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What we’re doing today

● Architectural features only appear as statistics in 
software performance.

● The designs of memory systems and networks 
appear as very clear statistics in HPC program 
performance.

● When we last spoke, I described parts of why 
this is so.

● Today, we’re going to create a super-simple 
example program, to see where the connection 
comes from in practice.
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Bulk-Synchronous Execution

● This is a pattern that occurs in 75-90% of HPC 
applications.

● Superficially, it looks like this:
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When some units are faster...

...they just have to wait, over and over.
● Corollary: a supercomputer can only be as fast 

as its slowest component.
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Where does this come from?

● Ultimately, it reflects the natural laws we 
simulate.

● Partly, it’s because of the way we calculate 
approximations to them.

● We can try it out with a simple model of how heat 
disperses in various materials.

(There’s more than conduction to heat transfer, but one equation is enough for now)
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Derivative by Euler’s Method
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Derivative by Central Difference

Estimate between
-1 and 0

Estimate between
0 and 1

Their average
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2nd Derivative by Central Difference

Derivative from
the right step

Derivative from
the left step

Differentiate
those two

Clean up a bit
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How heat diffuses (in 2D + time)

● Nature has it that

● For our discrete representation, say that
t = 0, 1, 2,...

h

i=2, j=3
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Substitute Our Approximations

becomes

Tidy up, and solve for next step in time:
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Direct Translation to Code

becomes

if we let alpha = 1 for simplicity

T_next(i,j) = T(i,j) + dt * (
    T(i+1,j) + T(i-1,j) + T(i,j+1) + T(i,j-1)
  - 4.0 * T(i,j)
) / (h*h);
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Boundary Conditions

● Each point requires values from its 4 neighbors
● All good things (and arrays) come to an end
● What can we do where two or more points are 

missing?
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Make Something UpTM!

● Dimension the array with padding on the sides
● Manipulate those values apart from the physics
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Neumann Boundary Condition

● Reflect values from inside the domain across the 
boundary

● This corresponds to saying that the derivative is 
0 there:
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Improved Resolution

● We can simulate the same thing again, with a 
more fine-grained grid.

● Let’s divide the cell edges in half, and get four 
times as many grid points.
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Impact on Simulated Time

● The gradients we estimate in space-dimensions are 
multiplied by the length of the time step when we 
integrate.

● If you take a small difference over one centimeter and 
multiply it by a million years, you’ll get a number with 
no connection to reality.

● For numerical stability,

● Things can often go a bit wobbly even when they’re 
equal, so I’ll use 4 alphas in the denominator, to be 
on the safe side. 
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A sequential implementation
domain_init()

Allocate space, initialize values

boundary_condition()
Mirror values along edges

time_step()
Calculate T_next from T

domain_save(iteration)
Save state every 1000 iterations

T_next <=> T
Swap buffers

Repeat while
iter<max_iter
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Indexing macros

● Buffers are allocated with (N+2)*(N+2) size, to 
have space for our halo of extra values

● #define T(y,x) temperature[((y)+1)*(N+2)+(x)+1]

allows us to write T(-1,-1) and T(N,N) without 
causing segmentation faults

● This is just an indexing trick,
but extremely helpful to
keep things clear

● Also useful later on, with MPI

(-1,-1)

(N,N)
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So far, so good

● Now that we have a working program, we can try 
things that affect its performance

● Without even going parallel, we can measure the 
effect of its cache utilization

● By multithreading the time_step() function, we 
can measure the impact of multicore cpus

...and see what happens if we create false sharing...
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Cache Utilization

● Our program is not yet parallel, but we can already 
measure the impact of its memory access pattern.

● The arrays are laid out in memory by row-major 
ordering:



21

Cache Utilization

● If we traverse them in column-major order, we get 
an access pattern that is strided by the array size:

● There could be re-use in this order as well, but 
when the array grows big enough, the latest fetches 
begin to evict the first before the loop wraps around.

1   5 2    6 3    7... 4
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Multithreading

● Our time-steps must be sequential, but all the 
space-steps can be done simultaneously.

● This is a perfect case for applying the OpenMP 
programming model:
– If you write 

#pragma omp parallel for
in front of a loop, its iterations will be automatically distributed 
among threads.

– The threads will join and vanish after the loop, so none of 
them speed on through to the next timestep.

– This is one kind of barrier from the bulk-synchronous pattern.
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False Sharing

● If we distribute the work by rows, each thread 
gets a long, contiguous sequence to cache all by 
itself

1 2 3 4
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False Sharing
● If we distribute it by columns, neighboring threads will 

cache values of interest to each other.
● When one writes to its location in the contested cache line, 

it will invalidate the other, even if there is no race condition.

1   2    3    4   1   2    3    4   1   2    3    4   1   2    3    4   
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That’s SMP in a nutshell

● We can now employ any size of shared-memory 
machine.

● This gets you into 4-digit core counts if you
– rewrite it to use a graphics processor, or

– spend 60.000.000 NOK on it.

● How fast can it go?
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Roofline analysis

● Let the y-axis represent FLOP/s, and measure 
sustained computing rate, and

● let the x-axis represent how many FLOP-s the 
program carries out for each byte:

FLOP/s

FLOP/byte
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Peak computation rate

● If memory were as fast as the processor, the 
computer could calculate at its highest clock 
speed:

FLOP/s

FLOP/byte

Maximum speed
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Peak memory bandwidth

● If the program only carries out a few operations 
per data element, it will be bottlenecked by the 
memory bandwidth.
– [ bytes/second ] x [ FLOP/byte ] = [ FLOP / second ]

FLOP/s

FLOP/byte

Maximum speed
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Our computation

● The number of operations per datum is a 
characteristic of the computation, it’s built in.

● Ours has 10 operations for 7 8-byte values, that 
makes for an operational intensity around 
0.1786.

T_next(i,j) = T(i,j) + dt * (
    T(i+1,j) + T(i-1,j) + T(i,j+1) + T(i,j-1)
  - 4.0 * T(i,j)
) / (h*h);
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Roofline conclusion

● Here’s a measured roofline graph from a 36-core 
Dell PE730 server:

We are apprx. here.

→ This program will run at the speed of memory.
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Beyond threads

● When we run out of cores with shared memory, 
the next step is to use distributed memory

● This means we’ll have to
– launch separate copies of the program on separate 

computers,

– put them in touch with each other, and

– write them so that they figure out how to split the problem.

● Thankfully, MPI is here to help.
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The issue we face
● If we split our 2D array into 9 separate pieces, here’s 

what we get:
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First things first

● In order to get this grid of processes, the MPI 
implementation of our program begins by
– counting the number of processes,

MPI_Comm_size

– configuring a «cartesian communicator» (i.e. a grid),
MPI_Dims_create
MPI_Cart_create

– finding own coordinates in it,
MPI_Cart_coords

– and figuring out the east/west/north/south neighbors
MPI_Cart_shift
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Border exchange

● In order to calculate the values for each point 
that is adjacent to the (grey) halo points, we 
must fetch its value from the neighboring 
process
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Border exchange, illustrated
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Memory layout

● As we already mentioned, the array is stored in 
row-major order:

● That means column vectors are strided in 
memory, such as the leftmost one here, which 
will occupy indices {0,4,8,12}
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Data types for communication

● MPI can store memory access patterns with 
gaps in, to make such things easier to handle

● In the function setup_mpi_types, the two calls 
to MPI_Type_vector create a row and a 
column vector type for the border exchange

● The border_exchange function uses them to 
swap values between neighbors according to the 
diagram
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Saving results

● We have a related issue when saving the entire 
array to file.

● Files are (ostensibly) sequential, but the 
distributed array isn’t.

● MPI datatypes can also express addressing of 
rectangular slices from a whole, 
MPI_Type_create_subarray requires
– The size of the whole it is indexing into,

– the size of the slice it is supposed to index, and

– the coordinates of the slice’s starting point/origin.
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We need 2 of these

● One for indexing where to write values (called 
domain), e.g. for the top/center process:

Whole is 12x12

Start 4x4 section at (0,4)
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We need 2 of these

● One for indexing where to read values (called 
subdomain):

Whole is 6x6

Start at 4x4 section at (1,1)
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Parallel I/O

● Armed with these datatypes (also configured in 
setup_mpi_types), we have parallelized I/O as 
well

(...as long as the file system supports it...)

● Our program is now «entirely parallel»
– No kings, no masters

– (...it still has to launch and stop, though...)

● So, what kind of performance can we get?
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Strong scaling results

● With a problem size of 512x512 points:
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We run out of work

● At 8x8 ranks, each subdomain is only 64x64 
points

● Additional ranks contribute little, we’ve reached 
diminishing returns (cf. efficiency curve)

● Still, we cut execution time by a factor 16.4
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Is it worth the trouble?

● What it cost us
– We’ve used hardware that costs roughly 260.000 NOK

– Code has almost doubled in size (whatever that costs)

● What we gained
– 16-17 times faster execution for this problem size

– Ability to finish (almost) arbitrarily much larger problems, in 
exchange for additional hardware

● Conclusion: «it depends»
– Consider the problem you want to parallelize
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How realistic is the comparison?

● Just for fun, I also wrote up the exact same 
program logic in Python (3)
– Numpy arrays for slight speed improvement

– Direct translation, so it’s not adapted to Python-isms
(...please show me any improvements you know of...)

● Short and pleasant exercise, 60% code reduction 
for sequential version

● Measured wall time on same hardware: 
74797.81s (20.78 hours)

– It took longer to run this version than to write all variants put together

– If we could get 16x-17x-ish speedup, it would still run for 1h15m
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Thank you for your attention!

Are there any questions?
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