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ABSTRACT

Neuroevolution techniques combine genetic algorithms with ar-

tificial neural networks, some of them evolving network topology

along with the network weights. One of these latter techniques is

the NeuroEvolution of Augmenting Topologies (NEAT) algorithm.

For this pilot study we devised an extended variant (joint NEAT,

J-NEAT), introducing dynamic cooperative co-evolution, and ap-

plied it to sound event detection in real life audio (Task 3) in the

DCASE 2017 challenge. Our research question was whether small

networks could be evolved that would be able to compete with the

much larger networks now typical for classification and detection

tasks. We used the wavelet-based deep scattering transform and

k-means clustering across the resulting scales (not across samples)

to provide J-NEAT with a compact representation of the acoustic

input. The results show that for the development data set J-NEAT

was capable of evolving small networks that match the performance

of the baseline system in terms of the segment-based error metrics,

while exhibiting a substantially better event-related error rate. In

the challenge, J-NEAT took first place overall according to the F1

error metric with an F1 of 44.9% and achieved rank 15 out of 34 on

the ER error metric with a value of 0.891. We discuss the question

of evolving versus learning for supervised tasks.

Index Terms— Sound event detection, neuroevolution, NEAT,

deep scattering transform, wavelets, clustering, co-evolution

1. INTRODUCTION

Neuroevolution algorithms evolve artificial neural networks using

genetic algorithms (see [1] for an overview). They have been suc-

cessfully applied for finding the solution policy in intricate rein-

forcement tasks such as guiding a robot through a maze [2] or au-

tonomous computer game playing [3]. Almost exclusively these

tasks are simulated or situated in virtual environments, where envi-

ronmental information is accessible without being affected by noise.

Neuroevolution performance in real world tasks is unclear and many

real world equivalents of the simulated tasks might be even out of

reach due to the time consuming nature of artificial evolution. For

instance, for the scenario of a wheeled robot driving autonomously

through a physical maze, robots might not be available in large

enough numbers and/or take weeks to complete a single full evalu-

ation run. In this study we employ neuroevolution in an heretofore

unfamiliar task, sound event detection with noisy real-world data in
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Figure 1: Structure of the first network of the ensemble with the best

training performance on the full data set for the ‘people walking’

detector. Blue lines represent forward connections (light blue neg-

ative, dark blue positive weights), red/orange lines recurrent con-

nections (orange negative, red positive weights). The relative mag-

nitude of the weight is indicated by line width. Input nodes are

depicted in green, bias nodes in dark purple and the output node in

yellow. Each node has its identification number next to it and in

square brackets the layer to which it was assigned. There is also

a letter coding the activation function, where S = sigmoid, St = a

steeper sigmoid function used in NEAT, T = tanh, I = identity, R =

rectified linear, RL = leaky rectified linear and M = softmax.

the form of the DCASE 2017 challenge Task 3 (sound event detec-

tion in real life audio) dataset.

Neuroevolution can be applied for only evolving the weights of

neural networks or for evolving the topology and the weights to-

gether. The latter class of methods is known as TWEANNs, Topol-

ogy and Weight Evolving Artificial Neural Networks. There are

two major encoding approaches: In indirect coding the code refers

to rules on how to construct the network phenotype, in direct encod-

ing all neurons and synapses are explicitly specified in the genome.

In this study we used a variant of the NEAT algorithm (NeuroEvolu-

tion of Augmenting Topologies) [4, 5], which uses direct encoding.

NEAT starts with a minimal network consisting of input, bias and

output nodes and then grows the networks using crossover (mating)

and mutations. It protects evolving, more complex networks that
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Figure 2: Structure of the second network of the ensemble with

the best training performance on the full data set for the ‘people

walking’ detector. See the caption of Figure 1 for the legend.

are likely to have lower fitness at the beginning through speciation:

Individual networks are categorised into species at each generation

based on their similarity and subsequently have to compete only

with other networks within their own species.

A variant of NEAT, Learning-NEAT [6], has been used in clas-

sification of small data sets (e.g. Fisher’s Iris flower dataset). L-

NEAT’s hybrid training scheme combines learning with evolution

by incorporating backpropagation into NEAT. For the two tested

datasets good performance was reported. However, the research

appears to have not not been followed up upon. Another variant,

termed Layered NEAT, closer to the original NEAT, was used for

shale lithofacies prediction in geology [7] with good results.

The current study makes makes three major contributions: The

application of neuroevolution to sound event detection, a novel way

of feature extraction (though based on established procedures, the

deep scattering transform and k-means clustering) and a unique ex-

tension of the NEAT algorithm introducing dynamic cooperative co-

evolution (for use of co-evolution in other neuroevolution methods

see e.g. [8] or [9]). The latter two contributions are to a large part

a consequence of the need to adapt the neuroevolution procedure

to the new task. In fact, the straightforward formulation of an of-

fline detection and classification task had also to be revised: Instead

of considering the entire input data set (or at least substantial parts

of it as in the mini-batch procedure in deep learning), our starting

concept included a sample-by-sample step-wise evaluation within

each generation, with the fittest individuals (producing the least er-

rors) progressing the farthest and the evaluation of unfit networks

stopped early. For practical reasons, the step-wise procedure had to

be later parallelised and the number of steps reduced and fixed in

order to take advantage of the speed of matrix computations over

loop executions in our implementation language of choice Matlab

(The MathWorks, Inc).

2. METHOD

2.1. Feature extraction

Most current neuroevolution algorithms can evolve only small net-

works within a reasonable time frame compared to even moderately

sized current classification networks with a single hidden layer let

alone deep neural networks. This is certainly true for the NEAT

algorithm (but see HyperNeat [10, 11] for an approach to funda-
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Figure 3: Structure of the third network of the ensemble with the

best training performance on the full data set for the ‘people walk-

ing’ detector. See the caption of Figure 1 for the legend.

mentally change this limitation). For classification and detection

tasks this entails that a compact feature representation is required

even on the expense of losing detail information. Due to the com-

putationally intense procedure of evaluating hundreds of individ-

ual networks over hundreds of generations the temporal resolution

of the acoustic input has also to be kept relatively low, at least so

long as standard desktop computers are used. The combined re-

quirements call for a representation that preserves high-frequency

properties of the data despite averaging over time and reduces the

parameters to a small number of components characteristic for the

data. The wavelet-based deep scattering transform [12, 13] fulfils

the first constraint. It computes in a cascade multiple orders of co-

efficients that are locally translation invariant. The second order

coefficients preserve transient phenomena such as the amount of

attack despite averaging over larger window sizes. The deep scat-

tering transform results, however, in a large number of coefficients

for each time slice, e.g., in our case with audio default settings and

a window size of 0.372 s in 520 coefficients. To reduce the number

of components we applied k-means clustering. In the clustering,

the dimensions were switched: The observations (samples) were

treated as input variables for the clustering, while the dimensions

(scattering coefficients for the different scales) were treated as ob-

servations on these variables. The resulting k by n matrix (with n

being the number of samples) of the cluster centroids constitutes a

low-dimensional representation of the data consisting of the major

modes of the scattering scale contributions.

The deep scattering transform was computed using the ScatNet

toolbox [14] for Matlab, progressing file by file through the raw

audio files of the development data set, using the first channel of

the stereo files. We used a window size of 142 samples and kept

all other parameters at the default values recommended by the cre-

ators for audio signals [15] (two orders, q1 = 8 and q2 = 1). We

re-normalised and log-transformed the coefficients using the rou-

tines provided by the toolbox and then concatenated all training

data for the clustering. In the clustering, we set k to 17 and used the

squared Euclidean distance as distance measure (keep in mind that

distances were computed on the original observations, i.e. samples).

We re-normalised the resulting matrix containing the centroids by
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subtracting the mean and dividing it by its standard deviation - sep-

arately for each component. We also calculated the channel differ-

ences from the raw spectral information to become the 18th input

component: The spectrum was computed with the same temporal

resolution as the deep scattering transform using the rastamat tool-

box [16]. For each of the 8193 spectral components the difference

between the two channels was calculated and then averaged to ar-

rive at a single number characterising the channel differences.

Since our target resolution was 1 Hz (matched to the DCASE

challenge’s segment length), we re-sampled the combined input

data with Matlab’s resample function.

2.2. J-NEAT - a novel coperative co-evolution extension of the

NEAT algorithm

For the event classification and detection task we devised a mod-

ified version of the NeuroEvolution and Augmenting Topology

(NEAT) algorithm [4, 5]. The modifications can be divided into

two classes:

• Modifications that adapted aspects of the original NEAT algo-

rithm within its general paradigm;

• Modification that extended NEAT and changed its nature.

In the first class fall many changes that were undertaken to stabilise

essential hyper-parameters, i.e., make them independent from each

other and from the input value range, as well as providing more

control over the rate of evolutionary weight increase and decrease.

Due to space limitations we cannot describe them here in detail and

focus on the more crucial second class, modifications that changed

some of the core mechanisms of NEAT and transformed it into a

new algorithm which we named J-NEAT for Joint Neuro-Evolution

of Augmenting Topologies.

1. New nodes added by the mutation process do not intersect

existing connections (synapses). If a new node is added, it

is not constraint by the current synapses of the network, but

established independently with two new synapses connect-

ing it to existing nodes (or a single synapse if it is a new bias

node). Additionally, new synapses between existing nodes

are added in the mutation process.

2. The number of offspring for each crossover pair is not fixed

to a single individual, but made dependent on the combined

fitness of the two parent individuals. Higher relative fitness

leads to a higher number of offspring in accordance with

principles from biological evolution.

3. Contrary to standard NEAT, synapses and nodes can also be

removed in the mutation process.

4. While in NEAT the activation function is fixed, we subject

the choice for each node to the evolutionary process (ex-

cept for the output nodes). During mutation a new activa-

tion function is selected from a pre-defined set (including

sigmoid, RLU, leaky RLU, softmax, identity and tanh). This

applies to both new nodes and existing nodes. The latter in

the form of activation function mutations, albeit occurring

only with a relatively low probability.

5. Following [7], we determine network layers by the longest

path of forward connections to reach a node - not only be-

cause it enables analysing the network structure, but also

because in our implementation it is required in order to be

able to distinguish forward from recurrent synapses. The

additional computational effort is reduced by only partially

determining layer assignments (that is, only for the af-

fected nodes) when a new node or synapse is added and re-

analysing the full network only when necessary, e.g., when a

node or a synapse is removed. We designed a fast recursive

algorithm for this task.

6. We included standard recurrence. Wang et al. [7] showed

that the recurrence calculation in the standard implementa-

tion of NEAT is not correctly working, revisiting nodes sev-

eral times, leading to higher computational costs and incor-

rect output values. Unfortunately, their suggested alterna-

tive implementation solves only the revisiting problem, but

does not realise recurrence in the standard way. It only cre-

ates a looped calculation of the current node states, which

might be helpful in itself, but differs from recurrence in the

typical definition, which requires the previous states (output

from the previous evaluation step) to be considered. In our

approach synapses that connect nodes of the same layer or

connect from a higher to a lower layer are defined as recur-

rent and work with the previous states of the source nodes.

Layer-wise the impact of the recursive nodes is computed

first and then the impact of the forward nodes before finally

the activation functions are applied.

7. To break the complex classification problem into smaller

partial problems, we introduced cooperative co-evolution.

Several populations exist concurrently and evolve simulta-

neously, coupled loosely through cooperation: Each of them

gets a part of the input at each sample point, but the individu-

als from the populations solve the overall task by cooperating

across population boundaries. In our set-up, there are three

populations and they receive each a third of the input, that

is, initially randomly chosen 6 values per sample out of the

18 components we obtained in the feature extraction. After

determining the output for the current sample, ensembles are

created based on their present energy (see below): triplets

consisting of one selected individual from each population.

The output of each individual network is considered as the

probability that the target event was detected and is treated

as a confidence value. Is is averaged within ensemble, but

with higher confidence values (closer to 1 or 0) boosted by:

w̃k = 1− 4 pk (1− pk), (1)

p̃k = (pk − 0.5) w̃k, (2)

po =

1

N

N∑

i=1

p̃i

1

N

N∑

i=1

w̃i

+ 0.5, (3)

where pk is the estimate of ensemble member k (from popu-

lation k), N the number of ensemble members (populations),

w̃ the boosting factor, p̃ the adjusted estimate and po the av-

eraged adjusted final output. This allows individual mem-

bers of the ensemble with high confidence to override the

influence of the others if these are weighing in for the op-

posite decision but are not too far from the 0.5 chance level

border. Based on whether the result is a true positive, true

negative, false positive or false negative rewards and penal-

ties are given equally to all members of the ensemble and

then converted into an energy measure. Ensembles are dis-

solved and reformed at the next evaluation sample and, thus,
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also not carried over to the next generation. However, the

individual members keep their acquired energy.

We used three populations with each 400 individuals. For each

sound event class a separate neuroevolution run was conducted, i.e.,

all networks had always only one output node. Each run started with

all individuals possessing a minimal, fully forward-connected net-

work, consisting of six input nodes, one bias node and one output

node with randomly assigned weights (drawn from a standard uni-

form distribution). The activation function of the output node was

set to the sigmoid function. For implementation reasons input nodes

possess an activation function, too. In the beginning we set them to

the identity function, but in test runs the evolutionary process often

replaced them by the hyperbolic tangent function in successful net-

works. We therefore decided to make tanh the default start input

activation function.

In each generation and each evaluation step we evaluated 250
randomly selected samples simultaneously. Their selection indices

were determined by drawing in each generation consecutive dis-

tance values from a normal distribution with mean 20 and standard

deviation 1.79 and accumulating them (e.g., values 18, 26 and 15
resulting in the selection of the 18th, 44th and 59th sample). Each

evaluation step progressed then by one sample, keeping all the dis-

tances intact. Forty-four steps were taken per generation, which

meant that each sample point was on average evaluated 2.6 times.

A complete run for a single class consisted of 500 generation. The

best fitness value achieved over the course of the 500 generations

was stored and the ensemble which accomplished it taken as the fi-

nal classifier network. The results were aggregated over classes and

folds and the final evaluation conducted using the Python routine

provided by the DCASE 2017 Task 3 organisers [17].

For comparison, we also ran J-NEAT with no co-evolution, em-

ploying only a single population and each network receiving the

entire input per sample. Finally, to gauge the impact of the feature

extraction method and create a minimal node-size classifier using

learning, we also applied a simple single-layer feed-forward net-

work with no hidden nodes. The learning rate was set to 0.2. No

regularisation techniques were used.

3. RESULTS

Figure 1 to 3 show as an example the three networks that formed the

ensemble with the best training performance on the full develop-

ment data set for the ‘people walking’ detector. Table 1 summarises

the performance results across the four-fold validation and Table 2

shows the results from the challenge evaluation [18].

Table 1: Performance on the development test data set showing both

segment- and event-based evaluation results.

Method Seg. ER Seg. F1 Ev. ER Ev. F1

Baseline 0.72 51.40 3.30 6.74
J-NEAT ensemble 0.73 49.24 1.46 6.46
J-NEAT plain 0.72 50.55 1.37 5.66
Single-layer FFN 0.69 56.47 1.40 5.85

4. DISCUSSION

One could question the wisdom of using neuroevolution for tasks

that are in principle solvable with supervised learning, presenting

Table 2: Challenge evaluation.

Segment-based value Rank

Method ER F1 ER F1

DCASE Baseline 0.936 42.8 19 8
J-NEAT ensemble 0.898 44.9 15 1

J-NEAT plain 0.891 41.6 14 12
Single-layer FFN 1.014 43.8 28 3

no obstacles for backpropagation of the error through the network.

Our interest in neuroevolution stems from the desire to develop par-

simonious neural network-based detectors and classifiers, consist-

ing ideally only of a few nodes. These small systems could be used

in, for instance, autonomous micro-robots such as insect-like air-

born robots. A powerful all-purpose (hard-coded) feature extracting

system might be available, but the detectors and classifiers would

need to be of minimal size: In real-world navigation and other task

solving a large number of them would be required, but the num-

ber of available neurons would be very limited. Neuroevolution us-

ing TWEANNs offers the potential to find small network solutions

without a human experimenter having to specify network size and

topology.

The results using the development data set demonstrated that

neuroevolution techniques can evolve small networks able to com-

pete with the much bigger network of the baseline. Here they were,

however, still outperformed by a minimal human-designed learning

network. The picture changes when taking the challenge results into

account. On these previously unseen data – never touched upon in

the system development – abstraction and regularisation shortcom-

ings become evident. The two J-NEAT systems performed approx-

imately equally according to the ER metric. Both were above aver-

age of all 34 submitted systems and substantially outperformed our

learning simple single-layer network. When looking at the comple-

mentary F1 metric the ensemble-based J-NEAT system clearly got

the upper hand over the plain J-NEAT system and indeed performed

better than all other submitted systems.

With caution this can interpreted as evidence for the ability of

ensemble-based J-NEAT classifiers to tune in on specific charac-

teristics of some but not all of the involved audio event classes and

avoid to a certain degree interference from overlapping sound events

in this difficult polyphonic task of the DCASE 2017 challenge. The

challenge results certainly establish J-NEAT as a serious alternative

to the DNN approaches, which dominated not just this challenge,

but by now reign over most of machine learning.

Future work will investigate task dependency problems more

closely. For static co-evolution it is advantageous for the subordi-

nate tasks to be as independent as possible [19]. If the input is split

to form subtasks as in our classification and detection system, in-

dependence is not likely. However, in our system ensemble assign-

ments change dynamically at each evaluation step. It is therefore

unclear whether greater independence would improve the results.

We will also explore alternatives to the current approach, for in-

stance by providing all populations with the full input, but still using

cooperative co-evolution in the form of dynamic cross-population

ensembles. A specialisation of individual networks on parts of the

input will then be left to evolution as well. Another alternative will

be to enable symbiotic relationships between networks of different

populations through synapses connecting networks across the pop-

ulation barrier.
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