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In this paper, the application of three well-known multi-objective optimization algorithms to water dis-
tribution network (WDN) optimum design has been considered. Non-dominated sorting genetic algo-
rithm II (NSGA-II), Multi-objective differential evolution (MODE) and Multi-objective particle swarm
optimization (MOPSO) algorithms are applied to benchmark mathematical test function problems for
evaluating the performance of these algorithms. The Accuracy and computational runtime are the two
indicators used for the comparison of these three algorithms. The optimization results of mathematical
test functions show that all three algorithms were able to accurately produce Pareto Front, but the com-
putational time of MODE algorithm to achieve the optimal solutions is lower than the two other algo-
rithms. Then, the discussed algorithms have been used to optimize the WDN design problem.
Comparison of the generated solutions on the Pareto Front for WDN design shows that the obtained
Pareto Front of MODE is more accurate and faster.
� 2018 The Authors. Published by Elsevier B.V. on behalf of Faculty of Engineering, Ain Shams University.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-

nd/4.0/).
1. Introduction

The Water Distribution Networks (WDN) is a critical municipal
infrastructure. WDNs are designed to provide consumers with a
minimum acceptable level of supply under operating conditions
for the whole design period. WDNs today are very complex sys-
tems requiring a high investment for their construction and main-
tenance [1]. A suitable WDN should be able to provide water
demand with the required pressure. Due to the varying amount
of demand during the day, the pipe diameter should be selected
so that the WDN would be able to give appropriate service to cus-
tomers at all times.

According to computational and engineering complexity of
WDNs optimal design, it has been thoroughly investigated over
the past few decades [2, 3, and 4]. Because of nonlinearity between
head loss and flow along pipes and also discrete design variables
such as pipe diameter in WDNs design problems, this type of opti-
mization is a highly challenging problem. The optimal design of
WDNs is a combinatorial optimization problem included in the
class of complex combinatorial problems known as non-
deterministic polynomial-time Hard (NP-Hard) [5].

Early works on the optimization of WDN was based on single-
objective optimization, i.e. least-cost design. One of the first WDN’s
optimization was presented by Alperovits and Shamir [6]. They
used the linear programming gradient method. Savic and Walters
[7] used EPANET hydraulic solver and integrated genetic algorithm
to optimize three WDN benchmarks.

In the last decades, researchers have used multi-objective opti-
mization instead of least-cost optimization for design of WDNs.
One of the first multi-objective optimization of WDN design has
been reported by Gessler [8]. He used partial enumeration method
to minimize the network cost and maximize the minimum pres-
sure. Because of unsatisfactory results of traditional deterministic
optimization techniques, using the various evolutionary algo-
rithms (EAs) developed to solve the WDN’s design problems
[9,10]. EAs are well-known methods which are used extensively
for multi-objective optimization problems and they are well suited
for solving complex optimization problems. As a result, the EAs
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were considered to solve the problem of optimal WDN’s design and
the researchers used other parameters such as hydraulic or
mechanical reliability, water quality, operation cost and leakage
as the second objective function along the network construction
cost [11–13].

Halhal et al. in 1997 for the first time used a multi-objective
genetic algorithm approach as an evolutionary algorithm for reha-
bilitation of WDN under a limited budget [14]. Farmani et al. com-
pared four multi-objective evolutionary algorithms (MOEA) for
WDN design optimization entitled Non-dominated Sorting Genetic
Algorithm 2 (NSGA-II), Multi-Objective Genetic Algorithm (MOGA),
Niched Pareto Genetic Algorithm (NPGA) and Pareto Archived Evo-
lution Strategy (PAES) [11]. They found that the NSGA-II was the
best of the tested algorithms. Also, Farmani et al. compared the
NSGA-II to the Strength Pareto Evolutionary Algorithm 2 (SPEA-
II) on a large WDN and concluded that SPEA-II produced better
quality solutions [3]. Raad et al. in 2011 comparing numerous
EAs in order to determine which method is adequate for WDN
design optimization [15].They concluded that NSGA-II and some
of its borrowed algorithms have the best performance for this
purpose.

Zheng et al. investigated search behavior of the DE algorithm as
a function of its parameter values [16]. They analyzed the influence
of DE’s parameters on measure run-time, search quality, conver-
gence properties and solution generation statistics. Moosavian
and Lence apply the non-dominated sorting algorithms on DE to
obtain a multi-objective version of differential evolution algorithm
for solving WDN’s optimal design problem [17]. They show that
presented MODE has an acceptable performance versus other
multi-objective optimization algorithms. Shrivatava et al. used a
Multi-objective particle swarm optimization for the design of
WDN [18]. They also investigate the effect of swarm size and dif-
ferent inertia weights on the behavior of optimization algorithm.

In this paper, for a closer look at performance, three well known
and usable multi-objective optimization methods, Non-dominated
Sorting Genetic 2 (NSGA-II), Multi-Objective Differential Evolution
(MODE) and Multi-Objective Particle Swarm Optimization
(MOPSO), are compared for WDNs design optimization. Accuracy,
convergence rapidity and solution’s diversity are the parameters
which used to assess the performance of these optimization
algorithms.
2. Evolutionary multi-objective optimization algorithms

EAs are areas of multiple criteria decision making, where opti-
mal decisions need to be taken in the presence of trade-offs
between different objectives. EAs are very attractive for multi-
objective analysis in relation to classical methods. EAs begin with
a set of solutions which are randomly generated and called initial
population. The offspring populations are generated by some oper-
ators such as the mutation, the crossover, and the selection. A brief
description of three evolutionary algorithms, which have been
used in this study, will be given in the following.
2.1. Non-dominated sorting Genetic algorithm II (NSGA-II)

Deb et al. in 2002 developed NSGA-II which is the integration of
Genetic Algorithm and non-dominated sorting approach for multi-
objective optimization [19]. NSGA-II algorithm contains three main
parts for selection of the new generation’s members: a non-
dominated sorting, density estimation, and a crowded comparison.
- Non-dominated sorting retains members that are not domi-
nated. If a descendant of a new generation is dominated, it
would be immediately removed, otherwise, it becomes a mem-
ber of the population and also if a member of parent generation
is dominated by the descendants it will be removed too.

- The density of each particular member is measured as the dis-
tance of the considered point and two members of its
neighbors.

- The crowded comparison operator aims to increase the diver-
sity of Pareto Front. Population members are ranked taking into
account seniority and local crowding distance. In this paper, a
real-coded NSGA II was used to determine the optimum solu-
tions in the search space.

2.2. Multi objective differential evolution (MODE)

Differential Evolution (DE) algorithm was proposed by Storn
and Price in 1997 [20]. Because of its simplicity and excellent con-
vergence characteristics, DE has been successfully applied to the
wide range of engineering problems which are nonlinear, multi-
criteria and multi-constrained [21–23]. Dong et al. reported that
the DE algorithm is robust and converges fast compared to the
GA algorithm [21]. In the DE optimization algorithm, for each par-
ent set xi, a different vector of xi1 and xi2 (randomly selected) is
used to perturb another random vector xi3 using the following
mutation equation,

zi ¼ xi3 þ F: xi1 � xi2ð Þ ð1Þ
where xi1, xi2, xi3 are different random vectors from parent set, zi is
the mutant vector and F is a real constant factor between 0 and 2
called scaling factor. The suggested value for scaling factor is 0.4
to 0.6. To generate a child vector, crossover operator must be used
as follows:

z
0
ji ¼

zji if rand jð Þ � CR

xji if rand jð Þ > CR

�
ð2Þ

where z0
ji is the value of the jth design variable of ith child vector,

CR is crossover constant between 0 and 1 with the suggested value
between 0.3 and 0.6, and rand(j) is a randomly generated value for
jth variable design between 0 and 1.

To decide whether the vector z0i should be a member of the next
generation or not, it must be compared with the corresponding
vector x(G)i from generation G. If function F denotes the objective
function, the members of next-generation x(G+1) can be selected
by relation (3):

xðGþ1Þ
i ¼

z0 i if F z0 ið Þ < F xðGÞ i
� �

xðGÞ i if F z0 ið Þ � F xðGÞ i
� �

(
ð3Þ

In the last decade, researchers attempted to extend the DE algo-
rithm to multi-objective optimization and they showed that DE
can be an attractive alternative for multi-objective numerical opti-
mization. In this study, the MODE is applied by integrating DE
technique with non-dominated sorting, ranking, and crowding dis-
tance assignment procedures in [19]. In this process, Instead of
using Eq. (3) to choose the members of the new generation, parent
and new generated member are analyzed for dominance relation. If
the parent dominates the new generated member, the new mem-
ber is eliminated but if the new member dominates the parent, the
parent is deleted. If the parent and new member are non-
dominated, both of them are added to a temporary population.
After repeating this progress for all the members, the non-
dominated ranking and the crowding distance have been used to
select the population of next generation from the temporary pop-
ulation. This procedure will continue to reach the Pareto Front
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2.3. Multi-objective particle swarm optimization (MOPSO)

Particle swarm optimization (PSO) is originally presented by
Kennedy and Eberhart in 1995 [24]. PSO is a stochastic,
population-based evolutionary algorithm inspired by the bird herd
behavior and uses swarm intelligence to find the optimal solutions.
Particles (solutions) in PSO move toward the optimal solution with
the regular velocity. The speed of any particle is composed of three
components: the velocity of the same particle in the previous gen-
erations (inertia), the distance to the best position of the same par-
ticle in the past generations (personal guides) and the distance to
the position of the leader particle (global guides). The leader is a
particle with the best performance in the optimization procedure.
The position of particles will be updated in each generation using
the combination of these three components. The new position of
each particle (xi) in time t + 1 can be calculated using the following
formula:

xi t þ 1ð Þ ¼ xi tð Þ þ v i t þ 1ð Þ ð4Þ
where vi is the particle velocity and calculated as:

v i t þ 1ð Þ ¼ w:v i tð Þ þ C1:r1 xPbesti � xið Þ þ C2:r2 xGbesti � xið Þ ð5Þ
In above equation w denotes the inertia weight with suggested

values between 0.4 and 1.4, C1 and C2 are the non-negative con-
stant coefficients with the proposed range between 1 and 2, r1
and r2 are random numbers between 0 and 1, xPbest is the best posi-
tion of the same particle in past generations and xGbestis the posi-
tion of the leader particle.
Table 1
Settings of three optimization algorithms.

Alrithms NSGA II MODE MOPSO

Specific
Parameters

Probability of
crossover = 0.8
Probability of
Mutation = 0.03

Scaling
Factor = 0.5
Probability of
crossover = 0.3

Size of
repository = 50,
100, 150
Inertia weight (w)
= 0.6
Personal Learning
Coefficient (C1) = 1
Global Learning
Coefficient (C2) = 2

Table 2
Results of three optimization code for mathematical test functions for three parameter sett
each problem.

Case I (Pop. size = 50) Case II (Pop. size = 100)

MODE NSGA II MOPSO MODE NSGA II MO

ZDT1 Best IGD 0.009931 0.015038 0.013041 0.006207 0.009153 0.0
Mean IGD 0.013966 0.018975 0.016945 0.006838 0.010022 0.0
SD 0.001159 0.015038 0.002382 0.000323 0.009153 0.0
Time (s) 3.27 4.97 72.11 5.74 9.75 27

ZDT2 Best IGD 0.012704 0.015542 0.01548 0.005844 0.008437 0.0
Mean IGD 0.014378 0.018176 0.016499 0.006858 0.009364 0.0
SD 0.001042 0.015542 0.001028 0.00046 0.008437 0.0
Time (s) 3.14 4.45 93.49 5.66 9.41 35

ZDT3 Best IGD 0.013326 0.015452 0.019435 0.006754 0.008233 0.0
Mean IGD 0.015316 0.018047 0.043041 0.007454 0.009395 0.0
SD 0.00099 0.015452 0.024404 0.000379 0.008233 0.0
Time (s) 3.33 5.09 58.42 5.83 9.80 20

ZDT4 Best IGD 0.125242 0.009627 0.036622 0.004678 0.00722 0.0
Mean IGD 0.638763 0.193089 0.384293 0.131584 0.16262 0.2
SD 0.253382 0.009627 0.175655 0.081377 0.00722 0.1
Time (s) 2.41 4.50 37.63 5.26 8.72 10

ZDT6 Best IGD 0.010446 0.007996 0.01137 0.005428 0.003969 0.0
Mean IGD 0.011673 0.011467 0.012841 0.005764 0.005256 0.0
SD 0.000733 0.007996 0.000956 0.000182 0.003969 0.0
Time (s) 2.77 4.42 63.4 5.08 8.91 26
Coello and Lechuga in 2002 extended PSO to deal with multi-
objective optimization problems [24]. The developed method uses
an external repository for storing the information of non-
dominated particles. The leader is chosen from the repository
members for calculating the particle’s velocity. Padhye et al. in
2009 further developed the methodology to improve the perfor-
mance of MOPSO.

In this paper, the presented MOPSO algorithm of Coello and
Lechuga’s [24] used with the external repository, global and local
best positions. The global best position is chosen from the non-
dominated particles stored in the external repository with roulette
wheel selection on each generation. The density of points around
each member of repository affects the probability of the member
selects. The local best positions of each particle also refer to the
non-dominated solution of the same particle in the past
generation.

3. Performance assessment of the multi-objective evolutionary
algorithms

The three algorithms have been coded in mathematical soft-
ware package MATLAB R2011b and run on a PC with1GB of RAM
and Intel Core Due 2 GHz CPU. For evaluating the performance
and strength of these three optimization algorithms, five well
known mathematical test functions have been selected from [25].
These test functions have between 10 and 30 bounded design vari-
ables and 2 objective functions.

The quality of the obtained solutions is assessed using perfor-
mance measures such as the distance between the generated Par-
eto Front and the known optimal Pareto Front solutions, and the
diversity of the solutions on the Pareto Front. In this paper, the
Inverted Generational Distance (IGD) measure is used for quantita-
tive assessment of the three optimization algorithms [26]. This
indicator measures the distance of elements in the true Pareto
Front set of elements in the set of non-dominated vectors gener-
ated by the optimization algorithms. The IGD(A,P) can be calcu-
lated as:

IGD A; Pð Þ ¼
X

s�P
dðs;AÞ= Pj j ð6Þ
ings SD: Standard Deviation. The bolded texts in the table indicate the best results for

Case III (Pop. size = 150) [17] [18]

PSO MODE NSGA II MOPSO MODEA NSGA-II MOPSO

08509 0.003491 0.006008 0.005936 – – 0.005414
09982 0.004403 0.006732 0.006904 0.00445 0.005712 0.012500
01412 0.00032 0.006008 0.000691 0.000107 0.000134 –
1.39 9.07 16.35 602.8 – – –

08453 0.004007 0.005772 0.005963 – – 0.004838
09362 0.004638 0.006358 0.007083 0.004474 0.005424 0.013980
00778 0.000223 0.005772 0.000641 0.000119 0.00019 –
0.9 10.72 15.86 781 – – –

08528 0.004475 0.005353 0.00547 – – 0.018860
10878 0.004903 0.006358 0.007623 0.005202 0.005785 0.020050
02414 0.000172 0.005353 0.001818 0.000089 0.000206 –
5.63 9.23 16.39 420.28 – – –

09543 0.002978 0.003967 0.006804 – – –
84069 0.012455 0.119508 0.106789 0.103042 0.005848 –
34634 0.019329 0.003967 0.087308 0.093407 0.001032 –
2.32 8.31 14.76 273.51 – – –

06924 0.003542 0.00279 0.004512 – – 0.003508
07801 0.003797 0.003739 0.005383 0.003585 0.012346 0.227100
00803 0.00013 0.00279 0.000493 0.000451 0.001227 –
7.8 8.64 14.9 592.33 – – –



106 H. Monsef et al. / Ain Shams Engineering Journal 10 (2019) 103–111
where P is the true Pareto Front vector set (the actual solutions), A is
non-dominated objective vector set (generated by optimization
algorithm) and d(s, A) is the Euclidean distance from the elements
of P to its nearest member in A. When the value of IGD is equal to
zero, it means that all of the non-dominated solutions match the
solutions on the true Pareto Front. Both diversity and convergence
of solutions could be measured using IGD (A, P).

3.1. Mathematical test functions

To analyze the computational time of each algorithm, the run-
time was recorded for several parameter settings. The initial pop-
ulation size is set to 50, 100 and 150 and the number of
generation for all cases is set as 250. The other parameter settings
of three optimization algorithms are summarized in Table 1. These
algorithms have been running for 30 times for each test function
and the average results have been obtained. The results are shown
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Fig. 1. Mean IGD values for ZDT1 and ZDT6 wi
in Table 2 and they are validated with the reported results of the
recent articles [27,28].

In all cases, the results have been in a good agreement. Results
show that the MODE has less elapsed time in contrast to the other
methods in all cases. Time spent by MOPSO was very high
compared to MODE and NSGA II. In most cases, the results of MODE
are near to the real answers with smaller IGD.

To evaluate the convergence rate of these three algorithms, the
mean amount of IGD for ZDT1 and ZDT6 test functions with their
corresponding upper and lower bound were drawn versus to gen-
eration numbers in Fig. 1. These graphs are obtained from 30 times
code execution for each test function. Diagrams show that MODE
and MOPSO converge in less number of generations. But the
variety of results in MODE and NSGAII is less than MOPSO. As a
result, in the mathematical problems with a large number of
design variables, the MODE has the best performance both in terms
of convergence rate and the running time.
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Fig. 2. (a) New York tunnel water network and (b) Hanoi water network (c) Pescara water network (d) Modena water network.
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3.2. Water distribution network optimal design

The main objective function in WDN’s design optimization is
the capital cost which depends on the length and diameter of the
pipes. The network reliability is considered as another objective
which represents the ability of a WDN to satisfy the consumer’s
needs under normal or an abnormal condition [3]. Reliability in
the context of WDNs is a somewhat nebulous concept, owing to
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the vast number of different interpretations over the years. The
WDN’s reliability has two main subcategories, the hydraulic relia-
bility which reflects the network tolerance against operational
change (e.g. demand change) and the mechanical reliability which
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reflects the network tolerance against physical changes such as
pipe failure [29].
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changes over time, such as demand variations. It is an important
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performance measure of WDNs, as it refers directly to their basic
function. It is, therefore, often considered as the ultimate goal of
the WDN design. Network Resilience (NR) presented by Prasad
and Park [2] and it is a surrogate measure of WDN’s hydraulic
reliability which considers surplus hydraulic power as a proportion
of available hydraulic power, considering the number of inlet and
outlet pipes in each demand node [29]. NR is strongly related to
the intrinsic capability of the system to overcome failures while
still satisfying demands and pressures in nodes. The value of NR
is in the continuous range between 0 and 1 and it is defined by
Eqs. (7) and (8) [2].

NR ¼
Pnn

i¼1ci:qi:ðha;i � hr;iÞPnn
i¼1QiHi þ

Pnp
j¼1

Pj
c

� �
� Pnn

i¼1qihr;i
� � ð7Þ

ci ¼
Xnpi
j

Dj

 !
= npi�max Dj

� �� � ð8Þ

where nn is the number of demand and supply nodes, np is the
number of pumps, ci is the uniformity of connected pipe to node
i,ha;i is the available head at the supply node i in (kPa), hr;i is
required head at supply node i in (kPa), qi is demand at node i in
(m3/s), Qi is supply at input node i in (m3/s), Hi is head of input node
i in (kPa), Pi is power from pump j in (kw), c is specific weight of
water in (N/m3), npi is the number of pipes connected to node i
and Dj is the diameter of pipe j connected to demand node i. Tanks
act as a demand node when they are filling and they act as a reser-
voir when they are emptying.

Three optimization algorithms are compared for optimum
design of four benchmark water distribution networks considering
minimum capital cost and maximum network reliability as two
objective functions. Epanet 2 software is used as a hydraulic solver.
The design variables in all case studies are pipe diameters and the
main constraint of the optimization problem is the acceptable
pressure range in demand nodes and acceptable flow velocity in
pipes. The initial population size and the number of generation
of two first water networks considered as 100 and 250 respec-
tively. Due to the more complex and larger search space in two
other water networks optimization problem, the initial population
size of Pescara and Modena are considered as 300 and 500, and the
number of the generation of these problems considered 500 and
1000 respectively. For similarity of solving conditions, the same
initial population has been used for all the optimization
procedures.
Table 3
IGD and Spend time of WDN optimization in two benchmark network. The bolded
texts in the table indicate the best results in each row.

WDN Measure MODE NSGA II MOPSO

Hanoi Mean IGD 0.016333 0.016896 0.260512
SD 0.001643 0.001237 0.259736
Best IGD 0.014 0.014825 0.058007
Time (s) 550.2 1083.5 1208

New York Tunnel Mean IGD 0.469061 0.47375 0.590792
SD 0.019095 0.012581 0.02615
Best IGD 0.451543 0.462173 0.552421
Time (s) 478.4 792.5 1231.4

Pescara Mean IGD 0/035056 0/027438 0/0388
SD 0/003623 0/011457 0/002003
Best IGD 0/0302 0/0155 0/035
Time (s) 3672/0 5057/2 6284/8

Modena Mean IGD 0.021538 0.032372 0.085219
SD 0.001878 0.002419 0.007641
Best IGD 0.020931 0.031868 0.079915
Time (s) 24725.7 43842.6 54256.1

Ta
bl
e
4

Pi
pe

di
am

et
er
s
of

an
op

ti
m
al

so
lu
ti
on

in
th
e
Pa

re
to

fr
on

t
fo
r
th
re
e
op

ti
m

O
pt

al
go

ri
th
m

Pi
pe

N
o.

an
d
di
am

et
er

(m
m
)

H
an

o
i

N
et
w
o
rk

1–
7

8
9–

11
12

1
M
O
PS

O
10

16
76

2
76

2
61

0
6

N
SG

A
-I
I

10
16

76
2

76
2

61
0

6
M
O
D
E

10
16

10
16

76
2

61
0

4

O
pt

al
go

ri
th
m

Pi
pe

N
o.

an
d
di
am

et
er

(m
N
Y
T N
et
w
o
rk

1
2

3
M
O
PS

O
–

15
6

–
N
SG

A
-I
I

–
–

–
M
O
D
E

–
–

–



110 H. Monsef et al. / Ain Shams Engineering Journal 10 (2019) 103–111
3.2.1. Case 1 – New York city water distribution network
The New York Tunnel network (Fig. 2a) was first proposed by

Schaake and Lai in 1969 [30]. After them, several researchers have
also investigated this problem for WDN optimization design [7].
This network has 20 nodes and 21 pipes, which is fed with an ele-
vated reservoir. The total length of the network pipes is 223 Km
with roughness coefficient of 100 and total nodal demand is
205,823 m3 per hour. Schematic view of the New York Tunnel net-
work has been shown in Fig. 2. The existing configuration of New
York Tunnel network is unable to satisfy the expected demand in
some nodes. To satisfy the minimum allowable pressure require-
ments in demand nodes, the network needs to be rehabilitated.
The decision variables can duplicate some or all of the existing
pipes. The minimum head requirement at all nodes is fixed at
77.72 m except for node 16, 17 and 1 which are 79.24, 83.14 and
91.44 m respectively. There are 16 commercially available pipe
sizes for each duplicated pipe and the search space for this problem
is 1621 (1.9343 � 1025) possible combinations.

3.2.2. Case 2 – Hanoi water distribution network
The second test problem is the Hanoi network in Vietnam

(Fig. 2b) which was first presented by Fujiwara and Khang in
1990 [31]. The network has 32 nodes, 34 pipes and 3 loops, which
is fed with a single elevated reservoir. The total length of the net-
work pipes is 39.4 Km with roughness coefficient of 130 and the
total nodal demand is 19940 m3 per hour. The design of this net-
work is restricted to selecting 6 commercially available pipes size.
The minimum required pressure head for all the nodes is set at
30 m. The search space consists of 634 (2.865 � 1026) possible
combinations.

3.2.3. Case 3 - Pescara water distribution network
The third test problem is the Pescara network in Italy (Fig. 2c).

This network is an intermediate problem and detailed in [32]. The
network has 68 nodes and99 pipes, which is fed with three ele-
vated reservoirs. The total length of the network pipes is 48.6
Km, the pipe’s material is cast iron with roughness coefficient of
130 and the total nodal demand is 1794 m3 per hour. The design
of this network is restricted to selecting 13 commercially available
pipes size. The minimum required pressure head for all the nodes
is set at 20 m and the maximum total head of them is 57 m. The
flow velocity of each pipe is enforced to be less than or equal to
2 m/s. The search space consists of 1399 (1.91 � 10110) possible
combinations.

3.2.4. Case 4 – Modena water distribution network
The last case study is the Modena water network in Italy

(Fig. 2d). This network is a large problem [32]. The network has
268 nodes and 317 pipes, which is fed with four elevated reser-
voirs. The total length of the network pipes is 71.8 Km, the material
and roughness coefficient of all pipes are the same of Pescara water
network and the total nodal demand is 1465 m3 per hour. The
design of this network is restricted to selecting 13 commercially
available pipes size. The minimum required pressure head for all
the nodes is set at 20 m and the maximum total head of them is
74.5 m. Also, the flow velocity of each pipe is enforced to be less
than or equal to 2 m/s. The search space consists of 13317

(1.32 � 10353) possible combinations.

3.2.5. Results of WDNs design optimization
The results of employing the three algorithms (NSGA-II, MODE,

and MOPSO) for WDN design have been shown in Figs. 3–6. These
results compared with best-known Pareto Front (BPF) which was
presented with [4]. The presented BPF in Ref. [4] is derived from
the integration of the results of recent studies by other researchers.
For numerical comparison of the obtained Pareto Fronts from the
three algorithms, the IGD value is calculated for every four net-
works and has been shown in Table 3, also the mean elapsed times
to reach the optimal solutions were measured and shown in
Table 3. These data are obtained from 10 times code running for
each algorithm and each WDNs. According to the obtained mean
IGD, although the solutions of MODE and NSGA-II are close
together the MODE provided best Pareto Front in all benchmark
WDNs. Also in all cases, MODE was faster and also has covered a
wider range of solutions. In all cases, the MOPSO running time is
the biggest, but the difference between MOPSO and the other
two algorithms execution time in WDN optimization has been
lower in Comparison of the mathematical optimization problem
in last part.

For closer examination, one solution of the Pareto Front of each
optimization algorithm with the same construction cost has been
selected for two case studies (New York and Hanoi network) and
compared in Table 4. Results show that despite the similarity of
the network structure, constraints and construction cost there will
vary pipe diameter configurations that can lead to the networks
with different reliability. This rule is the same for two other water
networks.
4. Conclusions

The performance of three well knownmulti-objective optimiza-
tion algorithms (NSGA-II, MODE, and MOPSO) have been assessed
by applying a number of mathematical test functions and four
WDN design under the same conditions, in which the results of
the application to mathematical test functions show that in most
cases MODE has the best performance, both in terms of IGD and
converging speed. After that, the three algorithms applied to four
WDNs design considering minimum cost and maximum network
reliability as the two objective functions. Results show that MODE
has the best Pareto Front in New York Tunnel design (expand exist-
ing network with duplicated parallel pipe). The Pareto Fronts gen-
erated by MODE and NSGA-II were almost identical and they were
better than MOPSO in Hanoi network design (layout design). But
the elapsed time in MODE was lower in comparison with the other
two algorithms. In Pescara water network, the results of the NSGA-
II were slightly better than the results of MODE and the results of
the MOPSO were weaker than others. The MODE is still faster than
the other two algorithms. In Modena water network (The most
complicated network in this study), MODE has better results com-
pared two other algorithms and MOPSO with the same initial pop-
ulation size and generation number could not fully approach the
Pareto Front. As a result, the MODE is proposed as a fast and accu-
rate algorithm to optimize water networks design as the multi-
objective optimization problem.
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