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a b s t r a c t 

This paper proposes an optimisation algorithm called Grasshopper Optimisation Algorithm (GOA) and ap- 

plies it to challenging problems in structural optimisation. The proposed algorithm mathematically mod- 

els and mimics the behaviour of grasshopper swarms in nature for solving optimisation problems. The 

GOA algorithm is first benchmarked on a set of test problems including CEC2005 to test and verify its 

performance qualitatively and quantitatively. It is then employed to find the optimal shape for a 52-bar 

truss, 3-bar truss, and cantilever beam to demonstrate its applicability. The results show that the pro- 

posed algorithm is able to provide superior results compared to well-known and recent algorithms in the 

literature. The results of the real applications also prove the merits of GOA in solving real problems with 

unknown search spaces. 

© 2017 Elsevier Ltd. All rights reserved. 
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1. Introduction 

The process of finding the best values for the variables of a

particular problem to minimise or maximise an objective func-

tion is called optimisation. Optimisation problems exist in different

fields of studies. To solve an optimisation problem, different steps

need to be taken. Firstly, the parameters of the problem should

be identified. Based on the nature of the parameters, problems

may be classified as continuous or discrete. Secondly, the con-

straints that are applied to the parameters have to be recognised

[1] . Constraints divide the optimisation problems into constrained

and unconstrained. Thirdly, the objectives of the given problem

should be investigated and considered. In this case, optimisation

problems are classified into single-objective versus multi-objective

problems [2] . Finally, based on the identified types of parameters,

constraints, and number of objectives a suitable optimiser should

be chosen and employed to solve the problem. 

Mathematical optimisation mainly relies on gradient-based in-

formation of the involved functions in order to find the optimal

solution. Although such techniques are still being used by different

researchers, they have some disadvantages. Mathematical optimi-

sation approaches suffer from local optima entrapment. This refers

to an algorithm assuming a local solution is the global solution,

thus failing to obtain the global optimum. They are also often inef-

fective for problems with unknown or computationally expensive
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erivation [3] . Another type of optimisation algorithm that allevi-

tes these two drawbacks is stochastic optimisation [4] . 

Stochastic methods rely on random operators that allow them

o avoid local optima. They all start optimisation process by creat-

ng one or a set of random solutions for a given problem. In con-

rast to mathematical optimisation techniques, they do not need

o calculate the gradient of a solution, just evaluating the solutions

sing the objective function(s). Decisions as to how to improve the

olutions are made based on the calculated objective values. There-

ore, the problem is considered as a black box, which is a very use-

ul mechanism when solving real problems with unknown search

paces. Due to these advantages, stochastic optimisation techniques

ave become very popular over the past two decades [5] . 

Among stochastic optimisation approaches, nature-inspired,

opulation-based algorithms are the most popular [6] . Such tech-

iques mimic natural problems-solving methods, often those used

y creatures. Survival is the main goal for all creatures. To achieve

his goal, they have been evolving and adapting in different ways.

herefore, it is wise to seek inspiration from nature as the best

nd oldest optimiser on the planet. Such algorithms are classified

nto two main groups: single-solutions-based and multi-solution-

ased. In the former class, a single random solution is generated

nd improved for a particular problem. In the latter class, how-

ver, multiple solutions are generated and enhanced for a given

roblem. Multi-solution-based algorithms are more popular than

ingle-solution-based methods, as the literature shows [7] . 

Multi-solution-based algorithms intrinsically have higher lo-

al optima avoidance due to improving multiple solutions dur-

ng optimisation. In this case, a trapped solution in a local opti-

um can be assisted by other solutions to jump out of the local

http://dx.doi.org/10.1016/j.advengsoft.2017.01.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/advengsoft
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ptimum. Multiple solutions explore a larger portion of the search

pace compared to single-solution-based algorithms, so the prob-

bility of finding the global optimum is high. Also, information

bout the search space can be exchanged between multiple so-

utions, which results in quick movement towards the optimum.

lthough multi-solution-based algorithms have several advantages,

hey require more function evaluations. 

The most popular single-solution-based algorithms are hill

limbing [8] and simulated annealing [9] . Both algorithms follow

 similar idea, but the local optima avoidance of SA is higher due

o the stochastic cooling factor. Other recent single-solution-based

lgorithms are Tabu Search (TS) [10,11] , and Iterated Local Search

ILS) [12] . The most popular multi-solutions-based algorithms are

enetic Algorithms (GA) [13] , Particle Swarm Optimisation (PSO)

14] , Ant Colony Optimisation (ACO) [15] , and Differential Evolu-

ion (DE) [16] . The GA algorithm was inspired by the Darwinian

heory of evolution. In this algorithm, solutions are considered as

ndividuals and the parameters of solutions take the place of their

enes. Survival of the fittest individuals is the main inspiration of

his algorithm where the best individuals tend to participate more

n improving poor solutions. The PSO algorithm simulates the for-

ging of herds of birds or schools of fishes. In this algorithm the

olutions are improved with respect to the best solutions obtained

o far by each of the particles and the best solution found by the

warm. The ACO algorithm mimics the collective behaviour of ants

n finding the shortest path from the nest to the source of foods.

inally, DE utilises simple formulae combining the parameters of

xisting solutions to improve the population of candidate solutions

or a given problem. 

The similarity of both classes of nature-inspired algorithms is

he improvement of solutions until the satisfaction of an end cri-

erion and the division of optimisation process into two phases:

xploration versus exploitation [17] . Exploration refers to the ten-

ency for an algorithm to have highly randomised behaviour so

hat the solutions are changed significantly. Large changes in the

olutions cause greater exploration of the search space and conse-

uently discovery of its promising regions. As an algorithm tends

oward exploitation, however, solutions generally face changes on

 smaller scale and tend to search locally. A proper balance of ex-

loration and exploitation can result in finding the global optimum

f a given optimisation problem. 

The literature shows that there are many recent swarm intelli-

ence optimisation techniques such as Dolphin Echolocation (DEL)

18,19] , Firefly Algorithm (FA) [20,21] , Bat Algorithm (BA) [22] , and

rey Wolf Optimizer (GWO) [3] . DEL and BA mimic echolocation of

olphins in finding prey and bats navigating respectively. However,

A simulates the mating behaviour of fireflies in nature. Cuckoo

earch (CS) [23,24] is another recent algorithm in this field, in

hich the reproductive processes of cuckoos are employed to pro-

ose an optimisation algorithm. The GWO is also a swarm-based

echnique that models the hunting mechanism of grey wolves. 

There are also other algorithms with different inspiration in the

iterature. For instance, State of Matter Search (SMS) [25,26] uses

he concepts of different phases in matter to optimise problems

nd the Flower Pollination Algorithm (FPA) [27] has been inspired

y the survival and reproduction of flowers using pollination. There

s a question here as to why we need more algorithms despite the

any algorithms proposed so far. 

The answer to this question is in the No Free Lunch (NFL) the-

rem [28] that logically has proven that there is no optimisation

echnique for solving all optimisation problems. In other words,

lgorithms in this field perform equally on average when consid-

ring all optimisation problems. This theorem, in part, has moti-

ated the rapidly increasing number of algorithms proposed over

he last decade and is one of the motivations of this paper as

ell. The next section proposes a new algorithm mimicking the
ehaviour of grasshopper swarms. There are a few works in the lit-

rature that have tried to simulate locust swarm [29–33] . The cur-

ent study is an attempt to more comprehensively model grasshop-

er behaviours and propose an optimisation algorithm based on

heir social interaction. 

Due to their simplicity, gradient-free mechanism, high local op-

ima avoidance, and considering problems as black boxes, nature-

nspired algorithms have been applied widely in science and in-

ustry [34–36] . Therefore, we also investigate the application of

he proposed algorithm in solving real problems. The rest of the

aper is organised as follows: 

The Grasshopper Optimisation Algorithm is proposed in

ection 2 . Section 3 presents and discusses the results on the

ptimisation test beds and inspects the behaviour of the pro-

osed algorithm. Section 4 contains the application of the pro-

osed method in the field of structural design optimisation. Finally,

ection 5 concludes the work and suggests several directions for

uture studies. 

. Grasshopper Optimisation Algorithm (GOA) 

Grasshopper are insects. They are considered a pest due to

heir damage to crop production and agriculture. The life cycle of

rasshoppers is shown in Fig. 1 . Although grasshoppers are usually

een individually in nature, they join in one of the largest swarm

f all creatures [37] . The size of the swarm may be of continen-

al scale and a nightmare for farmers. The unique aspect of the

rasshopper swarm is that the swarming behaviour is found in

oth nymph and adulthood [38] . Millions of nymph grasshoppers

ump and move like rolling cylinders. In their path, they eat almost

ll vegetation. After this behaviour, when they become adult, they

orm a swarm in the air. This is how grasshoppers migrate over

arge distances. 

The main characteristic of the swarm in the larval phase is slow

ovement and small steps of the grasshoppers. In contrast, long-

ange and abrupt movement is the essential feature of the swarm

n adulthood. Food source seeking is another important character-

stic of the swarming of grasshoppers. As discussed in the intro-

uction, nature-inspired algorithms logically divide the search pro-

ess into two tendencies: exploration and exploitation. In explo-

ation, the search agents are encouraged to move abruptly, while

hey tend to move locally during exploitation. These two functions,

s well as target seeking, are performed by grasshoppers natu-

ally. Therefore, if we find a way to mathematically model this be-

aviour, we can design a new nature-inspired algorithm. 

The mathematical model employed to simulate the swarming

ehaviour of grasshoppers is presented as follows [39] : 

 i = S i + G i + A i (2.1) 

here X i defines the position of the i-th grasshopper, S i is the so-

ial interaction, G i is the gravity force on the i-th grasshopper, and

 i shows the wind advection. Note that to provide random be-

aviour the equation can be written as X i = r 1 S i + r 2 G i + r 3 A i where

 1 , r 2 , and r 3 are random numbers in [0,1]. 

 i = 

N ∑ 

j=1 

j � = i 

s 
(
d i j 

) ̂ d i j (2.2) 

here d ij is the distance between the i-th and the j-th grasshopper,

alculated as d ij = | x j −x i |, s is a function to define the strength of

ocial forces, as shown in Eg. ( 2.3 ), and 

̂ d i j = 

x j −x i 
d i j 

is a unit vector

rom the i th grasshopper to the j th grasshopper. 

The s function, which defines the social forces, is calculated as

ollows: 

 ( r ) = f e 
−r 
l − e −r (2.3) 
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Adult

EggNymph

Fig. 1. (a) Real grasshopper (b) Life cycle of grasshoppers (left image courtesy of Mehrdad Momeny). 
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Fig. 2. (left) Function s when l = 1.5 and f = 0.5 (right) range of function s when x is in [ 1 , 4 ] . 
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where f indicates the intensity of attraction and l is the attractive

length scale. 

The function s is illustrated in Fig. 2 to show how it impacts on

the social interaction (attraction and repulsion) of grasshoppers. 

It may be seen in this figure that distances from 0 to 15 are

considered. Repulsion occurs in the interval [0 2.079]. When a

grasshopper is 2.079 units away from another grasshopper, there

is neither attraction nor repulsion. This is called the comfort zone

or comfortable distance. Fig. 2 also shows that the attraction in-

creases from 2.079 unit of distance to nearly 4 and then gradually

decreases. Changing the parameters l and f in Eq. (2.3) results in

different social behaviours in artificial grasshoppers. To see the ef-

fects of these two parameters, the function s is re-drawn in Fig. 3

varying l and f independently. This figure shows that the parame-
ers l and f change comfort zone, attraction region, and repulsion

egion significantly. It should be noted that the attraction or re-

ulsion regions are very small for some values ( l = 1.0 or f = 1.0 for

nstance). From all these values we have chosen l = 1.5 and f = 0.5 . 

A conceptual model of the interactions between grasshoppers

nd the comfort zone using the function s is illustrated in Fig. 4 . It

ay be noted that, in simplified form, this social interaction was

he motivating force in some earlier locust swarming models [32] . 

Although the function s is able to divide the space between two

rasshoppers into repulsion region, comfort zone, and attraction

egion, this function returns values close to zero with distances

reater than 10 as Figs. 2 and 3 show. Therefore, this function is

ot able to apply strong forces between grasshoppers with large

istances between them. To resolve this issue, we have mapped
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Comfort zone Attraction force

Repulsion force

Fig. 4. Primitive corrective patterns between individuals in a swarm of grasshop- 
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he distance of grasshoppers in the interval of [1,4] . The shape of

he function s in this interval is shown in Fig. 2 (right). 

The G component in Eq. (2.1) is calculated as follows: 

 i = −g ̂  e g (2.4) 

here g is the gravitational constant and 

̂ e g shows a unity vector

owards the centre of earth. 

The A component in Eq. (2.1) is calculated as follows: 

 i = u ̂

 e w 

(2.5) 

here u is a constant drift and 

̂ e w 

is a unity vector in the direction

f wind. 

Nymph grasshoppers have no wings, so their movements are

ighly correlated with wind direction. 

Substituting S, G, and A in Eq.(2.1), this equation can be ex-

anded as follows: 

 i = 

N ∑ 

j=1 

j � = i 

s 
(∣∣x j − x i 

∣∣)x j − x i 

d i j 

− g ̂  e g + u ̂

 e w 

(2.6) 

here s (r) = f e 
−r 
l − e −r and N is the number of grasshoppers. 

Since nymph grasshoppers land on the ground, their position

hould not go below a threshold. However, we will not utilise this

quation in the swarm simulation and optimisation algorithm be-

ause it prevents the algorithm from exploring and exploiting the

earch space around a solution. In fact, the model utilised for the

warm is in free space. Therefore, Eq. (2.6) is used and can sim-

late the interaction between grasshoppers in a swarm. The be-

aviour of two swarms in 2D and 3D space using this equation

s illustrated in Figs. 5 and 6 . In these two figures, 20 artificial

rasshoppers are required to move over 10 units of time. 

Fig. 5 shows how Eq. (2.6) brings the initial random population

loser until they form a united, regulated swarm. After 10 units

f time, all the grasshoppers reach the comfort zone and do not

ove anymore. The same behaviour is observed in a 3D space in

ig. 6 . This shows that the mathematical model is able to simulate

 swarm of grasshoppers in 2D, 3D, and hyper dimensional spaces.

However, this mathematical model cannot be used directly

o solve optimisation problems, mainly because the grasshoppers

uickly reach the comfort zone and the swarm does not converge

o a specified point. A modified version of this equation is pro-

osed as follows to solve optimisation problems: 

 

d 
i = c 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

N ∑ 

j=1 

j � = i 

c 
u b d − l b d 

2 

s 
(∣∣x d j − x d i 

∣∣)x j − x i 

d i j 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

+ ̂

 T d (2.7) 
here ub d is the upper bound in the D th dimension, lb d is the

ower bound in the D th dimension s (r) = f e 
−r 
l − e −r , ̂ T d is the

alue of the D th dimension in the target (best solution found so

ar), and c is a decreasing coefficient to shrink the comfort zone,

epulsion zone, and attraction zone. Note that S is almost similar

o the S component in Eq. (2.1) . However, we do not consider grav-

ty (no G component) and assume that the wind direction ( A com-

onent) is always towards a target ( ̂  T d ). 

Eq. (2.7) shows that the next position of a grasshopper is de-

ned based on its current position, the position of the target,

nd the position of all other grasshoppers. Note that the first

omponent of this equation considers the location of the current

rasshopper with respect to other grasshoppers. In fact, we have

onsidered the status of all grasshoppers to define the location of

earch agents around the target. This is different to PSO as the

ost well-regarded swarm intelligence technique in the literature.

n PSO, there are two vectors for each particle: position and ve-

ocity vector. However, there is only one position vector for every

earch agent in GOA. The other main difference between these two

lgorithms is that PSO updates the position of particles with re-

pect to current position, personal best, and global best. However,

OA updates the position of a search agent based on its current

osition, global best, and the position of all other search agents.

his means that in PSO none of the other particles contribute to

pdating the position of a particle, whereas GOA requires all search

gents to get involved in defining the next position of each search

gent. 

It is also worth mentioning here that the adaptive parameter c

as been used twice in Eq. (2.7) for the following reasons: 

• The first c from the left is very similar to the inertial weight

( w ) in PSO. It reduces the movements of grasshoppers around

the target. In other words, this parameter balances exploration

and exploitation of the entire swarm around the target. 
• The second c decreases the attraction zone, comfort zone, and

repulsion zone between grasshoppers. Considering the compo-

nent c 
u b d −l d d 

2 s ( | x j − x i | ) in the Eq. (2.7) , c 
u b d −l d d 

2 linearly de-

creases the space that the grasshoppers should explore and

exploit. The component s (| x j −x i |) indicates if a grasshopper

should be repelled from (explore) or attracted to (exploitation)

the target. 

It should be noted that the inner c contributes to the reduction

f repulsion/attraction forces between grasshoppers proportional to

he number of iterations, while the outer c reduces the search cov-

rage around the target as the iteration count increases. 

In summary, the first term of Eq. (2.7) , the sum, considers the

osition of other grasshoppers and implements the interaction of

rasshoppers in nature. The second term, ̂ T d , simulates their ten-

ency to move towards the source of food. Also, the parameter c

imulates the deceleration of grasshoppers approaching the source

f food and eventually consuming it. To provide more random be-

aviour, and as an alternative, both terms in Eq. (2.7) can be multi-

lied with random values. Also, individual terms can be multiplied

ith random values to provide random behaviour in either inter-

ction of grasshoppers or tendency towards the food source. 

The proposed mathematical formulations are able to explore

nd exploit the search space. However, there should be a mech-

nism to require the search agents to tune the level of exploration

o exploitation. In nature, grasshoppers first move and search for

oods locally because in larvae they have no wing. They then move

reely in air and explore a much larger scale region. In stochas-

ic optimisation algorithms, however, exploration comes first due

o the need for finding promising regions of the search space. Af-

er finding promising regions, exploitation obliges search agents to
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Fig. 6. Behaviour of swarm in a 3D space. 

 

 

 

 

 

t

c  

w  

i  
search locally to find an accurate approximation of the global opti-

mum. 

For balancing exploration and exploitation, the parameter c is

required to be decreased proportional to the number of iteration.

This mechanism promotes exploitation as the iteration count in-

creases. The coefficient c reduces the comfort zone proportional to
i  

r

he number of iterations and is calculated as follows: 

 = cmax − l 
cmax − cmin 

L 
(2.8)

here cmax is the maximum value, cmin is the minimum value, l

ndicates the current iteration, and L is the maximum number of

terations. In this work, we use 1 and 0.0 0 0 01 for cmax and cmin

espectively. 
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Fig. 7. (a) Behaviour of grasshoppers around a stationary and mobile target in 2D space and (b) 3D space (c) Behaviour of grasshoppers on a unimodal test function and a 

multi-modal test function. 
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The effect of this parameter on the movement and convergence

f grasshoppers is illustrated in Fig. 7 . The sub-figures illustrate

he position history of grasshoppers over 100 iterations. We have

erformed the experiment on both stationary and mobile targets

o see how the swarm moves towards and chases them. This fig-

re shows that the swarm converges gradually towards a station-

ry target in both 2D and 3D spaces. This behaviour is due to re-

ucing the comfort zone by the factor c . Fig. 7 also shows that

he swarm properly chases a mobile target as well. This is due to

he last component of Eq. (2.6) ( ̂  T ) , in which grasshoppers are at-
d 
racted towards the target. The interesting pattern is the gradual

onvergence of grasshoppers towards the target over the course of

teration, which is again due to decreasing the factor c . These be-

aviours will assist the GOA algorithm not to converge towards the

arget too quickly and consequently not to become trapped in lo-

al optima. In the last steps of optimisation, however, grasshoppers

ill converge towards the target as much as possible, which is es-

ential in exploitation. 

The above discussions show that the mathematical model pro-

osed requires grasshoppers to move towards a target gradually
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Fig. 8. Pseudo codes of the GOA algorithm. 
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over the course of iterations. In a real search space, however, there

is no target because we do not know exactly where the global op-

timum, the main target, is. Therefore, we have to find a target for

grasshoppers in each step of optimisation. In GOA, it is assumed

that the fittest grasshopper (the one with the best objective value)

during optimisation is the target. This will assist GOA to save the

most promising target in the search space in each iteration and re-

quires grasshoppers to move towards it. This is done with the hope

of finding a better and more accurate target as the best approxima-

tion for the real global optimum in the search space. Fig. 7 includes

two test functions and shows that the proposed model and target

updating mechanism are effective in problems with unknown op-

timum as well. 

The pseudo code of the GOA algorithm is shown in Fig. 8 . The

GOA starts optimisation by creating a set of random solutions. The

search agents update their positions based on Eq. (2.7) . The posi-

tion of the best target obtained so far is updated in each iteration.

In addition, the factor c is calculated using Eq. (2.8) and the dis-

tances between grasshoppers are normalised in [1,4] in each iter-

ation. Position updating is performed iteratively until the satisfac-

tion of an end criterion. The position and fitness of the best target

is finally returned as the best approximation for the global opti-

mum. 

Although the above simulations and discussions demonstrate

the effectiveness of the GOA algorithm in finding the global op-

timum in a search space, the performance of the proposed algo-

rithm is investigated by employing a set of mathematical func-

tions and three challenging real problems in the next sections.

Note that the source codes of the GOA algorithm can be found at

http://www.alimirjalili.com/Projects.html and http://au.mathworks.

com/matlabcentral/profile/authors/2943818- seyedali- mirjalili . 

3. Results 

This section first presents the test bed problems and perfor-

mance metrics that are used to benchmark the performance of the

proposed GOA algorithm. The experimental results are then pro-

vided and analysed in detail. 

3.1. Experimental setup 

In the field of stochastic optimisation, it is common to employ

a set of mathematical test functions with known optima. Thus,

the performance of different algorithms can be measured quantita-

tively. However, the characteristics of the test functions should be

diverse to be able to draw a mature conclusion. In this work, three

sets of test functions with different features are employed to confi-

dently benchmark the performance of the proposed algorithm. The

test functions are unimodal, multimodal, and composite [40–43] .

The mathematical formulation of these test functions are available

in the appendix. 
As shown in Fig. 9 , a unimodal test function has no local so-

utions and there is only one global optimum. The entire search

pace favours the global optima, so the convergence speed and ex-

loitation of an algorithm can be benchmarked. Fig. 9 also shows

hat multi-modal and composite test functions have many local

ptima which make them highly suitable for benchmarking the

erformance of an algorithm in terms of local optima avoidance

nd exploration. Composite tests functions are usually more chal-

enging than the multi-modal test functions and better mimic real

earch spaces. Therefore, the potential performance of an algorithm

olving real problems may be inferred from such benchmarks. 

For solving the test functions, 30 search agents and 500 iter-

tions were employed. Each of the test functions was solved 30

imes to generate the statistical results. Different performance indi-

ators were utilised to quantitatively compare the algorithms: av-

rage and standard deviation of the best solutions obtained in the

ast iterations. Obviously, the lower the value of average and stan-

ard deviation, the greater the ability of an algorithm in avoiding

ocal solutions and determining the global optimum. Qualitative

esults, including convergence curves, trajectory of grasshoppers,

earch history, and average fitness of population have been illus-

rated and analysed in the following subsection. 

For verification of results, seven algorithms were employed

rom the literature including well-known and recent ones: PSO,

MS [25,26] , BA [22] , FPA [27] , CS [23,24] , FA [20,21] , GA, DE, and

ravitational Search Algorithm (GSA) [44] . The initial controlling

arameters of all algorithms are shown in Table 1 . 

.2. Qualitative results and discussion 

The first experiment was performed on the 2D version of some

f the test functions using only 5 artificial grasshoppers. The main

bjective for this experiment was to observe the behaviour of the

OA qualitatively. Five diagrams have been drawn for each of the

est functions in Fig. 10 in addition to the shape of test functions.

hese diagrams are: 

• Search history: this diagram shows the location history of the

artificial grasshoppers during optimisation. 
• Attraction/repulsion rates: this diagram shows the number of

times that all artificial grasshoppers attracted or repelled each

other during optimisation. 
• Trajectory of the first grasshopper in the first dimension: this

diagram shows the value of the first variable of the first

grasshopper in each iteration. 
• Average fitness: this diagram indicates the average objective

value of all grasshoppers in each iteration. 
• Convergence curve: this diagram shows the objective value of

the best solutions obtained so far (target) in each iteration. 

As per the results in Fig. 10 , grasshoppers tend to explore

he promising regions of the search space and cluster around the

lobal optima eventually. This pattern can be observed in uni-

odal, multimodal, and composite test functions. These results

how that the GOA algorithm beneficially balances exploration and

xploitation to drive the grasshoppers towards the global optimum.

he rates of attraction and repulsion in the pie charts show that

he grasshoppers interact differently on the test functions. They

eem to attract each other more often on the unimodal test func-

ions. This can clearly be observed in the pie charts for F1 and F4.

his behaviour is fruitful because unimodal functions do not have

ocal optima, so grasshopper can better determine the global opti-

um by moving towards the best solution obtained so far. 

Another interesting pattern in the pie charts is the high re-

ulsion rate between grasshoppers when solving multi-modal and

omposite test functions. This can be observed in the pie charts

http://www.alimirjalili.com/Projects.html
http://au.mathworks.com/matlabcentral/profile/authors/2943818-seyedali-mirjalili
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F1 F9 F13

Fig. 9. An example of unimodal, multi-modal, and composite test functions. 

Table 1 

Initial values for the controlling parameters of algorithms. 

Algorithm Parameter Value 

PSO Topology Fully connected 

Cognitive and social constants 1.5, 1.5 

Inertial weight Linearly decreases from 0.6 to 0.3 

GA Type Real coded 

Selection Roulette wheel 

Crossover Single point (probability = 1) 

Mutation Uniform (probability = 0.01) 

DE Crossover probability 0.9 

Differential weight 0.5 

GSA Rnorm, Rpower, alpha, and G 0 2, 1, 20, 100 

BA Loudness ( A ), pulse rate ( r ) 0.5, 0.5 

Frequency min and max 0, 2 

FPA probability switch( p ) 0.4 

SMS Beta [0.9, 0.5, 0.1] 

Alpha [0.3, 0.05, 0] 

H [0.9, 0.2, 0] 

Phases [0.5, 0.1, −0.1] 

FA Alpha, beta, and gamma 0.2, 1, 1 
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f F9, F14 and F18. This is due to the fact that repulsion is a key

echanism to avoid local solutions in the GOA algorithm and these

esults show that this algorithm prevents grasshoppers from local

ptima stagnation by high repulsion rates. It is worth mentioning

ere that the results show that the high repulsion rate does not

egatively impact on the convergence. This is due to the adap-

ive parameter of GOA, which shrinks the repulsion area propor-

ional to the number of iterations. Therefore, grasshoppers avoid

ocal valleys in the initial steps of iteration and cluster around the

lobal optimum in the final stages of optimisation. For the test

unctions with both unimodal and multi modal regions (F10 for

nstance), Fig. 10 shows that the repulsion rate is lower. These re-

ults again demonstrate that GOA efficiently balances exploration

nd exploitation to approximate the global optimum. 

The trajectory curves in Fig. 10 show that the grasshoppers ex-

ibit large, abrupt changes in the initial steps of optimisation. This

s due to the high repulsion rate which causes exploration of the

earch space by GOA. It also can be seen that the fluctuation de-

reased gradually during optimisation, which is due to the adap-

ive comfort zone and attraction forces between the grasshoppers.

his guarantees that the proposed GOA algorithm explores and

xploits the search space and converges towards a point eventu-

lly. To confirm that this behaviour results in improving the fitness

f grasshoppers, average fitness of grasshoppers and convergence

urves are provided in Fig. 10 . The curves clearly show descending

ehaviour on all of the test functions. This proves that GOA en-

ances the initial random population on the test functions and de-

irably improves the accuracy of the approximated optimum over

he course of iterations. 
.3. Quantitative results and discussion 

The above discussed results qualitatively demonstrated that

he GOA is able to solve optimisation problems. However, the

est functions were of 2 variables and qualitative results can-

ot tell us how much better this algorithm is compared to cur-

ent ones. In order to show the merits of GOA quantitatively,

his subsection solved the test functions with 30 dimensions and

resents/discusses the results quantitatively. The experimental re-

ults are provided in Tables 2 , 3 , and 4 for unimodal, multi-modal,

nd composite test functions. Note that the results are normalised

etween 0 and 1 for all the test functions due to the different do-

ain/range of test functions. This assist us in conveniently com-

aring the results on different test functions as well. 

As per the results in Table 2 , the GOA algorithm shows the best

esults when solving unimodal test functions. The results of this

lgorithm are substantially better in more than half of the uni-

odal test functions, showing the high performance of this algo-

ithm. Unimodal test functions have only one global optimum, so

he results clearly show that the GOA algorithm benefits from high

xploitation ability. 

The results in Table 3 are consistent with those in Table 2 , in

hich the GOA algorithm tends to significantly outperform others

n both of the performance metrics. The results of this algorithm

re again remarkably superior in the majority of multi-modal test

unctions. Since the multi-modal test functions have a significant

umber of local solutions, these results quantitatively show the ef-

ectiveness of the proposed algorithm in avoiding local solutions

uring optimisation. 

The results of the algorithms on composite test functions are

resented in Table 4 . These results show that the GOA algo-

ithm provides very competitive results compared to other algo-

ithms. Composite test functions are even more challenging than

he multi-modal ones and require a proper balance between ex-

loration and exploitation. Therefore, it can be stated that the GOA

s able to balance exploration and exploitation properly for solving

uch challenging problems. 

Comparing algorithms based on average and standard devia-

ion over 30 independent runs does not compare each of the

uns. Therefore, it is still possible that the superiority occurs by

hance despite its low probability in 30 runs. In order to com-

are the results of each run and decide on the significance of

he results, the Wilcoxon statistical test was performed at 5% sig-

ificance level and the p-values are reported in Table 5 . For the

tatistical test, the best algorithm in each test function is chosen

nd compared with other algorithms independently. For example,

f the best algorithm is GOA, a pairwise comparison is done be-

ween GOA/PSO, GOA/GSA , GOA/BA , and so on. Note that since

he best algorithm cannot be compared with itself, N/A has been
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Fig. 10. Behaviour of GOA on the 2D benchmark problems. 
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written for the best algorithm in each function which stands for

Not Applicable. 

As per the results in this table, p-values are mostly less than

0.05 for the GOA, which demonstrates that the superiority of this

algorithm is statistically significant. For the F3 function the results
how the FPA is not significantly superior to GOA. Overall, these

esults show that GOA is able to outperform other algorithms in

he literature. According to the NFL theorem, therefore, it has the

otential to solve problems (of the types tested) that cannot be

olved efficiently by other algorithms. 
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Table 2 

Results of unimodal benchmark functions. 

F GOA PSO GSA BA 

Ave std ave std ave std ave std 

F1 0.0 0 0 0 0.0 0 0 0 0.2391 0.5622 0.0 0 02 0.0012 0.9882 1.0 0 0 0 

F2 0.0020 0.0010 0.0097 0.0013 0.0 0 0 0 0.0 0 0 0 1.0 0 0 0 1.0 0 0 0 

F3 0.0010 0.0203 0.2613 0.3547 0.0328 0.0395 1.0 0 0 0 1.0 0 0 0 

F4 0.0 0 0 0 0.0 0 0 0 0.4767 0.4730 0.3244 0.5119 0.9148 1.0 0 0 0 

F5 0.0 0 0 0 0.0 0 0 0 0.0386 0.0944 0.0 0 0 0 0.0 0 0 0 1.0 0 0 0 1.0 0 0 0 

F6 0.0 0 0 0 0.0 0 0 0 0.7786 0.4808 0.3825 0.2231 1.0 0 0 0 1.0 0 0 0 

F7 0.0 0 0 0 0.0 0 0 0 0.1349 0.1648 0.0226 0.0763 1.0 0 0 0 1.0 0 0 0 

F FPA SMS FA GA 

ave std ave std ave std ave std 

F1 0.0329 0.0784 1.0 0 0 0 0.4478 0.1581 0.0748 0.4121 0.5202 

F2 0.0131 0.0 0 07 0.0157 0.0 0 08 0.0076 0.0 0 01 0.0100 0.0 0 03 

F3 0.0 0 0 0 0.0 0 0 0 0.3486 0.0651 0.0617 0.0160 0.2022 0.0710 

F4 0.3219 0.4215 1.0 0 0 0 0.7232 0.3796 0.2116 0.7245 0.2384 

F5 0.0060 0.0345 0.3901 0.4781 0.0068 0.0068 0.0746 0.0931 

F6 0.0088 0.0189 0.7025 0.5891 0.0414 0.0190 0.1933 0.1932 

F7 0.0386 0.0459 0.0036 0.0022 0.0590 0.0194 0.4416 0.2028 

Table 3 

Results of multimodal benchmark functions. 

F GOA PSO GSA BA 

ave std ave std ave std ave std 

F8 1.0 0 0 0 0.0 0 02 0.7425 0.0016 0.8473 0.0020 0.0148 1.0 0 0 0 

F9 0.0 0 0 0 0.0 0 07 0.6520 1.0 0 0 0 0.1361 0.2722 0.7022 0.7517 

F10 0.0975 1.0 0 0 0 0.6140 0.2426 0.0 0 0 0 0.0 0 0 0 0.9665 0.1155 

F11 0.0 0 0 0 0.0 0 0 0 0.8184 0.3512 1.0 0 0 0 0.5790 0.9912 1.0 0 0 0 

F12 0.0 0 0 0 0.0 0 07 0.4689 0.8147 0.0577 0.4246 0.6892 0.9635 

F13 0.0 0 0 0 0.0 0 0 0 0.0973 0.1647 0.1603 0.0890 1.0 0 0 0 1.0 0 0 0 

F FPA SMS FA GA 

ave std ave std ave std ave std 

F8 0.0381 0.0 0 06 0.5613 0.0049 0.6140 0.0 0 0 0 0.0 0 0 0 0.0 0 06 

F9 0.6568 0.4179 0.8628 0.2633 0.8377 0.0329 1.0 0 0 0 0.0 0 0 0 

F10 0.7170 0.3848 1.0 0 0 0 0.0666 0.7078 0.0410 0.8628 0.1415 

F11 0.0124 0.0058 0.6746 0.7789 0.0548 0.0070 0.1941 0.2865 

F12 0.0237 0.1907 0.1140 0.0 0 0 0 0.2442 1.0 0 0 0 1.0 0 0 0 0.4363 

F13 0.3766 0.1566 0.9609 0.2394 0.1119 0.1510 0.4 4 46 0.0798 

Table 4 

Results of composite benchmark functions. 

F GOA PSO GSA BA 

Ave std ave std ave std ave std 

F14 0.0 0 0 0 0.3386 0.6083 1.0 0 0 0 0.0840 0.2977 1.0 0 0 0 0.5714 

F15 0.4892 0.7182 0.4236 0.7929 0.0672 0.5226 1.0 0 0 0 1.0 0 0 0 

F16 0.0 0 0 0 0.0 0 0 0 0.4651 0.6805 0.4799 0.8414 1.0 0 0 0 1.0 0 0 0 

F17 0.8169 1.0 0 0 0 0.3241 0.2970 0.0 0 0 0 0.6439 1.0 0 0 0 0.6905 

F18 0.0 0 0 0 0.0064 0.3122 1.0 0 0 0 0.0581 0.2503 1.0 0 0 0 0.8953 

F19 0.7863 0.9355 1.0 0 0 0 0.0 0 0 0 0.9391 0.3063 0.9097 0.4190 

F FPA SMS FA GA 

ave std ave std ave std ave std 

F14 0.0 0 08 0.0570 0.5604 0.4830 0.5035 0.6008 0.3799 0.0 0 0 0 

F15 0.0 0 0 0 0.4822 0.5097 0.5559 0.5730 0.9765 0.1338 0.0 0 0 0 

F16 0.3381 0.0759 0.8914 0.5077 0.4921 0.0922 0.6820 0.1783 

F17 0.1395 0.0348 0.6594 0.0383 0.3264 0.4911 0.3660 0.0 0 0 0 

F18 0.3249 0.9194 0.3144 0.4097 0.3160 0.3885 0.1347 0.0 0 0 0 

F19 0.0 0 0 0 0.0702 0.4257 0.8595 0.7068 1.0 0 0 0 0.0211 0.1720 
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To further show the effectiveness of the proposed GOA algo-

ithm, we have solved more challenging test functions and com-

ared the results with the most popular algorithms in the liter-

ture. The test functions are 25 taken from the CEC2005 special

ession [45] . These test functions are the most challenging test

unctions in the literature and can be found in the appendix. The

esults are compared to PSO, GA, DE, GSA, BA, FPA, and FA as
he most well-known and recent algorithms in the literature. The

esults are again normalised in [0,1] and presented in Tables 6

nd 7 . 

Inspecting the results in Table 6 , it is evident that the pro-

osed GOA algorithm outperforms other algorithms on the major-

ty of the CEC2005 test functions. The p-values in Table 7 show

hat the superiority of GOA is statistically significant. Comparison
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Table 5 

P-values obtained from the Wilcoxon ranksum test. 

TP GOA PSO GSA BA FPA SMS FA GA 

F1 N/A 0.0 0 0183 N/A 0.0 0 0183 0.0 0 0183 0.0 0 0183 0.0 0 0183 0.0 0 0183 

F2 0.002827 0.0 0 0183 N/A 0.0 0 0183 0.0 0 0183 0.0 0 0183 0.0 0 0183 0.0 0 0183 

F3 0.140465 0.0 0 0183 0.0 0 0183 0.0 0 0183 N/A 0.0 0 0183 0.0 0 0183 0.0 0 0183 

F4 N/A 0.0 0 0183 0.0 0 0183 0.0 0 0183 0.0 0 0183 0.0 0 0183 0.0 0 0183 0.0 0 0183 

F5 N/A 0.0 0 0183 0.241322 0.0 0 0183 0.0 0 0183 0.0 0 0183 0.0 0 0183 0.0 0 0183 

F6 N/A 0.0 0 0183 0.0 0 0183 0.0 0 0183 0.0 0 0183 0.0 0 0183 0.0 0 0183 0.0 0 0183 

F7 N/A 0.0 0 0183 0.0 0 033 0.0 0 0183 0.0 0 0183 0.0 0 0583 0.0 0 0183 0.0 0 0183 

F8 0.0 0 0183 0.0 0 0183 0.0 0 0183 N/A 0.0 0 0183 0.0 0 0183 0.0 0 0183 0.0 0 0183 

F9 N/A 0.0 0 0183 0.01133 0.0 0 0183 0.0 0 0183 0.0 0 0183 0.0 0 0183 0.0 0 0183 

F10 0.0 0 0183 0.0 0 0183 N/A 0.0 0 0183 0.0 0 0183 0.0 0 0183 0.0 0 0183 0.0 0 0183 

F11 N/A 0.0 0 0183 0.0 0 0183 0.0 0 0183 0.001315 0.0 0 0183 0.0 0 0183 0.0 0 0183 

F12 N/A 0.0 0 0183 0.0 0 0183 0.0 0 0183 0.0 0 0183 6.39e-5 0.0 0 0183 0.0 0 0183 

F13 N/A 0.0 0 0183 0.0 0 0183 0.0 0 0183 0.0 0 0183 6.39e-5 0.0 0 0183 0.0 0 0183 

F14 N/A 0.001315 0.009108 0.0 0 0246 0.025748 0.001706 0.001315 0.002827 

F15 0.0 010 08 0.004586 0.791337 0.0 0 0246 N/A 0.0 010 08 0.0 0 0769 0.002827 

F16 N/A 0.0 0 0246 0.0 0 044 0.0 0 0183 0.0 0 0183 0.0 0 0183 0.0 0 0183 0.0 0 0183 

F17 0.0 010 08 0.002827 N/A 0.0 010 08 0.002827 0.002827 0.002202 0.002827 

F18 N/A 0.01133 0.472676 0.0 0 0183 0.025748 0.0 0 0183 0.0 0 0183 0.0 0 0183 

F19 0.025748 0.0 0 0183 0.0 0 0183 0.0 0 0183 N/A 0.0 0 033 0.0 0 044 0.021134 
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with some of the algorithms provide p-values greater than 0.05 oc-

casionally. This shows that the GOA algorithm is not significantly

better on those functions. Also, GOA provides very competitive re-

sults on the F12_CEC20 05, F16_CEC20 05, and F24_CEC20 05 test

functions, since the high p-values show GSA was not significantly

better. Since CEC test functions are very challenging and mimic

different difficulties of a real search space, these results strongly

demonstrate the merits of the proposed GOA algorithm compared

to other algorithms in the literature. 

To sum up, the discussions and findings of this section clearly

demonstrate the quality of exploration, local optima avoidance, ex-

ploitation, and convergence of the GOA algorithm. The high ex-

ploration and local optima avoidance of this algorithm originates

from the high repulsion rate between grasshoppers. The repulsive

force requires grasshoppers to avoid each other and explore the

search space extensively. This is the main reason for high local

optima avoidance of GOA as well. Exploitation and convergence

are encouraged by the attraction forces between the grasshop-

pers, and the adaptive comfort zone. High attractive forces be-

tween grasshoppers drive them quickly towards the best solution

obtained so far. The adaptive comfort zone coefficient decreases

proportional to the number of iterations, generating smaller repul-

sion forces and emphasising exploitation. The adaptive behaviour

of the comfort zone coefficient also results in a proper balance be-

tween exploration and exploitation. 

Although these findings strongly suggest that GOA is able to

solve real problems, in the following section we use three real

problems in the field of structural design to demonstrate and con-

firm the applicability of this algorithm in solving real problems

with unknown search spaces. 

4. Real applications 

Solving structural design problems using stochastic optimisa-

tion techniques has been a popular research direction in the liter-

ature [46–54] . This section solves three of the conventional struc-

tural design problems using the proposed GOA algorithm. 

4.1. Three-bar truss design problem 

This structural design problem is one of the most widely-used

case studies in the literature [55,56] . This problem is formulated as

follows: 

Consider �
 x = [ x 1 x 2 ] = [ A 1 A 2 ] , 
Minimise f ( � x ) = 

(
2 

√ 

2 x 1 + x 2 
)
∗l , 

Subject to g 1 ( � x ) = 

√ 

2 x 1 + x 2 √ 

2 x 2 
1 

+ 2 x 1 x 2 
P − σ ≤ 0 , 

g 2 ( � x ) = 

x 2 √ 

2 x 2 
1 

+ 2 x 1 x 2 
P − σ ≤ 0 , 

g 3 ( � x ) = 

1 √ 

2 x 2 + x 1 
P − σ ≤ 0 , 

ariable range 0 ≤ x 1 , x 2 ≤ 1 , 

where l = 100 cm , P = 2 KN / c m 

2 , σ = 2 KN / c m 

2 

Fig. 11 shows the shape of this truss and the forces applied. As

his figure and the problem formulation show, there are two struc-

ural parameters: the area of bars 1 and 3 and area of bar 2. The

bjective is to minimise the weight of the truss. This problem is

ubject to several constraints as well: stress, deflection, and buck-

ing constraints. 

The proposed GOA with 20 search agents and 650 iterations

as employed on this problem. Since this problem is a constrained

roblem, a constraint handling method needed to be integrated

ith GOA. For the sake of simplicity, a death penalty has been

tilised. It penalises the search agents that violate any of the con-

traints at any level with a large objective value. For verification,

he results are compared to ALO, DEDS, PSO-DE, MBA, Ray and

ain, and Tsa methods and presented in Table 8 . This table shows

he optimal values for both variables and weight. 

Inspecting the results of algorithms on this problem, it is ev-

dent that GOA managed to show very competitive results com-

ared to ALO, DEDS, PSO-DE, and MBA with a better maximum

unction evaluation. Also, this algorithm outperforms the rest of

he algorithms significantly. These results show that the GOA al-

orithm is able to handle the difficulties of a constrained search

pace efficiently. 

.2. Cantilever beam design problem 

This is another popular structural design problem in the litera-

ure formulated as follows: 

Consider �
 x = [ x 1 x 2 x 3 x 4 x 5 ] 

Minimise f ( � x ) = 0 . 6224 ( x 1 + x 2 + x 3 + x 4 + x 5 ) , 

Subject to g ( � x ) = 

61 

x 3 
1 

+ 

27 

x 3 
2 

+ 

19 

x 3 
3 

+ 

7 

x 3 
4 

+ 

1 

x 3 
5 

− 1 ≤ 0 , 
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Table 6 

Results on CEC benchmark functions. 

F GOA PSO GA DE 

Ave std ave std ave std ave std 

F1_CEC2005 0.0 0 0 0 0.0 0 0 0 0.6040 1.0 0 0 0 0.4972 0.8825 0.0424 0.0950 

F2_CEC2005 0.0 0 0 0 0.0 0 0 0 0.3341 0.1579 0.4860 0.1481 0.3483 0.1134 

F3_CEC2005 0.0037 0.0057 0.2299 0.2852 0.3130 0.0441 0.1311 0.0801 

F4_CEC2005 0.0 0 0 0 0.0127 0.4569 0.3523 0.4807 0.0958 0.3726 0.0473 

F5_CEC2005 0.0 0 0 0 0.0602 0.7003 0.4740 0.4788 0.0 0 0 0 0.2737 0.0513 

F6_CEC2005 0.0 0 0 0 0.0 0 0 0 0.3078 0.1878 0.2109 0.2577 0.0037 0.0016 

F7_CEC2005 0.0 0 0 0 0.0 0 0 0 0.8524 0.6681 0.3416 0.3029 0.0759 0.0806 

F8_CEC2005 0.5505 0.7277 1.0 0 0 0 0.0 0 0 0 0.9702 0.1651 0.9816 0.4399 

F9_CEC2005 0.0 0 0 0 0.0356 0.5743 0.8935 1.0 0 0 0 0.3927 0.6055 0.1518 

F10_CEC2005 0.0 0 0 0 0.0 0 0 0 0.5391 1.0 0 0 0 0.7874 0.0628 0.4904 0.1780 

F11_CEC2005 0.7570 1.0 0 0 0 0.6283 0.8342 0.9965 0.3326 1.0 0 0 0 0.0 0 0 0 

F12_CEC2005 0.1087 0.3460 0.3531 1.0 0 0 0 1.0 0 0 0 0.4454 0.6698 0.2908 

F13_CEC2005 0.0 0 0 0 0.0046 0.1030 0.0580 0.4551 0.0808 0.1484 0.0091 

F14_CEC2005 0.0154 0.0855 0.0 0 0 0 0.9627 0.6053 0.2766 0.5800 0.0083 

F15_CEC2005 0.3527 1.0 0 0 0 0.5065 0.8562 0.6289 0.2734 0.4217 0.3437 

F16_CEC2005 0.1520 0.8379 0.3316 0.7594 0.3718 0.0825 0.1878 0.0 0 0 0 

F17_CEC2005 0.0 0 0 0 0.7666 0.4744 1.0 0 0 0 0.2712 0.0249 0.1401 0.0 0 0 0 

F18_CEC2005 0.0 0 0 0 0.0 0 0 0 0.3981 0.7095 0.5096 0.2305 0.2369 0.2265 

F19_CEC2005 0.0 0 0 0 0.0 0 0 0 0.3494 0.3857 0.4993 0.2066 0.2122 0.0501 

F20_CEC2005 0.0 0 0 0 0.0 0 0 0 0.4166 0.8314 0.6018 0.3811 0.2662 0.0663 

F21_CEC2005 0.0 0 0 0 0.0416 0.7469 0.0314 0.8364 0.0467 0.4840 0.3295 

F22_CEC2005 0.0 0 0 0 0.0 0 0 0 0.40 0 0 0.7118 0.6116 0.2260 0.3587 0.1408 

F23_CEC2005 1.0 0 0 0 0.3113 0.0 0 0 0 0.6942 0.0608 0.7502 0.2773 0.4302 

F24_CEC2005 1.0 0 0 0 0.0724 0.0 0 0 0 0.7804 0.0458 0.7228 0.1298 0.2603 

F25_CEC2005 0.3449 0.0075 0.8530 0.0765 0.8299 0.0035 0.4108 0.0442 

F GSA BA FPA FA 

ave std ave std ave std ave std 

F1_CEC2005 0.4318 0.5622 1.0 0 0 0 0.8805 0.1184 0.3697 0.1076 0.1120 

F2_CEC2005 0.2614 0.0257 1.0 0 0 0 1.0 0 0 0 0.0615 0.0320 0.1705 0.0191 

F3_CEC2005 0.1419 0.1081 1.0 0 0 0 1.0 0 0 0 0.0 0 0 0 0.0 0 0 0 0.0620 0.0640 

F4_CEC2005 0.8724 0.4499 1.0 0 0 0 1.0 0 0 0 0.0651 0.0685 0.0661 0.0 0 0 0 

F5_CEC2005 0.8225 0.0534 1.0 0 0 0 1.0 0 0 0 0.2707 0.3970 0.1041 0.0675 

F6_CEC2005 0.1270 0.0762 1.0 0 0 0 1.0 0 0 0 0.0149 0.0323 0.0104 0.0067 

F7_CEC2005 0.9108 0.5975 1.0 0 0 0 1.0 0 0 0 0.0708 0.1859 0.0725 0.0476 

F8_CEC2005 0.2817 1.0 0 0 0 0.0 0 0 0 0.1382 0.9719 0.0924 0.9866 0.1094 

F9_CEC2005 0.4704 1 0.7013 0.3595 0.6643 0.3360 0.7155 0.0 0 0 0 

F10_CEC2005 0.2536 0.7690 1.0 0 0 0 0.8251 0.5307 0.9560 0.4252 0.0945 

F11_CEC2005 0.0 0 0 0 0.4116 0.9638 0.2210 0.7825 0.0509 0.9867 0.0856 

F12_CEC2005 0.0 0 0 0 0.1006 0.1440 0.6132 0.2963 0.0 0 0 0 0.4474 0.4266 

F13_CEC2005 0.0516 0.0331 1.0 0 0 0 1.0 0 0 0 0.0824 0.0 0 0 0 0.1328 0.0061 

F14_CEC2005 1.0 0 0 0 0.1088 0.7244 1.0 0 0 0 0.4733 0.0 0 0 0 0.4933 0.0425 

F15_CEC2005 0.0 0 0 0 0.0 0 0 0 1.0 0 0 0 0.8301 0.3127 0.1340 0.4956 0.8700 

F16_CEC2005 0.0 0 0 0 1.0 0 0 0 1.0 0 0 0 0.9453 0.1872 0.1099 0.1364 0.0588 

F17_CEC2005 0.1055 0.5209 1.0 0 0 0 0.6007 0.0966 0.1335 0.1530 0.4022 

F18_CEC2005 0.0306 0.0997 1.0 0 0 0 1.0 0 0 0 0.1485 0.4907 0.1162 0.0744 

F19_CEC2005 0.023 0.0478 1.0 0 0 0 1.0 0 0 0 0.1259 0.1073 0.0975 0.0111 

F20_CEC2005 0.056 0.3519 1.0 0 0 0 1.0 0 0 0 0.1484 0.1490 0.1075 0.0089 

F21_CEC2005 0.2677 1 1.0 0 0 0 0.1528 0.6712 0.0793 0.5613 0.0 0 0 0 

F22_CEC2005 0.1514 0.4313 1.0 0 0 0 1.0 0 0 0 0.2646 0.2646 0.2352 0.0618 

F23_CEC2005 0.9926 0.0 0 0 0 0.4327 1.0 0 0 0 0.3589 0.5613 0.0206 0.4696 

F24_CEC2005 0.5784 0.0 0 0 0 0.0691 1.0 0 0 0 0.3426 0.1616 0.0254 0.1246 

F25_CEC2005 0.0 0 0 0 1.0 0 0 0 1.0 0 0 0 0.0 0 0 0 0.3751 0.0623 0.2689 0.0595 
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ariable range 0 . 01 ≤ x 1 , x 2 , x 3 , x 4 , x 5 ≤ 100 , 

Fig. 12 shows that the cantilever beam is built using five, hol-

ow, square-section, box girders, and the lengths of those girders

re the design parameters for this problem. There is also one con-

traint for this problem. The GOA algorithm with 20 search agents

nd a maximum of 650 iterations is employed to determine the

ptimum for this problem. The results are presented and com-

ared to ALO, MMA, GCA_I, GCA-II, CS, and SOS for verification in

able 9 . 

The results in Table 9 show that GOA finds the second best op-

imal weight. However, this algorithm provides the lowest number

aximum function evaluation. 
.3. 52-bar truss design 

In this problem, the objective is to minimise the weight of a

russ with 52 bars and 20 nodes. As shown in Fig. 13 , four of

he nodes are fixed and the bars are classified in 12 groups as

ollows, which are the main parameters to be optimised for this

roblem: 

• Group 1: A 1 , A 2 , A 3 , A 4 

• Group 2: A 5 , A 6 , A 7 , A 8 , A 9 , A 10 

• Group 3: A 11 , A 12 , A 13 

• Group 4: A 14 , A 15 , A 16 , A 17 

• Group 5: A 18 , A 19 , A 20 , A 21 , A 22 , A 23 

• Group 6: A 24 , A 25 , A 26 

• Group 7: A , A , A , A 
27 28 29 30 
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Table 7 

P-values obtained from the Wilcoxon ranksum test. 

TP GOA PSO GA DE GSA BA FPA FA 

F1_CEC2005 N/A 0.0079 0.0079 0.0079 0.0079 0.0079 0.0079 0.0079 

F2_CEC2005 N/A 0.0079 0.0079 0.0079 0.0079 0.0079 0.0159 0.0079 

F3_CEC2005 0.2222 0.0079 0.0079 0.0079 0.0079 0.0079 1.0 0 0 0 0.0079 

F4_CEC2005 N/A 0.0079 0.0079 0.0079 0.0079 0.0079 0.0952 0.0317 

F5_CEC2005 N/A 0.0079 0.0079 0.0079 0.0079 0.0079 0.0079 0.0079 

F6_CEC2005 N/A 0.0079 0.0079 0.0079 0.0079 0.0079 0.0079 0.0079 

F7_CEC2005 N/A 0.0079 0.0079 0.0079 0.0079 0.0079 0.0079 0.0079 

F8_CEC2005 0.0079 0.0079 0.0079 0.0079 0.0079 1.0 0 0 0 0.0079 0.0079 

F9_CEC2005 N/A 0.0079 0.0079 0.0079 0.0079 0.0079 0.0079 0.0079 

F10_CEC2005 N/A 0.0079 0.0079 0.0079 0.0079 0.0079 0.0079 0.0079 

F11_CEC2005 0.0079 0.0079 0.0079 0.0079 N/A 0.0079 0.0079 0.0079 

F12_CEC2005 0.0556 0.0079 0.0079 0.0079 N/A 0.0556 0.0079 0.0079 

F13_CEC2005 N/A 0.0079 0.0079 0.0079 0.0159 0.0079 0.0079 0.0079 

F14_CEC2005 0.6905 N/A 0.0556 0.0952 0.0079 0.0317 0.1508 0.1508 

F15_CEC2005 0.0079 0.0079 0.0079 0.0079 N/A 0.0079 0.0079 0.0079 

F16_CEC2005 0.2222 0.0952 0.0079 0.6905 N/A 0.0079 0.6905 0.6905 

F17_CEC2005 N/A 0.1508 0.1508 0.8413 0.3095 0.0079 1.0 0 0 0 0.4206 

F18_CEC2005 N/A 0.0079 0.0079 0.0079 0.0079 0.0079 0.0079 0.0079 

F19_CEC2005 N/A 0.0079 0.0079 0.0079 0.0159 0.0079 0.0079 0.0079 

F20_CEC2005 N/A 0.0079 0.0079 0.0079 0.0079 0.0079 0.0079 0.0079 

F21_CEC2005 N/A 0.0079 0.0079 0.0079 0.0952 0.0079 0.0079 0.0079 

F22_CEC2005 N/A 0.0079 0.0079 0.0079 0.0079 0.0079 0.0079 0.0079 

F23_CEC2005 0.0317 0.0079 0.0079 0.0079 N/A 0.0079 0.0079 0.0079 

F24_CEC2005 0.4206 0.0079 0.0079 0.0079 N/A 0.0079 0.0079 0.0079 

F25_CEC2005 0.0079 0.0079 0.0079 0.0079 N/A 0.0079 0.0079 0.4206 

Fig. 11. Three-bar truss design problem. 
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• Group 8: A 31 , A 32 , A 33 , A 34 , A 35 , A 36 

• Group 9: A 37 , A 38 , A 39 

• Group 10: A 40 , A 41 , A 42 , A 43 

• Group 11: A 44 , A 45 , A 46 , A 47 , A 48 , A 49 

• Group 12: A 50 , A 51 , A 52 

The following list presents other parameters involved in this

problem: 
Table 8 

Comparison results of the three-bar truss design problem

Algorithm Optimal values for variables 

x 1 x 2 

GOA 0.788897555578973 0.407619

ALO [57] 0.7886628160 0 0317 0.408283

DEDS [58] 0.78867513 0.408248

PSO-DE [59] 0.7886751 0.408248

MBA [56] 0.7885650 0.408559

Ray and Sain [60] 0.795 0.395 

Tsa [61] 0.788 0.408 

CS [55] 0.78867 0.40902 
• ρ =7860.0 kg / m 

3 

• E = 2.07 e 5 MPa 
• Stress limitation = 180 MPa 
• Maximum stress = 179.7652 MPa 
• Design variabe set are chosen from Table 18 
• P k = 100 kN , P y = 200 kN 

This is a discrete problem, in which the values for the 12

arameters should be chosen from the 64 values available in

able 10 . To make GOA discrete, we simply round the search

gents to the nearest integer. This problem is solved using 30

earch agents and 500 iterations, and the results are presented in

able 11 . Inspecting the results of this table, it is evident that the

OA finds the best optimal value for this problem with the least

umber of function evaluations. This highlights the performance

f GOA in solving real problems with more variables. 

These results clearly demonstrate the merits of the GOA algo-

ithm in solving real problems with unknown search spaces. The

uccess of the GOA algorithm is due to several reasons. The ex-

loration ability of GOA is high in the initial steps of optimisa-

ion, which is due to the large repulsion rate between grasshop-

ers. This assists GOA to explore the search space broadly and dis-

over its promising regions. Then exploitation is high in the last

teps of optimisation, which is due to the larger attraction forces

etween the grasshoppers. This behaviour causes local search and
. 

Optimal weight Max. Eval. 

570115153 263.895881496069 13,0 0 0 

133832901 263.8958434 14,0 0 0 

28 263.8958434 15,0 0 0 

2 263.8958433 17,600 

7 263.8958522 20,0 0 0 

264.3 N/A 

263.68 N/A 

263.9716 15,0 0 0 
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Fig. 12. Cantilever beam design problem. 

Table 9 

Comparison results for cantilever design problem. 

Algorithm Optimal values for variables Optimal Max. 

x 1 x 2 x 3 x 4 x 5 weight Eval. 

GOA 6.011674 5.31297 4.48307 3.50279 2.16333 1.33996 13,0 0 0 

ALO [57] 6.01812 5.31142 4.48836 3.49751 2.158329 1.33995 14,0 0 0 

MMA [62] 6.0100 5.30 0 0 4.4900 3.4900 2.1500 1.3400 N/A 

GCA_I [62] 6.0100 5.30 0 0 4.4900 3.4900 2.1500 1.3400 N/A 

GCA_II [62] 6.0100 5.30 0 0 4.4900 3.4900 2.1500 1.3400 N/A 

CS [55] 6.0089 5.3049 4.5023 3.5077 2.1504 1.33999 2500 

SOS [63] 6.01878 5.30344 4.49587 3.49896 2.15564 1.33996 15,0 0 0 
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Fig. 13. Structure of a 52-bar truss. 

 

 

mproving the accuracy of the solution(s) obtained in the explo-

ation phase. The algorithm smoothly balances exploration and ex-

loitation, initially emphasising local optima avoidance and then

onvergence. This behaviour is due to the proposal of the adaptive

omfort zone coefficient. The gradual decrementing of this compo-

ent brings the grasshopper closer to the target proportional to the

umber of iterations. Finally, the proposed target chasing mecha-

ism requires GOA to save the best solution obtained so far as the

arget and drive the grasshoppers towards it with the hope of im-

roving its accuracy or finding a better one in the search space. 

Considering the simulations, results, discussion, and analyses of

his paper, we believe that GOA is able to solve many optimisa-

ion problems effectively. GOA considers a given optimisation prob-

em as a black box, so it does not need gradient information of

he search space. Therefore, this algorithm can be applied to any

ptimisation problem in different fields subject to proper problem

ormulation. 

. Conclusion 

This work proposed an optimisation algorithm called the

rasshopper Optimisation Algorithm. The proposed algorithm

athematically modelled and mimicked the swarming behaviour

f grasshoppers in nature for solving optimisation problems. A

athematical model was proposed to simulate repulsion and at-

raction forces between the grasshoppers. Repulsion forces allow

rasshoppers to explore the search space, whereas attraction forces

ncouraged them to exploit promising regions. To balance between

xploration and exploitation, GOA was equipped with a coefficient

hat adaptively decreases the comfort zone of the grasshoppers. Fi-

ally, the best solution obtained so far by the swarm was consid-

red as a target to be chased and improved by the grasshoppers. 

In order to benchmark the performance of the proposed algo-

ithm, a series of tests was conducted. Firstly, a set of 2D test func-

ions was solved by the GOA to observe its performance qualita-

ively. This experiment and relevant discussions support the fol-

owing conclusions: 

• Grasshoppers effectively discover the promising regions of a

given search space. 
• Grasshoppers face abrupt, large-scale changes in the initial

steps of optimisation, which assist them to search globally. 
• Grasshoppers tend to move locally in the final steps of optimi-

sation, which allows them to exploit the search space. 
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Table 10 

Available cross-section areas of the AISC norm (valid values for the parameters). 

No. in. 2 mm 

2 No. in. 2 mm 

2 

1 0.111 71 .613 33 3 .84 2477.414 

2 0.141 90 .968 34 3 .87 2496.769 

3 0.196 126 .451 35 3 .88 2503.221 

4 0.25 161 .29 36 4 .18 2696.769 

5 0.307 198 .064 37 4 .22 2722.575 

6 0.391 252 .258 38 4 .49 2896.768 

7 0.442 285 .161 39 4 .59 2961.284 

8 0.563 363 .225 40 4 .8 3096.768 

9 0.602 388 .386 41 4 .97 3206.445 

10 0.766 494 .193 42 5 .12 3303.219 

11 0.785 506 .451 43 5 .74 3703.218 

12 0.994 641 .289 44 7 .22 4658.055 

13 1 645 .16 45 7 .97 5141.925 

14 1.228 792 .256 46 8 .53 5503.215 

15 1.266 816 .773 47 9 .3 5999.988 

16 1.457 939 .998 48 10 .85 6999.986 

17 1.563 1008 .385 49 11 .5 7419.34 

18 1.62 1045 .159 50 13 .5 8709.66 

19 1.8 1161 .288 51 13 .9 8967.724 

20 1.99 1283 .868 52 14 .2 9161.272 

21 2.13 1374 .191 53 15 .5 9999.98 

22 2.38 1535 .481 54 16 10,322.56 

23 2.62 1690 .319 55 16 .9 10,903.2 

24 2.63 1696 .771 56 18 .8 12,129.01 

25 2.88 1858 .061 57 19 .9 12,838.68 

26 2.93 1890 .319 58 22 14,193.52 

27 3.09 1993 .544 59 22 .9 14,774.16 

28 3.13 2019 .351 60 24 .5 15,806.42 

29 3.38 2180 .641 61 26 .5 17,096.74 

30 3.47 2238 .705 62 28 18,064.48 

31 3.55 2290 .318 63 30 19,354.8 

32 3.63 2341 .931 64 33 .5 21,612.86 
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• The varying comfort zone coefficient requires grasshoppers to

gradually balance exploration and exploitation, which helps

GOA not to become trapped in local optima and find an accu-

rate approximation of the global optimum. 
• The GOA algorithm enhances the average fitness of grasshop-

pers, which shows that this algorithm is able to effectively im-

prove the initial random population of grasshoppers. 
• The fitness of target is improved over the course of iterations,

which shows that the approximation of the global optimum be-

comes more accurate proportional to the number of iterations. 
Table 11 

Comparison of GOA optimisation results with literature for the 52

Variables ( mm 

2 ) PSO [64] PSOPC [64] HPSO [64] 

A1 - A4 4658.055 5999.988 4658.055 

A5 - A10 1374.19 1008.38 1161.288 

A11 - A13 1858.06 2696.77 363.225 

A14 - A17 3206.44 3206.44 3303.219 

A18 - A23 1283.87 1161.29 940 

A24 - A26 252.26 729.03 494.193 

A27 - A30 3303.22 2238.71 2238.705 

A31 - A36 1045.16 1008.38 1008.385 

A37 - A39 126.45 494.19 388.386 

A40 - A43 2341.93 1283.87 1283.868 

A44 - A49 1008.38 1161.29 1161.288 

A50 - A52 1045.16 494.19 792.256 

Optimal weight ( kg ) 2230.16 2146.63 1905.495 

No. of analyses 150,0 0 0 150,0 0 0 5300 
After the first experiment, four sets of challenging test func-

ions were employed. The test functions were unimodal, multi-

odal, composite, and CEC2005. The GOA algorithm managed

o outperform several algorithms in the literature. The findings

nd discussions of the second experiment support the following

onclusions: 

• Exploitation of the GOA is satisfactory on problems involving

unimodal test functions. 
• Exploration of the GOA is intrinsically high for multi-modal test

functions. 
• GOA properly balances exploration and exploitation when solv-

ing challenging problems involving composite test functions. 
• GOA has the potential to significantly outperform several cur-

rent algorithms when solving a range of current or new opti-

misation problems. 

The last experiment was performed on three real problems in

he field of structural design. All the problems were successfully

olved, which demonstrates the practical merits of the proposed

lgorithm. From the results, findings, and discussions of the real

pplications, the following conclusions can be drawn: 

• GOA is able to improve the initial random population for a real

problem. 
• The target is improved over the course of iterations, so the ap-

proximation of the global optimum become more accurate pro-

portional to the number of iterations. 
• GOA is able to solve real problems with unknown search

spaces. 

GOA is only able to solve single-objective problems with con-

entious variables. For future work, binary and multi-objective ver-

ions of this algorithm may be developed to solve discrete and

ulti-objective problems. The comfort zone parameter is an impor-

ant coefficient in GOA, so it is worth investigating the impacts of

ifferent comfort zone functions on the performance of the algo-

ithm. Solving optimisation problems in different fields could also

e a valuable contribution. Tuning the main controlling parameters

f GOA may also be beneficial. 

ppendix 

Tables 12 –15 
-bar truss design problem. 

DHPSACO [65] MBA [66] SOS [63] GOA 

4658.055 4658.055 4658.055 4658.055 

1161.288 1161.288 1161.288 1161.288 

494.193 494.193 494.193 494.193 

3303.219 3303.219 3303.219 3303.219 

1008.385 940 940 940 

285.161 494.193 494.193 494.193 

2290.318 2238.705 2238.705 2238.705 

1008.385 1008.385 1008.385 1008.385 

388.386 494.193 494.193 494.193 

1283.868 1283.868 1283.868 1283.868 

1161.288 1161.288 1161.288 1161.288 

506.451 494.193 494.193 494.193 

1904.83 1902.605 1902.605 1902.605 

11,100 5450 2350 2300 
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Table 12 

Unimodal benchmark functions. 

Function Dim Range f min 

f 1 (x ) = 

∑ n 
i =1 x 

2 
i 

30 [ −100,100] 0 

f 2 (x ) = 

∑ n 
i =1 | x i | + 

∏ n 
i =1 | x i | 30 [ −10,10] 0 

f 3 (x ) = 

∑ i 
i =1 ( 

∑ i 
j−1 x j ) 

2 
30 [ −100,100] 0 

f 4 (x ) = max 
i 

{ | x i | , 1 ≤ i ≤ n } 30 [ −100,100] 0 

f 5 (x ) = 

∑ n −1 
i =1 [ 100 ( x i +1 − x 2 

i 
) 

2 + ( x i − 1 ) 
2 
] 30 [ −30,30] 0 

f 6 (x ) = 

∑ n 
i =1 ( [ x i + 0 . 5 ] ) 

2 
30 [ −100,100] 0 

f 7 (x ) = 

∑ n 
i =1 ix 

4 
i 

+ random [ 0 , 1 ) 30 [ −1.28,1.28] 0 

Table 13 

Multimodal benchmark functions. 

Function Dim Range f min 

F 8 (x ) = 

∑ n 
i =1 −x i sin ( 

√ | x i | ) 30 [ −50 0,50 0] −418.9829 ×Dim 

F 9 (x ) = 

∑ n 
i =1 [ x 

2 
i 

− 10 cos ( 2 πx i ) + 10 ] 30 [ −5.12,5.12] 0 

F 10 (x ) = −20 exp( −0 . 2 
√ 

1 
n 

∑ n 
i =1 x 

2 
i 
) − exp( 1 

n 

∑ n 
i =1 cos ( 2 πx i ) ) + 20 + e 30 [ −32,32] 0 

F 11 (x ) = 

1 
40 0 0 

∑ n 
i =1 x 

2 
i 

− ∏ n 
i =1 cos ( x i √ 

i 
) + 1 30 [ −60 0,60 0] 0 

F 12 (x ) = 

π
n 
{ 10 sin ( πy 1 ) + 

∑ n −1 
i =1 ( y i − 1 ) 

2 
[ 1 + 10 si n 2 ( πy i +1 ) ] + ( y n − 1 ) 

2 } + 

∑ n 
i =1 u ( x i , 10 , 100 , 4 ) + 

n ∑ 

i =1 

u ( x i , 10 , 100 , 4 ) 

y i = 1 + 

x i +1 
4 

u ( x i , a, k, m ) = 

{ k ( x i − a ) 
m 

x i > a 

0 − a < x i < a 

k ( −x i − a ) 
m 

x i < −a 

30 [ −50,50] 0 

F 13 (x ) = 0 . 1 { si n 2 ( 3 πx 1 ) + 

∑ n 
i =1 ( x i − 1 ) 

2 
[ 1 + si n 2 ( 3 πx i + 1 ) ] + ( x n − 1 ) 

2 
[ 1 + si n 2 ( 2 πx n ) ] } + 

∑ n 
i =1 u ( x i , 5 , 100 , 4 ) 30 [ −50,50] 0 

Table 14 

Composite benchmark functions. 

Function Dim Range f min 

F 14 (CF1): 30 [ −5,5] 0 

f 1 , f 2 , f 3 , …, f 10 =Sphere Function 

[ б 1 , б 2 , б 3 , . . . , б 10 ] = [1 , 1 , 1 , .., 1] 

[ λ1 , λ2 , λ3 …, λ10 ] = [5/100, 5/100, 5/100, .., 5/100] 

F 15 (CF2): 30 [ −5,5] 0 

f 1 , f 2 , f 3 , . . . , f 10 = Griewank ’ s F unction 

[ б 1 , б 2 , б 3 , . . . , б 10 ] = [1 , 1 , 1 , .., 1] 

[ λ1 , λ2 , λ3 , …, λ10 ] = [5/100, 5/100, 5/100, .., 5/100] 

F 16 (CF3): 30 [ −5,5] 0 

f 1 , f 2 , f 3 , . . . , f 10 = Griewank ’ s F unction 

[ б 1 , б 2 , б 3 , . . . , б 10 ] = [1 , 1 , 1 , .., 1] 

[ λ1 , λ2 , λ3 , …, λ10 ] = [1, 1, 1, .., 1] 

f 17 (CF4): 30 [ −5,5] 0 

f 1 , f 2 = Ackley ’ sFunction 

f 3 , f 4 = Rastrigin ’ s Function 

f 5 , f 6 =Weierstrass Function 

f 7 , f 8 = Griewank ’ s Function 

f 9 , f 10 =Sphere Function 

[ б 1 , б 2 , б 3 , . . . , б 10 ] = [1 , 1 , 1 , .., 1] 

[ λ1 , λ2 , λ3 , …, λ10 ] = [5/32, 5/32, 1, 1, 5/0.5, 5/0.5, 5/100, 5/10 0, 5/10 0, 5/10 0] 

f 18 (CF5): 30 [ −5,5] 0 

f 1 , f 2 = Rastrigin ’ s Function 

f 3 , f 4 =Weierstrass Function 

f 5 , f 6 = Griewank ’ s Function 

f 7 , f 8 = Ackley ’ sFunction 

f 9 , f 10 =Sphere Function 

[ б 1 , б 2 , б 3 , . . . , б 10 ] = [1 , 1 , 1 , .., 1] 

[ λ1 , λ2 , λ3 , …, λ10 ] = [1/5, 1/5, 5/0.5, 5/0.5, 5/100, 5/100, 5/32, 5/32, 5/100, 5/100] 

f 19 (CF6): 30 [ −5,5] 0 

f 1 , f 2 = Rastrigin ’ s Function 

f 3 , f 4 =Weierstrass Function 

f 5 , f 6 = Griewank ’ s Function 

f 7 , f 8 = Ackley ’ sFunction 

f 9 , f 10 =Sphere Function 

[ б 1 , б 2 , б 3 , . . . , б 10 ] = [0 . 1 , 0 . 2 , 0 . 3 , 0 . 4 , 0 . 5 , 0 . 6 , 0 . 7 , 0 . 8 , 0 . 9 , 1] 

[ λ1 , λ2 , λ3 , …, λ10 ] = [0.1 ∗1/5, 0.2 ∗1/5, 0.3 ∗5/0.5, 0.4 ∗5/0.5, 0.5 ∗5/100, 

0.6 ∗ 5/100, 0.7 ∗5/32, 0.8 ∗ 5/32, 0.9 ∗5/100, 1 ∗5/100] 
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Table 15 

CEC2005 test functions. 

Function Dim Range f min 

F1_CEC2005: Shifted Sphere Function 30 [ −100,100] −450 

F2_CEC2005: Shifted Schwefel’s Problem 30 [ −100,100] −450 

F3_CEC2005:Shifted Rotated High Conditioned Elliptic Function 30 [ −100,100] −450 

F4_CEC2005: Shifted Schwefel’s Problem with Noise in Fitness 30 [ −100,100] −450 

F5_CEC2005: Schwefel’s Problem with Global Optimum on Bounds 30 [ −100,100] −310 

F6_CEC2005: Shifted Rosenbrock’s Function 30 [ −100,100] 390 

F7_CEC2005: Shifted Rotated Griewank’s Function without Bounds 30 [ −60 0, 60 0] −180 

F8_CEC2005: Shifted Rotated Ackley’s Function with Global Optimum on Bounds 30 [ −32,32] −140 

F9_CEC2005: Shifted Rastrigin’s Function 30 [ −5,5] −330 

F10_CEC2005: Shifted Rotated Rastrigin’s Function 30 [ −5,5] −330 

F11_CEC2005: Shifted Rotated Weierstrass Function 30 [ −0.5,0.5] 90 

F12_CEC2005: Schwefel’s Problem 30 [ −100,100] −460 

F13_CEC2005: Expanded Extended Griewank’s plus Rosenbrock’s Function (F8F2) 30 [ −3,1] −130 

F14_CEC2005: Expanded Rotated Extended Scaffe’s F6 30 [ −100,100] −300 

F15_CEC2005: Hybrid Composition Function 1 30 [ −5,5] 120 

F16_CEC2005: Rotated Hybrid Composition Function 1 30 [ −5,5] 120 

F17_CEC2005: Rotated Hybrid Composition Function 1 with Noise in Fitness 30 [ −5,5] 120 

F18_CEC2005: Rotated Hybrid Composition Function 2 30 [ −5,5] 10 

F19_CEC2005: Rotated Hybrid Composition Function 2 with a Narrow Basin for the Global Optimum 30 [ −5,5] 10 

F20_CEC2005: Rotated Hybrid Composition Function 2 with the Global Optimum on the Bounds 30 [ −5,5] 10 

F21_CEC2005: Rotated Hybrid Composition Function 3 30 [ −5,5] 360 

F22_CEC2005: Rotated Hybrid Composition Function 3 with High Condition Number Matrix 30 [ −5,5] 360 

F23_CEC2005: Non-Continuous Rotated Hybrid Composition Function 3 30 [ −5,5] 360 

F24_CEC2005: Rotated Hybrid Composition Function 4 30 [ −5,5] 260 

F25_CEC2005: Rotated Hybrid Composition Function 4 without Bounds 30 [ −5,5] 260 
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