

Anatomy of a Bulk-Synchronous Program

Presentation for RSE-team

11.11.2021

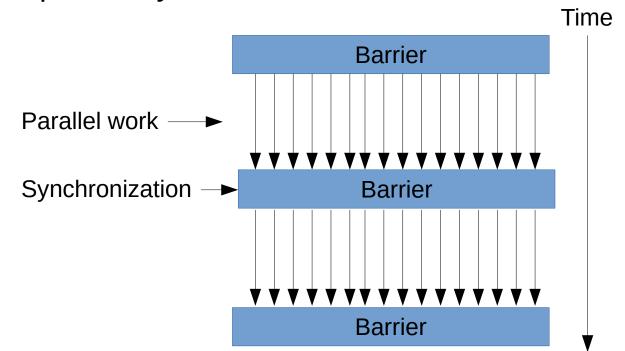
Jan Christian Meyer

What we're doing today

- Architectural features only appear as statistics in software performance.
- The designs of memory systems and networks appear as *very clear* statistics in HPC program performance.
- When we last spoke, I described parts of why this is so.
- Today, we're going to create a super-simple example program, to see where the connection comes from in practice.

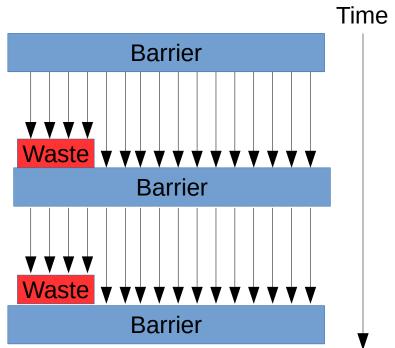
Bulk-Synchronous Execution

- This is a pattern that occurs in 75-90% of HPC applications.
- Superficially, it looks like this:



When some units are faster...

- ...they just have to wait, over and over.
- Corollary: a supercomputer can only be as fast as its slowest component.

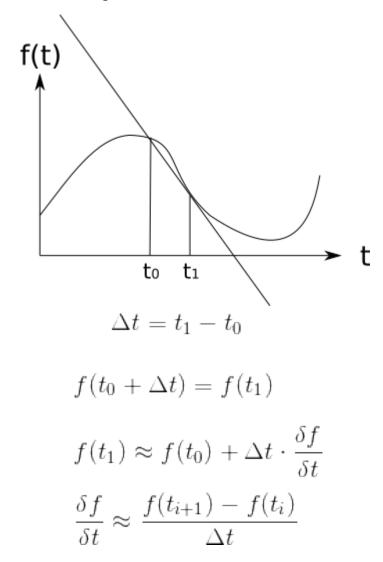


Where does this come from?

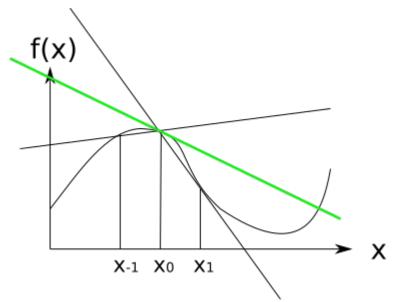
- Ultimately, it reflects the natural laws we simulate.
- Partly, it's because of the way we calculate approximations to them.
- We can try it out with a simple model of how heat disperses in various materials.

(There's more than conduction to heat transfer, but one equation is enough for now)

Derivative by Euler's Method



Derivative by Central Difference



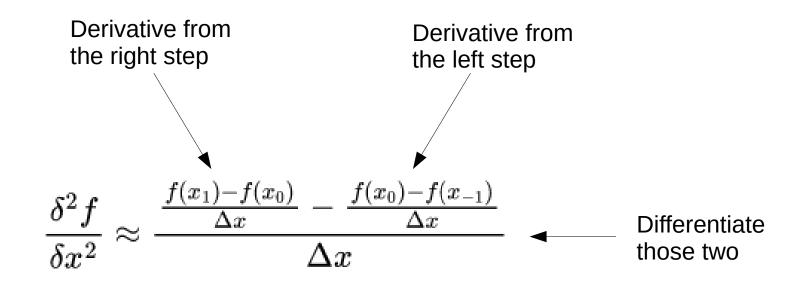
Estimate between -1 and 0

$$\frac{\delta f}{\delta x} \approx \frac{f(x_0) - f(x_{-1})}{\Delta x}$$

Estimate between 0 and 1
$$\frac{\delta f}{\delta x} \approx \frac{f(x_1) - f(x_0)}{\Delta x}$$

Their average

2nd Derivative by Central Difference



$$rac{\delta^2 f}{\delta x^2} pprox rac{f(x_1) - 2 \cdot f(x_0) + f(x_{-1})}{\Delta x^2}$$
 $extcolor{} lacksquare$ Clean up a bit

How heat diffuses (in 2D + time)

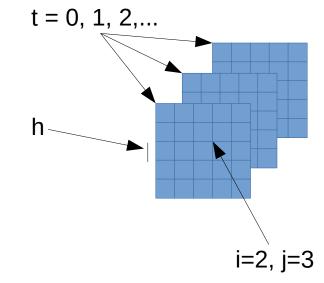
Nature has it that

$$\frac{\delta u}{\delta t} = \alpha \cdot \left(\frac{\delta^2 u}{\delta y^2} + \frac{\delta^2 u}{\delta x^2} \right)$$

For our discrete representation, say that

$$u(t, y_i, x_j) \Leftrightarrow u_{ij}^t$$

$$\Delta x = \Delta y = h$$



Substitute Our Approximations

$$\frac{\delta u}{\delta t} = \alpha \cdot \left(\frac{\delta^2 u}{\delta y^2} + \frac{\delta^2 u}{\delta x^2} \right)$$

becomes

$$\frac{u_{ij}^{t+1} - u_{ij}^t}{\Delta t} = \alpha \cdot \left(\frac{u_{i+1,j}^t - 2u_{ij}^t + u_{i-1,j}^t}{h^2} + \frac{u_{i,j+1}^t - 2u_{ij}^t + u_{i,j-1}^t}{h^2} \right)$$

Tidy up, and solve for next step in time:

$$u_{ij}^{t+1} = u_{ij}^t + \Delta t \cdot \alpha \cdot \left(\frac{u_{i+1,j}^t + u_{i-1,j}^t + u_{i,j+1}^t + u_{i,j-1}^t - 4u_{ij}^t}{h^2} \right)$$

Direct Translation to Code

$$u_{ij}^{t+1} = u_{ij}^t + \Delta t \cdot \alpha \cdot \left(\frac{u_{i+1,j}^t + u_{i-1,j}^t + u_{i,j+1}^t + u_{i,j-1}^t - 4u_{ij}^t}{h^2} \right)$$

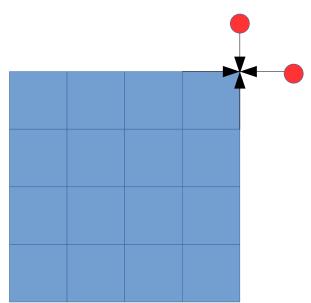
becomes

```
T_next(i,j) = T(i,j) + dt * (
    T(i+1,j) + T(i-1,j) + T(i,j+1) + T(i,j-1)
    - 4.0 * T(i,j)
) / (h*h);
```

if we let alpha = 1 for simplicity

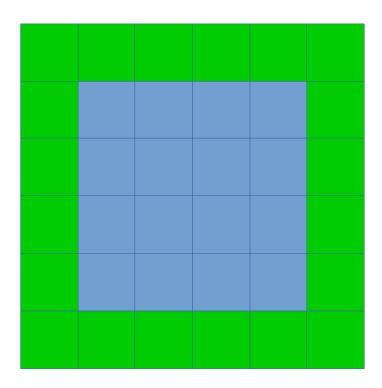
Boundary Conditions

- Each point requires values from its 4 neighbors
- All good things (and arrays) come to an end
- What can we do where two or more points are missing?



Make Something Up™!

- Dimension the array with padding on the sides
- Manipulate those values apart from the physics

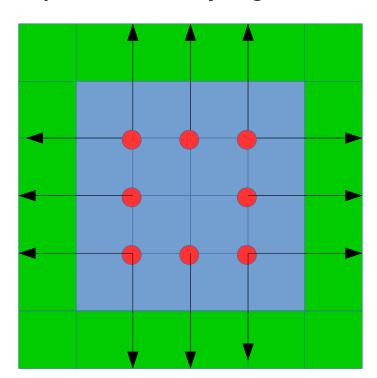


Neumann Boundary Condition

Reflect values from inside the domain across the boundary

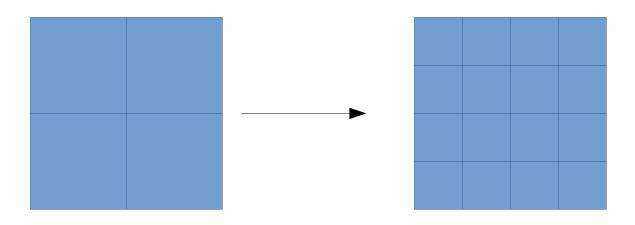
This corresponds to saying that the derivative is

0 there:



Improved Resolution

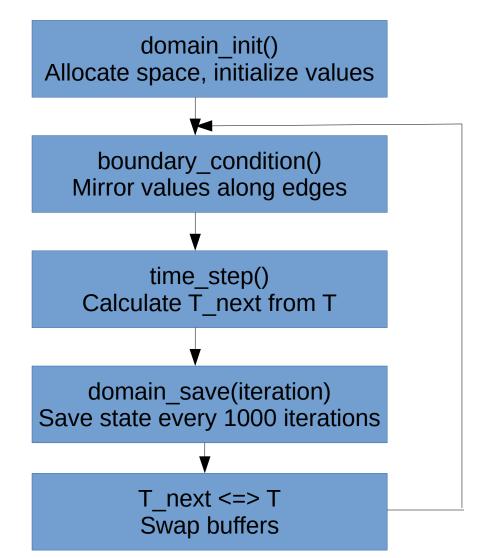
- We can simulate the same thing again, with a more fine-grained grid.
- Let's divide the cell edges in half, and get four times as many grid points.



Impact on Simulated Time

- The gradients we estimate in space-dimensions are multiplied by the length of the time step when we integrate.
- If you take a small difference over one centimeter and multiply it by a million years, you'll get a number with no connection to reality.
- For numerical stability, $\Delta t \leq \frac{h^2}{2 \cdot \alpha}$
- Things can often go a bit wobbly even when they're equal, so I'll use 4 alphas in the denominator, to be on the safe side.

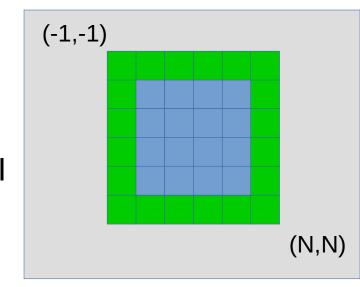
A sequential implementation



Repeat while iter<max iter

Indexing macros

- Buffers are allocated with (N+2)*(N+2) size, to have space for our halo of extra values
- #define T(y,x) temperature[((y)+1)*(N+2)+(x)+1]
 allows us to write T(-1,-1) and T(N,N) without
 causing segmentation faults
- This is just an indexing trick, but extremely helpful to keep things clear
- Also useful later on, with MPI



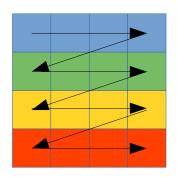
So far, so good

- Now that we have a working program, we can try things that affect its performance
- Without even going parallel, we can measure the effect of its cache utilization
- By multithreading the time_step() function, we can measure the impact of multicore cpus

...and see what happens if we create false sharing...

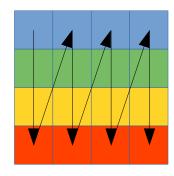
Cache Utilization

- Our program is not yet parallel, but we can already measure the impact of its memory access pattern.
- The arrays are laid out in memory by row-major ordering:



Cache Utilization

- If we traverse them in column-major order, we get an access pattern that is strided by the array size:
- There could be re-use in this order as well, but when the array grows big enough, the latest fetches begin to evict the first before the loop wraps around.



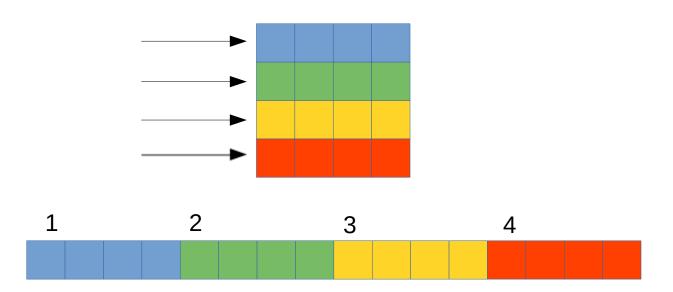
1 5 2 6 3 7... 4

Multithreading

- Our time-steps must be sequential, but all the space-steps can be done simultaneously.
- This is a perfect case for applying the OpenMP programming model:
 - If you write
 #pragma omp parallel for
 in front of a loop, its iterations will be automatically distributed among threads.
 - The threads will join and vanish after the loop, so none of them speed on through to the next timestep.
 - This is one kind of barrier from the bulk-synchronous pattern.

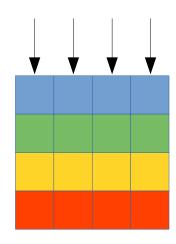
False Sharing

 If we distribute the work by rows, each thread gets a long, contiguous sequence to cache all by itself



False Sharing

- If we distribute it by columns, neighboring threads will cache values of interest to each other.
- When one writes to *its* location in the contested cache line, it will invalidate the other, even if there is no race condition.



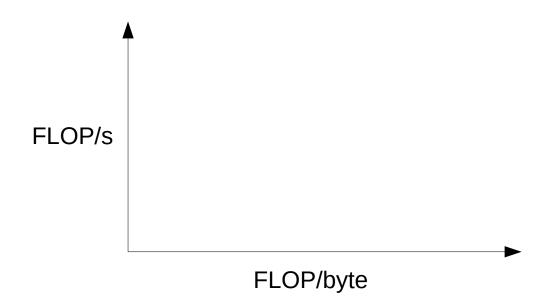
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

That's SMP in a nutshell

- We can now employ any size of shared-memory machine.
- This gets you into 4-digit core counts if you
 - rewrite it to use a graphics processor, or
 - spend 60.000.000 NOK on it.
- How fast can it go?

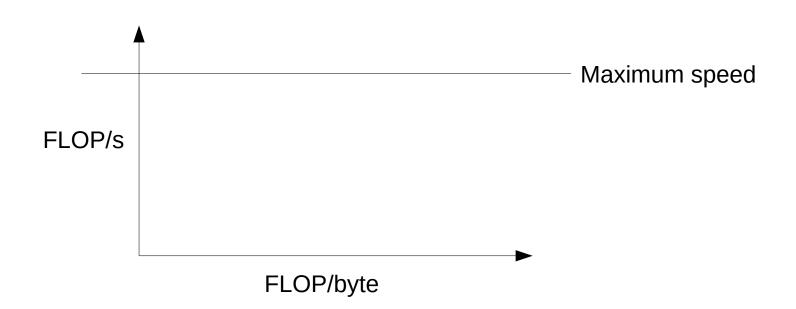
Roofline analysis

- Let the y-axis represent FLOP/s, and measure sustained computing rate, and
- let the x-axis represent how many FLOP-s the program carries out for each byte:



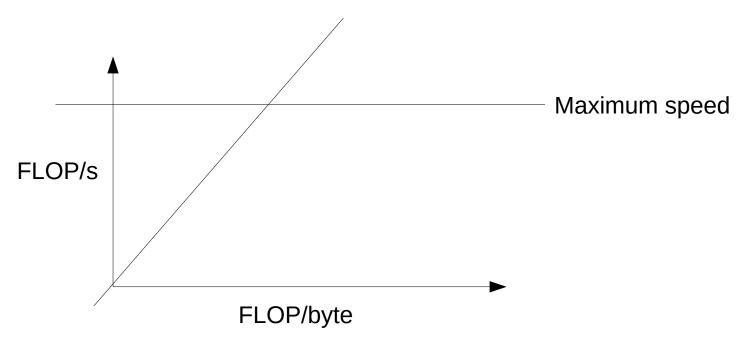
Peak computation rate

 If memory were as fast as the processor, the computer could calculate at its highest clock speed:



Peak memory bandwidth

- If the program only carries out a few operations per data element, it will be bottlenecked by the memory bandwidth.
 - [bytes/second] x [FLOP/byte] = [FLOP / second]



Our computation

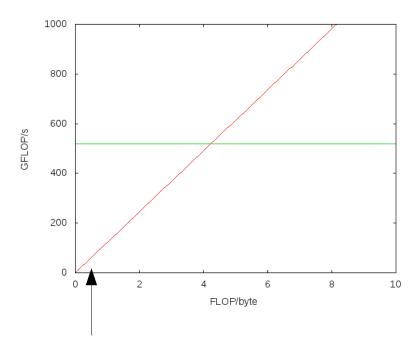
 The number of operations per datum is a characteristic of the computation, it's built in.

```
T_next(i,j) = T(i,j) + dt * (
    T(i+1,j) + T(i-1,j) + T(i,j+1) + T(i,j-1)
    - 4.0 * T(i,j)
) / (h*h);
```

• Ours has 10 operations for 7 8-byte values, that makes for an *operational intensity* around 0.1786.

Roofline conclusion

 Here's a measured roofline graph from a 36-core Dell PE730 server:



We are apprx. here.

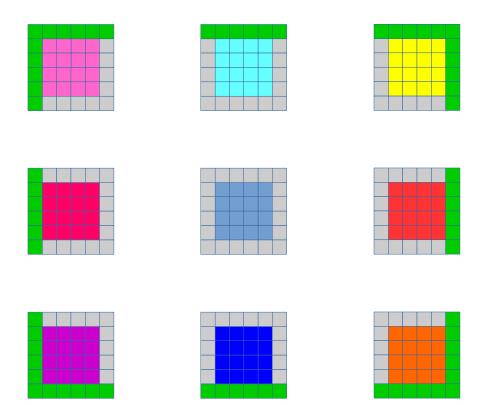
 \rightarrow This program will run at the speed of memory.

Beyond threads

- When we run out of cores with shared memory, the next step is to use distributed memory
- This means we'll have to
 - launch separate copies of the program on separate computers,
 - put them in touch with each other, and
 - write them so that they figure out how to split the problem.
- Thankfully, MPI is here to help.

The issue we face

 If we split our 2D array into 9 separate pieces, here's what we get:



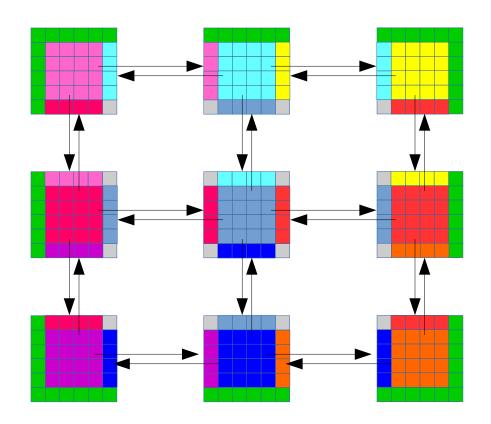
First things first

- In order to get this grid of processes, the MPI implementation of our program begins by
 - counting the number of processes,MPI_Comm_size
 - configuring a «cartesian communicator» (i.e. a grid),
 MPI_Dims_create
 MPI_Cart_create
 - finding own coordinates in it,
 MPI_Cart_coords
 - and figuring out the east/west/north/south neighbors
 MPI Cart shift

Border exchange

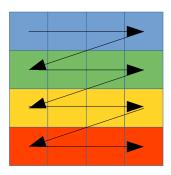
 In order to calculate the values for each point that is adjacent to the (grey) halo points, we must fetch its value from the neighboring process

Border exchange, illustrated



Memory layout

 As we already mentioned, the array is stored in row-major order:



 That means column vectors are strided in memory, such as the leftmost one here, which will occupy indices {0,4,8,12}

Data types for communication

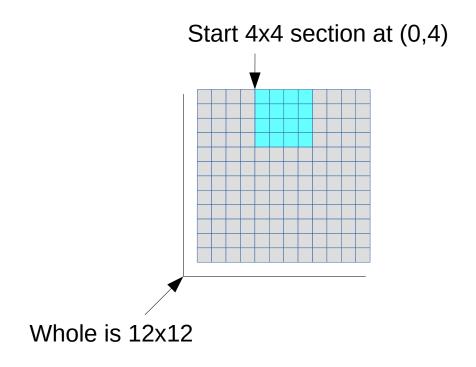
- MPI can store memory access patterns with gaps in, to make such things easier to handle
- In the function setup_mpi_types, the two calls to MPI_Type_vector create a row and a column vector type for the border exchange
- The border_exchange function uses them to swap values between neighbors according to the diagram

Saving results

- We have a related issue when saving the entire array to file.
- Files are (ostensibly) sequential, but the distributed array isn't.
- MPI datatypes can also express addressing of rectangular slices from a whole, MPI_Type_create_subarray requires
 - The size of the whole it is indexing into,
 - the size of the slice it is supposed to index, and
 - the coordinates of the slice's starting point/origin.

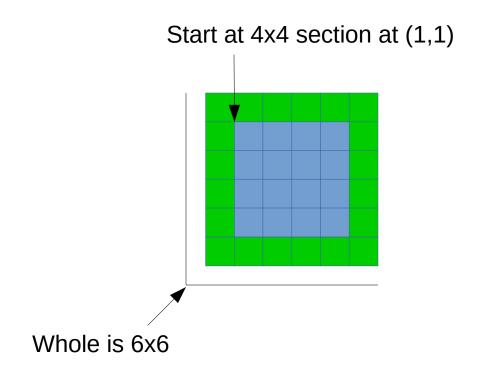
We need 2 of these

• One for indexing where to *write* values (called domain), *e.g.* for the top/center process:



We need 2 of these

 One for indexing where to read values (called subdomain):



Parallel I/O

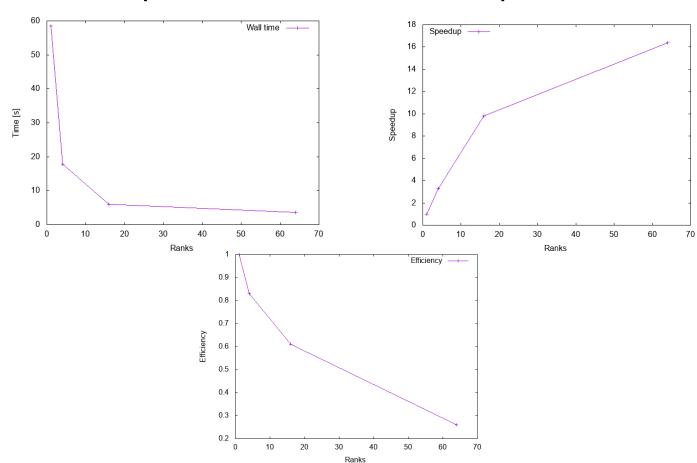
 Armed with these datatypes (also configured in setup_mpi_types), we have parallelized I/O as well

(...as long as the file system supports it...)

- Our program is now «entirely parallel»
 - No kings, no masters
 - (...it still has to launch and stop, though...)
- So, what kind of performance can we get?

Strong scaling results

With a problem size of 512x512 points:



We run out of work

- At 8x8 ranks, each subdomain is only 64x64 points
- Additional ranks contribute little, we've reached diminishing returns (cf. efficiency curve)
- Still, we cut execution time by a factor 16.4

Is it worth the trouble?

- What it cost us
 - We've used hardware that costs roughly 260.000 NOK
 - Code has almost doubled in size (whatever that costs)
- What we gained
 - 16-17 times faster execution for this problem size
 - Ability to finish (almost) arbitrarily much larger problems, in exchange for additional hardware
- Conclusion: «it depends»
 - Consider the problem you want to parallelize

How realistic is the comparison?

- Just for fun, I also wrote up the exact same program logic in Python (3)
 - Numpy arrays for slight speed improvement
 - Direct translation, so it's not adapted to Python-isms
 (...please show me any improvements you know of...)
- Short and pleasant exercise, 60% code reduction for sequential version
- Measured wall time on same hardware:
 74797.81s (20.78 hours)
 - It took longer to run this version than to write all variants put together
 - If we could get 16x-17x-ish speedup, it would still run for 1h15m

Thank you for your attention!

Are there any questions?