
Anatomy of a
Bulk-Synchronous Program
Presentation for RSE-team
11.11.2021

Jan Christian Meyer

2

What we’re doing today

● Architectural features only appear as statistics in
software performance.

● The designs of memory systems and networks
appear as very clear statistics in HPC program
performance.

● When we last spoke, I described parts of why
this is so.

● Today, we’re going to create a super-simple
example program, to see where the connection
comes from in practice.

3

Bulk-Synchronous Execution

● This is a pattern that occurs in 75-90% of HPC
applications.

● Superficially, it looks like this:

Barrier

Barrier

Barrier

Time

Parallel work

Synchronization

4

When some units are faster...

...they just have to wait, over and over.
● Corollary: a supercomputer can only be as fast

as its slowest component.

Barrier

Barrier

Barrier

Time

Waste

Waste

5

Where does this come from?

● Ultimately, it reflects the natural laws we
simulate.

● Partly, it’s because of the way we calculate
approximations to them.

● We can try it out with a simple model of how heat
disperses in various materials.

(There’s more than conduction to heat transfer, but one equation is enough for now)

6

Derivative by Euler’s Method

7

Derivative by Central Difference

Estimate between
-1 and 0

Estimate between
0 and 1

Their average

8

2nd Derivative by Central Difference

Derivative from
the right step

Derivative from
the left step

Differentiate
those two

Clean up a bit

9

How heat diffuses (in 2D + time)

● Nature has it that

● For our discrete representation, say that
t = 0, 1, 2,...

h

i=2, j=3

10

Substitute Our Approximations

becomes

Tidy up, and solve for next step in time:

11

Direct Translation to Code

becomes

if we let alpha = 1 for simplicity

T_next(i,j) = T(i,j) + dt * (
 T(i+1,j) + T(i-1,j) + T(i,j+1) + T(i,j-1)
 - 4.0 * T(i,j)
) / (h*h);

12

Boundary Conditions

● Each point requires values from its 4 neighbors
● All good things (and arrays) come to an end
● What can we do where two or more points are

missing?

13

Make Something UpTM!

● Dimension the array with padding on the sides
● Manipulate those values apart from the physics

14

Neumann Boundary Condition

● Reflect values from inside the domain across the
boundary

● This corresponds to saying that the derivative is
0 there:

15

Improved Resolution

● We can simulate the same thing again, with a
more fine-grained grid.

● Let’s divide the cell edges in half, and get four
times as many grid points.

16

Impact on Simulated Time

● The gradients we estimate in space-dimensions are
multiplied by the length of the time step when we
integrate.

● If you take a small difference over one centimeter and
multiply it by a million years, you’ll get a number with
no connection to reality.

● For numerical stability,

● Things can often go a bit wobbly even when they’re
equal, so I’ll use 4 alphas in the denominator, to be
on the safe side.

17

A sequential implementation
domain_init()

Allocate space, initialize values

boundary_condition()
Mirror values along edges

time_step()
Calculate T_next from T

domain_save(iteration)
Save state every 1000 iterations

T_next <=> T
Swap buffers

Repeat while
iter<max_iter

18

Indexing macros

● Buffers are allocated with (N+2)*(N+2) size, to
have space for our halo of extra values

● #define T(y,x) temperature[((y)+1)*(N+2)+(x)+1]

allows us to write T(-1,-1) and T(N,N) without
causing segmentation faults

● This is just an indexing trick,
but extremely helpful to
keep things clear

● Also useful later on, with MPI

(-1,-1)

(N,N)

19

So far, so good

● Now that we have a working program, we can try
things that affect its performance

● Without even going parallel, we can measure the
effect of its cache utilization

● By multithreading the time_step() function, we
can measure the impact of multicore cpus

...and see what happens if we create false sharing...

20

Cache Utilization

● Our program is not yet parallel, but we can already
measure the impact of its memory access pattern.

● The arrays are laid out in memory by row-major
ordering:

21

Cache Utilization

● If we traverse them in column-major order, we get
an access pattern that is strided by the array size:

● There could be re-use in this order as well, but
when the array grows big enough, the latest fetches
begin to evict the first before the loop wraps around.

1 5 2 6 3 7... 4

22

Multithreading

● Our time-steps must be sequential, but all the
space-steps can be done simultaneously.

● This is a perfect case for applying the OpenMP
programming model:
– If you write

#pragma omp parallel for
in front of a loop, its iterations will be automatically distributed
among threads.

– The threads will join and vanish after the loop, so none of
them speed on through to the next timestep.

– This is one kind of barrier from the bulk-synchronous pattern.

23

False Sharing

● If we distribute the work by rows, each thread
gets a long, contiguous sequence to cache all by
itself

1 2 3 4

24

False Sharing
● If we distribute it by columns, neighboring threads will

cache values of interest to each other.
● When one writes to its location in the contested cache line,

it will invalidate the other, even if there is no race condition.

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

25

That’s SMP in a nutshell

● We can now employ any size of shared-memory
machine.

● This gets you into 4-digit core counts if you
– rewrite it to use a graphics processor, or

– spend 60.000.000 NOK on it.

● How fast can it go?

26

Roofline analysis

● Let the y-axis represent FLOP/s, and measure
sustained computing rate, and

● let the x-axis represent how many FLOP-s the
program carries out for each byte:

FLOP/s

FLOP/byte

27

Peak computation rate

● If memory were as fast as the processor, the
computer could calculate at its highest clock
speed:

FLOP/s

FLOP/byte

Maximum speed

28

Peak memory bandwidth

● If the program only carries out a few operations
per data element, it will be bottlenecked by the
memory bandwidth.
– [bytes/second] x [FLOP/byte] = [FLOP / second]

FLOP/s

FLOP/byte

Maximum speed

29

Our computation

● The number of operations per datum is a
characteristic of the computation, it’s built in.

● Ours has 10 operations for 7 8-byte values, that
makes for an operational intensity around
0.1786.

T_next(i,j) = T(i,j) + dt * (
 T(i+1,j) + T(i-1,j) + T(i,j+1) + T(i,j-1)
 - 4.0 * T(i,j)
) / (h*h);

30

Roofline conclusion

● Here’s a measured roofline graph from a 36-core
Dell PE730 server:

We are apprx. here.

→ This program will run at the speed of memory.

31

Beyond threads

● When we run out of cores with shared memory,
the next step is to use distributed memory

● This means we’ll have to
– launch separate copies of the program on separate

computers,

– put them in touch with each other, and

– write them so that they figure out how to split the problem.

● Thankfully, MPI is here to help.

32

The issue we face
● If we split our 2D array into 9 separate pieces, here’s

what we get:

33

First things first

● In order to get this grid of processes, the MPI
implementation of our program begins by
– counting the number of processes,

MPI_Comm_size

– configuring a «cartesian communicator» (i.e. a grid),
MPI_Dims_create
MPI_Cart_create

– finding own coordinates in it,
MPI_Cart_coords

– and figuring out the east/west/north/south neighbors
MPI_Cart_shift

34

Border exchange

● In order to calculate the values for each point
that is adjacent to the (grey) halo points, we
must fetch its value from the neighboring
process

35

Border exchange, illustrated

36

Memory layout

● As we already mentioned, the array is stored in
row-major order:

● That means column vectors are strided in
memory, such as the leftmost one here, which
will occupy indices {0,4,8,12}

37

Data types for communication

● MPI can store memory access patterns with
gaps in, to make such things easier to handle

● In the function setup_mpi_types, the two calls
to MPI_Type_vector create a row and a
column vector type for the border exchange

● The border_exchange function uses them to
swap values between neighbors according to the
diagram

38

Saving results

● We have a related issue when saving the entire
array to file.

● Files are (ostensibly) sequential, but the
distributed array isn’t.

● MPI datatypes can also express addressing of
rectangular slices from a whole,
MPI_Type_create_subarray requires
– The size of the whole it is indexing into,

– the size of the slice it is supposed to index, and

– the coordinates of the slice’s starting point/origin.

39

We need 2 of these

● One for indexing where to write values (called
domain), e.g. for the top/center process:

Whole is 12x12

Start 4x4 section at (0,4)

40

We need 2 of these

● One for indexing where to read values (called
subdomain):

Whole is 6x6

Start at 4x4 section at (1,1)

41

Parallel I/O

● Armed with these datatypes (also configured in
setup_mpi_types), we have parallelized I/O as
well

(...as long as the file system supports it...)

● Our program is now «entirely parallel»
– No kings, no masters

– (...it still has to launch and stop, though...)

● So, what kind of performance can we get?

42

Strong scaling results

● With a problem size of 512x512 points:

43

We run out of work

● At 8x8 ranks, each subdomain is only 64x64
points

● Additional ranks contribute little, we’ve reached
diminishing returns (cf. efficiency curve)

● Still, we cut execution time by a factor 16.4

44

Is it worth the trouble?

● What it cost us
– We’ve used hardware that costs roughly 260.000 NOK

– Code has almost doubled in size (whatever that costs)

● What we gained
– 16-17 times faster execution for this problem size

– Ability to finish (almost) arbitrarily much larger problems, in
exchange for additional hardware

● Conclusion: «it depends»
– Consider the problem you want to parallelize

45

How realistic is the comparison?

● Just for fun, I also wrote up the exact same
program logic in Python (3)
– Numpy arrays for slight speed improvement

– Direct translation, so it’s not adapted to Python-isms
(...please show me any improvements you know of...)

● Short and pleasant exercise, 60% code reduction
for sequential version

● Measured wall time on same hardware:
74797.81s (20.78 hours)

– It took longer to run this version than to write all variants put together

– If we could get 16x-17x-ish speedup, it would still run for 1h15m

46

Thank you for your attention!

Are there any questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46

