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Genetic network programming (GNP) has been proposed as one of the evolutionary algorithms and
extended with reinforcement learning (GNP-RL). The combination of evolution and learning can effi-
ciently evolve programs and the fitness improvement has been confirmed in the simulations of tileworld
problems, elevator group supervisory control systems, stock trading models and wall following behavior
of Khepera robot. However, its adaptability in testing environments, where the situations dynamically
change, has not been analyzed in detail yet. In this paper, the adaptation mechanism in the testing envi-
ronment is introduced and it is confirmed that GNP-RL can adapt to the environmental changes using a
robot simulator WEBOTS, especially when unexperienced sensor troubles suddenly occur. The simulation
results show that GNP-RL works well in the testing even if wrong sensor information is given because
GNP-RL has a function to automatically change programs using alternative actions. In addition, the anal-
ysis on the effects of the parameters of GNP-RL is carried out in both training and testing simulations.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Evolutionary computation such as Genetic Programming (Koza,
1992, 1994) has been successfully applied to automatic program
generation for efficient agent behaviors, e.g., robot programming
(Kamio & Iba, 2005). Evolutionary computation evolves many indi-
viduals usually in simulated environments because it is difficult for
all the individuals to make many trials in real environments. After
the evolution, the evolved programs are actually used in real envi-
ronments. However, in real environments, many unexperienced
things would occur, e.g., noise and even the hardware troubles
such as imprecise sensor information. In order to cope with such
cases, the robustness or adaptability of the program is necessary.
Since the adaptability provides flexibility to adjust agent actions
to unexperienced environments, it enhances the generalization
ability of the agent.

Genetic network programming (GNP) is one of the evolutionary
algorithms and has been applied to the problems in dynamic envi-
ronments such as stock trading models (Mabu, Chen, Hirasawa, &
Hu, 2007), elevator group supervisory control systems (Hirasawa,
Eguchi, Zhou, Yu, & Markon, 2008) and tileworlds (Mabu, Hirasa-
wa, & Hu, 2007). In addition, GNP with reinforcement learning
(GNP-RL) (Mabu et al., 2007) has been also proposed as an ex-
tended algorithm of GNP, which can efficiently generate programs
ll rights reserved.

).
by combining evolution and learning. Evolutionary computation
generally has an advantage in diversified search ability, while rein-
forcement learning has an advantage in intensified search ability
and online learning.

This paper describes an adaptability mechanism of GNP-RL
(Mabu, Tjahjadi, Sendari, & Hirasawa, 2010) and analyzes its ability
in dynamically changing environments. Although we have already
proposed GNP-RL for controlling mobile robot (Mabu, Hatakeyama,
Thu, Hirasawa, & Hu, 2006), its adaptability to environmental
changes in testing phases has not been confirmed yet. When evo-
lutionary computation adjusts to the environmental changes, it
generally takes a long time to change its program structures be-
cause they must evolve again. On the other hand, the proposed
adaptability algorithm can adapt to the changes quickly. When
the proposed algorithm creates programs in the training, alterna-
tive actions for troubles are also evolved. Then, if inexperienced
things such as sensor troubles occur, the alternative actions are
automatically selected by the learning algorithm considering the
changes of Q values being updated in the testing environment.
During this recovery phase, the use of reinforcement learning
and e-greedy policy have a significant contribution because they
cooperatively search for better action sequences online. As a result,
recovery can be achieved easily by choosing the alternative actions
without having to go through another round of evolution which
takes relatively long time.

General reinforcement learning algorithms (Sutton & Barto,
1998) can also do online learning when environments changes,
however, GNP-RL can prepare a limited number of alternative

http://dx.doi.org/10.1016/j.eswa.2012.04.038
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Fig. 1. Basic structure of GNP with reinforcement learning.
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actions for troubles, therefore, all the evolution and learning pro-
cesses do not have to be executed again, which contributes to
recovering from troubles quickly.

In the simulations, a robot simulator WEBOTS (Cyberbotics,
xxxx) is used for the performance evaluation, where GNP-RL
evolves programs of the wall-following behavior of Khepera robot.
Then, the adaptability of GNP-RL is verified when the sensor trou-
bles (wrong sensor values are given) suddenly occur.

This paper is organized as follows. Section 2 describes the de-
tailed algorithm of GNP-RL and recovery process from troubles.
Section 3 shows a simulation environment and the results. Section
4 is devoted to conclusions.

2. Genetic network programming with reinforcement learning

2.1. Phenotype expression using graph structure

The phenotype expression of GNP-RL is a graph structure which
consists of three kinds of nodes; start node, judgment node and
processing node. Fig. 1 shows a basic structure of GNP where there
are a number of judgment nodes and processing nodes which are
connected by directed links to each other. An individual is repre-
sented in the form of the inter-connected nodes and the directed
links indicate the possible transitions from one node to another.
The start node has one outbound connection without any inbound
connection, which determines the first node to be executed. The
judgment nodes have if-then type branch decision functions, so
one of the outbound connections is selected according to the judg-
ment result. Processing nodes determine the actions to be taken by
an agent. While judgment nodes have several outbound connec-
tions, processing nodes have only one outbound connection. The
graph structure of GNP has some inherent characteristics such as
compact structure and applicability to partially observable Markov
decision processes (Mabu et al., 2007).

GNP has time delays on judgments and processing. In this paper,
the time delay of each judgment node is set at one time unit and
that of each processing node is set at five time units. In addition,
one step of an agent behavior is defined in such a way that one step
ends when the used time units exceed nine. For example, when exe-
cuting seven judgments and one processing, the total used time
units become 12, thus one step ends.

2.2. Gene expression of the graph structure

The graph structure of GNP-RL is represented by the combina-
tion of the gene structures. A gene structure of node i(0 6 i < n 1)
1 Each node has a unique number from 0 to n � 1, respectively, when the number of
nodes is n.
is shown in Fig. 2 and the correspondence between the judgment/
processing nodes and genes is shown in Fig. 3.

In GNP-RL, each node (called macro node) contains several sub-
nodes as shown in Fig. 3; therefore the gene structure is divided
into macro node part and subnode part. The macro part consists
of NTi and di. NTi represents a node type. NTi = 0 means start node,
NTi = 1 means judgment node and NTi = 2 means processing node.
di is a time delay spent on executing node i.

The subnode part consists of IDip, aip, Qip and Cip (1 6 p 6mi, mi

is the number of subnodes in macro node i). IDip shows a code
number of judgment/processing which is represented by a unique
number shown in the function library. This paper uses IDip to indi-
cate which sensors should be judged by judgment nodes or which
wheels (right/left) should be controlled by processing nodes. aip is
used as a threshold in a judgment node or as wheel speed in a pro-
cessing node, which is explained in Section 2.3 in detail. Qip means
Q value (Sutton & Barto, 1998) which is assigned to each state and
action pair (state = node i and action = subnode p). In GNP-RL, state
means the current node and action means the selection of the sub-
nodes. CA

ip;C
B
ip; . . . show the next node numbers connected from

subnode p in node i.

2.3. How to carry out the node transition

The node transition starts from a start node and the next node is
determined by the connection from the start node. When the cur-
rent node i is a judgment node, first, one Q value is selected from
Qi1; . . . ;Q imi

based on e-greedy policy. That is, the maximum Q va-
lue among Qi1; . . . ;Q imi

is selected with the probability of 1 � e, or a
random one is selected with the probability of e. Then, the corre-
sponding IDip and aip are selected (Suppose IDip = IDi1 and aip = ai1).
IDi1 shows a sensor number of Khepera robot whose sensor value is
judged. ai1 divides sensor input space into two spaces, i.e., when
the sensor input is ai1 or more, the judgment result is A and the
next node number is CA

i1, and when the input is less than aip, the
judgment result is B and the next node number is CB

i1.
When the current node is a processing node, IDip and aip are

selected in the same way as a judgment node (Suppose IDip = IDi1

and aip = ai1). In this paper, IDi1 = 0 means the processing node
which determines the speed of the right wheel of Khepera robot
and IDi1 = 1 means that of the left wheel. ai1 shows the speed of
the wheel. The next node number is CA

i1.
In order to appropriately judge an environment and decide its

corresponding processing, it is important for GNP-RL to select



Fig. 3. Macro nodes and subnodes.
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appropriate IDip and aip according to Qip in the node transition,
which is realized by the combination of evolution and Sarsa
described in Sections 2.4.1 and 2.4.2.
2.4. Learning and evolution in the training period

The learning and evolution starts from an initialization of a pop-
ulation. The initialization is carried out by randomly determining
the connections, assigning node functions, giving randomly
selected integer values to parameter aip and initializing Qip at zero.

Fig. 4 shows the flowchart of the training and testing periods. In
the training, after the evaluation of all the individuals, the connec-
tion between nodes, node functions and parameters are changed
by evolution including crossover and mutation.

2.4.1. Q value update by Sarsa during task execution
The node transition is carried out based on Q values and e-greedy

policy and the Q values are updated by Sarsa (Sutton & Barto, 1998)
as follows.

(1) Suppose the current node is node i at time t. Then, GNP-RL
refers to all Qip and select one of them based on e-greedy pol-
icy. Suppose that GNP-RL selects Q ip1

(1 6 p1 6mi) and the
corresponding node function IDip1

and parameter aip1
.

(2) GNP-RL executes the function IDip1
using aip1

and gets
reward rt. If the current node is a judgment node, the next
node number is determined by the judgment result. For
example, it becomes CB

ip1
if the judgment result is B. In the

case of a processing node, it is always CA
ip1

.
(3) The current node is transferred to the next node j at time

t + 1 and one Qjp is selected by the same way as step 1. Sup-
pose Qjp2

is selected.
(4) Then, the following update is executed.
Q ip1
 Q ip1

þ aðrt þ cQ jp2
� Q ip1

Þ
a : learning rateð0 < a 6 1Þ
c : discount rateð0 6 c 6 1Þ
(5) i j, p1 p2 and t t + 1, then return to step 2.

2.4.2. Genetic operation after task execution
Crossover is executed between two parents and two offspring

are generated.
Crossover

(1) Select two parents using tournament selection.
(2) Each node i in the parents is selected as a crossover node

with the probability of Pc.
(3) Two parents exchange the genes of the corresponding cross-

over nodes (i.e., with the same node number).
(4) Generated new individuals become the new ones in the next
generation.

Mutation is executed in one individual and a new individual is
generated.

Mutation

(1) Select one individual using tournament selection
(2) Mutation operator
(a) connection: Each node branch is re-connected to another
node with the probability of Pm.

(b) function: Each node function (sensor number in the case
of judgment; right/left wheel in the case of processing) is
changed to another one with the probability of Pm.

(c) parameter: Each parameter aip is changed to another
value with the probability of Pm. (aip 2 [0,1023] (judg-
ment node), aip 2 [�10,10] (processing node))
(3) Generated new individual becomes the new one in the next
generation.

2.5. Adaptation mechanism of GNP-RL in the testing period

In the testing period, the best individual obtained in the last gen-
eration in the training period is used to confirm the adaptation abil-
ity, which is the most important point of this paper. The situations
are supposed, where some of the sensors are broken in the testing
period as environmental changes or troubles. The input values from
malfunctioning sensors are incorrect (zero is always given), which
means that a robot cannot perceive the approximated distance from
obstacles and cannot recognize the new situations. Moreover, the
robot does not know whether the sensors are broken or not and
even which sensors are broken. As a result, the performance of
the robot degrades. In this case, the robot needs to catch the abnor-
mal situations, recover from them and continue working by making
use of alternative sensors. In order to realize the adaptation to the
troubled situations, Sarsa learning is also carried out in the testing
period. The basic recovery process is summarized as follows, which
corresponds to Fig. 5.

(1) GNP-RL decides an action according to the node transition.
(2) If the sensor value is incorrect, the judgment result is

meaningless.
(3) The actions based on the incorrect information will cause

bad situations and less rewards are obtained.
(4) Q value of the subnode which judges the incorrect sensor

value will be decreased by Sarsa.
(5) Another subnode is selected to recover from the trouble.

By preparing alternative subnodes in advance, GNP-RL quickly
changes subnodes/functions for judging sensors and determining
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the wheel speed. The first feature of this mechanism is that it
works without directly detecting the faulty sensors which may
require an additional mechanism, but it indirectly detects faulty
sensors through the changes of Q values. Therefore, this approach
keeps the simplicity of the system. The second feature is the ability
to do the adaptation without having to go through another round
of evolution which may take a long time. General reinforcement
learning can also do this kind of adaptation because it is a online
learning method. However, the Q table of GNP-RL is represented
by the graph structure where the numbers of nodes and subnodes
are fixed at small numbers, which makes quite compact Q table.
For example, if the total number of nodes is 15 and the number
of subnodes contained in each node is two, the number of Q values
is only 30 (=2 � 15).

3. Simulations

The adaptability of GNP-RL is confirmed using a software called
WEBOTS (Cyberbotics) which simulates Khepera robot and its
operating environment.

3.1. Khepera robot

Khepera robot has eight distance sensors and two wheels. It
detects the presence of objects around it using the sensors and
moves around the environment using the two wheels. As shown
in Fig. 6, the robot has four front sensors, two side sensors, two rear
sensors, and two wheels on its right and left sides, respectively. The
range of the values returned by the sensors is between zero and
1023. The value of zero means that there is no object detected by
the sensor while 1023 means that an object or obstacle is very
close to the sensor (almost touches the sensor). Intermediate
values have the meaning of the approximated distance between



Fig. 6. Khepera robot.

Table 1
Node functions in the library.

Symbol ID Content

J0, . . . , J7 0, . . . ,7 Judge whether the input value from the sensor 0, . . . ,7 is
higher than the selected parameter aip, respectively

P0 0 Determine the speed of the right wheel
P1 1 Determine the speed of the left wheel

Table 2
Simulation parameters.

The number of individuals 600 (mutation: 359, crossover: 240, elite: 1)

The number of nodes 15 (6 processing nodes, 8 judgment nodes
and 1 start node)

Parameters of evolution Pc = 0.1, Pm = 0.01
Parameters of learning a = 0.9, c = 0.3, e = 0.1

Fig. 7. Simulation environment.
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the sensor and the object. In this paper, the value of zero is always
returned from a faulty sensor. The speed range of the wheels is be-
tween �10 and +10. Negative and positive speed values have the
meaning of backward and forward rotation, respectively.

3.2. Condition of GNP-RL

Table 1 shows the judgment and processing functions. There are
eight judgment functions and two processing functions since Khe-
pera robot has eight sensors and two wheels. Each judgment func-
tion {J0, . . . , J7} returns A or B as the judgment result. For example, J2

judges the value of sensor 2 (x2), and if x2 P aip, the judgment re-
sult becomes A, otherwise B. Each processing node sets the speed
of the left or right wheel at aip. The evolution and learning param-
eters are shown in Table 2. This combination of values is selected
because of its good performance in several simulations. The popu-
lation in each generation is composed of 359 new individuals gen-
erated by mutation, 240 new individuals generated by crossover,
and one elite individual. The number of judgment nodes is eight
and the number of processing nodes is six. Including the start node,
the total number of nodes is 15 in every individual. Initially, the Q
values of the subnodes are set to zero, the connections between
nodes are determined randomly, and the values of aip are also ran-
domly determined within the valid range of aip (see mutation pro-
cedure in Section 2.4.2).

As shown in Fig. 3, a node has several subnodes and the number
of them, i.e., mi, is determined by a designer in advance. In the sim-
ulations, several numbers of subnodes are tested in order to find
the optimal setting. In detail, GNP-RL with 2, 3, 4, and 5 subnodes
are compared in addition to the comparison with standard GNP
(SGNP). We can also regard GNP-RL with one subnode as standard
GNP.

3.3. Reward and fitness in the wall-following behavior

As descried in Section 2.1, one step ends when 10 or more time
units are used. One judgment node takes one time unit and one pro-
cessing node takes five time units. Therefore, in each step before
executing an actual movement of the robot, SGNP and GNP-RL carry
out the node transitions within the limited time units and deter-
mine the speed of the wheels. Then, the robot actually moves in
the environment and obtains a reward. If no processing nodes are
executed in a step, the robot takes the same actions, i.e., the same
wheel speed as the previous step. In each generation, every individ-
ual in the population has to perform the wall-following behavior
during one trial/episode. A trial ends when the time step reaches
the predefined time step limit (=1000). Every step, the reward
obtained by the robot is calculated by Eq. (1), and after a trial ends,
the fitness is calculated by Eq. (2). These functions are defined refer-
ring to (Nordin, Banzhaf, & Brameier (1998); Floreano & Mondada,
1994). The reward function is designed in order to learn the wall-
following behavior, that is, the robot has to move along the wall
as fast as and as straight forward as possible. The fitness is an aver-
age of all the rewards obtained in a trial. Fig. 7 shows the environ-
ment used in the simulation.

RewardðtÞ ¼ vRðtÞ þ vLðtÞ
20

� 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jvRðtÞ � vLðtÞj

20

r !
� C ð1Þ

Fitness ¼
XT

t¼1

RewardðtÞ=T ð2Þ

where vR(t), vL(t): the speed of right and left wheels at step t,

respectively, C¼
1 : all the sensor value are less

than 1000;and at least one
of them is more than 100

0 : otherwise

8>><
>>: . T : total steps (=1000)

3.4. Training results

The curves in Fig. 8 show the average fitness of Standard GNP
(SGNP) and GNP-RLs over 10 independent simulations in the train-
ing period. Hereafter, all the simulation results are based on the
averages over 10 trials. The numbers attached to the curves indi-
cate the fitness in the last generation. Based on those five figures,
GNP-RL with 2 subnodes shows the best training result. Compared
to the performance of SGNP, GNP-RLs with 2 and 3 subnodes have
higher fitness due to the optimization of node transition by Sarsa.
However, if the number of subnodes is more than three, the fitness
of GNP-RL becomes lower than that of SGNP because a larger
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Fig. 8. Fitness curves in the training.
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number of subnodes means a larger search space which requires
more exploration. It is the reason why GNP-RLs with 4 and 5 sub-
nodes obtain lower fitness and their curves grow more slowly. The
number of subnodes also affects the fluctuation of the fitness
curves. The fitness curve of SGNP is relatively persistent compared
to that of GNP-RLs which tends to fluctuate more. This is caused
by the number of options which e-greedy policy can choose. In
other words, the randomness causes the curves of GNP-RLs to
fluctuate.

3.5. Testing results

For the purpose of testing the adaptability of SGNP and GNP-RL,
two testing cases (simulation I and II) are implemented. In both
cases, five sensors are set to faulty and the order of the sensors
being set to faulty is sensor 2, 5, 6, 4, and 7. In simulation I, the
sensors are gradually set to faulty one by one, while in Simulation
II, several sensors are suddenly set to faulty at the same time.

3.5.1. Simulation I
In this simulation, one more sensor is set to be faulty every 1000

steps. It means that the situation becomes severe as the time step
goes on because although all the sensors can work in the first 1000
steps, one sensor is set to faulty after 1000 steps and two sensors
are after 2000 steps, and so on. This situation simulates a situation
where the functions of machines deteriorate as time goes on like
actual systems.

Table 3 shows the average rewards when no sensors are faulty,
and one, two, three, four and five sensors are faulty. From Table 3,
we can see that SGNP has steep performance decline after one or
more sensors are faulty although it obtains a relatively high aver-
age reward until 1000 steps when all the sensors function properly.



Table 3
Average rewards in Simulation I.

Situation GNP GNP-RL2sub GNP-RL3sub GNP-RL4sub GNP-RL5sub

No faulty sensor 0.224 0.198 0.188 0.147 0.111
1 faulty sensor 0.096 0.143 0.162 0.136 0.111
2 faulty sensors 0.060 0.111 0.147 0.128 0.109
3 faulty sensors 0.055 0.086 0.135 0.129 0.098
4 faulty sensors 0.033 0.063 0.084 0.116 0.071
5 faulty sensors 0.033 0.058 0.076 0.112 0.067
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All GNP-RLs obtain lower average rewards than SGNP when no
sensors are faulty because GNP-RLs are still doing reinforcement
learning with e-greedy policy which explores for better solutions
using random actions. After having one or more faulty sensors,
the average rewards of all GNP-RLs are higher than that of GNP.

The reward curves of SGNP, GNP-RLs with 2, 4 and 5 subnodes
are plotted in Fig. 9, where the vertical axis measures the reward
whereas the horizontal axis shows the steps. As described before,
all the sensors work normally from step 0 to step 1000 and one sen-
sor is set to faulty from step 1001 to step 2000. According to the
curve in Fig. 9 (a), SGNP does not show any sign of recovery after
having one malfunctioning sensor. In Fig. 9 (b), the reward curve
of GNP-RL with 2 subnodes shows a gradual performance degrada-
tion as the number of faulty sensors increases. The curve in Fig. 9 (c)
indicates lower rewards than GNP-RL with 2 subnodes in the first
1000 steps, however, the performance degradation of GNP-RL with
4 subnodes is not drastic. Even five sensors are faulty, the average
reward is still above 0.1. In the case of GNP-RL with 5 subnodes
(Fig. 9 (d)), the rewards become low due to the size of the search
space that requires longer training time although the size itself basi-
cally gives the opportunity to prepare more alternative functions/
actions. In other words, GNP-RL with 5 subnodes searches for better
alternative functions in the testing for recovery, but good alterna-
tive functions cannot be found in a short time. From the above re-
sults, it is clarified that the adaptation mechanism of GNP-RL is
effective in the troubled situations and GNP-RL with 4 subnodes
has the best adaptability in the given complexity level of the
environment.

3.5.2. Simulation II
In simulation II, one or more sensors are set to faulty at 500th

step. The sudden changes make it more difficult for GNP-RL to find
suitable alternative judgment or processing functions, so longer
adaptation time than simulation I is required. The total number
of steps is set at 1000, so GNP-RL has to adapt to the changes with-
in 500 steps.

The simulation results are represented in Table 4. As simulation
I, SGNP obtains the highest average reward in the first 500 steps.
After one or more sensors are set to faulty, GNP-RLs with 2 and 3
subnodes always get higher average rewards than SGNP.
GNP-RLs with 4 and 5 subnodes also obtain higher rewards than
SGNP in most of the cases where more than one sensors are faulty.



Table 4
Average rewards in Simulation II.

Situation GNP GNP-RL2sub GNP-RL3sub GNP-RL4sub GNP-RL5sub

No faulty sensor 0.212 0.210 0.162 0.137 0.113
1 faulty sensor 0.131 0.173 0.165 0.121 0.103
2 faulty sensors 0.097 0.160 0.147 0.125 0.113
3 faulty sensors 0.099 0.187 0.150 0.142 0.114
4 faulty sensors 0.067 0.135 0.090 0.126 0.070
5 faulty sensors 0.064 0.091 0.098 0.123 0.060
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Fig. 10. Reward curves in Simulation II.
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The low average rewards of GNP-RLs with 2 and 3 subnodes when
five sensors are faulty show that they do not have enough alterna-
tive functions to adapt to the changed situations, although they ob-
tain relatively high average rewards until four sensors become
faulty. The reason why GNP-RLs with 2 and 3 subnodes obtain
higher rewards when the number of faulty sensors is less than four
is as follows. When the environmental changes are not so large, it
is easier for GNP-RL with smaller number of subnodes to find suit-
able alternative functions within the limit time (500 steps). How-
ever, when larger changes occur, the small number of subnodes
(alternative functions) is not enough to recover from the troubles.

Fig. 10 shows the reward curves of SGNP, GNP-RLs with 2, 4 and
5 subnodes when five sensors are set to faulty after 500 steps. The
curve of SGNP in Fig. 10 (a) drops steeply after 500 steps, and that
of GNP-RL with 2 subnodes in Fig. 10 (b) also drops, however, it is
higher than that of SGNP. The curves of GNP-RLs with 4 and 5 sub-
nodes in Fig. 10 (c) and (d), respectively, have less noticeable drops.
The adaptability of GNP-RL with 4 subnodes is considered the best
in this test. It has enough alternative functions which are effective
for the adaptation when 5 sensors are malfunctioning. The larger
search space of GNP-RL with 5 subnodes makes it difficult to find
appropriate alternative functions due to the insufficient recovering
time, although larger search space provides the ability to have
more alternative functions. From the results, GNP-RL with 4
subnodes can find alternative functions in a relatively short period
of time and continue performing the desired task although with
less rewards than the case where no sensors are faulty. In other
words, GNP-RL with 4 subnodes has a good balance between the
search space and learning efficiency.
4. Conclusions

This paper describes the adaptation mechanism of GNP-RL and
analyzes the recovery abilities. The simulation results show that
GNP-RL can adapt to the troubles quickly when the appropriate
number of subnodes are prepared. The structure of GNP-RL has
an advantage of being able to store several subnodes which work
as alternative judgment and processing functions. GNP-RL prepares
the alternative functions during the evolution in the training peri-
od and uses them for the adaptation when the environment
changes in the testing period. This structure gives GNP-RL flexibil-
ity to adjust itself to the changing environment. The utilization of
the alternative functions is achieved by reinforcement learning
(Sarsa) and e-greedy policy. In the simulations, faulty sensors emu-
late the environmental changes. When one or more sensors are set
to be faulty, the alternative functions are selected to judge other
sensors working normally and the speed of the wheels is also set
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again. In other words, different action rules are created when the
situation changes. It is also found that the number of subnodes
has an important effect on the fitness and adaptability, so the num-
ber of subnodes has to be appropriately determined. Larger num-
ber of subnodes provides GNP-RL the opportunity to have more
alternative functions which may increase the adaptation ability,
but the adaptation time required to find good alternative functions
also increases as the search space becomes larger.

Therefore, the setting of the appropriate number of subnodes is
a remaining problem. In the future, we will develop an automatic
adjustment mechanism of the number of subnodes in order to
determine the appropriate number of alternative functions which
keeps the balance between the adaptation ability and search effi-
ciency. In detail, troubled (abnormal) situations could be detected
by the changes of Q values or rewards, and the number of subnodes
is adjusted by judging whether or not the current program is
quickly recovering from the troubles.
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