datasat.

More importantly, by comparing the experimental results for CNN on MNIST
and CIFAR, it can be seen that the average best fitness value and the standard
deviation on CIFAR are smaller than them on MNIST, indicating that the adver-
sarial examples generated on CIFAR dataset are more likely to be misleading
and more similar to the original data. We find that the robustness of the classifi-
cation model against adversarial examples is not only related to the complexity
of the model but also to the trained data set; however, not the more complex
the data set, the better the robustness of the generated classification model.

4.3 Defensive Distillation

We train the distilled DNN and CNN, using softmax at temperature T = 10.
The experimental results are shown in Tables 2 and 3. The observation is that
the average fitness value and standard deviation of undistilled models are smaller
than those of distilled model both on targeted attacks and non-targeted attacks.
However, the attack success rate of the adversarial examples produced by BABA
on the distilled model is still 100% or close to 100%. Our attack is able to break
defensive distillation. The reason may be related to the randomness of the swarm
evolutionary algorithm. Even with the same model and data, BANA produces
a different adversarial example each time, making it effective against defensive
distillation.

Table 3. Comparison of our attacks with previous work for a number of CIFAR models.

Models CIFAR-10

Non-targeted attack Targeted attack

Mean SD Prob Mean SD Prob

CNN Undistilled model 0.82 0.93 100% 2.33 1.89 100%

Distilled model* 1.26 1.29 100% 4.18 3.57 99.89%

CNN** Undistilled model 0.33 – 100% – – –

Distilled model* 0.60 – 100% – – –

(* The details of distilled model are shown in Sect. 4.3.
*** This model is attacked by the approach proposed by Carlini and Wagner [2].)

280 X. Liu et al.

Fig. 7. A case study of our BANA on ImageNet. The top row shows the original images
and the bottom row shows the perturbed images attacked by our approach.

5 Conclusions

In this paper, we have presented a new approach that generates a black-box
attack to neural networks based on the swarm evolutionary algorithm. Our
experimental results show that our approach generates high-quality adversar-
ial examples for LR, DNN, and CNN, and our approach is resistant to defensive
distillation. Finally, our results indicate that the robustness of the artificial intel-
ligence algorithm is related to the complexity of the model and the complexity
of the data set. Our future work includes designing an effective defense approach
against our proposed attack.

Appendix

Here we give some case studies of our experiment results to let you have a
more intuitive visual experience, which are shown from Fig. 8, 9, 10, and 11. For
reproducibility, all of these adversarial examples are generated by our method
with the parameters shown in Table 1.

A Black-Box Attack on Neural Networks 281

(a) non-targeted (b) targeted

Fig. 8. A case study of targeted attacks and non-targeted attacks for LR model on
MNIST.

(a) non-targeted (b) targeted

Fig. 9. A case study of targeted attacks and non-targeted attacks for DNN model on
MNIST.

282 X. Liu et al.

(a) non-targeted (b) targeted

Fig. 10. A case study of targeted attacks and non-targeted attacks for CNN model on
MNIST.

(a) non-targeted (b) targeted

Fig. 11. A case study of targeted attacks and non-targeted attacks for CNN model on
CIFAR-10.

References

1. Bansal, J.C., Singh, P.K., Pal, N.R. (eds.): Evolutionary and Swarm Intelligence
Algorithms. SCI, vol. 779. Springer, Cham (2019). https://doi.org/10.1007/978-3-
319-91341-4

2. Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In:
2017 IEEE Symposium on Security and Privacy (SP), pp. 39–57 (2017)

A Black-Box Attack on Neural Networks 283

3. Demontis, A., et al.: Yes, machine learning can be more secure! a case study on
android malware detection. IEEE Trans. Dependable Secure Comput. 16, 711–724
(2017)

4. Deng, J., Guo, J., Xue, N., Zafeiriou, S.: ArcFace: additive angular margin loss
for deep face recognition. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 4690–4699 (2019)

5. Dong, Y., Pang, T., Su, H., Zhu, J.: Evading defenses to transferable adversarial
examples by translation-invariant attacks. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 4312–4321 (2019)

6. Eykholt, K., et al.: Robust physical-world attacks on deep learning visual classifi-
cation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 1625–1634 (2018)

7. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Infor-
mation Processing Systems, pp. 2672–2680 (2014)

8. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial
examples (2014). arXiv preprint arXiv:1412.6572

9. He, W., Wei, J., Chen, X., Carlini, N., Song, D.: Adversarial example defense:
ensembles of weak defenses are not strong. In: 11th USENIX Workshop on Offensive
Technologies WOOT 2017 (2017)

10. Hendrycks, D., Gimpel, K.: Early methods for detecting adversarial images. arXiv
preprint arXiv:1608.00530 (2016)

11. Hossain, M.Z., Sohel, F., Shiratuddin, M.F., Laga, H.: A comprehensive survey
of deep learning for image captioning. ACM Comput. Surv. (CSUR) 51(6), 1–36
(2019)

12. Hu, W., Tan, Y.: Generating adversarial malware examples for black-box attacks
based on GAN. arXiv preprint arXiv:1702.05983 (2017)

13. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images.
Technical report (2009)

14. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

15. Lecuyer, M., Atlidakis, V., Geambasu, R., Hsu, D., Jana, S.: Certified robustness
to adversarial examples with differential privacy. In: 2019 IEEE Symposium on
Security and Privacy (SP), pp. 656–672. IEEE (2019)

16. Li, T., Ruan, D., Geert, W., Song, J., Xu, Y.: A rough sets based characteristic
relation approach for dynamic attribute generalization in data mining. Knowl.
Based Syst. 20(5), 485–494 (2007)

17. Liu, W., Luo, Z., Li, S.: Improving deep ensemble vehicle classification by using
selected adversarial samples. Knowl. Based Syst. 160, 167–175 (2018)

18. Liu, X., Du, X., Zhang, X., Zhu, Q., Wang, H., Guizani, M.: Adversarial samples
on android malware detection systems for IoT systems. Sensors 19(4), 974 (2019)

19. Liu, X., et al.: TLTD: a testing framework for learning-based IoT traffic detection
systems. Sensors 18(8), 2630 (2018)

20. Liu, X., Zhang, X., Wan, K., Zhu, Q., Ding, Y.: Towards weighted-sampling audio
adversarial example attack. arXiv preprint arXiv:1901.10300 (2019)

21. Moosavi-Dezfooli, S.M., Fawzi, A., Fawzi, O., Frossard, P.: Universal adversarial
perturbations. arXiv preprint (2017)

22. Moosavi-Dezfooli, S.M., Fawzi, A., Fawzi, O., Frossard, P., Soatto, S.: Analysis of
universal adversarial perturbations. arXiv preprint arXiv:1705.09554 (2017)

23. Moosavi-Dezfooli, S.M., Fawzi, A., Frossard, P.: Deepfool: a simple and accurate
method to fool deep neural networks. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 2574–2582 (2016)

284 X. Liu et al.

24. Narodytska, N., Kasiviswanathan, S.P.: Simple black-box adversarial attacks on
deep neural networks. In: CVPR Workshops, pp. 1310–1318 (2017)

25. Papernot, N., et al.: Practical black-box attacks against machine learning. In: Pro-
ceedings of the 2017 ACM on Asia Conference on Computer and Communications
Security, pp. 506–519 (2017)

26. Papernot, N., et al.: The limitations of deep learning in adversarial settings. In:
IEEE European Symposium on Security and Privacy (EuroS&P) 2016, pp. 372–387
(2016)

27. Papernot, N., McDaniel, P., Wu, X., Jha, S., Swami, A.: Distillation as a defense to
adversarial perturbations against deep neural networks. In: 2016 IEEE Symposium
on Security and Privacy (SP), pp. 582–597 (2016)

28. Russakovsky, O., et al.: Imagenet large scale visual recognition challenge. Int. J.
Comput. Vis. 115(3), 211–252 (2015)

29. Su, J., Vargas, D.V., Sakurai, K.: One pixel attack for fooling deep neural networks.
IEEE Trans. Evol. Comput. 23(5), 828–841 (2019)

30. Szegedy, C., et al.: Intriguing properties of neural networks. arXiv preprint
arXiv:1312.6199 (2013)

31. de Vos, B.D., et al.: A deep learning framework for unsupervised affine and
deformable image registration. Med. Image Anal. 52, 128–143 (2019)

32. Yang, W., Kong, D., Xie, T., Gunter, C.A.: Malware detection in adversarial set-
tings: exploiting feature evolutions and confusions in android apps. In: Proceed-
ings of the 33rd Annual Computer Security Applications Conference, pp. 288–302
(2017)

