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Abstract

We describe a neural model in which two evolved neural pro-
grams undergo development and form neural networks. The
programs decide whether neurons and their dendrites move,
change, die or replicate. We show that the programs can build
a neural structure from which multiple conventional ANNs
can be extracted each of which can solve a different compu-
tational problem.

Introduction
Although ANNs were originally inspired by the brain (Mc-
Culloch and Pitts, 1943), the majority of papers involv-
ing neural networks do not use evolution and especially
not development. Yet both of these are fundamental to
the construction of the brain (Miller and Khan, 2011).
Most ANN models obey the “synaptic dogma” of encod-
ing learned knowledge solely in the form of connection
strengths (i.e. weights). This gives rise to “catastrophic for-
getting” (French, 1999; McCloskey and Cohen, 1989; Rat-
cliff, 1990). Catastrophic forgetting occurs when an ANN
loses it ability to solve an earlier problem when it is re-
trained on a new one. This is to be expected when the
learned information is only encoded in the weights as it is
precisely these that are changed when the network is trained.
Another problem with the synaptic dogma is that much neu-
roscience research questions whether memory in brains is
even directly related to synaptic strengths since synapses are
not fixed structures but are constantly pruned away and re-
placed by new synapses during learning (Smythies, 2002).
There is also a large body of research indicating that learn-
ing and environmental interaction are strongly related to
structural changes in neurons. For instance, animals reared
in complex environments where active learning is taking
place, have an increased density of dendrites and synapses
(Kleim et al., 1998). Indeed, a famous study of London taxi
drivers, showed that after their training, their hippocampi
were significantly larger relative to those of control subjects
(Maguire et al., 2000). Finally, the most significant period
of learning in animals happens in infancy, when the brain is
developing (Dekaban and Sadowsky, 1978).

The motivation of the work presented in this paper is to
find a simplified computational equivalent of the biologi-
cal neuron. That is a program that allows a neural network
to learn for itself, grow as many neurons and connections
as it needs, adjust its own weights and biases and solve
not only multiple problems but also unseen problems. In
other words, the long term aim is to find a general AI pro-
gram. To attempt to achieve this, we propose a neural model
which incorporates both evolution and development. In the
model, two neural programs acting together construct neu-
ral networks. One program represents the neuron soma and
the other the dendrite (connection). The soma program de-
cides whether neurons move, change, die or replicate. The
dendrite program decides whether dendrites extend, change,
die, or replicate. Since developmental programs build net-
works that change over time we have to define new problem
classes that are suitable to evaluate such approaches. We
show that the evolved programs can build a network from
which multiple conventional ANNs can be extracted each of
which can solve a different computational problem. As far
as we are aware this is he first attempt in the literature to do
this. Our approach is quite general and it could be applied to
a much wider variety of problems. In our previous work we
examined a one dimensional developmental model and this
was applied to multiple classification problems only (Miller
et al., 2018, 2019). In this paper we present a two spatial
dimensional model and have applied it to up to four compu-
tational problems (two classification and two reinforcement
learning).

The plan of the paper is as follows. The related work sec-
tion discusses methods that construct ANNs either by hu-
man engineered methods or by development. The following
section presents the developmental method for solving mul-
tiple computational problems with ANNs. This is followed
by a description of two ways of evolving multiple problem
solving ANNs: incremental and non-incremental. Next we
discuss experimental methodology and results. Finally, we
end with a discussion of future work and conclusions.
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Related work
Although non-developmental in nature, a few methods have
been devised which under supervision gradually augment
a fixed architecture of ANNs by adding additional neu-
rons or joining trained ANNs together via extra connec-
tions. ‘Constructive neural networks’ are traditional ANNs
which start with a small network and add neurons incremen-
tally while training error is reduced (Fahlman and Lebiere,
1990; Franco and Jerez, 2009). Modular ANNs use multi-
ple ANNs each of which has been trained on a sub-problem
and these are combined by a human expert (Sharkey, 2012).
More recent approaches adjust weighted connections be-
tween trained networks on sub-problems guaranteeing that
trained networks on sub-problems are unaltered. Rusu et al.
applied their method, called ‘progressive neural networks’
(Rusu et al., 2016) to three classes of problems: variants
of the game of Pong, Atari games and 3D maze problems
and Terekhov et al. examined their approach on purpose
designed image classification tasks (Terekhov et al., 2015).
Aljundi et al. have a set of trained ANNs for each task (ex-
perts) and use an additional ANN as a recommender as to
which expert to use for a particular data instance (Aljundi
et al., 2016). They evaluated their approach on image classi-
fication tasks and video prediction. Another technique that is
related to multiple problem solving is called transfer learn-
ing. It is a technique that aims to improve a learner in one
domain by transferring information from a related domain
(Pan and Yang, 2010; Weiss et al., 2016). Transfer learning
is used particularly when there is a limited supply of target
training data. Transfer learning assumes that the data from
the various domains are related in some way (i.e. all clas-
sification problems, or all images etc.). However, transfer
learning does not apply to learning how to solve multiple
unrelated problems. All these approaches are a form of hu-
man engineered development and do not attempt to mimic
the way brains are created in the natural world.

More biologically inspired developmental processes (Ku-
mar and Bentley, 2003; Stanley and Miikkulainen, 2003)
have been discussed as one of the important processes in
an enriched form of artificial evolution called computational
evolution (Vaario, 1994; Banzhaf et al., 2006). In partic-
ular, for several decades authors have investigated various
ways of implementing and evolving development processes
to construct ANNs. A review of these can be found in
(Miller et al., 2019). However, none of the previous re-
search in artificial development has looked at solving stan-
dard ANN benchmark problems or multiple problems simul-
taneously.

Neuron model
The neural programs are represented using Cartesian Ge-
netic Programming (CGP) Miller and Thomson (2000);
Miller (2011, 2020a) in which the program nodes represent
mathematical operations, operating on and returning real-

values between -1 and 1. CGP was used for two main rea-
sons. Firstly, it allows programs to have an arbitrary number
of outputs (unlike tree-based GP), secondly the author is a
pioneer in its use. In CGP, each primitive function takes
up to two inputs, denoted z0, z1. The functions are as fol-
lows: step: if z0 < 0 then 0 else 1, add: (z0 + z1)/2, sub:
(z0− z1)/2, mult: z0z1, xor: if the sign of both inputs is the
same then the output is -1 else 1, istep: if z0 is negative,
output is 1 else output is 0. These functions were found to
be effective in preliminary experiments. The programs read
variables associated with neurons and dendrites and produce
outputs which are used to update those variables. The inputs
and outputs to the evolved programs are illustrated in Fig.
1. When the evolved soma and dendrite programs are exe-
cuted, neurons can move, change, die replicate, grow more
dendrites and their dendrites can also change, replicate or
die. We refer to the collection of neurons and dendrites as
the brain. Later we will explain how multiple conventional
ANNs can be extracted from the brain and assessed for their
effectiveness. Neurons and dendrites are confined to the unit
square and all neural variables can only take values between
-1.0 and 1.0. There are two kinds of neuron: output and
non-output. Every output required by each computational
problem has a dedicated output neuron. The other neurons
are internal and are not directly used to provide outputs from
the brain. We refer to these as non-output neurons.

Soma program inputs and outputs
The soma program reads ten variables. Four are neuron vari-
ables: x and y position, health and bias. Bias refers to an
input to the neuron activation function which is added to the
weighted sum of inputs. The soma program is also supplied
with averages of properties of its dendritic tree: x and y po-
sition, weight and health. The soma program can also read
a variable called neuron type. For non-output neurons, the
neuron type is -1.0. Output neurons are given a value 1.0.
This potentially allows a neuron to behave differently de-
pending on whether it is an output neuron or not. Finally,
the soma can read the performance score (i.e. fitness) at the
previous learning epoch (see next section). The soma pro-
gram has four outputs: health updater, bias updater, and x
and y position updater. The evolved soma program reads its
ten inputs and outputs the four soma output update variables.
These decide how the corresponding soma variables will be
updated. The way this is done is as follows. If any soma
updater variable is greater (less) than zero, the correspond-
ing soma variable is incremented (decremented) by the user-
defined amounts, δnh, δnb, δnp. There are both ‘pre’ deltas
and ‘while’ deltas (see next section). After updating, the cor-
responding variable is squashed into the interval [-1, 1] using
a hyperbolic tangent function. We used hyperbolic tangent
for squashing in preference to simple truncation as distinct
variables are squashed into distinct values, whereas trunca-
tion could map distinct variables to the same value (either
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Figure 1: Each neuron has a two-dimensional position,
health, bias and a variable number of dendrites. Each den-
drite has a two dimensional position (the growing tip), a
health and a weight. Neural programs read these variables
and update them (a and b). When the two programs are
executed a collection of neurons are created (c). Exter-
nal inputs for different computational problems are shown
as red, green or blue coloured rectangles. Output neurons
for different problems have corresponding colours. There
are assumed to be two outputs each for the red and blue
problems and one for the green. Black neurons are non-
output. Dashed arrows show dendrites forming connec-
tion with nearest neurons or inputs on the left (snapping)
to achieve connected networks.
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1 or -1). In the case of soma health, there is a further step.
If it falls below the user-defined death threshold, θnd , then
the neuron will die and not be present in the updated brain.
Alternatively, if it happens to be above the user-defined neu-
ron birth threshold, θnb, then the parent neuron will replicate
and an additional neuron will appear in the brain (near to the
parent). Thus, the soma evolved programs can change the
health, bias or position of the soma and whether the neuron
will die, or replicate.

Dendrite program inputs and outputs
The dendrite program also has ten inputs and is executed in-
side every dendrite. Three inputs are the parent neuron’s bias
and x and y positions. Four are the dendrite variables: x and
y position, weight and health. The dendrite program is also
allowed to read the x and y position of the nearest neuron to
the dendrite position. Like the soma, the dendrite can also
read the performance score of the brain at the previous epoch
(see next section). There are four outputs: health updater,
weight updater, and x and y position updater. The evolved
dendrite program reads its ten inputs, and outputs the four
dendrite output update variables. These decide how the ac-
tual dendrite corresponding variables will be updated. If any
dendrite updater variable is greater (less) than zero, the cor-
responding dendrite variable is incremented (decremented)

by the user-defined amounts, δdh, δdw, δd p. After updating
the corresponding variable is squashed using a hyperbolic
tangent function. There are also user-defined thresholds for
dendrite birth and death, θdb, θdd .

Developing the brain and evaluating the fitness
The algorithm used for training and developing the ANNs is
given in Alg. 1. The brain is always initialized with at least
as many neurons as the maximum number of outputs over
all computational problems. Note, all problem outputs are
represented by a unique neuron dedicated to the particular
output. Output neurons can change but not die or replicate
as the number of output neurons is fixed by the choice of
computational problems.

Development happens in two distinct phases (‘pre’ learn-
ing and ‘while’ learning). The number of developmental
steps are defined by the parameters, NDSpre and NDSwhi.
The ‘pre’ learning phase is an initial phase of development
where the brain is not tested in any way (lines 4-6). While
in the ‘while’ phase the brain is assessed and provides feed-
back to the developmental process (lines 11-13).

Lines 9 - 32 form the ‘epoch learning’ loop. This loop
repeats the entire training developmental process (the ‘while
loop’) for a number of epochs, Nep. Learning epochs allow
us to demand that evolution produce a pair of programs that
cause the developing ANN to learn. If the user chooses a
binary variable E pochLearning = 1 then the learning loop
only continues while the training accuracy does not decrease
(lines 25-31). If it does, the algorithm stops and returns the
training accuracy of the previous epoch.

Note that at each epoch, a performance value is deter-
mined corresponding to each individual benchmark problem
and is an input to the soma and dendrite programs for output
neurons. If a neuron is not an output neuron then the aver-
age fitness at the given epoch over all benchmarks is given as
the performance input. The performance signal is intended
to act as a reward to the developmental process, triggering
changes in the brain when necessary.

We extract conventional ANNs from the developed brain
in the following way (line 15 in Alg. 1). Firstly, only the
inputs relevant to the target problem in hand are given their
randomly pre-assigned positions. We do not have input neu-
rons in the model, rather input data is supplied at fixed spa-
tial locations unique to each problem. These can be thought
of as electrodes, supplying current. In this way, the brain
is only supplied with relevant inputs and can not connect
to irrelevant inputs (for another target problem). In earlier
work, we allowed all target problems to be present and we
assigned zero values to any inputs that were irrelevant to the
target problem in hand. This has a big drawback as it means
that the brain could be flooded with many irrelevant inputs
having the value zero. Biological brains appear to have a so-
phisticated method of ignoring irrelevant inputs, however it
is not yet clear how this happens. There are output neurons
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Algorithm 1 Fitness algorithm.

1: function FITNESS
2: Initialise brain
3: Load ‘pre’ development parameters
4: for NDSpre times do
5: Run soma/dendrite programs to update brain
6: end for
7: Load ‘while’ developmental parameters
8: PrevE pochFitness = 0
9: for epoch = 1 to Nep do

10: PrevFitness = 0
11: for NDSwhi times do
12: Run evolved programs to update brain
13: end for
14: for p = 1 to NumBenchmarkProblems do
15: Extract ANN
16: for NT (p) training cases do
17: Accumulate fitness for problem p
18: end for
19: Fitness = Fitness/NT (p)
20: Accumulate Fitness for all benchmarks
21: end for
22: Fitness = Fitness/NumBenchmarkProblems
23: PrevFitness = Fitness
24: E pochFitness = PrevFitness
25: if E pochLearning then
26: if E pochFitness< PrevE pochFitness then
27: Break
28: else
29: PrevE pochFitness = E pochFitness
30: end if
31: end if
32: end for
33: Return E pochFitness
34: end function

dedicated to each problem these are free to move around as
directed by the soma program, how they move is dictated by
their inputs. There is no input supplied to the soma and den-
drite program that indicates what problem is being solved
(i.e. like a problem ID).

The next phase is to go through all dendrites of the neu-
rons to determine which inputs or neurons they connect to.
To generate a valid neural network we assume that dendrites
are automatically connected to the nearest neuron or input
on the left. We refer to this as “snapping”. Since, the den-
drite position can be on the right of the parent neuron, before
extracting ANNs it is reflected back from the parent position
(to avoid recurrence). The dendrites of non-output neurons
are allowed to connect to either inputs or other non-output
neurons on their left. However, output neurons are only al-
lowed to connect to non-output neurons on their left. It is not

desirable for the dendrites of output neurons to be connected
directly to inputs, however, when output neurons move, they
may only have inputs on their left. In this case the output
neuron dendrite neuron will be connected to the first external
input to the ANN network (by default). NT (p) is the number
of training cases for each computational problem, p. Thus
we can see what the brain connects to is problem dependent
so the same neuron can appear in one ANN and again ( with
same bias, position, dendrite numbers and weights) in an-
other ANN with possibly different connections (i.e. to other
inputs). The extracted ANNs use the hyperbolic tangent ac-
tivation function. Other activation functions can be easily be
used, however in experiments so far, the hyperbolic tangent
appears to perform the best.

Model parameters

Table 1: Table of neural model parameters.

Parameter Value
NNmin(NNmax) 0 (30)

Ninit 5
DNmin(DNmax) 1 (60)

NDinit 5
Nep 8

MNinc 0.0001
Iu -0.6
Ol 1.0
α 1.5

‘Pre’ development parameters
NDSpre 6

θnd (θnb) -0.6 (0.2)
θdd (θdb) -0.7 (0.2)

δnh and δdh 0.2
Remaining δ s 0.1

‘While’ development parameters
NDSwhi 1

θnd (θnb) -0.4 (0.2)
θdd (θdb) -0.65 (-0.6)

All δ s 0.1

The model has a large number of user-defined parame-
ters these are shown in Table 1. It is hoped that as the
model develops some can be removed or assume default
values, however, at present the approach has been to cre-
ate a neuron model that is as general as possible and with
the least number of assumptions. The initial number of non-
output neurons, can be chosen by the user and is denoted,
Ninit . The total number of neurons allowed in the network is
bounded between a user-defined lower (upper)bound NNmin
(NNmax). The number of dendrites each neuron can have is
bounded by user-defined lower (upper) bounds denoted by
DNmin (DNmax). These parameters ensure that the number of
neurons and connections per neuron remain in well-defined
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bounds, so that a network can not eliminate itself or grow
too large.

If the health of a neuron falls below (exceeds) a user-
defined threshold, θnd (θnb) the neuron will be deleted (repli-
cated). Likewise, dendrites are subject to user defined health
thresholds, θdd (θdb) which determine whether the dendrite
will be deleted or a new one will be created. Actually, to de-
termine dendrite birth the parent neuron health is compared
with θdb. This choice was made to prevent the potentially
very rapid growth of dendrite numbers.

Neurons that have just been born are placed above and
to the right of the parent neuron, by adding a small incre-
ment, MNinc to the parent’s x and y position. Newly born
neurons are given a health equal to one, a bias of zero, and
the same number of dendrites as the parent. Their dendrites
are given weight and health equal to zero. The x and y posi-
tions of the dendrites are set to zero. When individual den-
drites are created they are given a weight and health equal
to one and their x and y-positions are set to 0.8 of the par-
ent x and y-position. In preliminary empirical investigations
these choices were found to work well. In some cases, neu-
rons will collide with other neurons (by occupying a small
interval around an existing neuron) and the neuron has to be
moved by a certain increment until no more collisions take
place. This increment is given by MNinc.

The x positions of data inputs to the brain are given fixed
random values between -1 and -1+Iu while the y-positions
take randomly chosen values between -1 and 1. The output
neurons for all problems are initially placed at x-position Ol
and their positions on the y-axis are uniformly distributed
between -1 and 1. However, output neurons as with other
neurons can move according to the neuron program. All
neurons are marked as to whether they provide an external
output or not. In the initial network there are Ninit non-
output neurons and No output neurons, where No denotes
the number of outputs required by the computational prob-
lem being solved. When solving a particular problem, out-
put data is read from only those output neurons correspond-
ing to the chosen problem (the remaining output neurons
are ignored). Note, non-output neurons are not allowed to
connect to output neurons and output neurons can only con-
nect to non-output neurons or inputs. When output neurons
are initialized their health and bias are given random values
between -1 and 1. All neurons are initialized with NDinit
dendrites. The dendrites variables, health and weight are
initialized with random values between -1 and 1. They are
given randomly chosen x and y-positions between 0 and 1.
Finally, the neural activation function has a slope constant
given by α . The chosen experimental parameters for this
study are shown in Table 1. After much experimentation
these were found to work quite well. The values found for
DHdeath =−0.65 and DHbirth =−0.6 are quite surprising as
learning is taking place while there is a high probability of
dendritic change (birth or death).

Incremental evolutionary problem solving
The user can choose either to evolve developmental pro-
grams that solve all problems at the same time or evolve
solutions incrementally until on the last round of evolution
all problems are solved simultaneously. We refer to the lat-
ter as incremental problem solving (IPS). In non-incremental
problem solving a performance score calculated for each
benchmark. The fitness is then the average of the perfor-
mances. Incremental problem solving works as follows.
First the programs are evolved for a number of generations
to solve a single benchmark problem, then when either the
user-chosen generation limit has been reached or a perfect
score has been obtained, evolution tries to evolve programs
that solve two benchmarks. This process repeats until at the
last evolutionary cycle all benchmarks are attempted. The
thinking here is that rather than trying to evolve soma and
dendrite programs that are always evaluated on all bench-
marks, the incremental problem solving method allows evo-
lution to create programs that perform well on problems in-
dividually before moving on to more problems. It is im-
portant to note that the final evolved programs after both
non-incremental and incremental problem solving merely
have to be executed (i.e. without evolution) to perform on
all the benchmark problems. The hope is that after a suffi-
cient number of computational problems, evolution might
discover general programs that construct an autonomous
learning system. The role of the reward signal is impor-
tant for general problem solving as it provides environmen-
tal feedback to the developing artificial brain so that it can, if
necessary, change its behaviour towards more useful neural
changes.

Experimental Methodology
In this work, we look to simultaneously solve two stan-
dard classification problems (diabetes and glass) and two re-
inforcement learning problems (double-pole balancing and
ball throwing). The definitions of these problems are avail-
able in the UCI repository 1. Diabetes has 8 real attributes
and two Boolean outputs. Glass has 9 real attributes and
six Boolean outputs. The specific datsets chosen were dia-
betes1 and glass1 which are described in the PROBEN suite
of problems 2. The two reinforcement learning problems are
ball throwing (Koutnı́k et al., 2010; Turner, 2017) and dou-
ble pole balancing (Turner, 2017). The ball throwing task is
to design a controller which throws a ball as far as possible.
There are two inputs, the arm angle from vertical and the
angular velocity of the arm. It has two outputs, the applied
torque to the arm and an output which decides when to re-
lease the ball. The system is simulated for a maximum of
10,000 time steps. The maximum distance the ball can be

1https://archive.ics.uci.edu/ml/datasets.
html

2https://publikationen.bibliothek.kit.edu
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thrown is can be determined through simulation and has a
value of approximately, 10.202m. Ball throwing is consid-
ered solved when the thrown distance greater than or equal
to 9.5m (fitness = 0.9312). It has a strong sub-optimal fitness
value where the fitness is 0.546 this corresponds to the max-
imum possible distance that the ball can be thrown when the
arm only swings forward, whereas to achieve maximum dis-
tance, one needs to swing the arm backwards so that it picks
up speed due to gravity before torque is applied. In double
pole balancing, the task is to balance two poles on a move-
able cart on a limited track by applying a horizontal force
to the cart. The inputs to the controller are the position and
velocity of the cart and the angle and angular velocity of the
pole(s). So there are six inputs. The single output is the force
applied to the cart. The system is simulated for a maximum
of 100,000 time steps. It is solved if both poles are balanced
to within certain limits for this number of steps. The fitness
for the double pole problem is the fractional number of sim-
ulation steps that the poles remain balanced so the fitness is
fractional while the fitness for the ball throwing problem is
a continuous floating point value.

Experiments and results
The genotype length was chosen to be 600 nodes. Gold-
man mutation (Goldman and Punch, 2015) was used which
carries out random point mutation until an active gene is
changed. When incremental problem solving is used 20,000
generations are used for each problem combination. For ex-
ample, solving problem 1 is given 20,000 generations, solv-
ing both problem 1 and 2 is given another 20,000 gener-
ations and so on. When comparisons are made with non-
incremental learning we allow the latter to have the same
total number of generations. In all experiments twenty evo-
lutionary runs of a 1+5-ES were used. All experiments used
exactly the same parameters as shown in Table 1.

Single problems
Initially, to assess baseline performance we conducted ex-
periments on single benchmark problems. Of course, incre-
mental problem solving does not apply since there is only
one problem. Results are presented in Table 2.

As can be seen in Table 2 17 out of 20 runs produced
soma and dendrite programs that can build ANNs that can
completely balance two poles. While 16 out of 20 runs
on the ball throwing problem produced programs that could
build ANNS with thrown distances above 9.5m (classed as
solved). In the case of classification we provide both the fit-
ness scores (accuracy) and the accuracy on unseen test sets
(shown in parentheses). For comparison we have included
results for solving single classification problems of 179 clas-
sifiers (covering 17 families of ML methods) (Fernández-
Delgado et al., 2014). However one should be cautious
comparing the model results with other machine learning
as these methods are not developmental in nature. Also,

there has been no prior work on developmental approaches
on standard ANN benchmark problems.

Table 2: Results for single problems.

Statistic Double pole Ball throw

Mean 0.9559 0.8961
Median 1 0.9891

Maximum 1 0.9990
Minimum 0.6129 0.5460
No. solved 17 16

Glass Diabetes
train (test) train (test)

Mean 0.6360 (0.530) 0.7542 (0.6961)
Median 0.6449 (0.5660) 0.7500 (0.6745)

Maximum 0.6916 (0.6415) 0.7865 (0.7604)
Minimum 0.5514 (0.0943) 0.7396 (0.6510)

ML methods Glass test Diabetes test
Mean 0.610 0.743

Maximum 0.785 0.790
Minimum 0.319 0.582

Incremental v. non-incremental problem solving
In the next series of experiments we compared the effective-
ness of solving pairs of problems incrementally (IPS) with
solving them non-incrementally. Table 3 shows the results.
In incremental problem solving 20,000 generations of evo-
lution are carried out for each problem. In non-incremental,
the total number of generations is 20,000 multiplied by the
number of problems. So, the two scenarios use the same to-
tal number of generations. It is clear that it is more effective
to develop an ANN that solves one problem first and then
alter or augment it to solve, in addition, another different
problem. Observing the non-incremental runs showed many
occasions where improvements in fitness for the double pole
task were lost when improvements occurred in the fitness
for the ball throwing problem. The success of incremental
problem solving indicates that it is less likely that previous
learned high performing neural networks will be destroyed
(by forgetting) when another problem is being solved. How-
ever, occasionally the achieved fitness on the first problem
worsened briefly when there were large improvement in the
second problem, indicating that interference still occurs.

The issue of interference can be studied by examining the
performance when solving a single problem and comparing
it with the performance in solving the same problem while
at the same time solving another problem. Table 4 compares
the performance when solving either the ball throw problem
or diabetes classification only, to the respective performance
while maintaining an solution to double pole balancing or
glass classification. If there was no interference, one would
expect the performances in the two cases to be the same as
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Table 3: Incremental problem solving versus non-
incremental problem solving.

Statistic Incremental Non-incremental
Problem solving Problem solving
double pole (DP) double pole

ball throwing (BT) ball throwing
Mean 0.5844 0.4002

Median 0.6050 0.4449
Maximum 0.7693 0.6294
Minimum 0.2735 0.2742

No. solved DP 8 1
No. solved BT 1 9

Glass Glass
diabetes diabetes

train (test) train (test)
Mean 0.6644 (0.6183) 0.6561 (0.6009)

Median 0.6599 (0.6274) 0.6566 (0.5999)
Maximum 0.7029 (0.6974) 0.6948 (0.6502)
Minimum 0.6342 (0.5158) 0.6015 (0.5347)

their respective single problems. The best solution for dou-
ble pole and ball throw achieved a perfect score for double
pole and the score of 0.5385 for the ball throwing problem.
The best solution in the paired classification case was an
accuracy of 0.6635 for glass and 0.7422 for diabetes. The
best average classification accuracy on the test data sets was
0.6974. It had an accuracy of 0.6604 for glass and 0.7344
for diabetes. This is quite respectable since the average test
accuracy of 179 ML techniques has an average test accuracy
of 0.610 for glass and 0.743 for diabetes. For visualization
box plots are shown in Fig. 2. Only maximum or minimum
outliers are shown.

Table 4: Solving one problem while maintaining a previ-
ously evolved solution compared with just solving a single
problem.

Statistic Ball throwing Ball throwing
fitness while only
solving DP

Mean 0.3978 0.8961
Median 0.5020 0.9891

Maximum 0.9800 0.9990
Minimum 0.0000 0.5460

No. solved DP 8 16
No. solved BT 1 -

Diabetes Diabetes
fitness while only
solving glass

Mean 0.7325 (0.7224) 0.7542 (0.6961)
Median 0.7422 (0.7344) 0.7500 (0.6745)

Maximum 0.7656 (0.7656) 0.7865 (0.7604)
Minimum 0.6693 (0.6354) 0.7396(0.6510)
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Figure 2: Performance of Incremental problem solving (IPS)
versus non-incremental problem solving

Clearly much better results are obtained when solving the
ball throwing task alone than trying to solve it while main-
taining a brain that can solve the double pole problem. This
indicates that interference is still occurring. The developed
classifier for diabetes which also classifies glass is a little
worse than the developed classifier for diabetes alone. How-
ever it appears that there is less interference with classifiers
than between ball throwing and double pole balancing. It is
interesting to note that the combined classifier generalizes
better than the classifier for diabetes alone.
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Four problems
In the next series of experiments we attempted to solve four
problems simultaneously. We do this incrementally, first
double pole balancing, then ball throwing, followed by glass
and diabetes classification. Table 5 shows the results. The
figures in the table refer to the final fitness after solving all
four problems simultaneously. The fittest solution had a fit-
ness of 0.7689 and the problem scores that contribute to that
are shown in the table. The average number of nodes in the
CGP program graphs for both the soma and dendrite (over
20 evolutionary runs) was 55. So even though the maximum
allowed size of these is 600 nodes a much smaller number
are active. This is quite typical for CGP. To summarize,
when the evolved programs for the soma and dendrite were
executed over two epochs the developed brain can solve the
pole balancing problem and the arm throw and at the same
time obtain the test classification accuracies of 0.4340 for
glass and 0.3646 for diabetes. Note, that the total number of
generations that programs were evolved attempting problem
p = 1 to 4 is 20,000×p. Thus for problem 1 (DP) the total
number of generation was 80,000 since it tries to solve DP
all the time, while for BT it was 60,000 as it only starts try-
ing to solve BT after 20,000 generations have elapsed trying
to solve DP alone. This explains why results appear to be
better for earlier problems.

Pole balancing used 4 non-output neurons. One of these
was a “zero neuron” whose bias was zero and its fifteen den-
drites all had weight zero! Ball throwing also used four non-
output neurons but three were shared with other problems.
Glass used eight non-output neurons four are shared with
other problems. The other four were zero neurons with 15
dendrites. The three non-output neurons of diabetes were all
shared. Note, neurons that are shared in the brain can have
different connections in the extracted ANNs due to the snap-
ping mechanism. The total number of distinct non-output
neurons used in the developed brain was only eight (includ-
ing four zero producing neurons). Of course, there are also
eleven output neurons required by the benchmark problems.

Conclusion and Future Work
Although we were able to evolve a computational brain that
can solve multiple machine learning problems reasonably
well, our attempts were hindered by interference. How does
natural evolution find improvements in the performance of
systems without the deterioration of already evolved sys-
tems? A much larger numbers of neurons and dendrites may
make it easier for evolution. Achieving non-interfering de-
velopment may simply take more evolutionary time. Allow-
ing output neurons dedicated to particular problems to repli-
cate (currently disallowed) and handling the issue of where
to collect the output for a particular problem is one possi-
ble approach. It would be interesting to determine whether
memory is predominantly attributable to weights or soma
and dendrite positions. Further analysis of the evolved neu-

Table 5: Solving four problems.

Statistic Pole Ball
balancing throwing

Mean 0.9039 0.4930
Median 1.0 0.5285

Maximum 1.0 0.9673
Minimum 0.0001 0.0
No. solved 14 1

Fittest 1 0.9673
Glass Diabetes

train (test) train (test)
Mean 0.4907 (0.4000) 0.6717 (0.6271)

Median 0.4766 (0.3962) 0.6719 (0.6406)
Maximum 0.5888 (0.5660) 0.6979 (0.6927)
Minimum 0.4206 (0.1321) 0.6354 (0.3646)

Fittest 0.4393 (0.4340) 0.6693 (0.3646)

ral programs is required to understand how the networks
learn.

In brains, electrical signals passing between neurons in-
fluences dendrite or axon growth and shapes brain mor-
phology. This is called activity dependence (Ooyen, 2003).
Activity dependence can be incorporated into our neural
model. For instance, the health, weight or position of den-
drites could be incremented or decremented depending on
the strength of signal passing along the dendrite (i.e. via
thresholding). Weights could be adjusted in a non-temporal
Hebbian way, where if a high signal passed along a den-
drite and the parent neuron also outputted a high (low) sig-
nal, then dendrite weight could increase (decrease). Simi-
larly neuron properties could be influenced by the neuron’s
output signal. These ideas have been implemented (Miller,
2020b).

The long-term aim of this work is to evolved developmen-
tal programs that create a self-learning neural system. The
idea behind epoch learning was to allow development to take
place until the brain stopped improving. The hope is that by
evolving developmental programs over sufficient numbers
of epochs would encourage generality and result in a self-
improving brain. A first step would be to see if evolved pro-
grams that solve a number of problems of a particular type
(i.e. classification) would be able to solve unseen problems
of the same type.

We have evaluated our approach on standard benchmarks
in machine learning. However, it might be better to create
new suites of simpler problems for developmental methods
(e.g. object recognition) where one can start with simple
problems and gradually increase the task complexity.
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