
A Genetic Programming Approach to Designing Convolutional
Neural Network Architectures

Masanori Suganuma
Yokohama National University

79-7 Tokiwadai Hodogaya-ku

Yokohama, Japan 240-8501

suganuma-masanori-hf@ynu.jp

Shinichi Shirakawa
Yokohama National University

79-7 Tokiwadai Hodogaya-ku

Yokohama, Japan 240-8501

shirakawa-shinichi-bg@ynu.ac.jp

Tomoharu Nagao
Yokohama National University

79-7 Tokiwadai Hodogaya-ku

Yokohama, Japan 240-8501

nagao@ynu.ac.jp

ABSTRACT

The convolutional neural network (CNN), which is one of the deep

learning models, has seen much success in a variety of computer

vision tasks. However, designing CNN architectures still requires

expert knowledge and a lot of trial and error. In this paper, we

attempt to automatically construct CNN architectures for an image

classification task based on Cartesian genetic programming (CGP).

In our method, we adopt highly functional modules, such as con-

volutional blocks and tensor concatenation, as the node functions

in CGP. The CNN structure and connectivity represented by the

CGP encoding method are optimized to maximize the validation

accuracy. To evaluate the proposed method, we constructed a CNN

architecture for the image classification task with the CIFAR-10

dataset. The experimental result shows that the proposed method

can be used to automatically find the competitive CNN architecture

compared with state-of-the-art models.

CCS CONCEPTS

• Computing methodologies→Heuristic function construc-

tion; Neural networks; Computer vision problems;

KEYWORDS

genetic programming, convolutional neural network, designing

neural network architectures, deep learning

ACM Reference format:

Masanori Suganuma, Shinichi Shirakawa, and Tomoharu Nagao. 2017. A Ge-

netic Programming Approach to Designing Convolutional Neural Network

Architectures. In Proceedings of the Genetic and Evolutionary Computation

Conference 2017, Berlin, Germany, July 15-19, 2017 (GECCO ’17), 8 pages.

https://doi.org/10.1145/3071178.3071229

1 INTRODUCTION

Deep learning, which uses deep neural networks as a model, has

shown good performance on many challenging artificial intelli-

gence and machine learning tasks, such as image recognition [17,

18], speech recognition [11], and reinforcement learning tasks

[23, 24]. In particular, convolutional neural networks (CNNs) [18]

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

GECCO ’17, July 15-19, 2017, Berlin, Germany

© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-4920-8/17/07. . . $15.00
https://doi.org/10.1145/3071178.3071229

have seen huge success in image recognition tasks in the past

few years and are applied to various computer vision applications

[37, 38]. A commonly used CNN architecture consists mostly of

several convolutions, pooling, and fully connected layers. Several

recent studies focus on developing a novel CNN architecture that

achieves higher classification accuracy, e.g., GoogleNet [33], ResNet

[10], and DensNet [12]. Despite their success, designing CNN ar-

chitectures is still a difficult task because many design parameters

exist, such as the depth of a network, the type and parameters

of each layer, and the connectivity of the layers. State-of-the-art

CNN architectures have become deep and complex, which suggests

that a significant number of design parameters should be tuned

to realize the best performance for a specific dataset. Therefore,

trial-and-error or expert knowledge is required when users con-

struct suitable architectures for their target datasets. In light of

this situation, automatic design methods for CNN architectures are

highly beneficial.

Neural network architecture design can be viewed as the model

selection problem in machine learning. The straight-forward ap-

proach is to deal with architecture design as a hyperparameter

optimization problem, optimizing hyperparameters, such as the

number of layers and neurons, using black-box optimization tech-

niques [20, 28].

Evolutionary computation has been traditionally applied to de-

signing neural network architectures [26, 32]. There are two types

of encoding schemes for network representation: direct and indirect

coding. Direct coding represents the number and connectivity of

neurons directly as the genotype, whereas indirect coding repre-

sents a generation rule for network architectures. Although almost

all traditional approaches optimize the number and connectivity of

low-level neurons, modern neural network architectures for deep

learning have many units and various types of units, e.g., convolu-

tion, pooling, and normalization. Optimizing so many parameters

in a reasonable amount of computational time may be difficult.

Therefore, the use of highly functional modules as a minimum unit

is promising.

In this paper, we attempt to design CNN architectures based

on genetic programming. We use the Cartesian genetic program-

ming (CGP) [8, 21, 22] encoding scheme, one of the direct encoding

schemes, to represent the CNN structure and connectivity. The

advantage of this representation is its flexibility; it can represent

variable-length network structures and skip connections. Moreover,

we adopt relatively highly functional modules, such as convolu-

tional blocks and tensor concatenation, as the node functions in

CGP to reduce the search space. To evaluate the architecture repre-

sented by the CGP, we train the network using a training dataset

497

GECCO ’17, July 15-19, 2017, Berlin, Germany Masanori Suganuma, Shinichi Shirakawa, and Tomoharu Nagao

in an ordinary way. Then, the performance of another validation

dataset is assigned as the fitness of the architecture. Based on this

fitness evaluation, an evolutionary algorithm optimizes the CNN

architectures. To check the performance of the proposed method,

we conducted an experiment involving constructing a CNN archi-

tecture for the image classification task with the CIFAR-10 dataset

[16]. The experimental result shows that the proposed method can

be used to automatically find the competitive CNN architecture

compared with state-of-the-art models.

The rest of this paper is organized as follows. The next section

presents related work on neural network architecture design. In

Section 3, we describe our genetic programming approach to design-

ing CNN architectures. We test the performance of the proposed

approach through the experiment. Finally, in Section 5, we describe

our conclusion and future work.

2 RELATEDWORK

This section briefly reviews the related work on automatic neural

network architecture design: hyperparameter optimization, evolu-

tionary neural networks, and the reinforcement learning approach.

2.1 Hyperparameter Optimization

We can consider neural network architecture design as the model

selection or hyperparameter optimization problem from a machine

learning perspective. There are many hyperparameter tuning meth-

ods for themachine learning algorithm, such as grid search, gradient

search [2], random search [3], and Bayesian optimization-based

methods [13, 28]. Naturally, evolutionary algorithms have also been

applied to hyperparameter optimization problems [20]. In the ma-

chine learning community, Bayesian optimization is often used and

has shown good performance in several datasets. Bayesian opti-

mization is a global optimization method of black-box and noisy

objective functions, and it maintains a surrogate model learned by

using previously evaluated solutions. A Gaussian process is usu-

ally adopted as the surrogate model [28], which can easily handle

the uncertainty and noise of the objective function. Bergstra et al.

[5] have proposed the tree-structured Parzen estimator (TPE) and

shown better results than manual search and random search. They

have also proposed a meta-modeling approach [4] based on the TPE

for supporting automatic hyperparameter optimization. Snoek et

al. [29] used a deep neural network instead of the Gaussian process

to reduce the computational cost for the surrogate model building

and succeeded in improving the scalability.

The hyperparameter optimization approach often tunes prede-

fined hyperparameters, such as the numbers of layers and neurons,

and the type of activation functions. Although this method has

seen success, it is hard to design more flexible architectures from

scratch.

2.2 Evolutionary Neural Networks

Evolutionary algorithms have been used to optimize neural net-

work architectures so far [26, 32]. Traditional approaches are not

suitable for designing deep neural network architectures because

they usually optimize the number and connectivity of low-level

neurons.

Recently, Fernando et al. [6] proposed differentiable pattern-

producing networks (DPPNs) for optimizing the weights of a de-

noising autoencoder. The DPPN is a differentiable version of the

compositional pattern-producing networks (CPPNs) [30]. This pa-

per focuses on the effectiveness of indirect coding for weight opti-

mization. That is, the general structure of the network should be

predefined.

Verbancsics et al. [35, 36] have optimized the weights of artificial

neural networks and CNN by using the hypercube-based neuroevo-

lution of augmenting topologies (HyperNEAT) [31]. However, to

the best of our knowledge, the methods with HyperNEAT have not

achieved competitive performance compared with the state-of-the-

art methods. Also, these methods require an architecture that has

been predefined by human experts. Thus, it is hard to design neural

network architectures from scratch.

2.3 Reinforcement Learning Approach

Interesting approaches, including the automatic designing of the

deep neural network architecture using reinforcement learning,

were attempted recently [1, 39]. These studies showed that the

reinforcement learning-based methods constructed the competitive

CNN architectures for image classification tasks. In [39], a recurrent

neural network (RNN) was used to generate neural network archi-

tectures, and the RNN was trained with reinforcement learning to

maximize the expected accuracy on a learning task. This method

uses distributed training and asynchronous parameter updates with

800 graphic processing units (GPUs) to accelerate the reinforcement

learning process. Baker et al. [1] have proposed a meta-modeling

approach based on reinforcement learning to produce CNN archi-

tectures. A Q-learning agent explores and exploits a space of model

architectures with an ϵ−greedy strategy and experience replay.
These approaches adopt the indirect coding scheme for the net-

work representation, which optimizes generative rules for network

architectures such as the RNN. Unlike these approaches, our ap-

proach uses direct coding based on Cartesian genetic programming

to design the CNN architectures. In addition, we introduce rela-

tively highly functional modules, such as convolutional blocks and

tensor concatenations, to find better CNN architectures efficiently.

3 CNN ARCHITECTURE DESIGN USING
CARTESIAN GENETIC PROGRAMMING

Our method directly encodes the CNN architectures based on CGP

[8, 21, 22] and uses the highly functional modules as the node

functions. The CNN architecture defined by CGP is trained using

a training dataset, and the validation accuracy is assigned as the

fitness of the architecture. Then, the architecture is optimized to

maximize the validation accuracy by the evolutionary algorithm.

Figure 1 illustrates an overview of our method.

In this section, we describe the network representation and the

evolutionary algorithm used in the proposed method in detailed.

3.1 Representation of CNN Architectures

We use the CGP encoding scheme, representing the program as

directed acyclic graphs with a two-dimensional grid defined on

computational nodes, for the CNN architecture representation. Let

us assume that the grid has Nr rows by Nc columns; then the

498

A Genetic Programming Approach to Designing CNN Architectures GECCO ’17, July 15-19, 2017, Berlin, Germany

Initialization

Selection

Reproduction

I O

I O I O

CNN training by
backpropagation with

training data

Calculate classification
accuracy (fitness) with

validation data

Figure 1: Overview of our method. Our method represents

CNNarchitectures based onCartesian genetic programming.

The CNN architecture is trained on a learning task and as-

signed the validation accuracy of the trained model as the

fitness. The evolutionary algorithm searches the better ar-

chitectures.

number of intermediate nodes isNr ×Nc , and the numbers of inputs

and outputs depend on the task. The genotype consists of integers

with fixed lengths, and each gene has information regarding the

type and connections of the node. The c-th column’s nodes should
be connected from the (c − l) to (c − 1)-th column’s nodes, where l
is called the levels-back parameter. Figure 2 provides an example of

the genotype, the corresponding network, and the CNN architecture

in the case of two rows by three columns. Whereas the genotype

in CGP is a fixed-length representation, the number of nodes in

the phenotypic network varies because not all of the nodes are

connected to the output nodes. Node No. 5 on the left side of Figure

2 is an inactive node.

Referring to the modern CNN architectures, we select the highly

functional modules as the node function. The frequently used pro-

cessings in the CNN are convolution and pooling; convolution

processing uses a local connectivity and spatially shares the learn-

able weights, and pooling is nonlinear down-sampling. We prepare

the six types of node functions called ConvBlock, ResBlock, max

pooling, average pooling, concatenation, and summation. These

nodes operate the three-dimensional (3-D) tensor defined by the

dimensions of the row, column, and channel. Also, we call this 3-D

tensor feature maps, where a feature map indicates a matrix of the

row and column as an image plane.

The ConvBlock consists of standard convolution processing with

a stride of 1 followed by batch normalization [14] and rectified linear

units (ReLU) [25]. In the ConvBlock, we pad the outside of input

feature maps with zero values before the convolution operation

so as to maintain the row and column sizes of the output. As a

result, the M × N × C input feature maps are transformed into

M ×N ×C ′ output ones, whereM , N ,C , andC ′ are the numbers of
rows, columns, input channels, and output channels, respectively.

We prepare several ConvBlocks with the different output channels

and the receptive field size (kernel size) in the function set of CGP.

The ResBlock is composed of a convolution processing, batch

normalization, ReLU, and tensor summation. A ResBlock architec-

ture is shown in Figure 3. The ResBlock performs identity mapping

by shortcut connections as described in [10]. The row and column

sizes of the input are preserved in the same way as ConvBlock after

convolution. The output feature maps of the ResBlock are calcu-

lated by the ReLU activation and the summation with the input

feature maps and the processed feature maps as shown in Figure 3.

In the ResBlock, theM ×N ×C input feature maps are transformed

into theM ×N ×C ′ output ones. We also prepare several ResBlocks

with the different output channels and the receptive field size in

the function set of CGP.

The max and average poolings perform a max and average oper-

ation, respectively, over the local neighbors of the feature maps. We

use the pooling with the 2× 2 receptive field size and the stride size
2. In the pooling operation, theM × N ×C input feature maps are

transformed into theM ′ × N ′ ×C output ones, whereM ′ = �M/2�
and N ′ = �N /2�.
The concatenation function concatenates two feature maps in

the channel dimension. If the input feature maps to be concatenated

have different numbers of rows or columns, we down-sample the

larger feature maps by max pooling so that they become the same

sizes of the inputs. In the concatenation operation, the sizes of the

output feature maps are min(M1,M2) × min(N1,N2) × (C1 +C2),
where as the sizes of the inputs areM1 ×N1 ×C1 andM2 ×N2 ×C2.

The summation performs the element-wise addition of two fea-

ture maps, channel by channel. In the same way as the concatena-

tion, if the input feature maps to be added have different numbers

of rows or columns, we down-sample the larger feature maps by

max pooling. In addition, if the inputs have different numbers of

channels, we pad the smaller feature maps with zeros for increas-

ing channels. In the summation operation, the size of the output

feature maps are min(M1,M2)×min(N1,N2)×max(C1,C2), where
the sizes of the inputs areM1 ×N1 ×C1 andM2 ×N2 ×C2. In Figure
2, the summation node performs max pooling to the first input so

as to get the same input tensor sizes. Adding these summation and

concatenation operations allows our method to represent shortcut

connections or branching layers, such as those used in GoogleNet

[33] and Residual Net [10] without ResBlock.

The output node represents the softmax function with the num-

ber of classes. The outputs fully connect to all elements of the input.

The node functions used in the experiments are displayed in Table

1.

3.2 Evolutionary Algorithm

We use a point mutation as the genetic operator in the same way as

the standard CGP. The type and connections of each node randomly

change to valid values according to a mutation rate. The standard

CGP mutation has the possibility of affecting only the inactive node.

In that case, the phenotype (representing the CNN architecture)

does not change by the mutation and does not require a fitness

evaluation again.

The fitness evaluation of the CNN architectures is so expensive

because it requires the training of CNN. To efficiently use the com-

putational resource, we want to evaluate some candidate solutions

in parallel at each generation. Therefore, we apply the mutation

operator until at least one active node changes for reproducing

the candidate solution. We call this mutation a forced mutation.

Moreover, to maintain a neutral drift, which is effective for CGP

evolution [21, 22], we modify a parent by the neutral mutation if

499

GECCO ’17, July 15-19, 2017, Berlin, Germany Masanori Suganuma, Shinichi Shirakawa, and Tomoharu Nagao

conv
(32, 3)

1

pool
(max)

2
conv
(64, 3)

4

conv
(64, 5)

3
pool
(max)

5

sum

6input

C0
(Node no.) 1 2

Genotype

: not expressed in the phenotypeFunction ID 1st input node no. 2nd input node no.

4 53 6

0 7

7

Convolution
32 output channels
3×3 receptive filed

Max Pooling
2×2 receptive field
Stride 2

Convolution
64 output channels
5×5 receptive field

Convolution
64 output channels
3×3 receptive field

+

softmax

output

0 2 P1 0 0 C3 1 2 C2 2 1 P1 2 2 S 3 4 O 6

Summation

1

3 4

2

6

Max Pooling

Figure 2: Example of a genotype and a phenotype. The genotype (left) defines the CNN architecture (right). In this case, node

No. 5 on the left side is an inactive node. The summation node performs max pooling to the first input so as to get the same

input tensor sizes.

ConvBlock

Convolution

BatchNormalization

Summation

ReLU

Figure 3: ResBlock architecture.

the fitnesses of the offsprings do not improve. In the neutral muta-

tion, we change only the genes of the inactive nodes without the

modification of the phenotype.

We use the modified (1 + λ) evolutionary strategy (with λ = 2
in our experiments) in the above artifice. The procedure of our

modified algorithm is as follows:

(1) Generate an initial individual at random as parent P , and
train the CNN represented by P followed by assigning the

validation accuracy as the fitness.

(2) Generate a set of λ offsprings C by applying the forced

mutation to P .
(3) Train the λ CNNs represented by offsprings C in parallel,

and assign the validation accuracies as the fitness.

(4) Apply the neutral mutation to parent P .
(5) Select an elite individual from the set of P and C , and then

replace P with the elite individual.

(6) Return to step 2 until a stopping criterion is satisfied.

Table 1: The node functions and abbreviated symbols used

in the experiments.

Node type Symbol Variation

ConvBlock CB (C ′, k) C ′ ∈ {32, 64, 128}
k ∈ {3 × 3, 5 × 5}

ResBlock RB (C ′, k) C ′ ∈ {32, 64, 128}
k ∈ {3 × 3, 5 × 5}

Max pooling MP –

Average pooling AP –

Summation Sum –

Concatenation Concat –

C ′: Number of output channels
k : Receptive field size (kernel size)

4 EXPERIMENTS AND RESULTS

4.1 Dataset

We test ourmethod on the image classification task using the CIFAR-

10 dataset in which the number of classes is 10. The numbers of

training and test images are 50, 000 and 10, 000, respectively, and

the size of images is 32 × 32.
We consider two experimental scenarios: the default scenario

and the small-data scenario. The default scenario uses the default

numbers of the training images, whereas the small-data scenario

assumes that we use only 5, 000 images as the learning data.

In the default scenario, we randomly sample 45, 000 images from

the training set to train the CNN, and we use the remaining 5, 000

images for the validation set of the CGP fitness evaluation. In the

small-data scenario, we randomly sample 4, 500 images for the

training and 500 images for the validation.

500

A Genetic Programming Approach to Designing CNN Architectures GECCO ’17, July 15-19, 2017, Berlin, Germany

Table 2: Parameter setting for the CGP

Parameters Values

Mutation rate 0.05

Rows (Nr) 5

Columns (Nc) 30

Levels-back (l) 10

4.2 Experimental Setting

To assign the fitness to the candidate CNN architectures, we train

the CNN by stochastic gradient descent (SGD) with a mini-batch

size of 128. The softmax cross-entropy loss is used as the loss func-

tion. We initialize the weights by the He’s method [9] and use the

Adam optimizer [15] with β1 = 0.9, β2 = 0.999, ε = 1.0 × 10−8, and
an initial learning rate of 0.01. We train each CNN for 50 epochs

and reduce the learning rate by a factor of 10 at 30th epoch.

We preprocess the data with the per-pixel mean subtraction.

To prevent overfitting, we use a weight decay with the coefficient

1.0 × 10−4 and data augmentation. We use the data augmentation

method based on [10]: padding 4 pixels on each side followed by

choosing a random 32×32 crop from the padded image, and random

horizontal flips on the cropped 32 × 32 image.
The parameter setting for CGP is shown in Table 2. We use the

relatively larger number of columns than the number of rows to

generate deep architectures that are likely. The offspring size of

λ is set to two; that is the same number of GPUs in our experi-

mental machines. We test two node function sets called ConvSet

and ResSet for our method. The ConvSet contains ConvBlock, Max

pooling, Average pooling, Summation, and Concatenation in Table

1, and the ResSet contains ResBlock, Max pooling, Average pooling,

Summation, and Concatenation. The difference between these two

function sets is whether we adopt ConvBlock or ResBlock. The

numbers of generations are 500 for ConvSet, 300 for ResSet in the

default scenario, and 1, 500 in the small-data scenario, respectively.

After the CGP process, we re-train the best CNN architecture

using each training image (50, 000 for the default scenario and 5, 000

for the small-data scenario), and we calculate the classification

accuracy for the 10, 000 test images to evaluate the constructed

CNN architectures.

In this re-training phase, we optimize the weights of the obtained

architecture for 500 epochs with a different training procedure; we

use SGD with a momentum of 0.9, a mini-batch size of 128, and a

weight decay of 5.0 × 10−4. We start a learning rate of 0.01 and set

it to 0.1 at 5th epoch, then we reduce it to 0.01 and 0.001 at 250th

and 375th epochs, respectively. This learning rate schedule is based

on the reference [10].

We have implemented our methods using the Chainer [34] (ver-

sion 1.16.0) framework and run the experiments on the machines

with 3.2GHz CPU, 32GB RAM, and two NVIDIA GeForce GTX 1080

(or two GTX 1070) GPUs. It is possible that the large architectures

generated by the CGP process cannot run in the environment due

to the GPU memory limitation. In that case, we assign a zero fitness

to the candidate solution.

Table 3: Comparison of error rates on the CIFAR-10 dataset

(default scenario). The values of Maxout, Network in Net-

work, ResNet, MetaQNN, and Neural Architecture Search

are referred from the reference papers.

Model Error rate # params (×106)
Maxout [7] 9.38 –

Network in Network [19] 8.81 –

VGG [27] 1 7.94 15.2

ResNet [10] 6.61 1.7

MetaQNN [1] 2 9.09 3.7

Neural Architecture Search [39] 3.65 37.4

CGP-CNN (ConvSet) 6.75 1.52

CGP-CNN (ResSet) 5.98 1.68

4.3 Result of the Default Scenario

We compare the classification performance of our method with

the state-of-the-art methods and summarize the classification error

rates in Table 3. We refer to the architectures constructed by the

proposed method as CGP-CNN. For instance, CGP-CNN (ConvSet)

means the proposed method with the node function set of Con-

vSet. The models, Maxout, Network in Network, VGG, and ResNet,

are hand-crafted CNN architectures, whereas the MetaQNN and

Neural Architecture Search are the models constructed by the rein-

forcement learning-based method. Hand-crafted CNN architectures

mean the CNN architectures are designed by human experts. In

Table 3, the numbers of learnable weight parameters in the models

are also listed.

As can be seen in Table 3, the error rates of our methods are com-

petitive with the state-of-the-art methods. In particular, CGP-CNN

(ResSet) outperforms all hand-crafted models, and the architectures

constructed by using our method have a good balance between

classification errors and the number of parameters. The Neural

Architecture Search achieved the best error rate, but this method

used 800 GPUs for the architecture search. Our method could find

a competitive architecture with a reasonable machine resource.

Figure 4 shows the architectures constructed by CGP-CNN (Con-

vSet) and CGP-CNN (ResSet). We can observe that these architec-

tures are quite different; the summation and concatenation nodes

are not used in CGP-CNN (ResSet), whereas these nodes are fre-

quently used in CGP-CNN (ConvSet). These nodes lead the wide

network; therefore, the network of CGP-CNN (ConvSet) is a wider

structure than that of CGP-CNN (ResSet).

Added to this, we observe that CGP-CNN (ResSet) architecture

has a similar feature with the ResNet [10]. The ResNet consists of a

repetition of two types of modules: the module with several con-

volutions with the shortcut connections without down-sampling,

and down-sampling convolution with a stride of 2. Although our

method cannot perform down-sampling in the ConvBlock and the

ResBlock, we can see from Figure 4 that CGP-CNN (ResSet) uses av-

erage pooling as an alternative to the down-sampling convolution.

Furthermore, CGP-CNN (ResSet) has some convolutions with the

1We have implemented the VGG net [27] for the CIFAR-10 dataset because the VGG
net is not applied to the CIFAR-10 dataset in [27]. The architecture of the VGG is
identical with configuration D in [27]. We denote this model as VGG in this paper.
2The mean error rate and the number of parameters of the top five models are shown.

501

GECCO ’17, July 15-19, 2017, Berlin, Germany Masanori Suganuma, Shinichi Shirakawa, and Tomoharu Nagao

Input

MP CB (128, 3)MP

CB (128, 3)CB (64, 3)CB (32, 5)

CB (128, 3)

Sum

CB (128, 3)Sum

MPCB (32, 5)

CB (64, 3)

Concat

Concat

CB (64, 3)

SumCB (64, 5)

CB (128, 3)

CB (128, 3)

Concat

CB (64, 3)

Concat

CB (128, 3)

CB (128, 3)

CB (128, 5)

Softmax

(a) CGP-CNN (ConvSet)

Input

RB (128, 3)

RB (128, 3)

RB (128, 3)

AP

RB (128, 3)

RB (128, 3)

RB (128, 3)

MP

Softmax

AP

AP

RB (32, 3)

(b) CGP-CNN (ResSet)

Figure 4: The CNN architectures designed by our method on the default scenario.

shortcut connections, such as ResNet. Based on these observations,

we can say that our method can also find the architecture similar

to one designed by human experts, and that model shows a better

performance.

Besides, while the ResNet has a very deep 110-layer architecture,

CGP-CNN (ResSet) has a relatively shallow and wide architecture.

We guess from this result that the number of output channels of

ResBlock in the proposed method is one of the contributive param-

eters for improving the classification accuracy on the CIFAR-10

dataset.

For CGP-CNN (ResSet) on the default scenario, it takes about

14 days to complete the optimization of the CNN architecture. We

observed a training time differs for each individual because various

structures are generated by our method during the optimization.

4.4 Result of the Small-data Scenario

In the small-data scenario, we compare our method with VGG and

ResNet. We have trained VGG and ResNet models by the same

setting of the re-training method in the proposed method; it is

based on the training method of the ResNet [10].

Table 4 shows the comparison of error rates in the small-data

scenario. We observe that our methods, CGP-CNN (ConvSet) and

CGP-CNN (ResSet), can find better architectures than VGG and

ResNet. It is obvious that VGG and ResNet are inadequate for the

small-data scenario because these architectures are designed for a

relatively large amount of data. Meanwhile, our method can tune

the architecture depending on the data size. Figure 5 illustrates

the CGP-CNN (ConvSet) architecture constructed by using the

proposed method. As seen in Figure 5, our method has found a

wider structure than that in the default scenario.

Additionally, we have re-trained this model with the 50, 000

training data and achieved a 8.05% error rate on the test data. It sug-

gests that the proposed method may be used to design a relatively

good general architecture even with a small dataset. For CGP-CNN

(ResSet) on the small scenario, it takes about five days to complete

the optimization of the CNN architecture.

5 CONCLUSION

In this paper, we have attempted to take a GP-based approach for

designing the CNN architectures and have verified its potential. The

502

A Genetic Programming Approach to Designing CNN Architectures GECCO ’17, July 15-19, 2017, Berlin, Germany

Table 4: Comparison of error rates on the CIFAR-10 dataset

(small-data scenario).

Model Error rate # params (×106)
VGG [27] 24.11 15.2

ResNet [10] 24.10 1.7

CGP-CNN (ConvSet) 23.48 3.9

CGP-CNN (ResSet) 23.47 0.83

proposed method constructs the CNN architectures based on CGP

and adopts the highly functional modules, such as ConvBlock and

ResBlock, for searching the adequate architectures efficiently. We

have constructed the CNN architecture for the image classification

task with the CIFAR-10 dataset and considered two different data

size settings. The experimental result showed that the proposed

method could automatically find the competitive CNN architecture

compared with the state-of-the-art models.

However, our proposed method requires much computational

cost; the experiment on the default scenario needed about a few

weeks in our machine resource. We can reduce the computational

time if the training data are small (such as in the small-data scenario

in the experiment). Thus, one direction of future work is to develop

the evolutionary algorithm to reduce the computational cost of

the architecture design, e.g., increasing the training data for the

neural network as the generation progresses. Moreover, to simplify

the CNN architectures, we should consider to apply regularization

techniques to the optimization process. Also, it may be that we can

manually simplify the obtained CNN architectures by removing

redundant or less effective layers. Another future work is to apply

the proposed method to other image datasets and tasks.

REFERENCES
[1] Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh Raskar. 2016. Design-

ing neural network architectures using reinforcement learning. arXiv preprint
arXiv:1611.02167v3 (2016).

[2] Yoshua Bengio. 2000. Gradient-based optimization of hyperparameters. Neural
computation 12, 8 (Aug. 2000), 1889–1900.

[3] James Bergstra and Yoshua Bengio. 2012. Random search for hyper-parameter
optimization. Journal of Machine Learning Research 13, 1 (Jan. 2012), 281–305.

[4] James Bergstra, Daniel Yamins, and David D. Cox. 2013. Making a science
of model search: Hyperparameter optimization in hundreds of dimensions for
vision architectures. In Proceedings of the 30th International Conference onMachine
Learning (ICML ’13). Atlanta, Gerorgia, 115–123.

[5] James S. Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. 2011. Al-
gorithms for hyper-parameter optimization. In Advances in Neural Information
Processing Systems 24 (NIPS ’11). Granada, Spain, 2546–2554.

[6] Chrisantha Fernando, Dylan Banarse, Malcolm Reynolds, Frederic Besse, David
Pfau, Max Jaderberg, Marc Lanctot, and Daan Wierstra. 2016. Convolution
by evolution: Differentiable pattern producing networks. In Proceedings of the
Genetic and Evolutionary Computation Conference 2016 (GECCO ’16). Denver,
Colorado, 109–116.

[7] Ian J. Goodfellow, David Warde-Farley, Mehdi Mirza, Aaron C. Courville, and
Yoshua Bengio. 2013. Maxout networks. In Proceedings of the 30th International
Conference on Machine Learning (ICML ’13). Atlanta, Gerorgia, 1319–1327.

[8] Simon Harding. 2008. Evolution of image filters on graphics processor units
using cartesian genetic programming. In Proceedings of the IEEE Congress on
Evolutionary Computation (CEC ’08). Hong Kong, China, 1921–1928.

[9] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Delving deep
into rectifiers: Surpassing human-level performance on imagenet classification.
In Proceedings of the IEEE International Conference on Computer Vision (ICCV ’15).
Santiago, Chile, 1026–1034.

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the 29th IEEE Conference on
Computer Vision and Pattern Recognition (CVPR ’16). Las Vegas, Nevada, 770–778.

Input

CB (64, 3)

Softmax

MP CB (128, 3) MP

CB (128, 3) CB (64, 3)

CB (128, 5) Concat

CB (64, 3)CB (64, 5)

CB (64, 3)

SumMP

Concat CB (64, 5)

Concat

CB (128, 3)

CB (32, 5)

MP CB (128, 5)

MP

CB (128, 3)

CB (64, 5)

Concat

CB (64, 5)CB (128, 5)Concat

Sum CB (128, 5)

Concat CB (32, 5)

Concat

CB (128, 5)

CB (128, 5)

Sum

CB (64, 5)

Figure 5: The architecture of CGP-CNN (ConvSet) con-

structed in the small-data scenario.

[11] Geoffrey Hinton, Li Deng, Dong Yu, George E. Dahl, Abdel-rahman Mohamed,
Navdeep Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N.
Sainath, and others. 2012. Deep neural networks for acoustic modeling in speech
recognition: The shared views of four research groups. IEEE Signal Processing
Magazine 29, 6 (Nov. 2012), 82–97.

[12] Gao Huang, Zhuang Liu, Kilian Q. Weinberger, and Laurens van der Maaten.
2016. Densely connected convolutional networks. arXiv preprint arXiv:1608.06993
(2016).

[13] Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. 2011. Sequential model-
based optimization for general algorithm configuration. In Proceedings of the 5th
International Conference on Learning and Intelligent Optimization. Rome, Italy,
507–523.

[14] Sergey Ioffe and Christian Szegedy. 2015. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. In Proceedings of
the 32nd International Conference on Machine Learning (ICML ’15). Lille, France,
448–456.

[15] Diederik Kingma and Jimmy Ba. 2015. Adam: A method for stochastic optimiza-
tion. In Proceedings of the 3rd International Conference on Learning Representaions
(ICLR ’15). San Diego, 2452–2459.

[16] Alex Krizhevsky. 2009. Learning multiple layers of features from tiny images.
Technical report (2009).

[17] Alex Krizhevsky, Ilya Sutskever, andGeoffrey E. Hinton. 2012. Imagenet classifica-
tion with deep convolutional neural networks. In Advances in Neural Information
Processing Systems 25 (NIPS ’12). Nevada, 1097–1105.

[18] Yann LeCun, Leon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-
based learning applied to document recognition. Proc. IEEE 86, 11 (Nov. 1998),
2278–2324.

[19] Min Lin, Qiang Chen, and Shuicheng Yan. 2014. Network in network. In Proceed-
ings of the 2nd International Conference on Learning Representaions (ICLR ’14).
Banff, Canada.

[20] Ilya Loshchilov and Frank Hutter. 2016. CMA-ES for hyperparameter optimiza-
tion of deep neural networks. arXiv preprint arXiv:1604.07269 (2016).

503

GECCO ’17, July 15-19, 2017, Berlin, Germany Masanori Suganuma, Shinichi Shirakawa, and Tomoharu Nagao

[21] Julian F. Miller and Stephen L. Smith. 2006. Redundancy and computational
efficiency in cartesian genetic programming. IEEE Transactions on Evolutionary
Computation 10, 2 (April 2006), 167–174.

[22] Julian F. Miller and Peter Thomson. 2000. Cartesian genetic programming. In
Proceedings of the European Conference on Genetic Programming (EuroGP ’00).
Scotland, UK, 121–132.

[23] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. 2013. Playing atari with
deep reinforcement learning. In Proceedings of Neural Information Processing
Systems (NIPS ’13) Workshop on Deep Learning. Nevada.

[24] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness,
Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg
Ostrovski, and others. 2015. Human-level control through deep reinforcement
learning. Nature 518, 7540 (Feb. 2015), 529–533.

[25] Vinod Nair and Geoffrey E. Hinton. 2010. Rectified linear units improve re-
stricted boltzmann machines. In Proceedings of the 27th International Conference
on Machine Learning (ICML ’10). Haifa, Israel, 807–814.

[26] J. David Schaffer, Darrell Whitley, and Larry J. Eshelman. 1992. Combinations
of genetic algorithms and neural networks: A survey of the state of the art. In
Proceedings of International Workshop on Combinations of Genetic Algorithms and
Neural Networks (COGANN ’92). Baltimore, Maryland, 1–37.

[27] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional net-
works for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).

[28] Jasper Snoek, Hugo Larochelle, and Ryan P. Adams. 2012. Practical bayesian
optimization of machine learning algorithms. In Advances in Neural Information
Processing Systems 25 (NIPS ’12). Nevada, 2951–2959.

[29] Jasper Snoek, Oren Rippel, Kevin Swersky, Ryan Kiros, Nadathur Satish,
Narayanan Sundaram, Md Mostofa Ali Patwary, Mr Prabhat, and Ryan P. Adams.
2015. Scalable bayesian optimization using deep neural networks. In Proceedings
of the 32nd International Conference on Machine Learning (ICML ’15). Lille, France,
2171–2180.

[30] Kenneth O. Stanley. 2007. Compositional pattern producing networks: A novel
abstraction of development. Genetic Programming and Evolvable Machines 8, 2
(June 2007), 131–162.

[31] Kenneth O. Stanley, David B. D’Ambrosio, and Jason Gauci. 2009. A hypercube-
based encoding for evolving large-scale neural networks. Artificial life 15, 2
(2009), 185–212.

[32] Kenneth O. Stanley and Risto Miikkulainen. 2002. Evolving neural networks
through augmenting topologies. Evolutionary computation 10, 2 (2002), 99–127.

[33] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. 2015.
Going deeper with convolutions. In Proceedings of the 28th IEEE Conference on
Computer Vision and Pattern Recognition (CVPR ’15). Boston, Massachusetts, 1–9.

[34] Seiya Tokui, Kenta Oono, Shohei Hido, and Justin Clayton. 2015. Chainer: a
next-generation open source framework for deep learning. In Proceedings of
Neural Information Processing Systems (NIPS ’15) Workshop on Machine Learning
Systems (LearningSys). Montreal, Canada.

[35] Phillip Verbancsics and Josh Harguess. 2013. Generative neuroevolution for deep
learning. arXiv preprint arXiv:1312.5355 (2013).

[36] Phillip Verbancsics and JoshHarguess. 2015. Image classification using generative
neuro evolution for deep learning. In Proceedings of the IEEE Winter Conference
on Applications of Computer Vision (WACV ’15). Hawaii, 488–493.

[37] Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan. 2015. Show
and tell: A neural image caption generator. In Proceedings of the 28th IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR ’15). Boston, Mas-
sachusetts, 3156–3164.

[38] Richard Zhang, Phillip Isola, and Alexei A. Efros. 2016. Colorful image coloriza-
tion. In Proceedings of the 14th European Conference on Computer Vision (ECCV
’16). Amsterdam, The Netherlands, 649–666.

[39] Barret Zoph and Quoc V. Le. 2016. Neural architecture search with reinforcement
learning. arXiv preprint arXiv:1611.01578v2 (2016).

504

