
DEPARTMENT OF ICT AND NATURAL SCIENCES

IE303612 - BACHELOR THESIS

Towed ROV

A BASIS FOR BUILDING A OPEN-SOURCE TOWED ROV FOR SEAFLOOR SURVEYING

Candidates

Sophus Stokke Fredborg

Jonas Halle

Jørgen Ringdal Sæter

Andreas Øie

20 May, 2021

i

Preface

This bachelor thesis is written by four students from Automation Engineering at NTNU Ålesund.

The students in the group come from a number of backgrounds, ranging from automation to

sports.

In this thesis, we wanted to renew the Towed ROV-project in terms of rewriting the fundamental

software systems and simplify the current hardware. By rewriting the software, we would like to

implement a graphical user interface with a database so that researchers could operate the ROV

to collect exciting data from the sea through hydrographic surveying, taking pictures or other

measures to collect useful sensor data.

The collected data could possibly lead to the discovery of previously unknown fishing gear on

the seafloor, which could be useful in the battle against oceanic ghost fishing.

We recommend that the reader have a basic understanding of engineering, software technol-

ogy, and automation in order to fully comprehend the content of this bachelor thesis.

ii

Acknowledgement

We’d like to express our gratitude to all of the people who helped and supported us during this

project, and particularly to:

• Supervisor Ottar L. Osen at NTNU for help and guidance throughout the project.

• Assistant supervisor Robin T. Bye

• Assistant supervisor Øystein Bjelland

• Runde Miljøsenter for their hospitality and cooperation.

• Laboratory engineer Anders Sætersmoen for support with the purchase and lending of

equipment.

• The Product and System Design -bachelor group consisting of Endre Myhre and Katherine

Galdames for cooperation in the Towed-ROV project.

• Andreas Fredborg for support in relation to hydrodynamics.

• Friends and family who have supported us throughout the project.

iii

Summary

This project aims to improve the continuation of the Towed ROV -project and reestablish a new

foundation for future work. The goals include a new software system for operating the ROV, with

implemented functions necessary to perform hydrographic surveying. In addition, the project

includes the implementation of a Digital Twin to simulate the physical behaviour and the algo-

rithms necessary to regulate above the seafloor.

The results indicate a stable software system with the functionalities required to search and

locate objects in the ocean. The system implementation relies on the three-tier architecture,

which will help integrate future additions to the project. By testing physical changes in several

sea trials, the group have addressed some of the core concerns related to the prototypes hydro-

dynamical behaviour and the actuator system for the wings.

However, more work is needed to provide a physical prototype capable of truly operating in re-

search environments. Improving the prototype’s physical design is needed to reach the depths

required to conduct proper seafloor tracking. Furthermore, the design induces unwanted phys-

ical behaviour, making it inadequate for hydrographic surveying.

Contents

Preface . i

Acknowledgement . ii

Summary . iii

Acronyms . x

1 Introductions 1

1.1 Background and Motivation . 1

1.2 Problem Formulation . 2

1.3 Project Requirements . 2

1.4 Thesis Outline . 3

2 Theoretical basis 4

2.1 Inertial measurement unit . 4

2.1.1 Accelerometer . 4

2.2 Complementary Filter . 5

2.3 Hydrographic Surveying . 6

2.3.1 Echo Sounding Thechnology . 6

2.3.2 Surveying with sonar technology . 6

2.3.3 Hyper-Spectral imaging . 7

2.4 Software architecture . 8

2.4.1 Three-Tier Architecture . 8

2.5 Database . 9

2.5.1 Relational Database . 9

2.5.2 Primary Key . 9

iv

CONTENTS v

2.5.3 Foreign Key . 9

2.5.4 Relationship . 9

2.6 Application Programming Interface . 10

2.6.1 Representational state transfer . 10

2.7 Communication Protocols . 12

2.7.1 TCP / IP . 12

2.7.2 Serial communication . 12

2.7.3 I2C . 14

2.7.4 Software UART . 14

2.8 ZeroMQ . 14

2.8.1 Request–reply . 15

2.8.2 Publisher–subscriber . 15

2.9 Digital Twin . 15

2.10 Pulse Width Modulation . 15

2.11 Geographical terms . 16

2.11.1 Haversine formula . 16

2.11.2 Earth’s radius . 17

2.12 Hydrodynamics . 18

2.12.1 Forces on a body in water . 18

2.12.2 Stability and buoyancy . 19

2.12.3 Hydrodynamics and Towed vehicles . 20

2.12.4 Hydrofoil . 20

3 Materials 22

3.1 ROV prototype . 22

3.2 Hardware . 23

3.2.1 ROV . 23

3.2.2 Surface Unit . 24

3.2.3 Power and cables . 24

3.3 Metals and Plastics . 24

CONTENTS vi

3.4 Tools . 25

3.5 Software, libraries and frameworks . 25

3.5.1 Programming Languages . 25

3.5.2 Software utilities . 26

3.5.3 Libraries and Toolkits . 29

3.5.4 Frameworks . 30

4 Methodology 32

4.1 Project Organization . 32

4.2 Deviation Protocol . 33

4.3 Communication . 34

4.3.1 System to System . 34

4.3.2 Payload structure . 34

4.3.3 ROV systems . 36

4.4 Structuring the Software application . 40

4.4.1 Presentation tier . 40

4.4.2 Application tier . 44

4.4.3 Data tier . 54

4.5 The Surface Unit systems . 58

4.5.1 Handling NMEA data . 59

4.5.2 Implementing the Echo Sounder . 60

4.5.3 GPS implementation . 61

4.6 Hydrographic surveying . 62

4.6.1 Points of consideration . 63

4.6.2 Implementation . 66

4.6.3 Sonar API . 67

4.7 ROV Implementations . 69

4.7.1 Selecting between Penetrator and Connector 69

4.7.2 Sensor modularity . 71

4.7.3 Lights . 72

CONTENTS vii

4.7.4 IMU . 73

4.7.5 Seafloor tracking . 75

4.8 Method for Sea Trial . 78

4.8.1 Physical changes . 78

4.8.2 Flow simulation of wings . 79

4.8.3 Troubleshooting . 80

4.9 Digital Twin . 81

4.9.1 Seafloor . 82

4.9.2 Building model for simulation . 83

4.9.3 Sensors and Stepper motors . 84

4.9.4 Communication . 85

4.9.5 Simulating system on computer . 86

4.9.6 Behavior . 86

5 Results 88

5.1 Software solutions . 89

5.1.1 Architecture . 89

5.1.2 Graphical User Interface . 90

5.1.3 REST-API . 103

5.1.4 Database . 104

5.2 Software performance . 105

5.3 Communication results . 108

5.3.1 Tether . 108

5.4 Digital Twin . 108

5.4.1 AGX and Hydrodynamics . 110

5.4.2 Simulation speed . 111

5.5 IMU sensor fusion . 112

5.6 Seafloor Tracking . 114

5.7 Surface Unit Software . 118

5.7.1 NMEA Parsing . 118

CONTENTS viii

5.8 Electronics . 118

5.8.1 5 V DC-DC converter . 119

5.9 Camera and lights . 122

5.10 Side-Scan Sonar . 123

5.11 Sea Trials . 127

5.11.1 Data presented . 128

5.11.2 Sea trial: 1 . 128

5.11.3 Sea trial 2 . 130

5.11.4 Sea trial 3 . 130

5.11.5 Sea trial 4 . 131

5.11.6 Sea trial 5 . 133

5.11.7 Flow simulation wings . 134

5.11.8 Weight test . 135

5.11.9 Sea trial 6 . 135

6 Discussion 144

6.1 Technical Results . 144

6.1.1 ROV prototype . 144

6.1.2 Side-Scan Sonar . 146

6.1.3 Seafloor Tracking . 148

6.1.4 Software solutions . 148

6.1.5 Digital Twin . 150

6.1.6 Communication . 151

6.1.7 Camera and lights . 152

6.2 Project accomplishments . 153

6.2.1 Distribution of work . 153

6.2.2 Unforeseen consequences . 153

6.2.3 Improvements . 154

7 Conclusions 156

Bibliography 158

CONTENTS ix

Appendices 168

A Reports . 168

A.1 Preproject report . 168

A.2 Status reports . 196

B Elschematic . 215

C Gantt diagram . 219

D REST-API Documentation . 221

E OSMEthernet Software API . 225

F OSMEthernet Connector . 232

G Excerpt from a source code: REST-API . 235

G.1 Startup code . 235

H Excerpt from a source code: Sonar API . 236

H.1 Startup code . 236

I Excerpt from a source code: Surface Unit . 240

J Excerpt from a source code: GUI . 240

J.1 Startup code . 240

K Excerpt from a source code: Serial from Towed-ROV 241

L Excerpt from a source code: SeafloorTracker . 244

M Demonstration video . 250

N Source Code . 250

CONTENTS x

Abbreviations

SSE Server-sent events, server-side pushing data to client in terms of events

ES EventSource, web content’s interface to server-sent events

SR StreamingResponse, special FastAPI response method

ZMQ ZeroMQ, communication networking library

HTTP Hypertext Transfer Protocol

UDP User Datagram Protocol, non connection oriented

TCP/IP Transmission Control Protocol, connection oriented

API Application Programming Interface, activates functions from a remote software

GUI Graphical User Interface

PID Proportional integral derivative controller

IEEE Institute of Electronical and Electronic Engineers

I2C Inter Integrated Circuit

GND Ground in electronical circuits

DOF Degrees of Freedom, number of configurations for a object

ORM Object–relational mapping, converting data between incompatible type systems

PCB Printed Circuit Board

UART Universal asynchronous receiver-transmitter

SONAR Sound Navigation and Ranging

GPIO General-purpose input/output

PoE Power over Ethernet

CONTENTS xi

NMEA National Marine Electronics Association

AOT Angle Of Attack

JSON JavaScript Object Notation, standard data format

IMU Inertial Measurement Unit

Terminology

CRUD Create, Read, Update and Delete (HTTP methods)

Business Logic , term used for the important logic decisions in the software systems

Hydrofoil A wing-shape that creates a large amount of lift in water. separation of concerns

Separation of Concerns , a design principle: used for separating the software programs into

own section of responsibilities

Notation

Kp Proportional term of a PID controller

Ki Integral term of a PID controller

Kd Derivative term of a PID controller

List of Figures

2.1 The three-tier architecture . 8

2.2 Simulated vortex shedding, by Cesareo de La Rosa Siqueira [113]. 18

2.3 A fully submerged rigid body [63] . 19

2.4 A Towed object disturbs the water flow around it 20

2.5 Waterflow is displaced around a wing, creating pressure and sucking forces. 21

3.1 ROV prototype . 23

4.1 ROV-RPi structure . 36

4.2 Serial finder flow . 38

4.3 Organizing the three-tier organization . 40

4.4 StackOverflow: A generated plot showing technologies trends over time . . 41

4.5 Windows build: from web app to desktop app 42

4.6 REST-API Startup . 45

4.7 Entities in the application tier . 46

4.8 HTTP-transaction . 47

4.9 HTTP-POST example: add to database . 48

4.10 HTTP-GET example: retrieve from database 49

4.11 HTTP-PUT example: update in database . 50

xii

LIST OF FIGURES xiii

4.12 HTTP-DELETE example: deleting from database 51

4.13 Using a shared communication queue. 52

4.14 SQL: Relationships . 56

4.15 SQL Model: settings . 57

4.16 SQL Model: sensors . 57

4.17 SQL Model: waypoints . 57

4.18 SQL Model: waypointsessions . 57

4.19 Surface Unit class structure . 59

4.20 Side-Scan Sonar setup . 67

4.21 Deepview FV: groundtruth scan . 68

4.22 Dashboard VIDEO: the last section of the groundtruth scan 68

4.23 Dashboard VIDEO: the middle section of the groundtruth scan 68

4.24 Dashboard VIDEO: the lower section of the groundtruth scan 68

4.25 Soldered connector . 70

4.26 Female connector to ROV . 70

4.27 Penetrators sealed with epoxy . 71

4.28 Modular sensor flow . 72

4.29 Lumen Subsea Lights R2 [52] . 73

4.30 overview of the selection of a new set point . 77

4.31 CAD model of ROV . 78

4.32 Measuring DC voltage with oscilloscope [19] 80

4.33 An example of an image used to generate seafloor in the simulation 82

4.34 image of the simulated water, with a seabed and the Boat in the left. 82

4.35 The simplified ROV body, for simulation . 84

4.36 Velocity flow around ROV . 87

LIST OF FIGURES xiv

5.1 Data communication . 89

5.2 Landing page . 90

5.3 The navigation bar . 92

5.4 Settings: the saved modular sensors (Edit-mode is activated) 93

5.5 Settings: adding a new sensor . 94

5.6 Dashboard: with newly added sensors . 94

5.7 The Dashboard page during a live ROV operation 96

5.8 Dashboard video display . 97

5.9 Real-time commands and responses during ROV operations 98

5.10 Session functionality . 99

5.11 Ongoing waypoint sessions during ROV operations 100

5.12 The Map page . 101

5.13 Analyzing a single waypoint . 102

5.14 Example of a full waypoint sessions. 103

5.15 Using TablePlus 3.5.2.17, we can view a items in the Waypointsessions -table 104

5.16 Using TablePlus 3.5.2.17, we can view a few items in the Waypoints -table . 104

5.17 Using TablePlus 3.5.2.17, we can view a few items in the Sensors -table . . . 104

5.18 Session ID: test_hellesylt_1_1105 . 106

5.19 Session ID: test_hellesylt_2 . 106

5.20 Session ID: tes_hellesylt_new_attachment . 107

5.21 Session ID: big_wings_session . 107

5.22 Test 1 . 108

5.23 GUI commands the AGX Digital Twin . 109

5.24 AGX and GUI communicates the same data 109

5.25 Pitch and wing angles from AGX with longer cable. 110

LIST OF FIGURES xv

5.26 Pitch and wing angles from AGX, when tested with large wings 111

5.27 The simulation time in sec per sec for each step in a simulation run. 112

5.28 Comparing alpha values . 112

5.29 Accelerometer vs Complementary Filter . 113

5.30 Seafloor tracking test 1 . 114

5.31 Seafloor tracking test 2 . 115

5.32 Seafloor tracking test 3 . 116

5.33 Seafloor tracking test 4 . 117

5.34 12 volts DC supply with dirt on components 119

5.35 5V supply without load . 120

5.36 5V supply with load . 121

5.37 Old 5 volt supply . 122

5.38 Left: Camera test 1 Right: Camera test 2 . 123

5.39 Camera test at Runde . 123

5.40 Sonar image taken at Valderøya displayed using DeepView FV 3.5.2.19 . . . 124

5.41 Sonar image taken at Valderøya displayed using the GUI 125

5.42 Sonar image taken at Valderøya . 126

5.43 Sonar image taken at Hellesylt . 127

5.44 Sea trial 1.1 . 128

5.45 Sea trial 1.2 . 129

5.46 Sea trial 3 . 131

5.47 Sea trial 4 . 132

5.48 Sea trial 5 . 133

5.49 Water flow around new wing . 134

5.50 Left: Drag force from ROV at 1.3 m/s Right: Drag force from ROV at 1.7 m/s . 135

LIST OF FIGURES xvi

5.51 Sea trial 6.1 . 136

5.52 Sea trial 6.1 . 137

5.53 Sea trial 6.2 . 138

5.54 Sea trial 6.2 . 138

5.55 Sea trial 6.2 . 139

5.56 Sea trial 6.3 . 140

5.57 Sea trial 6.4 . 141

5.58 Sea trial 6.5 . 142

5.59 Sea trial 6.6 . 142

5.60 The final look of the Towed ROV . 143

List of Tables

2.1 NMEA sentence structure. 14

4.1 Modular sensors . 71

4.2 Drag coefficient . 87

5.1 Response time during analyzing: REST-API and GUI 105

5.2 Average time during analyzing: REST-API and GUI 105

5.3 Seafloor tracking test 1 . 114

5.4 Seafloor tracking test 2 . 115

5.5 Seafloor tracking test 3 . 116

5.6 Seafloor tracking test 4 . 117

xvii

Chapter 1

Introduction

1.1 Background and Motivation

This project aims to develop a Towed ROV that can be used for monitoring the seafloor and col-

lecting data by a range of sensors. The ROV can be deployed to various tasks like mapping the

seafloor, collecting sub-sea sensor data and locate objects.

The project is financed by Handelens Miljøfond/NTNU and collaborates between Runde Miljøsen-

ter and NTNU Ålesund, where the main objective is to locate ghost fishing gear. For decades,

ghost fishing had been a significant problem, and according to a study released by WWE [115],

fishing waste accounts for at least 10% of marine litter.

The removal of ghost fishing gear is often done by dredging an anchor at low speed by the

seafloor. Since the anchor may cause damage, knowing where the gear is located is critical for a

safer, effective and accurate operation.

A Towed ROV have several advantages compared to an AUV in terms of cost and distance cov-

ered. The Towed ROV does not need a complex navigation system or thrusters to manoeuvre.

Instead, it relies on a power supply from the boat, letting the system operate for a longer time.

1

CHAPTER 1. INTRODUCTIONS 2

1.2 Problem Formulation

The project aims to improve and simplify various systems of the ongoing Towed ROV -project.

The formulation aims to construct a fundamental system architecture. The emphasized project

areas involves minimizing overall cost, increased convenience of usage, and a modular and

adaptable base unit.

1.3 Project Requirements

The critical project requirements of this thesis are to rewrite the complete software systems and

simplify the current hardware so that future groups can focus on physical design, control, and

data processing. Furthermore, we will do some work specifically for the existing prototype, in-

cluding sea trials. The requirements could be summarized in the following list below.

• Create a new GUI with added functionalities

• Build a new software structure for reliable communication

• Research and buy equipment to perform hydrographic surveying.

• Test software and improve control system on a new prototype

• Evaluate and improve the hydrodynamic behaviour of the ROV.

• Develop a seafloor tracking algorithm

• Improve the Digital Twin.

CHAPTER 1. INTRODUCTIONS 3

1.4 Thesis Outline

The structure of the remaining thesis is as follows:

Chapter 2: Theoretical basis Entails the fundamental theory required to understand various

aspects of the project.

Chapter 3: Materials Involves the various hardware and software materials used.

Chapter 4: Methodology Entails the strategies for implementing the tests and solutions of the

project.

Chapter 5: Results Presents all the test results and the final solution.

Chapter 6: Discussion Shows the various discussions regarding the results as well as personal

thoughts about the thesis.

Chapter 7: Conclusion Entails the an overall conclusion from the project in total.

Chapter 2

Theoretical basis

This chapter provides the theoretical foundation for decision-making throughout the project.

2.1 Inertial measurement unit

An IMU is a combined set of sensors used to measure linear and rotational movement and es-

timate a rigid body’s orientation [98]. The orientation is often represented in the three Euler

angles, roll, pitch and yaw [60]

2.1.1 Accelerometer

A 3-DOF accelerometer measure linear acceleration in three perpendicular axes relative to the

IMU. The measurement of one axes is described in equation 2.1, where ã is measured accelera-

tion, ag is gravitational acceleration, al is linear acceleration and n is noise [98].

ã = ag +al +n (2.1)

With three acceleration vectors, one can estimate the angle of the IMU by applying the

known gravity vector. Estimating with gravity vector can only work for roll and pitch, as yaw

is rotation around the gravity vector. The angles can be calculated by applying atan2. Equation

2.2 for roll and 2.3 for pitch. The accelerometer gives an accurate long term estimation because

there are no drift and the center of gravity is a stable reference. However, the measurements are

4

CHAPTER 2. THEORETICAL BASIS 5

noisy and are affected by motion giving an inaccurate short term reading.

θr =−at an2(−ax , ay) (2.2)

θp =−at an2(−az , si g n(ay) ·
√

a2
x +a2

y (2.3)

2.1.1.1 Gyroscope

A 3-DOF gyroscope measures the angular velocity of the IMU in the angles of pitch, roll and yaw.

Equation 2.4 is a model of a gyro measurement, where ω̃ is the measured angular velocity, ω is

the actual angular velocity, b is bias, and n is noise. The bias is temperature-dependent but can

be approximated as a constant, while the noise is additive zero-mean Gaussian noise [98].

ω̃=ω+b +n (2.4)

2.1.1.2 Magnetometer

A magnetometer measures the magnetic induction and can be used to find the magnetic north

and measure magnetic fields. The magnetometer can be used to calculate rotation around the

gravity vector. For a system that relies on yaw, it is essential to calibrate the magnetometer.

There can be distortions due to metal and electronic objects [98].

2.2 Complementary Filter

The idea of the complementary filter is to combine a high-pass and low-pass filter to remove

drift from the gyro and noise from the accelerometer. The filter is described mathematically

in equation 2.5, where θ is the Euler angle, θa is the Euler angle from the accelerometer and

magnetometer fusion and ω̃ is the angular velocity. α is the filter coefficient and is in the range

of 0 ≤α≤ 1 [98].

θt =α · (θ(t −1)+ ω̃ ·∆t)+ (1−α) ·θa (2.5)

CHAPTER 2. THEORETICAL BASIS 6

2.3 Hydrographic Surveying

Hydrographic surveying is the science of collecting depth data about the features of the seafloor[3].

2.3.1 Echo Sounding Thechnology

An echo sounder is a sound-based sensor type primarily used in finding distance but sometimes

used to collect data from the surface of a solid [69]. Some of the most common uses of echo

sounder technology include surveying the seafloor, use as a fish finder or surveying the open

sea [9].

2.3.1.1 Single-beam sonar

Single-beam sonar transmits a single wave to measure the distance to, for example, the seafloor

[62]. Most depth sonars, are single-beam echo sounders. A single-beam echo sounder calculates

the distance to the seafloor with regards to time with the formula 2.6:

depth = Sw ·∆t

2
(2.6)

2.3.2 Surveying with sonar technology

Surveying using sonar technology is today a common practice. There are many different tech-

nologies based on this, including side-scan sonar and multi-beam-sonar.

2.3.2.1 Side-scan sonar

Side-scan sonar is a sonar system used to collect data and image the seafloor using a high-

frequency sonar transducer to send fan-shaped soundwaves in a thin line towards the ground

and record the return wave’s time, then using that to create a picture of the seafloor. With side-

scanning transducers, the image’s resolution is determined by the frequency of the soundwaves

and the, Traditionally soundwaves between 100Khz and 700 kHz are used. Higher frequency

gives a better resolution on the image but reduces the range of the transducer [95]. What makes

CHAPTER 2. THEORETICAL BASIS 7

side-scan sonars unique from other sonar surveying technologies is their ability to build a high-

resolution image of the seafloor [64].

2.3.3 Hyper-Spectral imaging

Hyper-spectral imaging (HSI) is a new type of imagery technology that works similarly to multibeam-

sonar, but instead of using sound, the hyper-spectral imaging uses light. An HSI sensor trans-

mits a light beam onto a surface and measures using a camera that can collect the data from

different parts of the electromagnetic spectrum [66]. Since different kinds of materials reflect

different parts of the electromagnetic spectrum, a large amount of data about a surface can be

collected this way [59].

HSI has recently started to be used to map the seafloor [68]; it provides more information and

higher accuracy and precision than traditional seafloor mapping technologies but covers a smaller

area at an increased price.

CHAPTER 2. THEORETICAL BASIS 8

2.4 Software architecture

When creating new software systems, it is common to use a set of design patterns, and best

practices are to allow for scalability. The subsections below show various popular architectures.

2.4.1 Three-Tier Architecture

A three-tier architecture [28] is a common

software architecture for creating logical and

scalable software solutions. The architecture is

divided into three tiers: the presentation tier,

the application tier and the data tier.

• The presentation tier is the tier where

the data is displayed to the user, so-

called the view.

• The application tier is the tier where the

business logic is located. This tier con-

siders all the systems that handle the

communication between the various en-

tities in the software systems.

• The data tier is the tier where informa-

tion gathered by the software system

is stored and controlled, commonly re-

ferred to as the "database tier". Figure 2.1: The three-tier architecture

A three-tier architecture helps to distribute responsibility in the software systems. Divid-

ing responsibility decreases coupling and increases cohesion as the separation of concerns is

divided into tiers. Each tier has its function and responsibility.

CHAPTER 2. THEORETICAL BASIS 9

2.5 Database

In order to maintain persistent data throughout an application, one would often need to write

the data from memory into disk allocated space. A persistence data storage would be a database.

A database can be described as a collection of information ordered in a structural and represen-

tative way [49].

2.5.1 Relational Database

A relational database [70] is a type of database, which relies on a structure where data is put into

relations to each other.

SQL is an example of a relational database. This type organizes its data in tables with rows and

columns to describe the content of the information. In order to make the data accessible, the

SQL database contains a few features to make it easier to access the data logically. Below are a

few key concepts in a SQL database [106].

2.5.2 Primary Key

A primary key [111] is the main column in a row, which uniquely defines that row, which means

that there cannot exist identical types of its sort.

2.5.3 Foreign Key

The foreign key [110] is used as an identifier in a ’child’ to its ’parent’. In order to create a rela-

tionship between tables, one would often want the ’parent’ table to contain some context infor-

mation not described in its table but a separate one. In the separate table, one could then insert

a foreign key - pointing to its parent.

2.5.4 Relationship

This section briefly explains the different ways of defining a relationship between tables and

how they are designed. There are three different kinds of relationships; one-to-one, one-to-

CHAPTER 2. THEORETICAL BASIS 10

many, and many-to-many [71].

2.5.4.1 One-To-One

In a one-to-one relationship [71], we only have a single connection between two tables. A single

connection would mean that one column in one table points to a column in another table in

database terms. For instance: if we had a table called Adults, where one row would represent

one adult, we could have had another table called DriverLicences, where each row represented

a driver licence. Then, one could have a one-to-one relationship between those two rows since

there only exist one driver licence for that adult.

2.5.4.2 One-To-Many

One-to-many [71] is more of the more common types of relationship. A single connection/row

could have a relationship to other rows in other tables in general terms. If we expand the previ-

ous example, an adult/mother could have many children, but not the other way around.

2.5.4.3 Many-To-Many

In a many-to-many relationship, [71] things can be designed a bit more freely. If you think of

tables of A and B, where A is authors and B are books, we can say that an author can write many

books, but a book could have been written by multiple authors.

2.6 Application Programming Interface

The application programming interface, generally known as API [81], is a software intermediary

which connects other software units.

2.6.1 Representational state transfer

A REST-API [112] is an API interface for the web that uses the HTTP protocol. It utilizes the

HTTP request methods for different functionality to various endpoints. In most situations, web

applications primarily use the HTTP methods: GET, POST, PUT and DELETE.

CHAPTER 2. THEORETICAL BASIS 11

2.6.1.1 HTTP methods

Below, we will clarify the four most commonly used HTTP methods [112].

• GET - action to retrieve data from the server.

• POST - action used to create/store some data in the database.

• PUT - action to update a data in the database.

• DELETE - action to remove data from resource.

2.6.1.2 Endpoint

Endpoints are essentially URL paths that are open for communicating from external sources

[85]. These endpoints or paths tell what resource lies behind them. For instance:

http://127.0.0.1:8000/users/1 is an endpoint. Where all calls made to this endpoint would trig-

ger an action depending on the HTTP method used.

2.6.1.3 Path parameters

A path parameters [85] is described as additional path direction in an API endpoint. Where

usually an item in a database has an ID, we could use the ID as a path parameters to endpoint

request to narrow the search. For instance, using an endpoint of users, we could write the fol-

lowing; /users/{id} , where the curly braces denote the path parameter.

2.6.1.4 Query parameters

A query parameter [85] is used to describe how an action should be executed in the HTTP

method. An HTTP method could be a GET call where a query parameter could contain vari-

ables to filter the search. For instance, /users/?age=25 , would return use all users with the age

25.
1Throughout the thesis, the host and port prefix will no longer be used when referring to endpoints. Thereby

http://127.0.0.1:8000/users/ is equal to /users/

CHAPTER 2. THEORETICAL BASIS 12

2.6.1.5 StreamingResponse

A StreamingResponse [75] is a FastAPI [74] specific method of taking an generator/iterator and

streams the response body. A StreamingResponse could be used inside endpoints to return large

amounts of data as a stream of bytes.

2.6.1.6 Server-Sent Events

Server-Sent Events [88] is a type of data transmission technology that uses server pushing to

send data from the server to the client. The client receives automatic updates via a single HTTP

connection. In contrast to REST which uses the request/reply pattern, server-sent events are

solely initiated from the server. Therefore, the client would only need to listen for incoming

events to specific topics to receive continuous streams of data generated by what is called a

EventSourceResponse.

2.7 Communication Protocols

2.7.1 TCP / IP

The transmission control protocol (TCP) is a networking protocol above Internet protocol(IP)

which ensures reliable network communications [114]. For TCP to be reliable, it provides a

mechanism for lost, out of order, or corrupt packages, which are all problems that can occur

in network communication. All packages in TCP includes a sequence number and an acknowl-

edgement number, and the receiver must acknowledge all sent packages. It is common to im-

plement a separate protocol over TCP, the application-specific protocol between a server and a

client. HTTP is an example of such a protocol.

2.7.2 Serial communication

Serial communication is a group of communication protocols where data is sent one byte at

a time instead of parallel communication. Serial communication is the most common type

of communication protocol and includes well-known protocols like USB, Ethernet, I2C [5] In

CHAPTER 2. THEORETICAL BASIS 13

serial communication, a system is split into senders and receivers. There are three main ways of

handling data flow [21]:

• Simplex means that a connected device can be a sender or a receiver. Simplex is one-

way communication, and there is no possibility for acknowledgements or communication

back and forth. If a device is a sender, it cannot receive data, and if it is a receiver, it cannot

send data. A common example of simplex communication is radio communication.

• Half-Duplex, sender and receiver can be active at the same time. Therefore the receiver

can send data back to the sender, like acknowledgements, but cannot transmit data si-

multaneously.

• Full-Duplex, both sender and receiver can send and receive data at the same time. A

typical example of full-duplex communication is the Ethernet protocol.

2.7.2.1 NMEA 0183

NMEA-0183 is a serial communication protocol. The protocol is simplex based and can there-

fore only have one sender designated as the Talker in the protocol, but can have many listeners,

with a baud rate of 4800 Mbps [1].

The protocol transmits serial data as "ASCII" encoded strings. A data packet starts with the

’$’ character 2. After the start character, a five-character identifier follows, where the first two

characters define the Talker ID, and the next three defines the sensor type [4]. Following is a

variable-length field array containing sensor data; each field is denoted by the ’,’ character and

the packet ends with a checksum denoted by the ’*’ character. The checksum is calculated as

an XOR of the provided data. To calculate it, parse out the start ($) and the stop signal (*) of the

NMEA sentence and perform an xor calculation of each element:

2the ’!’ character is sometimes used as well, especially in the NMEA-0183HS version

CHAPTER 2. THEORETICAL BASIS 14

NMEA 0183 Structure
Start

Char-
acter

Sensor
type

Data
type

value
1

value
2

value
3

value
4

value
5

value
6

Check-
sum

$ SD DBT 10 f 10 m 10 F F*29

sonar depth
data

depth unit depth unit depth unit XOR

Table 2.1: NMEA sentence structure.

2.7.3 I2C

The Inter-Integrated Circuit (I2C) protocol is used to allow multiple integrated circuits (chips)

to communicate with each other. I2C is made for communication over a short distance. This

distance can vary due to noise, I2C clock speed etc. It also allows for multiple masters and slaves

[82].

2.7.4 Software UART

Software UART is a software replication of the serial UART allowing UART communication on

hardware not supporting Serial UART. Software UART is possible through "bit-banging (creating

a series of pulses in software rather than in hardware). Bit-banging is more processor consuming

and not as precise as serial UART [61].

2.8 ZeroMQ

ZMQ is an open-source, cross-platform asynchronous messaging library [45] developed by many

contributors. The library focuses on abstracting the low-level socket communication into com-

mon messaging patterns such as pub/sub or request/reply, on mentioning a few. The messaging

patterns are based upon various types of transports such as TCP, UDP and IPC. The libraries API

has support for many different program languages such as Python, JavaScript, C++, to mention

a few.

CHAPTER 2. THEORETICAL BASIS 15

2.8.1 Request–reply

Request–reply [44] is a common basic pattern supported by ZMQ. This protocol connects a set

of clients to a set of services. This pattern, in particular, is used to task for a certain task to be

distributed, much comparable to the common REST pattern. A requester requests an action to

be made, while the receiver receives the requests and replies with an response.

2.8.2 Publisher–subscriber

Publisher–subscriber [43] is a common basic pattern supported by ZMQ. This protocol can con-

nect a publisher to a set of subscribers. This pattern is pipelined to distribute data through a

stream purely. The data is optionally categorized into topics where so that subscribers can con-

nect and listen to different topics.

2.9 Digital Twin

A digital twin is a representation of a system or physical object in a digital simulation. This digital

representation takes in real-time data about a physical object or system as input and computed

a predicated output of the behaviour of the physical object or system. A digital twin can serve as

a prototype testing different versions and iterations before a physical version is built. A digital

twin can also be used alongside a physical system to get a visualization of a system which would

not be possible without the digital twin or to test function before they are implemented in the

existing system [83].

2.10 Pulse Width Modulation

PWM is a way to seemingly create an analogue signal with a digital signal to control an analogue

device [41]. PWM is possible is to apply power in pulses to the output instead of constant power

(digital signal only high or low).

The output voltage will be the average voltage, which is the percentage of the pulse length in

CHAPTER 2. THEORETICAL BASIS 16

a given period; see equation 2.7. If the digital signal (5 volts) is on 50 % of a period, the average

voltage out is 2.5 volt.

Duty Cycle ·High voltage level = Average voltage (2.7)

2.11 Geographical terms

2.11.1 Haversine formula

The Haversine formula can calculate the distance between two points on a circle along the sur-

face of the circle using the latitude and longitude provided [97]. Given the two points in latitude

and longitude, the distance d can be calculated as the inverse of the haversine h. When calcu-

lating the distance, the radius r of the circle is important. The haversine is defined as h = d

r
. d

can be calculated as follows [78]:

• lat1 = latitude of point 1

• lon1 = longitude of point 1

• lat2 = latitude of point 2

• lon2 = longitude of point 2

• R = 6371e3; // metres

φ is latitude, δ is longitude. R is earth’s radius (mean radius = 6,371km). δφ is the change

between latitudes while the∆δ is change in between longitudes withφ and δ described in radians.

a = sin2(
∆φ

2
)+cosΦ1 ·cosΦ2 · sin2(

∆δ

2
) (2.8)

Thereafter, we use the change of latitude and longitude into 2.8, which gives use a, where a

denotes the square of half the chord length between the points.

CHAPTER 2. THEORETICAL BASIS 17

c = 2 ·at an2(
p

a,
√

(1−a)) (2.9)

or the alternative:

c = 2∗arcsin
p

a (2.10)

where c from either 2.9 or 2.10 describes the angular distance in radians.

r esul t = R · c (2.11)

Which together gives us the distance between the two coordinates in metres (as the angular

distance in radians is rescaled with the earth’s radius R).

2.11.2 Earth’s radius

When calculating distances using the Haversine function on earth, it is crucial to consider that

the earth’s radius is not constant. The shape of the earth is not that of a globe but that of an

oblate spheroid. The radius varies from around 6378K m at the equator to 6357K m at the poles

[94]. Due to the various in radius, the distance travelled by an object along the earth’s surface

between two equally distant points might be different depending on the latitude of those points.

Therefore the radius of the earth needs to be calculated at the location that the calculation will

take place with the formula 2.11.2.

r (θ) =
√

(a2 ·cosθ)2 + (b2 · sinθ)2

(a ·cosθ)2 + (b · sinθ)2
(2.12)

CHAPTER 2. THEORETICAL BASIS 18

2.12 Hydrodynamics

Hydrodynamics is the science of the flow of fluid and how it affects its surroundings. In hydrody-

namics, a fluid is viewed as its flow patterns; fluids flow at different speeds at different locations.

Sometimes the flow of fluids is parallel, but fluid flows are more often chaotic and frequently

form whirlpools [42].

2.12.1 Forces on a body in water

Figure 2.2: Simulated vortex shedding, by Cesareo de La Rosa Siqueira [113].

2.12.1.1 Drag and inertia

The dampening primarily comes from drag and inertia. The drag forces can be described as

friction between the object and the fluid. Inertia forces can be described as the forces related to

the acceleration of the mass of the water that the body would displace. The drag and the inertial

forces act on the body in a direction opposite to its movement [89].

Drag forces are dependent on the shape of the body, as well as its surface roughness. Inertia

forces are dependent on the volume.

CHAPTER 2. THEORETICAL BASIS 19

2.12.1.2 Turbulence: shapes and vortex shedding

Turbulence adds complexity to the problem. Turbulence is, in essence, the absence of laminar

flow. The most significant effect of turbulence on an ROV comes from vortex shedding or sep-

aration of flow caused by sharp edges, abrupt corners, or other non-aerodynamic features on

the body [42]. These forces can have a self-amplifying effect if the separation of flow occurs at

regular intervals between different features or to alternating sides of a shape where the flow can

pass on both sides. This effect is called vortex shedding [22].

2.12.2 Stability and buoyancy

For a fully submerged rigid body, the center of gravity (CG) will always lay directly below the

center of buoyancy(CB). If the center of gravity is shifted, the rigid object will rotate, so the

statement above is fulfilled [63]. For a rigid body, this is shown in Figure 2.3. Adding positive

buoyancy to the center-top and more weight to the center-bottom, the stability of a rigid body

will improve because more force has to be applied to rotate a rigid body [63].

Figure 2.3: A fully submerged rigid body [63]

CHAPTER 2. THEORETICAL BASIS 20

2.12.3 Hydrodynamics and Towed vehicles

The Hydrodynamics of a Towed ROV can often be complex, but the principles are simple. A

Towed ROV needs to be stable in the water, with minimal unintended changes in pitch, roll, yaw

or position. The combined hydrodynamic and hydrostatic forces acting on the body, as well as

the orientation of the center of buoyancy and the center of mass, determine the ROV’s stability

[29]. The forces are determined by the ROV’s speed and shape, fluid properties, buoyancy, and

mass. The hydrodynamic and hydrostatics are dominant at high speed, while at low speed,

buoyancy and gravity play a more critical role [31]. When an object moves relative to the water,

the object’s shape will create turbulence, but sharper edges will create more vector shedding

and therefore have a more pronounced effect on the body, as seen in Figure 2.4.

Figure 2.4: A Towed object disturbs the water flow around it

2.12.4 Hydrofoil

Foil is a wing or flipper that produces both a pressure and a sucking force on the wing as it moves

through a fluid [72]. The laminar flow around the wing creates these forces. As seen in Figure 2.5

the flow around the wing is compressed on one side, while on the other side creating a sucking

force. These disturbances in flow around the wing create an imbalance in pressure above and

below the wing, resulting in a force in a different direction compared to the flow. This force is

called lift.

CHAPTER 2. THEORETICAL BASIS 21

Figure 2.5: Waterflow is displaced around a wing, creating pressure and sucking forces.

2.12.4.1 Stall

In hydrodynamics, the stall is the loss of lift force due to the wing’s angle of attack (AOT) [72].

If the AOT is too steep, the turbulence created by the wing disturbs the standard flow patterns.

In this case, the wing loses its pressure vs sucking imbalance and instead operates more like a

brake; This will still generate a force on the wing due to the pressure of water being displaced,

but this force is often smaller than the forces created by a hydrofoil [80].

Chapter 3

Materials

3.1 ROV prototype

The prototype used in this project was built in a previous project, Figure 3.1. The body is made

of aluminium with a total weight of 34 kg and a positive buoyancy in the water of 120N. The

depth is controlled by linear stepper motors rotating a wing on each side.

The ROV has been tested with a 90-meter long tether cable and were controlled by a PID with a

range of 8-12 meters of depth. The electronics can be accessed through a flange at the bottom.

Each wing is rotated by a linear stepper motor moving a gear rack which rotates a gear, rotating

the wing. Side plates are designed to make the ROV more stable but have yet to be tested. The

tether cable is attached to a cable anchor and secured with a bolt; the cable anchor is adjustable.

There are penetrates on the back of the ROV for entering cables. The NACA 0015 profile inspired

wings will give no lift when the angle of attack is 0 degrees. In the front, there is a camera housing

with a plastic dome. There are mounted one light on the side of the camera.

22

CHAPTER 3. MATERIALS 23

Figure 3.1: ROV prototype

3.2 Hardware

3.2.1 ROV

• SparkFun RedBoard

• Arduino Mega 2560

• Raspberry Pi 4

• Adafruit 9DOF IMU

• Bar30 depth/pressure sensor

• Ping sonar altimer/echo-sounder

• RS PRO 42DBL10 linear stepper motors x2

• Pololu md20b stepper driver x2

• Fathom-X Tether interface board

CHAPTER 3. MATERIALS 24

• I2C level converter (Blue robotics)

• Micro servo motor

• Low-Light HD USB (Blue robotics)

• Lumen Subsea Light (Blue robotics)

• Custom PCB card, 70-18V input, 5V and 12V output

• Food oil, non electrical conductive [73]

3.2.2 Surface Unit

• Raspberry PI 4

• Aimar DST800 echo-sounder

• Adafruit ultimate GPS

• Optocoupler

• Fathom-X Tether interface board

• Ethernet switch

3.2.3 Power and cables

• 5 x 12 volt battery

• Tether cable (90m)

• Tether cable (150m)

3.3 Metals and Plastics

• Acrylic sheet 6mm

• Polyvinyl chloride/polypropylene pipes

CHAPTER 3. MATERIALS 25

• Perforated fixing strap

3.4 Tools

• Oscilloscope

• 3D Printer

• Laser cutter

• Multimeter

3.5 Software, libraries and frameworks

3.5.1 Programming Languages

3.5.1.1 Python

The Python programming language [99] is a high-level, general-purpose interpreted language.

The language has been selected due to the simple interface for building, testing and commu-

nicating with embedded systems. It is based on a dynamically typed style and handles garbage

collection automatically. The simplicity makes it so interacting with various hardware compo-

nents through third-party libraries such as pyserial 3.5.3.1 improves test efficiency significantly.

3.5.1.2 JavaScript

JavaScript is a high-level programming language mainly used in web development. It is included

in every browser and is responsible for making more advanced and dynamic web pages. NodeJS

is a runtime for JavaScript, which makes it possible to run JavaScript on the server. It uses the

V8 engine developed by Google, the same JavaScript engine used in the Chrome browser [102].

3.5.1.3 SQL

Structured Query Language is a standardized language used by relational databases for access-

ing the database. Because SQL exists in various dialects, it is a good fit for an open-source project

CHAPTER 3. MATERIALS 26

like this. For many languages, including Python, SQL provides a variety of implementation op-

tions. Python will be used to implement SQL because it is the primary language for the project’s

software development [106].

3.5.1.4 C / C++ Arduino

Arduino C/C++ is a C/C++ extension for the Arduino microcontrollers. It implements the C/C++

programming language but adds constants, structures, sketches and functions to make it easier

to use the abilities of the Arduino microcontroller. Since it is based on the C++ programming

language, various C++ libraries can be used as well [14],[15].

3.5.2 Software utilities

3.5.2.1 Microsoft Teams

Microsoft Teams, a common popular multi-communication platform offering workspace chat

and videoconferencing, file storage, and application integration [101].

3.5.2.2 Discord

Discord, a Multi-communication platform offering voice and text communication through chat

rooms and voice chat channels where the users can also share their screen recordings, files and

other documents [109].

3.5.2.3 Visual Studio Code

Visual Studio Code is a lightweight multi-languages supportive code-editor [108].

3.5.2.4 PyCharm

Pycharm is an IDE for the Python programming language. It provides integrated functionalities,

handles virtual environments automatically and comes with built-in developer tools [104].

CHAPTER 3. MATERIALS 27

3.5.2.5 AGX Dynamics

AGX Dynamics is a physics engine that can simulate rigid bodies, collisions, wire control, aero

and hydrodynamics [7]. It supports Python, C# and C++. AGX can work with modular terrain

that can be actively modified by physics during runtime.

With the possibility to import 3D models and use pre-built hydrodynamics to simulate the

Towed-ROV behaviour in water. AGX also have a simulation of wires, working with hydrody-

namic and reports the tension and forces in the wire.

3.5.2.6 Arduino IDE

The Arduino IDE is used to write software to the Arduino Microcontrollers. It supports and is

written in C / C++ [16].

3.5.2.7 Solidworks

Solidworks is a 3D CAD design software used to simulate drag in ROV [24].

3.5.2.8 Simens NX

Simens NX Is a 3D modeling software, used to model simplified ROV models for simulation [84].

3.5.2.9 Virtual Serial Port Driver

This software allows a computer to create virtual COM ports for sending serial messages within

the computer [2]. It can create pair of COM ports where one end is one application communi-

cates with another application connected to the other COM port in the pair.

3.5.2.10 Autodesk Fusion 360

Autodesk Fusion 360, 3D CAD design software used for 3d modeling [17].

3.5.2.11 Cura

Cura, free slicing software for 3D printing from Ultimaker [96].

CHAPTER 3. MATERIALS 28

3.5.2.12 Fritzing

Fritzing, Open-source CAD software for designing electronics hardware (Schematic) [40].

3.5.2.13 VNC Viewer

VNC Viewer, a graphical desktop-sharing system used to control Raspberry pi over Ethernet [77].

3.5.2.14 iPerf

Software analyzing tool for measuring maximum achievable bandwidth on IP networks [27].

3.5.2.15 Matlab

Programming and numeric computing platform and is used in this project for analyzing and

presenting data from sea-trials and simulations [93].

3.5.2.16 Swagger UI

Swagger UI [86] is a user interface that allows for REST-API visualizing and testing (bundled with

FastAPI).

3.5.2.17 TablePlus

TablePlus is a GUI database management tool to help visualize and interact with data more

efficiently [92]

3.5.2.18 Draw.io

Draw.io, an diagram drawing software, used for drawing flowcharts, UML diagrams etc [13].

3.5.2.19 DeepView FV

DeepView FV is a free software to display side-scan sonar images (.dvs-files) created by DeepVi-

sion AB [8].

CHAPTER 3. MATERIALS 29

3.5.3 Libraries and Toolkits

3.5.3.1 Python

• OpenCV is a computer vision library related to image related real-time operations [103].

• PyZMQ , the official python bindings for the ZMQ messaging library [51].

• SQLAlchemy is a tookit and ORM which helps with SQL database interactions [20].

• Pydantic is a data validation and management tool [47].

• Uvicorn a ASGI server implementation [67].

• pyserial is a library for accessing and handling communication over serial ports using

Python [65].

• PyNMEA2 a package for parsing nmea0183 data from bytes to strings[30]

• Numpy , a scientific computing library [23].

• Adafruit_gps a library provided by the producers of the Adafruit GPS which makes it easier

to work with the GPS dat [57].

• Multiprocessing, a package used for managing multiprocessing [39] concurrency with

tools like:

– Process, represent activity that is run in a terminal/process [33].

– Queue, a queue used for information exchanged safely between multiple processes

[34].

– Event, a flag-object used as a boolean flag [32].

• Threading, a package used for managing threads [38] concurrency with tools like:

– Thread, represent activity that is run in parallel with the main process [35].

– Queue, a queue used for information exchanged safely between multiple threads

[37].

– Event, a flag-object used as a boolean flag [36].

CHAPTER 3. MATERIALS 30

3.5.3.2 JavaScript

• React-Router is a component library which helps for navigating between pages (URLs)

[76].

• Axios is a modern HTTP API web frontend client [18].

• Chakra UI , an modular component library for developing better user experiences [11].

• Highcharts is a multi-platform charting library for displaying data [48].

• Leaflet , an open-source, lightweight library used for interactive maps [12].

3.5.3.3 C / C++

• Zeromq, the original ZMQ messaging library in windows x86 architecture [46].

• EthernetSonarAPI, interface library from DeepVision (x86 arc) (see Appendix [E]).

3.5.3.4 Arduino

• Blue Robotics ping-arduino, for communication with the Ping sonar [53].

• Blue Robotics MS5837, for communication with the depth/pressure sensor [54].

• Adafruit 9dof, for estimating orientation [10].

3.5.4 Frameworks

3.5.4.1 GUI

• Electron is a open-source software framework which enables the creation of desktop GUIs

by the use of modern web technologies [100].

• React is a web frontend framework in Javascript for building user interfaces applications

[105].

• NodeJS is a cross-platform runtime environment for running Javascript outside a web

browser [25].

CHAPTER 3. MATERIALS 31

• CRA , create-react-app, a cross-platform bootstrap for rapid React development [55].

3.5.4.2 API

• FastAPI is a modern, high performance web framework for building APIs in Python [74].

Chapter 4

Methodology

4.1 Project Organization

The group consist of four bachelor students with a similar background. To ensure structure and

responsibilities amongst the members in the group, three disciplinarian positions were initi-

ated. We divided positions into one group lead, one software lead whilst the third secretary role

was rotated.

The group leader has the responsibility to ensure cooperation, time management and delegat-

ing various tasks. The leader also has the responsibility to clear up any conflicts that may arise.

In terms of time management, the group leader is responsible for organizing internal meetings

with the group and external meetings with the management group.

The software leader has the responsibility to ensure a standard code style for the programming

languages used and the responsibility to make top-level decisions to ensure the functionality

needed for the software solutions is matched.

The secretary has the responsibility to take notes during meetings and maintain the structure

of how the various documents for report, meetings and discussions are written and stored in

Microsoft Teams 3.5.2.1.

32

CHAPTER 4. METHODOLOGY 33

Internal meetings were scheduled anywhere between 1-2 week, depending on the workload and

issues during the project. In the early stages of the project, the meetings consisted of testing our

various implementation strategies of the hardware and software systems. Later meetings con-

sisted of discussing the weekly progress made to the systems and various required technical

improvements.

External meetings were scheduled from anywhere between 2-3 weeks, depending on the project’s

progress and various complications. In the early stages of the project, the meetings consisted

of seeking advice and discussing implementation strategies with the management group. Later

meetings consisted of discussing the current system implementation and the results made from

testing. Discussions focused on the performance and behaviour of the ROV in terms of physical

sea trials as well as corresponding simulated scenarios.

For further details regarding the Project Organization, please see Appendix [A.1].

4.2 Deviation Protocol

As this thesis is written under the influence of the ongoing COVID-19 pandemic, we could plan

and implement a day-to-day workflow that suited everyone. In the early stages of the project,

the R-ratio1 in the local county was not particular higher. Therefore we were allowed to work in

the school without any disturbances.

Halfway through the thesis, the R-ratio spiked in the local county leading to more strict social

policy. The strict policy did not directly affect the group. Some of us were able to work in the labs

doing hardware testing or similar, whilst others could stay at their apartment working on soft-

ware specific requirements. Other problems like illness or complete lockdown, as mentioned in

Appendix [A.1], also did not considerably affect the group.

1The R-ratio is a method of assessing the ability of a coronavirus or any other disease to spread.

CHAPTER 4. METHODOLOGY 34

4.3 Communication

Communication is an integral part of the project; using inadequate communication protocols or

implementations would severely impact every other system in the project. In order to properly

scale a project, a fundamental communication protocol is required to connect various systems.

4.3.1 System to System

ZMQ has been utilized to handle the socket communication between the various software sys-

tems. The base patterns used throughout the applications are based upon the publisher/sub-

scriber 2.8.2 and the request/reply 2.8.1 patterns as previously described. Because different

software systems are written in different languages, there arose a demand for cross-language

communication. As previously noted in 2.8, ZMQ is highly supportive through a wide range of

languages.

4.3.1.1 Validating ZMQ

Since we rely on a messaging library to carry messages across sockets between various devices,

it is necessary to test whether they are trusted. Connections, disconnects and reconnection are

three key junction points for secure communication. The test setup should first consist of a

one-to-one connection in a small environment without other devices before scaling it up to a

complete software solution.

4.3.2 Payload structure

As the communication across various languages is implemented, it was decided to follow a

strict JSON only communication protocol. Each JSON response consists of three types of pay-

load names; sensor_data, settings and commands. As seen in the following subsections; 4.3.2.1,

4.3.2.2 and 4.3.2.3 the structure is identical but the varies in payload name and thereby in pay-

load data content.

CHAPTER 4. METHODOLOGY 35

4.3.2.1 Sensor data

Example of a JSON payload containing two sensor data values.

data = {

"payload_name": "sensor_data",

"payload_data": [

{

"name": "pressure",

"value": 3.2

},

{

"name": "roll",

"value": 23.1

}

]

}

4.3.2.2 Settings

Example of a JSON payload containing a settings config.

data = {

"payload_name": "settings",

"payload_data": [

{

"name" : "Oxygen",

"origin": "ArduinoSensor",

"port": "A2"

}

]

}

CHAPTER 4. METHODOLOGY 36

4.3.2.3 Commands

Example of a JSON payload containing an ROV command.

data = {

"payload_name": "commands",

"payload_data": [

{

"name": "pid_depth_p",

"value": 5

}

]

}

4.3.3 ROV systems

The purpose of the RPi located in the ROV is mainly to collect data from Arduino and pass this

on to the REST-API in the onshore computer and send commands the other way. It uses serial

communication to receive the data from the Arduino, opening up one thread for each serial

connection. The whole structure of classes is shown in Figure 4.1.

Figure 4.1: ROV-RPi structure

CHAPTER 4. METHODOLOGY 37

4.3.3.1 Serial communication

The old software had a good way of detecting which Arduino was connected to a specific serial

port, and this will be used. However, it did not have the stability and robustness that is required

for this project. For this project, we need a stable connection that can handle a high amount of

data, second the procedure of finding a serial port needs improvement. Third, be able to search

for serial ports at any time (not only at boot).

Establishing connection

To ensure that the RPi finds the Arduinos each time, a good connection has to be made. Firstly

an upgrade in the baud rate so that it can handle the data flow. The Arduino, with the task of

collecting sensor data and Arduino handling control of the stepper motors, use 57600 baud rate.

Throughout the rest of the thesis, these will be referred to as ArduinoSensor and ArduinoStep-

per. The frequency of data sent from the ArduinoSensor is considerable. To not let this disturb

the process of finding the Arduinos, a delay of 2 seconds is added in the setup.

The procedure of finding the Arduinos and at the correct serial port is shown in Figure 4.2. It

starts by getting all the serial port available (works for both Linux or Windows-based system).

Then it will start to open each port at a baud rate of 57600. If it gets an expected message from

one of the Arduinos, it will put the serial port in a list with the correct baud rate. If it does not

get a correct message at the 57600, it tries a baud rate of 115200; the amount of baud rate to try

is easily expandable. The process is continued until all serial ports are checked. All ports found

with an Arduino connected will be opened in a thread for reading and sending data.

CHAPTER 4. METHODOLOGY 38

Figure 4.2: Serial finder flow

Serial reader function

Initially, using the standard pySerial 3.5.3.1 library from Python to communicate with the Ar-

duinos worked fine in the project development. However, as the project side increased and the

CHAPTER 4. METHODOLOGY 39

system frequency speed increased, it was noticed that the standard readLine() -method from

the library was becoming a bottleneck for the system’s performance when using it a thread.

Therefore an own serial read -method was made; this was inspired by pySerial own serial thread

library. This function is shown in appendix [K].

Searching for serial ports

Even with a good connection, there is a possibility of not finding all the Arduino due to different

reason. I could not have been connected at boot or could have been disconnected. Therefore,

the possibility of searching for a serial port is added. Simply it closes all serial threads and starts

the procedure of finding the serial port again; this will reduce the amount of time the RPi has to

reboot and potentially extend the operating time.

4.3.3.2 Handling data from ZMQ to serial port

Classes to reading and sending serial and using ZMQ are threaded. Therefore a queue is used.

Queue is, as explained in 3.5.3.1 is thread-safe, and it is an excellent way to send data between

threads.

For sensor data from serial to MessageDispatcher (ZMQ publisher class) a list of sensor objects

is used. Each sensor object has a name and a value. Although the list is thread-safe, the data in

the list are not. There is no guarantee that if we change the value of a sensor in one thread, it

will change if we change it in another thread simultaneously. However, in this case, it is not nec-

essary to change the value multiple places. The reason for using a list over queue for the sensor

data is that the GUI gets an update from the ROV with a sensor data payload 4.3.2.1 every 100

ms, and then the rate of incoming data from the sensors is far greater. As we always want the

latest data, we constantly have to take a sensor(object) out of the queue, and it is important to

read from the queue more often than data is written to the queue. Using a list, the latest values

are only read every 100ms and sends it to be published with ZMQ.

In contrast, queue is used when handling commands and responses since every command/re-

sponse has to reach its destination.

CHAPTER 4. METHODOLOGY 40

4.4 Structuring the Software application

As mentioned in the project requirements, it essential to have a functional, operational and reli-

able graphical user interface. Ease of use, adaptability, support of a live video feed, sensor data,

and the ability to control the ROV are significant. As the ROV is essentially a data collecting sen-

sor platform, the amount of data and the selection of sensor types can vary from time to time.

Therefore, the new software systems must be built with a solid architecture to support the scal-

ability of the project long term.

In order to correctly build scalable software for the bachelor project, a three-tier architecture

was chosen 2.4.1. The advantages of this architecture lie in the separation of concerns. Each tier

can independently be developed without affecting the other tiers. This architecture presents an

increase in development time, higher modularity, and looser coupling of code. Figure 4.3 below,

shows the organization inside the three-tier architecture.

Figure 4.3: Organizing the three-tier organization

4.4.1 Presentation tier

This tier represents what the client will see when operating the system, more commonly known

as the Frontend / GUI. The GUI is implemented using React 3.5.4.1. In order to create a desktop

application, Electron 3.5.4.1 is used to create an executable file, wrapping the web application

inside of it, capable of running on cross-platforms.

CHAPTER 4. METHODOLOGY 41

Selecting of Graphical User Interface

It was decided to use React and Electron 3.5.4.1 for implementing the presentation tier, referred

to as the GUI. Many desktop GUIs nowadays is implemented in various languages and frame-

works such as, for instance, Tkinter, PyQT in Python programming language or Swing, JavaFX in

Java programming language. Using React, we will gain the benefits of its popularity and com-

prehensive software community. Combining React with Electron, we essentially create a web

application inside a desktop application that can run off any platform (Windows / Mac / Linux).

Figure 4.4 below shows the apparent trend of a few UI frameworks and their popularity accord-

ing to Stack Overflow Trends [56].

Figure 4.4: StackOverflow: A generated plot showing technologies trends over time

CHAPTER 4. METHODOLOGY 42

4.4.1.1 Setup

In order to correctly set up the GUI, the web application is bootstrapped with Create-React-App

3.5.4.1 tool to initialize starting template files for development. As the files are created, they need

to be converted from a standard browser to a desktop environment. Using the electron-builder

from Electron, we can package and build the React template files into an application capable

of running cross-platform as a desktop application. The design aspect of the React application

was made with the Chakra UI 3.5.3.2 component library to build a faster and more accessible

interface design making it easier and more intuitive to use for the operator.

As mentioned, the React application resides in the Electron environment. In order to convert

the web application into a desktop application, the steps in Figure 4.5 (on windows in this case)

can be followed to create an executable desktop application. A more detailed approach can be

found in the README file in the GUI source code.

Figure 4.5: Windows build: from web app to desktop app

4.4.1.2 Structure

The web application uses HashRouter2 from the React-Router (3.5.3.2) library in order to ma-

noeuvre through the various pages safely. Using JavaScript libraries such as Axios (3.5.3.2) and

Event-Streams (2.6.1.6), the GUI can communicate with the REST-API. The sections below will

briefly explain the planned functionality of various pages inside the GUI.

2A <Router> that uses the hash portion of the URL (i.e. window.location.hash) to keep your UI in sync with the
URL.

CHAPTER 4. METHODOLOGY 43

Home page

The Home page represents the landing page of the application, which is the first site upon

startup. From here, one could navigate to other parts of the application.

Settings page

Inside the Settings page, all the settings for setting up the sensors at the ROV is initialized. As

the project requirement previously stated, an adaptable and modular system is needed. There-

fore, ahead of starting any exploration with the Towed ROV, one would often want to adjust the

various equipment inside the ROV. For instance, creating, removing, disable- or enabling vari-

ous sensors. Before each run, the operator should double-check that the ROV’s added hardware

is correctly wired; then, when the device boots up, go to the Settings option and change the

settings preferences to match the hardware setup.

Dashboard page

In the Dashboard page, the main graphical user interface resides. The dashboard has the op-

tions to control, in real-time, the various aspects of the ROV systems and monitor the live sensor

data from the various sensor components, the live video feed from either the video camera or

the side-scan sonar. The operator also can create a ’Session’ to collect data from a given geo-

graphical mapping mission.

In terms of monitoring the system’s performance, the sensor data is presented in an orderly

manner while watching various metrics in a Chart display to view its changes as the ROV is in

action. As a measure of control and secure operation ability, the operator can also view the sent

commands and their respective responses inside the toolbox. Since the ROV is often not visible

from the boat, it is challenging to notice whether the commands are actually in progress. A so-

lution to this problem is to use confirmation responses to be safe, knowing the system works as

intended. All commands and responses are marked as either successful or failed.

CHAPTER 4. METHODOLOGY 44

Map page

The Map page allows the operator to view all session recording and the stored sensor data in a

Google Maps-lookalike setup. As the latitude and longitude are used to create waypoints in the

Map, the operator can click at every saved waypoint to view the various sensor data collected

from that exact location and a camera/sonar image visualizing the view at the bottom of the

sea.

4.4.2 Application tier

The application tier is where all the business logic is created. This part of the application is part

of the backend, where the information from various entities/hardware components is collected

and processed. The backend is built using the FastAPI web framework to create a REST-API,

which provides HTTP support for communicating with the frontend and ZMQ / TCP/IP con-

nections to communicate with the other ZMQ entities (Surface Unit, ROV, Sonar API) of the

application tier.

CHAPTER 4. METHODOLOGY 45

Setup

As the FastAPI is a web framework, specifically an ASGI framework, it requires an ASGI server

implementation to run frameworks. Using Uvicorn 3.5.3.1, we can host FastAPI as a server run-

ning at localhost with port 8000.

Figure 4.6: REST-API Startup

The REST-API start-up code shown in the

code example (from Appendix [G]) to the right

shows the steps necessary to initiate the struc-

ture of the REST-API. It starts by creating a

FastAPI object; this is the REST-API itself which

resides all the connections. After that, we de-

fine a list of allowed remote URLs allowed to

access the REST-API (i.e., GUI runs at localhost

with port 3000) and attach it to the API ob-

ject as allowed app middleware. In the bottom

line, we include the api_router, which holds

the routes of all the endpoints 2.6.1.2 available

in the REST-API.

app = FastAPI()

origins = [

"http://localhost:3000",

"localhost:3000",

]

app.add_middleware(

CORSMiddleware,

allow_origins=origins,

allow_credentials=True,

allow_methods=["*"],

allow_headers=["*"]

)

app.include_router(api_router)

CHAPTER 4. METHODOLOGY 46

Structure

The application tier is structured as a standard REST-API, consisting of endpoints for interac-

tions and a few separate processes that handle all communication with the other entities in the

software systems, as shown in Figure 4.7. The different endpoints, shown in the REST-API doc-

umentation found in Appendix [D], are used by the GUI to distribute and retrieve data from the

database through HTTP methods.

Figure 4.7: Entities in the application tier

CHAPTER 4. METHODOLOGY 47

Implementation: HTTP methods

The GUI uses HTTP methods to communicate with the REST-API to make a request to the

database. Figure 4.8 shows how the base methodology of how the transaction method between

the GUI and the REST-API is done. In short, a payload request is sent from the GUI to the REST-

API. The REST-API looks at the payload request and makes decisions based upon the endpoint,

path parameter and query parameter. Using these filter methods, the algorithms inside the API

fetches items from the SQL database as requested and returns a response accordingly to the

request made. The following examples are: POST, GET, PUT (update) and DELETE.

Figure 4.8: HTTP-transaction

CHAPTER 4. METHODOLOGY 48

Figure 4.9: HTTP-POST example: add to database

1. Signifies the endpoint the data is pointed towards.

2. Signifies the payload data the API receives when the GUI creates a waypoint

CHAPTER 4. METHODOLOGY 49

Figure 4.10: HTTP-GET example: retrieve from database

1. Signifies the endpoint of the request. The GET-request calls the endpoint ’waypoints’ with

a path and query parameter, which is in the waypoint_id.

2. Is the GET-request payload which is sent to the REST-API. It receives only a single key:value

pair, which is enough to filter the search.

3. Is the GET-response payload which the GUI receives given the waypoint_id requested.

Since, a waypoint has a relationship with a sensor by the One-to-Many 2.5.4.2 structure,

the waypoint item uses its foreign key 2.5.3 to retrieve a a list of sensors and attaches it to

the total payload.

CHAPTER 4. METHODOLOGY 50

Figure 4.11: HTTP-PUT example: update in database

1. Signifies the endpoint the request is made to, with a query parameter session_id.

2. Is the item which is stored in the database with the session_id before its updated.

3. Is the payload required to update the item in the database.

CHAPTER 4. METHODOLOGY 51

Figure 4.12: HTTP-DELETE example: deleting from database

1. Signifies the endpoint the request is made to with and query parameter session_id.

2. Is the payload required to delete the waypoint session from the database. Since ses-

sion_id is the primary key 2.5.2, there can only exist exactly one item with that name in

the database. As a waypoint also has a relationship with other sensors, a waypoint dele-

tion will also trigger the foreign key to delete any sensors if a relationship exists.

Implementation: External communication

As shown in Figure 4.7 above, the REST-API has three external connections. All three connec-

tions run on separate processes 3.5.3.1 to prevent any interference with the internal REST-API

thread-pool reserved for HTTP requests.

As the messages are sent and received between the various ZMQ entities, they are all forwarded

by the use of multiprocessing queues 3.5.3.1 as a communication channels between processes.

In Figure 4.13 below, we can see an example of how each of the three connections communicates

through message queues.

CHAPTER 4. METHODOLOGY 52

Figure 4.13: Using a shared communication queue.

ZMQ unit could be of type publisher, subscriber, requester or replier

All external connections have predefined transmitting frequencies to ensure predictable be-

haviour by not overflowing the REST-API with data. The ROV should send the sensor data 10

times per second and video data 30 times per second. The Surface Unit should send the sensor

data 5 times per second. The sonar data from the Sonar API should be sent anywhere from 30-60

times per second, depending on size.

Throughout the following subsections, SensorPublisher is referred to as a class that implements

a ZMQ Publisher socket, and SensorSubscriber is referred to as a class that implements a ZMQ

Subscriber socket. Below, we will briefly explain the concepts and interactions between the

REST-API and the connected processes.

Implementation: REST-API ⇐⇒Surface Unit

The relationship the REST-API has with the Surface Unit is purely a ZMQ-protocol. The pattern

is based upon publisher/subscriber. When the system starts up, the REST-API creates a Sensor-

Subscriber, which connects to a Raspberry Pi’s IP and PORT inside the Surface Unit and listens

for any published messages. As the messages are received, the SensorSubscriber adds them

into the messaging queue. The REST-API can then collect data from the queue and forward it

where it is needed (as visualized in Figure 4.13 above).

CHAPTER 4. METHODOLOGY 53

Implementation: REST-API ⇐⇒ ROV

The connection to the ROV consists of two ZMQ sockets and one pure TCP/IP socket.

The first ZMQ socket follows the publisher/subscriber pattern. Like the Surface Unit, a Sensor-

Publisher sends a stream of sensor data from various sensors collected from different Arduinos

and Raspberry Pi into the socket where the SensorSubscriber in the REST-API side continuously

reads from and adds to the messaging queue.

The second ZMQ socket follows the request & reply pattern, which is used to send commands

from the REST-API to the ROV. By using this pattern, each command sent is expecting a response

back as a command confirmation.

The third socket for communicating with the ROV is a pure TCP/IP server, and the client used to

send live video stream data from the ROV’s camera. Inside the ROV, running a TCP camera server

allows incoming TCP clients to connect and receive image sent from the mounted camera. As

images are received on the client-side, they are added into a messaging queue and forwarded

into the REST-API.

Implementation: REST-API ⇐⇒ Sonar API

From the REST-API to the Sonar API, a ZMQ publisher/subscriber pattern is used for receiving

data from the sonar. As the Sonar API receives sensor data from the side-scan sonar through a

TCP connection, the data is formatted and given to a SensorPublisher. The SensorSubscriber,

on the other hand, gets the sonar data, examines it, and then adds it to a message queue that is

delivered to the REST-API.

Implementation: Special HTTP methods

In order to support the demands for the live streaming of sensor data and video, unique meth-

ods are needed in the REST-API. As standard HTTP methods are based upon a request-response

pattern, it will cause various issues if the GUI is required to ask for data every N-times per sec-

ond. The solution to this problem relies on using unique methods such as FastAPI’s built-in

CHAPTER 4. METHODOLOGY 54

StreamingResponse and EventSourceResponse.

A StreamingResponse, explained in detail in 2.6.1.5, is used for sending a continuous stream of

images converted into bytes. Taking advantage of the OpenCV-library 3.5.3.1, we can perform

simple image processing techniques to change between readable image and images in bytes

whenever we want to save the image to disk or show it in the GUI.

A EventSourceResponse, explained in detail in 2.6.1.6, is used for sending sensor data collected

from the various ZMQ entities as an event-stream. The data is collected through multiprocess-

ing queues, formatted into one JSON and sent as an EventSourceResponse to the GUI.

StreamingResponse and EventSourceResponse are considered one-way patterns in which the

data travels only from A to B.

4.4.3 Data tier

In the data tier, all the information gathered by the software systems is stored. The type of

database chosen is the SQL [106] database, or more specifically SQLite [107], which implements

the SQL database engine. Also, SQLite is open-source, which is a requirement for the project’s

development. The SQLite databases, due to their simplicity and reliability, provide fast response

times for data storage. The SQLite database file is self-contained in a single .db -file. Therefore

it can easily be shared amongst users and can even be e-mailed to other colleagues.

Setup

The tables defined in the SQLite database file are created by the models and schemas defined

inside the REST-API. By using models, we can design decided what fields and data type the ta-

bles should contain. Schemas provide a sort of cookie-cutter-shape, which request data has to

match to be verified and added to the tables. Inside the REST-API, the database is defined from

a URL-string seen from the SQLALCHEMY_DATABASE_URL below. To set up the database, it is

customary to use a create_engine method from the Python SQL library, SQLAlchemy [20]. This

CHAPTER 4. METHODOLOGY 55

method accepts a URL-string defining the database type, SQLite in this case, and creates an en-

gine object. The engine object is then passed on to the sessionmaker which can then invoke the

database and create a SessionLocal-object. The SessionLocal object is then used throughout the

REST-API each time a request is needed for querying the database.

from sqlalchemy import create_engine

from sqlalchemy.orm import sessionmaker

SQLALCHEMY_DATABASE_URL = "sqlite:///./sql_app.db"

engine = create_engine(

SQLALCHEMY_DATABASE_URL, connect_args={"check_same_thread": False}

)

SessionLocal = sessionmaker(autocommit=False, autoflush=False, bind=engine)

Structure

The structure of the SQL database is based upon tables that contain rows and columns. Each

row in a table represents one unit of data where each column’s various fields are represented in

each column. With these principles, the tables can be represented and controlled using prede-

fined models and schemas for each table. Using a model, one can define the fields and types of

data that should be stored in the table. Using schemas, one easily controls the input and out-

put data each time data is created, retrieved, updated, or deleted. The Pydantic 3.5.3.1 Python

library provides a base model from which we can build schemas. Incoming untrusted data can

be passed to a schema. After parsing and validating the data with Pydantic, the resultant schema

instance will conform to the field types defined on the schema.

CHAPTER 4. METHODOLOGY 56

Implementation

Using the principles earlier described in 2.5 about database theory, we landed on using a struc-

tured and logical way of collecting the sensor data. Figure 4.14 below shows the relationship

method used for defining the relationships between each table. For each waypoint session,

there can exist many waypoints. For each waypoint, there can exist many sensors connected

to it.

Figure 4.14: SQL: Relationships

Example of ’One-to-Many’ → ’One-to-Many’

CHAPTER 4. METHODOLOGY 57

The following Figures below show how we have designed the various field names and field

data types for each of the four different types of tables used in this bachelor project.

Figure 4.15: SQL Model: settings

Figure 4.16: SQL Model: sensors

Figure 4.17: SQL Model: waypoints

Figure 4.18: SQL Model: waypointsessions

CHAPTER 4. METHODOLOGY 58

4.5 The Surface Unit systems

The surface unit consists of an echo sounder and GPS connected to an RPi and uses serial com-

munication, either over USB or UART. Both sensors have their data parsed using the NMEA 0183

protocol. The Surface Unit RPi reads the echo sounder sensor and the GPS sensor in the boat

and publishes it as a ZMQ publisher 2.8.2. When designing the system, the main goal was the

ability to handle multiple different sensors with serial connections with a single microcontroller.

The program uses different threads to read from the sensors, handle logic and publish using a

ZMQ Publisher. It saves data to the thread-safe StorageBox class and publishes data over ZMQ

as seen in the software structure 4.19.

The system also calculates the distance travelled using the change in the GPS coordinates. When

a set distance is calculated, it publishes it as a command from the ZMQ server. The set distance

is used in the seafloor tracker calculation 4.7.5.

CHAPTER 4. METHODOLOGY 59

Figure 4.19: Surface Unit class structure

4.5.1 Handling NMEA data

The RPi reads NMEA signals 2.7.2.1 over serial communication. The data must be parsed, and

the checksum must be verified before being transmitted to the StorageBox.

When parsing the data, all values are stored, even Null values. Because it is relevant to the system

if a sensor does not send correct data. NMEA data packets are converted to a human-readable

representation. for example, the NMEA id "DPT" changed to "depth_beneath_boat".

For the depth measurements, it was necessary to change all Null value from the echo sounder to

-1 to make it easier for the database to handle the data. The system, therefore, supports adding

conditions to specific NMEA Sensor IDs.

CHAPTER 4. METHODOLOGY 60

NMEA structures

There are many NMEA structures, and when trying to find the structure behind an identifier

like "STDPT", you often come across contradictory or incomplete data. It is, therefore, essential

to make sure that the structure you are using is correct. For ease of use, the surface unit has a

large selection of NMEA sentence structures saved, but these should always be controlled when

adding a new sensor. If the system does not have a stored structure, the system uses the default

values the sensor identifier and "value_#" to check the structure. The structure should then be

compared with the datasheet from the sensor provided.

Parsing NMEA

When working with the NMEA data over serial, there is a need for controlling the data that ar-

rives. To do this, the NMEA structure ends with a checksum. The pynmea2 library calculates

this checksum. An example of NMEA checksum calculation is provided in Appendix [I].

When parsing a message, the data should be delivered as a byte array. However, there might

be useless data around the actual NMEA sentence, or the data might be corrupt. Therefore the

data is stripped by removing any values before the start character and after the checksum. The

pynmea2 3.5.3.1 package can decode the message. From there, the sentence can be renamed

using a collection of key-value pairs with NMEA names and names for the ROV system, manip-

ulated and published to the rest of the system.

4.5.2 Implementing the Echo Sounder

The topside echo sounder uses standard NMEA 0183 communication and operates at 12 V. It is

connected to the RPi through an optocoupler. This coupler converts the 12V signal to a 5V signal

to protect the RPi from the high voltage of the echo sounder. The echo sounder transmits the

depth beneath the transducer in both meters, feet and fathoms, the speed of the echo sounder,

water temperature and other redundant information [91]. The echo sounder does not receive

data from the RPi, and the communication is simplex 2.7.2, with the echo sounder acting as a

talker and the RPi acting as a listener. The echo sounder transmits the following NMEA sentence

structures:

CHAPTER 4. METHODOLOGY 61

• SDDBT-(Depth Sounder: depth below transducer) for depth

• SDDPT-(Depth of water) also for depth.

• VWVHW-(Velocity sensor Water: Water speed and heading) for speed.

• VWVLW-(Velocity sensor Water: Distance Traveled through Water) for Distance.

• YXMTW-(Transducer: Mean Temperature Water) for temperature

[90] Only the depth below the transducer and the water temperature is sent to the REST-API.

The echo sounder also supports the NMEA 2000 protocol.

4.5.3 GPS implementation

The GPS is an Adafruit GPS [58] that transmits data over serial. It is connected with a T X \R X

Serial to USB converter to the USB of the RPi. Since there is a lot of data transmitted by the GPS,

the Adafruit data from the GPS is transmitted in multiple NMEA sentences containing different

GPS data, from latitude and longitude to the number of available GPS satellites and the unit’s

speed. Only the latitude, longitude and speed are sent to the REST-API. The GPS uses these

NMEA sentences:

• GPGGA-(Global Positioning System Fix Data), latitude, longitude, different general GPS

data like satellite number, speed and time.

• GPRMC-(Recommended minimum specific GPS data) latitude, longitude, speed and head-

ing.

• GPGSA-(GPS DOP and active satellites), information for the satellites it can connect to.

• GPGSV-(GPS Satellites in view), the number of and data about satellites in view.

• GPVTG-(Track Made Good and Ground Speed.) Information about the speed and track of

the GPS.

Although the GPS uses the NMEA 0183 protocol, its communication is duplex since it can receive

commands. For example, When the system starts, the GPS can receive a setup command. The

GPS server uses the Adafruit GPS library 3.5.3.1.

CHAPTER 4. METHODOLOGY 62

Position estimation for GPS data

When collecting sensor data for scientific or environmental research, the system needed to have

an accurate position for the data. Underwater GPS or other position estimation hardware is of-

ten quite expensive. Therefore, the group wanted to create a robust and easy to implement

software solution using sensor fusion and established physical theory connected to towed ob-

jects. Calculations for the arc of a tow cable underwater are highly complex, [79] and not well

known. Therefore a different solution had to be implemented.

Using the length of the cable and the depth of the ROV to compute the distance behind the boat

using Pythagoras’ equation 4.1 is a straightforward approach to obtain an estimate of where the

real ROV is. With a cable of around 200 meters and a depth of 50 meters, this will give a distance

of
√

(200m)2 − (50m)2 = 193.649m. This distance can then be combined with the GPS heading

to create a vector for the ROV position.

length from ROV to boat =
√

length of cable2 −depth of rov2 (4.1)

The Surface Unit collects GPS data, latitude, longitude and heading, and calculates an ap-

proximate GPS position of the ROV by simplifying the calculation to one degree of latitude or

longitude represents a 111Km distance [9].

Calculating travelled distance

The system also calculates the distance using the changes in the GPS position. The distance

calculator uses the Haversine function to calculate distance travelled 2.10 and calculates the

radius of the earth of the location of the ROV using the formula 2.11.2.

4.6 Hydrographic surveying

One of the project’s goals was that the ROV should have the possibility of doing hydrographic

surveying. There are a large number of available technologies with different advantages and

disadvantages.

CHAPTER 4. METHODOLOGY 63

4.6.1 Points of consideration

When choosing a seafloor mapping technology, we can present the following points of consid-

eration:

• The data needs

The data needs depend on what kind of data is needed to survey and are the most impor-

tant factor. For example, a side scan sonar can produce a high-resolution image over a

large area but does not collect topographic data or information about the seafloor com-

position.

• Price

Price is an important and limiting factor. The price of a system might entirely disqualify

an otherwise perfect solution. It should always be minimized as long as the requirements

are reached.

• Range

The area that a survey unit can cover can be important or redundant depending on the

application. The range can even be detrimental because it often comes at the cost of ac-

curacy, price or both.

• Adaptability

If the surveying equipment is to be implemented into a specific or existing system, it needs

to be adaptable and have software integration possibilities.

• Bandwidth needs

When survey data is collected, it needs to be saved in the ROV or sent to a computer for

further processing or plotting. The system bandwidth needs to be able to handle data

coming from the survey equipment while not throttling the communication system.

CHAPTER 4. METHODOLOGY 64

Evaluating the price categories

Different companies making hydrographic surveying equipment were contacted. After talking

to different system providers, it was decided that we would use a side-scan sonar. Side-scan

sonar systems come in a wide price range and can be classified into three categories.

• Hobby level systems are mostly used for fishing and hobby experiments. The systems are

cheap and usually cost around 700€ for the transducer systems, and has a decent resolu-

tion. However, these kinds of systems are difficult to adapt to existing software solutions,

and they often only have a depth rating of around 10 meters. The systems are almost

always integrated incorporate systems with ready to deploy displays, software and hard-

ware. These supplementary systems often increase the cost by thousands of euros.

• Medium level systems offer increased adaptability and often have custom made specifi-

cations like housing or depth rating to fit your system. In addition, these systems often

provide an API. With a provided API, it is possible to implement a sonar image into our

GUI. The price of these systems is from around 1 500 € to around 20 000 €.

• High-end systems are the most accurate, with great depth rating, resolution and range

and adaptability. However, the price matches, from 20 000€ to over 100 000€.

Primary goals

When choosing a sonar, we considered these points to be the main needs of the ROV project:

• Runde Miljøsenter wanted to find lost fishing equipment. Therefore resolution and range

were relatively important.

• The system’s price should be as low as possible while achieving the other requirements.

• The adaptability needs to be good to implement the sonar into our system easily.

CHAPTER 4. METHODOLOGY 65

• The required bandwidth of the sonar needs to be acceptable to the bandwidth of the tether

system on the ROV. The Slepe-ROV has a bandwidth of around 10/100 over ethernet, which

the sonar system would need to share with other systems in the ROV.

For the Towed ROV, the high-end systems are too expensive to consider. Therefore the choice

was between the hobby level and the medium level. As we reached out to a few engineers from

Garmin, we were told that these systems would not support being implemented into our system.

In addition, the depth rating of these systems where low and therefore would not support the

depths we wanted to reach. Therefore using these kinds of systems would require modification

for them to fit the ROV system.

This would include making sure that the transducer where depth rated for at least 50 meters

and decoding the image sent from the electronics to implement it with our API. Therefore, it

was decided that the hobby level systems were not a good fit for the ROV system.

Main alternatives

In the end, we seriously considered three different companies, each with multiple systems and

available customization’s.

• Imagenex:

Has the smallest size and weight and the widest range. The Imagenex sonar uses serial

communication, but they are also the most expensive [50].

• DeepVision:

The electronics of the DeepVision sonar can be potted, which would increase the adapt-

ability for future systems. This would also present the possibility for connectors instead

of penetrators for cable entry into the ROV body. Making it easier to add and remove the

transducers in the future and decrease the amount of watertight space required for future

ROV bodies. This would reduce the chance that they could be damaged during trans-

portation. DeepVision also Provides a cross-platform software API for integrating into our

CHAPTER 4. METHODOLOGY 66

system. The Deep vision OEM module sends data using ethernet and is powered by POE

[26].

• StarFish:

Includes software API for ease of integration. The electronics box is large and would take

a lot of space in the ROV body. But it can provide pre-made fastening brackets, making

it easier to mount the system. StarFish also have a "single unit" system where the entire

system could be attached to the ROV with a few screws. But the electronics Uses USB

communication and would need to be coded into the RPi system in the ROV [87].

Both DeepVision and Starfish provided unique advantages. Deepvision with their potted and

smaller electronics and possibilities for connectors, and StarFish with their simple bracket sys-

tem and lower price. In the end, the group went with the DeepVision system, mainly because of

the advantages of connectors with the potted electronics, the small size of the electronics, and

the ease of integration.

4.6.2 Implementation

The plan for the Side-Scan Sonar was only to implement it to our software system and get it up

and running. Therefore it was built a small electronic box to keep water out while testing, also

brackets were made; these can be glued onto the ROVs flange. Connection of the sonar to the

electronics module and Ethernet can be found in Appendix [F]. After a recommendation from

the manufacturer, these were mounted, so they were crossing each other as shown in Figure

4.20. For both sonars, penetrators were added and sealed with epoxy. More about that in section

4.7.1.

CHAPTER 4. METHODOLOGY 67

Figure 4.20: Side-Scan Sonar setup

4.6.3 Sonar API

The provided API for the side-scan sonar provides TCP implementation for connecting and re-

ceiving raw data from the sonar hardware. Optionally when initializing the main.cpp in Ap-

pendix [H], a DSV file writer can activated in order continuously store sonar recordings.

4.6.3.1 Testing

In order to rely on the test results and the operation ability of the side-scan sonar, it is necessary

to test its validity through generating ground truth scans.

CHAPTER 4. METHODOLOGY 68

Before using the sonar in ROV operations,

tests were done to validate if our software

interpreted the sonar data similar to Deep-

View FV. The comparison and display of sonar

data were measured and shown below. The

methodology to conduct these results was pre-

viously described in 4.6.3.1. Figure 4.21 shows

the ground truth standstill image from the

DeepView-software and Figure 4.24, 4.23 and

4.22 shows the corresponding images in our

own software. The scan duration is approxi-

mately 45 seconds.

Figure 4.21: Deepview FV: groundtruth scan

Figure 4.22: Dashboard VIDEO: the last section
of the groundtruth scan

Figure 4.23: Dashboard VIDEO: the middle
section of the groundtruth scan

Figure 4.24: Dashboard VIDEO: the lower sec-
tion of the groundtruth scan

CHAPTER 4. METHODOLOGY 69

4.6.3.2 Important settings for the Side-Scan Sonar

Some of the most important settings in the API is listed below.

• Range, the range of the side-scan sonar is between 10 and 500 meters. The range is in the

width of the beam, not in-depth below the sonar. The depth below the sonar should be

10% of the range.

• nSamples, is the number of samples on each side, and with range this is what affects the

resolution of the sonar image,
Rang e

nSampl es
.

• Frequency, the side-scan sonar can operate on both 340 kHz and 680 kHz; the higher

frequency will give a better-detailed image (340 kHz, 1.5 cm resolution) (680 kHz, 1 cm

resolution) while the lower frequency will provide a better range (340 kHz, 15 to 200 meters

range) (680 kHz, 10 to 100 meters range).

4.7 ROV Implementations

4.7.1 Selecting between Penetrator and Connector

The ordered tether cables (150 and 300 meters) comes with penetrators attached. Only apply

thread seal and mount it to the ROV. The disadvantage of penetrators is that the cable cannot

be swapped fast, and when carrying the heavy ROV, the cable is often in the way and makes the

moving harder.

The alternative to this is using connectors, making it possible to switch cables fast and discon-

nect the cable when moving. Mounting the connectors take hours of work, but the upside with

them is more significant than the downside; connectors was therefore added to the two new

tether cables. Initially, we wanted connectors for our side-scan sonar, but since the electronic

box for the side-scan was not potted, we could not place it outside of the ROV and send signals

via Ethernet into the ROV. Therefore the electronic box had to stay inside the ROV and two cables

with a high-frequency signal going inside the ROV; due to recommendation from the manufac-

turer that the connector could make noise on the signal, the connector was not chosen.

CHAPTER 4. METHODOLOGY 70

4.7.1.1 Implementation

Soldering the connector requires some experience with soldering; this is because the wires had

to be as short as possible to get the connector more waterproof. When soldering the connector,

it is also essential to keep in mind the temperature on the soldering iron and the amount of time

used to solder the connection. The isolation on each wire tends to melt fast. Figure 4.25 shows

the soldered connector. The colour code for the pin is shown in Figure 4.26, which corresponds

to the male side of the connector, which comes pre-soldered.

Figure 4.26: Female connector to ROV

The epoxy "3M™ Scotch-Weld™ uretanlim 620NS" is used for sealing, and it is chosen for

its flexibility and softness. Harder epoxies used in the earlier iteration of this projects tend to

crack. The epoxy was heated with a heat gun to get a smoother finish and make the epoxy more

fluid. A needle was used to poke air bubbles out. Figure 4.27 shown the sealed penetrators.

CHAPTER 4. METHODOLOGY 71

Figure 4.27: Penetrators sealed with epoxy

4.7.2 Sensor modularity

One of the potential use of the ROV is to collect sensor data with a different type of sensor at-

tached to the ROV. Sensors can be expensive, or they are just needed for a short time. By making

the sensor system modular, these can be easily attached and removed for other projects. These

sensors will primarily be connected to the one ArduinoSensor. Considering the number of pro-

tocols and possible connection method of a sensor, not all can be considered. A selection of

easily accessible ways to read sensor data is made and shown in 4.1.

Type Pin
Analog A0
Analog A1
Analog A2
Analog A3
Digital D2
Digital D3
Software UART 11, 12

Table 4.1: Modular sensors

As described in the Settings page 4.4.1.2, adding a new sensor to the system requires it to be

connected and adequately sealed physically. Then a name for the sensor, its origin (ex: Ar-

duinoSensor) and port it is attached to is typed in the GUI. The GUI will make the REST-API cre-

CHAPTER 4. METHODOLOGY 72

ate and send a payload (Payload A1/A2, Figure 4.28) to the Raspberry Pi, where it is forwarded

to its destination. The Raspberry Pi will also store the variable name for filtering out erroneous

sensor data. When it arrives at its destination, the given port will check its availability and start

sending data with the given variable name. The new sensor data will be added to payload B

along with all other sensor data. This process is showed in Figure 4.28.

Figure 4.28: Modular sensor flow

4.7.3 Lights

From the previous ROV only one light was working, and before testing it properly, we found wa-

ter leaks inside. Therefore four new lights were purchase and mounted. With four light sources,

the lighting should be more even for the video, and in total, the four light can produce 6000 lu-

CHAPTER 4. METHODOLOGY 73

mens [52]. It should consume around 60 watts with maximum brightness, meaning at 12 volts,

the current should be about five amps. Although the lights are rated for 10-48 volt input power,

the voltage it will be connected to is 12 volt. The reason for that is the variance in the voltage

from the batteries, which should be around 48 volts. The lights are depth rated for 500 meters

and are using a PWM signal to control the brightness. Brightness can be dimmed from 1100

µS (off) to 1900 µS (brightest). The ground from 12 volt needs to be connected to the ground

on RPi to control the light; else, it will be unstable due to grounds with different potentials. The

PWM signal needs to be connected to a pull-down resistor to the ground to avoid floating output

signal at startup.

Figure 4.29: Lumen Subsea Lights R2 [52]

4.7.4 IMU

The IMU is used to estimate the angular position of the ROV. The angular position is required

for controlling the trim angle and is essential when evaluating the ROVs behaviour.

CHAPTER 4. METHODOLOGY 74

Choice of IMU and Sensor Fusion algorithm

The IMU from the previous project had to be replaced as the USB connector fell off, and the

IMU is out of production. The Adafruit 9-DOF was chosen as it is easily available and is accurate

enough for its purpose.

First implementation

The first algorithm used in the project were Adafruits 9-DOF library for Arduino. The measure-

ments were noisy, and after some research, it was discovered that the library only used the ac-

celerometer and magnetometer to estimate the angles. The 9-DOF library reads sensor values

from the accelerometer and magnetomer and fuses the senors by applying equations 4.2, 4.3

and 4.4. where θ is the Euler angle for roll, pitch and yaw, a is accelerometer reading and m is

magnetometer reading.

θr = at an2

(
ay

az

)
(4.2)

θp = at an

(
ax

ay sin(θr)+az cos(θr)

)
(4.3)

θy = at an2

(
mz · sin(θr)−my ·cos(θr)

mx ·cos(θp)+my · sin(θp) · sin(θr)+mz · sin(θp) ·cos(θr)

)
(4.4)

Second implementation

To get a better orientation estimate, the gyroscope is added. To get the orientation, the measured

value is integrated. As there is bias in the measurements, it is essential to calibrate the gyro. As

therein practical use always will be some drift and the initial state is unknown for the gyroscope,

it is fused with the accelerometer and magnetometer.

Calibrating the gyroscope

The purpose of calibrating the gyroscope is to remove the bias in the measurement 2.1.1.1. Cali-

brating can be done by printing the mean value of 500 readings 2.4 and subtract that value from

each reading.

CHAPTER 4. METHODOLOGY 75

Complementary Filter

The complementary filter is implemented in Arduino and is updated every 20ms. The discrete

implementation can be viewed in listing 4.1. The complimentary is tuned by changing the value

of alpha, alpha is limited to [0 ≤α≤ 1]. Where a high alpha value will increase the contribution

from the gyro, while a low alpha value will increase the contribution of the accelerometer.

Listing 4.1: Complementary filter

float complementary_filter(float alpha, float prev_angle, float gyro_value, float

accel_value, float dt) {

float angle = alpha * (prev_angle + gyro_value * dt) + (1 - alpha) * accel_value;

return angle;

}

4.7.5 Seafloor tracking

When monitoring the seafloor, it is crucial to keep a consistent distance from the seafloor to

ensure that the pictures from the side-scan sensor and the camera are as straightforward as

possible. At the same time, the setpoint should not be changed too often, as moving to a new

depth will cause some instability in the ROV that can affect the recordings. Another aspect is

collision avoidance to prevent damaging the ROV.

Test class

A test class is made to evaluate the results of the algorithm. A semi-random seafloor is gener-

ated with parameters for length, minimum depth, maximum depth and noise in measurements.

While the ROVs depth is simulated with a simple linear function to see how the algorithm han-

dled different scenarios.

CHAPTER 4. METHODOLOGY 76

Implementation

The algorithm relies on updates from the echo-sounder and GPS mounted on the boat for es-

timating the depth of the seafloor and the systems movement. As the echo sounder is a single

beam, the boat needs to move in a straight line. The measured depth of the ROV is also im-

plemented for finding the optimal set point and to send an alarm if the incline is too steep for

the ROV to avoid a collision. As the system behaviour may vary based on physical changes, and

different mapping sensors require different distances, there are three parameters for adjusting

the algorithms’ distance and sensitivity.

• Desired distance:

The desired distance from the sea floor.

• Minimum distance:

Minimum allowed distance from the sea floor

• Distance to ignore:

The minimum deviation for changing set point.

There is a method implemented for setting the parameters while operating the ROV. There is

also a method for changing the array of future set points, as the distance between the boat and

ROV can vary according to depth as calculated in 4.5.3.

To keep track of the ROVs movement relative to the depth measurements, a recording of sonar

values is sent down every 10th meter from the Surface Unit. The sonar values are then sent to a

cost function finding the optimal distance according to the measurements and parameters. The

new optimal distance is added to an array, including every optimal distance between the ROV

and boat. This array is then evaluated by a method deciding on a new set point based on the

parameter values. Figure 4.30 gives an overview of selecting a new set point.

CHAPTER 4. METHODOLOGY 77

Figure 4.30: overview of the selection of a new set point

CHAPTER 4. METHODOLOGY 78

4.8 Method for Sea Trial

As the results from the sea trial were evaluated as we were working, there were several changes

in the ROVs design to change the behaviour of the ROV.

4.8.1 Physical changes

Physical changes of the ROV in this project.

Figure 4.31: CAD model of ROV

4.8.1.1 Adjusting buoyancy and stability

To make the ROV more stable, the center of gravity and buoyancy should be in the same x,y

coordinate, so the torque is kept to a minimum. The center of buoyancy should also be placed

over the center of gravity, this will give the same effect, but it will only occur when the ROV is

rotated, forcing the ROV back to the wanted position 2.12.2. To allow the ROV to go deeper,

the ROVs total buoyancy should be closer to zero. To decrease the positive buoyancy, the ROV

is filled with oil. As the ROV can fit 30 litres, buoyancy would become negative, and there is a

need for compensation. Two pipes with a diameter of 160mm are therefore sealed and mounted

on top of the ROV. The total buoyancy of the ROV is found by subtracting the total weight from

the net buoyancy. The center of buoyancy can be adjusted by moving the pipes along the ROV.

Together all of these factors will increase the stability of the ROV.

CHAPTER 4. METHODOLOGY 79

4.8.1.2 Side plates and Spoiler

To make the rov more stable, side plates were made to prevent the ROV from rolling. The side

plates are cut out of an acrylic plate. An adjustable spoiler was 3D printed, designed and made

by the cooperating group working on a new ROV design. The side plates are glued to the ROV

with tec7.

4.8.1.3 Tail fin

A one-meter long acrylic plate, stiffened with a din rail, is added for pitch stability. This plate

is mounted with screws to another plate glued to the ROV body. The glued plate is mounted

with brackets and screws to the sideplates. The fin will act as a damper and remove some of the

disturbance in the pitch.

4.8.1.4 Design of new wings

New and different wings for testing is made of acrylic plastic and a 3D printed bracket for mount-

ing. Using the laser cutter and 3D printer makes the time to create new wings much faster than

the old ones, made out of a hollow 3D printed part filled with two-component polyurethane and

added a bracket for mounting. This process is time-consuming but allows for wings with a 3D

profile; if there is an advantage of using the old NACA profile wing over the new 2D wing is to

be tested. The idea behind the new wing is to have the centre of rotation in the middle, so the

force pushing on the upper side of the wing is equal to the force pushing on the lower side of the

wing. Therefore, the only force needed to rotate the wing is only the displacement of water and

the force loss in the transmission.

4.8.2 Flow simulation of wings

To validate the new wing assumption , a flow simulation is made in Solidworks flow simulation.

The simulation is done with seawater (1025kg /m3) with a flow in X-direction of 1.5m/s. Since

our CAD models are made in Fusion 360, models are converted to STEP-file and then imported.

CHAPTER 4. METHODOLOGY 80

4.8.3 Troubleshooting

Whenever issues arose, various strategies have been used to troubleshoot hardware areas.

4.8.3.1 Measure DC voltage using oscilloscope

For measuring the DC voltage on the custom PCB board, an oscilloscope and a measuring probe

with the GND is needed. The GND lead will be attached to the negative potential, while the

probe to the positive potential, in our case 5/12V. The oscilloscope will read the positive voltage

from the supply and shown in Figure 4.32, switching the position of the will give us the negative

voltage. Adjust the ground reference by pressing the GND button on the oscilloscope and rota-

tion the position knob. The GND position is adjusted to -5 volts, so when measuring 5 volts, it

should appear in the centre of the screen.

Figure 4.32: Measuring DC voltage with oscilloscope [19]

4.8.3.2 Testing conductivity of the oil

As we had various problems with the electronics in the ROV we tested the conductivity by using

an isolation tester. The oil was moved to a bucket to prevent damage to the electronics. The test

voltage was set at 1000V and the resistance were measured to 148MΩwhen there were a couple

of millimeters between the test leads.

CHAPTER 4. METHODOLOGY 81

4.8.3.3 Validating Tether performance

Stable network connectivity is required in order to develop a control application for the ROV.

Since the physical connection between the ROV and the Surface Unit is a tether cable, it is nec-

essary to validate the performance of the cable and its ethernet speed throughput. Given the

modularity of the ROV, it will carry a large number of sensors, thereby enforcing a solid data-

transfer throughput. Using bandwidth testing software such as iPerf 3.5.2.14 one can measure

network performance.

4.9 Digital Twin

The simulation in AGX Dynamics is a further development of the simulation made by a current

group member in a previous course. The simulation mainly lacked two things; the ROV’s be-

haviour in the simulation did not correspond with the ROV’s behaviour at sea and could not

be connected to our software to simulate functions and features. On the other hand, the previ-

ous project had already added a functioning Towed system with simulated cable, rov body with

wings and a boat that could tow it.

The AGX simulation can simulate simple hydrodynamic effects on the ROV. The depth of the

ROV is controlled by the hydrodynamics on the wings and the ROV body. Simplified versions

of the CAD models represent the ROV body and the boat. The sonars in the boat and the ROV

are simulated using an AGX height field, the speed of the system is measured in relation to wa-

ter, and the depth/pressure sensor is modelled using the position of the ROV in the z-direction.

When creating simulation software, parameters in different places are changed frequently. Be-

cause of this, it is practical to add a python module with constants for values like hydrodynamic

parameters, wire length, depth of the sea, size and location of the simulation models.

CHAPTER 4. METHODOLOGY 82

4.9.1 Seafloor

Building seafloor

The previous simulation had no actual seafloor simulation. To do a proper simulation of, for

example, depth control, this was needed. To create a seafloor, a black and white image was

generated representing different heights and depths of the seafloor; see Figure 4.33. This image

will be used by AGX to generate a height field, a plane that only varies in the z-direction and is

constant in x and y. When the water and seabed have been added to the simulation, it should

look something like Figure 4.34.

Figure 4.33: An example of an image used to generate seafloor in the simulation

Figure 4.34: image of the simulated water, with a seabed and the Boat in the left.

CHAPTER 4. METHODOLOGY 83

4.9.2 Building model for simulation

Importing models

When building the model for hydrodynamic simulation, it is essential to simplify the model

given to the simulator; this will increase the performance and the accuracy of the system be-

cause the simulation has to calculate the forces on every polygon in the model. The ROV model

from the previous project was a severely downscaled version of the original CAD file, but not a

new file. Because of this, the model was full of holes, weird angles and overlapping polygons.

It was, therefore, necessary to create a new simulation model. When building this model, ig-

nore complex and small parts like bolts, screws and small pipes, anything that does not affect

the hydrodynamics in a significant way. After the simplified body is built, it should be exported

as an .OB J file. This file is made of triangles representing the polygons in the model. Using

the AGXMeshReader class, the Models’ mesh file can be imported to AGX as an AGXMesh ob-

ject that can be used to build a Geometry object. The Geometry class specifies a material, the

weight, shape of a component in AGX.

Internal models

AGX has some basics shapes that it provides internally. The simplest of these shapes are opti-

mised for hydrodynamic calculations [6]. When adding the floating elements on the ROV in the

simulation, the internal Cylinder class was used.

Assemblies

An assembly consists of several different rigid bodies and event handlers and constraints.

When adapting the assembly from the previous project changing out parts was a change since

all the position parameters were individualized for that group’s specific model. Therefore the

movement system for the wings and the positioning system was modified so that they work of

the dimensions of the new model. The positions of the wings, for example, are now given by the

dimensions of the ROV, as is the tanks that have been added. In Figure 4.35 you can see our new

assembly of the ROV body.

CHAPTER 4. METHODOLOGY 84

Figure 4.35: The simplified ROV body, for simulation

4.9.3 Sensors and Stepper motors

To simulate the sensors and Arduinos in the system, Event listeners are used. Event listeners in

agx are classes that execute their methods when certain events happen. The Arduinos written in

Arduino could be implemented in two way. Either translate the code to Python or use a Python

wrapper for C++. Either way, both the Arduino code had to be edited to receive sensor data from

ROV and control the actuator. The functionality left in the Arduino is mostly just the syntax

to make it work in Python, and since the group had little experience using a Python wrapper,

translating the code was therefore chosen. The PID library from the real ArduinoStepper has

previously been rewritten into Python.

Step Event

The ArduinoStepper, ArduinoSensor and the boat_sensor classes are instances of StepEventLis-

teners. Once every step in the simulation, these execute their pre() and post() methods. Us-

ing the pre method, we can receive data, update controller outputs and send or receive sensor

data. Using the post method, we can set visualisation and log data. The pre and post methods

are predefined by AGX to include a "time" variable; this variable represents the "in simulation"

time. When building a sensor for Digital Twin in AGX using this variable, the Arduinos and

boat_sensor is made to act in the same time cycles as it would in the actual world. For example:

CHAPTER 4. METHODOLOGY 85

The echo sounder in the surface unit updates once every half-second, so it should only act when

the condition (r ound(t i me,2)%0.5 == 0) is true. The example below shows a simplified exam-

ple of how the StepperArduino could use the pre-function to control the wings of the simulation.

It is worth mentioning that the virtual Arduino needs a loop to send its start message "SensorAr-

duino:0" or "StepperArduino:0". The reason for the loop is because the virtual Arduino does not

reset every time a new serial connection is established, which is the opposite of the real Arduino,

making it able to send one message every reset.

4.9.3.0.1 Simulating Echo sounders

To simulate the echo sounders in the actual system, the Height field seafloor is used. To get

the boat’s depth, input the x and y position of the boat as projected on the Height field in the

g et Hei g ht (x, y) method.

4.9.4 Communication

When building the digital twin, the goal is that the rest of the system should not notice that

it is not a physical ROV it is controlling. Therefore, the simulation needs to use the standard

communication method. When simulating locally on a computer, use ZMQ 2.8 with localhost,

and serial communication with regular ports using software like the one described in 3.5.2.9.

NMEA over serial

When the digital twin sends messages to the Surface unit, the message needs to be in the NMEA

style. Since the data required to run the system consists of depth, longitude and latitude, we

construct sentences for these. format a string in the NMEA style seen in 2.1 but without the "$"

and * " characters. Then add the depth as in meter as a parameter, calculate the checksum, add

the "$" and "*" chars to the start and end of the string, then add the checksum and encode the

message.

CHAPTER 4. METHODOLOGY 86

4.9.5 Simulating system on computer

An AGX simulation incorporates these objects and calculates the change in the system over a

time unit. A higher time unit will cause a loss in stability and accuracy but will drastically im-

prove performance. If the step time increases over around 0.01sec the simulation will fail even

in the most stable condition without complex calculations. With complex simulations like this

system, 0.005 seems to be a decent value. When simulating the system, remember to start the

AGX simulation and the surface unit code first since this will limit the search ports for the serial

finder in the ROV software 4.3.3.1 to the simulated system.

4.9.6 Behavior

The Simulated ROV can be tested by switching different models, simulation parameters3. To

make it easier to check with different systems, a parameter Python Module was added. Most

parameters can be set from this module, like PID parameters, speed, water and seafloor dimen-

sions, ROV and wing scale, and model file names. This streamlines testing with different system

parameters.

4.9.6.1 Hydrodynamic parameters

After creating the wire and the shapes of the models, the models need to implement hydrody-

namic parameters. These parameters depend on the physics of the model. These parameters

can be estimated using computer simulation.

Caluclating the Drag coefficient

By default, the pressure, viscous drag and lift coefficients are set to 0.6, 0.1 and 0.01, respectively.

They can be adjusted to simulate our ROV drag coefficient. For this, we are using Solidwork’s

flow simulation. The simulation uses a flow of water at the velocity we normally run the ROV in,

3.5 knots. Simulation of the force acting on the ROV with the given velocity will give us the total

3for example hydrodynamic parameters, max wing angle, or speed.

CHAPTER 4. METHODOLOGY 87

drag coefficient. To calculate the drag coefficient, we use the formula below.

CD = FD ∗2

A∗ρ∗V 2
(4.5)

where

FD is the drag force

CD is the drag coefficient

A is the reference area

ρ is the density of the fluid

V is the flow velocity relative to the object

This gives us the result in table 4.2

Goal Name Unit Value Averaged Value Minimum Value Maximum Value
GG Force (X) [N] 71.18001305 72.00554579 71.10082164 72.82404687
Equation Goal [N] 0.771599057 0.780547922 0.770740614 0.789420562

Table 4.2: Drag coefficient

A total drag coefficient of 0.771599057. The velocity flow around the ROV at 3.5 knots are

shown in Figure 4.36

Figure 4.36: Velocity flow around ROV

Chapter 5

Results

The final results of the proposed implementation and the results of various studies are presented

in this chapter. The first sections present the final implementation of the project’s elements,

while the later sections demonstrate the outcomes of various tests and sea trials.

88

CHAPTER 5. RESULTS 89

5.1 Software solutions

This section explains the final details of the software system and how its implemented.

5.1.1 Architecture

The final software solution is divided into six separate systems, which builds the project’s fi-

nal architecture. In Figure 5.1 below, the flowchart shows how the communication protocols

working together to send and receive data. The final software architecture follows the three-tier

architecture as explained in 2.4.1 and shown in 4.3.

Figure 5.1: Data communication

CHAPTER 5. RESULTS 90

5.1.2 Graphical User Interface

The Figures below shows the final desktop application developed, referred to as the GUI. The

desktop application consists of four pages available to the operator. The initial loading page

also called the landing page, is seen in Figure 5.2. The next following sections below will show

the final design and functionality in the various pages of the application.

Figure 5.2: Landing page

CHAPTER 5. RESULTS 91

5.1.2.1 Pagination

As briefly mentioned in the structure section of Presentation-tier 4.4.1.2, the application uses

’Route’ as a common way of defining a page. Below is the base structure of the GUI, which uses

various pages for displaying specific elements of the system as components. Each component

was explained in details in the structure section of the Presentation-tier.

Code examples from Appendix [J] shows the outline of the React GUI,

function App() {

return (

<HashRouter>

<SettingsProvider>

<NavIcon />

<Switch>

<Route path="/" exact component={Home} />

<Route path="/settings" component={Settings} />

<Route path="/dashboard" component={Dashboard} />

<Route path="/map" component={Map} />

<Route component={NotFoundPage} />

</Switch>

</SettingsProvider>

</HashRouter>

);

}

The respective routes are accessible at the ’Hamburger-menu"-icon in the top-left corner and

available on every page. On click, a navigation bar is presented to the user, which helps navigate

between pages as shown in Figure 5.3 - starting from left to right: Settings, Home, Dashboard,

Map and Dark-Mode toggle.

CHAPTER 5. RESULTS 92

Figure 5.3: The navigation bar

5.1.2.2 Modularity

Before starting any sea operations, the operator can adjust the settings to modify the additional

modular sensors added to the ROV. As the ROV platform has a certain amount of base sensors,

the Settings page provides the user to use their specific sensors. In the Settings page, the user

can view the stored modular sensors saved in the database. When loading the page, a list of

sensors is shown (as seen in Figure 5.4). As the user leaves the pages, the settings are stored in a

local context manager, so when the operator enters the Dashboard page, he will have the option

to send the settings to the ROV. The ROV will then receive the settings and create the specified

sensors at their respective locations. Explained more in details in section 4.7.2.

CHAPTER 5. RESULTS 93

Figure 5.4: Settings: the saved modular sensors (Edit-mode is activated)

To create a sensor, the operator can click the Edit button to go into editor mode. Once the

operator is inside the editor mode (as seen in Figure 5.4), the operator can add or remove new

sensors and toggle whether they should be enabled or not. Modification made to the sensors is

immediately updated in the database. Therefore the data is always similar to what is shown to

the operator. When creating a sensor, as shown in Figure 5.5, the sensor’s name is required, an

origin (the hardware the sensor is connected to), and the specified port connected. Optionally,

the system also accepts a specified role, i.e.: publisher.

CHAPTER 5. RESULTS 94

Figure 5.5: Settings: adding a new sensor

Lastly, we can observe with the updated sensor settings in Figure 5.4, where we have sent

and received the two new sensors, showing in the metrics in Figure 5.6 below.

Figure 5.6: Dashboard: with newly added sensors

CHAPTER 5. RESULTS 95

5.1.2.3 Dashboard

Figure 5.7 below shows the main component of the desktop application, Dashboard page.

This is where the operator has control of the ROV during operations.

The Dashboard consists of a top-level system control bar to initiate various system commands

such as CONNECT, SEND CONFIG (sends sensorsettings), LOGGING (starts CSV-logger) to men-

tion a few.

On the upper left side, the operator has a live feed of all the metrics measured in the system.

This metric box involves data from all the connected sensors in the system.

The centre black box is the video window1 where the operator can control various aspects re-

lated to viewing the video from either the camera or the sonar.

The upper right side displays a command box that accepts operator commands to control sen-

sor values in the system. Above the input field, the user can view any sent command as well as

their responses.

The bottom left section allows the operator to record "Sessions" whenever he wants to record

the sensor data and video data to the database.

The bottom right section helps the operator visualize the sensor data in a historical plot, where

the specific sensor values are saved up to the last 60 seconds (i.e., depth).

1OFFLINE IMAGE: camera and side-scan sonar were offline due to hardware complications

CHAPTER 5. RESULTS 96

Figure 5.7: The Dashboard page during a live ROV operation

Paragraphs below this section will show the final workflow results from the most relevant

sections of the Dashboard page’s functionality.

Displaying a videofeed

In Figure 5.8 below, the operator can toggle between viewing the video-feed2 generated by the

camera attached to the front of the ROV or the side-scan sonar attached on the external body.

Using either of the two, the operator can also use the SNAP options to take a snapshot of the

current image in view if he will discover something interesting. The snapshot-functionality is

an extra option to save image data if something interesting is spotted and the operator is not

running a waypoint session.

The two buttons LIGHTS and ANGLE is mainly used for adjusting the brightness of the lights

attached to the ROV front-side and the view angle of the camera mount.

2OFFLINE IMAGE: camera and side-scan sonar were offline due to hardware complications

CHAPTER 5. RESULTS 97

Figure 5.8: Dashboard video display

CHAPTER 5. RESULTS 98

Controlling the ROV

At all times, the operator will have complete control of what commands he has sent to the ROV

and their corresponding response status. Below in Figure 5.9, we can on the left-hand side see

various commands sent to the ROV, and on the right-hand side see whether or not the ROV

responded successfully. The operator can choose a name from a predefined set of controllable

ROV options and enter a value that makes sense.

Figure 5.9: Real-time commands and responses during ROV operations

CHAPTER 5. RESULTS 99

Creating a session

This paragraph entails the final workflow of the session functionality in the Dashboard page.

Figure 5.10 below shows the communication across entities in the system and the internal meth-

ods called inside each entity.

Figure 5.10: Session functionality

The operator starts by creating a name for his waypoint sessions. After that, he loads all cre-

CHAPTER 5. RESULTS 100

ated missions from the database and selects one of his choices. The operator can then begin the

waypoint session, where sensor data is automatically fed into the waypoint session. As incom-

ing sensor data is updated, checks are made to validate whether it contains GPS coordinates or

not.

The main algorithm for deciding the save intervals is the calculation of the distance between

two coordinates. Inspired by the Haversine method, explained in detail in 2.11.1, the algorithm

developed checks the current and previous GPS coordinates, compares and saves whenever the

distance has exceeded its threshold (in this case 2-meters).

When the system reads a valid distance, it then automatically makes a waypoint POST requests

to the REST-API. The REST-API queries the internal image queue in the application tier for an

image and saves it an image bank. Upon saving, a filename reference is returned where the cor-

responding image is equal to the sensor data location. The filename reference is attached to the

waypoint and saved in the database. The response of the POST request is the returned complete

waypoint which is finally logged in the session interface for the operator to see, as can be seen

below in Figure 5.11.

Figure 5.11: Ongoing waypoint sessions during ROV operations

CHAPTER 5. RESULTS 101

5.1.2.4 Map

Figure 5.12 shows the mapping component of the desktop application, the Map page. In the

Map page, the operator can load the results made after ROV operations and view the recorded

data stored in the database.

The left-hand side of Map page consists of an interactive map that the operator can navigate.

On the right-hand side, the operator can view and load completed waypoint sessions in the

menu. The buttons to DISPLAY, RESET and DELETE can be used to control the data from the

database.

Figure 5.12: The Map page

CHAPTER 5. RESULTS 102

Analyzing sea operations

Figure 5.13 below shows the final workflow of analyzing the recorded sensor data and images

after ROV operations. As briefly stated above, the operator can click REFRESH and view any

completed waypoint sessions by its "session_id" stored in the database. Upon selection (ex:

"session_id" = "My Session 1337"), the operator can click DISPLAY to load all the stored way-

points which has a relationship 2.5.4 with the session_id selected. The loaded waypoints will

automatically be drawn onto the map at their respective GPS coordinates. The operator can

then freely click any waypoint, and get a summary of all the sensor data and image saved in that

exact location, as can be seen on the left side of Figure 5.13.

Figure 5.13: Analyzing a single waypoint

CHAPTER 5. RESULTS 103

5.1.3 REST-API

The final endpoints accessible through the API is documented in Appendix [D]. In Figure 5.14

below, we can observe an excerpt from a real waypoint session using the technique referred to

in 5.1.2.3.

1. We can initially observe a POST-request is made to create a waypoint session, followed by

a GET-request to retrieve all available waypoint sessions.

2. Furthermore, we see a chain of POST-requests to save sensor data and imagery.

3. Lastly, we observer the completion of the waypoint session as it is updated with a PUT

request.

Figure 5.14: Example of a full waypoint sessions.

CHAPTER 5. RESULTS 104

5.1.4 Database

The final layout of the SQL database can be shown in the following images. The data is system-

atically connected using SQL relationships between the tables to create the best possible and

scalable solution for easily expanding the database.

Figure 5.15: Using TablePlus 3.5.2.17, we can view a items in the Waypointsessions -table

Figure 5.16: Using TablePlus 3.5.2.17, we can view a few items in the Waypoints -table

Figure 5.17: Using TablePlus 3.5.2.17, we can view a few items in the Sensors -table

CHAPTER 5. RESULTS 105

5.2 Software performance

Below in Tables 5.1 and 5.2, we can observe the speed performance of the loading operations

during map analyzing. The tables show the time elapsed from when the call to the REST-API

was made and the display speed inside the Map page.

GUI REST-API
Session ID Total waypoints Time (ms) Time (ms)

test_hellesylt_1_1105 1076 2619.785000104457 35.924673080444336
test_hellesylt_2 768 1618.4950000606477 6.981372833251953
tes_hellesylt_new_attachment 565 1521.4599999599159 8.955717086791992
big_wings_session 63 158.7549999821931 2.0253658294677734

Table 5.1: Response time during analyzing: REST-API and GUI

Converted into averages,

GUI API
Session ID waypoint / ms waypoints / ms
test_hellesylt_1_1105 0.410720727 29.95155997
test_hellesylt_2 0.474514904 110.007017
tes_hellesylt_new_attachment 0.371353831 63.0881921
big_wings_session 0.396837895 31.1054917

– – –
avg: waypoints / milliseconds 0.4134 58.5380
avg: waypoints / second 413.35684 58538

Table 5.2: Average time during analyzing: REST-API and GUI

We can observe that the GUI can load on average 413 waypoints per second.

We can observe that the REST-API can fetch on average 58538 waypoints per second from the

database.

CHAPTER 5. RESULTS 106

In the Figure 5.18, 5.19, 5.20 and 5.21 below we observe the corresponding waypoint sessions

with their Session ID as used above.

Figure 5.18: Session ID: test_hellesylt_1_1105

Figure 5.19: Session ID: test_hellesylt_2

CHAPTER 5. RESULTS 107

Figure 5.20: Session ID: tes_hellesylt_new_attachment

Figure 5.21: Session ID: big_wings_session

CHAPTER 5. RESULTS 108

5.3 Communication results

5.3.1 Tether

As all data and communication go through a tether cable between the ROV to surface, it was

necessary to test its capacity to develop software, considering Ethernet speed safely. The test

shown in Figure 5.22 shows an average bandwidth of 75 Mbits/sec using the 90 meter cable.

Figure 5.22: Test 1

5.4 Digital Twin

One of the goals for this project was a digital twin simulation that had the same results as the

real-world systems. The digital twin can act as a simulation of the system’s inputs and can be

operated as if it was an ROV from the GUI without making changes to the software systems of

the project. Figure 5.24 shows see that AGX transmits live data to the GUI, and in Figure 5.23 we

can see the set-point being set in the GUI, travelling through the ROV RPi System and being set

in the simulation, and then the new set point being returned to the GUI.

CHAPTER 5. RESULTS 109

Figure 5.23: GUI commands the AGX Digital Twin

Figure 5.24: AGX and GUI communicates the same data

CHAPTER 5. RESULTS 110

5.4.1 AGX and Hydrodynamics

5.4.1.1 ROV control

We can observe how pitch and positions change a lot smoother in the simulation see 5.26 when

compared to the physical ROV seen in Figure 5.45. Figure 5.25 shows that the simulated ROV

can reach a depth of 45 meters with a cable of 200 meters. However, as the depth increases, the

vertical speed decreases, especially after 25 meters.

0 100 200 300 400 500 600

0

50

0 100 200 300 400 500 600

-20

0

20

40

0 100 200 300 400 500 600

-5

0

5

10

0 100 200 300 400 500 600

-0.2

0

0.2

Figure 5.25: Pitch and wing angles from AGX with longer cable.

CHAPTER 5. RESULTS 111

0 20 40 60 80 100 120 140 160 180

0

20

0 20 40 60 80 100 120 140 160 180

-20

0

20

40

0 20 40 60 80 100 120 140 160 180

0

5

10

0 20 40 60 80 100 120 140 160 180
-0.4

-0.2

0

0.2

Figure 5.26: Pitch and wing angles from AGX, when tested with large wings

Using the simulation, it is easy to make changes to the software RPi in the Surface Unit, or

RPi in the ROV or the REST-API, and then validate the success of the changes without testing the

ROV in the sea. The system can also simulate the systems with different wings and shapes to see

how this will affect the control of the ROV. For example, see differences in vertical speed between

the Figure 5.25 with a 200-meter long cable and standard wings and the Figure 5.26 with 100-

meter cable and larger wings. The Wings have a significant effect on the manoeuvrability of the

ROV since even with the shorter cable; the wings reach a depth of 25 meters in 60 seconds, while

the other simulation uses 100 seconds to reach the same depth.

5.4.2 Simulation speed

In Figure 5.27 we can see the plot of real time against inn simulation time. The simulation speed

can increase or decrease depending on the simulation parameters, also increase if plotting or

recording is on.

CHAPTER 5. RESULTS 112

Figure 5.27: The simulation time in sec per sec for each step in a simulation run.

5.5 IMU sensor fusion

We can observe that the complementary filter is working as intended by keeping the long-term

effects of the accelerometer and the gyro’s short-term effects as the theory suggested 2.2. This

led to measurement with less noise, with good response and no drift. Figure 5.28 compares

different tuning values of the filter, where alpha as zero is the raw accelerometer, and alpha 1 is

the raw gyro. The results indicate that an increased gyro slows down the response while giving

a smoother measurement. Figure 5.29 compares alpha value of 0.85 with the raw accelerometer

data.

Figure 5.28: Comparing alpha values

CHAPTER 5. RESULTS 113

Figure 5.29: Accelerometer vs Complementary Filter

CHAPTER 5. RESULTS 114

5.6 Seafloor Tracking

The seafloor tracking was only tested in the test script and the digital twin. The results displayed

are the first run with the respective parameter values. The seafloor settings and parameters are

listed in a table for every figure. The parameters were selected for displaying different scenarios.

The seafloor is semi-randomly generated as described in 4.7.5. Notice that the estimations are

based on the length of the cable and not the entire plot. For details regarding the implementa-

tion of seafloor tracker, please see Appendix [L].

Seafloor Parameters
Maximum depth 80 Desired distance 40
Minimum depth 30 Minimum distance 25
Length 6000 Distance to ignore 10
Samples/m 1 Length cable 300

Table 5.3: Seafloor tracking test 1

Figure 5.30: Seafloor tracking test 1

The parameters 5.3 were used in Figure 5.30. The ROV does not descend before 300 meters

of data is collected. While the ROV is descending, the mean value rises with the seafloor. This

displays the adaption of ROV data when deciding on the next set point. The ROV keeps the same

distance until approximately 1100 meters before changing the set point. At 1100 meters, the dis-

tance between the current set point and the mean value becomes greater than the distance to

ignore the parameter. At 2000 meters, the system notices that the distance between the current

CHAPTER 5. RESULTS 115

set point and the lowest set point is greater than the minimum distance, meaning the system

will ascend as soon as possible. It is making sure that there will not be a collision. The last part

of the seafloor at 5000 meters is to simulate a sudden cliff. A new set point is chosen as soon

as the cliff is detected. There is no calculation for estimating if the ROV is fast enough to avoid

detection, as there were not enough data for the behaviour of the real system.

Seafloor Parameters
Maximum depth 80 Desired distance 20
Minimum depth 30 Minimum distance 15
Length 3000 Distance to ignore 5
Samples/m 1 Length cable 100

Table 5.4: Seafloor tracking test 2

Figure 5.31: Seafloor tracking test 2

The purpose of the next test 5.31 were to see how the algorithm handled a more aggressive

parameter setting 5.4. The response is more active, and the ROV follows the seafloor tighter

than in the previous test. The alarm for too steep incline was not added, as it should be de-

signed based on the performance of an ROV able to work in a range big enough for implement-

ing seafloor tracking.

CHAPTER 5. RESULTS 116

Seafloor Parameters
Maximum depth 40 Desired distance 20
Minimum depth 30 Minimum distance 12
Length 2000 Distance to ignore 8
Samples/m 1 Length cable 300

Table 5.5: Seafloor tracking test 3

Figure 5.32: Seafloor tracking test 3

The purpose of the test was to see the response 5.31 to a less aggressive slope with a param-

eter setting 5.5 that could fit the seafloor. The set point is kept at the same value, although the

seafloor is 40 meters at 1500 meters as the sonars have already picked up the steep incline.

CHAPTER 5. RESULTS 117

Seafloor Parameters
Maximum depth 90 Desired distance 40
Minimum depth 10 Minimum distance 20
Length 6000 Distance to ignore 12
Samples/m 1 Length cable 100

Table 5.6: Seafloor tracking test 4

Figure 5.33: Seafloor tracking test 4

The last test, Table 5.6 and Figure 5.33, was to confirm that the alarm went off when the

cost function could not find a legal depth. This is illustrated by setting every new set point to a

negative depth. In the real system, an alarm should warn the driver to stop the boat.

CHAPTER 5. RESULTS 118

5.7 Surface Unit Software

The final software in the surface unit consists of serial NMEA readers 4.5.1, a ZMQ subscriber

and publisher 2.8, position estimation 4.5.3 and a distance calculator 4.5.3. It parses NMEA data,

calculates the position of the ROV in GPS coordinates and sends the sensor data to the ROV for

the seafloor tracking algorithm.

5.7.1 NMEA Parsing

The parsing of the NMEA data works as intended, with an extensive database of different NEMA

sentences stored. As the data is parsed and sent to the system. After the parsing is done, the

data is sent to the storage box and handled as standard data.

5.8 Electronics

The number of intended completed sea trials has been drastically reduced due to unforeseen

problem with electronics, mostly due to 12 volts DC supplies breaking down. The last 12 volt DC

supply broke down and stopped last sea trial, with a measured resistance measuring between

the 12 volts positive, and GND showed a zero ohm resistance. Other 12 volt supplies have not

broken down in the same manner, showing no shortage. Figure 5.34 shows a 12 volt supply with

dirt on the components. In addition to the battery, the stepper drivers and several Raspberry

Pi’s have broken down.

CHAPTER 5. RESULTS 119

Figure 5.34: 12 volts DC supply with dirt on components

5.8.1 5 V DC-DC converter

Due to the problem with part breaking down, a new PCB card was made with all new parts.

While testing the new PCB, the green status light of the 5 volt supply was blinking—both with

and without load. Voltage was measured with a voltmeter and found a voltage varying between

4.75 - 4.98 volts without load. Adding an Arduino UNO as a load, the voltage was down to 3.80 -

4.21 volts. To get a more accurate measurement reading, this was hooked up to an oscilloscope

as explained in section 4.8.3.1. As shown in Figure 5.35 the yellow reading is the TEN 25-2411WI

5 V DC supply, and the blue is a 3-40 V to 1.25-35 V DC supply using the lm2596 integrated

circuit. These readings are from now on referred to as CH1 and CH2, respectively. Both CH1

and CH2 had the same input voltage of 12 volts. CH1 shows a minimum peak to maximum peak

voltage at 1.24 volts, while CH2 has a peak-peak voltage at 0.2 volts.

CHAPTER 5. RESULTS 120

Figure 5.35: 5V supply without load

Adding an Arduino as a load on both 5-volt supplies in Figure 5.36 shows that CH2 still has a

stable 5 volt while CH1’s voltage had dropped significantly with a peak-peak of 2.64 volts. Tests

show that this voltage drop was too significant for the Arduino to run.

CHAPTER 5. RESULTS 121

Figure 5.36: 5V supply with load

The old TEN 25-2411WI from the old PCB board was also tested as shown in Figure 5.37. Here

the 5 V is stable and within limits for use. Checking the DC-converter documentation needs a

minimum load of 10 % of max load, in other words, 50 mA.

The LED from the old PCB board draws 90 mA, and therefore this problem does not occur on

the old one. The earlier report does not highlight this problem or give any information about

the reasonably high draw of an LED.

CHAPTER 5. RESULTS 122

Figure 5.37: Old 5 volt supply

5.9 Camera and lights

The camera has been tested on two different occasions, on at Runde and one at the Voldsdalsvå-

gen Marina.

The left picture in Figure 5.38 is taken at night at nearly full brightness (5250 lumens). Note

that the focus on the camera is set for longer distance (10 meters, which is the distance to the

seafloor at this point) than the seaweed observed in the image. The seaweed is at 0.5-1 meters

of distance from the camera.

The right picture in Figure 5.38 in the same conditions, but the object observed at a larger dis-

tance apart from the camera, fading out at around 3 meters distance.

CHAPTER 5. RESULTS 123

Figure 5.38: Left: Camera test 1 Right: Camera test 2

The picture in Figure 5.39 is taken at Runde in daylight, with 1500 lumen from the lights.

Distance to the seafloor is 11 meters, and the focus is not adjusted.

Figure 5.39: Camera test at Runde

5.10 Side-Scan Sonar

Our most successfully test with the side-scan sonar is taken at Valderøya; these are presented in

this section.

CHAPTER 5. RESULTS 124

In Figure 5.40, 3 square objects are shown, the same image live from the GUI is displayed in

Figure 5.41. The depth of this image is around 10-15 meters, and the sonar operates with a

range of 50 meters. The sonar has a resolution of 2000 pixel on the x-axis. Note that after the

breakwater, a turn was made, and significant waves at the test. The disturbance from the waves

is shown as shivering in the sonar image.

Figure 5.40: Sonar image taken at Valderøya displayed using DeepView FV 3.5.2.19

CHAPTER 5. RESULTS 125

Figure 5.41: Sonar image taken at Valderøya displayed using the GUI

In Figure 5.42 the height of the object is estimated to 0.8 meters. The width of the object was

found to be 1.8 meters

CHAPTER 5. RESULTS 126

Figure 5.42: Sonar image taken at Valderøya

Figure 5.43 shows a far larger object. The sonar image is captured with 1000 pixels in the

X-axis and a range of 50 meters while the depth is 45 meters.

CHAPTER 5. RESULTS 127

Figure 5.43: Sonar image taken at Hellesylt

5.11 Sea Trials

To improve the ROV prototype and address eventual weaknesses, a set of sea trials were con-

ducted. The sea trials are numbered with two digits(a.b), where a represents each day, while b

represents each test conducted that day.

CHAPTER 5. RESULTS 128

5.11.1 Data presented

In the first sea trial, a timestamp was not yet added to the GUI. The time given in the plot is

estimated by comparing the time the wings used to move 20 degrees. The data collected from

the first five sea trials contains an error for every 100-150 sample with a value of 1. The reason

and solution to the problem are mentioned in 4.3.3.1. These values are filtered out before the

data were plotted to make the data more readable. Another thing to be noted is that changes in

the sea current and waves can interfere with the ROVs behaviour and reduce the repeatability.

5.11.2 Sea trial: 1

The purpose of the tests was to see the effect of a spoiler and the change in behaviour with a

reduced pitch. The wing angle is compensated in terms of pitch, and the angle presented is

relative to the angle of attack.

Sea trial 1.1

By comparing Figure 5.44 with Figure 5.45 the pitch is reduced by 10-20 degrees. The depth is

also clearly reduced, as the ROV settles at 5 meters. The Roll is considerably higher, and the ROV

kept rolling around after a short period.

0 10 20 30 40 50 60 70 80 90 100

0

5

10

15

0 10 20 30 40 50 60 70 80 90 100

-20

-10

0

0 10 20 30 40 50 60 70 80 90 100
0

50

Figure 5.44: Sea trial 1.1

CHAPTER 5. RESULTS 129

Sea trial 1.2

The side plates were removed to see if the ROV became more stable in the next test run 5.45; the

spoiler was also removed since it was attached to the side plates. The roll is almost reduced to

zero degrees, and the ROV did not roll around. On the other hand, when the wings are rotated,

the roll becomes more unstable. Another observation is that pitch angle is increased when the

spoiler is removed and seems to vary with either depth, wing angle or a combination of both.

The operating range is very limited as the minimum, and the maximum depth is 14 and 16.5

meters.

0 100 200 300 400 500 600

10

15

20

0 100 200 300 400 500 600
-40

-20

0

0 100 200 300 400 500 600
-40

-30

-20

0 100 200 300 400 500 600

-5

0

5

10

Figure 5.45: Sea trial 1.2

Hypothesis after test 1

1. The ROV rolled around due to currents attacking the ROV from the side. This force is

relatively small, and the main reason is the placement of the center of mass and center of

buoyancy in combination with a significant positive buoyancy of 120N.

2. The wings contributes more with an increased angle, leading us to believe that the stall

effect 2.12.4.1 does not occur at 15 degrees.

CHAPTER 5. RESULTS 130

5.11.3 Sea trial 2

The purpose of the second test was to see if the ROV became more stable by doing some modifi-

cations to increase the stability. This was done with an improvised solution where the ROV was

filled with oil. The added weight was compensated with extruded polystyrene insulation and a

100mm pipe from a previous project. A short test was conducted to verify that everything was

working before mounting the wings. After the test, it was discovered that the ROV was descend-

ing. The ROV stopped at 68 meters before we pulled it back up. There were no signs of water

intrusion in the ROV.

5.11.4 Sea trial 3

To keep the ROV floating there were done some physical changes 4.8.1.1. By adding some weight

on top of the ROV, the new positive buoyancy was approximated to be close to 20N. The side

plates were also mounted but without the spoiler.

By inspecting Figure 5.46 it is clear that the pipes have increased the oscillation in pitch.

At the same time, the pitch is reduced when comparing with the first sea trial without spoiler.

However, there is more disturbance as the pitch is oscillating with an amplitude up to 10 de-

grees. The unstable pitch is most likely making the roll less stable as well, as there are more

disturbances due to more turbulence (2.12.1). The depth is almost the same as experienced in

sea trial 1.2 (5.45), indicating that the change in pitch and buoyancy cancelled each other.

CHAPTER 5. RESULTS 131

0 100 200 300 400 500 600 700

10

15

20

0 100 200 300 400 500 600 700

-40

-20

0

20

0 100 200 300 400 500 600 700

-20

-10

0

0 100 200 300 400 500 600 700

5

10

15

Figure 5.46: Sea trial 3

Hypothesis after test 3

1. The unstable pitch also affects the roll.

2. Wings with an increased areal will increase the range of the ROV.

3. A plastic fin can damp the oscillating pitch.

5.11.5 Sea trial 4

To increase the depth and the range, a new 150m tether cable was bought, and a new set of wings

were made 4.8.2. To reduce the oscillating pitch, a tail fin was made 4.8.1.3.

The test in Figure 5.47 started without wings to see if the depth increased with a longer cable.

The logging was unfortunately stopped by mistake, but the depth settled at about 16 meters.

The depth is about the same as in previous tests. The tail fin worked as intended and decreased

the oscillating pitch. The pitch is also changing with the depth, indicating that the angle of the

tether determines the pitch. The roll is also more stable, the amplitude of the oscillation seems

CHAPTER 5. RESULTS 132

to be the same, but the frequency is reduced.

We lost connection with the ROV and stopped the boat while reconnecting. After a while, we

saw that the tether had a steep incline from the boat. It turned out that the ROV had taken an-

other dive to the seafloor, this time approximately 100-120 meters based on the approximately

30 meters of cable that were pulled in with no resistance. The ROV had taken some damage, as

the end capsules on the pipes had collapsed, and there was a hole in the camera bulb. Fortu-

nately, the camera section and the ROV is sealed with epoxy, and when we were back on land,

there had been no water intrusion, and the system booted. We believe the increasing roll angle

indicates that one of the pipes were filled with water.

A few days later, we discovered that the connector was partly shorted and measured the re-

sistance to 40 ohms when performing a test.

0 50 100 150 200 250 300 350 400 450 500

0

10

0 50 100 150 200 250 300 350 400 450 500

-10

-5

0

0 50 100 150 200 250 300 350 400 450 500
-10

-5

Figure 5.47: Sea trial 4

CHAPTER 5. RESULTS 133

5.11.6 Sea trial 5

Because of the damaged connector, the original cable was mounted back on the ROV. To get

better orientation readings, the IMU code was changed 4.7.4. Also, a new set of wings were

made to improve the ROVs range in terms of depth 4.8.2. The purpose of the day was to see how

much the new wings would improve the depth range. After a short duration in the first test, one

of the wings was forced down to a minimum position. By inspecting a video taken of the ROV

with a GoPro camera, we saw that this incident gave a yaw rotation but did not inflict roll that

much. The reason for this is most likely a steep wing angle of 80 degrees, where the rotation of

the wing is stopped as it hits the ROV body. The sea trial was then aborted as the 12 volts DC/DC

converter stopped working. The roll and yaw are not plotted as there was a bug in the Arduino

code.

0 100 200 300 400 500 600 700 800

0

5

10

15

20

0 100 200 300 400 500 600 700 800

-20

-10

0

10

Figure 5.48: Sea trial 5

Hypothesis after test 5

1. The wings provide a significant torque on the shaft as the water follows the wing.

CHAPTER 5. RESULTS 134

5.11.7 Flow simulation wings

As the wings did not work as expected, a flow simulation was executed (4.8.2). Figure 5.49 shows

the simulated flow around the wing. Arrows are represented by a colour where green is slowest;

this is fading into yellow and then orange with increased flow. We can observe that the result

shows a slower velocity flow on the lower part of the wing. On the upper part of the wing, the

velocity is increasing. It also shows that the water angle is more direct on the lower part than the

upper.

Figure 5.49: Water flow around new wing

CHAPTER 5. RESULTS 135

5.11.8 Weight test

Figure 5.50: Left: Drag force from ROV at 1.3 m/s Right: Drag force from ROV at 1.7 m/s

A weight test was conducted to get an estimated drag force. To find the drag force on the ROVs

tether cable, a mechanical weight was attached between the boat and the tether. The test results

(Figure 5.50) indicate that a slight increase in speed gives a drastic change in drag. As the drag

increases from 15kg to 25kg when the speed is increased from 1.3 to 1.8 m/s.

5.11.9 Sea trial 6

Every wing angle in sea trial 6 is relative to the ROV and not the angle of attack. The cable is 90

meters. The purpose of the day was to see how different attachment points for the cable affected

the ROV and to find the effect of an increased wing size at different angles. The attachment of

the gear to the shaft was glued with epoxy and tested to hold more torque than the motor could

provide, by holding back the wings while running the steppers.

Sea trial 6.1

The purpose of sea trial 6.1 was to see how the ROV behaved with the old set of wings compared

to the original prototype tested in sea trial 5.11.2, as there had been several physical modifi-

CHAPTER 5. RESULTS 136

cations. Figure 5.51 compares the wing angle with the depth of the ROV. The range is slightly

increased from the original prototype and has a span of 8 meters. The response can be in-

spected in Figure 5.52, and it takes close to 100 seconds to go from minimum to maximum

depth. Another thing worth noticing is that increasing the wing angles absolute value from 20

to 25 degrees increases the range by 3-4 meters in total.

0 200 400 600 800 1000 1200 1400 1600 1800

0

5

10

15

0 200 400 600 800 1000 1200 1400 1600 1800

-20

0

20

0 200 400 600 800 1000 1200 1400 1600 1800

-10

-5

0

5

0 200 400 600 800 1000 1200 1400 1600 1800
-2

0

2

4

6

Figure 5.51: Sea trial 6.1

CHAPTER 5. RESULTS 137

400 460 520 580 640 700 760 820 880 940 1000

6

8

10

12

14

400 460 520 580 640 700 760 820 880 940 1000
-30

-20

-10

0

10

20

30

400 460 520 580 640 700 760 820 880 940 1000
-15

-12

-9

-6

-3

0

3

Figure 5.52: Sea trial 6.1

Sea trial 6.2

The purpose of sea trial 6.2 was to see how a different attachment point affected the ROVs be-

haviour by moving the attachment from the front of the ROV to be directly between the two

wings. Figure 5.53 shows the results from the trial, and it is clear that the pitch angle was re-

duced. This is as expected as the force from the cable is moved closer to the center of rotation.

Another observation is that the pitch is more stable; the same theory can most likely explain this

as the attachment point is at the same x coordinate as the ROV. The increased pitch seems to let

the ROV go deeper. The span of the range seems to be quite similar. Figure 5.54 is the same

plot with a limited time scale. There is no particular change in depth when the wing angle is

decreased from 20 to -10 degrees. The reason is most likely a speed reduction. When the test

was carried out, the waves were challenging, so keeping a constant speed was difficult. The drop

in speed compared with the wing angle is displayed in Figure 5.55. An interesting observation is

that changing the wing angle from -20 to -25 degrees relative to the angle of attack significantly

impacts the depth.

CHAPTER 5. RESULTS 138

0 200 400 600 800 1000 1200 1400

5

10

15

20

0 200 400 600 800 1000 1200 1400

-20

0

20

0 200 400 600 800 1000 1200 1400
-20

-10

0

0 200 400 600 800 1000 1200 1400
-2
0
2
4
6
8

Figure 5.53: Sea trial 6.2

400 460 520 580 640 700 760 820 880 940 1000

10

12

14

16

400 460 520 580 640 700 760 820 880 940 1000
-30

-20

-10

0

10

20

30

400 460 520 580 640 700 760 820 880 940 1000
-15

-12

-9

-6

-3

0

3

Figure 5.54: Sea trial 6.2

CHAPTER 5. RESULTS 139

400 460 520 580 640 700 760 820 880 940 1000

-30

-20

-10

0

10

20

30

400 460 520 580 640 700 760 820 880 940 1000

0.8

1

1.2

1.4

1.6

Figure 5.55: Sea trial 6.2

Sea trial 6.3

When trying to do a new test with the new wing type, the shaft slipped almost momentarily. To

see how the wings affected the ROVs behaviour, they were locked at approximately -25 degrees.

By inspecting Figure 5.56 it is clear that the response increase dramatically. The ROV descends

30 meters in about 100 seconds. The pitch seems to stabilize as the depth settles. The angles of

the wings were not exactly the same and are most likely the reason for the increased roll.

CHAPTER 5. RESULTS 140

0 100 200 300 400 500 600 700

0

20

0 100 200 300 400 500 600 700

1

1.5

2

0 100 200 300 400 500 600 700

-30

-20

-10

0

0 100 200 300 400 500 600 700

0

10

20

30

Figure 5.56: Sea trial 6.3

Sea trial 6.4

The wing angle were then changed to 25 degrees and is displayed by Figure 5.57. Even though

the pitch is increased to -15 degrees the wings keeps the ROV at the surface,

CHAPTER 5. RESULTS 141

0 50 100 150 200 250 300 350 400 450

0

1

2

0 50 100 150 200 250 300 350 400 450
0

2

4

0 50 100 150 200 250 300 350 400 450
-20

-10

0

0 50 100 150 200 250 300 350 400 450
-10

-5

0

5

Figure 5.57: Sea trial 6.4

Sea trial 6.5

Finally, the wings were tested at an angle close to zero degrees. The ROV settles at a depth of

20 meters, as shown in Figure 5.58. The unstable pitch and high roll may result from an uneven

attachment of the wing angle, as the ROV seems to be stable in the previous tests. The angle

of attack on the wings oscillates between -5 and -15 degrees. This indicates that the ROV can

operate at a range from 0-30 meters with the right set of wings and a towing length of 90 meters.

The effective wing angle is

CHAPTER 5. RESULTS 142

0 100 200 300 400 500 600

0

10

20

0 100 200 300 400 500 600
0

2

4

0 100 200 300 400 500 600

-20

-10

0

0 100 200 300 400 500 600
0

10

20

Figure 5.58: Sea trial 6.5

The last test of the day were with the same wings and angle but the attachment point were

moved to the front 5.59. Again reducing the pitch and depth.

50 100 150 200 250 300 350 400 450 500 550

0

2

4

6

8

10

12

14

50 100 150 200 250 300 350 400 450 500 550
0

1

2

3

4

50 100 150 200 250 300 350 400 450 500 550

-12

-9

-6

-3

0

3

Figure 5.59: Sea trial 6.6

CHAPTER 5. RESULTS 143

Figure 5.60 is a picture taken of the ROV during the last sea trial.

Figure 5.60: The final look of the Towed ROV

Chapter 6

Discussion

This chapter explains the reasoning behind the achieved results aswell as how we have the ex-

perienced the workflow throughout project.

6.1 Technical Results

This section includes a review of the technical outcomes. We will go through how the final prod-

uct turned out and some feedback on whether it was successful or might have been done better.

6.1.1 ROV prototype

In the earlier stages of the project the plan was to use the prototype to test the software, and then

later on implement the new software to a prototype with better physical performance. Due to

corona the work on the new prototype stalled and we had to rely on the current prototype. This

led us to perform several tests to improve the existing ROVs design and collect data and experi-

ence that could be useful when designing a prototype in the future.

The method of testing one physical change at a time was effective in terms of identifying how

each component changed the ROVs behaviour. Most of the results were as expected, as it relies

on well-known theory. However, the impact of these changes can be helpful when designing a

new prototype.

144

CHAPTER 6. DISCUSSION 145

Adjusting the centre of gravity and centre of buoyancy, the ROV is now clearly more stable in

terms of the roll. It also allowed us to move the attachment point for the tether to align with the

wings. However, the pipes installed for keeping a positive buoyancy increased the disturbance

drastically.

The pitch was also reduced as the pipes were mounted over the tether attachment. The pipes

giving a spoiler effect have also reduced the pitch (see Figure 5.60). However, it came at the cost

of instability as the ROV became vulnerable to oscillations.

The oscillation amplitude was reduced by implementing a tail to dampen the pitch in pitch

and possibly remove some disturbance by leading the water flow away from the ROV. We believe

that the tail fin should be considered in future design, as it provides a notable effect. It is also

easy and cheap in production, so producing a set of them to allows for easy testing to figure out

which length is best suited.

As the stability was increased, it is now possible to move the attachment point closer to the

wings. The new attachment gave a higher pitch angle, as the force from the tether were moved

further back to be aligned with the wings. However, when testing with the new wing type, the

pitch seemed to be more consistent at different depths than the previous wings’ result. Even if

the change in depth was considerably more extensive.

We discovered that the wing designed provided a significant torque on the shaft by testing the

new wings. The torque was not something we expected, as the wing were symmetrical. The

flow simulation seems to verify the results. The wing design was a success in reaching 30 meters

of depth, while they also were able to keep the ROV at the surface when the angle was shifted.

Based on our result, we believe that further test with unsymmetrical wing has to be executed.

The reasoning is to create a wing with a torque equally distributed around the rotation point at

max wing angle. Allowing for bigger wings with less torque from the motor.

Regarding the different tests done with both the wings, it seems like the lift force is peaking

CHAPTER 6. DISCUSSION 146

at relatively high angles. This might be because of turbulence around the ROV body disturbs the

flow around it, therefore the hydrofoil 2.12.4 effect from the wings is not in effect. This means

that the only force on the wings is the "breaking" effect from moving water out of the way of the

wing.

As the shaft kept slipping off the gear, there is a need for a change in the transmission system.

We also believe that the motors should be replaced, as the torque provided by the motor seems

to be lower than the torque on the shaft given by the wings.

Another concern is the drag force measured on the cable as it is in the limit on what the tether

can hold according to the provider. The high force will also provide a lot of disturbance around

the ROV, contributing to vibrations and oscillation.

There are still a few things we appreciate with the current ROV. First, the ROV have proven to

be very solid, as it has been exposed to high pressure and have probably taken a hit when land-

ing on the seafloor . Another feature is the flange making it easy to access the electronics, which

has proven to be significant in this project.

As we have experienced a lot of trouble during the sea trials, we would suggest that when de-

signing a new ROV, it can be practical to only integrate the pressure sensor and IMU, to see how

the prototype behaves. The rest of the components should be implemented when the design of

the prototype is proven. The sensor box can be potted, as there are no moving parts, and this

will allow the design team to only focus on the hydrodynamics, before finding other practical

solutions.

6.1.2 Side-Scan Sonar

6.1.2.1 Quality

From the results of the side-scan sonar in section 5.10, three square objects were found out-

side the marina at Valderøya. As we were told, there were crab traps at the location where the

CHAPTER 6. DISCUSSION 147

side-scan sonar detected some objects, measurements seemingly close to the actual size. We

are relatively sure that the deviance in the estimated size is caused by a disturbance in terms of

waves and probably some uncertainties in the measurements.

Running the side-scan sonar at steady water with little disturbance and at adequate depth, we

believe that the sonar we have selected is good enough for detecting crab/lobster trap. How-

ever, before attaching it to the ROV body, adjustments to the ROV have to be made to stabilize

the pitch, roll and yaw to a constant value.

6.1.2.2 Stability

All previously shown sonar images have the same minor disturbance on the image. The dis-

turbance is most likely due to the waves around the sonar disturbing its physical position in

the water. As soon as the sonar is held still, the quality of the image improves. Therefore it is

ill-considered to mount the side-scan sonar onto the ROV. The result from the Sea trials shown

shows a disturbance in pitch which is too violent for the sonar.

As shown in Section 5.10, the stability of the sonar image goes quickly down when there is a

slight movement in the sonar. Looking at the ROVs movement, it will create a sonar image that

is wildly shaking, and further improvement of the stability of the ROV have to be done before a

good sonar image can be received from the side-scan sonar.

The result from Hellesylt shows a larger object (Figure 5.43), most likely a boat that sank a few

years ago. The image is embossed of disturbance from waves and a range that is too small. De-

spite the wrong range, it is pretty sensitive to waves when the depth is 45 meters, which means

that the image is less affected by disturbances from the change in position when keeping a close

distance to the seafloor.

CHAPTER 6. DISCUSSION 148

6.1.3 Seafloor Tracking

The seafloor tracking was included in the project to meet future requirements. The ROV is in-

tended to keep a consistent distance when monitoring the seafloor and have the ability to steer

clear of obstacles.

The results from the test indicate that the tracking algorithm works for a wide range of seafloors,

and the system’s behaviour changed when the parameters were adjusted. However, as we could

not test it on the current prototype, the prototype designed by the cooperating bachelor group

from Product and System Design was not finished. Therefore, seafloor tracking is not verified in

practical use.

6.1.4 Software solutions

A great advantages by following the three-tier architecture methodology from the start was that

we could develop separate code bases which didn’t collide with each other.

Graphical User Interface

The code developed was written from scratch, and the final size of the turned out to be suffi-

ciently large; there is always room for improvement given the time-span the software systems

were developed.

The choice of using React as our GUI was something that we have appreciated. At the beginning

of the project, we considered various GUI implementation, and as our project requirements

were set - it became more evident to use React. Primary because modern web technologies are

on the rise in popularity and provide great functionality for this project’s use case. As we have

seen through using Leaflet 3.5.3.2, we can integrate sensor data with interactive maps in an ele-

gant way.

A small notice regarding a feature in the Dashboard page is the bottom-right box which contains

a live Chart and a live Map. The live-Map can only be used whenever the operator is connected

CHAPTER 6. DISCUSSION 149

to the internet as Leaflet map uses a cloud API to fetch image-map tiles. Using the Mapping

functionality offline would cause the image-map tiles not to update. However, having the live

Map-functionality is rarely used in the first place and might be removed as viewing the history

plot provides much more value to the operator.

In section 5.10, when comparing images shown in the GUI 5.41 with the ones displayed using

Deepvision FV 5.40, we can see that Deepvision FV uses some post-process image manipula-

tions to enhance the details in the sonar image. There have not been any measures to replicate

the same image manipulation techniques, but we suspect this should be possible as we use

the same raw sonar data. While the image in the GUI is not as good, it can show live images.

Deepvision FV cannot display a live image from the sonar, which is a significant drawback when

looking for a crab or lobster trap. Further improvements to the sonar image in the GUI should

be made. The same quality image should be achievable by testing various image processing

techniques to emphasize the graduation between the pixels. In order to fit the sonar image in

the GUI, it should also be noted that it has to be re-scaled to match the image size of the video

camera (640x480). This resizing may lead to a smaller image and may cause various details to

be filtered out.

REST-API

Since we wanted to store data in a database, a REST-API had to be implemented as a connection

point between the database and the GUI.

The REST-API follows the request-reply pattern, where you want the REST-API to be so-called

’stateless’. It should not be required to store/remember any state in the server but rather on the

client. Regarding being ’stateless’, the REST-API state is being violated to a small degree since

the endpoints /sensors and /videos does store some information through global variables. A

solution to this could be by creating a new separate API to handle the stream of live data and the

serving of larges files, whilst the current REST-API could be purely used interactions with the

database.

CHAPTER 6. DISCUSSION 150

Database

The experience with using SQL as our database turned out to work very well. As its structured

now, the waypoints is connected to waypointsessions through the use of session_id, where it

could have been used a relationship instead (ex: one-to-many). The many-to-many relationship

was not used throughout as it did not fit in any logical way. Even though the types of sensor data

was changing a lot during development, it was relatively easy to change field names and field

types of the SQL tables.

6.1.5 Digital Twin

The simulation works as well as one could expect, given the limitations of the AGX software. It

can test different parts of the ROV and even proved helpful to us when the limitations of the

physical ROV prevented us from testing some of the ROV systems and the communication be-

tween them. The simulation can be slow; when simulating it, the time to calculate each second

can be as high as 20 seconds per second if recording the simulation. The simulation is highly de-

pendent on the computer running the simulation, but it can present some challenges for using

the software.

Communication with system

The communication between the Digital Twin and the rest of the system works as intended 5.4.

It communicates as the sensors in the surface unit, ROV and the motors for the wings in the

ROV. This means that for use as a platform for testing software, it fulfils its purpose in this aspect

despite its differences from a real system.

6.1.5.1 Differences between the physical systems and Digital Twin

When building the Digital Twin using the AGX software, we could not recreate the instability we

experienced with the physical ROV. This is because of the limitations of the AGX software. AGX

does not consider the physics of flow 2.12.4 and turbulence 2.12.1.2 in its calculation 3.5.2.5 [6].

Therefore turbulence and laminar flow does not affect the simulation in the same way it affects

the physical ROV.

CHAPTER 6. DISCUSSION 151

During the testing of the physical ROV, we found that the system’s stability regarding pitch was

relatively low. Especially in the earlier sea trails before we added the tail (see 5.11.2, 5.11.4 and

5.11.4). In addition, the wing’s ability to control the depth of the ROV was relatively limited.

When simulating the system, the stability of the ROV seemed to be completely different com-

pared to that of the physical system as seen in 5.25 and 5.44.

This is because of how hydrodynamics is calculated in the physics simulation. When AGX Dy-

namics calculates hydrodynamics, it considers the effect of water as a constant field. The dis-

turbances caused by the ROV on the water are not considered [6].

This means that the AGX Dynamics simulation cannot calculate any turbulence and other dis-

turbing forces. Therefore, it is important to build a ROV body that minimises turbulence if the

simulation is to be accurate. By having sharp edges and edges perpendicular to the towing di-

rection, the drag and turbulence of the ROV are increased 2.12.1, so these should be minimised

to make the simulation more accurate and make the ROV perform better.

The original version of the ROV had large perpendicular angles relative to the towed direction

and had sharp edges. These sharp edges and large surfaces will cause Vortex sheering behind

the ROV 2.12.1.2, which might be what caused the instability of the physical systems.

Because of these reasons, it might be advantageous to instead use a simulation software more

suited to this kind of simulation.

6.1.6 Communication

To retrieve the camera feed from the ROV, we used a TCP server/client pattern that worked quite

well. Since we wanted to save the images from the ROV, we did not want to create validation

checks before saving the image to the database. Therefore we used TCP from the start, which

allowed for a reliable transfer of images without any problems. As we tested various resolution,

we found that 640x480 pixels were enough to see what was going on. The bandwidth using

this resolution was approximately 10-15% of the 74.6 Mbits/s network bandwidth (from Figure

CHAPTER 6. DISCUSSION 152

5.3.1), which allows for more sensor data to be sent from the ROV. The FPS difference between

using TCP and UDP was identical, capping on around 30 FPS. The camera TCP server in the ROV

allowed only one connection by the TCP client in the REST-API. Whenever a sudden crash hap-

pened due to unforeseen actions, the TCP server just discarded the current client and allowed

new camera TCP clients to connect without crashing.

As we planned the project initially, we started using ZMQ, which we slowly scaled and devel-

oped into the software system for handling communication between the REST-API and the three

entities: Surface Unit, ROV and the Sonar API. As most of the data was coming from the ZMQ

Publishers to ZMQ Subscribers inside the REST-API, we could easily collect the data through

multiprocessing queues that worked quite well. When allowing the sensor data publishing fre-

quency to freewheel from the ROV, various problems occurred, which was the primary explana-

tion for predefining the publishing frequency on the various systems.

Another positive contribution of using ZMQ is its popularity and reputation. Creating a software

system that relies on this protocol has turned out to work without any significant problems. By

not trying to reinvent the wheel by creating our implementation of low-level TCP servers and

clients, we based our implementations on top of ZMQ. This measure allowed the group to focus

on the actual functionality of the software systems.

6.1.7 Camera and lights

From the result (Section 5.9) of the camera test at Runde, we can assume that an adjusted focus

for this depth will provide a good photo of the seafloor with enough lighting. Daylight is essen-

tial. The lack of daylight is clearly shown when the camera is tested at night in Voldsdalsvågen

Marina. Even though the lights are at full brightness, the length of vision is not as far as in day-

light at lower brightness. In total, the lights should be enough for getting decent images as long

as the daylight gives a considerable amount of light.

For the camera, on the other hand, we are not so sure that it is sufficient enough. We take out

the factor of the quality that all image is out of focus. At the night test, the camera does not

CHAPTER 6. DISCUSSION 153

perform any better than our own eyes. Therefore we do not believe that the camera is suited for

the greater depths, where the amount of daylight is reduced. On the other hand, for this project,

future groups should be able to cope with the quality of the current camera.

6.2 Project accomplishments

This section includes a discussion of how the project was carried out. We will talk about how the

project was designed and the numerous experiences we gained, and the challenges we faced.

6.2.1 Distribution of work

The group members have to a certain degree, different experience when it comes to hardware

and software. In order to ensure a logically sound project plan, the tasks to implement the var-

ious software and hardware systems have been delegated by experience to a certain degree.

Where one participant may have been more invested in the hardware and electronic aspects of

the project, while another was more engaged in the software design, we have all learned from

each other and advanced in our areas of expertise.

6.2.2 Unforeseen consequences

The subsections below contain the segments responsible for causing the delays and issues dur-

ing this project.

6.2.2.1 Electronics

We mentioned in sections 5.8, that multiple sea trials have been ended with electronics prob-

lem, mostly the 12 volt supply. All of them was after the ROV was filled with oil. It is to believe

that the constant struggle with electronics is due to the oil. In section 3.2.1 it was mention that

the food oil used is non-conduction; this is also tested in section 4.8.3.2 and confirmed. While

the oil itself is non-conductive, we believe that the oil could have transported particles of electri-

cally conductive material. From section 5.8, dirt is attached to the 12 volt supply, strengthening

this assumption.

CHAPTER 6. DISCUSSION 154

Other devices that had broken down was the RPi and stepper driver. Common for all is un-

potted electronics where the components are closely mounted together, and sometimes these

started working again. In contrast, the Arduino, which has components at a greater distance,

had not had the same issue.

Due to different problem appearing and checking if the oil is conductive, we have not drawn

the assumption stated above early enough to test with fully potted electronics. Troubleshooting

has been challenging due to problem appearing and disappearing before finding a fault; this has

thrown us off the assumption of particles in the oil causing problem.

6.2.2.2 Control system

As the prototype has yet to operate in greater range of depth, and the production of a new pro-

totype was not finished, there was no need to change the control system. We believe that a new

control system is not needed before the existing PID controller is tested, not to be sufficient.

6.2.2.3 Position estimation

A good amount of research has been put into estimation the ROV position. Due to problem at

Sea trail workload have been shifted and the estimation got little attention. Therefore only an

estimation using the Pythagoras theorem was used. The extensive drag from ROV will make the

cable go in a straight line to the ROV, improving this estimation while driving straight forward.

6.2.3 Improvements

As we’ve created a working system, its still room for improvement. To further increase the ro-

bustness and functionality of the project, the following suggestions could be favoured:

6.2.3.1 Hardware

• Electronics should be potted to avoid a possible faulty devices.

• Improve the ROVs hydrodynamical behaviour,

CHAPTER 6. DISCUSSION 155

• Test types of wings to find the optimal size and shape.

• Change transmission system and motor to handle more torque.

6.2.3.2 Software

• Enhance the side-scan sonar image with image processing.

• Use Machine Learning to detect crab/lobster trap or similar.

• Implement a offline-version of Leaflet whenever internet is unavailable.

• Switch to interactive map tiles with higher zoom capabilities.

• Switching from AGX dynamics to an other simulation software more suited to simulating

hydrodynamics.

Chapter 7

Conclusions

The purpose of this years Towed ROV project was to develop a new software system with new

and improved functionalities. With the addition of the new software and a reduced and im-

proved hardware configuration, future groups can focus on developing new parts of the Towed

ROV instead of facing fundamental software issues.

In light of the project requirements outlined in the preliminary report, it is apparent that the

project results represent the thesis’s main focus areas. The ROV can be operated by the re-

searchers using a new GUI with supporting software applications such as a REST-API and database

to acquire informative data from the sea through hydrographic surveying with side-scan sonar

and other useful sensors.

Implementing a new controller and a mathematical model of the ROV was not fulfilled, as the

focus was on improving the ROVs hydro-dynamical behaviour and addressing issues that need

to be changed for the project to proceed.

Further work on the Digital Twin was done to implement the new software and test the seafloor

tracking algorithm. The test indicates that the Digital Twin can be used to test changes regard-

ing the software. However, the limited hydrodynamic simulation cannot properly represent the

ROV, as the physical system is exposed to significantly more disturbance.

156

CHAPTER 7. CONCLUSIONS 157

All things considered, the group believes the final product in this project is a decent proof of

concept. Furthermore, with further improvement of the prototype, the Towed ROV -project can

be used to identify ghost fishing equipment. The project has given the group much experience

in terms of planning and execution. Many problems and unexpected difficulties have arisen in

recent months. These problems were solved using each other’s experience and abilities whilst

also learning new things on the way.

Bibliography

[1] National Marine Electronics Association - NMEA 0183. URL https://www.nmea.org/

content/STANDARDS/NMEA_0183_Standard. publisher: National Marine Electronics As-

sociation.

[2] Virtual serial port driver. URL https://www.virtual-serial-port.org/. Accessed:

2021-05-07.

[3] Hydrographic surveying - methods, applications and uses, Oct 2016. URL https:

//theconstructor.org/surveying/hydrographic-surveying-methods-uses/

13838/#:~:text=Hydrographicsurveyingorbathymetricsurveying,

marineconstructions,offshoredrillingetc.

[4] NMEA FAQ | NMEA Products, October 2019. URL https://nmea.gr/2019/10/20/

nmea-faq/.

[5] Serial communication, 2021. URL https://www.ibm.com/docs/en/aix/7.2?topic=

communications-serial-communication.

[6] Algoryx Simulation AB. 30. hydro- and aerodynamics. URL https://www.algoryx.

se/documentation/complete/agx/tags/latest/UserManual/source/hydro__and_

aerodynamics.html.

[7] Algoryx Simulation AB. Agx, 2021. URL https://www.algoryx.se/.

[8] DeepVision AB. Sonar software: Deepview fv, 2018. URL https://deepvision.se/

download/sonar-software/.

158

https://www.nmea.org/content/STANDARDS/NMEA_0183_Standard
https://www.nmea.org/content/STANDARDS/NMEA_0183_Standard
https://www.virtual-serial-port.org/
https://theconstructor.org/surveying/hydrographic-surveying-methods-uses/13838/#:~:text=Hydrographic surveying or bathymetric surveying,marine constructions, offshore drilling etc.
https://theconstructor.org/surveying/hydrographic-surveying-methods-uses/13838/#:~:text=Hydrographic surveying or bathymetric surveying,marine constructions, offshore drilling etc.
https://theconstructor.org/surveying/hydrographic-surveying-methods-uses/13838/#:~:text=Hydrographic surveying or bathymetric surveying,marine constructions, offshore drilling etc.
https://theconstructor.org/surveying/hydrographic-surveying-methods-uses/13838/#:~:text=Hydrographic surveying or bathymetric surveying,marine constructions, offshore drilling etc.
https://nmea.gr/2019/10/20/nmea-faq/
https://nmea.gr/2019/10/20/nmea-faq/
https://www.ibm.com/docs/en/aix/7.2?topic=communications-serial-communication
https://www.ibm.com/docs/en/aix/7.2?topic=communications-serial-communication
https://www.algoryx.se/documentation/complete/agx/tags/latest/UserManual/source/hydro__and_aerodynamics.html
https://www.algoryx.se/documentation/complete/agx/tags/latest/UserManual/source/hydro__and_aerodynamics.html
https://www.algoryx.se/documentation/complete/agx/tags/latest/UserManual/source/hydro__and_aerodynamics.html
https://www.algoryx.se/
https://deepvision.se/download/sonar-software/
https://deepvision.se/download/sonar-software/

BIBLIOGRAPHY 159

[9] US Naval Academy. Approximate metric equivalents for degrees, minutes, and

seconds. URL https://www.usna.edu/Users/oceano/pguth/md_help/geology_

course/marine_survey/sonar_instruments.htm. accessed 14-May-2021.

[10] Adafruit. Adafruit 9dof library, 2020. URL https://github.com/adafruit/Adafruit_

9DOF.

[11] Segun Adebayo. Chakra ui, 2019. URL https://chakra-ui.com/.

[12] Vladimir Agafonkin. Leaflet, 2019. URL https://leafletjs.com/.

[13] Gaudenz Alder. Drawio, 2016. URL https://app.diagrams.net/.

[14] Arduino. Language reference, . URL https://www.arduino.cc/reference/en/. Ac-

cessed 13 May 2021.

[15] Arduino. Arduino libraries, . URL https://www.arduino.cc/en/Hacking/Libraries.

Accessed 13 May 2021.

[16] Arduino. Arduino, 2021. URL https://www.arduino.cc/.

[17] Autodesk. Fusion 360, 2021. URL https://www.autodesk.com/products/fusion-360/

overview?term=1-YEAR.

[18] Axios. Axios, 2014. URL https://github.com/axios/axios.

[19] Terry Bartelt. Oscilloscope, dc voltage measurements. URL https:

//www.wisc-online.com/learn/career-clusters/stem/ace3403/

oscilloscope-dc-voltage-measurements. Accessed: 2021-05-10.

[20] Michael Bayer. Sqlalchemy. In Amy Brown and Greg Wilson, editors, The Architecture

of Open Source Applications Volume II: Structure, Scale, and a Few More Fearless Hacks.

aosabook.org, 2012. URL http://aosabook.org/en/sqlalchemy.html.

[21] Jim Blom. Serial communication. URL https://learn.sparkfun.com/tutorials/

serial-communication/all.

https://www.usna.edu/Users/oceano/pguth/md_help/geology_course/marine_survey/sonar_instruments.htm
https://www.usna.edu/Users/oceano/pguth/md_help/geology_course/marine_survey/sonar_instruments.htm
https://github.com/adafruit/Adafruit_9DOF
https://github.com/adafruit/Adafruit_9DOF
https://chakra-ui.com/
https://leafletjs.com/
https://app.diagrams.net/
https://www.arduino.cc/reference/en/
https://www.arduino.cc/en/Hacking/Libraries
https://www.arduino.cc/
https://www.autodesk.com/products/fusion-360/overview?term=1-YEAR
https://www.autodesk.com/products/fusion-360/overview?term=1-YEAR
https://github.com/axios/axios
https://www.wisc-online.com/learn/career-clusters/stem/ace3403/oscilloscope-dc-voltage-measurements
https://www.wisc-online.com/learn/career-clusters/stem/ace3403/oscilloscope-dc-voltage-measurements
https://www.wisc-online.com/learn/career-clusters/stem/ace3403/oscilloscope-dc-voltage-measurements
http://aosabook.org/en/sqlalchemy.html
https://learn.sparkfun.com/tutorials/serial-communication/all
https://learn.sparkfun.com/tutorials/serial-communication/all

BIBLIOGRAPHY 160

[22] The Editors of Encyclopaedia Britannica. Turbulent flow, 2020. URL https://www.

britannica.com/science/turbulent-flow. Accessed 13 May 2021.

[23] The SciPy community. What is numpy?, 2021. URL https://numpy.org/doc/stable/

user/whatisnumpy.html.

[24] Dassault Systèmes SolidWorks Corporation. Solidworks, 2021. URL https://www.

solidworks.com/.

[25] Ryan Dahl. Node.js, 2009. URL https://en.wikipedia.org/wiki/Node.js.

[26] Deepvision. URL https://deepvision.se/.

[27] Bruce A. Mah Jeff Poskanzer Kaustubh Prabhu Dugan, Seth Elliott. The ultimate speed

test tool for tcp, udp and sctp, 2021. URL https://iperf.fr/.

[28] IBM Cloud Education. Three-tier architecture, 2020. URL https://www.ibm.com/

cloud/learn/three-tier-architecture.

[29] Ole Alexander Eidsvik. Identification of hydrodynamic parameters for remotely operated

vehicles. URL https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2350869. lo-

cations of importance:’2.25(Vortex Shredding)’,’3.1.4(Damping)’.

[30] Tom Flanagan. pynmea2. URL https://github.com/Knio/pynmea2.

[31] Thor I. Fossen. Handbook of Marine Craft Hydrodynamics and Motion Control. JOHN

WILEY and SONS, Ltd., John Wiley and Sons Ltd, The Atrium, Southern Gate, Chichester,

West Sussex, PO19 8SQ, United Kingdom, 2011.

[32] Python Software Foundation. Event, 2021. URL https://docs.python.org/3/

library/multiprocessing.html#multiprocessing.Event.

[33] Python Software Foundation. Process, 2021. URL https://docs.python.org/3/

library/multiprocessing.html#multiprocessing.Process.

[34] Python Software Foundation. Queue, 2021. URL https://docs.python.org/3/

library/multiprocessing.html#multiprocessing.Queue.

https://www.britannica.com/science/turbulent-flow
https://www.britannica.com/science/turbulent-flow
https://numpy.org/doc/stable/user/whatisnumpy.html
https://numpy.org/doc/stable/user/whatisnumpy.html
https://www.solidworks.com/
https://www.solidworks.com/
https://en.wikipedia.org/wiki/Node.js
https://deepvision.se/
https://iperf.fr/
https://www.ibm.com/cloud/learn/three-tier-architecture
https://www.ibm.com/cloud/learn/three-tier-architecture
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2350869
https://github.com/Knio/pynmea2
https://docs.python.org/3/library/multiprocessing.html#multiprocessing.Event
https://docs.python.org/3/library/multiprocessing.html#multiprocessing.Event
https://docs.python.org/3/library/multiprocessing.html#multiprocessing.Process
https://docs.python.org/3/library/multiprocessing.html#multiprocessing.Process
https://docs.python.org/3/library/multiprocessing.html#multiprocessing.Queue
https://docs.python.org/3/library/multiprocessing.html#multiprocessing.Queue

BIBLIOGRAPHY 161

[35] Python Software Foundation. Thread, 2021. URL https://docs.python.org/3/

library/threading.html?highlight=threading#thread-objects.

[36] Python Software Foundation. Event, 2021. URL https://docs.python.org/3/

library/threading.html?highlight=threading#event-objects.

[37] Python Software Foundation. Queue, 2021. URL https://docs.python.org/3/

library/queue.html#module-queue.

[38] Python Software Foundation. Threading, 2021. URL https://docs.python.org/3/

library/threading.html?highlight=threading#module-threading.

[39] Python Software Foundation. Multiprocessing, 2021. URL https://docs.python.org/

3/library/multiprocessing.html#module-multiprocessing.

[40] Fritzing. Fritzing, 2021. URL https://fritzing.org/.

[41] Janet Heath. Pwm: Pulse width modulation: What is it and how does it work?, 2017. URL

https://www.analogictips.com/pulse-width-modulation-pwm/.

[42] Bjørn Pedersen Helmut Ormestad, Øyvind Grøn. Hydrodynamikk. URL https://snl.

no/hydrodynamikk. Accessed 14. may 2021.

[43] Pieter Hintjens. Chapter 5 - advanced pub-sub patterns, 2012. URL https://zguide.

zeromq.org/docs/chapter5/.

[44] Pieter Hintjens. Chapter 3 - advanced request-reply patterns, 2012. URL https://

zguide.zeromq.org/docs/chapter3/.

[45] Pieter Hintjens. Ømq - the guide, 2012. URL https://zguide.zeromq.org/docs/

chapter1/.

[46] Pieter Hintjens. Zeromq - github, 2021. URL https://github.com/zeromq/libzmq.

[47] https://github.com/samuelcolvin/pydantic/. Pydantic, 2017. URL https://github.

com/samuelcolvin/pydantic/.

https://docs.python.org/3/library/threading.html?highlight=threading#thread-objects
https://docs.python.org/3/library/threading.html?highlight=threading#thread-objects
https://docs.python.org/3/library/threading.html?highlight=threading#event-objects
https://docs.python.org/3/library/threading.html?highlight=threading#event-objects
https://docs.python.org/3/library/queue.html#module-queue
https://docs.python.org/3/library/queue.html#module-queue
https://docs.python.org/3/library/threading.html?highlight=threading#module-threading
https://docs.python.org/3/library/threading.html?highlight=threading#module-threading
https://docs.python.org/3/library/multiprocessing.html#module-multiprocessing
https://docs.python.org/3/library/multiprocessing.html#module-multiprocessing
https://fritzing.org/
https://www.analogictips.com/pulse-width-modulation-pwm/
https://snl.no/hydrodynamikk
https://snl.no/hydrodynamikk
https://zguide.zeromq.org/docs/chapter5/
https://zguide.zeromq.org/docs/chapter5/
https://zguide.zeromq.org/docs/chapter3/
https://zguide.zeromq.org/docs/chapter3/
https://zguide.zeromq.org/docs/chapter1/
https://zguide.zeromq.org/docs/chapter1/
https://github.com/zeromq/libzmq
https://github.com/samuelcolvin/pydantic/
https://github.com/samuelcolvin/pydantic/

BIBLIOGRAPHY 162

[48] https://www.highcharts.com/. Highcharts, 2009. URL https://www.highcharts.com/.

[49] Adam Hughes. Database, 2019. URL https://searchdatamanagement.techtarget.

com/definition/database.

[50] Imagenex. Sidescan sonar kit. URL https://imagenex.com/products/

sidescan-sonar-kit. accessed=.

[51] iMatix. Pyzmq, 2010. URL https://github.com/zeromq/pyzmq.

[52] Blue Robotics Inc. Lumen subsea lights. URL https://bluerobotics.com/store/

thrusters/lights/lumen-sets-r2-rp/. Accessed: 2021-05-07.

[53] Blue Robotics Inc. Ping-arduino, 2019. URL https://github.com/bluerobotics/

ping-arduino.

[54] Blue Robotics Inc. Bluerobotics ms5837 library, 2021. URL https://github.com/

bluerobotics/BlueRobotics_MS5837_Library.

[55] Facebook Inc. Create react app, 2013. URL https://create-react-app.dev/docs/

getting-started.

[56] Stack Exchange Inc. Stack overflow trends, 2021. URL https://insights.

stackoverflow.com/trends.

[57] Adafruit Industries. Adafruit circuitpython gps. URL https://github.com/adafruit/

Adafruit_CircuitPython_GPS.

[58] Adafruit Industries. Adafruit ultimate gps, 2021. URL https://cdn-learn.adafruit.

com/downloads/pdf/adafruit-ultimate-gps.pdf.

[59] Autun Purser Yann Marcon Martin Ludvigsen Steinar L. Ellefmo Geir Johnsen Ines Dumke,

Stein M. Nornes and Fredrik Søreide. First hyperspectral imaging survey of the

deep seafloor: High-resolution mapping of manganese nodules. Remote Sensing

of Environment, 209:19–30, 2018. ISSN 0034-4257. doi: https://doi.org/10.1016/

j.rse.2018.02.024. URL https://www.sciencedirect.com/science/article/pii/

S0034425718300300.

https://www.highcharts.com/
https://searchdatamanagement.techtarget.com/definition/database
https://searchdatamanagement.techtarget.com/definition/database
https://imagenex.com/products/sidescan-sonar-kit
https://imagenex.com/products/sidescan-sonar-kit
https://github.com/zeromq/pyzmq
https://bluerobotics.com/store/thrusters/lights/lumen-sets-r2-rp/
https://bluerobotics.com/store/thrusters/lights/lumen-sets-r2-rp/
https://github.com/bluerobotics/ping-arduino
https://github.com/bluerobotics/ping-arduino
https://github.com/bluerobotics/BlueRobotics_MS5837_Library
https://github.com/bluerobotics/BlueRobotics_MS5837_Library
https://create-react-app.dev/docs/getting-started
https://create-react-app.dev/docs/getting-started
https://insights.stackoverflow.com/trends
https://insights.stackoverflow.com/trends
https://github.com/adafruit/Adafruit_CircuitPython_GPS
https://github.com/adafruit/Adafruit_CircuitPython_GPS
https://cdn-learn.adafruit.com/downloads/pdf/adafruit-ultimate-gps.pdf
https://cdn-learn.adafruit.com/downloads/pdf/adafruit-ultimate-gps.pdf
https://www.sciencedirect.com/science/article/pii/S0034425718300300
https://www.sciencedirect.com/science/article/pii/S0034425718300300

BIBLIOGRAPHY 163

[60] S. Widnall J. Peraire. Lecture l29 - 3d rigid body dynamics, 16.07 dynamics fall

2009, 2009. URL https://ocw.mit.edu/courses/aeronautics-and-astronautics/

16-07-dynamics-fall-2009/lecture-notes/MIT16_07F09_Lec29.pdf.

[61] JIMBLOM. Serial communication, 2012. URL https://learn.sparkfun.com/

tutorials/serial-communication/uarts.

[62] Norvald Kjerstad and Norvald Kjerstad (NTNU). ekkolodd. URL https://snl.no/

ekkolodd.

[63] Benny Lautrup. Physics of Continuous Matter, Exotic and Everyday Phenomena in the

Macroscopic World. Institute of Physics Publishing, Temple Back, Bristol BS1 6BE, UK,

2005.

[64] Huibert-Jan Lekkerkerk. Technology in focus: Insides of side-scan sonar,

Apr 2021. URL https://www.hydro-international.com/content/article/

insides-of-side-scan-sonar.

[65] Chris Liechti. Welcome to pyserial’s documentation, 2015. URL https://pythonhosted.

org/pyserial/.

[66] Bohan Liu, Zhaojun Liu, Shaojie Men, Yongfu Li, Zhongjun Ding, Jiahao He, and Zhigang

Zhao. Underwater hyperspectral imaging technology and its applications for detecting

and mapping the seafloor: A review. Sensors, 20(17), 2020. ISSN 1424-8220. doi: 10.3390/

s20174962. URL https://www.mdpi.com/1424-8220/20/17/4962.

[67] Encode OSS Ltd. Uvicorn, 2017-2021. URL https://www.uvicorn.org/.

[68] Martin Ludvigsen, Geir Johnsen, Petter Lagstad, Asgeir Sørensen, and Oyvind Odegard.

Scientific operations combining rov and auv in the trondheim fjord. volume 48, pages

1–7, 06 2013. ISBN 978-1-4799-0000-8. doi: 10.1109/OCEANS-Bergen.2013.6608194.

[69] University of Rhode Island and Inner Space Center. Echosounder, Jan 2019. URL https:

//dosits.org/galleries/technology-gallery/observing-the-sea-floor/

echosounder/.

https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-07-dynamics-fall-2009/lecture-notes/MIT16_07F09_Lec29.pdf
https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-07-dynamics-fall-2009/lecture-notes/MIT16_07F09_Lec29.pdf
https://learn.sparkfun.com/tutorials/serial-communication/uarts
https://learn.sparkfun.com/tutorials/serial-communication/uarts
https://snl.no/ekkolodd
https://snl.no/ekkolodd
https://www.hydro-international.com/content/article/insides-of-side-scan-sonar
https://www.hydro-international.com/content/article/insides-of-side-scan-sonar
https://pythonhosted.org/pyserial/
https://pythonhosted.org/pyserial/
https://www.mdpi.com/1424-8220/20/17/4962
https://www.uvicorn.org/
https://dosits.org/galleries/technology-gallery/observing-the-sea-floor/echosounder/
https://dosits.org/galleries/technology-gallery/observing-the-sea-floor/echosounder/
https://dosits.org/galleries/technology-gallery/observing-the-sea-floor/echosounder/

BIBLIOGRAPHY 164

[70] Oracle. What a relational database is, 2021. URL https://www.oracle.com/database/

what-is-a-relational-database/.

[71] Visual Paradigm. What is entity relationship diagram, 2020.

URL https://www.visual-paradigm.com/guide/data-modeling/

what-is-entity-relationship-diagram/.

[72] Teguh Putranto and Aries Sulisetyono. Lift-drag coefficient and form factor analyses of hy-

drofoil due to the shape and angle of attack. International Journal of Applied Engineering

Research, 12:11152–11156, 01 2017.

[73] Imane Hassanain Souad Ismaili Alaoui Meryem Belgharza Fadwa Elmakhoukhi El Habib

El Azzouzi Mohamed Alaoui El Belghiti Rajae Rochdi, Khouloud Lakari. Study of the elec-

trical properties of vegetable oils as an alternative to mineral insulating oils. Advances in

Environmental Biology, pages 1–4, 2014.

[74] Sebastián Ramírez. Fastapi, 2018. URL https://fastapi.tiangolo.com/.

[75] Sebastián Ramírez. Fastapi: Streamingresponse, 2018. URL https://fastapi.

tiangolo.com/advanced/custom-response/?h=streaming#streamingresponse.

[76] ReactTraining. React-router, 2021. URL https://reactrouter.com/.

[77] RealVNC. Realvnc, 2021. URL https://www.realvnc.com/en/.

[78] C. C. Robusto. The cosine-haversine formula. (USA). Mathematical Association of

America, 64(1):38–40, 1957. doi: http://www.jstor.org/stable/pdf/2309088.pdf.

[79] Álvaro Rodríguez Luis, José Antonio Armesto, Raúl Guanche, Carlos Barrera, and César

Vidal. Simulation of marine towing cable dynamics using a finite elements method.

Journal of Marine Science and Engineering, 8(2), 2020. ISSN 2077-1312. doi: 10.3390/

jmse8020140. URL https://www.mdpi.com/2077-1312/8/2/140.

[80] Tina Rosado. Hydrofoils. URL https://web.mit.edu/2.972/www/reports/

hydrofoil/hydrofoil.html. Accessed 15. may 2021.

https://www.oracle.com/database/what-is-a-relational-database/
https://www.oracle.com/database/what-is-a-relational-database/
https://www.visual-paradigm.com/guide/data-modeling/what-is-entity-relationship-diagram/
https://www.visual-paradigm.com/guide/data-modeling/what-is-entity-relationship-diagram/
https://fastapi.tiangolo.com/
https://fastapi.tiangolo.com/advanced/custom-response/?h=streaming#streamingresponse
https://fastapi.tiangolo.com/advanced/custom-response/?h=streaming#streamingresponse
https://reactrouter.com/
https://www.realvnc.com/en/
https://www.mdpi.com/2077-1312/8/2/140
https://web.mit.edu/2.972/www/reports/hydrofoil/hydrofoil.html
https://web.mit.edu/2.972/www/reports/hydrofoil/hydrofoil.html

BIBLIOGRAPHY 165

[81] Eirik Rossen. Api, 2020. URL https://snl.no/API.

[82] SFUptownMaker. I2c, 2013. URL https://learn.sparkfun.com/tutorials/i2c/all.

[83] Keith Shaw and Josh Fruhlinger. What is a digital twin and why it’s important to

iot. Network World, 2019. doi: https://www.networkworld.com/article/3280225/

what-is-digital-twin-technology-and-why-it-matters.html.

[84] Siemens. Siemens nx, 2021. URL https://www.plm.automation.siemens.com/

global/en/products/nx/.

[85] SmartBear Software. Paths and operations, 2021. URL https://swagger.io/docs/

specification/paths-and-operations/.

[86] SmartBear Software. Swagger ui, 2021. URL https://swagger.io/tools/swagger-ui/.

[87] StarFish. Starfish sidescan sonars. URL https://www.blueprintsubsea.com/

starfish/index.php.

[88] Sysid. Server sent events, 2021. URL https://sysid.github.io/sse/.

[89] A. H. Techet. Vortex induced vibrations, 2005. URL

https://ocw.mit.edu/courses/mechanical-engineering/

2-22-design-principles-for-ocean-vehicles-13-42-spring-2005/readings/

lec20_viv1.pdf.

[90] Airmar technology Corporation. Dst800. URL https://www.airmar.com/images/

uploads/brochures/DST800.pdf.

[91] Airmar technology Corporation. Owner’s guide and installation instructions, 2020. URL

https://www.airmar.com/uploads/InstallGuide/17-435-01.pdf.

[92] Raccoon Thai and Henry Pham. Tableplus, 2017. URL https://docs.tableplus.com/.

[93] Inc The Mathworks. Matlab, 2021. URL https://www.mathworks.com/products/

matlab.html.

https://snl.no/API
https://learn.sparkfun.com/tutorials/i2c/all
https://www.plm.automation.siemens.com/global/en/products/nx/
https://www.plm.automation.siemens.com/global/en/products/nx/
https://swagger.io/docs/specification/paths-and-operations/
https://swagger.io/docs/specification/paths-and-operations/
https://swagger.io/tools/swagger-ui/
https://www.blueprintsubsea.com/starfish/index.php
https://www.blueprintsubsea.com/starfish/index.php
https://sysid.github.io/sse/
https://ocw.mit.edu/courses/mechanical-engineering/2-22-design-principles-for-ocean-vehicles-13-42-spring-2005/readings/lec20_viv1.pdf
https://ocw.mit.edu/courses/mechanical-engineering/2-22-design-principles-for-ocean-vehicles-13-42-spring-2005/readings/lec20_viv1.pdf
https://ocw.mit.edu/courses/mechanical-engineering/2-22-design-principles-for-ocean-vehicles-13-42-spring-2005/readings/lec20_viv1.pdf
https://www.airmar.com/images/uploads/brochures/DST800.pdf
https://www.airmar.com/images/uploads/brochures/DST800.pdf
https://www.airmar.com/uploads/InstallGuide/17-435-01.pdf
https://docs.tableplus.com/
https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html

BIBLIOGRAPHY 166

[94] Timur. Earth radius by latitude (wgs 84), 2018. URL https://planetcalc.com/7721/.

[95] Tritech. Learn more about side scan sonars. URL https://www.tritech.co.uk/

uploaded_files/SideScanSonars.pdf.

[96] Ultimaker. Ultimaker cura, 2021. URL https://ultimaker.com/software/

ultimaker-cura.

[97] Chris Veness. The haversine formula, 2020. URL https://www.movable-type.co.uk/

scripts/latlong.html.

[98] Gordon Wetzstein. Lecture 9 ee 267 virtual reality, February 2013. URL https://

stanford.edu/class/ee267/lectures/lecture9.pdf.

[99] Wikipedia contributors. Python (programming language), 1991. URL https://en.

wikipedia.org/wiki/Python_(programming_language).

[100] Wikipedia contributors. Electron, 2013. URL https://en.wikipedia.org/wiki/

Electron_(software_framework).

[101] Wikipedia contributors. Microsoft teams, 2017. URL https://en.wikipedia.org/

wiki/Microsoft_Teams.

[102] Wikipedia contributors. Javascript, 2021. URL https://en.wikipedia.org/wiki/

JavaScript.

[103] Wikipedia contributors. Opencv, 2021. URL https://en.wikipedia.org/wiki/OpenCV.

[104] Wikipedia contributors. Pycharm, 2021. URL https://en.wikipedia.org/wiki/

PyCharm.

[105] Wikipedia contributors. React, 2021. URL https://en.wikipedia.org/wiki/React_

(JavaScript_library).

[106] Wikipedia contributors. Structured query language, 2021. URL https://en.wikipedia.

org/wiki/SQL.

https://planetcalc.com/7721/
https://www.tritech.co.uk/uploaded_files/Side Scan Sonars.pdf
https://www.tritech.co.uk/uploaded_files/Side Scan Sonars.pdf
https://ultimaker.com/software/ultimaker-cura
https://ultimaker.com/software/ultimaker-cura
https://www.movable-type.co.uk/scripts/latlong.html
https://www.movable-type.co.uk/scripts/latlong.html
https://stanford.edu/class/ee267/lectures/lecture9.pdf
https://stanford.edu/class/ee267/lectures/lecture9.pdf
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/Electron_(software_framework)
https://en.wikipedia.org/wiki/Electron_(software_framework)
https://en.wikipedia.org/wiki/Microsoft_Teams
https://en.wikipedia.org/wiki/Microsoft_Teams
https://en.wikipedia.org/wiki/JavaScript
https://en.wikipedia.org/wiki/JavaScript
https://en.wikipedia.org/wiki/OpenCV
https://en.wikipedia.org/wiki/PyCharm
https://en.wikipedia.org/wiki/PyCharm
https://en.wikipedia.org/wiki/React_(JavaScript_library)
https://en.wikipedia.org/wiki/React_(JavaScript_library)
https://en.wikipedia.org/wiki/SQL
https://en.wikipedia.org/wiki/SQL

BIBLIOGRAPHY 167

[107] Wikipedia contributors. Sqlite, 2021. URL https://en.wikipedia.org/wiki/SQLite.

[108] Wikipedia contributors. Visual studio code — Wikipedia, the free encyclopedia,

2021. URL https://en.wikipedia.org/w/index.php?title=Visual_Studio_Code&

oldid=1023706400. [Online; accessed 19-May-2021].

[109] Wikipedia contributors. Discord (software), 2021. URL https://en.wikipedia.org/

wiki/Discord_(software).

[110] Wikipedia contributors. Foreign key, 2021. URL https://en.wikipedia.org/wiki/

Foreign_key.

[111] Wikipedia contributors. Primary key, 2021. URL https://en.wikipedia.org/wiki/

Primary_key.

[112] Wikipedia contributors. Representational state transfer, 2021. URL https://en.

wikipedia.org/wiki/Representational_state_transfer.

[113] Wikipedia contributors, 22 March 2005. URL https://en.wikipedia.org/wiki/File:

Vortex-street-animation.gif. Animation representing the two-dimensional flow

patterns behind a rounded obstacle, known as a Von Kármán vortex street.

[114] Wikipedia®. Internet protocol suite, 2021. URL https://en.wikipedia.org/wiki/

Internet_protocol_suite.

[115] WWF. New report from wwf says abandoned fishing gear an “immor-

tal menace” which must be central in the fight against plastic pollution,

2021. URL https://wwf.panda.org/wwf_news/press_releases/?983716/

New-report-from-WWF-says-abandoned-fishing-gear-an-immortal-menace-which-must-be-central-in-the-fight-against-plastic-pollution.

https://en.wikipedia.org/wiki/SQLite
https://en.wikipedia.org/w/index.php?title=Visual_Studio_Code&oldid=1023706400
https://en.wikipedia.org/w/index.php?title=Visual_Studio_Code&oldid=1023706400
https://en.wikipedia.org/wiki/Discord_(software)
https://en.wikipedia.org/wiki/Discord_(software)
https://en.wikipedia.org/wiki/Foreign_key
https://en.wikipedia.org/wiki/Foreign_key
https://en.wikipedia.org/wiki/Primary_key
https://en.wikipedia.org/wiki/Primary_key
https://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/File:Vortex-street-animation.gif
https://en.wikipedia.org/wiki/File:Vortex-street-animation.gif
https://en.wikipedia.org/wiki/Internet_protocol_suite
https://en.wikipedia.org/wiki/Internet_protocol_suite
https://wwf.panda.org/wwf_news/press_releases/?983716/New-report-from-WWF-says-abandoned-fishing-gear-an-immortal-menace-which-must-be-central-in-the-fight-against-plastic-pollution
https://wwf.panda.org/wwf_news/press_releases/?983716/New-report-from-WWF-says-abandoned-fishing-gear-an-immortal-menace-which-must-be-central-in-the-fight-against-plastic-pollution

Appendices

A Reports

A.1 Preproject report

168

DEPARTMENT OF ICT AND NATURAL SCIENCES

IE303612 - BACHELOR THESIS

Towed ROV

PRELIMINARY REPORT

Candidates

Sophus Stokke Fredborg

Jonas Halle

Jørgen Ringdal Sæter

Andreas Øie

Advisors

Runde Miljøsenter

Ottar Laurits Osen

Ronb Trulsen Bye

20 january, 2021

i

Summary

This report concerns the development of a modular and open-source towed ROV. It will have

the ability to connect a wide range of different sensors and has a camera and supports sonar

or hyperspectral imaging. With a live feed of the collected data and control of the ROV during

operations, and an intuitive GUI.

This project aims to create a cheap and easy to use alternative to commercial ROV’s for science

and data collection, the group has been contacted by Runge who want to use the ROV to look

for nets that are ghost fishing. Another focus of this project is to generalise and create software

for further development of towed ROV’s so that groups can focus on developing new parts of the

ROV instead of making the regulation, GUI or Communication between the ROV and topside.

Contents

Summary . i

1 Introduction 2

1.1 Background and choice of project . 2

2 Concepts 3

3 Project organization 4

3.1 Project group . 4

3.1.1 Assignments for the project group - organization 4

3.1.2 Assignments for project leader . 4

3.1.3 Assignments for secretary . 5

3.1.4 Assignments for software leader . 5

3.1.5 Assignments for all members . 5

3.2 Management group . 6

4 Agreements 7

4.1 Agreement with the client . 7

4.2 Workspace and resources . 7

4.3 Group agreements . 8

4.3.1 Work hours and attitude . 8

4.3.2 Cooperation . 8

4.3.3 Industry 4.0 . 9

5 Project description 10

5.1 Thesis problem . 10

5.2 Project requirements . 11

5.3 Development methodology . 11

5.4 Collecting information . 12

5.5 Risk analysis . 12

ii

CONTENTS 1

5.5.1 Illness issues . 13

5.5.2 Covid-19 . 13

5.5.3 Risc table . 14

5.6 Main work activities . 14

5.7 Project schedule . 16

5.7.1 Main project plan . 16

5.7.2 Project control assets . 17

5.7.3 Development assets . 17

5.7.4 Internal evaluating control . 18

5.8 Decision making process . 18

6 Documentation 19

7 Scheduled meetings and reports 20

7.1 Meetings . 20

7.1.1 Meetings with control group . 20

7.1.2 Internal meetings . 20

7.2 Periodical reports . 20

7.2.1 Progress report, including milestone . 20

8 Planned deviation management 21

9 Equipment requirements for project execution 22

Appendices 23

A Gantt diagram . 23

Chapter 1

Introduction

1.1 Background and choice of project

The towed-ROV was first built in 2018 for a bachelor project and was inspired by The Acrobat

from Sea Science Inc. The ROV was later modified by two consecutive bachelors and a mecha-

tronics project the fall of 2020. Two of the group members for this project worked on the ROV

in the mechatronics course. The project is given by NTNU Ålesund with Runde miljøsenter as a

partner.

There are several reasons for the choice of this project. First, we believe that there is a great

potential in a low budget open-source ROV, as it is able to cover large distances collecting data

and observing the seafloor. The project also has numerous challenges regarding control, oper-

ating the ROV, handling of data and physics.

The thesis problem is to develop software for operating any towed ROV with the same hard-

ware structure and collect sensor and camera data. Develop a control system for the current

ROV, making it possible to hold a constant depth and track the seafloor. We will also continue

the work on a digital twin.

2

Chapter 2

Concepts

ROV Remotely operated vehicle

PID Proportional integral derivative controller

GUI Graphical User Interface, makes it possible to interact with a computer

API Application Programming Interface, activates functions from a remote software

3

Chapter 3

Project organization

3.1 Project group

The group consists of four bachelor students at NTNU Ålesund: Sophus Stokke Fredborg, Jonas

Halle, Jørgen Ringdal Sæter and Andreas Øie.

3.1.1 Assignments for the project group - organization

Group lead:

• Jonas Halle

Software lead:

• Andreas Øie

Secretary:

• Rotates

3.1.2 Assignments for project leader

Responsibilities

• Group cooperation

• Time management

• Task delegation

Tasks

• Mediating conflicts

• Organising meetings

4

CHAPTER 3. PROJECT ORGANIZATION 5

3.1.3 Assignments for secretary

Responsibilities

• Logging meetings.

• Structure files.

Tasks

• Logging meetings.

• Add and sort files used in the project.

3.1.4 Assignments for software leader

Responsibilities

• Code style

• General responsibility for project software

Tasks

• Control the code style

• Decide on a code style

• Code review

3.1.5 Assignments for all members

Responsibilities

• Logging progress.

• Working the allotted time.

• Being available during work hours.

CHAPTER 3. PROJECT ORGANIZATION 6

Tasks

• Logging progress

• Supporting tasks delegated by the project leader or software leader.

• Report

3.2 Management group

The management group consists of Ottar L. Osen, Robin T. Bye and Øystein Bjelland.

Chapter 4

Agreements

4.1 Agreement with the client

4.2 Workspace and resources

Workspaces:

• The NTNU Ålesund Lab

• Working remotely from home

• Group / class rooms at NTNU Ålesund

Resources:

• Discord and Facebook for group communications.

• Computer with access to the internet and peer-reviewed articles through the NTNU net-

work

• The NTNU Ålesund Library

• Monetary support form NTNU and Runde Miljøsenter

Persons:

• Professors and Teachers at NTNU.

• Engineers and scientist at multiple companies

Data security and confidential information:

• The project is open source so all data and information will be made available to the public

domain.

7

CHAPTER 4. AGREEMENTS 8

4.3 Group agreements

4.3.1 Work hours and attitude

Base work time is weekdays from 9 to 15, with a minimum weekly time of at least 40 hours, If

someone cannot work these hours, they must notify the group and try to work on the weekend

or evenings instead. If group members break this agreement repeatedly, and talking to them

does not help, there will be consequences.

When working as an engineer, time management is essential. Engineers often have much in-

dependence in approaching their work, and it is therefore extra important to keep a good work-

flow. Having a structured work week might be extra important when normal work is impeded,

for example during a global pandemic, when most people work from home. Besides, there is a

need to be flexible when an engineer works because you might be working with people in dif-

ferent time zones. Engineers often work flexi-time, centred around a mandatory base time, but

the total amount of work in a week must be greater than the sum of the base time.

This bachelor uses this flex-time approach with a base time of 9 to 15 for 30 hours a week, but

an expected work time of 40 hours each week.

4.3.2 Cooperation

For reaching our objectives, every member of the group must contribute. For this reason, we

will have a weekly meeting to update each other on the last weeks’ work and to discuss the pri-

mary goals for the next week. This is done to make sure that everyone does their part, and it also

makes it possible to restructure tasks if something consumes more time than expected.

Almost every engineer will have to work with other people at some point, and in these cases,

cooperation is fundamental. For a project to go as well as possible, every member of the team

must contribute. When there are several people involved, it is not possible to have control of

every operation. For this reason, communication is essential. Every project has its problems

CHAPTER 4. AGREEMENTS 9

and challenges, and changes are almost guaranteed. If everyone tries to solve these problems

by them self, there will most likely be a lot of wasted time. Also, if a change is made, and another

team member is not informed, this person might have to redo some of the work which is already

done.

By introducing a platform where every member can share their progress and problems, it is a lot

easier to keep track of the ongoing project status, making it possible to solve problems together

when necessary. Our platform is a weekly meeting, shared documents and continues interac-

tion. The structure of the platform should be configured to each project. This will probably also

make the atmosphere better, as everyone is aware of the project status, and can contribute to

solve potential challenges and suggest changes if necessary.

If this platform is to work as intended, everyone must show respect for each other’s work and

skills. There will always be some people in a project that is more resourceful than others. If

the most resourceful members have an approach that allows the rest of the team to share ideas

and ask for suggestions, everyone will benefit. However, if the most resourceful members are

arrogant, the team will most likely suffer as the group chemistry will be hard to maintain. An-

other aspect of having an environment where everyone feels safe is that when someone makes

a mistake, they are more likely to tell the others. Being aware of mistakes early can be crucial

for the end product to be completed in time, without unnecessary expenses after the project is

completed.

4.3.3 Industry 4.0

All group members have the course Industry 4.0, and the week’s lectures in Industry 4.0 are

scheduled, most of the base work time expires. The base time will not be move, but group mem-

bers should work outside the base hours to keep up with the planned progress. Monday meeting

will be rescheduled to another day if its conflict with Industry 4.0.

Chapter 5

Project description

5.1 Thesis problem

Our objective in this bachelor is to develop a functioning ROV. The ROV will be Towed behind a

boat while collecting pictures, Sonar data, or other sensor data along the seafloor. The ROV will

have depth control regulation using two flippers connected to the sides. It will know the distance

between itself and the seafloor and regulate to keep the distance consistent. The ROV will send

the data it collects to a data bank on the boat. The ROV should also be controllable from the GUI.

The GUI should also have a live-feed of the data, and the ability to "mark" data of interest live

during the operation.

The ROV should be able to handle different kinds of sensors and should be modular so that

researchers can connect the sensors they need to the ROV.

The bachelor is open source and has four main focuses:

• Minimising cost The system should be cheap to produce so that it can be used even with

a smaller budget.

• Modular design With a modular design where the users can add or remove the sensors or

equipment they do not need, further reducing the system’s cost.

• Adaptable base system Part of the project is creating a base system that can be adapted

for new projects in the future.

• Ease of use The system should be relatively easy to use so that people not familiar with

automation can operate it.

10

CHAPTER 5. PROJECT DESCRIPTION 11

5.2 Project requirements

• Ability to support side scan sonar or Hyperspectral imaging

• A functioning topside GUI with a live feed of sensor data, pictures and sonar data, and live

control of the ROV.

• An Algorithm that stores the Sensor data from the ROV to a database in a structured and

logical form

• Depth control with the ROV down to a depth of 20 meters. Or as deep as our current

hardware allows for

• An algorithm that estimates test he distances from the seafloor to the ROV.

• Control algorithm that can keep a constant distance from the seafloor by using echo sounders.

• A camera with lights on the ROV

• Ability to mark places of interest in the data log during operation, for easy reference later.

5.3 Development methodology

In this project, we want first to develop an understanding of the systems we use. Therefore, we

start with writing a theory base for our systems and contacting experts to find the information

we need. At the same time, we need to order components to arrive in time for a practical start.

We will then create the software and prototypes necessary for testing the ROV; after testing, we

will make any necessary modifications and test again until this is no longer necessary. After this,

we will finalize the project and thesis.

We choose this method because we can test the system; this will then give us a more accurate

system.

CHAPTER 5. PROJECT DESCRIPTION 12

5.4 Collecting information

Done

• Experience from previous projects

• Read up on previous similar projects

• Investigated different technologies and software libraries to solve various problems.

To Do

• Investigate how various technologies could be implemented in a efficient way.

• Research on side scan sonar and hyper-spectral cameras for monitoring the sea floor

• Gather information for the theoretical base of the project.

• Read articles concerning useful methods concerning the project

• Find resources for making testing, information gathering and programming easier. 1

5.5 Risk analysis

The project can be separated into two parts regarding the success chance. We believe that devel-

oping the software structure for operating and storing the data is realisable; the same applies to

the depth controller and a decent model. However, for testing the seafloor tracking, we depend

on the precision of the echo sounder, and the physical attributes of the ROV. As for now, the only

boat available is in Hellesylt, where the fjord is too deep for testing seafloor tracking with the

current ROV.

If there are problems with the hardware or the ROV structure, we believe we can prove the

seafloor tracking algorithm by simulation.

The risk for damage on people and material is listed in table ?? and described by table 5.1.

1Such as local boat rental, knowledgeable people and companies that are willing to help

CHAPTER 5. PROJECT DESCRIPTION 13

5.5.1 Illness issues

If one or more of the group members becomes ill due to either Covid-19 or something else,

this might affect the ability to finalize the project depending on the event’s time and duration.

Suppose a member becomes ill or can only operate under strongly reduced capacity for three or

more days. In that case, the group need to call a meeting to see if it is necessary to redistribute

the workload. If the situation does not get better, the group will schedule a meeting with the

control group as fast as possible.

5.5.2 Covid-19

If the University gets closed down, the group will relocate its base to one of the persons in the

group apartment. The group have most likely the tools to complete the thesis.

The group looks a the possibility of a curfew as little, but if it becomes a reality, the group will

not complete the thesis according to plan since a sea-trial is not possible. Therefore the group

will have a focus to improve the simulation made in AGX Dynamics.

Overall, only a restriction against being together outside will stop the thesis going according

to plan.

CHAPTER 5. PROJECT DESCRIPTION 14

5.5.3 Risc table

Probability
Risk Analysis

Rare Unlikey Possible Likely Certian
Negligible A1 B1 C1 D1 E1
Marginal A2 B2 C2 D2 E2
Critical A3 B3 C3 D3 E3

Consequence

Catastrophic A4 B4 C4 D4 E4

Table 5.1: Table to evaluate the risk of an event

TYPE RISK

Leakage ROV A3

Leakage camera B2

Powerloss A1

Cable winds up in engine A4

Man over board A2

Boat engine failure A2

Component failure B1

Incorrect connections A2

Battery short ciruiting A3

5.6 Main work activities

CHAPTER 5. PROJECT DESCRIPTION 15

CHAPTER 5. PROJECT DESCRIPTION 16

Figure 5.1: current project plan with a total of: 2805 hours

5.7 Project schedule

5.7.1 Main project plan

As the project is of considerable size, it will naturally have many different important main top-

ics. However, through boiling the table provided in 5.1 the key topics could be shortened down

to the following key subjects;

Control system

There are several factors involved when designing the control system for sea floor tracking. We

will separate this into three modules. The first module is system identification. To have a model

of the system is very useful when designing a controller. For the sea floor tracking, we must also

develop an algorithm that can adjust the depth set point as the sea floor changes.

CHAPTER 5. PROJECT DESCRIPTION 17

Software

Regarding the software used to connect the different systems in the project, programming is a

key element when it comes to operability of the ROV. Using modern existing web technologies

combined with open source libraries one would be able to interact with visual effects such as

mapping of images inside the graphical user interface combined with control options for send-

ing signals through low-level networking protocols to the various systems in the project pipeline.

Report

The Thesis is the most crucial part of the entire project. It will explain the challenges of the bach-

elor, and explain how the group approached solving them, contain discussions on the possible

future improvements and the bachelor as a whole. The report will end with a conclusion and a

review of the project results.

Simulation and visualisation

As sea trials relies on good weather and is time consuming we want to design a digital twin. Since

the system is quite complex and nonlinear it will be difficult to design an exact copy. However,

if we can find a system model that is reliable, and use the AGX platform, it should be possible to

create a twin that is useful for testing new design features and optimasing the control.

5.7.2 Project control assets

• Instagantt, project task scheduling and tracking

• Github repository for code development

• Microsoft Teams, filesharing and storage

• Meeting platforms: Zoom, Discord

5.7.3 Development assets

The development tools needed to accomplice this project are listed below.

CHAPTER 5. PROJECT DESCRIPTION 18

• Programming utilities: Visual Studio Code, PyCharm, Arduino IDE

• Autodesk Fusion 360, CAD software

• PrusaSlicer, Slicing software for 3D printers

• Autodesk Eagle, Schematic/PCB drawing software

• Matlab, to calculate an experimental model

5.7.4 Internal evaluating control

Every Monday, we will have an internal meeting to discuss the present and future work. Each

group member will also write a log each day, and this will help explain why a task is or is not a

schedule. When progress is made in a task, this will be updated in the Gantt diagram by the end

of the day.

5.8 Decision making process

The group will be available for each other and open for discussion during work hours. If there

is a disagreement after discussing the matter, there will be a vote. If the vote is inconclusive,

the person responsible for the subject will be granted a double vote. If there is no responsible

person, the final word will be given to the team leader.

Chapter 6

Documentation

When documentation is found, the routines for the group are to store the source as pdf if pos-

sible and note when and why it was used. This applies to all types of documentation (research,

equipment etc.).

If a test has been completed a report from the test will be made. Containing the result, why

it did/did not work as expected and possible improvements found in the test.

The group has a Microsoft Teams group where all of the report and documentation will be

stored. For code, Github will be used. The physical equipment will be stored in assigned project

areas in the NTNU’s workshops.

19

Chapter 7

Scheduled meetings and reports

7.1 Meetings

7.1.1 Meetings with control group

The group has scheduled a meeting with all the group members every other week together with

the supervisor. Before every meeting, the group will discuss what questions they might have and

what kind of comments or adjustments they might have to the project. They will then present a

summary of what they have accomplished and where they are in relations to their plan.

7.1.2 Internal meetings

A meeting is scheduled every Monday at 09:00 AM CET. The meeting will consist of updating the

project plan, reading the weekly personal activity logs, discuss the current activities and possible

solutions for further work. During the meeting, a summary of the main topics will be noted.

7.2 Periodical reports

7.2.1 Progress report, including milestone

The group will be conducting daily logs, describing the daily activities performed. Instead of

weekly reports, daily logs is performed instead. The daily logs will build the basis of discussion

prior to the internal meetings.

20

Chapter 8

Planned deviation management

We plan to have a meeting every week. If a task is not completed within the allotted time, the

person responsible for this task must present their progress and where they are stuck/what de-

manded more time than estimated. The group will then decide what actions are needed to com-

plete the task. This can be actions such as: giving more time to the task, increasing the number

of people that work on the task or brainstorming solutions.

If we disagree on how to solve a problem, the group will gather to discuss the issue. If we cannot

reach an agreement, the group votes on their preferred solution, in the case of a tie, the person

responsible for this problem has the deciding vote.

If a personal issue should arise, anyone in the group can call for a meeting to discuss the is-

sue. The project leader also has a mediating role in this kind of situations. If the Project leader

is involved in the conflict, and no one else can mediate, the group might need an external me-

diator.

21

Chapter 9

Equipment requirements for project execu-

tion

For this thesis, we will reuse most of the components of the existing ROV. However, some new

equipment is needed.

Equipment needed for project execution:

What: Why: Price:

Side-scan echo sounder or To map the seafloor

hyperspectral camera

Custom PCB board New PCB board that takes less 200,-

space than old, which now have multiple

features that are currently not in use

Teensy 4.0 To change out all arduinos in ROV to one 200,-

Has more I2c and serial port available,

if new equipment are added

Subsea lights The current ROV has only one working light, 1500,-

test and research has to be done to find the

right amount of light to get a quality picture

Paint The ROV needs a new coat of paint 200,-

both aesthetic and to protect the aluminium

Oil Oil to used fill the ROV insides 200,-

to reduce buoyancy and leakage

22

Appendices

A Gantt diagram

23

Model identi�cation

Research MI

Collect data

Calculate

Test

Controller:

Research Controller

Develop Controller

Simulation from model

Test on ROV

Hardware

Test motors

Test current lights

Create/assemble spoiler

Custom PCB board

Expand PCB board

Solder custom PCB board

Sea �oor imaging:

Decide on Side scan sonar or hyperspectral camera

Order scanning hardware

Develop scanning software

Mount scanning hardware

Test scanning hardware

Echo Sounders:

Develop echo sounder ROV software

Develop echo sounder boat software

Reseach

Test echo sounder ROV

Test echo sounder Boat

Report:

Plan

preproject

rework of pre-project after review

Theory

Documetation

Description

Discussion

Summary

Conclusion

Preface

Review

Sea �oor tracking

Research SFT

Develop algorithm

Test algorithm

Digital twin

Further work in AGX

Position estimation:

Choose method

Build system

Test

GUI:

GUI Base software

GUI - Database

GUI - ROV

Communication:

Establish commuinication protocols

UDP Networking

TCP Networking

Communication between GUI and ROV

Data handeling:

API (Server)

Choose database/imagebank protocoll

Database

Imagebase

Impl datastoring (sensor / video)

Impl Snapshot-saving

Impl sessions for start/stop datastoring

Software ROV:

Image processing

Command handling

Data stream

Sensor software

Sea trial:

Sea trial

165h 13/Jan 10/Mar

Jonas Halle 70h 13/Jan 12/Feb

Jonas Halle 30h 08/Feb 01/Mar

Jonas Halle 50h 01/Mar 05/Mar

Jonas Halle 15h 08/Mar 10/Mar

110h 01/Feb 10/Apr

Jonas Halle 20h 01/Feb 01/Mar

Jonas Halle 40h 10/Mar 20/Mar

Jonas Halle 10h 10/Mar 20/Mar

Jonas Halle 40h 01/Apr 10/Apr

41h 12/Jan 23/Feb

Jonas Halle 5h 12/Jan 14/Jan 100%

JørgenS 8h 13/Jan 02/Feb

JørgenS 4h 18/Jan 08/Feb

JørgenS 10h 21/Jan 25/Jan 100%

JørgenS 10h 28/Jan 04/Feb

JørgenS 4h 22/Feb 23/Feb

190h 20/Jan 09/Apr

sophus stokke Fredborg 24h 20/Jan 29/Jan 100%

sophus stokke Fredborg 24h 28/Jan 29/Jan

sophus stokke Fredborg 110h 01/Mar 08/Apr

sophus stokke Fredborg 12h 01/Mar 11/Mar

sophus stokke Fredborg 20h 18/Mar 09/Apr

124h 22/Jan 19/Feb

sophus stokke Fredborg 30h 22/Jan 18/Feb

sophus stokke Fredborg 50h 22/Jan 18/Feb

sophus stokke Fredborg 20h 22/Jan 29/Jan

sophus stokke Fredborg 12h 11/Feb 19/Feb

sophus stokke Fredborg 12h 11/Feb 19/Feb

1066h 13/Jan 14/May

VU: all 40h 13/Jan 27/Jan 100%

VU: all 80h 13/Jan 20/Jan 100%

VU: all 16h 25/Jan 27/Jan 100%

VU: all 100h 25/Jan 16/Apr

VU: all 60h 01/Feb 23/Apr

VU: all 100h 12/Apr 30/Apr

VU: all 150h 19/Apr 07/May

VU: all 120h 26/Apr 07/May

VU: all 100h 03/May 07/May

VU: all 100h 10/May 12/May

VU: all 200h 12/May 14/May

138h 15/Feb 19/Apr

sophus stokke Fredborg 12h 15/Feb 17/Mar

sophus stokke Fredborg 110h 11/Mar 13/Apr

sophus stokke Fredborg 16h 23/Mar 19/Apr

200h 31/Jan 17/Apr

JørgenS 200h 31/Jan 17/Apr

35h 01/Feb 10/Apr

Jonas Halle 10h 01/Feb 15/Feb

Jonas Halle 15h 20/Mar 01/Apr

Jonas Halle 10h 01/Apr 10/Apr

260h 29/Jan 15/Apr

Andreas Øie 200h 29/Jan 15/Apr

Andreas Øie 30h 16/Mar 14/Apr

Andreas Øie 30h 17/Mar 14/Apr

45h 11/Jan 17/Mar

Andreas Øie 5h 11/Jan 26/Jan 100%

Andreas Øie 10h 14/Jan 15/Mar

Andreas Øie 10h 14/Jan 15/Mar

Andreas Øie 20h 05/Feb 17/Mar

120h 18/Jan 16/Mar

Andreas Øie 60h 18/Jan 16/Mar

Andreas Øie 5h 25/Jan 27/Jan 100%

Andreas Øie 10h 27/Jan 15/Mar

Andreas Øie 5h 27/Jan 15/Mar

Andreas Øie 20h 08/Feb 15/Mar

Andreas Øie 10h 22/Feb 15/Mar

Andreas Øie 10h 22/Feb 15/Mar

70h 11/Jan 14/Feb

JørgenS 20h 11/Jan 14/Feb

JørgenS 20h 11/Jan 07/Feb

JørgenS 20h 11/Jan 07/Feb

JørgenS 10h 26/Jan 14/Feb

300h 15/Apr 30/Apr

VU: all 300h 15/Apr 30/Apr

15%

30%

0%

0%

0%

0%

0%

0%

0%

0%

13%

0%

0%

0%

0%

13%

30%

0%

0%

0%

18%

22%

5%

40%

0%

40%

10%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

43%

50%

50%

0%

6%

10%

5%

5%

0%

0%

0%

8%

0%

30%

0%

0%

0%

0%

Model identi�cation

Research MI1

Collect data2

Calculate3

Test4

Controller:

Research Controller6

Develop Controller7

Simulation from model8

Test on ROV9

Hardware

Test motors11

Test current lights12

Create/assemble spoiler13

Custom PCB board14

Expand PCB board15

Solder custom PCB board16

Sea �oor imaging:

Decide on Side scan sonar …18

Order scanning hardware19

Develop scanning software20

Mount scanning hardware21

Test scanning hardware22

Echo Sounders:

Develop echo sounder ROV …24

Develop echo sounder boat …25

Reseach26

Test echo sounder ROV27

Test echo sounder Boat28

Report:

Plan30

preproject31

rework of pre-project after r…32

Theory33

Documetation34

Description35

Discussion36

Summary37

Conclusion38

Preface39

Review40

Sea �oor tracking

Research SFT42

Develop algorithm43

Test algorithm44

Digital twin

Further work in AGX46

Position estimation:

Choose method48

Build system49

Test50

GUI:

GUI Base software52

GUI - Database53

GUI - ROV54

Communication:

Establish commuinication p…56

UDP Networking57

TCP Networking58

Communication between G…59

Data handeling:

API (Server)61

Choose database/imageba…62

Database63

Imagebase64

Impl datastoring (sensor / vi…65

Impl Snapshot-saving66

Impl sessions for start/stop …67

Software ROV:

Image processing69

Command handling70

Data stream71

Sensor software72

Sea trial:

Sea trial74

11 12 13 14

W51

15 16 17 18 19 20 21

W52

22 23 24 25 26 27 28

W53

29 30 31 1 2 3 4

W1

5 6 7 8 9 10 11

W2

12 13 14 15 16 17 18

W3

19 20 21 22 23 24 25

W4

26 27 28 29 30 31 1

W5

2 3 4 5 6 7 8

W6

9 10 11 12 13 14 15

W7

16 17 18 19 20 21 22

W8

23 24 25 26 27 28 1

W9

2 3 4 5 6 7 8

W10

9 10 11 12 13 14 15

W11

16 17 18 19 20 21 22

W12

23 24 25 26 27 28 29

W13

30 31 1 2 3 4 5

W14

6 7 8 9 10 11 12

W15

13 14 15 16 17 18 19

W16

20 21 22 23 24 25 26

W17

27 28 29 30 1 2 3

W18

4 5 6 7 8 9 10

W19

11 12 13 14 15 16 17 1 28

Dec 2020 Jan 2021 Feb 2021 Mar 2021 Apr 2021 May 2021
ASSIGNEE EH START DUE %ACTIVITIES

Bachelor - TowedROV
Read-only view, generated on 28 Jan 2021

BIBLIOGRAPHY 196

A.2 Status reports

ID301702
Hovedprosjekt

Project
Towed ROV

Number of meeting this period 1).
1 planned

Firma - Oppdragsgiver
NTNU/Runde Miljøsenter

Side
1 av 18

Progress report Period/week(s)
3

Number of hours this period. (from

log) Approx per person. 120

Prosjektgruppe (navn)
Sophus Fredborg Stokke

Jonas Halle

Jørgen Ringdal Sæter

Andreas Øie

Dato
12.01.2021

Main goal/purpose for this periods work

Finish preliminary report.

Planned activities this period

- Work on preliminary report.

- Start research on GUI, side-scan sonar and experimental transfer function of system.

- Start redoing the code in the ROV.

Actually, conducted activities this period

- Finished preliminary project.

- Tested ROV condition, parts, software, etc.

- Made new PCB card (smaller) for DC supply.

Description of/ justification for changes that is desired in the projects content or in the further plan of action – or progress report

-

Main experience from this period

-

Main purpose/focus next period

- Continuing research.

- Make a plan for stable communication between devices.

- Test dataset in MATLAB to find transferer function.

- Mount ROV back together to test it a marina.

Planned activities next period

- Further investigate Jacobian (velocity control) -> implement it!

Other

Wish/need for counselling

- Nothing in particular

Approval/signature group leader

Jonas Halle

Signature other group participants

Sophus Stokke Fredborg

Jørgen Ringdal Sæter

Andreas Øie

ID301702
Hovedprosjekt

Project
Towed ROV

Number of meeting this period 1).
1 planned

Firma - Oppdragsgiver
NTNU/Runde Miljøsenter

Side
2 av 18

Progress report Period/week(s)
1

Number of hours this period. (from

log) Approx per person. 50

Prosjektgruppe (navn)
Sophus Fredborg Stokke

Jonas Halle

Jørgen Ringdal Sæter

Andreas Øie

Dato
04.02.2021

Main goal/purpose for this periods work

- Check library for telemetry and commands communication.

- Test dataset in matlab to find transfer function.

- Further research of echo sounder.

- Mount ROV back together and ready for small test at a dock.

Planned activities this period

Actually, conducted activities this period

- We have opted for ZMQ for telementry and commands.

- The datasat has been tested in matlab, with decent results. TF, SS and NLARX models have similiar results

- Software for echo sounder is almost finished.

- Motors is mounted, some connections are still lacking. 1 hour of work remains.

- Produced new cnc milled washers for the motors.

- Template for GUI

- Tested video stream from API to GUI

- Research video stream RPI

- Decided how the data will be sent

- Fixed up the hardware in the suitcase

-

Description of/ justification for potential deviation between planned and real activities

- The GA part was not planned in this period, but after discussing the possibilities of using such an algorithm to solve the inverse

kinematics we got a little eager and wanted to see how it could be done. Implementation was easier than expected, and after

implementing the algorithm on the 2 DOF Scara (not counting the end effectors rotation, translation and gripper, as this is not a function

of the haptic’s position) we wanted to test it on the more difficult 3DOF RRR arm. After updating the forward kinematics, this one also

worked.

Description of/ justification for changes that is desired in the projects content or in the further plan of action – or progress report

- By seeing how well the GA performs (just as good as the geometric approach) we will continue working on it.

- To make control the models easier we want to make the working space squared instead of the shape of a heart.

- To prepare for the velocity control, we want to make an option for the haptic to snap back to [0,0,0] when user interaction is aborted.

Main experience from this period

- In the process of implementing the genetic algorithm, we had some problems, the Scara robot worked nicely right from the beginning,

but the 5DOF KUKA (only 3DOF was tried implemented) we also have in the simulation had some problems. At first we thought it had

to do with the extra DOF, but it turned out to be the forward kinematics. This shows how important it is to have accurate forward

kinematics.

- We also had some problems with twitching when using the GA, but this was solved by preserving the population between calculations (it

is reset when changing models, and algorithm).

ID301702
Hovedprosjekt

Project
Towed ROV

Number of meeting this period 1).
1 planned

Firma - Oppdragsgiver
NTNU/Runde Miljøsenter

Side
3 av 18

Progress report Period/week(s)
1

Number of hours this period. (from

log) Approx per person. 50

Prosjektgruppe (navn)
Sophus Fredborg Stokke

Jonas Halle

Jørgen Ringdal Sæter

Andreas Øie

Dato
04.02.2021

Main purpose/focus next period

- Velocity control

Planned activities next period

- Further investigate Jacobian (velocity control) -> implement it!

- Mount ROV and complete a on shore test.

- Make suitcase ready for sea trial.

- Work the main features RPI code.

- Make a payload structure.

- Work on video stream

Other

Wish/need for counselling

- Nothing in particular

Approval/signature group leader

Jonas Halle

Signature other group participants

Sophus Stokke Fredborg

Jørgen Ringdal Sæter

Andreas Øie

ID301702
Hovedprosjekt

Project
Towed ROV

Number of meeting this period 1).
1 planned

Firma - Oppdragsgiver
NTNU/Runde Miljøsenter

Side
4 av 18

Progress report Period/week(s)
1

Number of hours this period. (from

log) Approx per person. 50

Prosjektgruppe (navn)
Sophus Fredborg Stokke

Jonas Halle

Jørgen Ringdal Sæter

Andreas Øie

Dato
11.02.2021

Main goal/purpose for this periods work

- Mount ROV and complete a on shore test Jonas/Sophus

- Make suitcase ready for sea trial. Sophus

- Finish the main features RPI code. Jørgen

- Complete payload structure. Andreas

- Server/client video stream. Andreas

Planned activities this period

- Refactor Arduino(controller) Jonas

- Code input signal for collecting I/O data. (different sequences) Jonas/sophus

Actually, conducted activities this period

- The controller is tested. Need to change a stepper driver. (1 HR of work missing)

- Could not connect the ROV from the GUI. Have to look in to this. (12 hours of work missing including testing)

- Suitcase is ready for sea trial.

- Most of the RPI code is finished, still need to do some testing. Might be some features where we still have not found a solution. (20

hours missing)

- Payload structure is finished. (might need some updates further on.)

- Server/client video stream is finished.

Description of/ justification for potential deviation between planned and real activities

Description of/ justification for changes that is desired in the projects content or in the further plan of action – or progress report

Main experience from this period

Main purpose/focus next period

- Test ROV and make it ready for sea trial.

- Finish the code for the RPI in the ROV.

- Develop the API.

Planned activities next period

- Further investigate Jacobian (velocity control) -> implement it!

Other

Wish/need for counselling

- Nothing in particular

Approval/signature group leader

Jonas Halle

Signature other group participants

Sophus Stokke Fredborg

Jørgen Ringdal Sæter

Andreas Øie

ID301702
Hovedprosjekt

Project
Towed ROV

Number of meeting this period 1).
1 planned

Firma - Oppdragsgiver
NTNU/Runde Miljøsenter

Side
5 av 18

Progress report Period/week(s)
1

Number of hours this period. (from

log) Approx per person. 40

Prosjektgruppe (navn)
Sophus Fredborg Stokke

Jonas Halle

Jørgen Ringdal Sæter

Andreas Øie

Dato
16.02.2021

Main goal/purpose for this periods work

- Test ROV and make it ready for sea trial.

- Finish the code for the RPI in the ROV

- Develop the API

Planned activities this period

- Mount ROV and complete a on shore test Jonas/Sophus (12 h)

- Test echo sounders by the dock. Sophus/Jonas

- Start working on sea floor tracking. Sophus/Jonas

- Start working on position estimation. Jonas/Sophus

- Finish the main features RPI code. Jørgen (20h)

- Develop the API. Andreas

- Start working on the GUI. Andreas

Actually, conducted activities this period

Everything is tested except of the camera and lights. It worked this fall so it should not be a problem.

The RPI code is almost finished. There are a few things down the road that we will solve later.

The real time aspect of the API is finished.

An algorithm for seafloor tracking is tested with different signals in MATLAB. Seams to work quite well.

Have done some research on position estimation.

Description of/ justification for potential deviation between planned and real activities

Description of/ justification for changes that is desired in the projects content or in the further plan of action – or progress report

Main experience from this period

Main purpose/focus next period

Comment code (Jørgen).

AGX simulation (Jørgen).

Communication ROV (Andreas).

Continue work on GUI and API (Andreas).

Implement seafloor tracking algorithm in Python(Jonas).

Planned activities next period

- Further investigate Jacobian (velocity control) -> implement it!

Other

Wish/need for counselling

- Nothing in particular

ID301702
Hovedprosjekt

Project
Towed ROV

Number of meeting this period 1).
1 planned

Firma - Oppdragsgiver
NTNU/Runde Miljøsenter

Side
6 av 18

Progress report Period/week(s)
1

Number of hours this period. (from

log) Approx per person. 40

Prosjektgruppe (navn)
Sophus Fredborg Stokke

Jonas Halle

Jørgen Ringdal Sæter

Andreas Øie

Dato
16.02.2021

Approval/signature group leader

Jonas Halle

Signature other group participants

Sophus Stokke Fredborg

Jørgen Ringdal Sæter

Andreas Øie

ID301702
Hovedprosjekt

Project
Towed ROV

Number of meeting this period 1).
1 planned

Firma - Oppdragsgiver
NTNU/Runde Miljøsenter

Side
7 av 18

Progress report Period/week(s)
1

Number of hours this period. (from

log) Approx per person. 40

Prosjektgruppe (navn)
Sophus Fredborg Stokke

Jonas Halle

Jørgen Ringdal Sæter

Andreas Øie

Dato
16.02.2021

Main goal/purpose for this periods work

Comment code (Jørgen)

AGX simulation (Jørgen)

Communication ROV (Andreas)

Continue work on GUI and API (Andreas)

Implement seafloor tracking algorithm in Python(Jonas)

Planned activities this period

Actually conducted activities this period

Started with AGX. Have done a flow simulation in solid works.

Sensor data flow from ROV to API to GUI.

Seafloor tracking algorithm is implemented in Python.

Still have trouble getting in contact with various echo sounder providers.

Description of/ justification for potential deviation between planned and real activities

Description of/ justification for changes that is desired in the projects content or in the further plan of action – or progress report

Main experience from this period

Main purpose/focus next period

Test ROV by shore. (There are some issues with sensor transmitting)

Flow simulation, implement new model. AGX.

GUI design with implemented functions.

Seafloor and position estimation.

Planned activities next period

- Further investigate Jacobian (velocity control) -> implement it!

Other

Wish/need for counselling

- Nothing in particular

Approval/signature group leader

Jonas Halle

Signature other group participants

Sophus Stokke Fredborg

Jørgen Ringdal Sæter

Andreas Øie

ID301702
Hovedprosjekt

Project
Towed ROV

Number of meeting this period 1).
1 planned

Firma - Oppdragsgiver
NTNU/Runde Miljøsenter

Side
8 av 18

Progress report Period/week(s)
1

Number of hours this period. (from

log) Approx per person. 50

Prosjektgruppe (navn)
Sophus Fredborg Stokke

Jonas Halle

Jørgen Ringdal Sæter

Andreas Øie

Dato
03.03.2021

Main goal/purpose for this periods work

Test ROV by shore. (There are some issues with sensor transmitting)

Flow simulation, implement new model. AGX.

Gui design with implemented functions.

Seafloor and position estimation.

Planned activities this period

Side scan sonar – have decided

Have added settings to GUI for sensor handling with enable/disable.

Some work on AGX.

Some work on RPI.

Added new features to seafloor tracking for optimal change of set point.

Description of/ justification for potential deviation between planned and real activities

Description of/ justification for changes that is desired in the projects content or in the further plan of action – or progress report

Main experience from this period

Main purpose/focus next period

- Research for lending a boat.

- Find problems ROV.

- By shore trial

- Commands added to GUI.

- AGX -> Refactoring, further work,

Planned activities next period

- Further investigate Jacobian (velocity control) -> implement it!

Other

Wish/need for counselling

- Nothing in particular

Approval/signature group leader

Jonas Halle

Signature other group participants

Sophus Stokke Fredborg

Jørgen Ringdal Sæter

Andreas Øie

ID301702
Hovedprosjekt

Project
Towed ROV

Number of meeting this period 1).
1 planned

Firma - Oppdragsgiver
NTNU/Runde Miljøsenter

Side
9 av 18

Progress report Period/week(s)
1

Number of hours this period. (from

log) Approx per person. 50

Prosjektgruppe (navn)
Sophus Fredborg Stokke

Jonas Halle

Jørgen Ringdal Sæter

Andreas Øie

Dato
03.03.2021

Main goal/purpose for this periods work

- Research for lending a boat. 4.3

- Find problems ROV 4.3 electronics(sensor values etc)

- By shore trial 5.3

- Commands added to GUI 9.3

- AGX -> Refactoring, further work,

Planned activities this period

Actually conducted activities this period

- Boat (Runde/hellesylt).

- The bar30 sensor was broken and caused troubles for the echosounder as well. New sensor and i2c adapter fixed the problem.

- As we made an agreement of sea trial with Runde, on shore trial was not necessary.

- Commands is added to GUI.

- AGX is postponed, as the focus is turned towards testing.

Description of/ justification for potential deviation between planned and real activities

Description of/ justification for changes that is desired in the projects content or in the further plan of action – or progress report

Main experience from this period

Main purpose/focus next period

Planned activities next period

- Test at Runde Miljøsenter.

- Further work in new GUI.

- Test that everything is ready for the first sea trial.

Other

Wish/need for counselling

- Nothing in particular

Approval/signature group leader

Jonas Halle

Signature other group participants

Sophus Stokke Fredborg

Jørgen Ringdal Sæter

Andreas Øie

ID301702
Hovedprosjekt

Project
Towed ROV

Number of meeting this period 1).
1 planned

Firma - Oppdragsgiver
NTNU/Runde Miljøsenter

Side
10 av 18

Progress report Period/week(s)
2

Number of hours this period. (from

log) Approx per person. 120

Prosjektgruppe (navn)
Sophus Fredborg Stokke

Jonas Halle

Jørgen Ringdal Sæter

Andreas Øie

Dato
09.03.2021

Main goal/purpose for this periods work

3-DAY Workshop w/ MVP Test @ Runde Miljøsenter

Test at Runde:

- Echo sounders

- I/O response

- Camera/lights

Create a model using the system identification toolbox by adding I/O data of the system.

Further work on sea floor tracking by applying echo data and behaviour

Improve software depending on eventual problems in testing.

Update after test:

- We had several problems during the test period at Runde. Raspberry Pi, SD card, IMU and the old software were all causes for the

problems. Water leakage?

- We have decided to stop using the old version as there have been a lot of bugs, so we need to finish the new beta version of the

software.

- We want to finish this this week so we can do further testing at Hellesylt next week.

Planned activities this period

Actually conducted activities this period:

- The new software is now up and running, there are some minor bugs that should be fixed, but all over the system seems to be more

stable and reliable than the previous system.

- The side plates forced the ROV to flip around. They were removed for now in order to fix this issue.

- The spoiler took away some pitch as expected, decreasing the depth from about 14 meters to 4 meter. Seems that the pitch angle is

the main actuator for the system at the moment.

Description of/ justification for potential deviation between planned and real activities

Description of/ justification for changes that is desired in the projects content or in the further plan of action – or progress report

Main experience from this period

Main purpose/focus next period

Planned activities next period

Easter:

Fix bugs software

Filter IMU

Work on the report

Test echosounder boat

ID301702
Hovedprosjekt

Project
Towed ROV

Number of meeting this period 1).
1 planned

Firma - Oppdragsgiver
NTNU/Runde Miljøsenter

Side
11 av 18

Progress report Period/week(s)
2

Number of hours this period. (from

log) Approx per person. 120

Prosjektgruppe (navn)
Sophus Fredborg Stokke

Jonas Halle

Jørgen Ringdal Sæter

Andreas Øie

Dato
09.03.2021

Further work AGX

Some changes GUI

Other

Wish/need for counselling

- Nothing in particular

Approval/signature group leader

Jonas Halle

Signature other group participants

Sophus Stokke Fredborg

Jørgen Ringdal Sæter

Andreas Øie

ID301702
Hovedprosjekt

Project
Towed ROV

Number of meeting this period 1).
1 planned

Firma - Oppdragsgiver
NTNU/Runde Miljøsenter

Side
12 av 18

Progress report Period/week(s)
2

Number of hours this period. (from

log) Approx per person. 90

Prosjektgruppe (navn)
Sophus Fredborg Stokke

Jonas Halle

Jørgen Ringdal Sæter

Andreas Øie

Dato
22.03.2021

Main goal/purpose for this periods work

Planned activities this period

- Fix bugs software

- Filter IMU

- Work on the report

- Test echosounder boat

- Further work AGX

- Some changes GUI

Actually conducted activities this period:

- Bugs regarding commands is fixed.

- Vertical acceleration relative to gravity is implemented.

- There are committed some work on the report, however not as much as we planned.

- Connecting the system as a digital twin is now working.

- Redesign 3d model for simulation.

- GUI, refactor, added charts, started on GUI v2.0(database etc).

- Seafloor tracking tested in simulation.

- Mounted two new tether cable on spools.

- New sideplates/wings cut out in acrylic plastic.

Description of/ justification for potential deviation between planned and real activities

Description of/ justification for changes that is desired in the projects content or in the further plan of action – or progress report

Main experience from this period

- Simplification to the 3D model of the ROV must be done to get a simulation that is fast enough to work with.

Main purpose/focus next period

Planned activities next period

- Test rov with oil, and different wings.

- Implement seafloor tracking.

- Improve rov behaviour in agx simulation.

- Start working on side scan sonar API.

- Make filter for roll, pitch.

- Implement session storage in gui.

Other

Wish/need for counselling

- Nothing in particular

ID301702
Hovedprosjekt

Project
Towed ROV

Number of meeting this period 1).
1 planned

Firma - Oppdragsgiver
NTNU/Runde Miljøsenter

Side
13 av 18

Progress report Period/week(s)
2

Number of hours this period. (from

log) Approx per person. 90

Prosjektgruppe (navn)
Sophus Fredborg Stokke

Jonas Halle

Jørgen Ringdal Sæter

Andreas Øie

Dato
22.03.2021

Approval/signature group leader

Jonas Halle

Signature other group participants

Sophus Stokke Fredborg

Jørgen Ringdal Sæter

Andreas Øie

ID301702
Hovedprosjekt

Project
Towed ROV

Number of meeting this period 1).
1 planned

Firma - Oppdragsgiver
NTNU/Runde Miljøsenter

Side
14 av 18

Progress report Period/week(s)
2

Number of hours this period. (from

log) Approx per person. 100

Prosjektgruppe (navn)
Sophus Fredborg Stokke

Jonas Halle

Jørgen Ringdal Sæter

Andreas Øie

Dato
05.04.2021

Main goal/purpose for this periods work

Planned activities this period

- Test ROV with oil, and different wings

- Implement seafloor tracking

- Improve ROV behaviour in AGX simulation

- Start working on Side Scan Sonar API

- Make filter for roll and pitch

- Implement Session-based data-storage in APP / GUI

Actually conducted activities this period:

AGX:

• The digital simulation has better performance.

• Added controller to AGX

• Echo sounder added to AGX.

• Increasing wing size, and setting the hydrodynamic parameters to very specific values had a positive effect on the ROV Control.

Side Scan Sonar API:

• Side Scan Sensor is up and running.

• Added support for sending from Sonar API to our Python API

• Tested side sonar (needs more)

IMU

• Added low pass filter to IMU

GUI

• Implemented “Session” for storing data in batches (sensor data w/lat/long & image)

• Added support for showing live-feed from Sonar to GUI

ROV

• The ROV has been filled with oil and pipes have been installed to get a low positive buoyance.

 The pitch is reduced but the depth remains the same. We believe the reduced positive buoyancy is the reason.

Description of/ justification for potential deviation between planned and real activities

When performing the sea trial, we discovered that the bolts for mounting them was not properly attached to the bracket. We have created new

brackets.

There have been some issues with electronics. The usb between RPI Arduino, might have caused some problems. Steppers moves for a short

duration when opening serial port.

Seafloor tracking is ready, but not implemented. Will, most likely, only be tested in AGX.

AGX performance has slowed progress. Communication issues with DeepVision caused us to get the API software from them much later than

expected and waste a lot of time to get it.

ID301702
Hovedprosjekt

Project
Towed ROV

Number of meeting this period 1).
1 planned

Firma - Oppdragsgiver
NTNU/Runde Miljøsenter

Side
15 av 18

Progress report Period/week(s)
2

Number of hours this period. (from

log) Approx per person. 100

Prosjektgruppe (navn)
Sophus Fredborg Stokke

Jonas Halle

Jørgen Ringdal Sæter

Andreas Øie

Dato
05.04.2021

Description of/ justification for changes that is desired in the projects content or in the further plan of action – or progress report

- Sonar needs a stable mount, and is tested separately from the ROV for this reason.

Main experience from this period

- A lot of late nights with problems with the electronics, caused a lot of delay. A late arrival of the sonar API caused a lot of delay, we

had to contact deepVision multiple times and ask for the API many times before we actually got it.

Main purpose/focus next period

Report, Side-Scan Sonar, Regulation in ROV with AGX. Sea Trails. Seafloor tracking

Planned activities next period

- Test ROV with oil, and different wings.

- Implement seafloor tracking.

- Improve ROV behaviour in agx simulation.

- Start working on side scan sonar API.

- Make filter for roll, pitch.

- Implement session storage in GUI.

Other

Wish/need for counselling

- Nothing in particular

Approval/signature group leader

Jonas Halle

Signature other group participants

Sophus Stokke Fredborg

Jørgen Ringdal Sæter

Andreas Øie

ID301702
Hovedprosjekt

Project
Towed ROV

Number of meeting this period 1).
1 planned

Firma - Oppdragsgiver
NTNU/Runde Miljøsenter

Side
16 av 18

Progress report Period/week(s)
2

Number of hours this period. (from

log) Approx per person. 140

Prosjektgruppe (navn)
Sophus Fredborg Stokke

Jonas Halle

Jørgen Ringdal Sæter

Andreas Øie

Dato
19.04.2021

Main goal/purpose for this periods work

Planned activities this period

- Test ROV with oil and different wings.

- Implement seafloor tracking.

- Improve ROV behaviour in AGX simulation.

- Start working on Sonar API.

- Make filter for roll, pitch.

- Implement session storage in GUI.

Actually conducted activities this period:

AGX:

• Communicates between GUI, RPi code for ROV, and AGX, the ROV controls depth and gets values back from the RPi code in the

ROV (digital twin).

• Does not go very deep, around 10 m

• Added the tanks and ability to scale the system with just setting the ROV scale, so that wings and tanks move position and so that the

task scale with the rest of the ROV. The wing scale left open to control intentionally.

•

Side Scan Sonar:

• There were waves making it difficult to hold the sonar stable, however we believe we spotted a sunken ship in Hellesylt.

• The colours are changed in the stream, making it easier to spot objects.

ROV

• Added a tail to the ROV. The pitch became more stable.

• There was a leakage in the pipes, resulting in a sunken ROV. The ROV went down to approximately 120 meters. The camera bulb

and pipes took damage. Everything else seems to be fine.

• The ROV is fixed and ready for new sea trials.

• A filter is implemented for roll, pitch and vertical acceleration.

• The echo sounder on the boat is now working and tested.

 GUI

• Session storage is implemented.

• Modular design is implemented.

Description of/ justification for potential deviation between planned and real activities

- The sea trials had to be aborted and postponed due to the accident.

Description of/ justification for changes that is desired in the projects content or in the further plan of action – or progress report

Main experience from this period

- The ROV body can handle great depths, but the arrangement with the pipes is a weak spot.

ID301702
Hovedprosjekt

Project
Towed ROV

Number of meeting this period 1).
1 planned

Firma - Oppdragsgiver
NTNU/Runde Miljøsenter

Side
17 av 18

Progress report Period/week(s)
2

Number of hours this period. (from

log) Approx per person. 140

Prosjektgruppe (navn)
Sophus Fredborg Stokke

Jonas Halle

Jørgen Ringdal Sæter

Andreas Øie

Dato
19.04.2021

Main purpose/focus next period

- Report, Side-Scan Sonar, Regulation in ROV with AGX. Sea Trails. Seafloor tracking

Planned activities next period

Other

Wish/need for counselling

- Nothing in particular

Approval/signature group leader

Jonas Halle

Signature other group participants

Sophus Stokke Fredborg

Jørgen Ringdal Sæter

Andreas Øie

ID301702
Hovedprosjekt

Project
Towed ROV

Number of meeting this period 1).
1 planned

Firma - Oppdragsgiver
NTNU/Runde Miljøsenter

Side
18 av 18

Progress report Period/week(s)
2

Number of hours this period. (from

log) Approx per person. 160

Prosjektgruppe (navn)
Sophus Fredborg Stokke

Jonas Halle

Jørgen Ringdal Sæter

Andreas Øie

Dato
03.05.2021

Main goal/purpose for this periods work

Planned activities this period

- Report

- Work on side-scan sonar.

- Regulation in ROV with AGX

- Sea trials

Actually conducted activities this period:

- Some result from ROV testing

- Camera tested at marina at night.

- Got result from side scan sonar.

- Seafloor tracking added to ROV code.

- GUI finished.

- Filter tuned for pitch and roll.

Description of/ justification for potential deviation between planned and real activities

- The sea trials had to be aborted and postponed due to the accident.

Description of/ justification for changes that is desired in the projects content or in the further plan of action – or progress report

Main experience from this period

- Deepvision forgot to send us the API for the side-scan sonar, have take a long time to get a hold of it.

Main purpose/focus next period

- Report, Side-Scan Sonar, Seafloor tracking in simulation.

Planned activities next period

Other

Wish/need for counselling

- Nothing in particular

Approval/signature group leader

Jonas Halle

Signature other group participants

Sophus Stokke Fredborg

Jørgen Ringdal Sæter

Andreas Øie

BIBLIOGRAPHY 215

B Elschematic

BIBLIOGRAPHY 219

C Gantt diagram

Model identi�cation

Research MI

Collect data

Calculate

Test

Controller:

Research Controller

Develop Controller

Simulation from model

Test on ROV

Hardware

Test motors

Test current lights

Create/assemble spoiler

Sea �oor imaging:

Decide on Side scan sonar or hyperspectral camera

Order scanning hardware

Develop scanning software

Mount scanning hardware

Test scanning hardware

Echo Sounders:

Develop echo sounder ROV software

Develop echo sounder boat software

Reseach

Test echo sounder ROV

Test echo sounder Boat

Report:

Plan

preproject

rework of pre-project after review

Theory

Documetation

Description

Discussion

Summary

Conclusion

Preface

Review

Sea �oor tracking

Research SFT

Develop algorithm

Test algorithm

Digital twin

Further work in AGX

Simulate propper ROV behaviour

Connect AGX with system for simulation

Position estimation:

Choose method

Build system

Test

GUI - Development:

GUI Development version

GUI - Production:

GUI Production version

Communication:

Establish commuinication protocols

UDP Networking

TCP Networking

Communication between GUI and ROV

Data management:

API (Server)

Choose database/imagebank protocoll

Database

Impl datastoring (sensor / video)

Impl Snapshot-saving

Impl sessions for start/stop datastoring

Imagebase

Add API Endpoints

Create Session options in GUI

Software ROV:

Image processing

Command handling

Data stream

Sensor software

Modify code for new features

Sea trial:

Sea trial

165h 13/Jan 10/Mar

Jonas Halle 70h 13/Jan 12/Feb 100%

Jonas Halle 30h 08/Feb 01/Mar

Jonas Halle 50h 01/Mar 05/Mar

Jonas Halle 15h 08/Mar 10/Mar

110h 01/Feb 10/Apr

Jonas Halle 20h 01/Feb 01/Mar 100%

Jonas Halle 40h 10/Mar 20/Mar

Jonas Halle 10h 10/Mar 20/Mar

Jonas Halle 40h 01/Apr 10/Apr

17h 12/Jan 08/Feb

Jonas Halle 5h 12/Jan 14/Jan 100%

JørgenS 8h 13/Jan 02/Feb 100%

JørgenS 4h 18/Jan 08/Feb 100%

190h 20/Jan 17/May

sophus stokke F… 24h 20/Jan 22/Mar 100%

sophus stokke F… 24h 22/Mar 02/Apr 100%

sophus stokke F… 110h 26/Mar 05/May 100%

sophus stokke F… 12h 06/Apr 05/May

sophus stokke F… 20h 21/Apr 17/May 100%

124h 22/Jan 19/Apr

sophus stokke F… 30h 22/Jan 18/Feb 100%

sophus stokke F… 50h 22/Jan 18/Feb 100%

sophus stokke F… 20h 22/Jan 29/Jan 100%

sophus stokke F… 12h 11/Feb 19/Feb 100%

sophus stokke F… 12h 12/Feb 19/Apr 100%

1066h 13/Jan 14/May

VU: all 40h 13/Jan 27/Jan 100%

VU: all 80h 13/Jan 20/Jan 100%

VU: all 16h 25/Jan 27/Jan 100%

VU: all 100h 25/Jan 16/Apr 100%

VU: all 60h 01/Feb 23/Apr 100%

VU: all 100h 12/Apr 30/Apr 100%

VU: all 150h 19/Apr 07/May 100%

VU: all 120h 26/Apr 07/May 100%

VU: all 100h 03/May 07/May 100%

VU: all 100h 10/May 12/May 100%

VU: all 200h 12/May 14/May 100%

138h 15/Feb 30/Apr

Jonas Halle 12h 15/Feb 17/Mar 100%

Jonas Halle 110h 18/Mar 20/Apr 100%

Jonas Halle 16h 05/Apr 30/Apr 100%

200h 31/Jan 29/Apr

JørgenS 200h 31/Jan 17/Apr 100%

- 02/Apr 29/Apr 100%

JørgenS - 02/Apr 29/Apr 100%

35h 01/Feb 10/Apr

sophus stokke F… 10h 01/Feb 15/Feb 100%

sophus stokke F… 15h 19/Mar 31/Mar 100%

sophus stokke F… 10h 01/Apr 10/Apr 100%

150h 29/Jan 30/Mar

Andreas Øie 150h 29/Jan 30/Mar 100%

50h 02/Apr 16/Apr

50h 02/Apr 16/Apr 100%

45h 11/Jan 16/Apr

Andreas Øie 5h 11/Jan 26/Jan 100%

Andreas Øie 10h 14/Jan 15/Mar 100%

Andreas Øie 10h 14/Jan 15/Mar 100%

Andreas Øie 20h 05/Feb 16/Apr 100%

130h 18/Jan 15/Apr

Andreas Øie 60h 18/Jan 15/Apr 100%

Andreas Øie 5h 25/Jan 27/Jan 100%

Andreas Øie 10h 27/Jan 15/Apr 100%

Andreas Øie 20h 08/Feb 15/Mar 100%

Andreas Øie 10h 22/Feb 15/Mar 100%

Andreas Øie 10h 22/Feb 15/Mar 100%

Andreas Øie 5h 05/Apr 15/Apr 100%

5h 06/Apr 15/Apr 100%

5h 06/Apr 15/Apr 100%

120h 11/Jan 30/Apr

JørgenS 20h 11/Jan 14/Feb 100%

JørgenS 20h 11/Jan 07/Feb 100%

JørgenS 20h 11/Jan 07/Feb 100%

JørgenS 10h 26/Jan 14/Feb 100%

JørgenS 50h 07/Feb 30/Apr 100%

300h 16/Mar 30/Apr

VU: all 300h 16/Mar 30/Apr 100%

49%

0%

0%

0%

48%

0%

0%

0%

100%

89%

40%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

Model identi�cation

Research MI1

Collect data2

Calculate3

Test4

Controller:

Research Controller6

Develop Controller7

Simulation from model8

Test on ROV9

Hardware

Test motors11

Test current lights12

Create/assemble spoiler13

Sea �oor imaging:

Decide on Side scan sonar …15

Order scanning hardware16

Develop scanning software17

Mount scanning hardware18

Test scanning hardware19

Echo Sounders:

Develop echo sounder ROV …21

Develop echo sounder boat …22

Reseach23

Test echo sounder ROV24

Test echo sounder Boat25

Report:

Plan27

preproject28

rework of pre-project after r…29

Theory30

Documetation31

Description32

Discussion33

Summary34

Conclusion35

Preface36

Review37

Sea �oor tracking

Research SFT39

Develop algorithm40

Test algorithm41

Digital twin

Further work in AGX43

Simulate propper ROV beha…44

Connect AGX with system fo…45

Position estimation:

Choose method47

Build system48

Test49

GUI - Development:

GUI Development version51

GUI - Production:

GUI Production version53

Communication:

Establish commuinication p…55

UDP Networking56

TCP Networking57

Communication between G…58

Data management:

API (Server)60

Choose database/imageba…61

Database62

Impl datastoring (sensor / vi…63

Impl Snapshot-saving64

Impl sessions for start/stop …65

Imagebase66

Add API Endpoints67

Create Session options in GUI68

Software ROV:

Image processing70

Command handling71

Data stream72

Sensor software73

Modify code for new features74

Sea trial:

Sea trial76

4

W51

15 16 17 18 19 20 21

W52

22 23 24 25 26 27 28

W53

29 30 31 1 2 3 4

W1

5 6 7 8 9 10 11

W2

12 13 14 15 16 17 18

W3

19 20 21 22 23 24 25

W4

26 27 28 29 30 31 1

W5

2 3 4 5 6 7 8

W6

9 10 11 12 13 14 15

W7

16 17 18 19 20 21 22

W8

23 24 25 26 27 28 1

W9

2 3 4 5 6 7 8

W10

9 10 11 12 13 14 15

W11

16 17 18 19 20 21 22

W12

23 24 25 26 27 28 29

W13

30 31 1 2 3 4 5

W14

6 7 8 9 10 11 12

W15

13 14 15 16 17 18 19

W16

20 21 22 23 24 25 26

W17

27 28 29 30 1 2 3

W18

4 5 6 7 8 9 10

W19

11 12 13 14 15 16 17

W20

18 19 20 21 22 23 24

W

25 19

Dec 2020 Jan 2021 Feb 2021 Mar 2021 Apr 2021 May 2021
ASSIGNEE EH START DUE %ACTIVITIES

Bachelor - TowedROV
Read-only view, generated on 19 May 2021

BIBLIOGRAPHY 221

x

D REST-API Documentation

5/3/2021 FastAPI - Swagger UI

localhost:8000/docs#/ 1/3

FastAPI
/openapi.json

videos

POSTPOST /videos /preference Video Preference

GETGET /videos /snap Trigger Image Snapshot

GETGET /videos /live Live Video Feed

GETGET /videos /{img_name} Get Img From Database

commands

POSTPOST /commands / Send Command To Rov

sensors

GETGET /sensors /toggle_recording Toggle Csv Recorder

GETGET /sensors /live Live Sensor Data Feed

waypoints

GETGET /waypoints /single /{waypoint_id} Get Waypoint

GETGET /waypoints / Get Multiple Waypoints

POSTPOST /waypoints / Create Waypoint

GETGET /waypoints /{session_id} Get Waypoints By Session Id

DELETEDELETE /waypoints /{session_id} Delete Waypoints By Session Id

 0.1.0 OAS3

5/3/2021 FastAPI - Swagger UI

localhost:8000/docs#/ 2/3

waypoint_sessions

GETGET /waypoint_sessions / Get Multiple Waypoint Sessions

POSTPOST /waypoint_sessions / Create Waypoint Session

GETGET /waypoint_sessions /completed Get Completed Waypoint Sessions

GETGET /waypoint_sessions /uncompleted Get Uncompleted Waypoint Sessions

GETGET /waypoint_sessions /{session_id} Get Waypoint Session

PUTPUT /waypoint_sessions /{session_id} Update Waypoint Session

DELETEDELETE /waypoint_sessions /{session_id} Delete Waypoint Session By Session Id

settings

GETGET /settings / Get Settings

POSTPOST /settings / Create Setting

GETGET /settings /{id} Get Setting

DELETEDELETE /settings /{id} Delete Setting

PUTPUT /settings /{sensor_id} Update Sensor Enabled

Schemas

AbstractWaypoint

Command

5/3/2021 FastAPI - Swagger UI

localhost:8000/docs#/ 3/3

HTTPValidationError

Sensor

Setting

SettingCreate

SettingUpdate

ValidationError

VideoPreference

Waypoint

WaypointSession

WaypointSessionCreate

WaypointSessionUpdate

BIBLIOGRAPHY 225

E OSMEthernet Software API

OSMEthernet Software API 1.0

DeepVisionDeepVision

OSMEthernet Software API

Research & Development

Sonar Systems

Linköping, Sweden

© 2018 DeepVision AB

www.deepvision.se

OSMEthernet Software API 1.0

Table of Contents

Introduction

API Contents

The EthernetSonarExample File

The EthernetSonarAPI Class

The CDSSPParser Class

The CDVSFileWriter Class

© 2018 DeepVision AB

www.deepvision.se

OSMEthernet Software API 1.0

Introduction

This document provides an introduction to the multi platform C++ API for the DeepVision

OSMEthernet. The example included is not designed to be a complete solution, but rather

to show the basics of interfacing and setting up the DeepVision OSMEthernet module

using the OSMEthernet Software API.

The API is designed to interface DeepVision OSMEthernet sonars and to store sonar data

in the .dvs format to be used in the DeepVision DeepView software.

Figure 1: Example of ExampleSonarAPI being run.

© 2018 DeepVision AB

www.deepvision.se

OSMEthernet Software API 1.0

API Contents
The API consists of one example file, EthernetSonarExample.cpp, the main API file,

EthernetSonarAPI.cpp, the DSSPParser.cpp, the DVSFileWriter.cpp and a makefile.

The important classes the functions needed to use them are described below.

The EthernetSonarExample File

The EthernetSonarExample file calls all functions needed to record a .dvs file. It calls the

CSonarInterface::FindSonar(std::vector<std::string> * ip, std::vector<int> * ports)

function to find all connected sonars. If the IPs and ports of the sonar modules are

known, the sonar can be initiated directly using the IP and port in the constructor.

The EthernetSonarAPI Class

The CSonarInterface class is the main class of the OSMEthernet Software API. The

important public functions of the class are described below:

CSonarInterface(std::string ip, int port):

Class constructor, takes the IP and port of the sonar to be connected.

static bool FindSonar(std::vector<std::string> * ip, std::vector<int> * ports)

Static function for finding all sonars connected to the system. Adds IP and port of each

sonar found to the vectors with the corresponding names. Returns true if one or more

sonar was found.

void DSSP_SetPulseDual(

U32 nPeriods0,

float StartFreq0,

float DeltaFreq0.

U32 nPeriods1,

float StartFreq1,

float DeltaFreq1)

Function for setting the characteristics of the sonar pulse of a two channel sonar. All

parameters ending with a “0” are applied to channel one, which defaults to the left

channel of side scan sonar modules.

The nPeriodsX is the number of output periods of each ping.

The StartFreqX is the starting frequency of the ping in Hz.
The DeltaFreqX is the delta frequency of the ping in Hz.
The end frequency can be calculated as EndFreq = StartFreq + DeltaFreq. It is

recommended to use approximately 10% of the central frequency as delta frequency for

the standard DeepVision transducers. For side scan sonar applications, the settings of

the two channels are usually identical.

New settings will take effect when a new recording is started, and will not affect an

active recording.

© 2018 DeepVision AB

www.deepvision.se

OSMEthernet Software API 1.0

void DSSP_SetSampling(

unsigned int nSamples,

bool CH0Active,

bool CH1Active,

bool onePing)

Function for controlling the output of the sonar module.

The nSamples sets the number of output samples per ping and side, and thereby also

the resolution. The resolution can be calculated as: resolution = range / nSamples where

both range and resolution are given in meters. The value of nSamples are typically 500

to 1000.

When CH0Active is true, the sonar module outputs data from channel one, which is

normally the left channel on a side scan sonar module.

When CH1Active is true, the sonar module outputs data from channel two, which is

normally the right channel on a side scan sonar module.

When onePing is true, the sonar will ping once for each StartRec(float range) function

sent, if onePing is false the sonar will ping continuously until the StopRec() function is

sent. In both cases the StopRec() function is needed to stop the recording.

New settings will take effect when a new recording is started, and will not affect an

active recording.

void StartRec(float range)

Starts a recording with the given range in meters. The range of the recording is limited

to a minimum of 10 meters and a maximum of 500 meters. The resolution of the

recording is given by the value of nSamples in the DSSP_SetSampling() function and the

range, and can be calculated as: resolution = range / nSamples.
When onePing is used each ping has to be initialised by StartRec().

int GetData(char* buffer, int buffersize)

The GetData function receives sonar data over TCP and puts it into buffer. The buffersize

argument is the size of buffer. The function returns the number of received bytes.

void StopRec()

Stops the active recording and closes the .dvs file.

int m_type

int m_model

The two integers m_type and m_model stores the type of the connected sonar. They can

be used to differentiate between different sonars on a system running DHCP.

© 2018 DeepVision AB

www.deepvision.se

OSMEthernet Software API 1.0

The CDSSPParser Class

The CDSSPParser class parses streamed data from DeepVision OEM sonars.

Bool Add(char b)

Used to add sonar stream data to the parser. Returns true when a complete sonar

package has been correctly added.

void GetChannelData(char*& data0, int* size0, char*& data1, int* size1)

Function to retrieve data from the parser after the bool CDSSPParser::Add(char b)

function has returned true. The data of each channel will be stored in data0 and data1

respectively and the size of each channel in size0 and size1.

The CDVSFileWriter Class

The CDVSFileWriter class is used to create .dvs files from sonar data which can be

viewed and edited in the DeepVision DeepView software.

bool Create(const char* fileName,

bool left,

bool right,

float res,

int nSamples);

Function to create and define a new .dvs file. The fileName argument sets the name and

path of the file, the left and right arguments indicates if the left and right channels of the

recording were active. The res and nSamples arguments corresponds to the resolution

and nSamples as described in StartRec() of the EthernetSonarAPI class (resolution =

range / nSamples).

void AddPingData(double lat,

double lon,

float speed,

float heading,

BYTE* pLeftData,

int nLeft,

BYTE* pRightData,

int nRight)

The AddPingData function adds ping data to the file that has been defined by the

Create() function. If the ping is to be georeferenced the lat, lon, speed and heading

arguments need to be supplied. The ping data is added to the pLeftData and pRightData

arguments respectively and nLeft and nRight are the length of the two buffers in number

of bytes.

void CreateDemoFile(const char* fileName)

The CreateDemoFile function will create a demo file in the .dvs format and is intended as

an example of both how to use the other functions in the class and to show the resulting

file format.

© 2018 DeepVision AB

www.deepvision.se

BIBLIOGRAPHY 232

F OSMEthernet Connector

BIBLIOGRAPHY 235

G Excerpt from a source code: REST-API

G.1 Startup code

from fastapi import FastAPI

from starlette.middleware.cors import CORSMiddleware

from api.api import api_router

from db.session import engine

from models import setting

setting.Base.metadata.create_all(bind=engine)

app = FastAPI()

origins = [

"http://localhost:3000",

"localhost:3000",

]

app.add_middleware(

CORSMiddleware,

allow_origins=origins,

allow_credentials=True,

allow_methods=["*"],

allow_headers=["*"]

)

app.include_router(api_router)

BIBLIOGRAPHY 236

H Excerpt from a source code: Sonar API

H.1 Startup code

#include "EthernetSonarAPI.h"

#include "DVSFileWriter.h"

#include "DSSPParser.h"

#include <fstream>

#include "zmq.h"

#include "windows.h"

#include <iostream>

#include <string>

#define ZMQ_EXPORT __declspec(dllexport)

#define BUFFERSIZE 2048

using namespace std;

int main() {

std::vector<int> ports;

std::vector<std::string> IPs;

CEthernetSonarAPI::FindSonar(&IPs, &ports);

for (unsigned int i = 0; i < IPs.size(); i++) {

std::cout << "Sonar with IP " << IPs[i] << " found." << std::endl;

}

if (IPs.size() == 0) {

return -1;

}

BIBLIOGRAPHY 237

void* context = zmq_ctx_new();

void* requester = zmq_socket(context, ZMQ_PUB);

int rc = zmq_bind(requester, "tcp://127.0.0.1:5555");

CEthernetSonarAPI Sonar(IPs[0], ports[0]);

CDVSFileWriter DVSFile;

CDSSPParser parser;

float range = 20; // Sonar range in meters

int nSamples = 500; // Number of samples per active side and ping

int nPeriods = 32; // Number of periods of transmitted pulse

float startFreq = 320000; // Starting frequency of transmitted pulse

float deltaFreq = 40000; // Delta frequency of transmitted pulse

bool leftActive = true; // true if left side is to be used

bool rightActive = true; // true if right side is to be used

float resolution = (float)(range * 1.0) / nSamples; // Resolurion of the

resulting image in meters

Sonar.DSSP_SetPulseDual(nPeriods, startFreq, deltaFreq, nPeriods, startFreq,

deltaFreq);

Sonar.DSSP_SetSampling(nSamples, leftActive, rightActive, false);

Sonar.StartRec(range);

char sonarData[BUFFERSIZE];

int receivedSamples = Sonar.GetData(sonarData, BUFFERSIZE);

while (receivedSamples <= 0) {

BIBLIOGRAPHY 238

Sonar.StartRec(range);

#ifdef WIN32

Sleep(50);

#elif LINUX

usleep(50000);

#endif

receivedSamples = Sonar.GetData(sonarData, BUFFERSIZE);

#ifdef WIN32

Sleep(50);

#elif LINUX

usleep(50000);

#endif

}

std::cout << "Sonar connected successfully." << std::endl;

// Create your ’test’ file here

DVSFile.Create("my_test_file.dvs", leftActive, rightActive, resolution,

nSamples);

int pings = 500;

int n = 0;

while (pings > 0) {

receivedSamples = Sonar.GetData(sonarData, BUFFERSIZE);

if (receivedSamples > 0) {

for (int i = 0; i < receivedSamples; i++) {

if (parser.Add(sonarData[i])) {

char* data0;

char* data1;

int size0 = 0;

BIBLIOGRAPHY 239

int size1 = 0;

parser.GetChannelData(data0, &size0, data1, &size1);

DVSFile.AddPingData(0.0, 0.0, 0.0, 0.0, data0, size0, data1, size1);

string result;

for (int i = 0; i < size0; i++) {

result += to_string((int)data0[i]) + " ";

}

for (int i = 0; i < size1; i++) {

result += to_string((int)data1[i]) + " ";

}

const char* valueChar = result.c_str();

int rcb = zmq_send(requester, valueChar, strlen(valueChar), 0);

std::cout << "Size0: " << size0 << ", size1: " << size1 << ", n=" << n++

<< std::endl;

pings--;

}

}

}

}

zmq_close(requester);

zmq_ctx_destroy(context);

return 0;

}

BIBLIOGRAPHY 240

I Excerpt from a source code: Surface Unit

def calc_checksum(message:str,startchar,endchar)->str:

start = message.index(startchar)

stop = message.index(endchar)

checksum = 0

for c in message[start:stop]:

checksum ^= ord(c)

return hex(checksum)[2:].upper()

J Excerpt from a source code: GUI

J.1 Startup code

import React from "react";

import { Switch, Route, HashRouter } from "react-router-dom";

import { SettingsProvider } from "./components/SettingsProvider";

import NotFoundPage from "./pages/NotFoundPage";

import NavIcon from "./components/NavIcon";

import Dashboard from "./pages/Dashboard";

import Settings from "./pages/Settings";

import Home from "./pages/Home";

import Map from "./pages/Map";

function App() {

return (

<HashRouter>

<SettingsProvider>

<NavIcon />

BIBLIOGRAPHY 241

<Switch>

<Route path="/" exact component={Home} />

<Route path="/settings" component={Settings} />

<Route path="/dashboard" component={Dashboard} />

<Route path="/map" component={Map} />

<Route component={NotFoundPage} />

</Switch>

</SettingsProvider>

</HashRouter>

);

}

export default App;

K Excerpt from a source code: Serial from Towed-ROV

import serial

import queue

from threading import Thread

from time import time

ENCODING = ’utf-8’

TERMINATOR = ’:’

START_CHAR = ’<’

END_CHAR = ’>’

NEW_LINE = ’\n’

START = b’<’

STOP = b’>’

class SerialWriterReader(Thread):

BIBLIOGRAPHY 242

"""

Serial reader and writer running as a thread to read and write data to and

from a serial port.

"""

def __init__(self, output_queue, input_queue, com_port,

baud_rate, from_arduino_to_arduino_queue):

Thread.__init__(self)

self.from_arduino_to_arduino_queue = from_arduino_to_arduino_queue

self.output_queue = output_queue

self.input_queue = input_queue

self.com_port = com_port

self.baud_rate = baud_rate

self.serial_port = serial.Serial(

port=self.com_port,

baudrate=self.baud_rate,

parity=serial.PARITY_NONE,

stopbits=serial.STOPBITS_ONE,

bytesize=serial.EIGHTBITS,

timeout=0)

self.stop = False

self.in_packet = bytearray()

self.packet = bytearray()

self.last_output = ’’

self.FROM_ARDUINO_TO_ARDUINO = [’depth’, ’roll’, ’pitch’]

def run(self):...

def __write_serial_data(self, message):...

def __read_incoming_data(self):

"""

Reads from serial port, iterates over each byte to find the start byte "<"

BIBLIOGRAPHY 243

and add each follow byte to a variable of bytes until the byte received

equal the stop byte ">".

The bytes will be decoded and a string of received data will be returned.

:return: message(String) read from serial port

"""

data_received = []

message_received = ""

try:

data = self.serial_port.read(self.serial_port.in_waiting or 1)

for byte in serial.iterbytes(data):

if byte == START:

self.in_packet = True

elif byte == STOP:

self.in_packet = False

data_received.append(self.__handle_packet(bytes(self.packet)))

del self.packet[:]

elif self.in_packet:

self.packet.extend(byte)

else:

pass

except (Exception) as e:

print(e, "serial1")

return data_received

def __handle_packet(self, data):

"""

Decodes data and removes charaters

@param data: Bytes received for the serial port

@return: the decoded data as a string.

"""

message_received = data.decode(ENCODING). \

BIBLIOGRAPHY 244

replace(START_CHAR, ""). \

replace(END_CHAR, ""). \

replace(" ", "")

return message_received

def stop_thread(self):...

L Excerpt from a source code: SeafloorTracker

"""

Seafloor tracking class

block of x sea floor measurements are sent to class

measurements are sent to a cost function that finds a sp for a distance of 10

meters

when a new set point is created, the set_point is sent to the optimal path

algorithm, this algorithm returns index(0) as the new set_point

"""

import numpy as np

from threading import Thread

from time import sleep

class SeafloorTracker(Thread):

def __init__(self, length_rope, desired_distance, min_dist, dist_to_skip,

depth_of_rov, depth_beneath_boat, new_set_point_event,

set_point_queue):

Thread.__init__(self)

self.length_rope = length_rope

self.desired_distance = desired_distance

self.min_dist = min_dist

BIBLIOGRAPHY 245

if desired_distance - min_dist >= dist_to_skip:

self.dist_to_skip = dist_to_skip

else:

self.dist_to_skip = desired_distance - min_dist

self.set_points = np.zeros([round(length_rope / 10)])

self.depths_of_rov = depth_of_rov

self.depths_beneath_boat = depth_beneath_boat

self.new_set_point_event = new_set_point_event

self.set_point_queue = set_point_queue

self.array_count = 0

def run(self):

while True:

if self.new_set_point_event.is_set():

depths_beneath_rov = np.array(self.depths_beneath_boat.queue)

depths_of_rov = self.depths_of_rov

with self.depths_beneath_boat.mutex:

self.depths_beneath_boat.queue.clear()

print("ok")

self.set_point_queue.put(self.get_set_point(depths_beneath_rov,

depths_of_rov))

self.new_set_point_event.clear()

def get_set_point(self, sonar_values, depth_rov):

"""[Get a new set point based on the current set point and future depths]

Args:

sonar_values ([float]): [numpy 1D array with recorded sonar values]

depth_rov ([float]): [The last measured ROV depth]

Returns:

[float]: [The new depth set point for the ROV]

"""

current_set_point = self.set_points[0]

BIBLIOGRAPHY 246

new_set_point, alarm = self.__cost_function(sonar_values)

self.set_points = np.delete(self.set_points, 0)

self.set_points = np.append(self.set_points, new_set_point)

if self.set_points_full:

self.set_points = self.__find_opt_sp(self.set_points,

current_set_point, depth_rov, self.desired_distance,

self.min_dist, self.dist_to_skip)

elif self.array_count >= len(self.set_points) - 1:

self.set_points_full = True

else:

self.array_count = self.array_count + 1

return self.set_points[0]

def set_paramter_values(self, length_rope=None, desired_distance=None,

min_dist=None, dist_to_skip=None):

"""[summary]

Args:

length_rope ([int], optional): [The length of the towing cable].

Defaults to None.

desired_distance ([int], optional): [The ROVs desired distance from the

seafloor]. Defaults to None.

min_dist ([int], optional): [The minimum distance the ROV can have to

the seafloor]. Defaults to None.

dist_to_skip ([int], optional): [The distance the ROV can have to the

new set point before changing]. Defaults to None.

"""

if length_rope is not None and length_rope != self.length_rope:

new_size = round(length_rope / 10)

self.set_points = self.__change_matrix_size(self.set_points,

len(self.set_points), new_size)

if desired_distance is not None:

BIBLIOGRAPHY 247

self.desired_distance = desired_distance

if min_dist is not None and min_dist < self.desired_distance:

self.min_dist = min_dist

if dist_to_skip is not None:

self.dist_to_skip = dist_to_skip

if desired_distance - min_dist <= self.dist_to_skip:

self.dist_to_skip = dist_to_skip

else:

self.dist_to_skip = desired_distance - min_dist

def __cost_function(self, sonar_values):

"""[Run the echo sounder data through a cost function to find the optimal

distance]

Args:

sonar_values ([float np array 1D]): [The recorded sonar values]

Returns:

[float]: [The optimal distance from the seafloor]

"""

new_sp = 0

alarm_flag = False

max_set_point = round(min(sonar_values) - self.min_dist)

if max_set_point >= 0:

legal_set_points = np.arange(0, max_set_point, 0.5)

cost = np.zeros([len(legal_set_points)])

for index, set_point in enumerate(legal_set_points):

for sonar_value in sonar_values:

cost[index] += abs(sonar_value - set_point -

self.desired_distance)

min_cost = np.amin(cost)

min_cost_idx = np.array(np.argmax(cost == min_cost))

new_sp = legal_set_points[min_cost_idx]

BIBLIOGRAPHY 248

else:

alarm_flag = True

return new_sp, alarm_flag

def __find_opt_sp(self, set_points, current_sp, depth_rov, desired_distance,

min_dist, dist_to_skip):

"""[Evaluetes the set points array to find an optimal path]

Args:

set_points ([type]): [description]

current_sp ([type]): [description]

depth_rov ([type]): [description]

Returns:

[type]: [description]

"""

set_points_mean = round(np.mean(set_points))

If the ROV is on colision course every set point is set to a safe

distance giving it time to go up

if current_sp - set_points[-1] > desired_distance - min_dist or depth_rov -

set_points[

-1] > desired_distance - min_dist:

set_points_min = min(set_points)

set_points = np.empty(len(set_points))

set_points.fill(set_points_min)

elif current_sp - min(set_points) > desired_distance - min_dist or

depth_rov - min(

set_points) > desired_distance - min_dist:

set_points[0] = min(set_points)

Rov closer to mean than current sp

elif dist_to_skip > abs(depth_rov - set_points_mean) < abs(depth_rov -

current_sp):

set_points[0] = set_points_mean

BIBLIOGRAPHY 249

if the distance between current sp and mean sp is greater than dist to

ignore

elif abs(current_sp - set_points_mean) > dist_to_skip:

if mean is less than current the ROV goes up

if set_points_mean < current_sp:

set_points[0] = set_points_mean

if the mean value is greater than current set point, and it wont

reduce the depth if it have to go back up.

elif set_points_mean - set_points[0] < desired_distance - min_dist and

set_points_mean - min(

set_points) < desired_distance - min_dist:

set_points[0] = set_points_mean

else:

set_points[0] = min(set_points)

else:

set_points[0] = current_sp

return set_points

def __change_matrix_size(self, matrix_to_change, size, new_size):

difference = new_size - size

if difference >= 1:

idx = np.full((1, difference), matrix_to_change[-1])

new_matrix = np.append(matrix_to_change, idx)

elif difference <= -1:

idx = np.arange(abs(difference))

new_matrix = np.delete(matrix_to_change, idx)

return new_matrix

if __name__ == "__main__":

BIBLIOGRAPHY 250

q1 = queue.Queue()

q2 = queue.Queue()

q3 = queue.Queue()

q4 = Queue()

q1.put(15.01)

q1.put(15.1)

q1.put(15.2)

q2.put(30.01)

q2.put(30.9)

q2.put(30.8)

test = SeafloorTracker(300, 20, 9, 6, 10, q2, q3, q4)

test.start()

sleep(3)

q3.put(True)

M Demonstration video

The demonstration video can be viewed in full on YouTube.

https://www.youtube.com/watch?v=K7ho2UsRcDo

N Source Code

The source code can be viewed in full and is available on Github.

https://github.com/Towed-ROV

https://www.youtube.com/watch?v=K7ho2UsRcDo
https://www.youtube.com/watch?v=K7ho2UsRcDo
https://github.com/Towed-ROV
https://github.com/Towed-ROV

	Preface
	Acknowledgement
	Summary
	Acronyms
	Introductions
	Background and Motivation
	Problem Formulation
	Project Requirements
	Thesis Outline

	Theoretical basis
	Inertial measurement unit
	Accelerometer
	Gyroscope
	Magnetometer

	Complementary Filter
	Hydrographic Surveying
	Echo Sounding Thechnology
	Single-beam sonar

	Surveying with sonar technology
	Side-scan sonar

	Hyper-Spectral imaging

	Software architecture
	Three-Tier Architecture

	Database
	Relational Database
	Primary Key
	Foreign Key
	Relationship
	One-To-One
	One-To-Many
	Many-To-Many

	Application Programming Interface
	Representational state transfer
	HTTP methods
	Endpoint
	Path parameters
	Query parameters
	StreamingResponse
	Server-Sent Events

	Communication Protocols
	TCP / IP
	Serial communication
	NMEA 0183

	I2C
	Software UART

	ZeroMQ
	Request–reply
	Publisher–subscriber

	Digital Twin
	Pulse Width Modulation
	Geographical terms
	Haversine formula
	Earth's radius

	Hydrodynamics
	Forces on a body in water
	Drag and inertia
	Turbulence: shapes and vortex shedding

	Stability and buoyancy
	Hydrodynamics and Towed vehicles
	Hydrofoil
	Stall

	Materials
	ROV prototype
	Hardware
	ROV
	Surface Unit
	Power and cables

	Metals and Plastics
	Tools
	Software, libraries and frameworks
	Programming Languages
	Python
	JavaScript
	SQL
	C / C++ Arduino

	Software utilities
	Microsoft Teams
	Discord
	Visual Studio Code
	PyCharm
	AGX Dynamics
	Arduino IDE
	Solidworks
	Simens NX
	Virtual Serial Port Driver
	Autodesk Fusion 360
	Cura
	Fritzing
	VNC Viewer
	iPerf
	Matlab
	Swagger UI
	TablePlus
	Draw.io
	DeepView FV

	Libraries and Toolkits
	Python
	JavaScript
	C / C++
	Arduino

	Frameworks
	GUI
	API

	Methodology
	Project Organization
	Deviation Protocol
	Communication
	System to System
	Validating ZMQ

	Payload structure
	Sensor data
	Settings
	Commands

	ROV systems
	Serial communication
	Handling data from ZMQ to serial port

	Structuring the Software application
	Presentation tier
	Setup
	Structure

	Application tier
	Data tier

	The Surface Unit systems
	Handling NMEA data
	Implementing the Echo Sounder
	GPS implementation

	Hydrographic surveying
	Points of consideration
	Implementation
	Sonar API
	Testing
	Important settings for the Side-Scan Sonar

	ROV Implementations
	Selecting between Penetrator and Connector
	Implementation

	Sensor modularity
	Lights
	IMU
	Seafloor tracking

	Method for Sea Trial
	Physical changes
	Adjusting buoyancy and stability
	Side plates and Spoiler
	Tail fin
	Design of new wings

	Flow simulation of wings
	Troubleshooting
	Measure DC voltage using oscilloscope
	Testing conductivity of the oil
	Validating Tether performance

	Digital Twin
	Seafloor
	Building model for simulation
	Sensors and Stepper motors
	Simulating Echo sounders

	Communication
	Simulating system on computer
	Behavior
	Hydrodynamic parameters

	Results
	Software solutions
	Architecture
	Graphical User Interface
	Pagination
	Modularity
	Dashboard
	Map

	REST-API
	Database

	Software performance
	Communication results
	Tether

	Digital Twin
	AGX and Hydrodynamics
	ROV control

	Simulation speed

	IMU sensor fusion
	Seafloor Tracking
	Surface Unit Software
	NMEA Parsing

	Electronics
	5 V DC-DC converter

	Camera and lights
	Side-Scan Sonar
	Sea Trials
	Data presented
	Sea trial: 1
	Sea trial 2
	Sea trial 3
	Sea trial 4
	Sea trial 5
	Flow simulation wings
	Weight test
	Sea trial 6

	Discussion
	Technical Results
	ROV prototype
	Side-Scan Sonar
	Quality
	Stability

	Seafloor Tracking
	Software solutions
	Digital Twin
	Differences between the physical systems and Digital Twin

	Communication
	Camera and lights

	Project accomplishments
	Distribution of work
	Unforeseen consequences
	Electronics
	Control system
	Position estimation

	Improvements
	Hardware
	Software

	Conclusions
	Bibliography
	Appendices
	Reports
	Preproject report
	Status reports

	Elschematic
	Gantt diagram
	REST-API Documentation
	OSMEthernet Software API
	OSMEthernet Connector
	Excerpt from a source code: REST-API
	Startup code

	Excerpt from a source code: Sonar API
	Startup code

	Excerpt from a source code: Surface Unit
	Excerpt from a source code: GUI
	Startup code

	Excerpt from a source code: Serial from Towed-ROV
	Excerpt from a source code: SeafloorTracker
	Demonstration video
	Source Code

